WO2017204535A1 - High-hardness carbon material coated with tac and method for manufacturing same - Google Patents

High-hardness carbon material coated with tac and method for manufacturing same Download PDF

Info

Publication number
WO2017204535A1
WO2017204535A1 PCT/KR2017/005359 KR2017005359W WO2017204535A1 WO 2017204535 A1 WO2017204535 A1 WO 2017204535A1 KR 2017005359 W KR2017005359 W KR 2017005359W WO 2017204535 A1 WO2017204535 A1 WO 2017204535A1
Authority
WO
WIPO (PCT)
Prior art keywords
tac
base material
coating layer
carbon
carbon base
Prior art date
Application number
PCT/KR2017/005359
Other languages
French (fr)
Korean (ko)
Inventor
김강산
윤하나
Original Assignee
주식회사 티씨케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티씨케이 filed Critical 주식회사 티씨케이
Publication of WO2017204535A1 publication Critical patent/WO2017204535A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof

Definitions

  • the present invention relates to a high hardness TaC coated carbon material having a high adhesion TaC coating layer formed on a carbon base material and a carbon base material and a method of manufacturing the same.
  • tantalum carbide (TaC) coatings have particular characteristics in comparison with conventional thin film materials in heat resistance, abrasion resistance, and etching resistance, and the like, and thus, attention is particularly focused.
  • tantalum carbide-coated carbon materials having a TaC coating layer formed on carbon materials have been used in various industrial sites such as semiconductor single crystal manufacturing apparatus members, precision machine tools, and engine parts.
  • the TaC coating layer formed at this time has often been a problem in the adhesion force with a base material. Therefore, various studies have recently been conducted on the TaC thin film coating method for maintaining high surface hardness while increasing adhesion on the carbon base material.
  • a carbon base material a carbon base material; And a TaC coating layer formed on the carbon base material.
  • a high hardness TaC coated carbon material is provided, wherein the TaC content in the region from the surface of the carbon base material to a depth of 150 ⁇ m is 15% to 20% by volume.
  • the TaC content in the region up to 80 ⁇ m deep from the surface of the carbon base material is 16% by volume to 20% by volume, and in the region up to 80 ⁇ m to 150 ⁇ m deep from the carbon base material surface.
  • a high hardness TaC coated carbon material is provided, wherein the TaC content is 13% to 18% by volume.
  • the surface scratch value of the TaC coating layer is provided with a high hardness TaC coated carbon material, 3.5 N or more.
  • the surface scratch value of the TaC coating layer is provided according to Equation 1 below, a high hardness TaC coated carbon material.
  • N content (vol%) of TaC in the region from 80 to 150 ⁇ m deep from the surface of the carbon base material ⁇ (1.4 to 1.6)-19.5
  • a method of manufacturing a high hardness TaC coated carbon material is provided.
  • the step of forming the TaC coating layer, TaC is impregnated in the pores of the carbon base material, to form a TaC impregnated region, in contact with the TaC coating layer inside the carbon base material
  • a method for producing a high hardness TaC coated carbon material is provided.
  • preparing the carbon base material may include preparing a carbon base material having the average porosity according to the required surface scratch value of the high hardness TaC coated carbon material according to Equation 2 below. There is provided a method of preparing a high hardness TaC coated carbon material.
  • the step of forming the TaC coating layer is performed at 2000 ° C to 2500 ° C by using a CVD method, a method of manufacturing a high hardness TaC coated carbon material is provided.
  • the step of forming the TaC coating layer is performed a plurality of times, to form a plurality of TaC coating layer, there is provided a method for producing a high hardness TaC coated carbon material.
  • the carbon material according to the embodiment of the present invention it is possible to provide a carbon material including a high hardness TaC coating layer having excellent adhesion.
  • the carbon material according to the embodiment of the present invention has an effect that can be variously applied to various industrial equipment requiring a coating material having excellent adhesion, high hardness, and the like including semiconductor production equipment.
  • FIG. 1 is a cross-sectional conceptual view of a carbon base material including pores provided in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional conceptual view of a high hardness TaC coated carbon material, including a carbon matrix and a TaC coating layer formed on the carbon substrate, according to one embodiment of the invention.
  • FIG 3 is a cross-sectional conceptual view of a high hardness TaC coated carbon material including a carbon matrix and a plurality of TaC coating layers formed of various layers on the carbon substrate according to another embodiment of the present invention.
  • FIG. 4A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 1 below, and FIG. 4B is an image thereof.
  • SEM scanning electron microscope
  • FIG. 5A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 2 below, and FIG. 4B is an image thereof.
  • SEM scanning electron microscope
  • FIG. 6A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material, prepared according to Example 3, and FIG. 6B is an image thereof.
  • SEM scanning electron microscope
  • a problem in the process of forming a TaC coating layer on a carbon material is a hardness of the coated TaC layer and adhesion to the carbon material used as the base material.
  • An object of the present invention is to select a carbon material suitable for TaC coating by focusing on the porosity of the carbon material in the extension of the above study.
  • a carbon base material And a TaC coating layer formed on the carbon base material. And a TaC content of 15% by volume to 20% by volume in an area from the surface of the carbon base material to a depth of 80 ⁇ m to 150 ⁇ m is provided.
  • the carbon base material may include any base material containing carbon as a main component, including graphite.
  • the TaC coating layer may include any material containing tantalum (Ta) and carbon (C) as main components. 1, there is shown a cross-sectional conceptual view of a carbon base material 110 including pores provided in the embodiment of the present invention. When the TaC coating layer is formed on the carbon base material, the TaC component may be impregnated into the pores to generate an impregnation region.
  • the impregnation region 130 may include a region 131 having a depth of 80 ⁇ m to 150 ⁇ m from the surface of the carbon base material.
  • the area from the surface of the carbon base material to a depth of 80 ⁇ m to 150 ⁇ m may be an area that substantially affects the surface hardness and the base material adhesion of the coating layer of the area formed by incorporating TaC components of the TaC coating layer into the pores of the carbon base material.
  • the TaC content of the region from the surface of the carbon base material to a depth of 80 ⁇ m to 150 ⁇ m may be 15 to 20% by volume.
  • the TaC content of the region is 15% by volume to 20% by volume, it is possible to implement a high hardness TaC coated carbon material having excellent adhesion and surface hardness, which is an effect intended in one aspect of the present invention.
  • the adhesion with the TaC coating layer may be weak, and the surface hardness may be insufficient, and when the TaC content is more than 20% by volume, the pores of the graphite are excessive. Is formed to increase the surface roughness, there may be a problem that the surface of the coating layer is formed rough.
  • the content of TaC in the region is preferably 16.5% by volume to 20% by volume. Further, in the above region, the TaC content is more preferably 18% by volume to 20% by volume. Increasing the TaC content in the region means that the porosity on the carbon base material is high, and the material having the TaC coating layer formed on the carbon base material having a substantially high porosity has better adhesion and surface hardness.
  • the TaC content of the region from 40 to 75 ⁇ m deep from the surface of the carbon base material is 16% to 20% by volume, and the TaC of the region from 75 ⁇ m to 150 ⁇ m deep from the carbon base material surface.
  • the content may be 13 to 18% by volume.
  • the region 131 from the surface of the carbon base material to a depth of 80 ⁇ m to 150 ⁇ m has a first region 132 from the surface of the carbon base material to a depth of 40 ⁇ m to 75 ⁇ m having a different TaC content.
  • the second region 133 having a depth of 75 ⁇ m to 150 ⁇ m.
  • the first region is a layer adjacent to the TaC coating layer, and corresponds to a region in which the TaC component can be sufficiently impregnated into the pores of the base material. Therefore, it is the area
  • the adhesion and surface hardness of the TaC coating layer formed on the carbon base material may vary depending on process conditions such as process temperature and Ta / C ratio, but the TaC content of the first region generated as a result of the TaC coating layer is 16% by volume. When it is from 20% by volume, it may have a good surface hardness.
  • the second region is a layer adjacent to the first region that is deeper on the substrate surface than the first region, and corresponds to a region where the TaC component of the coating layer is relatively less impregnated.
  • TaC content in this region may also affect the adhesion and surface hardness of the TaC coating layer formed on the carbon matrix.
  • the TaC content of the second region is 13% by volume to 18% by volume, the TaC coating layer formed on the carbon base material may have excellent adhesion and surface hardness.
  • the TaC content of the first region and the second region may be gradually changed.
  • the surface scratch value of the TaC coating layer may be 3.5 N or more.
  • various test methods including 4-point Bening test, Peel-Off test, Scotch tape test, Direct Full Off test are used.
  • the scratch test (Scrach Test) is a test method for confirming the adhesion of the thin film coating layer, which is commonly used in the industry because the specimen preparation is easy and easy to measure.
  • the scratch test calculates the adhesive force with a critical load value when the thin film is peeled off by moving the substrate while increasing the load on the surface of the thin film using a rounded stylus. Therefore, the higher the scratch value, the stronger the adhesion strength.
  • the surface scratch value of the TaC coating layer may be 3.5 N or more.
  • the adhesion strength with the surface of the base material may be insufficient, which may cause a problem that is difficult to apply to the industry.
  • the surface scratch value of the TaC coating layer is preferably 6.5 N or more.
  • the surface scratch value of the TaC coating layer is more preferably 8.0 N or more. The surface scratch value tends to increase on average as the TaC content in the region from 80 to 150 ⁇ m deep from the surface of the carbon base material increases.
  • the adhesion between the TaC coating layer and the carbon base material increases as the average porosity from the surface of the carbon base material to a depth of 80 ⁇ m to 150 ⁇ m increases. It means.
  • the surface scratch value of the TaC coating layer may be according to Equation 1 below.
  • N content (vol%) of TaC in the region from 80 to 150 ⁇ m deep from the surface of the carbon base material ⁇ (1.4 to 1.6)-19.5
  • the surface scratch value (N) of the TaC coating layer is a formula of a primary function whose TaC content (vol%) is a variable in a region from 80 to 150 ⁇ m deep from the surface of the carbon base material. Will follow.
  • the surface scratch value (N) of the TaC coating layer thus determined may represent a value (volume%) ⁇ (1.4 to 1.6)-19.5 of TaC in the region from 80 to 150 ⁇ m deep from the surface of the carbon base material. have.
  • to prepare a high hardness TaC coated carbon material having good adhesion may include preparing a carbon base material having an average porosity of 15% to 20% by volume.
  • the average porosity is preferably 16.5% by volume to 20% by volume.
  • the average porosity is more preferably 18 to 20% by volume.
  • Increasing the TaC content in the carbon base material means that the porosity on the carbon base material is high, and the material having the TaC coating layer formed on the carbon base material having a substantially high porosity has better adhesion and surface hardness.
  • the method of measuring the average porosity of the carbon base material can be measured by using a porosity analyzer (Prosimeter) by the mercury adsorption method.
  • the forming of the TaC coating layer may include forming an impregnation region in contact with the TaC coating layer in the carbon base material by impregnating TaC components into pores of the carbon base material.
  • the TaC coating layer on the carbon base material is formed at a high temperature, the TaC component starts to impregnate from the surface pores of the carbon base material to the inside pores.
  • an impregnation region may be formed in the carbon base material and in contact with the TaC coating layer.
  • An area from 80 to 150 ⁇ m deep from the surface of the carbon base material of the impregnated area may be an area that is substantially meaningful in determining adhesion and surface hardness of the TaC coated carbon material.
  • the preparing of the carbon base material is to prepare a carbon base material having the average porosity according to the required surface scratch value of the high hardness TaC coated carbon material according to Equation 2 below. Can be.
  • the average porosity of the carbon base material may represent a value of (surface scratch value (N) + 19.5) x (0.65 to 0.7).
  • the forming of the TaC coating layer may be performed at 2000 ° C. to 2500 ° C. using a CVD method.
  • the TaC coating layer may be formed on the surface of the carbon base material by chemical vapor deposition (CVD), sputtering, conversion (CVR), thermal spraying, or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • CVR conversion
  • PVD physical vapor deposition
  • the CVD technique has the advantage of forming a coating layer by forming a thin layer at a high speed even in a large substrate area.
  • the forming of the TaC coating layer may be performed at 2000 ° C. to 2500 ° C.
  • the higher the process temperature the larger the surface crystal grains of the TaC coating layer, the surface hardness, wear resistance and the like of the TaC coating layer can be improved.
  • the temperature is lower than 2000 ° C., the deposition rate of the TaC coating layer may be reduced, or the crystal phase may become unstable.
  • the temperature is higher than 2500 ° C., the cost of the equipment is increased, and the temperature is too high. It may be difficult to impregnate into the pores, thereby reducing the adhesion.
  • the temperature may be preferably performed at 2000 ° C to 2300 ° C.
  • the forming of the TaC coating layer may be performed a plurality of times to form a plurality of TaC coating layers. That is, it may include a process in which two or more TaC coating layers are formed, and thus, may include a method of manufacturing a carbon material in which two or more TaC coating layers are formed. Furthermore, the process of forming an additional TaC coating layer to form a greater number of coating layers, such as three, four, may be performed to form a greater number of coating layers.
  • FIG. 3 is a cross-sectional conceptual view of a high hardness TaC coated carbon material including a carbon matrix and a plurality of TaC coating layers formed of various layers on the carbon substrate according to another embodiment of the present invention.
  • a step of forming a TaC coating layer is performed a plurality of times, to form a plurality of TaC coating layer, on the first coating layer 121 formed through the process of forming the first coating layer, the second coating layer 122 And it can be seen that the third coating layer 123 is formed.
  • the size of the TaC coating layer grains is another factor for determining the surface hardness of the formed coating layer.
  • the size of the grains of the TaC coating layer forming the outer surface of the material may be increased, as compared with the case where the TaC coating layer is formed with only one layer, which improves the surface hardness. Brings the effect.
  • a method of manufacturing a high hardness TaC coated carbon material can be implemented.
  • TaC coated carbon materials provided in one aspect of the present invention were prepared.
  • the thermal expansion coefficient having an average porosity according to an aspect of the present invention is 4.9 ⁇ 6.0 ⁇ 10 -6 / K, 400mm diameter and 10mm thick carbon matrix, temperature 2000 °C, pressure 500 Torr, and T precursor (TaCl 5 ) TaC coating layer was formed under CVD treatment conditions of 5000 sccm, C precursor (CH 4 ) 50 sccm. At this time, the composition ratio of C / Ta of the tantalum carbide coated film was adjusted to 1: 1.05. The porosity of each carbon matrix was measured by mercury adsorption.
  • Table 1 is a scratch test results according to the average porosity of the carbon base material of the high hardness TaC coated carbon materials provided according to the embodiment provided in one aspect of the present invention.
  • the TaC coating layer was formed on the carbon base material having an average porosity of 15% by volume to 20% by volume, which is the carbon base material provided by an aspect of the present invention.
  • the scratch value is 3.5 N or more.
  • the carbon base material having an average porosity of less than 15% by volume of the carbon base material the scratch value was found to be less than 3.5 N.
  • FIG. 4A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 1 below, and FIG. 4B is an image thereof.
  • SEM scanning electron microscope
  • FIG. 5A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 2 below, and FIG. 4B is an image thereof.
  • SEM scanning electron microscope
  • FIG. 6A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material, prepared according to Example 3, and FIG. 6B is an image thereof.
  • SEM scanning electron microscope
  • Example 1 having an average porosity of 18.7% by volume of the carbon base material, it was confirmed that the average area of each piece after the occurrence of cracking was the largest, and in Example 3 having an average porosity of 15.5% by volume of the carbon base material, After generation, it was confirmed that the average area of each piece was the smallest. As a result, it was confirmed that the smaller the average porosity of the carbon base material, the more cracking occurred.

Abstract

According to one embodiment of the present invention, provided is a high-hardness carbon material coated with TaC comprising: a carbon base material; and a TaC coating layer formed on top of the carbon base material, wherein the content of TaC in the area reaching a depth of 150µm from the surface of the carbon base material is 15 to 20 vol%.

Description

고경도 TAC 코팅 탄소 재료 및 그 제조방법High Hardness TAC Coated Carbon Material and Manufacturing Method Thereof
본 발명은 탄소 모재와 탄소 모재상에 형성된 높은 부착력의 TaC 코팅층을 갖는 고경도 TaC 코팅 탄소 재료 및 그 제조방법 관한 것이다.The present invention relates to a high hardness TaC coated carbon material having a high adhesion TaC coating layer formed on a carbon base material and a carbon base material and a method of manufacturing the same.
모재 표면에 여러 종류의 소재로 된 박막을 도입하여, 재료의 내마모성, 내식성 등을 향상시키는 연구는 다방면으로 진행되고 있다. 그 중, 탄화탄탈(TaC) 코팅은내열성, 내마모성 및 내가스에칭성 등에 있어서 기존의 박막 재료에 비해 우수한 특징을 가지기 때문에, 특히 관심이 집중되고 있다. 최근 들어, TaC 코팅층을 탄소 재료에 형성한 탄화탄탈 피복 탄소 재료가 반도체용 단결정 제조장치 부재, 정밀 공작기, 엔진용 부품 등 다양한 산업 현장에서 사용되고 있다. Research into improving the wear resistance, corrosion resistance, and the like of materials by introducing thin films made of various kinds of materials on the base material surface has been conducted in various fields. Among these, tantalum carbide (TaC) coatings have particular characteristics in comparison with conventional thin film materials in heat resistance, abrasion resistance, and etching resistance, and the like, and thus, attention is particularly focused. In recent years, tantalum carbide-coated carbon materials having a TaC coating layer formed on carbon materials have been used in various industrial sites such as semiconductor single crystal manufacturing apparatus members, precision machine tools, and engine parts.
이 때 형성되는 TaC 코팅층은, 모재와의 부착력에 있어서 종종 문제가 되어왔다. 따라서, 최근 탄소 모재 상에 부착력을 증가시키면서 표면 경도를 높게 유지하기 위한 TaC 박막 코팅 방법에 대해 다방면의 연구가 이어져 왔다. The TaC coating layer formed at this time has often been a problem in the adhesion force with a base material. Therefore, various studies have recently been conducted on the TaC thin film coating method for maintaining high surface hardness while increasing adhesion on the carbon base material.
본 발명의 목적은, 상술한 바와 같이 탄소 모재와 부착력이 우수하면서도, 고경도를 지닌 우수한 물성의 TaC 코팅 탄소 재료를 제공하는 것이다.It is an object of the present invention to provide a TaC-coated carbon material having excellent hardness and high hardness while having excellent adhesion with a carbon base material.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따르면, 탄소 모재; 및 상기 탄소 모재 상에 형성된 TaC 코팅층; 을 포함하고, 상기 탄소 모재 표면으로부터 깊이 150 ㎛ 까지의 영역의 TaC 의 함량이 15 부피% 내지 20 부피% 인 것인, 고경도 TaC 코팅 탄소 재료가 제공된다.According to an embodiment of the present invention, a carbon base material; And a TaC coating layer formed on the carbon base material. A high hardness TaC coated carbon material is provided, wherein the TaC content in the region from the surface of the carbon base material to a depth of 150 μm is 15% to 20% by volume.
본 발명의 일 실시예에 따르면, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 까지의 영역의 TaC의 함량이 16 부피% 내지 20 부피% 인 것이고, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량이 13 부피% 내지 18 부피% 인 것인, 고경도 TaC 코팅 탄소 재료가 제공된다.According to an embodiment of the present invention, the TaC content in the region up to 80 μm deep from the surface of the carbon base material is 16% by volume to 20% by volume, and in the region up to 80 μm to 150 μm deep from the carbon base material surface. A high hardness TaC coated carbon material is provided, wherein the TaC content is 13% to 18% by volume.
본 발명의 일 실시예에 따르면, 상기 TaC 코팅층의 표면 스크래치 값은 3.5 N 이상인 것인, 고경도 TaC 코팅 탄소 재료가 제공된다.According to one embodiment of the present invention, the surface scratch value of the TaC coating layer is provided with a high hardness TaC coated carbon material, 3.5 N or more.
본 발명의 일 실시예에 따르면, 상기 TaC 코팅층의 표면 스크래치 값은 아래의 [수학식 1]에 따른 것인, 고경도 TaC 코팅 탄소 재료가 제공된다.According to one embodiment of the present invention, the surface scratch value of the TaC coating layer is provided according to Equation 1 below, a high hardness TaC coated carbon material.
[수학식 1] [Equation 1]
표면 스크래치 값 (N) = 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량 (부피%) × (1.4 내지 1.6) - 19.5 Surface scratch value (N) = content (vol%) of TaC in the region from 80 to 150 µm deep from the surface of the carbon base material × (1.4 to 1.6)-19.5
본 발명의 다른 일 실시예에 따르면, 평균 기공율이 15 부피% 내지 20 부피% 인, 탄소 모재를 준비하는 단계; 및 상기 탄소 모재의 표면에 TaC 코팅층을 형성하는 단계;를 포함하는, 고경도 TaC 코팅 탄소 재료의 제조방법 이 제공된다.According to another embodiment of the present invention, preparing a carbon base material having an average porosity of 15% by volume to 20% by volume; And forming a TaC coating layer on the surface of the carbon base material. A method of manufacturing a high hardness TaC coated carbon material is provided.
본 발명의 일 실시예에 따르면, 상기 TaC 코팅층을 형성하는 단계는, 상기 탄소 모재의 기공에 TaC가 함침되어, 상기 탄소 모재의 내부에, 상기 TaC 코팅층과 접하는, TaC 함침 영역을 형성하는 것인, 고경도 TaC 코팅 탄소 재료의 제조방법이 제공된다.According to one embodiment of the invention, the step of forming the TaC coating layer, TaC is impregnated in the pores of the carbon base material, to form a TaC impregnated region, in contact with the TaC coating layer inside the carbon base material A method for producing a high hardness TaC coated carbon material is provided.
본 발명의 일 실시예에 따르면, 상기 탄소 모재를 준비하는 단계는, 아래의 [수학식 2]에 따라, 상기 고경도 TaC 코팅 탄소 재료의 필요 표면 스크래치 값에 따른 상기 평균 기공율을 가지는 탄소 모재를 준비하는 것인, 고경도 TaC 코팅 탄소 재료의 제조방법이 제공된다. According to an embodiment of the present invention, preparing the carbon base material may include preparing a carbon base material having the average porosity according to the required surface scratch value of the high hardness TaC coated carbon material according to Equation 2 below. There is provided a method of preparing a high hardness TaC coated carbon material.
[수학식 2][Equation 2]
탄소 모재의 평균 기공율 (부피%) = (표면 스크래치 값 (N) + 19.5) × (0.65 내지 0.7)Average porosity (volume%) of the carbon base material = (surface scratch value (N) + 19.5) × (0.65 to 0.7)
본 발명의 일 실시예에 따르면, 상기 TaC 코팅층을 형성하는 단계는, CVD법을 이용하여 2000 ℃ 내지 2500 ℃ 에서 수행되는 것인, 고경도 TaC 코팅 탄소 재료의 제조방법이 제공된다.According to an embodiment of the present invention, the step of forming the TaC coating layer is performed at 2000 ° C to 2500 ° C by using a CVD method, a method of manufacturing a high hardness TaC coated carbon material is provided.
본 발명의 일 실시예에 따르면, 상기 TaC 코팅층을 형성하는 단계는, 복수 회 수행되어, 복수 개의 TaC 코팅층을 형성하는 것인, 고경도 TaC 코팅 탄소 재료의 제조방법이 제공된다.According to one embodiment of the present invention, the step of forming the TaC coating layer is performed a plurality of times, to form a plurality of TaC coating layer, there is provided a method for producing a high hardness TaC coated carbon material.
본 발명의 일 실시예에 따르면, 우수한 부착력을 갖는 높은 경도의 TaC 코팅층이 포함된 탄소 재료를 제공할 수 있다. 이로써 본 발명의 일 실시예에 따른 탄소 재료는, 반도체 생산 장비를 포함한 우수한 부착력, 높은 경도 등이 구비된 코팅 재료가 필요한 각종 산업 장비에 다양하게 활용할 수 있는 효과가 있다. According to one embodiment of the present invention, it is possible to provide a carbon material including a high hardness TaC coating layer having excellent adhesion. As a result, the carbon material according to the embodiment of the present invention has an effect that can be variously applied to various industrial equipment requiring a coating material having excellent adhesion, high hardness, and the like including semiconductor production equipment.
도 1은 본 발명의 일 실시예에서 제공하는, 기공을 포함하는 탄소 모재의 단면 개념도이다. 1 is a cross-sectional conceptual view of a carbon base material including pores provided in an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른, 탄소 모재 및 탄소 모재 상에 형성된 TaC 코팅층을 포함하는, 고경도 TaC 코팅 탄소 재료의 단면 개념도이다. 2 is a cross-sectional conceptual view of a high hardness TaC coated carbon material, including a carbon matrix and a TaC coating layer formed on the carbon substrate, according to one embodiment of the invention.
도 3은 본 발명의 다른 일 실시예에 따른, 탄소 모재 및 탄소 모재 상에 여러 층으로 형성된 복수 개의 TaC 코팅층을 포함하는 고경도 TaC 코팅 탄소 재료의 단면 개념도이다.3 is a cross-sectional conceptual view of a high hardness TaC coated carbon material including a carbon matrix and a plurality of TaC coating layers formed of various layers on the carbon substrate according to another embodiment of the present invention.
도 4a는 하기의 실시예 1에 따라 제조된, 고경도 TaC 코팅 탄소 재료의, TaC 코팅층 표면의 주사 전자 현미경(SEM) 분석 사진이고, 도 4b는 이를 이미지화한 도면이다.FIG. 4A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 1 below, and FIG. 4B is an image thereof.
도 5a는 하기의 실시예 2에 따라 제조된, 고경도 TaC 코팅 탄소 재료의, TaC 코팅층 표면의 주사 전자 현미경(SEM) 분석 사진이고, 도 4b는 이를 이미지화한 도면이다.FIG. 5A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 2 below, and FIG. 4B is an image thereof.
도 6a는 실시예 3에 따라 제조된, 고경도 TaC 코팅 탄소 재료의, TaC 코팅층 표면의 주사 전자 현미경(SEM) 분석 사진이고, 도 6b는 이를 이미지화한 도면이다.FIG. 6A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material, prepared according to Example 3, and FIG. 6B is an image thereof.
이하 첨부된 도면을 참조하여 본 발명의 고경도 TaC 코팅 탄소 재료 및 그 제조방법의 실시예들을 상세히 설명한다. 아래 설명하는 실시예 및 도면들에는 다양한 변경이 가해질 수 있다. 또한, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. Hereinafter, embodiments of the high hardness TaC-coated carbon material and a method of manufacturing the present invention will be described in detail with reference to the accompanying drawings. Various changes may be made to the embodiments and drawings described below. In addition, irrespective of the reference numerals, the same components will be denoted by the same reference numerals and redundant description thereof will be omitted. The examples described below are not intended to be limited to the embodiments and should be understood to include all modifications, equivalents, and substitutes for them. In describing the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.In addition, terms used in the present specification are terms used to properly express preferred embodiments of the present invention, which may vary according to user's or operator's intention or customs in the field to which the present invention belongs. Therefore, the definitions of the terms should be made based on the contents throughout the specification. Like reference numerals in the drawings denote like elements.
명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이 는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 설명이 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, except to exclude other components unless specifically stated otherwise.
일반적으로 탄소 재료 위에 TaC 코팅층을 형성하는 공정에서 문제되는 것은, 코팅된 TaC층의 경도 및 모재로 쓰인 탄소 재료와의 부착력이다. 최근 다방면에 있어, 모재의 다양한 물리적 성질에 따라 변화하는 TaC 코팅층의 경도 및 부착력을 향상시키기 위한 연구가 행해져 왔다. 본 발명은 상기 연구의 연장선상에서 탄소 재료의 기공률에 착안하여, TaC 코팅에 적합한 탄소 재료를 선정하는 것을 그 목적으로 한다.Generally, a problem in the process of forming a TaC coating layer on a carbon material is a hardness of the coated TaC layer and adhesion to the carbon material used as the base material. In recent years, research has been conducted to improve the hardness and adhesion of the TaC coating layer that changes according to various physical properties of the base material. An object of the present invention is to select a carbon material suitable for TaC coating by focusing on the porosity of the carbon material in the extension of the above study.
본 발명의 일 실시예에 따르면, 탄소 모재; 및 상기 탄소 모재 상에 형성된 TaC 코팅층; 을 포함하고, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역 중, TaC 의 함량이 15 부피% 내지 20 부피% 인 것인, 고경도 TaC 코팅 탄소 재료가 제공된다.According to an embodiment of the present invention, a carbon base material; And a TaC coating layer formed on the carbon base material. And a TaC content of 15% by volume to 20% by volume in an area from the surface of the carbon base material to a depth of 80 μm to 150 μm is provided.
상기 탄소 모재는, 그라파이트를 포함하여 탄소를 주성분으로 한 모재는 무엇이든 포함될 수 있다. 상기 TaC 코팅층은 탄탈륨(Ta) 및 탄소(C)를 주성분으로 함유하는 어떠한 재료도 포함될 수 있다. 도 1에는, 본 발명의 상기 일 실시예에서 제공하는, 기공을 포함하는 탄소 모재(110)의 단면 개념도가 도시되어 있다. 상기 탄소 모재 상에 TaC 코팅층이 형성되면, 상기 기공으로 TaC 성분이 함침되어 함침 영역이 생성될 수 있다. The carbon base material may include any base material containing carbon as a main component, including graphite. The TaC coating layer may include any material containing tantalum (Ta) and carbon (C) as main components. 1, there is shown a cross-sectional conceptual view of a carbon base material 110 including pores provided in the embodiment of the present invention. When the TaC coating layer is formed on the carbon base material, the TaC component may be impregnated into the pores to generate an impregnation region.
도 2에는, 본 발명의 일 실시예에 따른, TaC 성분이 함침 영역(130)을 포함하는 탄소 모재(110) 및 탄소 모재 상에 형성된 TaC 코팅층(120)을 포함하는, 고경도 TaC 코팅 탄소 재료의 단면 개념도가 도시되어 있다. 상기 함침 영역(130)은 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역(131)을 포함할 수 있다. 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역은, 상기 TaC 코팅층의 TaC 성분이 상기 탄소 모재의 기공으로 함입되어 형성된 영역의, 실질적으로 코팅층의 표면 경도 및 모재 부착력에 영향을 미치는 영역일 수 있다. 2, a high hardness TaC coated carbon material, in which the TaC component comprises a carbon matrix 110 comprising an impregnated region 130 and a TaC coating layer 120 formed on the carbon matrix, according to one embodiment of the invention. A cross-sectional conceptual diagram of is shown. The impregnation region 130 may include a region 131 having a depth of 80 μm to 150 μm from the surface of the carbon base material. The area from the surface of the carbon base material to a depth of 80 μm to 150 μm may be an area that substantially affects the surface hardness and the base material adhesion of the coating layer of the area formed by incorporating TaC components of the TaC coating layer into the pores of the carbon base material. Can be.
또한, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의, TaC의 함량은 15 부피% 내지 20 부피% 인 것일 수 있다. 상기 영역의 TaC 함량이 15 부피% 내지 20 부피% 인 경우, 본 발명의 일 측면에서 의도하는 효과인, 부착력 및 표면 경도가 우수한 고경도 TaC 코팅 탄소 재료의 구현이 가능할 수 있다. 상기 영역의, TaC의 함량이 15 부피% 미만의 경우에는, TaC 코팅층과의 부착력이 약해지고, 표면 경도가 부족해지는 문제점이 있을 수 있고, TaC 함량이 20 부피% 초과의 경우에는 그라파이트의 기공이 과하게 형성되어 표면조도를 증가시키거나, 코팅층의 표면이 거칠게 형성되는 문제점이 있을 수 있다. 또한, 상기 영역의, TaC의 함량은 16.5 부피% 내지 20 부피% 인 것이 바람직하다. 또한, 상기 영역의, TaC의 함량은 18 부피% 내지 20 부피% 인 것이 보다 바람직하다. 상기 영역의, TaC의 함량이 증가한다는 것은, 탄소 모재상의 기공률이 높다는 것을 의미하고, 실질적으로 기공률이 높은 탄소 모재상에 형성된 TaC 코팅층이 형성된 재료일 수록, 더욱 우수한 부착력 및 표면경도를 가지게 된다.In addition, the TaC content of the region from the surface of the carbon base material to a depth of 80 ㎛ to 150 ㎛ may be 15 to 20% by volume. When the TaC content of the region is 15% by volume to 20% by volume, it is possible to implement a high hardness TaC coated carbon material having excellent adhesion and surface hardness, which is an effect intended in one aspect of the present invention. In the region, when the TaC content is less than 15% by volume, the adhesion with the TaC coating layer may be weak, and the surface hardness may be insufficient, and when the TaC content is more than 20% by volume, the pores of the graphite are excessive. Is formed to increase the surface roughness, there may be a problem that the surface of the coating layer is formed rough. In addition, the content of TaC in the region is preferably 16.5% by volume to 20% by volume. Further, in the above region, the TaC content is more preferably 18% by volume to 20% by volume. Increasing the TaC content in the region means that the porosity on the carbon base material is high, and the material having the TaC coating layer formed on the carbon base material having a substantially high porosity has better adhesion and surface hardness.
본 발명의 일 예로, 상기 탄소 모재 표면으로부터 깊이 40 ㎛ 내지 75 ㎛ 까지의 영역의 TaC 의 함량이 16 부피% 내지 20 부피% 이고, 상기 탄소 모재 표면으로부터 깊이 75 ㎛ 내지 150 ㎛ 까지의 영역의 TaC 의 함량이 13 부피% 내지 18 부피% 인 것일 수 있다. In one embodiment of the present invention, the TaC content of the region from 40 to 75 μm deep from the surface of the carbon base material is 16% to 20% by volume, and the TaC of the region from 75 μm to 150 μm deep from the carbon base material surface. The content may be 13 to 18% by volume.
도 2에 도시된 바와 같이, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역(131)은, TaC 함량이 상이한, 상기 탄소 모재 표면으로부터 깊이 40 ㎛ 내지 75 ㎛ 까지의 제 1 영역(132)과, 깊이 75 ㎛ 내지 150 ㎛ 까지의 제 2 영역(133)의 두 영역으로 구분할 수 있다. As shown in FIG. 2, the region 131 from the surface of the carbon base material to a depth of 80 μm to 150 μm has a first region 132 from the surface of the carbon base material to a depth of 40 μm to 75 μm having a different TaC content. ) And the second region 133 having a depth of 75 μm to 150 μm.
상기 제 1 영역은, 상기 TaC 코팅층과 인접한 층으로서, TaC 성분이 모재의 기공으로 충분히 함침 될 수 있는 영역에 해당한다. 따라서, 탄소 모재에서 가장 높은 함침율이 발현되는 영역이다. 상기 탄소 모재 상에 형성된 TaC 코팅층의 부착력 및 표면경도는, 공정 온도 및 Ta/C 비율 등의 공정 조건에 따라 달라질 수 있으나, TaC 코팅층 형성 결과 생성된 상기 제 1 영역의 상기 TaC 함량이 16 부피% 내지 20 부피% 일 때, 우수한 표면 경도를 가질 수 있다. 상기 제 2 영역은, 상기 제 1 영역보다 모재 표면에서 더 깊은, 상기 제 1 영역과 인접한 층으로서, 상기 코팅층의 TaC 성분이 상대적으로 덜 함침되는 영역에 해당한다. 그러나, 이 영역의 TaC 함량 또한, 탄소 모재 상에 형성된 TaC 코팅층의 부착력 및 표면 경도에 영향을 미칠 수 있다. 상기 제 2 영역의 상기 TaC 함량이 13 부피% 내지 18 부피% 일 때, 상기 탄소 모재 상에 형성된 TaC 코팅층은, 우수한 부착력 및 표면 경도를 가질 수 있다. 상기 제1 영역과 제2 영역의 TaC 함량을 점진적으로 변화하는 것일 수 있다.The first region is a layer adjacent to the TaC coating layer, and corresponds to a region in which the TaC component can be sufficiently impregnated into the pores of the base material. Therefore, it is the area | region where the highest impregnation rate is expressed in a carbon base material. The adhesion and surface hardness of the TaC coating layer formed on the carbon base material may vary depending on process conditions such as process temperature and Ta / C ratio, but the TaC content of the first region generated as a result of the TaC coating layer is 16% by volume. When it is from 20% by volume, it may have a good surface hardness. The second region is a layer adjacent to the first region that is deeper on the substrate surface than the first region, and corresponds to a region where the TaC component of the coating layer is relatively less impregnated. However, TaC content in this region may also affect the adhesion and surface hardness of the TaC coating layer formed on the carbon matrix. When the TaC content of the second region is 13% by volume to 18% by volume, the TaC coating layer formed on the carbon base material may have excellent adhesion and surface hardness. The TaC content of the first region and the second region may be gradually changed.
본 발명의 일 예로, 상기 TaC 코팅층의 표면 스크래치 값은 3.5 N 이상일 수 있다. 상기 TaC 코팅층의 우수한 부착력을 확인하는 방법으로서, 4- Point Bening시험, Peel-Off 시험, Scotch tape 시험, Direct Full Off 시험을 비롯한 다양한 시험방법들이 이용되고 있다. 그 중, 스크래치 시험(Scrach Test)은, 시편 준비가 쉽고 측정이 간편하여, 산업계에서 흔히 이용되고 있는, 박막 코팅층의 부착력을 확인하는 시험방법이다. 상기 스크래치 시험은 끝이 둥근 탐사침(stylus)을 이용하여 박막의 표면에 하중을 증가시키면서 기판을 이동시켜 박막이 벗겨질 때의 임계 하중 값을 가지고 접착력을 계산한다. 따라서, 스크래치 값이 높을수록 부착력의 세기가 강함을 의미한다. 본 발명의 일 예로 제공되는 고경도 TaC 코팅 탄소 재료의, 상기 TaC 코팅층의 표면 스크래치 값은 3.5 N 이상일 수 있다. 상기 TaC 코팅층의 표면 스크래치 값이 3.5 N 미만일 경우, 모재 표면과의 부착력이 부족해져 산업에 적용되기 어려운 문제점이 생길 수 있다. 또한, 상기 TaC 코팅층의 표면 스크래치 값은 6.5 N 이상인 것이 바람직하다. 또한, 상기 TaC 코팅층의 표면 스크래치 값은 8.0 N 이상인 것이 더욱 바람직하다. 상기 표면 스크래치 값은, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량이 증가할수록 평균적으로 증가하는 경향을 보인다. 상기 TaC의 함량은 탄소 모재상의 기공으로 상기 TaC 성분이 함침되어 결정되는 것이므로, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 평균 기공율이 증가할수록, 상기 TaC 코팅층과 상기 탄소 모재간의 부착력이 증가함을 의미한다. As an example of the present invention, the surface scratch value of the TaC coating layer may be 3.5 N or more. As a method of confirming the excellent adhesion of the TaC coating layer, various test methods including 4-point Bening test, Peel-Off test, Scotch tape test, Direct Full Off test are used. Among them, the scratch test (Scrach Test) is a test method for confirming the adhesion of the thin film coating layer, which is commonly used in the industry because the specimen preparation is easy and easy to measure. The scratch test calculates the adhesive force with a critical load value when the thin film is peeled off by moving the substrate while increasing the load on the surface of the thin film using a rounded stylus. Therefore, the higher the scratch value, the stronger the adhesion strength. In the high hardness TaC coated carbon material provided as an example of the present invention, the surface scratch value of the TaC coating layer may be 3.5 N or more. When the surface scratch value of the TaC coating layer is less than 3.5 N, the adhesion strength with the surface of the base material may be insufficient, which may cause a problem that is difficult to apply to the industry. In addition, the surface scratch value of the TaC coating layer is preferably 6.5 N or more. In addition, the surface scratch value of the TaC coating layer is more preferably 8.0 N or more. The surface scratch value tends to increase on average as the TaC content in the region from 80 to 150 μm deep from the surface of the carbon base material increases. Since the TaC content is determined by impregnating the TaC component into pores on the carbon base material, the adhesion between the TaC coating layer and the carbon base material increases as the average porosity from the surface of the carbon base material to a depth of 80 μm to 150 μm increases. It means.
본 발명의 일 예로, 상기 TaC 코팅층의 표면 스크래치 값은 아래의 [수학식 1]에 따른 것일 수 있다.As an example of the present invention, the surface scratch value of the TaC coating layer may be according to Equation 1 below.
[수학식 1][Equation 1]
표면 스크래치 값 (N) = 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량 (부피%) × (1.4 내지 1.6) - 19.5 Surface scratch value (N) = content (vol%) of TaC in the region from 80 to 150 µm deep from the surface of the carbon base material × (1.4 to 1.6)-19.5
상기 탄소 모재 상에 형성된 상기 TaC 코팅층의 부착력을 결정하는 요인은 다양하게 존재할 수 있고, 상기와 같이 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 TaC 함량, 즉 해당 부분으로의 TaC 성분의 함침량은 상기 TaC 코팅층의 탄소 모재에 대한 부착력에 큰 영향을 미치게 된다. 본 발명의 일 예에 따른 상기 TaC 코팅층의 표면 스크래치 값 (N) 은, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의, TaC의 함량 (부피%)을 변수로 하는 일차함수의 수식을 따르게 된다. 그에 따라 결정된 상기 TaC 코팅층의 표면 스크래치 값(N)은, 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량 (부피%) × (1.4 내지 1.6) - 19.5 의 값을 나타낼 수 있다.There may be various factors that determine the adhesion of the TaC coating layer formed on the carbon base material, as described above, the TaC content from the surface of the carbon base material to a depth of 80 ㎛ to 150 ㎛, that is, the impregnation amount of the TaC component to the portion Silver has a great influence on the adhesion of the TaC coating layer to the carbon base material. The surface scratch value (N) of the TaC coating layer according to an embodiment of the present invention is a formula of a primary function whose TaC content (vol%) is a variable in a region from 80 to 150 μm deep from the surface of the carbon base material. Will follow. The surface scratch value (N) of the TaC coating layer thus determined may represent a value (volume%) × (1.4 to 1.6)-19.5 of TaC in the region from 80 to 150 μm deep from the surface of the carbon base material. have.
본 발명의 다른 일 실시예에 따르면, 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비하는 단계; 및 상기 탄소 모재의 표면에 TaC 코팅층을 형성하는 단계;를 포함하는, 고경도 TaC 코팅 탄소 재료의 제조방법을 제공한다. 본 발명의 일 측면에서는, 부착력이 좋은 고경도 TaC 코팅 탄소 재료를 제조하기 위해, 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비하는 단계를 포함할 수 있다. 상기 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 준비함으로써, 본 발명의 일 측면에서 의도하는 효과인, 부착력 및 표면 경도가 우수한 고경도 TaC 코팅 탄소 재료의 구현이 가능할 수 있다. 또한, 상기 평균 기공율은 16.5 부피% 내지 20 부피% 인 것이 바람직하다. 또한, 상기 평균 기공율은 18 부피% 내지 20 부피% 인 것이 보다 바람직하다. 탄소 모재 내의 TaC 의 함량이 증가한다는 것은, 탄소 모재상의 기공률이 높다는 것을 의미하고, 실질적으로 기공률이 높은 탄소 모재 상에 TaC 코팅층이 형성된 재료일 수록, 더욱 우수한 부착력 및 표면경도를 가지게 된다. 상기 탄소 모재의 평균 기공율 측정 방법은 수은흡착법에 의해 기공률 분석기(Prosimeter)를 사용하여 측정할 수 있다.According to another embodiment of the present invention, preparing a carbon base material having an average porosity of 15% by volume to 20% by volume; And forming a TaC coating layer on the surface of the carbon base material. In one aspect of the present invention, to prepare a high hardness TaC coated carbon material having good adhesion, may include preparing a carbon base material having an average porosity of 15% to 20% by volume. By preparing a carbon base material having an average porosity of 15% by volume to 20% by volume, it is possible to implement a high hardness TaC coated carbon material having excellent adhesion and surface hardness, which is an effect intended in one aspect of the present invention. In addition, the average porosity is preferably 16.5% by volume to 20% by volume. In addition, the average porosity is more preferably 18 to 20% by volume. Increasing the TaC content in the carbon base material means that the porosity on the carbon base material is high, and the material having the TaC coating layer formed on the carbon base material having a substantially high porosity has better adhesion and surface hardness. The method of measuring the average porosity of the carbon base material can be measured by using a porosity analyzer (Prosimeter) by the mercury adsorption method.
본 발명의 일 예로, 상기 TaC 코팅층을 형성하는 단계는, 상기 탄소 모재의 기공에 TaC 성분이 함침되어, 상기 탄소 모재의 내부에 상기 TaC 코팅층과 접하는 함침 영역을 형성하는 것을 포함할 수 있다. 상기 탄소 모재 상의 상기 TaC 코팅층이 고온에서 형성될 경우, 상기 TaC 성분은 상기 탄소 모재의 표층 기공에서부터 안쪽의 기공에 이르기까지 함침되기 시작한다. 이로써, 상기 탄소 모재의 내부에 TaC 코팅층과 접하는 함침 영역이 형성될 수 있다. 상기 함침 영역의 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역은, 상기 TaC 코팅 탄소 재료의 부착력 및 표면경도를 결정하는데 있어 실질적으로 의미를 가지는 영역이 될 수 있다. In one embodiment of the present disclosure, the forming of the TaC coating layer may include forming an impregnation region in contact with the TaC coating layer in the carbon base material by impregnating TaC components into pores of the carbon base material. When the TaC coating layer on the carbon base material is formed at a high temperature, the TaC component starts to impregnate from the surface pores of the carbon base material to the inside pores. As a result, an impregnation region may be formed in the carbon base material and in contact with the TaC coating layer. An area from 80 to 150 μm deep from the surface of the carbon base material of the impregnated area may be an area that is substantially meaningful in determining adhesion and surface hardness of the TaC coated carbon material.
본 발명의 일 예로, 상기 탄소 모재를 준비하는 단계는, 아래의 [수학식 2]에 따라, 상기 고경도 TaC 코팅 탄소 재료의 필요 표면 스크래치 값에 따른 상기 평균 기공율을 가지는 탄소 모재를 준비하는 것일 수 있다.In one embodiment of the present invention, the preparing of the carbon base material is to prepare a carbon base material having the average porosity according to the required surface scratch value of the high hardness TaC coated carbon material according to Equation 2 below. Can be.
[수학식 2][Equation 2]
탄소 모재의 평균 기공율 (부피%) = (표면 스크래치 값 (N) + 19.5) × (0.65 내지 0.7)Average porosity (volume%) of the carbon base material = (surface scratch value (N) + 19.5) × (0.65 to 0.7)
즉, 상기 [수학식 2]에 기초하여, 모재의 기공율을 조절하여 TaC 코팅층 표면의 물성을 제어할 수 있는 것이다.That is, based on [Equation 2] , it is possible to control the physical properties of the surface of the TaC coating layer by adjusting the porosity of the base material.
상기 탄소 모재 상에 형성되는 상기 TaC 코팅층의 부착력을 결정하는 요인은 다양하게 존재할 수 있고, 상기와 같이 탄소 모재의 평균 기공율은 상기 TaC 코팅층의 부착력에 큰 영향을 미치게 된다. 본 발명의 일 예에 따른 상기 탄소 모재의 평균 기공율은, 후술할 실시예와 같이, 상기 TaC 코팅층의 표면 스크래치 값을 변수로 하는 일차함수의 수식을 따르게 된다. 그에 따라 결정된 상기 탄소 모재의 평균 기공율은, (표면 스크래치 값 (N) + 19.5) × (0.65 내지 0.7) 의 값을 나타낼 수 있다. 이로써 본 발명의 일 측면에 따르면, 산업 현장에서 재료의 쓰임새에 따라 필요한 TaC 코팅층의 부착력을 계산하고, 표면 스크래치 값으로 환산하여, 제조공정 단계에서 그에 부합되는 탄소 모재를 사전에 준비할 수 있는 효과가 있다.There may be various factors that determine the adhesion of the TaC coating layer formed on the carbon base material, as described above, the average porosity of the carbon base material has a great influence on the adhesion of the TaC coating layer. The average porosity of the carbon base material according to an embodiment of the present invention, as in the following examples, will follow the formula of the first function having a surface scratch value of the TaC coating layer as a variable. The average porosity of the carbon base material thus determined may represent a value of (surface scratch value (N) + 19.5) x (0.65 to 0.7). Accordingly, according to one aspect of the present invention, the adhesion force of the required TaC coating layer in accordance with the use of the material in the industrial field, the surface scratch value converted into, the effect of preparing the carbon base material in advance in the manufacturing process step in advance There is.
본 발명의 일 예로, 상기 TaC 코팅층을 형성하는 단계는, CVD법을 이용하여 2000 ℃ 내지 2500 ℃ 에서 수행되는 것일 수 있다. 상기 탄소 모재의 표면에 TaC 코팅층을 형성하는 단계는, CVD(Chemical Vapor Deposition) 기법, 스퍼터링(Sputtering) 기법, 컨버젼(CVR) 기법, 용사 기법 또는 물리 증착(PVD) 기법에 의하여 수행되는 것일 수 있다. 특히, CVD 기법은 큰 기판 영역에도 빠른 속도로 얇은 두께의 층을 형성하여, 코팅층을 증착 할 수 있는 장점이 있다. As an example of the present invention, the forming of the TaC coating layer may be performed at 2000 ° C. to 2500 ° C. using a CVD method. The TaC coating layer may be formed on the surface of the carbon base material by chemical vapor deposition (CVD), sputtering, conversion (CVR), thermal spraying, or physical vapor deposition (PVD). . In particular, the CVD technique has the advantage of forming a coating layer by forming a thin layer at a high speed even in a large substrate area.
본 발명의 일 예로, 상기 TaC 코팅층을 형성하는 단계는, 2000 ℃ 내지 2500 ℃ 에서 수행되는 것일 수 있다. 상기 TaC 코팅층을 형성하는 단계에서, 공정 온도가 높을수록 TaC 코팅층의 표면 결정립이 커져, TaC 코팅층의 표면 경도, 내마모성 등이 향상될 수 있다. 2000℃ 미만의 경우에는 TaC 코팅층의 증착률이 감소하거나, 결정상이 불안정해지는 문제점이 있을 수 있고, 2500℃ 를 초과하는 경우에는 설비의 비용이 증가하고, 온도가 너무 높아져 TaC 성분이 상기 탄소 모재의 기공 안으로 함침되기 어려워 부착력이 감소하는 문제점이 있을 수 있다. 상기 온도는, 바람직하게는 2000 ℃ 내지 2300 ℃ 에서 수행되는 것일 수 있다.As an example of the present invention, the forming of the TaC coating layer may be performed at 2000 ° C. to 2500 ° C. In the step of forming the TaC coating layer, the higher the process temperature, the larger the surface crystal grains of the TaC coating layer, the surface hardness, wear resistance and the like of the TaC coating layer can be improved. If the temperature is lower than 2000 ° C., the deposition rate of the TaC coating layer may be reduced, or the crystal phase may become unstable. If the temperature is higher than 2500 ° C., the cost of the equipment is increased, and the temperature is too high. It may be difficult to impregnate into the pores, thereby reducing the adhesion. The temperature may be preferably performed at 2000 ° C to 2300 ° C.
본 발명의 일 예로, 상기 TaC 코팅층을 형성하는 단계는, 복수 회 수행되어, 복수 개의 TaC 코팅층을 형성하는 것일 수 있다. 즉, 두 번 이상의 TaC 코팅층이 형성되는 과정을 포함할 수 있고, 이로써 두 층 이상의 TaC 코팅층이 형성되는 탄소 재료의 제조방법을 포함할 수 있다. 더 나아가, 추가적인 TaC 코팅층이 형성되어 3개, 4개와 같이 더 많은 수의 코팅층을 형성하는 과정이 수행되어, 더 많은 수의 코팅층이 형성되는 것을 포함할 수 있다.As an example of the present invention, the forming of the TaC coating layer may be performed a plurality of times to form a plurality of TaC coating layers. That is, it may include a process in which two or more TaC coating layers are formed, and thus, may include a method of manufacturing a carbon material in which two or more TaC coating layers are formed. Furthermore, the process of forming an additional TaC coating layer to form a greater number of coating layers, such as three, four, may be performed to form a greater number of coating layers.
도 3은 본 발명의 다른 일 실시예에 따른, 탄소 모재 및 탄소 모재 상에 여러 층으로 형성된 복수 개의 TaC 코팅층을 포함하는 고경도 TaC 코팅 탄소 재료의 단면 개념도이다. 상기의 복수 회 수행되어, 복수 개의 TaC 코팅층을 형성하는 것인 TaC 코팅층을 형성하는 단계를 이용하여, 최초의 코팅층을 형성하는 과정을 통해 형성된 제 1 코팅층(121) 위로, 제 2 코팅층(122) 및 제 3 코팅층(123)이 형성된 것을 확인할 수 있다. TaC 코팅층 결정립의 크기는, 형성된 코팅층의 표면 경도를 결정하는 또 하나의 요인이 된다. 상기 TaC 코팅층 상에 다시 TaC 코팅층이 적층되는 경우에는, 하나의 층만으로 TaC 코팅층을 형성한 경우에 비해, 재료 외측 표면을 형성하는 TaC 코팅층의 결정립의 크기가 증가할 수 있고, 이는 표면 경도가 향상되는 효과를 가져온다. 이로써, 본 발명의 일 측면에서 제공하는, 여러 번의 TaC 코팅층을 형성하는 과정을 포함하는 것인, 고경도 TaC 코팅 탄소 재료의 제조방법이 구현될 수 있다. 3 is a cross-sectional conceptual view of a high hardness TaC coated carbon material including a carbon matrix and a plurality of TaC coating layers formed of various layers on the carbon substrate according to another embodiment of the present invention. Using the step of forming a TaC coating layer is performed a plurality of times, to form a plurality of TaC coating layer, on the first coating layer 121 formed through the process of forming the first coating layer, the second coating layer 122 And it can be seen that the third coating layer 123 is formed. The size of the TaC coating layer grains is another factor for determining the surface hardness of the formed coating layer. When the TaC coating layer is laminated on the TaC coating layer again, the size of the grains of the TaC coating layer forming the outer surface of the material may be increased, as compared with the case where the TaC coating layer is formed with only one layer, which improves the surface hardness. Brings the effect. Thus, in one aspect of the present invention, including a process of forming a plurality of TaC coating layer, a method of manufacturing a high hardness TaC coated carbon material can be implemented.
이하, 하기 실시예 및 비교예를 참조하여 본 발명을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples and Comparative Examples. However, the technical spirit of the present invention is not limited or limited thereto.
실시예Example
CVD 기법에 의해, 본 발명의 일 측면에서 제공하는 TaC 코팅 탄소 재료를 제조하였다. 본 발명의 일 측면에 따른 평균 기공율을 갖는 열팽창 계수가 4.9 ~ 6.0×10-6/K, 직경 400mm 및 두께 10 mm 탄소 모재들에 대하여, 온도 2000 ℃, 압력 500 Torr, 및 T 전구체(TaCl5) 5000 sccm, C 전구체(CH4) 50 sccm의 CVD 처리조건에서 TaC 코팅층을 형성하였다. 이 때, 탄화탄탈 피복막의 C/Ta의 조성비는 1:1.05로 조정하였다. 각각의 탄소 모재들의 기공률은 수은흡착법으로 측정하였다.By CVD techniques, TaC coated carbon materials provided in one aspect of the present invention were prepared. The thermal expansion coefficient having an average porosity according to an aspect of the present invention is 4.9 ~ 6.0 × 10 -6 / K, 400mm diameter and 10mm thick carbon matrix, temperature 2000 ℃, pressure 500 Torr, and T precursor (TaCl 5 ) TaC coating layer was formed under CVD treatment conditions of 5000 sccm, C precursor (CH 4 ) 50 sccm. At this time, the composition ratio of C / Ta of the tantalum carbide coated film was adjusted to 1: 1.05. The porosity of each carbon matrix was measured by mercury adsorption.
상기의 조건에서 제조된 고경도 TaC 코팅 탄소 재료들 각각에, 스크래치 시험을 수행하였다. 하기의 표 1은 본 발명의 일 측면에서 제공하는 실시예에 따라 제공된 고경도 TaC 코팅 탄소 재료들의 탄소 모재의 평균 기공율에 따른 스크래치 시험 결과값이다.A scratch test was performed on each of the high hardness TaC coated carbon materials prepared under the above conditions. Table 1 below is a scratch test results according to the average porosity of the carbon base material of the high hardness TaC coated carbon materials provided according to the embodiment provided in one aspect of the present invention.
Figure PCTKR2017005359-appb-I000001
Figure PCTKR2017005359-appb-I000001
상기 실시예 1 내지 3은 본 발명의 일 측면에서 제공하는 탄소 모재인, 탄소 모재의 평균 기공율이 15 부피% 내지 20 부피% 에 해당하는 탄소 모재에 상기 공정 조건으로 TaC 코팅층을 형성한 것이다. 상기 실험 결과를 통해, 본 발명의 일 측면에서 제공하는 상기 탄소 모재의 평균 기공율이 15 부피% 내지 20 부피% 인 탄소 모재를 사용할 경우, 상기 스크래치 값은 3.5 N 이상의 값이 나타남을 확인할 수 있었다. 반면, 상기 탄소 모재의 평균 기공율이 15 부피% 미만인 탄소 모재를 사용할 경우, 상기 스크래치 값은 3.5 N 미만의 값이 나타남을 확인할 수 있었다. 이를 통해, 상기 탄소 모재의 평균 기공율이 15 부피% 미만인 탄소 모재의 경우, 본 발명의 일 측면에서 의도하는 높은 부착력을 구현하기 어려움을 확인할 수 있었다. In Examples 1 to 3, the TaC coating layer was formed on the carbon base material having an average porosity of 15% by volume to 20% by volume, which is the carbon base material provided by an aspect of the present invention. Through the above experimental results, when using the carbon base material having an average porosity of 15% by volume to 20% by volume of the carbon base material provided in an aspect of the present invention, it can be seen that the scratch value is 3.5 N or more. On the other hand, when the carbon base material having an average porosity of less than 15% by volume of the carbon base material, the scratch value was found to be less than 3.5 N. Through this, in the case of the carbon base material having an average porosity of less than 15% by volume of the carbon base material, it was confirmed that it is difficult to implement the high adhesive force intended in one aspect of the present invention.
상기 실험 결과를 통해, 탄소 모재의 평균 기공율이 높아질수록, 상기 탄소 모재 상의 TaC 코팅층의 부착력이 증가함을 알 수 있었다. 또한, 상기 실험 결과를 통해, 탄소 모재의 평균 기공율과 상기 탄소 모재 상의 TaC 코팅층의 스크래치 값 간에, 상기 탄소 모재 상의 TaC 코팅층의 표면 스크래치 값을 변수로 하는 일차함수의 상관관계가 성립함을 확인할 수 있었다. 상기 상관관계는 위에서 설명한 [수학식 2]와 같다.Through the experimental results, it was found that as the average porosity of the carbon base material increases, the adhesion of the TaC coating layer on the carbon base material increases. In addition, the results of the experiment, it can be confirmed that the correlation between the average porosity of the carbon base material and the scratch value of the TaC coating layer on the carbon base material, the correlation of the first function with the surface scratch value of the TaC coating layer on the carbon base material as a variable there was. The correlation is the same as Equation 2 described above.
또한, 상기의 실시예 1 내지 3에 대하여, TaC 코팅층 표면을 주사 전자 현미경(SEM)으로 촬영하였다. 본 실험에서는, 상기 실시예 1 내지 3의 TaC 코팅층 표면에 압력을 가한 결과 발생한 갈라짐에 따른 면적 및 개수를 관찰하였다.In addition, for the above Examples 1 to 3, the surface of the TaC coating layer was photographed with a scanning electron microscope (SEM). In this experiment, the area and the number due to cracking caused by applying pressure to the surface of the TaC coating layers of Examples 1 to 3 were observed.
도 4a는 하기의 실시예 1에 따라 제조된, 고경도 TaC 코팅 탄소 재료의, TaC 코팅층 표면의 주사 전자 현미경(SEM) 분석 사진이고, 도 4b는 이를 이미지화한 도면이다.FIG. 4A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 1 below, and FIG. 4B is an image thereof.
도 5a는 하기의 실시예 2에 따라 제조된, 고경도 TaC 코팅 탄소 재료의, TaC 코팅층 표면의 주사 전자 현미경(SEM) 분석 사진이고, 도 4b는 이를 이미지화한 도면이다.FIG. 5A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material prepared according to Example 2 below, and FIG. 4B is an image thereof.
도 6a는 실시예 3에 따라 제조된, 고경도 TaC 코팅 탄소 재료의, TaC 코팅층 표면의 주사 전자 현미경(SEM) 분석 사진이고, 도 6b는 이를 이미지화한 도면이다.FIG. 6A is a scanning electron microscope (SEM) analysis photograph of the surface of a TaC coating layer of a high hardness TaC coated carbon material, prepared according to Example 3, and FIG. 6B is an image thereof.
상기 탄소 모재의 평균 기공율 18.7 부피% 의 실시예 1의 경우, 갈라짐의 발생 후 각 조각의 평균 면적이 가장 큰 것이 확인되었고, 상기 탄소 모재의 평균 기공율 15.5 부피% 의 실시예 3의 경우, 갈라짐의 발생 후 각 조각의 평균 면적이 가장 작은 것이 확인되었다. 이로써, 상기 탄소 모재의 평균 기공율이 작을수록 더 많은 갈라짐이 발생함이 확인되었다. In Example 1 having an average porosity of 18.7% by volume of the carbon base material, it was confirmed that the average area of each piece after the occurrence of cracking was the largest, and in Example 3 having an average porosity of 15.5% by volume of the carbon base material, After generation, it was confirmed that the average area of each piece was the smallest. As a result, it was confirmed that the smaller the average porosity of the carbon base material, the more cracking occurred.

Claims (9)

  1. 탄소 모재; 및Carbon base material; And
    상기 탄소 모재 상에 형성된 TaC 코팅층;TaC coating layer formed on the carbon base material;
    을 포함하고, Including,
    상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC 의 함량이 15 부피% 내지 20 부피% 인 것인,Wherein the TaC content of the region from the surface of the carbon base material to a depth of 80 ㎛ to 150 ㎛ 15% by volume, 20% by volume,
    고경도 TaC 코팅 탄소 재료.High hardness TaC coated carbon material.
  2. 제1항에 있어서,The method of claim 1,
    상기 탄소 모재 표면으로부터 깊이 40 ㎛ 내지 75 ㎛ 까지의 영역의 TaC의 함량이 16 부피% 내지 20 부피% 인 것이고,The TaC content in the region from 40 to 75 μm deep from the surface of the carbon base material is 16% to 20% by volume,
    상기 탄소 모재 표면으로부터 깊이 75 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량이 13 부피% 내지 18 부피% 인 것인,Wherein the TaC content of the region from 75 to 150 ㎛ depth from the surface of the carbon base material is 13 to 18% by volume,
    고경도 TaC 코팅 탄소 재료.High hardness TaC coated carbon material.
  3. 제1항에 있어서,The method of claim 1,
    상기 TaC 코팅층의 표면 스크래치 값은 3.5 N 이상인 것인,The surface scratch value of the TaC coating layer is more than 3.5 N,
    고경도 TaC 코팅 탄소 재료.High hardness TaC coated carbon material.
  4. 제1항에 있어서,The method of claim 1,
    상기 TaC 코팅층의 표면 스크래치 값은 아래의 [수학식 1]에 따른 것인, The surface scratch value of the TaC coating layer is according to [Equation 1] below,
    고경도 TaC 코팅 탄소 재료.High hardness TaC coated carbon material.
    [수학식 1] [Equation 1]
    표면 스크래치 값 (N) = 상기 탄소 모재 표면으로부터 깊이 80 ㎛ 내지 150 ㎛ 까지의 영역의 TaC의 함량 (부피%) × (1.4 내지 1.6) - 19.5 Surface scratch value (N) = content (vol%) of TaC in the region from 80 to 150 µm deep from the surface of the carbon base material × (1.4 to 1.6)-19.5
  5. 평균 기공율이 15 부피% 내지 20 부피% 인, 탄소 모재를 준비하는 단계; 및Preparing a carbon base material having an average porosity of 15% by volume to 20% by volume; And
    상기 탄소 모재의 표면에 TaC 코팅층을 형성하는 단계;를 포함하는,Forming a TaC coating layer on the surface of the carbon base material; comprising,
    고경도 TaC 코팅 탄소 재료의 제조방법.Process for producing a high hardness TaC coated carbon material.
  6. 제5항에 있어서, The method of claim 5,
    상기 TaC 코팅층을 형성하는 단계는, Forming the TaC coating layer,
    상기 탄소 모재의 기공에 TaC가 함침되어, 상기 탄소 모재의 내부에, 상기 TaC 코팅층과 접하는, TaC 함침 영역을 형성하는 것인,TaC is impregnated into the pores of the carbon base material, to form a TaC impregnated region in contact with the TaC coating layer inside the carbon base material,
    고경도 TaC 코팅 탄소 재료의 제조방법.Process for producing a high hardness TaC coated carbon material.
  7. 제5항에 있어서,The method of claim 5,
    상기 탄소 모재를 준비하는 단계는,Preparing the carbon base material,
    아래의 [수학식 2]에 따라, 상기 고경도 TaC 코팅 탄소 재료의 필요 표면 스크래치 값에 따른 기공율을 가지는 탄소 모재를 준비하는 것인,According to Equation 2 below, to prepare a carbon base material having a porosity according to the required surface scratch value of the high hardness TaC coated carbon material,
    고경도 TaC 코팅 탄소 재료의 제조방법. Process for producing a high hardness TaC coated carbon material.
    [수학식 2][Equation 2]
    탄소 모재의 평균 기공율 (부피%) = (표면 스크래치 값 (N) + 19.5) × (0.65 내지 0.7)Average porosity (volume%) of the carbon base material = (surface scratch value (N) + 19.5) × (0.65 to 0.7)
  8. 제5항에 있어서,The method of claim 5,
    상기 TaC 코팅층을 형성하는 단계는, CVD법을 이용하여 2000 ℃ 내지 2500 ℃ 에서 수행되는 것인, Forming the TaC coating layer is to be carried out at 2000 ℃ to 2500 ℃ using a CVD method,
    고경도 TaC 코팅 탄소 재료의 제조방법.Process for producing a high hardness TaC coated carbon material.
  9. 제5항에 있어서,The method of claim 5,
    상기 TaC 코팅층을 형성하는 단계는, 복수 회 수행되어, 복수 개의 TaC 코팅층을 형성하는 것인, 고경도 TaC 코팅 탄소 재료의 제조방법.Forming the TaC coating layer is performed a plurality of times, to form a plurality of TaC coating layer, the method of producing a high hardness TaC coated carbon material.
PCT/KR2017/005359 2016-05-25 2017-05-24 High-hardness carbon material coated with tac and method for manufacturing same WO2017204535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0064368 2016-05-25
KR1020160064368A KR20170133191A (en) 2016-05-25 2016-05-25 HIGH HARDNESS TaC COATED CARBON MATERIAL AND MANUFACTURING METHOD FOR SAME

Publications (1)

Publication Number Publication Date
WO2017204535A1 true WO2017204535A1 (en) 2017-11-30

Family

ID=60411780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005359 WO2017204535A1 (en) 2016-05-25 2017-05-24 High-hardness carbon material coated with tac and method for manufacturing same

Country Status (3)

Country Link
KR (1) KR20170133191A (en)
TW (1) TW201815673A (en)
WO (1) WO2017204535A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617175A4 (en) * 2017-04-28 2020-04-22 Tokai Carbon Korea Co., Ltd Carbon material having coating layer comprising tac, and method for producing said carbon material
EP3617174A4 (en) * 2017-04-28 2020-04-22 Tokai Carbon Korea Co., Ltd Carbon material having coating layer comprising tac, and method for producing said carbon material
US20220170150A1 (en) * 2020-12-01 2022-06-02 Tokai Carbon Korea Co., Ltd. Tantalum carbide-coated carbon material and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073788A (en) * 2017-12-19 2019-06-27 주식회사 티씨케이 Manufacturing method for carbonized tantalum coating layer using chemical vapor deposition and property of carbonized tantalum using the same
KR102136197B1 (en) 2018-12-17 2020-07-22 주식회사 티씨케이 Carbonated tantalum coating material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002405B1 (en) * 1988-12-26 1992-03-23 이비덴 가부시끼가이샤 Molding graphite die for plastic or ceramic articles
KR20070020225A (en) * 2005-02-14 2007-02-20 토요 탄소 가부시키가이샤 Tantalum carbide-covered carbon material and process for producing the same
JP2008019163A (en) * 2007-07-27 2008-01-31 Toyo Tanso Kk Carbon composite material for reducing atmosphere furnace and its manufacturing method
KR20120104260A (en) * 2009-12-28 2012-09-20 도요탄소 가부시키가이샤 Tantalum carbide-coated carbon material and manufacturing method for same
KR101616202B1 (en) * 2014-11-20 2016-04-28 한밭대학교 산학협력단 Joint structure body for super high-temperature components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920002405B1 (en) * 1988-12-26 1992-03-23 이비덴 가부시끼가이샤 Molding graphite die for plastic or ceramic articles
KR20070020225A (en) * 2005-02-14 2007-02-20 토요 탄소 가부시키가이샤 Tantalum carbide-covered carbon material and process for producing the same
JP2008019163A (en) * 2007-07-27 2008-01-31 Toyo Tanso Kk Carbon composite material for reducing atmosphere furnace and its manufacturing method
KR20120104260A (en) * 2009-12-28 2012-09-20 도요탄소 가부시키가이샤 Tantalum carbide-coated carbon material and manufacturing method for same
KR101616202B1 (en) * 2014-11-20 2016-04-28 한밭대학교 산학협력단 Joint structure body for super high-temperature components

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3617175A4 (en) * 2017-04-28 2020-04-22 Tokai Carbon Korea Co., Ltd Carbon material having coating layer comprising tac, and method for producing said carbon material
EP3617174A4 (en) * 2017-04-28 2020-04-22 Tokai Carbon Korea Co., Ltd Carbon material having coating layer comprising tac, and method for producing said carbon material
US10883170B2 (en) 2017-04-28 2021-01-05 Tokai Carbon Korea Co., Ltd Carbon material having coating layer comprising tac, and method for producing said carbon material
US11091833B2 (en) 2017-04-28 2021-08-17 Tokai Carbon Korea Co., Ltd Carbon material having coating layer comprising TaC, and method for producing said carbon material
US20220170150A1 (en) * 2020-12-01 2022-06-02 Tokai Carbon Korea Co., Ltd. Tantalum carbide-coated carbon material and method for manufacturing same
CN114572975A (en) * 2020-12-01 2022-06-03 韩国东海炭素株式会社 Tantalum carbide coating carbon material and preparation method thereof

Also Published As

Publication number Publication date
KR20170133191A (en) 2017-12-05
TW201815673A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2017204535A1 (en) High-hardness carbon material coated with tac and method for manufacturing same
Yan et al. Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate
CA1175308A (en) Surface treatment for silicon carbide
US5254397A (en) Carbon fiber-reinforced composite material having a gradient carbide coating
WO2013062246A1 (en) Gas barrier film including graphene layer, flexible substrate including same, and manufacturing method thereof
WO2018016732A1 (en) Hard coating film for cutting tool
KR20140018911A (en) Gas barrier film
WO2013015600A2 (en) Anti-fingerprint coating composition and film using the same
EP2232693A2 (en) Electrostatic chuck and method of forming it
WO2017204534A1 (en) Carbon material coated with tantalum carbide
Young et al. Low pressure plasma spray coatings
Ji et al. Hydrophobic fluorinated carbon coatings on silicate glaze and aluminum
CN101743267B (en) Multiple-layer film and method for manufacturing same
WO2016108421A1 (en) Cemented carbide with improved toughness
CN109400168A (en) It is a kind of comprising the SiC fiber and its preparation method and application of the SiBCN coating and SiC coating that are alternatively formed
WO2018117557A1 (en) Part for manufacturing semiconductor, part for manufacturing semiconductor containing composite coating layer, and method for manufacturing same
US7488536B2 (en) Coating for a mechanical part, comprising at least one hydrogenated amorphous carbon, and method of depositing one such coating
WO2018199680A1 (en) Carbon material having coating layer comprising tac, and method for producing said carbon material
WO2018199676A1 (en) Carbon material having coating layer comprising tac, and method for producing said carbon material
CN112435776A (en) Flexible conductive film and preparation method thereof
WO2012067300A1 (en) Film for cutting tool
WO2017204536A1 (en) Material with multiple coatings of tantalum carbide and method for manufacturing same
CN114959575B (en) Insulating wear-resistant protective coating for film sensor, preparation method and application thereof
WO2023090620A1 (en) Cutting tool having hard coating with excellent wear resistance and toughness
WO2013129856A1 (en) Food container having improved oxygen barrier properties and manufacturing method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803054

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17803054

Country of ref document: EP

Kind code of ref document: A1