WO2017206071A1 - 一种空口资源分配方法及网络设备 - Google Patents

一种空口资源分配方法及网络设备 Download PDF

Info

Publication number
WO2017206071A1
WO2017206071A1 PCT/CN2016/084155 CN2016084155W WO2017206071A1 WO 2017206071 A1 WO2017206071 A1 WO 2017206071A1 CN 2016084155 W CN2016084155 W CN 2016084155W WO 2017206071 A1 WO2017206071 A1 WO 2017206071A1
Authority
WO
WIPO (PCT)
Prior art keywords
emergency service
delay emergency
air interface
delay
allocated
Prior art date
Application number
PCT/CN2016/084155
Other languages
English (en)
French (fr)
Inventor
刘奇
张屹
雍文远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680085092.5A priority Critical patent/CN109076564B/zh
Priority to JP2018562370A priority patent/JP6699918B2/ja
Priority to PCT/CN2016/084155 priority patent/WO2017206071A1/zh
Priority to EP20174788.8A priority patent/EP3755098A1/en
Priority to BR112018074682-7A priority patent/BR112018074682B1/pt
Priority to EP16903456.8A priority patent/EP3448106B1/en
Publication of WO2017206071A1 publication Critical patent/WO2017206071A1/zh
Priority to US16/203,866 priority patent/US10893534B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present application relates to the field of communications technologies, and in particular, to the allocation of air interface resources.
  • Enhanced Mobile Broadband eMBB
  • Ultra-reliable and low latency Machine Type Communications uMTC
  • ITU International Telecommunication Union
  • the eMBB service is a service that further enhances the performance of the user experience based on the existing mobile broadband service scenario.
  • the eMMB service expects a higher data rate and a larger mobile broadband, and the eMBB service greatly increases the user data rate compared to the prior art.
  • the eMBB service also has high spectral efficiency, so there is a large amount of computation and time consuming when scheduling eMBB terminals.
  • the eMBB service is a non-delay emergency service, and the delay requirement is relaxed, and the delay may be more than 10 milliseconds.
  • the uMTC service requires ultra-short delay. It takes less time to schedule the uMTC terminal. Usually, the uMTC scheduling is started later than the eMBB scheduling.
  • the uMTC service is mainly used for communication between objects and objects in the Internet of Things, mainly including wireless control in industrial production processes, such as telemedicine surgery, distribution automation, and transportation security.
  • the uMTC service expects a shorter delay, usually requiring a delay of less than 1 millisecond.
  • the uMTC service In order to ensure the delay of the data transmission of the uMTC service, the uMTC service must allocate a large number of air interface resources and use the air interface resources in the first place to ensure timely and accurate transmission of data and control information in the uMTC service. .
  • the probability or frequency of the uMTC service being activated relative to the eMBB service is relatively lower, so if The high-reliability of the uMTC service is reserved for a large number of air interface resources.
  • the reserved air interface resources will be idle for most of the time, reducing the efficiency of the air interface resources and causing waste of resources.
  • air interface resources are not reserved for the uMTC service, the timely and correct transmission of data and control information in the uMTC service cannot be guaranteed.
  • the air interface resource allocation method and the network device provided by the application ensure timely and correct transmission of data and control information in the delay emergency service.
  • the present application provides a method for allocating air interface resources, including allocating air traffic resources required for non-delay emergency services; and delaying emergency services on subcarriers of a full frequency band within a current transmission time interval TTI Allocating the required air interface resources, and preempting the air interface resources that have been allocated to the non-delay emergency service for the delay emergency service; wherein the delay emergency service has a higher access to the air interface than the non-delay emergency service The priority of the resource.
  • the air interface resources that have been allocated to the non-delay emergency service are preempted for the time delay emergency service, and the timely and timely transmission of the post-scheduling delay emergency service is ensured.
  • the non-delay emergency service can be allocated to any required resource elements as needed, resource waste is avoided and air interface resources are saved.
  • an embodiment of the present application provides a network device.
  • the network device includes a processor and a transmitter.
  • the processor is configured to allocate the required air interface resources for the non-delay emergency service, and allocate the required air interface resources for the delay emergency service on the sub-carriers of the full-band in the current transmission time interval TTI, and the emergency for the delay
  • the service preempts the air interface resources that have been allocated to the non-delay emergency service.
  • the time delay emergency service has a higher priority for acquiring the air interface resource than the non-time delay emergency service.
  • the transmitter is configured to send data and/or control information to the terminal corresponding to the delay emergency service or the terminal corresponding to the non-delay emergency service according to the allocated air interface resource.
  • an embodiment of the present application provides an air interface resource allocation apparatus.
  • the device includes a non-delay emergency service resource allocation module and a delay emergency service resource allocation module.
  • Non-delay emergency service The resource allocation module is configured to allocate the required air interface resources for non-delay emergency services.
  • the time delay emergency service resource allocation module is configured to allocate the required air interface resource for the delay emergency service on the sub-carriers of the full-band in the current transmission time interval TTI, and the emergency service preemption has been allocated to the non-delay Air interface resources for delay emergency services.
  • the time delay emergency service has a higher priority for acquiring the air interface resource than the non-time delay emergency service.
  • the network device is a base station or a remote wireless device.
  • the air interface resources allocated to the time delay emergency service include air interface resources that have been allocated to the non-delay emergency service.
  • the time-delay emergency service preempts the air interface resource that has been allocated to the non-delay emergency service, specifically: in the time domain, the emergency service preemption has been allocated to the non-time in the time domain. Extend the air interface resources of emergency services.
  • the air interface resource that has been allocated to the non-delay emergency service is preempted for the delay emergency service, specifically: multiple subcarriers of a part of the frequency band throughout the TTI time.
  • the delayed emergency service to seize the resource elements that have been allocated to the non-delay emergency service.
  • the air interface resource that has been allocated to the non-delay emergency service is preempted for the delay emergency service, specifically: when the TTI is a fixed value, the time domain is The delay emergency service preempts the air interface resources that have been allocated to the non-delay emergency service.
  • the air interface resource that has been allocated to the non-delay emergency service is preempted for the delay emergency service, specifically: in the frequency domain, the non-delay has been allocated for the delay emergency service preemption.
  • Air interface resources for emergency services are preempted for the delay emergency service, specifically: in the frequency domain, the non-delay has been allocated for the delay emergency service preemption.
  • the air interface resource that has been allocated to the non-delay emergency service is preempted for the delay emergency service, specifically: multiple orthogonal frequency division multiplexing OFDM symbols at part of the TTI time.
  • the resource element of the non-delay emergency service is preempted for the time delay emergency service on the full-band sub-carrier.
  • the emergency service preemption for the delay has been assigned to the
  • the air interface resource of the non-delay emergency service is specifically: when the TTI is a non-fixed value, the air interface resource that has been allocated to the non-delay emergency service is preempted in the frequency domain for the delay emergency service.
  • the air interface resources are reserved for the delay emergency service on the full-band sub-carriers in the TTI;
  • the allocation of the air interface resources to the emergency service is specifically: the partial or all of the reserved air interface resources are allocated to the non-delay emergency service; the air interface resources are allocated for the delay emergency service, specifically: the delay emergency service.
  • the air interface resources of the reserved air interface resources that have been allocated to the non-delay emergency service are preempted.
  • the air interface resource is allocated for the time delay emergency service, specifically: the idle resource element in the air interface resource is preferentially allocated, and if the number of idle resource elements cannot meet the delay, the emergency service has the number of resource elements.
  • the method after allocating the required air interface resources for the delay emergency service, includes: determining whether the resource element of the full-band sub-carrier in the current TTI time is first allocated to the non-delay emergency service, and then The delay is assigned to the emergency service, and if so, the information is sent to the delayed emergency service, and the transmission of the information to the non-delay emergency service is stopped.
  • the priority of the air interface resource allocated to the emergency service for the time delay is higher than the priority of the air interface resource for the non-delay emergency service, and the air interface resource that has been allocated to the non-delay emergency service is preempted by the emergency service for the delay.
  • the solution is to allocate air interface resources for non-delay emergency services, then allocate air interface resources for delay emergency services, and then allocate air interface resources.
  • the delay emergency service needs to have sufficient air interface resources.
  • the problem of allocation of air interface resources The air interface resource allocation method in the embodiment of the present application does not have the problem of resource waste, and ensures timely and correct transmission of data and control information in the delay emergency service.
  • Figure 1 is a schematic diagram of air interface resources
  • FIG. 2 is a schematic structural diagram of a communication system in which a network device, an eMBB terminal, and a uMTC terminal are located;
  • FIG. 3 is a schematic diagram of a time domain in which a network device starts scheduling an eMBB terminal, a uMTC terminal, and transmits data;
  • FIG. 4 is a flowchart of a method for allocating air interface resources according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of resource allocation for reserving air interface resources and preempting resources in a time domain according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of resource allocation for not preserving air interface resources and preempting resources in a time domain according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of resource allocation for not preserving air interface resources and preempting resources in a frequency domain according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an air interface resource allocation apparatus according to an embodiment of the present application.
  • an air interface resource is defined as an air interface time domain resource and a frequency domain resource, wherein the air interface refers to a network device in a wireless communication, such as a base station, a remote radio unit (RRU), and the like.
  • the air interface resource can be divided into the time domain and the frequency domain.
  • the air interface resource in the time domain is represented as an Orthogonal Frequency Division Multiplexing (OFDM) symbol
  • the air interface resource is represented as a subcarrier in the frequency domain. (English subcarrier). The invention Not limited to this.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the air interface resource is usually represented by a resource element (RE), a resource block (RB), an OFDM symbol, a subcarrier, and a transmission time interval (TTI). Show.
  • RE resource element
  • RB resource block
  • TTI transmission time interval
  • the resource element RE is represented by a small square, and one RE represents one subcarrier resource in one OFDM symbol time, that is, each RE is represented by one OFDM symbol in the time domain, and in the frequency domain by One subcarrier representation.
  • Transmission Time Interval The TTI time domain is typically a subframe consisting of multiple (eg, n) OFDM symbols that are temporally contiguous and scheduled and resource allocated every TTI time.
  • a resource block RB is composed of a plurality of (e.g., m) subcarriers in one TTI.
  • the communication system architecture involved in the network equipment, the delay emergency terminal, and the non-delay emergency terminal according to the present application will be further described below.
  • a delay emergency service terminal such as a uMTC terminal coexists in a same cell as a non-delay emergency service terminal such as an eMBB terminal, and is a network device such as a base station eNodeB or a remote wireless device RRU.
  • Each uMTC terminal and each eMBB terminal initiate scheduling and allocate air interface resources, and send downlink data and control information to the corresponding terminal device through the allocated air interface resources.
  • the control information includes the allocation of the air interface resources required by the network device, such as the base station, to send data to the corresponding terminal device, that is, the control information includes the air interface resource allocation of the corresponding terminal.
  • the air interface resource allocation is also allocated to the radio resource.
  • the air interface resource allocation in the embodiment of the present application means that multiple resource elements RE are allocated to different service terminals, such as eMBB terminals and uMTC terminals, and network devices, in the same area (such as the same cell), so that The data and control information are transmitted according to the allocated resource element RE, and the network device performs scheduling and allocation of air interface resources for each terminal every TTI time.
  • the terminal device such as the eMBB terminal, and the uMTC terminal, receive downlink data and control information from the network device, such as the base station, and the terminal device obtains the air interface resource allocated by the network device for transmitting the uplink data according to the control information received by the terminal device, that is, according to the The air interface resource allocated by the network device sends uplink data.
  • the network device in this embodiment of the present application includes a base station, an RRU, and the like.
  • the terminal equipment includes a delay emergency service terminal such as a uMTC terminal and a non-delay emergency service terminal such as an eMBB terminal.
  • the time delay emergency service terminal of the embodiment of the present application is not limited to the uMTC terminal, and the non-delay emergency service terminal is not limited to the eMBB terminal.
  • the non-delay emergency service terminal may also be a mMTC (Massive Machine Type Communications) terminal. .
  • the time delay emergency service terminal is the uMTC terminal
  • the non-delay emergency service terminal is the eMBB terminal
  • the network device is the base station as an example, and describes how the network device allocates air interface resources for the non-delay emergency service terminal and the delay emergency service terminal.
  • the time when the base station starts scheduling the eMBB terminal is earlier than the time when the uMTC terminal is started to be scheduled, that is, T2 is earlier than T1, and T1 is earlier than T0.
  • the base station starts scheduling the eMBB terminal to allocate air interface resources for the eMBB terminal.
  • the base station starts scheduling the uMTC terminal to allocate air interface resources for the uMTC terminal.
  • the base station transmits data and control information through the allocated air interface resources.
  • the base station needs to allocate information transmission between the base station and the uMTC terminal. Enough air resources. For the information transmission between the base station and the eMBB terminal, it is necessary to use the air interface resource as efficiently as possible to improve the spectrum efficiency and throughput of the wireless communication system. If the air interface resource is reserved for the uMTC service and the reserved air interface resource cannot be used for the eMBB service, excessive waste of the air interface resource will be caused.
  • the activation probability of the uMTC terminal is relatively low, if the air interface resource is reserved for the uMTC service and the reserved air interface resource cannot be used by the eMBB service, the reserved air interface resource will be idle for most of the time, resulting in air interface resource utilization. Too low, too much waste.
  • the air interface resource is allocated for the eMBB service, and the air interface resource is allocated for the uMTC service, and the air interface resource allocated for the uMTC service has a higher priority than the air interface resource allocated for the eMBB service. That is, the embodiment of the present application allocates an air interface resource with sufficient information for the eMBB service, and then allocates an air interface resource for the uMTC service, and allocates a sufficient number of air interface resources for the uMTC service when the air interface resource is allocated for the uMTC service.
  • the air traffic resources that have been allocated to the eMBB service can be preempted for the uMTC service.
  • the allocation of air interface resources for the eMBB service refers to allocating air interface resources for information transmission between the eMBB terminal and the network device.
  • the above-mentioned allocation of air interface resources for the uMTC service refers to allocating air interface resources for information transmission between the uMTC terminal and the network device.
  • the following describes how the base station allocates air interface resources for the delay emergency service and the non-time delay emergency service, with reference to FIG. 4 and FIG. 5-7.
  • the base station usually exchanges information with multiple uMTC terminals and multiple eMBB terminals, and allocates air interface resources.
  • the following only interacts with the two eMBB terminals, eMBB terminal 1, eMBB terminal 2, and one uMTC terminal, by the network device, and Take the allocation of air interface resources as an example to explain how network devices allocate air interface resources for delay emergency services and non-delay emergency services.
  • the base station reserves the air interface resource for the delay emergency service, such as the uMTC service, and the reserved air interface resource can also be allocated to the non-delay emergency service, such as the eMBB service, and the base station preferentially allocates the non-delay emergency service. Air resources left.
  • the delay emergency service such as the uMTC service
  • the non-delay emergency service such as the eMBB service
  • the reserved air interface resource can be allocated to the eMBB service before being allocated to the uMTC service, but the uMTC service has a higher priority for assigning the reserved air interface resource than the eMBB service, that is, for the reserved air interface.
  • the usage priority of the resource uMTC service is higher than that of the eMBB service, and the base station preferentially allocates non-reserved air interface resources for the non-delay emergency service.
  • the base station may allocate the reserved air interface resource for the eMBB service, but the base station allocates part or all of the reserved air interface resource to the uMTC service, once the uMTC service requires part or all of the reserved air interface resource.
  • the base station is a uMTC service
  • the air interface resources that have been allocated to the eMBB service are preempted in the time domain.
  • the base station preempts the resource elements of the plurality of subcarriers of the partial frequency band in the entire current transmission time interval TTI that has been allocated to the eMBB service for the uMTC service, and specifically, FIG.
  • the base station is a uMTC service
  • the air interface resources that have been allocated to the eMBB service are preempted in the frequency domain.
  • the base station preempts the uMTC service for resource elements on all subcarriers of the entire frequency band of multiple orthogonal frequency division multiplexing OFDM symbols that have been allocated to the partial TTI of the eMBB service, specifically See Figure 7.
  • the abscissa is the time domain, and the ordinate is the frequency domain.
  • the box in the figure indicates that the resource block RB, that is, the air interface resource including the plurality of resource elements RE, is included.
  • Step 420 in FIG. 5, at time T2, the base station starts scheduling the eMBB service 1 and the eMBB service 2, allocates the required air interface resources for the information exchange between the base station and the eMBB terminal 1, and performs information interaction between the base station and the eMBB terminal 2. Allocating their respective required air interface resources; wherein T2 is earlier than T1 and T1 is earlier than T0.
  • the air interface resource allocated by the base station for the eMBB service includes the air interface resource reserved for the uMTC service.
  • the air interface resources allocated by the base station for the eMBB service 1 and the eMBB service 2 are air interface resources of all subcarriers in the entire frequency band at the entire TTI time.
  • the base station preferentially allocates the non-reserved air interface resources to the eMBB service 1 and the eMBB service 2. If the number of the unreserved resource elements cannot meet the requirements of the number of resource elements of the eMBB service 1 and the eMBB service 2, the actual It is required to allocate part or all of the reserved air interface resources to the eMBB service 2.
  • Step 430 At time T1, the base station starts the scheduling of the uMTC service, and allocates the required air interface resource for the uMTC service, and the air interface resource allocated for the uMTC service may include the air interface resource that has been allocated to the eMBB terminal.
  • the network device preferentially allocates the reserved air interface resource when the air interface resource is allocated for the uMTC service. If the number of reserved resource elements cannot meet the requirement of the number of resource elements of the uMTC service, the base station according to the uMTC The service needs to preempt the reserved resource element of the eMBB service 2 for the uMTC service.
  • the base station is a uMTC service, and the resource elements already allocated to the eMBB service 2 are preempted in the time domain.
  • the resource element of the preemption is a resource element of a plurality of subcarriers in a partial frequency band of the entire TTI time; that is, the resource element allocated by the network device for the uMTC service includes an OFDM symbol in the entire TTI time in the time domain, A plurality of subcarriers of a partial frequency band are included in the frequency domain.
  • the resource element of the plurality of subcarriers in the partial frequency band of the entire TTI is occupied by the uMTC service, and is applicable to the case where the fixed transmission time interval TTI is applied, that is, the case where the TTI is a fixed value.
  • the base station can reserve the air interface resource for the uMTC service on all the sub-carriers in the entire TTI time.
  • the network device allocates the air interface resource for the eMBB service, part or all of the reserved air interface resources are allowed. , assigned to the eMBB service, such as the aforementioned eMBB service 2.
  • the base station allocates air interface resources for the uMTC service, the base station will preempt the air interface resources of the reserved air interface resources that have been allocated to the eMBB service for the uMTC service.
  • the network device may not reserve air interface resources for the uMTC service, that is, the above steps 410-430 are not performed, as specifically shown in FIG. 6.
  • FIG. 6 is a schematic diagram of resource allocation for not preserving air interface resources and preempting resources in a time domain according to an embodiment of the present application.
  • the base station does not reserve the air interface resource for the uMTC service.
  • the eMBB service and the uMTC service can be obtained for the air interface resources of all the sub-carriers in the whole frequency band in the whole TTI, but the base station allocates air interface resources for the eMBB service first, and then allocates the same.
  • the uMTC service of the air interface resource has a higher priority access right to the air interface resources of all subcarriers in the entire frequency band.
  • the base station can allocate the air interface resources of all the sub-carriers in the whole frequency band for the eMTB service, but when the base station allocates the air interface resources for the uMTC service, the base station can be allocated for the uMTC service according to the actual needs of the uMTC service. Air interface resources of the eMBB service.
  • the base station allocates the air interface resources of all subcarriers of the full frequency band in the entire TTI time required by the eMBB service 1 and the eMBB service 2 respectively.
  • the base station allocates the required air interface resources for the uMTC service. If the number of currently available resource elements does not satisfy the requirement of the number of resource elements of the uMTC service, the base station preempts the uMTC service for the eMBB service. Resource elements to meet the demand for the number of resource elements in the uMTC business.
  • the base station preempts the resource elements of the plurality of subcarriers of the partial frequency band in the current TTI time for the uMTC service in the time domain.
  • the base station preferentially preempts the resource elements in the time domain, and preempts resources in the entire TTI time in the time domain, and only preempts resources in the partial frequency bands in the frequency domain.
  • the base station can also preferentially preempt the resources in the frequency domain, that is, preempt all the pre-emptive subcarriers in the entire frequency band in the frequency domain, and preemptively occupy multiple OFDM symbols in a part of the TTI time in the time domain, as shown in FIG. .
  • the pre-emptive subcarrier refers to the configured subcarrier resource that allows the base station to preempt the uMTC service.
  • FIG. 7 is an example of a non-reserved resource element, showing how the base station preferentially preempts the air interface resource for the uMTC service in the frequency domain.
  • the base station preempts the air interface resource that has been allocated to the eMBB service 2 for the uMTC service; and the preempted air interface resource is part of the TTI.
  • the base station for the uMTC service may not reserve the air interface resource for the uMTC service.
  • the base station for the uMTC service may not reserve the air interface resource for the uMTC service.
  • Step 440 At time T0, the base station processes data and/or control information that needs to be sent to the terminal according to the air interface resource allocated for the uMTC service and the eMBB service, including grouping, encoding, modulation, etc., and then processing the processed data. And/or control information is sent to the corresponding terminal.
  • step 440 further includes: determining whether each resource element of all subcarriers in the full frequency band at the current TTI time is first allocated to the eMBB service and then allocated to the uMTC service, and if yes, sending data and/or to the corresponding uMTC terminal. Control information and stop sending any messages to the eMBB terminal interest.
  • Step 450 The terminal device includes the uMTC terminal and the eMBB terminal to receive downlink data and/or control information from the base station, where the control information includes an allocation of the air interface resource indicating the uplink data sent by the terminal, to allocate the air interface resource according to the control information. In case, the corresponding uplink data is sent.
  • the embodiment of the present application obtains sufficient air interface resources for the delay emergency service to ensure the correct and timely transmission of the delay emergency service by means of preempting the air interface resources for the delay emergency service;
  • the service allocates air interface resources first, and can allocate any air interface resources for non-delay emergency services, that is, air interface resources of all sub-carriers in the entire frequency band at the current TTI time, thereby avoiding waste of air interface resources and saving air interface resources.
  • FIG. 8 is a schematic diagram of a network device according to an embodiment of the present application.
  • the network device is a base station eNodeB, RRU, or the like.
  • network device 800 includes a processor 810, a transmitter 820, and a receiver 830.
  • the processor 810 is configured to start scheduling of the non-delay emergency service, allocate the required air interface resources for the non-delay emergency service on the sub-carriers of the full-band in the current transmission time interval TTI, and then start the delay emergency service. Scheduling, in the sub-carrier of the full-band in the TTI, allocates the required air interface resource for the delay emergency service, and preempts the air interface resource that has been allocated to the non-delay emergency service for the delay emergency service; The time delay emergency service has a higher priority for acquiring the air interface resource than the non-time delay emergency service.
  • the transmitter 820 is configured to send data and/or control information to the delay emergency terminal or the non-delay emergency terminal according to the allocated air interface resource.
  • processor 810 allocates air interface resources for latency emergency services, including air interface resources that have been allocated to non-delay emergency services.
  • the processor 810 is further configured to preempt the air interface resources that have been allocated to the non-delay emergency service in the time domain for the delayed emergency service.
  • processor 810 is further configured to preempt the resource element of the plurality of subcarriers of the partial frequency band that has been allocated to the non-delay emergency service for the time delay emergency service.
  • the processor 810 is further configured to: when the TTI is a fixed value, preempt the air interface resources that have been allocated to the non-delay emergency service in the time domain for the delay emergency service.
  • the processor 810 is further configured to preempt the air interface resource that has been allocated to the non-delay emergency service in the frequency domain for the delayed emergency service.
  • the processor 810 is further configured to preempt the resource element of the full-band sub-carrier in the time of the multiple orthogonal frequency division multiplexing OFDM symbols that have been allocated to the partial TTI of the non-delay emergency service for the delay emergency service.
  • the processor 810 is further configured to: when the TTI is a non-fixed value, preempt the air interface resources that have been allocated to the non-delay emergency service in the frequency domain for the delay emergency service.
  • the processor 810 is further configured to reserve air interface resources for the delayed emergency service on the sub-carriers of the full-band in the TTI; and when allocating the air interface resources for the non-delay emergency service, All or part of the reserved air interface resource is allocated to the non-delay emergency service; when the air interface resource is allocated for the delay emergency service, the air interface resource reserved for the delay emergency service has been allocated to the air interface resource Air interface resources for non-delay emergency services.
  • the processor 810 is further configured to preferentially allocate an idle resource element in the air interface resource when the air interface resource is allocated for the time delay emergency service, if the idle resource element quantity cannot satisfy the delay emergency service pair.
  • the demand for the number of resource elements is for the delay emergency service to preempt the resource elements that have been allocated to the non-delay emergency service.
  • the processor 810 is further configured to determine whether resource elements of all subcarriers in the full frequency band in the current TTI time are first allocated to the non-delay emergency service and then allocated to the delay emergency service, and if so, Then, the transmitter 820 is notified.
  • the transmitter 820 is further configured to send data and/or control information to the delayed emergency service based on the notification, and stop sending information to the non-delay emergency service.
  • the receiver 830 is configured to receive data from a delay emergency terminal or a non-delay emergency terminal, and the data is sent according to the air interface resource allocated by the processor 810.
  • FIG. 9 is a schematic diagram of an air interface resource allocation apparatus according to an embodiment of the present application.
  • Network device 900 The configuration module 910, the scheduling module 920, the sending module 930, and the receiving module 940, and the scheduling module 920 includes a non-delay emergency service scheduling module 921, a delay emergency service scheduling module 922, and a resource selection module 923.
  • the configuration module 910 is configured to reserve air interface resources for the delay emergency service, such as the uMTC service, on the sub-carriers of the full-band in the entire TTI; and allow part or all of the reserved air interface resources to be allocated to the non-delay emergency service.
  • the delay emergency service such as the uMTC service
  • the delay emergency service has a higher priority for the reserved air interface resource than the non-delay emergency service eMBB service.
  • the scheduling module 920 is configured to start scheduling of each non-delay emergency service and delay emergency service, and allocate air interface resources.
  • the non-delay emergency service scheduling module 921 in the scheduling module 920 is configured to start scheduling of non-delay emergency services, and allocate the air interfaces of all subcarriers in the full frequency band in the current transmission time interval TTI required for the non-delay emergency service. Resources.
  • the delay emergency service scheduling module 922 in the scheduling module 920 is configured to allocate the required resource elements for the delayed emergency service, and preempt the air interface resources that have been allocated to the non-delay emergency service for the delay emergency service;
  • the time delay emergency service has a higher priority for acquiring the air interface resource than the non-time delay emergency service. That is, the air interface resource allocated by the scheduling module 920 to the delay emergency service includes the air interface resource that has been allocated to the non-delay emergency service.
  • the scheduling module 920 schedules the non-delay emergency service earlier than the scheduling of the delay emergency service, that is, the scheduling module 920 first schedules the non-delay emergency service, and then schedules the delay emergency service.
  • the time delay emergency service scheduling module 922 is further configured to preempt the air interface resources that have been allocated to the non-delay emergency service in the time domain.
  • the delay emergency service scheduling module 922 preempts the delay emergency service for resource elements of the plurality of subcarriers that have been allocated to the partial frequency band of the entire TTI time of the non-delay emergency service. For details, please refer to FIG. 5, FIG. 6 and related content. Further, the delay emergency service scheduling module 922 allocates a plurality of subcarriers of a partial frequency band on the current transmission time interval TTI for the delayed emergency service.
  • the source element is suitable for the case where the transmission time interval TTI is a fixed value.
  • the latency emergency service scheduling module 922 is further configured to preempt the air interface resources that have been allocated to the non-delay emergency service in the frequency domain for the delay emergency service.
  • time-delay emergency service preempts the resource elements of the full-band sub-carriers that have been allocated to the plurality of orthogonal frequency division multiplexing OFDM symbols in the partial TTI of the non-delay emergency service.
  • FIG. 7 For details, please refer to FIG. 7 and related content.
  • time delay emergency service scheduling module 922 is further configured to allocate a resource element of the full-band sub-carrier in a plurality of OFDM symbol time in a partial TTI time for the delay emergency service, and is applicable to the transmission time interval TTI being a non-fixed value.
  • the delay emergency service scheduling module 922 is further configured to preferentially allocate idle resource elements when allocating air interface resources for the delayed emergency service, if the idle resource element quantity cannot satisfy the delay emergency service pair resource element.
  • the quantity requirement is for the delay emergency service to preempt the resource elements that have been allocated to the non-delay emergency service.
  • the resource selection module 923 is configured to determine whether the resource elements of all subcarriers in the entire frequency band are allocated to the non-delay emergency service and then to the delay emergency service, and if yes, notify the sending module 930.
  • the sending module 930 is configured to receive the data and/or control information to the corresponding delay emergency terminal when the message of the resource selection module 923 is that the current resource element is first allocated to the non-delay emergency service and then allocated to the time delay emergency service. And stop sending any information to the non-delay emergency terminal.
  • the receiving module 940 is configured to receive information from the delayed emergency terminal and the non-delay emergency terminal, and the information is sent by the corresponding terminal according to the air interface resource allocated by the scheduling module 920.
  • the professional should also be further aware of the various aspects described in connection with the embodiments disclosed herein.
  • the exemplary unit and algorithm steps can be implemented in electronic hardware, computer software, or a combination of both.
  • the examples have been described generally in terms of functionality in the foregoing description. Composition and steps. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Abstract

本申请涉及一种空口资源分配方法及网络设备。该方法包括:为非时延紧急业务分配其需要的空口资源;在当前传输时间间隔TTI内的全频带的子载波上,为时延紧急业务分配其需要的空口资源,并且为时延紧急业务抢占已经分配给非时延紧急业务的空口资源;其中,时延紧急业务相对于非时延紧急业务具有更高的获取空口资源的优先级。本申请实施例解决了空口资源分配浪费的问题,提升了资源使用。

Description

一种空口资源分配方法及网络设备 技术领域
本申请涉及通信技术领域,尤其涉及空口资源的分配。
背景技术
增强的移动宽带(Enhanced Mobile broadband,eMBB)、超可靠和低时延的机器通讯(Ultra-reliable and low latency Machine Type Communications,uMTC)是国际电信联盟(International Telecommunication Union,英文简称ITU)定义的第五代移动通信技术(5Generation,英文简称5G)中的两大业务类。
eMBB业务是在现有移动宽带业务场景基础上,对于用户体验等性能进一步提升的业务。eMMB业务期望更高的数据速率以及更大的移动宽带,与现有技术相比,eMBB业务大大提高了用户数据速率。此外,eMBB业务还具有高频谱效率,因此在对eMBB终端进行调度时会有较大的运算量,耗费时间长。并且eMBB业务是非时延紧急业务,其对时延要求宽松,通常时延可超过10毫秒。
uMTC业务则要求超短时延,对uMTC终端进行调度需要耗时更短,通常启动uMTC调度晚于启动eMBB调度。uMTC业务主要应用于物联网中物与物之间的通信,主要包括工业生产过程中的无线控制,例如,远程医疗手术、配电自动化、运输安全等。uMTC业务期望更短的时延,通常要求时延低于1毫秒。为了保证uMTC业务对突发数据传输的时延要求,必须在uMTC业务有数据传输时,为其分配大量的空口资源且最优先使用空口资源,以保证uMTC业务中数据和控制信息的及时准确发送。
uMTC业务相对于eMBB业务被激活的概率或者频率相对更低,因此如果为 了满足uMTC业务的高可靠性而为其预留大量空口资源,那么该预留的空口资源大部分时间都将处于空闲状态,降低了空口资源效率,造成了资源的浪费。然而如果不为uMTC业务预留空口资源,那么又无法保证uMTC业务中数据和控制信息的及时正确传输。
发明内容
本申请提供的一种空口资源分配方法及网络设备,保证了时延紧急业务中数据和控制信息的及时正确传输。
一方面,本申请提供了一种空口资源分配的方法,该包括为非时延紧急业务分配其需要的空口资源;在当前传输时间间隔TTI内的全频带的子载波上,为时延紧急业务分配其需要的空口资源,并且为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源;其中,该时延紧急业务相对于该非时延紧急业务具有更高的获取该空口资源的优先级。
本申请实施例通过为时延紧急业务抢占已经分配给非时延紧急业务的空口资源,保证了后调度的时延紧急业务的及时正确传输。同时由于非时延紧急业务能够根据需要分配到其需要的任意数量的资源元素,因此避免了资源浪费,节约了空口资源。
另一方面,本申请实施例提供了一种网络设备。该网络设备包括处理器和发送器。该处理器用于为非时延紧急业务分配其需要的空口资源,在当前传输时间间隔TTI内的全频带的子载波上,为时延紧急业务分配其需要的空口资源,并且为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源。其中,该时延紧急业务相对于该非时延紧急业务具有更高的获取该空口资源的优先级。该发送器用于根据所分配的空口资源,向该时延紧急业务对应的终端或该非时延紧急业务对应的终端发送数据和/或控制信息。
又一方面,本申请实施例提供了一种空口资源分配装置。该装置包括非时延紧急业务资源分配模块、时延紧急业务资源分配模块。该非时延紧急业务 资源分配模块用于为非时延紧急业务分配其需要的空口资源。该时延紧急业务资源分配模块用于在当前传输时间间隔TTI内的全频带的子载波上,为时延紧急业务分配其需要的空口资源,并且为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源。其中,该时延紧急业务相对于该非时延紧急业务具有更高的获取该空口资源的优先级。
在本申请的一个设计中,该网络设备为基站或者远端无线设备。
在本申请的一个设计中,分配给该时延紧急业务的空口资源包括已经分配给该非时延紧急业务的空口资源。
在本申请的一个设计中,该为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源,具体为:在时域上,为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源。
在本申请的一个设计中,在时域上,为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源,具体为:在整个该TTI时间内的部分频带的多个子载波上,为该时延紧急业务抢占已经分配给该非时延紧急业务的资源元素。
在本申请的一个设计中,在时域上,为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源,具体为:在该TTI为固定值时,在时域上为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源。
在本申请的一个设计中,为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源,具体为:在频域上,为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源。
在本申请的一个设计中,在频域上,为时延紧急业务抢占已经分配给该非时延紧急业务的空口资源,具体为:在部分TTI时间的多个正交频分复用OFDM符号时间内的全频带子载波上,为该时延紧急业务抢占已经分配给该非时延紧急业务的资源元素。
在本申请的一个设计中,在频域上,为该时延紧急业务抢占已经分配给该 非时延紧急业务的空口资源,具体为:在该TTI为非固定值时,在频域上为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源。
在本申请的一个设计中,在为非时延紧急业务分配其需要的空口资源之前,在该TTI内的全频带的子载波上,为该时延紧急业务预留空口资源;且该为非时延紧急业务分配空口资源,具体为:允许将该预留的空口资源的部分或全部,分配给该非时延紧急业务;为时延紧急业务分配空口资源,具体为:为时延紧急业务抢占该预留的空口资源中已经分配给该非时延紧急业务的空口资源。
在本申请的一个设计中,为时延紧急业务分配空口资源,具体为:优先分配该空口资源中的空闲的资源元素,如果该空闲的资源元素数量无法满足该时延紧急业务对资源元素数量的需求,则为时延紧急业务抢占已经分配给非时延紧急业务的资源元素。
在本申请的一个设计中,为时延紧急业务分配其需要的空口资源之后,包括:判定该当前TTI时间内的全频带子载波的资源元素,是否先分配给该非时延紧急业务而后又分配给该时延紧急业务,如果是,则向该时延紧急业务发送信息,并且停止向该非时延紧急业务发送信息。
本申请实施例通过为时延紧急业务分配空口资源的优先级高于为非时延紧急业务分配空口资源的优先级,以及通过为时延紧急业务抢占已经分配给非时延紧急业务的空口资源的方式,解决了需要先为非时延紧急业务分配空口资源,然后再为时延紧急业务分配空口资源,并且后分配空口资源的时延紧急业务需要有足够大的空口资源,从而带来的空口资源分配的问题。本申请实施例的空口资源分配方法不存在资源浪费的问题,并且保证了时延紧急业务中数据和控制信息的及时正确传输。
附图说明
图1是空口资源示意图;
图2是网络设备与eMBB终端、uMTC终端所处通信系统的构架示意图;
图3是网络设备启动调度eMBB终端、uMTC终端以及发送数据的时间域示意图;
图4是本申请一个实施例提供的空口资源分配方法流程图;
图5是本申请一个实施例提供的预留空口资源并在时域上抢占资源的资源分配示意图;
图6是本申请一个实施例提供的不预留空口资源并在时域上抢占资源的资源分配示意图;
图7是本申请一个实施例提供的不预留空口资源并在频域上抢占资源的资源分配示意图;
图8是本申请一个实施例提供的网络设备示意图;
图9是本申请一个实施例提供的空口资源分配装置示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面先对本申请涉及的空口资源做简单介绍。
对于多载波的无线通信系统,空口资源定义为空口的时域资源和频域资源,其中,空口是指无线通信中的网络设备如基站、远端无线设备(Remote Radio Unit,英文简称RRU)等与终端之间,以及终端与终端之间的无线接口。空口资源可以通过时域和频域进行划分,例如,在时域上空口资源表示为正交频分复用(Orthogonal Frequency Division Multiplexing,英文简称OFDM)符号,在频域上空口资源表示为子载波(英文subcarrier)。本发明并 不限于此。
空口资源通常以资源元素(resource element,英文简称RE)、资源块(Resource Block,英文简称RB)、OFDM符号、子载波、传输时间间隔(transmission time interval,英文简称TTI)表示,如图1所示。
图1中,资源元素RE由一个小方格表示,一个RE表示一个OFDM符号时间内的一个子载波资源,也就是说,每个RE在时域上由一个OFDM符号表示,在频域上由一个子载波表示。传输时间间隔TTI时域上通常是一个子帧,其由时间上连续的多个(如n个)OFDM符号组成,且每隔TTI时间做一次调度和资源分配。资源块RB由一个TTI中的多个(如m个)子载波组成。
下面继续阐述本申请涉及的网络设备、时延紧急终端、非时延紧急终端所涉及的通信系统架构。
图2中,在多载波无线通信系统中,时延紧急业务终端如uMTC终端与非时延紧急业务终端如eMBB终端共存于同一小区内,由网络设备如基站eNodeB或远端无线设备RRU等为各uMTC终端、各eMBB终端启动调度及分配空口资源,并通过所分配的空口资源向相应终端设备发送下行数据和控制信息。该控制信息包括网络设备如基站为相应终端设备发送数据所需空口资源的分配情况,也就是说,该控制信息包括相应终端的空口资源分配。
空口资源分配亦为无线资源分配,本申请实施例的空口资源分配是指在同一区域(如同一小区)内,为不同业务终端如eMBB终端和uMTC终端以及网络设备分配多个资源元素RE,以便根据所分配的资源元素RE传输数据和控制信息,并且每隔TTI时间,网络设备为各终端做一次调度以及分配空口资源。
终端设备如eMBB终端、uMTC终端接收来自网络设备如基站的下行数据和控制信息,并且终端设备根据其接收到的控制信息,获得由网络设备分配的其发送上行数据所需空口资源,即根据该网络设备分配的空口资源发送上行数据。
本申请实施例的网络设备包括基站、RRU等。终端设备包括时延紧急业务终端如uMTC终端和非时延紧急业务终端如eMBB终端。本申请实施例的时延紧急业务终端不限于uMTC终端,非时延紧急业务终端不限于eMBB终端,例如非时延紧急业务终端也可以是mMTC(Massive machine type communications,大规模机器类通信)终端。下面仅以时延紧急业务终端是uMTC终端,非时延紧急业务终端是eMBB终端,网络设备是基站为例,阐述网络设备如何为非时延紧急业务终端和时延紧急业务终端分配空口资源。
如图3所示,基站启动调度eMBB终端的时间早于启动调度uMTC终端的时间,即T2早于T1,T1早于T0。在T2时刻,基站启动调度eMBB终端,为eMBB终端分配空口资源;在T1时刻,基站启动调度uMTC终端,为uMTC终端分配空口资源;在T0时刻,基站通过分配的空口资源发送数据和控制信息。
虽然基站启动调度uMTC终端的时间晚,但是由于uMTC终端是时延紧急业务终端,因此为了保证基站与uMTC终端之间信息的及时和正确传输,基站需要为基站与uMTC终端之间的信息传输分配足够的空口资源。而对于基站与eMBB终端之间的信息传输则需要尽可能高效地使用空口资源,以提升无线通信系统的频谱效率和吞吐量。如果仅仅通过为uMTC业务预留空口资源且该预留的空口资源不能为eMBB业务使用,那么将造成空口资源的过多浪费。因为,uMTC终端激活概率相对较低,如果为uMTC业务预留空口资源且预留的空口资源不能被eMBB业务使用,那么该预留的空口资源大部分时间将处于空闲状态,造成空口资源利用率过低,浪费过大的问题。
本申请实施例先为eMBB业务分配空口资源,再为uMTC业务分配空口资源,并且为uMTC业务分配的空口资源的优先级高于为eMBB业务分配的空口资源的优先级。也就是说,本申请实施例先为eMBB业务分配足够信息传输的空口资源,而后再为uMTC业务分配空口资源,并且在为uMTC业务分配空口资源时,为了使uMTC业务能够分配足够多的空口资源,可以为uMTC业务抢占已经分配给eMBB业务的空口资源。
上述为eMBB业务分配空口资源,是指为eMBB终端与网络设备之间信息传输分配空口资源。同样,上述为uMTC业务分配空口资源,是指为uMTC终端与网络设备之间信息传输分配空口资源。
下面结合附图4、附图5-7,阐述基站如何为时延紧急业务、非时延紧急业务分配空口资源。
基站通常要与多个uMTC终端、多个eMBB终端进行信息交互,并分配空口资源,以下仅以网络设备与两个eMBB终端——eMBB终端1、eMBB终端2以及一个uMTC终端进行信息交互,并分配空口资源为例,阐述网络设备如何为时延紧急业务和非时延紧急业务分配空口资源。
步骤410,基站为时延紧急业务如uMTC业务预留空口资源,且该预留的空口资源也可以分配给非时延紧急业务如eMBB业务,并且基站优先为该非时延紧急业务分配非预留的空口资源。
也就是说,该预留的空口资源在分配给uMTC业务之前可以分配给eMBB业务,只是uMTC业务相对于eMBB业务,分配该预留的空口资源的优先级更高,即对于该预留的空口资源uMTC业务的使用优先级相对于eMBB业务更高,并且基站优先为该非时延紧急业务分配非预留的空口资源。基站可以为eMBB业务分配该预留的空口资源,只是一旦uMTC业务需要该预留的空口资源的部分或全部,该基站就会将该预留的空口资源的部分或全部分配给uMTC业务。
在一个示例中,基站为uMTC业务,在时域上抢占已经分配给eMBB业务的空口资源。
进一步地,基站为uMTC业务抢占已经分配给eMBB业务的整个当前传输时间间隔TTI内的部分频带的多个子载波的资源元素,具体可参见图5。
在另一个示例中,基站为uMTC业务,在频域上抢占已经分配给eMBB业务的空口资源。
进一步地,基站为该uMTC业务抢占已经分配给eMBB业务的部分TTI内的多个正交频分复用OFDM符号时间上的全频带所有子载波上的资源元素,具体 可参见图7。
图5中,横坐标是时域,纵坐标是频域,图中方框表示包含多个资源块RB,也就是包含多个资源元素RE的空口资源。图5中的最大方框,横向表示整个TTI时间,即一个传输时间间隔,纵向表示全频带所有子载波;对于其它方框,横向表示一个TTI时间,纵向表示部分频带的多个子载波。
步骤420,图5中,在T2时刻,基站启动调度eMBB业务1和eMBB业务2,为基站与eMBB终端1之间的信息交互分配其需要的空口资源,以及为基站与eMBB终端2进行信息交互分配其各自需要的空口资源;其中,T2时刻早于T1时刻,T1时刻早于T0时刻。
在一个示例中,基站为eMBB业务分配的空口资源包括预留给uMTC业务的空口资源。
如图5所示,基站为eMBB业务1和eMBB业务2分配的空口资源为整个TTI时间上全频带所有子载波的空口资源。
进一步地,基站优先将非预留的空口资源分配给eMBB业务1、eMBB业务2,如果该非预留的资源元素数量不能满足eMBB业务1和eMBB业务2对资源元素数量的需求,则根据实际需要,将该预留的空口资源的部分或全部分配给eMBB业务2。
步骤430,T1时刻,基站启动uMTC业务的调度,为uMTC业务分配其需要的空口资源,且为uMTC业务分配的空口资源可以包括已经分配给eMBB终端的空口资源。
进一步地,网络设备在为uMTC业务分配空口资源时,优先分配空闲的该预留的空口资源,如果该空闲的预留的资源元素数量无法满足uMTC业务对资源元素数量的需求,则基站根据uMTC业务需要,为该uMTC业务抢占已经分配给eMBB业务2的该预留的资源元素。
由此可见,当uMTC业务需要资源元素的数量超过该空闲的预留资源元素数量时,基站为uMTC业务,在时域上抢占已经分配给eMBB业务2的资源元 素,且该抢占的资源元素为,整个TTI时间上部分频带的多个子载波的资源元素;也就是说,网络设备为uMTC业务分配的资源元素在时域上包括整个TTI时间上的OFDM符号,在频域上包括部分频带的多个子载波。
需要说明的是,上述为uMTC业务抢占整个TTI上的部分频带内的多个子载波的资源元素,适用于固定传输时间间隔TTI的情况,即适用于TTI为固定值的情况。
综上,在整个TTI时间内的全频带所有子载波上,基站可以为uMTC业务预留空口资源,当网络设备为eMBB业务分配空口资源时,允许将该预留的空口资源中的部分或全部,分配给eMBB业务,如前述eMBB业务2。基站在为uMTC业务分配空口资源时,基站将为uMTC业务抢占该预留的空口资源中的已经分配给eMBB业务的空口资源。
在本申请的另一个实施例中,网络设备也可以不为uMTC业务预留空口资源,即不执行上述步骤410-430,具体参见图6。
图6是本申请一个实施例提供的不预留空口资源并在时域上抢占资源的资源分配示意图。
图6中,基站不为uMTC业务预留空口资源,对于整个TTI时间内的全频带所有子载波的空口资源,eMBB业务和uMTC业务都可以获取,只是基站先为eMBB业务分配空口资源,而后分配空口资源的uMTC业务对全频带所有子载波的空口资源,具有更高级别的优先获取权。也就是说,基站可以为eMBB业务分配整个TTI时间内的全频带所有子载波的空口资源,只是当基站为uMTC业务分配空口资源时,可根据uMTC业务的实际需要,为uMTC业务抢占已经分配给eMBB业务的空口资源。
具体地,在T2时刻,基站为eMBB业务1和eMBB业务2分配其各自需要的整个TTI时间内的全频带所有子载波的空口资源。在T1时刻,基站为uMTC业务分配其需要的空口资源,如果当前空闲的资源元素数量不满足该uMTC业务对资源元素数量的需求,则基站为该uMTC业务抢占已经分配给eMBB业务2 的资源元素,以满足该uMTC业务对资源元素数量的需求。
如图6所示,基站在时域上为uMTC业务抢占当前整个TTI时间上的部分频带的多个子载波的资源元素。由图6可知,基站优先在时域上抢占资源元素,将时域上整个TTI时间上的资源都抢占了,而频域上仅抢占了部分频带上的资源。
此外,基站也可以优先抢占频域上的资源,即在频域上抢占全频带所有可抢占的子载波,而在时域上则可以抢占部分TTI时间内多个OFDM符号,如图8所示。其中,该可抢占的子载波是指所配置的允许基站为uMTC业务抢占的子载波资源。
图7是以不预留资源元素为例,示出了基站如何优先在频域上为uMTC业务抢占空口资源。
如图7所示,当uMTC业务需要的资源元素的数量超过空闲的资源元素数量时,基站为uMTC业务抢占已经分配给eMBB业务2的空口资源;且该被抢占的空口资源为部分TTI内的多个OFDM符号时间上的全频带所有子载波的资源元素。也就是说,基站为uMTC业务分配的空口资源在时域上包括部分TTI时间内的多个OFDM符号,而在频域上则包括整个频带上的多个子载波。此种方案,多适用于非固定传输时间间隔TTI的情况,也就是说,多适用于TTI为变值的情况。
此外,基站为uMTC业务抢占频域上的空口资源,也可以不为uMTC业务预留空口资源的情况,具体可参见图6及相关内容描述,在此不再赘述。
步骤440,在T0时刻,基站根据为uMTC业务和eMBB业务分配的空口资源,对需要向终端发送的数据和/或控制信息做处理,包括组包、编码、调制等,再将处理后的数据和/或控制信息发送至相应终端。
进一步地,上述步骤440还包括,判定当前TTI时间上的全频带所有子载波的各资源元素是否先分配给eMBB业务而后又分配给uMTC业务,如果是,则向相应uMTC终端发送数据和/或控制信息,并停止向eMBB终端发送任何信 息。
步骤450,终端设备包括uMTC终端和eMBB终端接收来自基站的下行数据和/或控制信息,该控制信息包括指示该终端发送上行数据的空口资源的分配情况,以根据该控制信息中的空口资源分配情况,发送相应上行数据。
综上,本申请实施例通过为时延紧急业务抢占空口资源的方式,使得时延紧急业务获得足够大的空口资源,以保证时延紧急业务的正确和及时传输;同时,由于非时延紧急业务先分配空口资源,并且能够为非时延紧急业务分配任意的空口资源,即当前TTI时间上的全频带所有子载波的空口资源,因此避免了空口资源的浪费,节约了空口资源。
图8是本申请一个实施例提供的网络设备示意图。该网络设备如基站eNodeB、RRU等。
图8中,网络设备800包括处理器810、发送器820、接收器830。
处理器810,用于启动非时延紧急业务的调度,在当前传输时间间隔TTI内的全频带的子载波上,为该非时延紧急业务分配其需要的空口资源,然后启动时延紧急业务的调度,在该TTI内的全频带的子载波上,为该时延紧急业务分配其需要的空口资源,并且为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源;其中,该时延紧急业务相对于该非时延紧急业务具有更高的获取该空口资源的优先级。
发送器820,用于根据所分配的空口资源,向时延紧急终端或非时延紧急终端发送数据和/或控制信息。
在一个示例中,处理器810分配给时延紧急业务的空口资源,包括已经分配给非时延紧急业务的空口资源。
在一个示例中,处理器810还用于为时延紧急业务在时域上抢占已经分配给非时延紧急业务的空口资源。
进一步地,处理器810还用于为时延紧急业务抢占已经分配给非时延紧急业务的整个TTI时间内的部分频带的多个子载波的资源元素。
进一步地,处理器810还用于在TTI为固定值时,在时域上为时延紧急业务抢占已经分配给非时延紧急业务的空口资源。
在另一个示例中,处理器810还用于为时延紧急业务在频域上抢占已经分配给非时延紧急业务的空口资源。
进一步地,处理器810还用于为时延紧急业务抢占已经分配给非时延紧急业务的部分TTI内的多个正交频分复用OFDM符号时间上的全频带的子载波的资源元素。
进一步地,处理器810还用于在TTI为非固定值时,在频域上为时延紧急业务抢占已经分配给非时延紧急业务的空口资源。
在一个示例中,处理器810还用于在TTI内的全频带的子载波上,为该时延紧急业务,预留空口资源;并且在为该非时延紧急业务分配空口资源时,允许将该预留的空口资源的部分或全部,分配给该非时延紧急业务;在为该时延紧急业务分配空口资源时,为该时延紧急业务抢占该预留的空口资源中已经分配给该非时延紧急业务的空口资源。
在一个示例中,处理器810还用于在为该时延紧急业务分配空口资源时,优先分配该空口资源中的空闲的资源元素,如果该空闲的资源元素数量无法满足该时延紧急业务对资源元素数量的需求,则为该时延紧急业务抢占已经分配给该非时延紧急业务的资源元素。
在一个示例中,处理器810还用于判定该当前TTI时间内的全频带所有子载波的资源元素,是否先分配给该非时延紧急业务而后又分配给该时延紧急业务,如果是,则通知给发送器820。发送器820还用于基于该通知,向该时延紧急业务发送数据和/或控制信息,并且停止向该非时延紧急业务发送信息。
接收器830用于接收来自时延紧急终端或非时延紧急终端的数据,且该数据是根据处理器810分配的空口资源而发送的。
图9是本申请一个实施例提供的空口资源分配装置示意图。网络设备900 包括配置模块910、调度模块920、发送模块930、接收模块940,且调度模块920包括非时延紧急业务调度模块921、时延紧急业务调度模块922、资源选择模块923。
配置模块910用于在整个TTI内的全频带的子载波上,为时延紧急业务如uMTC业务预留空口资源;并且允许该预留的空口资源中的部分或全部分配给非时延紧急业务如eMBB业务,且该时延紧急业务如uMTC业务对该预留的空口资源的获取优先级高于该非时延紧急业务eMBB业务。
调度模块920用于启动各非时延紧急业务和时延紧急业务的调度,分配空口资源。
调度模块920中的非时延紧急业务调度模块921,用于启动非时延紧急业务的调度,为该非时延紧急业务分配其需要的当前传输时间间隔TTI内的全频带所有子载波的空口资源。
调度模块920中的时延紧急业务调度模块922,用于为时延紧急业务分配其需要的资源元素,并且为该时延紧急业务抢占已经分配给该非时延紧急业务的空口资源;其中,该时延紧急业务相对于该非时延紧急业务具有更高的获取该空口资源的优先级。也就是说,调度模块920分配给该时延紧急业务的空口资源包括已经分配给该非时延紧急业务的空口资源。
此外,调度模块920对非时延紧急业务的调度时间早于对该时延紧急业务的调度,也就是说,调度模块920先调度非时延紧急业务,然后再调度时延紧急业务。
在一个示例中,时延紧急业务调度模块922还用于,在时域上抢占已经分配给非时延紧急业务的空口资源。
进一步地,时延紧急业务调度模块922为该时延紧急业务抢占已经分配给该非时延紧急业务的整个TTI时间上部分频带的多个子载波的资源元素。具体可参见图5、图6以及相关内容阐述。进一步地,时延紧急业务调度模块922为时延紧急业务分配当前传输时间间隔TTI上部分频带的多个子载波的资 源元素,适用于传输时间间隔TTI为固定值的情况。
在另一个示例中,时延紧急业务调度模块922还用于为该时延紧急业务,在频域上抢占已经分配给该非时延紧急业务的空口资源。
进一步地,为该时延紧急业务抢占已经分配给该非时延紧急业务的部分TTI内的多个正交频分复用OFDM符号时间上的全频带的子载波的资源元素。具体可参见图7以及相关内容阐述。
进一步地,时延紧急业务调度模块922还用于,为时延紧急业务分配部分TTI时间内的多个OFDM符号时间上全频带子载波的资源元素,适用于传输时间间隔TTI为非固定值的情况。
在一个示例中,时延紧急业务调度模块922还用于在为时延紧急业务分配空口资源时,优先分配空闲的资源元素,如果该空闲的资源元素数量无法满足该时延紧急业务对资源元素数量的需求,则为该时延紧急业务抢占已经分配给该非时延紧急业务的资源元素。
资源选择模块923用于判定当前TTI时间内全频带所有子载波的资源元素是否先分配给非时延紧急业务而后又分配给时延紧急业务,如果是,则通知发送模块930。
发送模块930用于接收到资源选择模块923的消息为当前资源元素是先分配给非时延紧急业务而后又分配给时延紧急业务时,向相应时延紧急终端发送数据和/或控制信息,并且停止向非时延紧急终端发送任何信息。
接收模块940用于接收来自时延紧急终端和非时延紧急终端的信息,且该信息是相应终端根据调度模块920所分配的空口资源而发送的。
前文描述了本申请实施例的数据发送方法。本领域的技术人员意识到,所述方法实施例以及各步骤过程,能够以硬件方式来实现。本领域技术人员根据上述方法实施例,能够构建相应模块及变形,这些模块以及变形应归于本申请保护范围,在此不再赘述。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种空口资源分配方法,其特征在于,包括:
    为非时延紧急业务分配其需要的空口资源;
    在当前传输时间间隔TTI内的全频带的子载波上,为时延紧急业务分配其需要的空口资源,并且为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源;
    其中,所述时延紧急业务相对于所述非时延紧急业务具有更高的获取所述空口资源的优先级。
  2. 根据权利要求1所述的方法,其特征在于,所述为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    在时域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  3. 根据权利要求2所述的方法,其特征在于,所述在时域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    在整个所述TTI时间内的部分频带的多个子载波上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
  4. 根据权利要求2所述的方法,其特征在于,所述在时域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    在所述TTI为固定值时,在时域上为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  5. 根据权利要求1所述的方法,其特征在于,所述为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    在频域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  6. 根据权利要求5所述的方法,其特征在于,所述在频域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    在部分TTI时间的多个正交频分复用OFDM符号时间内的全频带子载波上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
  7. 根据权利要求5所述的方法,其特征在于,所述在频域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    在所述TTI为非固定值时,在频域上为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,在所述为非时延紧急业务分配其需要的空口资源之前,在所述TTI内的全频带的子载波上,为所述时延紧急业务,预留空口资源;且
    所述为非时延紧急业务分配空口资源,具体为:允许将所述预留的空口资源的部分或全部,分配给所述非时延紧急业务;
    所述为时延紧急业务分配空口资源,具体为:为所述时延紧急业务抢占所述预留的空口资源中已经分配给所述非时延紧急业务的空口资源。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,所述为时延紧急业务分配空口资源,具体为:
    优先分配所述空口资源中的空闲的资源元素,如果所述空闲的资源元素数量无法满足所述时延紧急业务对资源元素数量的需求,则为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
  10. 根据权利要求1至9任意一项所述的方法,其特征在于,所述为时延紧急业务分配其需要的空口资源之后,包括:
    判定所述当前TTI时间内的全频带子载波的资源元素,是否先分配给所述非时延紧急业务而后又分配给所述时延紧急业务,如果是,则向所述时延紧急业务发送信息,并且停止向所述非时延紧急业务发送信息。
  11. 一种网络设备,其特征在于,包括:
    处理器,用于为非时延紧急业务分配其需要的空口资源,在当前传输时间间隔TTI内的全频带的子载波上,为时延紧急业务分配其需要的空口资源, 并且为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源;其中,所述时延紧急业务相对于所述非时延紧急业务具有更高的获取所述空口资源的优先级;
    发送器,用于根据所分配的空口资源,向所述时延紧急业务对应的终端或所述非时延紧急业务对应的终端发送数据和/或控制信息。
  12. 根据权利要求11所述的网络设备,其特征在于,所述处理器为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    所述处理器在时域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  13. 根据权利要求12所述的网络设备,其特征在于,所述处理器在时域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    所处理器在整个所述TTI时间内的部分频带的多个子载波上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
  14. 根据权利要求11所述的网络设备,其特征在于,所述处理器为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    所述处理器在频域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  15. 根据权利要求14所述的网络设备,其特征在于,所述处理器在频域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    所述处理器在部分TTI时间的多个正交频分复用OFDM符号时间内的全频带子载波上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
  16. 根据权利要求11至15任意一项所述的网络设备,其特征在于,所述处理器还用于:在所述为非时延紧急业务分配其需要的空口资源之前,在所 述TTI内的全频带的子载波上,为所述时延紧急业务,预留空口资源;并且在为所述非时延紧急业务分配空口资源时,允许将所述预留的空口资源的部分或全部,分配给所述非时延紧急业务;在为所述时延紧急业务分配空口资源时,为所述时延紧急业务抢占所述预留的空口资源中已经分配给所述非时延紧急业务的空口资源。
  17. 根据权利要求11至16任意一项所述的网络设备,其特征在于,所述处理器还用于:在为所述时延紧急业务分配空口资源时,优先分配所述空口资源中的空闲的资源元素,如果所述空闲的资源元素数量无法满足所述时延紧急业务对资源元素数量的需求,则为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
  18. 一种空口资源分配装置,其特征在于,包括:
    非时延紧急业务资源分配模块,用于为非时延紧急业务分配其需要的空口资源;
    时延紧急业务资源分配模块,用于在当前传输时间间隔TTI内的全频带的子载波上,为时延紧急业务分配其需要的空口资源,并且为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源;
    其中,所述时延紧急业务相对于所述非时延紧急业务具有更高的获取所述空口资源的优先级。
  19. 根据权利要求18所述的装置,其特征在于,所述时延紧急业务资源分配模块,具体用于:
    在时域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  20. 根据权利要求19所述的装置,其特征在于,所述时延紧急业务资源分配模块在时域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    所述时延紧急业务资源分配模块在整个所述TTI时间内的部分频带的多 个子载波上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
  21. 根据权利要求18所述的装置,其特征在于,所述时延紧急业务资源分配模块,具体用于:
    在频域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源。
  22. 根据权利要求21所述的方法,其特征在于,所述时延紧急业务资源分配模块在频域上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的空口资源,具体为:
    所述时延紧急业务资源分配模块在部分TTI时间的多个正交频分复用OFDM符号时间内的全频带子载波上,为所述时延紧急业务抢占已经分配给所述非时延紧急业务的资源元素。
PCT/CN2016/084155 2016-05-31 2016-05-31 一种空口资源分配方法及网络设备 WO2017206071A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680085092.5A CN109076564B (zh) 2016-05-31 2016-05-31 一种空口资源分配方法及网络设备
JP2018562370A JP6699918B2 (ja) 2016-05-31 2016-05-31 エアインタフェースリソース割り当て方法およびネットワークデバイス
PCT/CN2016/084155 WO2017206071A1 (zh) 2016-05-31 2016-05-31 一种空口资源分配方法及网络设备
EP20174788.8A EP3755098A1 (en) 2016-05-31 2016-05-31 Air interface resource allocation method and network device
BR112018074682-7A BR112018074682B1 (pt) 2016-05-31 2016-05-31 Método de alocação de recurso de interface aérea, dispositivo de rede e aparelho de alocação de recurso de interface aérea em um sistema de comunicações sem fio de múltiplas portadoras
EP16903456.8A EP3448106B1 (en) 2016-05-31 2016-05-31 Air interface resource allocation method and apparatus
US16/203,866 US10893534B2 (en) 2016-05-31 2018-11-29 Air interface resource allocation method and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084155 WO2017206071A1 (zh) 2016-05-31 2016-05-31 一种空口资源分配方法及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/203,866 Continuation US10893534B2 (en) 2016-05-31 2018-11-29 Air interface resource allocation method and network device

Publications (1)

Publication Number Publication Date
WO2017206071A1 true WO2017206071A1 (zh) 2017-12-07

Family

ID=60478409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084155 WO2017206071A1 (zh) 2016-05-31 2016-05-31 一种空口资源分配方法及网络设备

Country Status (6)

Country Link
US (1) US10893534B2 (zh)
EP (2) EP3448106B1 (zh)
JP (1) JP6699918B2 (zh)
CN (1) CN109076564B (zh)
BR (1) BR112018074682B1 (zh)
WO (1) WO2017206071A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600695A (zh) * 2021-01-15 2021-04-02 北京邮电大学 Ran侧网络切片资源分配方法、装置和电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10104683B2 (en) * 2015-02-06 2018-10-16 Qualcomm Incorporated Parallel low latency awareness
KR102123233B1 (ko) 2016-09-01 2020-06-17 주식회사 케이티 차세대 무선 액세스 망에서 데이터를 송수신하는 방법 및 그 장치
JP7233366B2 (ja) * 2016-11-30 2023-03-06 オッポ広東移動通信有限公司 情報伝送方法、端末装置及びネットワーク装置
US10171967B2 (en) * 2017-04-26 2019-01-01 Veniam, Inc. Fast discovery, service-driven, and context-based connectivity for networks of autonomous vehicles
CN113196846A (zh) * 2018-12-20 2021-07-30 索尼集团公司 通信装置、基础设施设备以及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090143046A1 (en) * 2007-11-29 2009-06-04 Rivada Networks, Llc Method and System For Providing Tiered Priority Access to Communication Network Resources
US20090164638A1 (en) * 2007-12-24 2009-06-25 Electronics And Telecommunications Research Institute System and method for uplink resource allocation in mobile internet
CN101868000A (zh) * 2010-06-28 2010-10-20 中兴通讯股份有限公司 抢占资源的方法、装置和基站
CN104202775A (zh) * 2014-05-28 2014-12-10 北京邮电大学 一种降低“信令风暴”的无线接入控制方法
CN104320854A (zh) * 2014-10-21 2015-01-28 中国联合网络通信集团有限公司 资源调度方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116781B2 (en) * 2005-03-28 2012-02-14 Rockstar Bidco Lp Method and system of managing wireless resources
CN101175020B (zh) 2006-11-01 2011-04-06 华为技术有限公司 分组业务中上行数据的传输方法
WO2009087742A1 (ja) 2008-01-04 2009-07-16 Panasonic Corporation 無線通信基地局装置、無線通信移動局装置および制御チャネル割当方法
CN101998412B (zh) * 2009-08-11 2013-09-25 中国移动通信集团公司 分配频率资源的方法、家庭基站管理系统及毫微微基站
US9100321B2 (en) * 2012-11-28 2015-08-04 International Business Machines Corporation Dynamic network traffic management in response to non-network conditions input
US11432305B2 (en) * 2014-05-19 2022-08-30 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
CN106797644B (zh) * 2014-08-06 2021-01-26 交互数字专利控股公司 设备到设备(d2d)先占和接入控制
US10149293B2 (en) * 2014-10-16 2018-12-04 Qualcomm Incorporated Transmission preemption for enhanced component carriers
US10727983B2 (en) * 2014-10-29 2020-07-28 Qualcomm Incorporated Variable length transmission time intervals (TTI)
CN105517168B (zh) * 2015-12-16 2019-04-19 东莞酷派软件技术有限公司 一种d2d数据包传输方法、传输资源分配方法及装置
CN107295646B (zh) * 2016-03-31 2021-08-31 华为技术有限公司 一种资源分配方法及网络设备
US10681633B2 (en) * 2016-04-05 2020-06-09 Qualcomm Incorporated Configurable subframe structures in wireless communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090143046A1 (en) * 2007-11-29 2009-06-04 Rivada Networks, Llc Method and System For Providing Tiered Priority Access to Communication Network Resources
US20090164638A1 (en) * 2007-12-24 2009-06-25 Electronics And Telecommunications Research Institute System and method for uplink resource allocation in mobile internet
CN101868000A (zh) * 2010-06-28 2010-10-20 中兴通讯股份有限公司 抢占资源的方法、装置和基站
CN104202775A (zh) * 2014-05-28 2014-12-10 北京邮电大学 一种降低“信令风暴”的无线接入控制方法
CN104320854A (zh) * 2014-10-21 2015-01-28 中国联合网络通信集团有限公司 资源调度方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "Requirement for Next Generation Access", 3GPP TSG-RAN AD HOC BARCELONA , SPAIN , RPAL60063, 27 January 2016 (2016-01-27), XP051053262, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN/Docs/> *
See also references of EP3448106A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600695A (zh) * 2021-01-15 2021-04-02 北京邮电大学 Ran侧网络切片资源分配方法、装置和电子设备
CN112600695B (zh) * 2021-01-15 2022-05-24 北京邮电大学 Ran侧网络切片资源分配方法、装置和电子设备

Also Published As

Publication number Publication date
US20190098648A1 (en) 2019-03-28
CN109076564A (zh) 2018-12-21
JP2019522408A (ja) 2019-08-08
EP3448106A4 (en) 2019-05-01
BR112018074682B1 (pt) 2023-12-26
EP3448106B1 (en) 2020-06-17
BR112018074682A2 (pt) 2019-03-06
CN109076564B (zh) 2021-02-12
EP3448106A1 (en) 2019-02-27
US10893534B2 (en) 2021-01-12
JP6699918B2 (ja) 2020-05-27
EP3755098A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2017206071A1 (zh) 一种空口资源分配方法及网络设备
EP3078225B1 (en) Method for adaptive tti coexistence with lte
US20210099987A1 (en) Allocating transmission resources in communication networks that provide low latency services
CN106413105B (zh) 一种资源传输的指示方法、装置、网络侧设备及终端
CN109618362A (zh) 一种通信方法及设备
JP6568944B2 (ja) 複数の時間インスタンスにおけるアップリンクリソーススケジューリング
US11039448B2 (en) Resource scheduling method and apparatus
WO2018228500A1 (zh) 一种调度信息传输方法及装置
US11291037B2 (en) SR/BSR triggering method and device
CN112567860A (zh) 通信系统
US20220248466A1 (en) Resource configuration method and device
WO2021002784A1 (en) Uplink scheduling
EP3648527B1 (en) Method, device, and system for transmitting downlink control information
US20180310291A1 (en) Control signal sending method and apparatus
WO2018127229A1 (zh) 一种数据传输方法、终端及基站
CN115515244B (zh) 5g新空口下混合业务的综合调度与资源分配方法
CN111107632B (zh) 一种数据传输方法及其装置
CN108632012B (zh) 包括存储器解除分配器的无线通信设备及其操作方法
WO2012174912A1 (zh) 一种干扰协调请求的发送方法和设备
WO2017205999A1 (zh) 一种数据传输的方法、设备和系统
CN106571899A (zh) 一种窄带无线通信系统及其pdcch和pdsch的时分复用方法
WO2024093878A1 (zh) 一种通信方法及装置
CN113993140B (zh) 一种优化物理资源块prb利用率的方法、设备及装置
US20220158807A1 (en) Information transmission method and electronic device
WO2016101615A1 (zh) 数据传输、数据处理方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018562370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016903456

Country of ref document: EP

Effective date: 20181123

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018074682

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018074682

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181129