WO2017206509A1 - 投影区域的适配方法、装置及系统 - Google Patents

投影区域的适配方法、装置及系统 Download PDF

Info

Publication number
WO2017206509A1
WO2017206509A1 PCT/CN2017/000058 CN2017000058W WO2017206509A1 WO 2017206509 A1 WO2017206509 A1 WO 2017206509A1 CN 2017000058 W CN2017000058 W CN 2017000058W WO 2017206509 A1 WO2017206509 A1 WO 2017206509A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
projection
boundary
projection device
camera
Prior art date
Application number
PCT/CN2017/000058
Other languages
English (en)
French (fr)
Inventor
袁洪跃
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017206509A1 publication Critical patent/WO2017206509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence

Definitions

  • Embodiments of the present invention relate to the field of projectors, and in particular, to a method, device, and system for adapting a projection area.
  • the projector projects the image to a certain area in a fixed size. If the area covered by the projected image is partially irregular, for example, the wall plane size is smaller than the projected image size, so the projection size is manually adjusted, and the irregularity is irregular. Partially excluded, make sure that the area covered by the image is complete to fit the projection plane. If the projector can automatically detect the flatness of the projected area and automatically adjust the projection size to fit the area, the manual adjustment can be omitted, which facilitates and simplifies the operation of the projector.
  • Embodiments of the present invention provide a method, an apparatus, and a system for adapting a projection area to at least solve the problem that the projection area of the projection apparatus cannot be adapted in the related art.
  • a method for adapting a projection area including: acquiring a distance from a projection device to a projection surface, and acquiring a first image captured by a camera on a same horizontal line as the projection device, Wherein the first image is obtained by capturing a second image projected by the projection device onto the projection surface; calculating a maximum boundary of the first image using a preset algorithm; adapting the projection device according to the maximum boundary a projection area on the projection surface.
  • adapting the projection area of the projection device on the projection surface according to the maximum boundary comprises: adapting a width or a height L of the projection area using a formula
  • X is the width or height of the maximum boundary on the first image
  • D is the The distance from the imaging surface of the camera to the projection surface
  • F is the focal length of the camera.
  • calculating a maximum boundary of the first image using a preset algorithm includes calculating a maximum boundary of the first image using a boundary detection algorithm.
  • calculating a maximum boundary of the first image by using a boundary detection algorithm includes: converting any frame image of the first image into a preset grayscale image, where the preset order is 2 An integer power; a convolution calculation of the grayscale image using a template matrix to obtain a boundary enhancement map of the first image; traversing a pixel value of the boundary enhancement map, and a grayscale value in the boundary enhancement map is greater than
  • the gray value of the pixel of the preset threshold is set to a predetermined value, wherein the predetermined value corresponds to the preset order; and the pixel point in the boundary enhancement map whose gray value is the predetermined value is determined as The boundary point of the first image.
  • the second image comprises: a projected image of a specified color and/or a specified shape.
  • an adaptation apparatus for a projection area comprising: an acquisition module configured to acquire a distance of a projection device to a projection surface, and acquire a camera shot on the same horizontal line as the projection device a first image obtained, wherein the first image is obtained by capturing a second image projected by the projection device onto the projection surface; and a calculation module configured to calculate a maximum boundary of the first image using a preset algorithm; An adaptation module is arranged to adapt a projection area of the projection device on the projection surface according to the maximum boundary.
  • the adaptation module includes: an adaptation unit configured to adapt a width or a height L of the projection area using a formula;
  • X is the width or height of the maximum boundary on the first image
  • D is the distance from the imaging surface of the camera to the projection surface
  • F is the focal length of the camera.
  • the calculating module includes: a converting unit configured to convert any frame image of the first image into a grayscale image of a preset order, wherein the preset order is an integer power of 2; a calculating unit, configured to perform convolution calculation on the grayscale image using a template matrix to obtain a boundary enhancement map of the first image; and a setting unit configured to traverse the pixel value of the boundary enhancement map, a gray value of a pixel point whose gray value is greater than a preset threshold in the boundary enhancement map is set to a predetermined value, wherein the predetermined value corresponds to the preset order; and a determining unit is configured to set the boundary enhancement map A pixel point whose medium gray value is the predetermined value is determined as a boundary point of the first image.
  • the second image comprises: a projected image of a specified color and/or a specified shape.
  • an adaptation system for a projection area comprising a projection device, a camera, a distance sensor, the distance sensor configured to acquire a distance of the projection device to the projection surface; the camera is set to Taking a second image projected by the projection device onto the projection surface to obtain a first image; the projection device being configured to calculate a maximum boundary of the first image using a preset algorithm, and adapting the maximum boundary according to the maximum boundary The projection area of the projection device on the projection surface.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • a projection area of the projection device on the projection surface is adapted according to the maximum boundary.
  • the problem is achieved by the projection device automatically adapting the projection area on the projection surface.
  • FIG. 1 is a flow chart of a method of adapting a projection area according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an adaptation apparatus of a projection area according to an embodiment of the present invention
  • FIG. 3 is a block diagram 1 of an optional structure of an adaptation device of a projection area according to an embodiment of the present invention
  • FIG. 4 is a block diagram 2 of an optional structure of an adaptation device of a projection area according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of an adaptation system of a projection area according to an embodiment of the present invention.
  • Figure 6 is a system model diagram according to the present embodiment.
  • Figure 7 is a schematic diagram of the measurement of the embodiment
  • FIG. 8 is a flowchart of an algorithm in accordance with the present embodiment.
  • Figure 10 is a view of the optical axis position according to the embodiment.
  • Figure 11 is a schematic view showing a projection image of a projection surface on a imaging surface of a camera according to the present embodiment.
  • FIG. 1 is a flowchart of a method for adapting a projection area according to an embodiment of the present invention. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 acquiring a distance from the projection device to the projection surface, and acquiring a first image captured by a camera on the same horizontal line as the projection device, wherein the first image passes the shooting projection Obtaining a second image of the device projected onto the projection surface;
  • Step S104 calculating a maximum boundary of the first image by using a preset algorithm
  • Step S106 adapting the projection area of the projection device on the projection surface according to the maximum boundary.
  • the maximum boundary of the first image is calculated using a preset algorithm; the projected area of the projection device on the projection surface is adapted according to the maximum boundary.
  • the execution body of the above steps may be a projection device, a controller of the projection device, or the like, but is not limited thereto.
  • adapting the projection area of the projection device on the projection surface according to the maximum boundary comprises: adapting the width or height L of the projection area using the following formula
  • X is the width or height of the largest boundary on the first image
  • D is the distance from the imaging surface of the camera to the projection surface
  • F is the focal length of the camera.
  • calculating a maximum boundary of the first image by using a preset algorithm includes: calculating a maximum boundary of the first image by using a boundary detection algorithm.
  • boundary detection detection algorithms There are many types of boundary detection detection algorithms, and one is exemplified here, but the boundary detection algorithm used in this embodiment is not limited to this one. include:
  • S12 Perform convolution calculation on the grayscale image using the template matrix to obtain a boundary enhancement map of the first image; optionally, it may be a 4*4 template matrix.
  • the gray value of the pixel of the value is set to a predetermined value, wherein the predetermined value corresponds to the preset order; when the grayscale image is 256 steps, the corresponding predetermined value is 255.
  • the second image may be a projected image of a specified color and/or a specified shape.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods of various embodiments of the present invention.
  • An apparatus and a system for adapting a projection area are also provided in this embodiment.
  • the apparatus is configured to implement the above-described embodiments and preferred embodiments, and the description thereof has been omitted.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a structural block diagram of an apparatus for adapting a projection area according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes:
  • the acquiring module 22 is configured to acquire a distance from the projection device to the projection surface, and acquire a first image captured by a camera on a same horizontal line as the projection device, wherein the first image is projected to the second image of the projection surface by the shooting projection device obtain;
  • the calculating module 24 is configured to calculate a maximum boundary of the first image by using a preset algorithm
  • the adaptation module 26 is arranged to adapt the projection area of the projection device on the projection surface according to the maximum boundary.
  • FIG. 3 is a block diagram of an optional structure of an apparatus for adapting a projection area according to an embodiment of the present invention.
  • the apparatus includes: an adaptation unit, in addition to all the modules shown in FIG. 30, set to adapt the width or height L of the projection area using the following formula;
  • X is the width or height of the largest boundary on the first image
  • D is the distance from the imaging surface of the camera to the projection surface
  • F is the focal length of the camera.
  • FIG. 4 is a block diagram 2 of an optional structure of an apparatus for adapting a projection area according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes, in addition to all the modules shown in FIG.
  • the converting unit 40 is configured to convert any frame image of the first image into a grayscale image of a preset order, wherein the preset order is an integer power of 2;
  • the calculating unit 42 is configured to perform convolution calculation on the grayscale image using the template matrix to obtain a boundary enhancement map of the first image
  • the setting unit 44 is configured to traverse the pixel value of the boundary enhancement map, and set a gray value of the pixel point whose gray value is greater than the preset threshold in the boundary enhancement map to a predetermined value, wherein the predetermined value corresponds to the preset order;
  • the determining unit 46 is configured to determine a pixel point of the grayscale value in the boundary enhancement map as a predetermined value as a boundary point of the first image.
  • the second image may be a projected image of a specified color and/or a specified shape.
  • FIG. 5 is a structural block diagram of an adaptation system of a projection area according to an embodiment of the present invention. As shown in FIG. 5, the system includes: a projection device 50, a camera 52, and a distance sensor 54,
  • a distance sensor 54 configured to obtain a distance from the projection device to the projection surface
  • a camera 52 configured to capture a second image projected by the projection device onto the projection surface to obtain a first image
  • the projection device 50 is arranged to calculate a maximum boundary of the first image using a preset algorithm and to adapt the projection area of the projection device on the projection surface according to the maximum boundary.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to specifically describe the solution:
  • a measurement system is composed of a projection device, a distance sensor, a camera, and a software system.
  • the projection device is responsible for projecting the image onto the projection surface
  • the distance sensor is responsible for measuring the distance from the projection device to the projection surface
  • the camera is responsible for capturing the image of the projection surface
  • the software system is responsible for controlling the projection of the projection device and processing the image captured by the analysis camera. Including the following steps:
  • the distance sensor measures a distance from the camera or the projection device to the projection surface
  • the projection device can project an image of a specified color and a specified area to the projection surface. This is an optional method for pre-processing the projection surface to ensure image processing effect, and can be omitted if the projection surface is ideal.
  • the software system analyzes the image of the projection surface acquired by the camera, and uses the boundary detection algorithm to detect the maximum continuous flat surface parameter in the image, including the width, height or radius;
  • the software system calculates the actual parameters of the projected flat surface according to the triangulation method, including the width, the height or the radius, and the basis of the projection area can be determined for the projection device.
  • FIG. 6 is a system model diagram according to the present embodiment, as shown in FIG. 6, where 1 is a projection surface, 2 is a projection image area, 3 is a projection device, 4 is a distance sensor, and 5 is a camera. 3 and 5 are placed close to each other, and the optical axes of the two are on the same horizontal line. The distance sensor position is such that the distance from the imaging surface of the camera to the projection surface can be measured.
  • 1 projection surface which is the screen to be projected by the projector, such as wall surface, curtain, etc.;
  • 3 projection device which is a device for projecting images
  • Figure 7 is a schematic diagram of the measurement of the present embodiment, as shown in Figure 7, in Figure 7, 1 is the projection surface, such as the wall, the boundary is shown in red; 2 is the imaging image of the camera image sensor; a is the left border of the projection surface Actual position point; b is the actual position point of the right edge of the projection surface; c is the camera focus; d is the projection point of b on the imaging surface; e is the projection point of a on the imaging surface; L is the projection surface width of the projection surface ( Or height); X is the projection width of the continuous borderless area on the imaging surface on the projection surface; D is the distance from the imaging surface of the camera to the projection surface; F is the focal length of the camera.
  • 1 is the projection surface, such as the wall, the boundary is shown in red
  • 2 is the imaging image of the camera image sensor
  • a is the left border of the projection surface Actual position point
  • b is the actual position point of the right edge of the projection surface
  • c is the camera focus
  • d is the
  • Equation 1 can be obtained according to the triangle similarity criterion.
  • FIG. 8 is a flowchart of an algorithm according to this embodiment. As shown in FIG. 8, the method includes:
  • the background is sometimes enhanced by the light source, and the projection device is used to project an image of a specified color to the projection surface to improve the image processing effect. This step is optional.
  • the distance sensor placement position should be able to achieve this purpose.
  • FIG. 9 is a flow chart of a boundary detection algorithm according to the present embodiment, as shown in FIG.
  • FIG. 10 is an optical axis position diagram according to the embodiment, and FIG. 10 is perpendicular to the projection surface, wherein 1 is On the projection surface, the boundary line on the projection surface is marked by a red line, and the enclosed area is a continuous borderless projectable area.
  • the image boundary of the boundary line on the imaging plane of the camera is obtained by the third step; 2 is the projection device light.
  • the center of the axis; 3 is the center of the optical axis of the camera; the lens of 2, 3 is parallel to 1; the positions 2 and 3 are on the same horizontal line, so they are in the same position in the vertical direction, and 2 is also the center of the boundary image obtained by the camera.
  • the figure is also marked with direction coordinates.
  • FIG. 11 is a schematic diagram of the projection image of the projection surface on the imaging surface of the camera according to the embodiment, as shown in FIG. 11 , where 1 is the optical axis of the camera.
  • Position S on the imaging surface; projection of the projection surface on the imaging surface; 3 red line is the projection of the boundary of the projection surface on the imaging surface, and the enclosed area is the projection of the continuous borderless projectable area on the imaging surface .
  • the pixel gray value of the red line position in the boundary graph is 255, and the gray value of the remaining positions is 0. Therefore, the width and height of the projection of the projectable area on the imaging plane, that is, X in Formula 1, can be determined according to the boundary map.
  • the embodiment can use a depth camera instead of the distance sensor and the ordinary camera in the invention to implement the measurement function, but the cost is high and the measurement precision is low.
  • the projector when the projector starts to project, most of the projection screen size cannot be adjusted according to the projection surface condition to adapt to the projectable area.
  • This technology enables the projector to intelligently recognize the area of the projection area. Based on this, the projection can automatically adjust the size of the projected image window. To adapt to the area;
  • only one frame of image can be collected to measure the size of the projectable area, and the speed is fast;
  • the present invention can perform measurement of the size of the projectable area without the user's perception.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs acquiring the distance of the projection device to the projection surface according to the stored program code in the storage medium, and acquiring the first image captured by the camera on the same horizontal line as the projection device, where a first image obtained by photographing a second image projected by the projection device onto the projection surface;
  • the processor calculates, according to the stored program code in the storage medium, a maximum boundary of the first image calculated by using a preset algorithm
  • the processor performs, according to the stored program code stored in the storage medium, the projection area of the projection device on the projection surface according to the maximum boundary.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or separate them into individual integrated circuit modules, or multiple of them Blocks or steps are made in a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • a method, apparatus, and system for adapting a projection area provided by an embodiment of the present invention have the following beneficial effects: acquiring a distance from a projection device to a projection surface, and acquiring a camera on the same horizontal line as the projection device a first image captured, wherein the first image is obtained by capturing a second image projected by the projection device onto the projection surface; calculating a maximum boundary of the first image using a preset algorithm; A boundary adapts a projection area of the projection device at the projection surface.

Abstract

一种投影区域的适配方法、装置及系统。其中,该方法包括:获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;使用预测算法计算所述第一图像的最大边界;根据所述最大边界适配所述投影设备在所述投影面的投影区域。解决了相关技术中不能适配投影设备的投影区域的问题。

Description

投影区域的适配方法、装置及系统 技术领域
本发明实施例涉及投影仪领域,具体而言,涉及一种投影区域的适配方法、装置及系统。
背景技术
投影仪以固定尺寸投射图像到一区域面上,如果该面被投影图像覆盖的区域有部分是不规则的,例如墙平面尺寸小于投影图像尺寸,这样就要人工调整投射尺寸,将不规则的部分排除在外,确保图像所覆盖区域为完整的,以适应投影平面。如果投影仪能自动检测所投影区域的平整情况,并自动调整投影尺寸以适应该区域,就能省去人工调整这个环节,方便并简化了对投影仪的操作。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种投影区域的适配方法、装置及系统,以至少解决相关技术中不能适配投影设备的投影区域的问题。
根据本发明的一个实施例,提供了一种投影区域的适配方法,包括:获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;使用预设算法计算所述第一图像的最大边界;根据所述最大边界适配所述投影设备在所述投影面的投影区域。
可选地,根据所述最大边界适配所述投影设备在所述投影面的投影区域包括:使用以下公式适配所述投影区域的宽度或高度L;
Figure PCTCN2017000058-appb-000001
其中,X为所述最大边界在所述第一图像上的宽度或高度,D为所述 摄像头的成像面到所述投影面的距离,F为所述摄像头的焦距。
可选地,使用预设算法计算所述第一图像的最大边界包括:使用边界检测算法计算所述第一图像的最大边界。
可选地,使用边界检测算法计算所述第一图像的最大边界包括:将所述第一图像的任一帧图像转换为预设阶的灰度图,其中,所述预设阶为2的整数次幂;使用模板矩阵对所述灰度图进行卷积计算以得到所述第一图像的边界增强图;遍历所述边界增强图的像素值,将所述边界增强图中灰度值大于预设阈值的像素点的灰度值设置为预定值,其中,所述预定值与所述预设阶对应;将所述边界增强图中灰度值为所述预定值的像素点确定为所述第一图像的边界点。
可选地,所述第二图像包括:指定颜色和/或指定形状的投影图像。
根据本发明的另一个实施例,提供了一种投影区域的适配装置,包括:获取模块,设置为获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;计算模块,设置为使用预设算法计算所述第一图像的最大边界;适配模块,设置为根据所述最大边界适配所述投影设备在所述投影面的投影区域。
可选地,所述适配模块包括:适配单元,设置为使用以下公式适配所述投影区域的宽度或高度L;
Figure PCTCN2017000058-appb-000002
其中,X为所述最大边界在所述第一图像上的宽度或高度,D为所述摄像头的成像面到所述投影面的距离,F为所述摄像头的焦距。
可选地,所述计算模块包括:转换单元,设置为将所述第一图像的任一帧图像转换为预设阶的灰度图,其中,所述预设阶为2的整数次幂;计算单元,设置为使用模板矩阵对所述灰度图进行卷积计算以得到所述第一图像的边界增强图;设置单元,设置为遍历所述边界增强图的像素值,将 所述边界增强图中灰度值大于预设阈值的像素点的灰度值设置为预定值,其中,所述预定值与所述预设阶对应;确定单元,设置为将所述边界增强图中灰度值为所述预定值的像素点确定为所述第一图像的边界点。
可选地,所述第二图像包括:指定颜色和/或指定形状的投影图像。
根据本发明的一个实施例,提供了一种投影区域的适配系统,包括投影设备、摄像头、距离传感器,所述距离传感器,设置为获取投影设备到投影面的距离;所述摄像头,设置为拍摄所述投影设备投射到所述投影面的第二图像获得第一图像;所述投影设备,设置为使用预设算法计算所述第一图像的最大边界,并根据所述最大边界适配所述投影设备在所述投影面的投影区域。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;
使用预设算法计算所述第一图像的最大边界;
根据所述最大边界适配所述投影设备在所述投影面的投影区域。
通过本发明实施例,获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;使用预设算法计算所述第一图像的最大边界;根据所述最大边界适配所述投影设备在所述投影面的投影区域。通过第一图像获得投影面的大小,再根据三角函数得到投影面的实际大小,从而对投影设备的最大投影区域进行适配和调整,因此,可以解决相关技术中不能适配投影设备的投影区域的问题,达到了投影设备自动适配在投影面上的投影区域的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的投影区域的适配方法的流程图;
图2是根据本发明实施例的投影区域的适配装置的结构框图;
图3是根据本发明实施例的投影区域的适配装置的可选结构框图一;
图4是根据本发明实施例的投影区域的适配装置的可选结构框图二;
图5是根据本发明实施例的投影区域的适配系统的结构框图;
图6是根据本实施例的系统模型图;
图7是本实施例的测量原理图;
图8是根据本实施例的算法流程图;
图9是根据本实施例的边界检测算法流程图;
图10是根据本实施例的光轴位置图;
图11是根据本实施例的投影面在摄像头成像面上的投影图像示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种投影区域的适配方法,图1是根据本发明实施例的投影区域的适配方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,获取投影设备到投影面的距离,以及获取与投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,第一图像通过拍摄投影 设备投射到投影面的第二图像获得;
步骤S104,使用预设算法计算第一图像的最大边界;
步骤S106,根据最大边界适配投影设备在投影面的投影区域。
通过上述步骤,获取投影设备到投影面的距离,以及获取与投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,第一图像通过拍摄投影设备投射到投影面的第二图像获得;使用预设算法计算第一图像的最大边界;根据最大边界适配投影设备在投影面的投影区域。通过第一图像获得投影面的大小,再根据三角函数得到投影面的实际大小,从而对投影设备的最大投影区域进行适配和调整,因此,可以解决相关技术中不能适配投影设备的投影区域的问题,达到了投影设备自动适配在投影面上的投影区域的效果。
可选地,上述步骤的执行主体可以为投影设备、投影设备的控制器等,但不限于此。
可选的,根据最大边界适配投影设备在投影面的投影区域包括:使用以下公式适配投影区域的宽度或高度L;
Figure PCTCN2017000058-appb-000003
其中,X为最大边界在第一图像上的宽度或高度,D为摄像头的成像面到投影面的距离,F为摄像头的焦距。
可选的,使用预设算法计算第一图像的最大边界包括:使用边界检测算法计算第一图像的最大边界。边界检检测算法种类繁多,在此例举一种,但本实施例使用边界检测算法不限于这一种。包括:
S11,将第一图像的任一帧图像转换为预设阶的灰度图,其中,预设阶为2的整数次幂;可选的,可以是256阶的。
S12,使用模板矩阵对灰度图进行卷积计算以得到第一图像的边界增强图;可选的,可以是4*4的模板矩阵。
S13,遍历边界增强图的像素值,将边界增强图中灰度值大于预设阈 值的像素点的灰度值设置为预定值,其中,预定值与预设阶对应;在灰度图为256阶时,对应的预定值为255。
S14,将边界增强图中灰度值为预定值的像素点确定为第一图像的边界点。
可选的,第二图像可以是指定颜色和/或指定形状的投影图像。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
实施例2
在本实施例中还提供了一种投影区域的适配装置、系统,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的投影区域的适配装置的结构框图,如图2所示,该装置包括:
获取模块22,设置为获取投影设备到投影面的距离,以及获取与投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,第一图像通过拍摄投影设备投射到投影面的第二图像获得;
计算模块24,设置为使用预设算法计算第一图像的最大边界;
适配模块26,设置为根据最大边界适配投影设备在投影面的投影区域。
图3是根据本发明实施例的投影区域的适配装置的可选结构框图一,如图3所示,该装置除包括图2所示的所有模块外,适配模块26包括:适配单元30,设置为使用以下公式适配投影区域的宽度或高度L;
Figure PCTCN2017000058-appb-000004
其中,X为最大边界在第一图像上的宽度或高度,D为摄像头的成像面到投影面的距离,F为摄像头的焦距。
图4是根据本发明实施例的投影区域的适配装置的可选结构框图二,如图4所示,该装置除包括图2所示的所有模块外,计算模块24包括:
转换单元40,设置为将第一图像的任一帧图像转换为预设阶的灰度图,其中,预设阶为2的整数次幂;
计算单元42,设置为使用模板矩阵对灰度图进行卷积计算以得到第一图像的边界增强图;
设置单元44,设置为遍历边界增强图的像素值,将边界增强图中灰度值大于预设阈值的像素点的灰度值设置为预定值,其中,预定值与预设阶对应;
确定单元46,设置为将边界增强图中灰度值为预定值的像素点确定为第一图像的边界点。
可选的,第二图像可以是指定颜色和/或指定形状的投影图像。
图5是根据本发明实施例的投影区域的适配系统的结构框图,如图5所示,该系统包括:投影设备50、摄像头52、距离传感器54,
距离传感器54,设置为获取投影设备到投影面的距离;
摄像头52,设置为拍摄投影设备投射到投影面的第二图像获得第一图像;
投影设备50,设置为使用预设算法计算第一图像的最大边界,并根据最大边界适配投影设备在投影面的投影区域。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于对本方案进行具体详细的说明:
本实施例由投影设备、距离传感器、摄像头、软件系统组成测量系统。投影设备负责投影图像到投影面上,距离传感器负责测量投影设备到投影面的距离,摄像头负责捕获投影面的图像,软件系统负责控制投影设备投影以及处理分析摄像头所捕获的图像。包括如下步骤:
S21,距离传感器测量摄像头或投影设备到投影面的距离;
S22,投影设备能够投射一个指定颜色、指定面积的图像到投影面,此为可选项,是为了对投影面进行预处理,以保证图像处理效果,如果投影面比较理想则可以省去。
S23,软件系统对摄像头采集的投影面的图像进行分析,采用边界检测算法检测图像中最大连续平整面参数,包括宽度、高度或半径等;
S24,软件系统根据三角测量法计算出投影平整面实际参数,包括宽度、高度或半径等,以此为依据则可为投影设备确定可投影区域面积。
图6是根据本实施例的系统模型图,如图6所示,其中1为投影面,2为投影图像区域,3为投影设备,4为距离传感器,5为摄像头。其中3与5靠近平行放置,两者的光轴在同一水平线上。距离传感器摆放位置满足能够测量摄像头成像面到投影面的距离。
1投影面,为投影仪所要投影的屏幕,例如墙面、幕布等;
2投影区域,为投影设备投射图像所覆盖的投影面的区域;
3投影设备,为投射图像的设备;
4距离传感器,测量投影设备、摄像头到投影区域的距离;
5摄像头,采集投影面的图像。
图7是本实施例的测量原理图,如图7所示,图7中,1为投影面,例如墙体,其边界用红色表示;2为摄像头图像传感器成像面;a为投影面左边界实际位置点;b为投影面右边界实际位置点;c为摄像头焦点;d为b在成像面上的投影点;e为a在成像面上的投影点;L为投影面可投影区域宽度(或高度);X为投影面上连续无边界区域在成像面上的投影宽度;D为摄像头成像面到投影面的距离;F为摄像头焦距。
从图7可知,由于成像面与投影面平行,故三角形abc与三角形cde相似,根据三角形相似性准则可得公式1。
公式1:
Figure PCTCN2017000058-appb-000005
公式1中D由距离传感器测得;F为已知量;X为变量,即投影面左右(或上下)边界间连续无边界区域在成像面上投影得到的宽度(高度),其值等于该范围内的像素个数乘以像素间距,因此只要检测出成像面上图像的边界,获得他们之间的距离X,就能计算出投影面上连续不包含边界的可投影区度量参数L,即宽和高。
图8是根据本实施例的算法流程图,如图8所示,包括:
S31,为了获得更好的边界检测效果,有时候会对背景进行光源增强,利用投影设备向投影面投射指定颜色的图像能够提高图像处理效果。本步骤为可选项。
S32,使用距离传感器测量摄像头成像面到投影面的距离D,距离传感器摆放位置应能够达到这一目的。
S33,摄像头采集投影面图像,并对其进行边检检测,获取边界图。边检检测算法种类繁多,在此,例举一种,本发明使用边检检测算法不限于这一种。图9是根据本实施例的边界检测算法流程图,如图9所示。
S34,根据第三步中得到的边界图确定投影面最大连续无边界区域在摄像头成像面上的投影。由于在系统模型中规定投影设备与摄像头靠近平 行放置,两者的光轴在同一水平线上,两者的光轴摆放位置如图10,图10是根据本实施例的光轴位置图,图10视角为垂直于投影面,其中1为投影面,用红色线标识出了投影面上的边界线,其所包围区域为连续无边界可投影区域,边界线在摄像头成像面上的图像边界由第三步得出;2为投影设备光轴中心;3为摄像头光轴中心;2、3的镜头与1相平行;2与3位置在同一水平线上,因此它们在垂直方向上的位置相同,同时2也是摄像头采集图像所得边界图的中心;图中还标有方向坐标。
同时投影面在摄像头成像面上的投影为一幅二维图像矩阵,图11是根据本实施例的投影面在摄像头成像面上的投影图像示意图,如图11所示,其中1为摄像头光轴在成像面上的位置S;而为投影面在成像面上的投影;3红色线为投影面边界在成像面上的投影,其所包围区域为连续无边界可投影区域在成像面上的投影。
边界图中红色线位置的像素灰度值为255,而其余位置的灰度值为0,故可以根据边界图确定可投影区域在成像面上投影的宽度和高度,即公式1中的X。
S35,将D、F和X带入公式1得到L,即投影面上连续不包含边界的可投影区域度量参数宽和高被测得,投影设备以此参数为依据调节投影画面尺寸,以适应可投影区域。
可选的,本实施例可以采用深度摄像头取代发明中的距离传感器和普通摄像头可以实现测量功能,但其成本较高,测量精度较低。
目前投影仪开始投影时,大都无法根据投影面状况自动调整投射屏幕尺寸以适应可投影区域,本技术使投影仪能够智能识别可投影区域面积,以此为依据,投影能够自动调整投射图像窗口大小以适应该区域;
本发明实施例只需采集一帧图像就能测量出可投影区域尺寸,速度快;
如果不使用投影设备增强背景色,本发明可以在用户无感知的情况下就能完成可投影区域尺寸的测量。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,获取投影设备到投影面的距离,以及获取与投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,第一图像通过拍摄投影设备投射到投影面的第二图像获得;
S2,使用预设算法计算第一图像的最大边界;
S3,根据最大边界适配投影设备在投影面的投影区域。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行获取投影设备到投影面的距离,以及获取与投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,第一图像通过拍摄投影设备投射到投影面的第二图像获得;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行使用预设算法计算第一图像的最大边界;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行根据最大边界适配投影设备在投影面的投影区域
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模 块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种投影区域的适配方法、装置及系统,具有以下有益效果:获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;使用预设算法计算所述第一图像的最大边界;根据所述最大边界适配所述投影设备在所述投影面的投影区域。通过第一图像获得投影面的大小,再根据三角函数得到投影面的实际大小,从而对投影设备的最大投影区域进行适配和调整,因此,可以解决相关技术中不能适配投影设备的投影区域的问题,达到了投影设备自动适配在投影面上的投影区域的效果。

Claims (11)

  1. 一种投影区域的适配方法,包括:
    获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;
    使用预设算法计算所述第一图像的最大边界;
    根据所述最大边界适配所述投影设备在所述投影面的投影区域。
  2. 根据权利要求1所述的方法,其中,根据所述最大边界适配所述投影设备在所述投影面的投影区域包括:
    使用以下公式适配所述投影区域的宽度或高度L;
    Figure PCTCN2017000058-appb-100001
    其中,X为所述最大边界在所述第一图像上的宽度或高度,D为所述摄像头的成像面到所述投影面的距离,F为所述摄像头的焦距。
  3. 根据权利要求1所述的方法,其中,使用预设算法计算所述第一图像的最大边界包括:
    使用边界检测算法计算所述第一图像的最大边界。
  4. 根据权利要求3所述的方法,其中,使用边界检测算法计算所述第一图像的最大边界包括:
    将所述第一图像的任一帧图像转换为预设阶的灰度图,其中,所述预设阶为2的整数次幂;
    使用模板矩阵对所述灰度图进行卷积计算以得到所述第一图像的边界增强图;
    遍历所述边界增强图的像素值,将所述边界增强图中灰度值大于预设阈值的像素点的灰度值设置为预定值,其中,所述预定值与所述预设阶对应;
    将所述边界增强图中灰度值为所述预定值的像素点确定为所述第一图像的边界点。
  5. 根据权利要求1所述的方法,其中,所述第二图像包括:
    指定颜色和/或指定形状的投影图像。
  6. 一种投影区域的适配装置,包括:
    获取模块,设置为获取投影设备到投影面的距离,以及获取与所述投影设备在同一水平线上的摄像头拍摄到的第一图像,其中,所述第一图像通过拍摄所述投影设备投射到所述投影面的第二图像获得;
    计算模块,设置为使用预设算法计算所述第一图像的最大边界;
    适配模块,设置为根据所述最大边界适配所述投影设备在所述投影面的投影区域。
  7. 根据权利要求6所述的装置,其中,所述适配模块包括:适配单元,设置为使用以下公式适配所述投影区域的宽度或高度L;
    Figure PCTCN2017000058-appb-100002
    其中,X为所述最大边界在所述第一图像上的宽度或高度,D为所述摄像头的成像面到所述投影面的距离,F为所述摄像头的焦距。
  8. 根据权利要求6所述的装置,其中,所述计算模块包括:
    转换单元,设置为将所述第一图像的任一帧图像转换为预设阶的灰度图,其中,所述预设阶为2的整数次幂;
    计算单元,设置为使用模板矩阵对所述灰度图进行卷积计算以得到所述第一图像的边界增强图;
    设置单元,设置为遍历所述边界增强图的像素值,将所述边界增强图中灰度值大于预设阈值的像素点的灰度值设置为预定值,其中,所述预定值与所述预设阶对应;
    确定单元,设置为将所述边界增强图中灰度值为所述预定值的像素点确定为所述第一图像的边界点。
  9. 根据权利要求6所述的装置,其中,所述第二图像包括:
    指定颜色和/或指定形状的投影图像。
  10. 一种投影区域的适配系统,包括投影设备、摄像头、距离传感器,
    所述距离传感器,设置为获取投影设备到投影面的距离;
    所述摄像头,设置为拍摄所述投影设备投射到所述投影面的第二图像获得第一图像;
    所述投影设备,设置为使用预设算法计算所述第一图像的最大边界,并根据所述最大边界适配所述投影设备在所述投影面的投影区域。
  11. 一种存储介质,设置为存储用于执行如权利要求1至5中任一项所述的投影区域的适配方法的计算机程序。
PCT/CN2017/000058 2016-05-30 2017-01-03 投影区域的适配方法、装置及系统 WO2017206509A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610370139.4 2016-05-30
CN201610370139.4A CN107454371B (zh) 2016-05-30 2016-05-30 投影区域的适配方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2017206509A1 true WO2017206509A1 (zh) 2017-12-07

Family

ID=60478477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000058 WO2017206509A1 (zh) 2016-05-30 2017-01-03 投影区域的适配方法、装置及系统

Country Status (2)

Country Link
CN (1) CN107454371B (zh)
WO (1) WO2017206509A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261396A (zh) * 2020-10-26 2021-01-22 成都极米科技股份有限公司 投影方法、装置、投影设备及计算机可读存储介质
CN113760131A (zh) * 2021-08-05 2021-12-07 当趣网络科技(杭州)有限公司 投影触控处理方法、装置及计算机可读存储介质
CN114615480A (zh) * 2022-03-11 2022-06-10 峰米(重庆)创新科技有限公司 投影画面调整方法、装置、设备、存储介质和程序产品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366237B (zh) * 2018-01-30 2020-06-02 北京小米移动软件有限公司 投影图像调节方法、装置及计算机可读存储介质
CN108961173B (zh) * 2018-05-17 2021-11-26 成都明镜视觉科技有限公司 一种基于h5端增强现实的优化方法
CN108965839B (zh) * 2018-07-18 2020-03-24 成都极米科技股份有限公司 一种自动调整投影画面的方法及装置
CN110769228B (zh) * 2019-04-30 2022-05-06 成都极米科技股份有限公司 实现投影画面拼接的方法、装置及投影系统
CN111988591A (zh) * 2020-08-26 2020-11-24 峰米(北京)科技有限公司 一种投影画面的平移方法、装置和投影设备
CN114710652A (zh) * 2022-04-19 2022-07-05 江苏镭创高科光电科技有限公司 一种投影画面调整方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335832A (zh) * 2007-06-28 2008-12-31 富士施乐株式会社 图像处理装置和图像处理方法
CN103634544A (zh) * 2012-08-20 2014-03-12 联想(北京)有限公司 一种投影方法及电子设备
CN103873800A (zh) * 2012-12-18 2014-06-18 联想(北京)有限公司 一种投影显示图像调节方法及电子设备
CN104750443A (zh) * 2013-12-31 2015-07-01 联想(北京)有限公司 一种显示控制方法及电子设备
US20160088276A1 (en) * 2014-09-18 2016-03-24 Coretronic Corporation Projection display system and method for correcting projection region

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1385335B1 (en) * 2002-07-23 2009-04-22 NEC Display Solutions, Ltd. Image projector with image-feedback control
JP2006121240A (ja) * 2004-10-20 2006-05-11 Sharp Corp 画像投射方法、プロジェクタ、及びコンピュータプログラム
US8591039B2 (en) * 2008-10-28 2013-11-26 Smart Technologies Ulc Image projection methods and interactive input/projection systems employing the same
JP2011141411A (ja) * 2010-01-07 2011-07-21 Seiko Epson Corp プロジェクターおよびその制御方法
CN105353875B (zh) * 2015-11-05 2018-07-31 小米科技有限责任公司 调节屏幕可视区域的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335832A (zh) * 2007-06-28 2008-12-31 富士施乐株式会社 图像处理装置和图像处理方法
CN103634544A (zh) * 2012-08-20 2014-03-12 联想(北京)有限公司 一种投影方法及电子设备
CN103873800A (zh) * 2012-12-18 2014-06-18 联想(北京)有限公司 一种投影显示图像调节方法及电子设备
CN104750443A (zh) * 2013-12-31 2015-07-01 联想(北京)有限公司 一种显示控制方法及电子设备
US20160088276A1 (en) * 2014-09-18 2016-03-24 Coretronic Corporation Projection display system and method for correcting projection region

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261396A (zh) * 2020-10-26 2021-01-22 成都极米科技股份有限公司 投影方法、装置、投影设备及计算机可读存储介质
CN113760131A (zh) * 2021-08-05 2021-12-07 当趣网络科技(杭州)有限公司 投影触控处理方法、装置及计算机可读存储介质
CN113760131B (zh) * 2021-08-05 2023-09-22 当趣网络科技(杭州)有限公司 投影触控处理方法、装置及计算机可读存储介质
CN114615480A (zh) * 2022-03-11 2022-06-10 峰米(重庆)创新科技有限公司 投影画面调整方法、装置、设备、存储介质和程序产品

Also Published As

Publication number Publication date
CN107454371B (zh) 2021-04-06
CN107454371A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017206509A1 (zh) 投影区域的适配方法、装置及系统
WO2018153149A1 (zh) 一种基于感兴趣区域的自动聚焦方法及装置
US10212331B2 (en) Imaging device and method for automatic focus in an imaging device as well as a corresponding computer program
US11606538B2 (en) Automatic keystone correction in a projection system
WO2018077218A1 (zh) 一种深度测量方法及系统
KR101737518B1 (ko) 구조광 기반 3차원 카메라의 최적 노출 시간 및 횟수 결정 방법과 시스템
WO2017215108A1 (zh) 一种调整投影图像的方法及投影仪
CN105744268A (zh) 摄像头遮挡检测方法及装置
TWI482468B (zh) 物體偵測裝置、方法及其電腦可讀取紀錄媒體
WO2016171265A1 (ja) 形状測定装置及び形状測定方法
CN103973990A (zh) 宽动态融合方法及装置
JP5538573B2 (ja) 画像自動補正のための構図に基づく露出測定方法及び装置
JP2016181068A (ja) 学習サンプル撮影装置
CN113902652B (zh) 散斑图像校正方法、深度计算方法、装置、介质及设备
TW201513661A (zh) 攝影裝置及其調整系統、調整方法
US10757318B2 (en) Determination of a contrast value for a digital image
US9843715B2 (en) Photographic apparatus, stroboscopic image prediction method, and a non-transitory computer readable storage medium storing stroboscopic image prediction program
WO2018099128A1 (zh) 一种应用于投影设备的方法及装置
JP2009239598A5 (zh)
TWI468772B (zh) 影像拍攝設備及方法
EP3812698A3 (en) Photosensor processing for improved line scanner performance
TWI604411B (zh) 基於結構光的曝光控制方法及曝光控制裝置
JP2017092753A5 (zh)
JP7463133B2 (ja) 面積計測装置、面積計測方法、及びプログラム
CN115994949A (zh) 一种自动标定方法、设备、系统和计算机可读存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805461

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17805461

Country of ref document: EP

Kind code of ref document: A1