WO2017204529A1 - Magnetoplasmonic film, humidity sensor including same, and method for manufacturing same film and sensor - Google Patents

Magnetoplasmonic film, humidity sensor including same, and method for manufacturing same film and sensor Download PDF

Info

Publication number
WO2017204529A1
WO2017204529A1 PCT/KR2017/005345 KR2017005345W WO2017204529A1 WO 2017204529 A1 WO2017204529 A1 WO 2017204529A1 KR 2017005345 W KR2017005345 W KR 2017005345W WO 2017204529 A1 WO2017204529 A1 WO 2017204529A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
membrane
magnetoplasmonic
core
nanoparticles
Prior art date
Application number
PCT/KR2017/005345
Other languages
French (fr)
Korean (ko)
Inventor
이재범
찬밴탄
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2017204529A1 publication Critical patent/WO2017204529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials

Definitions

  • the present invention relates to a magnetoplasmonic film, a humidity sensor including the same, and a method of manufacturing the same, and more particularly, a magneto that is sensitive to a change in the surrounding dielectric environment and that the change in color according to the change in the dielectric environment is visually observed.
  • the present invention relates to a plasmonic film, a humidity sensor including the same, and a manufacturing method thereof.
  • Metamaterials are materials designed to have properties that have not yet been found in nature and consist of a collection of composite elements formed from common materials such as plastics and metals.
  • metamaterials are usually arranged in a repetitive pattern, and the properties of metamaterials are due to their structure, not the properties of the base material. That is, the exact shape, geometry, size, orientation, and arrangement of the metamaterials determine the properties of the metamaterial.
  • nanoparticles are widely used in the manufacture of metamaterials because physical properties known as intrinsic properties of materials can be controlled according to particle size.
  • silver has the best electrical and thermal conductivity among all metals, and due to the optical properties of Ag, it has the highest Surface Plasmon Resonance (SPR) in the visible range, so that the nanostructured silver is a catalyst, SERS It can be applied to many fields such as surface enhanced raman scattering, photonic crystal, microelectronic device, biosensor, and plasmonic solar cell.
  • the plasmonic effect is a phenomenon in which free electrons in a metal vibrate collectively by external light, which is a photo-electron effect in a metal. This effect causes most of the light energy to be transferred to free electrons at a specific wavelength of incident light. It is due to resonance phenomenon.
  • the plasmonic structure can alter the size and arrangement of metal particles, such as gold or silver, to control the plasmonic resonance frequency. At this time, maintaining the size of the thin film or particles to a few tens of nanometers very small, and the distance between the particles also to several tens of nanometers is an important factor in controlling the plasmonic resonance frequency. Accordingly, various studies have been conducted to control the size of metal nanoparticles and to maintain a constant distance between particles, and nanopatterning and nanolithography methods are mainly used.
  • Korean Unexamined Patent Publication No. 2016-0047818 discloses a three-dimensional plasmonic nanostructure and a method of manufacturing the same, which have a large-area nanostructure and can control light absorption properties and crystallinity.
  • Korean Patent Laid-Open No. 10-2016-0028564 discloses a multilayer dielectric thin film having a one-dimensional optical band gap structure having a defect, a metal thin film disposed on one surface of the multilayer dielectric thin film and having a predetermined surface plasmon resonance condition.
  • a multi-layered thin film for detecting an optical signal emitted through the multi-layer dielectric thin film after entering the nano-particle structure layer having a two-dimensional optical band gap structure and the multilayer dielectric thin film formed on the metal thin film and reflected from the nano-particle layer Disclosed is a plasmonic sensor in which a structure and a nano structure are combined.
  • An object of one embodiment according to the present invention is sensitive to changes in the surrounding dielectric environment, and provides a magnetoplasmonic film, the humidity sensor including the same and a method of manufacturing the same that can be visually observed the change in color according to the change in the dielectric environment. It is.
  • the invention provides a membrane; And a core or shell nanoparticle layer of Ag / Fe 3 O 4 of a single layer or two or more layers formed by adjoining core / shell nanoparticles of Ag / Fe 3 O 4 on or in the membrane, wherein the core / shell nano Provided is a magnetoplasmonic film, characterized in that the color changes in the visible region in accordance with the change in dielectric constant between the particles.
  • the membrane functions as a support for the nanoparticles. It can be a substrate that allows nanoparticles to be present as coated on a surface without entering the membrane.
  • the membrane may be a porous polar polymer
  • the membrane may be preferably characterized in that the pore size is 0.1 to 0.5 ⁇ m, the diameter is 30 to 60mm.
  • the core / shell nanoparticles may be a single layer or multiple layers of two or more. It is preferable to form a nanoparticle layer of 5 layers or less, preferably 3 layers or less. Depending on the monolayer or thin lamination structure of such five layers or less, the magnetoplasmonic effect can be provided according to the change of permittivity around the particle.
  • the nanoparticles may be magnetically bonded to each other to form a single layer or a stacked structure stably.
  • the membrane is configured to be expandable and contractible, which can alter the spacing or arrangement between nanoparticles, thereby causing a change in dielectric constant between particles, which can cause visible color changes.
  • the core / shell nanoparticles of Ag / Fe 3 O 4 may be spherical particles having a diameter of 180 to 200 nm.
  • the membrane In another aspect, the present invention, the membrane; And a core or shell nanoparticle layer of Ag / Fe 3 O 4 of a single layer or two or more layers formed by adjoining core / shell nanoparticles of Ag / Fe 3 O 4 on or in the membrane, wherein the core / shell nano
  • a magnetic structure comprising a magnetoplasmonic film, characterized in that the color changes in the visible region in accordance with the change in dielectric constant between the particles.
  • the invention provides a membrane; And a core or shell nanoparticle layer of Ag / Fe 3 O 4 of a single layer or two or more layers formed by adjoining core / shell nanoparticles of Ag / Fe 3 O 4 on or in the membrane, wherein the core / shell nano
  • a humidity sensor characterized in that the color changes in the visible region in accordance with the change in dielectric constant between the particles.
  • It may further include a hygroscopic inorganic salt doped around the core / shell nanoparticles to increase the moisture adsorption rate.
  • the hygroscopic inorganic salt may be a mixture of CaCl 2 or KOH and K 2 CO 3 .
  • the present invention provides a method for producing a membrane comprising the steps of: preparing a membrane; Placing core / shell nanoparticles of Ag / Fe 3 O 4 in or on a membrane surface and applying a magnetic field to one side of the membrane; And it provides a method for producing a magnetoplasmonic film, comprising the step of drying the membrane.
  • the application of the magnetic field is characterized in that it is carried out by placing a magnetic block under the membrane.
  • Placing a core / shell nanoparticles of the Ag / Fe 3 O 4 is characterized in that the apply the core / shell nanoparticle dispersion of Ag / Fe 3 O 4 on the membrane.
  • the intensity of the applied magnetic field is characterized in that 30 to 100 mT.
  • the nanoparticle layer may be formed under the application of an external magnetic field.
  • a uniform and dense layer is formed by the strong magnetic response of the nanoparticles to the magnetic field and the high porosity of the membrane which accelerates the arrangement of the nanoparticles upon shrinkage of the polymer filter membrane.
  • One embodiment of the present invention can provide a humidity sensor (Humidity sensors) comprising a magnetoplasmonic film, the nanoparticle layer is very sensitive to the surrounding dielectric environment, the nano-scattering (Mie scattering) and It shows vivid color by Plasmon resonance scattering, ie it shows excellent detection ability that shows a vivid color change even when the surrounding minute dielectric environment changes, and this color change takes place in the visible region, so specialized equipment Can be observed with the naked eye.
  • Humidity sensors comprising a magnetoplasmonic film
  • the nanoparticle layer is very sensitive to the surrounding dielectric environment
  • the nano-scattering (Mie scattering) shows vivid color by Plasmon resonance scattering, ie it shows excellent detection ability that shows a vivid color change even when the surrounding minute dielectric environment changes, and this color change takes place in the visible region, so specialized equipment Can be observed with the naked eye.
  • FIG. 1 is a schematic diagram schematically showing a method for producing a magnetoplasmonic film on a membrane according to an embodiment of the present invention.
  • a 2 is a scanning electron microscope (A) image and a transmission electron microscope (TEM) image of Ag @ Fe 3 O 4 nanoparticles according to an exemplary embodiment of the present invention.
  • C 3 is an extinction spectra (C) and a magnetic hysteresis curve (D) at 300K of Ag @ Fe 3 O 4 nanoparticles according to an embodiment of the present invention.
  • Figure 4 is a SEM (C) image of the magnetoplasmonic film prepared according to an embodiment of the present invention and the SEM image (D) of the magnetoplasmonic film prepared without the application of an external magnetic field.
  • FIG. 6 is an SEM image (A) of a membrane to which PEG is added and a photograph thereof.
  • FIG. 7 is a graph (C) showing a correlation between ⁇ max and swelling values at a long wavelength peak according to the reflection spectrum (B) and PEG concentration of a PEG-doped membrane.
  • FIG. 8 is a color change photograph at various relative humidity levels of a CaCl 2 doped humidity sensor and a KOH and K 2 CO 3 doped humidity sensor according to one embodiment of the present invention.
  • FIG. 9 is a photograph showing color response to exhalation of a humidity sensor according to an embodiment of the present invention.
  • a step when a step is located "on" or "before” another step, it is not only when a step is in direct time series relationship with another step, but also after mixing with each step. Likewise, the order of the two stages may include the same rights as in the case of an indirect time series relationship in which the time series order can be reversed.
  • the present invention relates to a magnetoplasmonic film, a humidity sensor including the same, and a manufacturing method thereof.
  • Magnetoplasmonic film according to an embodiment of the present invention is a membrane; And a core / shell nanoparticle layer of Ag / Fe 3 O 4 coated on the membrane under application of an external magnetic field.
  • Nanoparticle layer of the magnetoplasmonic film according to an embodiment of the present invention is a core / shell nanoparticles of Ag / Fe 3 O 4 (hereinafter referred to as 'nanoparticle', also referred to as Ag @ Fe 3 O 4 ) Planar particles may be contacted to form a single layer or two or more multilayers.
  • 'nanoparticle' also referred to as Ag @ Fe 3 O 4
  • Planar particles may be contacted to form a single layer or two or more multilayers.
  • the nanoparticle layer may be formed under the application of an external magnetic field, thereby forming a uniform and dense layer due to the strong magnetic response of the nanoparticles to the magnetic field and the high porosity of the membrane to accelerate the arrangement of the nanoparticles upon shrinkage of the membrane. .
  • the nanoparticle layer is very sensitive to the surrounding dielectric environment, and displays vivid colors by Mie scattering and Plasmon resonance scattering of the nanoparticles. In other words, it shows a vivid color change in the change of the surrounding minute dielectric environment, and this color change occurs in the visible light region, so that it can be observed with the naked eye without specialized equipment.
  • the magnetoplasmonic film of the present invention can be utilized in various devices.
  • the magnetoplasmonic film may be used as a magnet.
  • the magnetic field may be applied to the magnetoplasmonic film, and the magnet structure may be provided through a process of firing and aging.
  • One embodiment of the present invention provides a humidity sensor (Humidity sensors) including the magnetoplasmonic film (hereinafter also referred to as 'film').
  • the humidity sensor comprises a membrane; A core / shell nanoparticle layer of Ag / Fe 3 O 4 formed on the membrane under application of an external magnetic field; And it may include a hygroscopic inorganic salt doped to the membrane, the magnetoplasmonic film may be used as a color indicator (color indicator).
  • the film exhibits a vivid color due to unscattering and plasmon resonance scattering of Ag / Fe 3 O 4 core / shell nanoparticles formed on the membrane. Due to the sensitivity to the high refractive index caused by plasmon resonance scattering of the nanoparticles and the excellent water absorption ability of the membrane, it shows excellent detection ability in both low humidity and high humidity conditions, and the clear color change of the film due to the difference in humidity is all visible. As it happens in, it can be checked with the naked eye without specialized equipment.
  • Magnetoplasmonic film according to an embodiment of the present invention can be more specifically specified and understood by the description of the manufacturing method.
  • the method for producing a magnetoplasmonic film comprises the steps of preparing a polymer filter membrane; Forming a core / shell nanoparticle layer of Ag / Fe 3 O 4 while applying a magnetic field to the polymer filter membrane; And removing the applied magnetic field and drying the polymer filter membrane.
  • a polymer filter membrane 10 may be prepared.
  • the polymer filter membrane is made of a polymer of high polarity, has a high porosity, and may have a cross-linked structure.
  • nylon 66 filter membrane can be used.
  • the pore size of the polymer filter membrane 10 may be 0.1 to 0.5 ⁇ m, and the diameter may be 30 to 60 mm.
  • a core / shell nanoparticle layer of Ag / Fe 3 O 4 may be formed on the polymer filter membrane 10 while applying a magnetic field to the polymer filter membrane.
  • the magnetic field is applied to one side of the membrane, so that the nanoparticles in the membrane are aligned with a minimum layer on the one side.
  • the coffee-ring effect is often a useful patterning technique.
  • this is an undesirable effect, for example, DNA microarrays, chemical recovery, and nanofabrication.
  • the nanoparticle layer may be formed of a colloidal nanoparticle solution including a Ag / Fe 3 O 4 core / shell nanoparticle, more specifically, an aqueous colloidal suspension. It may be formed by dropwise in the form of droplets (droplet).
  • the method for preparing Ag @ Fe 3 O 4 core / shell nanoparticles is not particularly limited and can be synthesized by a generally known method.
  • the concentration of the colloidal aqueous dispersion is not limited thereto, but may be, for example, 3 to 10 mg / ml, and the loading amount may be appropriately adjusted according to the size of the membrane and the thickness of the film to be formed. But may be, for example, 5 to 30 ⁇ l.
  • the core / shell nanoparticles of Ag / Fe 3 O 4 may be spherical particles having a diameter of 180 to 200 nm dispersed alone.
  • the application of an external magnetic field may be applied by a magnet.
  • a magnet for example, a neodymium (NdFeB) block magnet 30 may be used, and the magnet 30 may be disposed under the polymer filter membrane to apply a magnetic field.
  • the strength of the applied magnetic field may be 30 to 100 mT.
  • a droplet 20 of the colloidal nanoparticle solution is dropped onto the polymer filter membrane 10 to which a magnetic field is applied, and the droplet spreads on the membrane. At this time, capillary flows of the nanoparticles are suppressed by an external magnetic field, and the nanoparticle layer may be coated on the membrane uniformly and densely.
  • the nanoparticle layer may be formed as a single layer or two or more multilayers according to the amount of droplets, the strength of the magnetic field, the type of solution, and the like.
  • the polymer filter membrane 10 is composed of a highly polar polymer having a porous and cross-linked structure, when a polar solvent molecule, for example, water enters, it does not dissolve but instead expands. .
  • the polymer filter membrane expands immediately after the aqueous solution drops and exhibits a maximum surface area.
  • nanoparticles are randomly arranged and magnetically deposited on the surface of the polymer filter membrane.
  • the polymer membrane shrinks to its original state and the nanoparticles gather together to form a dense layer. Because of the hydrophilicity and high porosity of the polymer filter membrane, the colloidal droplets can quickly dry after falling on the membrane.
  • the nanoparticles loaded under the application of an external magnetic field can form a uniform and dense layer without a coffee-ring effect.
  • the nanoparticle layer When the nanoparticle layer is formed without the application of an external magnetic field, a strong coffee-ring effect may occur, and thus a thin ring in which most of the nanoparticles have a deep red reflection color does not appear in the central region. And the distance between the nanoparticles is not uniform and can be randomly dispersed on the surface of the membrane.
  • the nanoparticle layer under the application of an external magnetic field as in one embodiment of the present invention, it is possible to exhibit a vivid red reflectance in all regions and to have a uniform and dense monolayer / or multilayer between particles.
  • the nanoparticle layer can be formed.
  • the applied magnetic field may be removed, and the polymer filter membrane may be dried to obtain a magnetoplasmonic film.
  • it can be stored for a predetermined time at a predetermined temperature. Although not limited to this, for example, it can be stored for 30 minutes at 60 °C temperature.
  • another embodiment of the present invention provides a method of manufacturing a humidity sensor comprising the magnetoplasmonic film.
  • the polymer filter membrane when the polymer filter membrane is formed of a polar polymer, the polymer filter membrane has excellent water absorption ability.
  • the polymer filter membrane itself does not show excellent moisture absorption capability, it is possible to dope hygroscopic inorganic salts into the polymer filter membrane.
  • the nanoparticle layer after forming the nanoparticle layer, it may further include the step of doping hygroscopic inorganic salts (hygroscopic inorganic salts) on the membrane (10).
  • the hygroscopic inorganic salt may be CaCl 2 , or a mixture of KOH and K 2 CO 3 .
  • the amount of the salt solution to be doped is not particularly limited and may be, for example, 5 to 10 ⁇ l.
  • the hygroscopic inorganic salt After doping the hygroscopic inorganic salt, it can be stored for a predetermined time at a predetermined temperature. Although not limited to this, for example, it can be stored for 30 minutes at 60 °C temperature.
  • the reflected color changes from blue to red after the loading is complete and the film is completely dried.
  • This color reaction may be due to swelling leading to a change in distance between nanoparticles and / or a change in dielectric constant around.
  • the magnetoplasmonic film includes nanoparticles having a core / shell structure of Ag / Fe 3 O 4 , and exhibits strong reflection color. This is believed to be due to the electromagnetic interaction of the metal core particles with the dielectric shell. This feature responds to minute changes in the dielectric constant in comparison with other types and types of nanoparticles, and has a characteristic that the change in the reflection color occurs in the visible region.
  • the present invention can be used under low humidity or high humidity conditions depending on the absorption ability of the hygroscopic inorganic salt, for example, when using CaCl 2 as the hygroscopic inorganic salt, it can be used under relatively low humidity conditions, When using a mixture of KOH and K 2 CO 3 it can be used in relatively humid conditions.
  • the CaCl 2 -doped humidity sensor may exhibit a rapid color change response even with minute humidity differences such as human exhalation, and may have excellent sensitivity of humidity sensing.
  • Ferric nitrate nonahydrate (Fe (NO 3 ) 3 9H 2 O), sodium citrate (C 6 H 5 Na 3 O 7 2H 2 O), sodium acetate (CH3COONa, NaAc), silver nitrate (AgNO3), ethylene glycol (EG), diethylene glycol (DEG), polyethylene glycol (PEG, Mn 200), potassium hydroxide (KOH) ), Potassium carbonate (K 2 CO 3 ), lithium chloride (LiCl), magnesium chloride (MgCl 2 ), magnesium nitrate hexahydrate (Mg (NO 3 ) 2 ⁇ 6H 2 O), potassium chloride (KCl) and potassium nitrate (KNO3) were purchased from Sigma-Aldrich Inc., Yongin, Korea Glycol was obtained from Biosesang (Biosesang, Gyeonggi-do, Korea) Calcium chloride was obtained from Yakuri Pure Chemical Co.
  • the magnetoplasmonic film of Ag @ Fe 3 O 4 nanoparticles was uniformly formed on the membrane under the application of an external magnetic field.
  • Capillary flows of the nanoparticles were suppressed by an external magnetic field and a uniformly coated film was obtained.
  • Colloidal droplets (10 [mu] l, droplets) rapidly dried after 12 seconds of falling onto the membrane. After drying completely, it was stored for 30 minutes in an oven at 60 °C temperature.
  • the humidity sensor was prepared by doping hygroscopic inorganic salts to the membrane. Two humidity sensors were fabricated to sense different humidity ranges. A mixture of 2M CaCl 2 and 0.625M KOH and 0.625MK 2 CO 3 was used for the sensing of low humidity and high humidity, respectively. 6 ⁇ l of salt solution was loaded onto the membrane coated with nanoparticles and stored at 60 ° C. for 30 minutes. The humidity sensor was placed in a closed box (38 mm x 10 mm) containing 300 ⁇ l of saturated salt solution as a moisture source.
  • the morphology of Ag @ Fe 3 O 4 NPs nanoparticles was measured by HR-TEM (JEOL, JEM-3010, Japan) and FE-SEM (S-4700, Hitachi, Japan). Magnetic measurements were performed using a Superconducting Quantum Interference Device (SQUID) magnetometer (MPMS XL-7, Quantum Design, Inc., San Diego, CA). . Absorbance and reflectance of nanoparticles are determined by UV-Vis spectroscopy (SCINCO, S310, Korea) and UV-Vis-NIR spectrophotometer, Cary 5000, respectively. , Varian, USA).
  • Magnetoplasmonic nanoparticles with an Ag core and a Fe 3 O 4 shell were prepared by an easy one-step solvothermal route by reduction of Ag + , Fe 3 + and EG.
  • the nanoparticles were stabilized by adsorption of citric acid through one or more carboxylate functional groups, indicating that the surface is negatively charged.
  • Figure 2 (A) is an SEM image of the Ag @ Fe 3 O 4 nanoparticles prepared in the above example, referring to this, it can be seen that the spherical nanoparticles having a diameter of about 190nm is dispersed alone, FIG. The magnified SEM image of 2 (A) shows that the surface of the nanoparticles is rough and composed of many small nanoparticles.
  • FIG. 2 (B) is a TEM image of the magnetoplasmonic core / shell nanoparticle, in which the Ag core appears black and Fe 3 O 4 appears brighter due to the higher electron density than the Ag metal.
  • the Ag core has a nearly uniform size of about 65 nm and the shell has a thickness of 62 nm (thickness of ca.).
  • FIG 4 is a SEM image (C) of the magnetoplasmonic film prepared according to an embodiment of the present invention and a SEM image (B) of the magnetoplasmonic film prepared without the application of an external magnetic field.
  • films made under the application of an external magnetic field in accordance with an embodiment of the present invention exhibit vivid red reflectance in all regions, with uniform and dense distances between particles. It can be confirmed that a multilayer is formed.
  • the morphology of the film produced and the drying after adding DEG were examined by SEM.
  • the membrane can be swollen by the addition of DEG and then reversibly retracted.
  • FIG. 5 shows reflection spectra of magnetoplasmonic films coated with four kinds of magnetic nanoparticles and photographs thereof (250 nm hollow Fe 3 O 4 (A), 250 nm solid Fe 3 O 4 (B)). , 350 nm solid Fe 3 O 4 (C) and 190 nm Ag @ Fe 3 O 4 (D)).
  • the reflected color also matches the spectra representing two peaks of 451 nm and 564 nm.
  • the conditions for directional scattering are not satisfied for 250 nm and 350 nm solid samples (FIGS. 5 (B), (C)).
  • Obvious peaks are observed in the reflection spectra of the 350 nm solid sample (FIG. 5C), but the picture of the sample shows very dark cyan. This is very weak for the human eye but can be evidence of un-directional scattering that can be effectively collected by diffuse reflectance measurement.
  • the 250 nm hollow Fe 3 O 4 sample was black while the weak yellow and green colors were observed in the 250 nm hollow and 350 nm solid samples, respectively.
  • the magnetoplasmonic film in the case of the magnetoplasmonic film according to one embodiment of the present invention, there are two distinct peaks in the visible region (420 nm and 720 nm) in the reflection spectrum of the dried film.
  • the high intensity ratio of the long wavelength peak to the short wavelength peak causes the film to appear red.
  • the long wavelength peak shifts significantly to 750 nm, which is invisible to the human eye, and the film shows a deep blue color that matches the short-wavelength peak of 430 nm.
  • PEG was used to study the refractive index and sensitivity of the film.
  • FIG. 6 is an SEM image (A) and a photograph (B) of the membrane to which PEG was added.
  • the network of the membrane is filled with PEG, and it can be seen that the porosity is clearly reduced as the concentration of PEG increases.
  • FIG. 7 is a graph (B) showing the correlation between ⁇ max and swelling values at a long wavelength peak according to the reflection spectrum (A) and PEG concentration of a PEG-doped membrane.
  • the short-wavelength peak caused by Mie scattering resonance is slightly red-shifted, 20% at 420 nm of the membrane to which 0% PEG is added and The membrane with 30% PEG added slightly shifted to 426 nm and 428 nm, respectively.
  • This peak is fixed at 431 nm with increasing PEG concentrations of 50, 75 and 100%. Together with the red-shift properties, the peaks noticeably widen as PEG concentration is increased.
  • the long-wavelength peak red-shifts from 731 nm to 792 nm when the PEG concentration increases from 0 to 30%, and the mass swelling value increases from 0 to 49%. As PEG concentration increases by 100%, mass expansion increases linearly by 173%. Long-wavelength peaks cannot be determined at PEG concentrations above 50% due to the limitation of the monochromator.
  • the droplets dried after various PEG concentrations were added are deep red, violet and blue-violet to deep blue. strongly reflects the color up to -blue). This change in color may be due to a bi-color characteristic as mentioned above (see FIG. 7 (A)).
  • the film with 0% PEG added showed a dark red reflection due to the dominance of plasmon resonance scattering to Mie scattering.
  • the long-wavelength peak shifted significantly to 749 nm, which is invisible to the human eye, and the film showed violet color (426 nm).
  • the reaction of the salt-doped film to relative humidity (RH) is a closed petri dish containing saturated salts to control the range from low humidity (11%) to high humidity (95%). (closed petri dishes).
  • FIG. 9 is a photograph showing color response to exhalation of a humidity sensor according to an embodiment of the present invention.
  • CaCl 2 -doped films were used to sense humidity changes due to human exhalation.
  • the humidity sensor showed a fairly fast color response to exhalation. At the peak of exhalation, the color changed from dry red to red-violet, violet blue and blue green in 2.7 seconds, and within 1.9 seconds after the exhalation stopped. It quickly returned to dark red.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a magnetoplasmonic film, a humidity sensor including the same, and a method of manufacturing them. A magnetoplasmonic film according to an embodiment of the present invention comprises: a polymer filter membrane; and a core/shell nanoparticle layer of Ag/Fe3O4 formed on the polymer filter membrane under the application of an external magnetic field. The magnetoplasmonic film is sensitive to a change in a surrounding genetic environment allows observation of a change in the color due to a change in the genetic environment with naked eyes.

Description

마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법Magnetoplasmonic film, humidity sensor comprising the same and method for manufacturing same
본 발명은 마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법에 관한 것으로, 보다 구체적으로는 주변의 유전 환경 변화에 민감하며, 유전 환경의 변화에 따른 색깔의 변화가 육안으로 관찰 가능한 마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법에 관한 것이다.The present invention relates to a magnetoplasmonic film, a humidity sensor including the same, and a method of manufacturing the same, and more particularly, a magneto that is sensitive to a change in the surrounding dielectric environment and that the change in color according to the change in the dielectric environment is visually observed. The present invention relates to a plasmonic film, a humidity sensor including the same, and a manufacturing method thereof.
메타물질(metamaterial)은 아직 자연에서 발견되지 않은 특성을 가지도록 설계된 물질로서, 플라스틱과 금속 같은 일반적인 물질로부터 형성된 복합 요소의 집합체로 구성된다.Metamaterials are materials designed to have properties that have not yet been found in nature and consist of a collection of composite elements formed from common materials such as plastics and metals.
이 물질은 보통 반복적인 패턴으로 배열되어 있으며, 메타물질의 특성은 기본 물질의 특성이 아니라 그들의 구조에 의해 생긴다. 즉, 메타물질의 정확한 모양, 기하학적 구조, 크기, 방향 그리고 배열이 메타물질의 특성을 결정하게 된다. These materials are usually arranged in a repetitive pattern, and the properties of metamaterials are due to their structure, not the properties of the base material. That is, the exact shape, geometry, size, orientation, and arrangement of the metamaterials determine the properties of the metamaterial.
나노 입자는 벌크물질과 달리 물질의 고유 특성이라 알려져 있는 물리적 특성을 입자 크기에 따라 조절할 수 있어 메타물질의 제조에 널리 되고 있다. 특히, 은(Ag)은 모든 금속 중에서 가장 좋은 전기 및 열 전도율을 가지고 있으며, Ag의 광학적 특성으로 인하여 가시광선 영역에서 가장 높은 SPR(Surface Plasmon Resonance)을 가짐에 따라, 나노 구조의 은은 촉매, SERS(Surface Enhanced Raman Scattering), 광결정, 마이크로전자소자, 바이오센서, 플라즈모닉 태양전지 등 많은 분야에 활용 가능하다.Unlike bulk materials, nanoparticles are widely used in the manufacture of metamaterials because physical properties known as intrinsic properties of materials can be controlled according to particle size. In particular, silver (Ag) has the best electrical and thermal conductivity among all metals, and due to the optical properties of Ag, it has the highest Surface Plasmon Resonance (SPR) in the visible range, so that the nanostructured silver is a catalyst, SERS It can be applied to many fields such as surface enhanced raman scattering, photonic crystal, microelectronic device, biosensor, and plasmonic solar cell.
플라즈모닉(Plasmonic) 효과는 외부의 빛에 의해 금속 내의 자유전자가 집단적으로 진동하는 현상으로 금속에서 나타나는 광-전자 효과로서, 이러한 효과는 특정 파장의 입사광에서 대부분의 광 에너지가 자유전자로 전이되는 공명 현상에 의한 것이다. 플라즈모닉 구조체는 플라즈모닉 공명 주파수를 조절하기 위하여 금이나 은과 같은 금속 입자의 크기 및 배열을 변경할 수 있다. 이때, 박막 혹은 입자의 크기를 수십 나노미터 수준으로 매우 작게 유지하며, 입자간 거리 또한 수십 나노미터 수준을 유지하는 것이 플라즈모닉 공명 주파수를 조절하는데 중요한 요인으로 작용한다. 이에 따라, 금속 나노 입자의 크기를 조절하고 입자간 거리를 일정하게 유지시키기 위해 다양한 연구들이 진행되어 왔고, 나노패터닝, 나노리소그래피법 등이 주로 사용되고 있다. The plasmonic effect is a phenomenon in which free electrons in a metal vibrate collectively by external light, which is a photo-electron effect in a metal. This effect causes most of the light energy to be transferred to free electrons at a specific wavelength of incident light. It is due to resonance phenomenon. The plasmonic structure can alter the size and arrangement of metal particles, such as gold or silver, to control the plasmonic resonance frequency. At this time, maintaining the size of the thin film or particles to a few tens of nanometers very small, and the distance between the particles also to several tens of nanometers is an important factor in controlling the plasmonic resonance frequency. Accordingly, various studies have been conducted to control the size of metal nanoparticles and to maintain a constant distance between particles, and nanopatterning and nanolithography methods are mainly used.
대한민국 공개특허 제2016-0047818호는 대면적의 나노 구조를 가지며, 광흡수 특성 및 결정성을 조절할 수 있는 3차원 플라즈모닉 나노 구조체 및 이의 제조방법을 개시하고 있다.Korean Unexamined Patent Publication No. 2016-0047818 discloses a three-dimensional plasmonic nanostructure and a method of manufacturing the same, which have a large-area nanostructure and can control light absorption properties and crystallinity.
대한민국 공개특허 제10-2016-0028564호는 결함(defect)을 가지는 1차원 광 밴드 갭 구조의 다층 유전체 박막, 상기 다층 유전체 박막의 일면에 배치되고, 소정의 표면 플라즈몬 공명 조건을 가지는 금속박막, 상기 금속 박막 상에 형성된 2차원 광 밴드 갭 구조의 나노 입자 구조 층 및 상기 다층 유전체 박막을 통과하여 입사되어 상기 나노 입자 층에서 반사된 후 상기 다층 유전체 박막을 통과하여 출사되는 광신호를 검출하는 다층 박막 구조와 나노 구조가 결합된 플라즈모닉 센서를 개시하고 있다.Korean Patent Laid-Open No. 10-2016-0028564 discloses a multilayer dielectric thin film having a one-dimensional optical band gap structure having a defect, a metal thin film disposed on one surface of the multilayer dielectric thin film and having a predetermined surface plasmon resonance condition. A multi-layered thin film for detecting an optical signal emitted through the multi-layer dielectric thin film after entering the nano-particle structure layer having a two-dimensional optical band gap structure and the multilayer dielectric thin film formed on the metal thin film and reflected from the nano-particle layer Disclosed is a plasmonic sensor in which a structure and a nano structure are combined.
본 발명에 따른 일 실시형태의 목적은 주변의 유전 환경 변화에 민감하며, 유전 환경의 변화에 따른 색깔의 변화가 육안으로 관찰 가능한 마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법을 제공하는 것이다.An object of one embodiment according to the present invention is sensitive to changes in the surrounding dielectric environment, and provides a magnetoplasmonic film, the humidity sensor including the same and a method of manufacturing the same that can be visually observed the change in color according to the change in the dielectric environment. It is.
일 측면으로서, 본 발명은 멤브레인; 및 상기 멤브레인 상 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자가 서로 인접하여 형성된 단층 또는 2 이상의 다층의 Ag/Fe3O4의 코어/쉘 나노입자층을 포함하고, 상기 코어/쉘 나노입자들 사이의 유전율 변화에 따라 가시광 영역 내에서 색이 변화하는 것을 특징으로 하는, 마그네토플라즈모닉 필름(Magnetoplasmonic film)을 제공한다.In one aspect, the invention provides a membrane; And a core or shell nanoparticle layer of Ag / Fe 3 O 4 of a single layer or two or more layers formed by adjoining core / shell nanoparticles of Ag / Fe 3 O 4 on or in the membrane, wherein the core / shell nano Provided is a magnetoplasmonic film, characterized in that the color changes in the visible region in accordance with the change in dielectric constant between the particles.
상기 멤브레인은 나노입자의 지지체로서 기능한다. 나노입자가 멤브레인 내로 들어가 않고 표면에 코팅되듯이 존재하도록 하는 기판일 수 있다. The membrane functions as a support for the nanoparticles. It can be a substrate that allows nanoparticles to be present as coated on a surface without entering the membrane.
한편, 상기 멤브레인은 다공성 극성 고분자일 수 있고, 상기 멤브레인은 바람직하게는 기공의 크기가 0.1 내지 0.5㎛이고, 직경은 30 내지 60mm인 것을 특징으로 할 수 있다. On the other hand, the membrane may be a porous polar polymer, the membrane may be preferably characterized in that the pore size is 0.1 to 0.5㎛, the diameter is 30 to 60mm.
상기 코어/쉘 나노입자들은 입자들이 단일층 또는 2 이상의 다층을 이룰 수 있다. 5층 이하, 바람직하게는 3층 이하의 나노입자 층을 이룸이 바람직하다. 단층 또는 이러한 5층 이하의 얇은 적층 구조에 따라, 입자 주변의 유전율 변화에 따라 마그네토플라즈모닉 효과를 제공할 수 있다.The core / shell nanoparticles may be a single layer or multiple layers of two or more. It is preferable to form a nanoparticle layer of 5 layers or less, preferably 3 layers or less. Depending on the monolayer or thin lamination structure of such five layers or less, the magnetoplasmonic effect can be provided according to the change of permittivity around the particle.
상기 나노입자들은 서로 자기적으로 결합되어 단일 층 또는 적층 구조를 안정적으로 이룰 수 있다.The nanoparticles may be magnetically bonded to each other to form a single layer or a stacked structure stably.
상기 멤브레인은 팽창 및 수축 가능하도록 구성되어, 나노입자 간의 간격 또는 배열을 바꿀 수 있고, 이에 입자간의 유전율의 변화를 야기토록 할 수 있어, 가시 색 변화를 야기할 수 있다.The membrane is configured to be expandable and contractible, which can alter the spacing or arrangement between nanoparticles, thereby causing a change in dielectric constant between particles, which can cause visible color changes.
상기 Ag/Fe3O4의 코어/쉘 나노입자는 180 내지 200nm의 직경을 가지는 구형의 입자인 것을 특징으로 한다.The core / shell nanoparticles of Ag / Fe 3 O 4 may be spherical particles having a diameter of 180 to 200 nm.
다른 측면으로서, 본 발명은, 멤브레인; 및 상기 멤브레인 상 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자가 서로 인접하여 형성된 단층 또는 2 이상의 다층의 Ag/Fe3O4의 코어/쉘 나노입자층을 포함하고, 상기 코어/쉘 나노입자들 사이의 유전율 변화에 따라 가시광 영역 내에서 색이 변화하는 것을 특징으로 하는, 마그네토플라즈모닉 필름을 포함하는 자석 구조체를 제공한다.In another aspect, the present invention, the membrane; And a core or shell nanoparticle layer of Ag / Fe 3 O 4 of a single layer or two or more layers formed by adjoining core / shell nanoparticles of Ag / Fe 3 O 4 on or in the membrane, wherein the core / shell nano Provided is a magnetic structure comprising a magnetoplasmonic film, characterized in that the color changes in the visible region in accordance with the change in dielectric constant between the particles.
또 다른 측면으로서, 본 발명은 멤브레인; 및 상기 멤브레인 상 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자가 서로 인접하여 형성된 단층 또는 2 이상의 다층의 Ag/Fe3O4의 코어/쉘 나노입자층을 포함하고, 상기 코어/쉘 나노입자들 사이의 유전율 변화에 따라 가시광 영역 내에서 색이 변화하는 것을 특징으로 하는, 습도 센서를 제공한다.In another aspect, the invention provides a membrane; And a core or shell nanoparticle layer of Ag / Fe 3 O 4 of a single layer or two or more layers formed by adjoining core / shell nanoparticles of Ag / Fe 3 O 4 on or in the membrane, wherein the core / shell nano Provided is a humidity sensor, characterized in that the color changes in the visible region in accordance with the change in dielectric constant between the particles.
상기 코어/쉘 나노입자들 주위에 도핑된 흡습성 무기염을 추가로 포함하여 습기를 흡착율을 높일 수 있다.It may further include a hygroscopic inorganic salt doped around the core / shell nanoparticles to increase the moisture adsorption rate.
상기 흡습성 무기염은 CaCl2 또는 KOH 및 K2CO3의 혼합물일 수 있다.The hygroscopic inorganic salt may be a mixture of CaCl 2 or KOH and K 2 CO 3 .
다른 측면으로서, 본 발명은, 멤브레인을 마련하는 단계; 멤브레인 표면 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자들을 위치시키고, 상기 멤브레인의 일면에 자기장을 인가하는 단계; 및 상기 멤브레인을 건조하는 단계를 포함하는, 마그네토플라즈모닉 필름의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing a membrane comprising the steps of: preparing a membrane; Placing core / shell nanoparticles of Ag / Fe 3 O 4 in or on a membrane surface and applying a magnetic field to one side of the membrane; And it provides a method for producing a magnetoplasmonic film, comprising the step of drying the membrane.
상기 자기장의 인가는 자석 블록을 상기 멤브레인의 하부에 배치함으로써 수행되는 것을 특징으로 한다.The application of the magnetic field is characterized in that it is carried out by placing a magnetic block under the membrane.
상기 Ag/Fe3O4의 코어/쉘 나노입자를 위치시킴은 Ag/Fe3O4의 코어/쉘 나노입자 분산액을 상기 멤브레인에 적용함을 특징으로 한다.Placing a core / shell nanoparticles of the Ag / Fe 3 O 4 is characterized in that the apply the core / shell nanoparticle dispersion of Ag / Fe 3 O 4 on the membrane.
상기 인가되는 자기장의 세기는 30 내지 100 mT인 것을 특징으로 한다.The intensity of the applied magnetic field is characterized in that 30 to 100 mT.
본 발명의 일 실시형태에 따른 마그네토플라즈모닉 필름의 제조에 있어서, 나노입자층은 외부 자기장의 인가하에 형성될 수 있다. 이에 따라, 자기장에 대한 나노입자의 강한 자기 반응과 고분자 필터 멤브레인의 수축시 나노입자의 배열을 가속화하는 멤브레인의 높은 공극율에 의하여 균일하고 조밀한 층을 형성하게 된다.In the manufacture of the magnetoplasmonic film according to an embodiment of the present invention, the nanoparticle layer may be formed under the application of an external magnetic field. As a result, a uniform and dense layer is formed by the strong magnetic response of the nanoparticles to the magnetic field and the high porosity of the membrane which accelerates the arrangement of the nanoparticles upon shrinkage of the polymer filter membrane.
본 발명의 일 실시형태는 마그네토플라즈모닉 필름을 포함하는 습도 센서((Humidity sensors)를 제공할 수 있다. 상기 나노입자층은 주변의 유전환경에 매우 민감하며, 나노입자의 미 산란(Mie scattering)과 플라즈몬 공명 산란(Plasmon resonance scattering)에 의하여 선명한 색을 나타낸다. 즉, 주변의 미세한 유전 환경이 변화에도 선명한 색 변화를 나타내는 우수한 검출 능력을 나타내며, 이러한 색 변화는 가시광 영역 내에서 일어나므로, 전문화된 장비 없이 육안으로 관찰할 수 있다.One embodiment of the present invention can provide a humidity sensor (Humidity sensors) comprising a magnetoplasmonic film, the nanoparticle layer is very sensitive to the surrounding dielectric environment, the nano-scattering (Mie scattering) and It shows vivid color by Plasmon resonance scattering, ie it shows excellent detection ability that shows a vivid color change even when the surrounding minute dielectric environment changes, and this color change takes place in the visible region, so specialized equipment Can be observed with the naked eye.
도 1은 본 발명의 일 실시형태에 따른 멤브레인 상에 마그네토플라즈모닉 필름의 제조방법을 개략적으로 나타내는 모식도이다.1 is a schematic diagram schematically showing a method for producing a magnetoplasmonic film on a membrane according to an embodiment of the present invention.
도 2는 본 발명의 일 실시형태에 따른 Ag@Fe3O4 나노입자의 SEM(Scanning Electron microscope)(A) 이미지 및 TEM(Transmission Electron Microscope)(B)이미지이다. 2 is a scanning electron microscope (A) image and a transmission electron microscope (TEM) image of Ag @ Fe 3 O 4 nanoparticles according to an exemplary embodiment of the present invention.
도 3은 본 발명의 일 실시형태에 따른 Ag@Fe3O4 나노입자의 흡광 스펙트라(extinction spectra)(C) 및 300K에서의 자기이력곡선(magnetic hysteresis curve)(D)이다.3 is an extinction spectra (C) and a magnetic hysteresis curve (D) at 300K of Ag @ Fe 3 O 4 nanoparticles according to an embodiment of the present invention.
도 4는 본 발명의 일 실시형태에 따라 제조된 마그네토플라즈모닉 필름의 SEM(C) 이미지와 외부자기장의 인가 없이 제조된 마그네토플라즈모닉 필름의 SEM 이미지(D)이다.Figure 4 is a SEM (C) image of the magnetoplasmonic film prepared according to an embodiment of the present invention and the SEM image (D) of the magnetoplasmonic film prepared without the application of an external magnetic field.
도 5는 마그네틱 나노입자의 종류에 따른 마그네토플라즈모닉 필름의 반사 스펙트럼 및 이들의 사진이다5 is a reflection spectrum and a photograph of the magnetoplasmonic film according to the type of magnetic nanoparticles
도 6은 PEG가 첨가된 멤브레인의 SEM 이미지 (A) 및 이들의 사진이다.6 is an SEM image (A) of a membrane to which PEG is added and a photograph thereof.
도 7은 PEG가 첨가된 멤브레인의 반사 스펙트럼(B) 및 PEG 농도에 따른 장파장 피크에서의 λmax 및 팽창값(swelling value)의 상관관계를 나타내는 그래프(C)이다.FIG. 7 is a graph (C) showing a correlation between λ max and swelling values at a long wavelength peak according to the reflection spectrum (B) and PEG concentration of a PEG-doped membrane.
도 8은 본 발명의 일 실시형태에 따라 각각 CaCl2가 도핑된 습도 센서 및 KOH 및 K2CO3 가 도핑된 습도 센서의 다양한 상대습도에서의 색 변화 사진이다.FIG. 8 is a color change photograph at various relative humidity levels of a CaCl 2 doped humidity sensor and a KOH and K 2 CO 3 doped humidity sensor according to one embodiment of the present invention.
도 9는 본 발명의 일 실시형태에 따른 습도 센서의 날숨에 대한 색 반응을 나타내는 사진이다.9 is a photograph showing color response to exhalation of a humidity sensor according to an embodiment of the present invention.
이하, 본원의 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시형태를 들어 상세히 설명한다. 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, embodiments of the invention may be modified in many different forms and should not be construed as limited to the embodiments set forth herein.
본 발명의 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present invention, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless otherwise stated.
본 발명의 명세서 전체에서, 어떤 단계가 다른 단계와 "상에" 또는 "전에" 위치하고 있다고 할 때, 이는 어떤 단계가 다른 단계와 직접적 시계열적인 관계에 있는 경우뿐만 아니라, 각 단계 후의 혼합하는 단계와 같이 두 단계의 순서에 시계열적 순서가 바뀔 수 있는 간접적 시계열적 관계에 있는 경우와 동일한 권리를 포함할 수 있다.Throughout the specification of the present invention, when a step is located "on" or "before" another step, it is not only when a step is in direct time series relationship with another step, but also after mixing with each step. Likewise, the order of the two stages may include the same rights as in the case of an indirect time series relationship in which the time series order can be reversed.
본 발명의 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 용어 "~ (하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.The terms "about", "substantially", and the like as used throughout the specification of the present invention are used at or near the numerical values when the manufacture and material tolerance unique to the meanings mentioned are given, and the present invention In order to facilitate the understanding of the agreement, accurate or absolute figures are used to prevent unscrupulous infringers from using the disclosures unfairly. As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본 발명은 마그네토플라즈모닉 필름(Magnetoplasmonic film), 이를 포함하는 습도 센서 및 이들의 제조방법에 관한 것이다. 본 발명의 일 실시형태에 따른 마그네토플라즈모닉 필름은 멤브레인; 및 상기 멤브레인 상에 외부 자기장의 인가하에 코팅되는 Ag/Fe3O4의 코어/쉘 나노입자층을 포함한다. The present invention relates to a magnetoplasmonic film, a humidity sensor including the same, and a manufacturing method thereof. Magnetoplasmonic film according to an embodiment of the present invention is a membrane; And a core / shell nanoparticle layer of Ag / Fe 3 O 4 coated on the membrane under application of an external magnetic field.
본 발명의 일 실시형태에 따른 마그네토플라즈모닉 필름의 나노입자층은 Ag/Fe3O4의 코어/쉘 나노입자들(이하, '나노입자'라고도 하며, Ag@Fe3O4로도 표기함)이 평면상 입자끼리 접하여 단일 층을 형성하거나, 2 이상의 다층을 형성할 수 있다. Nanoparticle layer of the magnetoplasmonic film according to an embodiment of the present invention is a core / shell nanoparticles of Ag / Fe 3 O 4 (hereinafter referred to as 'nanoparticle', also referred to as Ag @ Fe 3 O 4 ) Planar particles may be contacted to form a single layer or two or more multilayers.
상기 나노입자층은 외부 자기장의 인가하에 형성될 수 있으며, 자기장에 대한 나노입자의 강한 자기 반응과 멤브레인의 수축시 나노입자의 배열을 가속화하는 멤브레인의 높은 공극율에 의하여 균일하고 조밀한 층을 형성하게 된다.The nanoparticle layer may be formed under the application of an external magnetic field, thereby forming a uniform and dense layer due to the strong magnetic response of the nanoparticles to the magnetic field and the high porosity of the membrane to accelerate the arrangement of the nanoparticles upon shrinkage of the membrane. .
상기 나노입자층은 주변의 유전환경에 매우 민감하며, 나노입자의 미 산란(Mie scattering)과 플라즈몬 공명 산란(Plasmon resonance scattering)에 의하여 선명한 색을 나타낸다. 즉, 주변의 미세한 유전 환경의 변화에 선명한 색 변화를 나타내며, 이러한 색 변화는 가시광 영역 내에서 일어나므로, 전문화된 장비 없이 육안으로 관찰할 수 있다. The nanoparticle layer is very sensitive to the surrounding dielectric environment, and displays vivid colors by Mie scattering and Plasmon resonance scattering of the nanoparticles. In other words, it shows a vivid color change in the change of the surrounding minute dielectric environment, and this color change occurs in the visible light region, so that it can be observed with the naked eye without specialized equipment.
이러한 특성을 이용하여, 본 발명의 마그네토플라즈모닉 필름은 다양한 소자로 활용될 수 있다. 이에 제한되는 것은 아니나, 상기 마그네토플라즈모닉 필름은 자석으로 사용될 수 있다. 이에 제한되는 것은 아니나, 상기 마그네토플라즈모닉 필름에 자기장은 인가하고, 소성 및 에이징의 과정을 거처 자석 구조체를 제공할 수 있다.By using these characteristics, the magnetoplasmonic film of the present invention can be utilized in various devices. Although not limited to this, the magnetoplasmonic film may be used as a magnet. Although not limited thereto, the magnetic field may be applied to the magnetoplasmonic film, and the magnet structure may be provided through a process of firing and aging.
본 발명의 일 실시형태는 상기 마그네토플라즈모닉 필름(이하, '필름'이라고도 함)을 포함하는 습도 센서((Humidity sensors)를 제공한다.One embodiment of the present invention provides a humidity sensor (Humidity sensors) including the magnetoplasmonic film (hereinafter also referred to as 'film').
보다 구체적으로, 본 발명의 일 실시형태에 따른 습도 센서는 멤브레인; 상기 멤브레인 상에 외부 자기장의 인가하에 형성되는 Ag/Fe3O4의 코어/쉘 나노입자층; 및 상기 멤브레인에 도핑된 흡습성 무기염을 포함할 수 있고, 상기 마그네토플라즈모닉 필름은 컬러 인디케이터(color indicator)로 사용될 수 있다. More specifically, the humidity sensor according to an embodiment of the present invention comprises a membrane; A core / shell nanoparticle layer of Ag / Fe 3 O 4 formed on the membrane under application of an external magnetic field; And it may include a hygroscopic inorganic salt doped to the membrane, the magnetoplasmonic film may be used as a color indicator (color indicator).
상술한 바와 같이, 상기 멤브레인 상에 형성된 Ag/Fe3O4의 코어/쉘 나노입자들의 미 산란과 플라즈몬 공명 산란에 의해서 상기 필름은 선명한 색을 나타낸다. 상기 나노입자들의 플라즈몬 공명산란에 의해서 일어나는 높은 굴절율에 대한 민감도와 멤브레인의 뛰어난 물 흡수능력으로 인하여, 저습 및 다습 조건에서 모두 우수한 검출 능력을 나타내며, 습도 차이에 의한 필름의 명확한 색깔 변화가 모두 가시광영역에서 일어나므로, 전문화된 장비 없이 육안으로 바로 확인이 가능하다.As described above, the film exhibits a vivid color due to unscattering and plasmon resonance scattering of Ag / Fe 3 O 4 core / shell nanoparticles formed on the membrane. Due to the sensitivity to the high refractive index caused by plasmon resonance scattering of the nanoparticles and the excellent water absorption ability of the membrane, it shows excellent detection ability in both low humidity and high humidity conditions, and the clear color change of the film due to the difference in humidity is all visible. As it happens in, it can be checked with the naked eye without specialized equipment.
이하, 본 발명의 일 실시형태에 따른 마그네토플라즈모닉 필름의 구조 및 특성과 이의 제조방법을 보다 구체적으로 설명한다. 본 발명의 일 실시형태에 따른 마그네토플라즈모닉 필름은 제조방법의 설명에 의하여 보다 구체적으로 특정되고 이해될 수 있다.Hereinafter, the structure and characteristics of the magnetoplasmonic film according to an embodiment of the present invention and a method of manufacturing the same will be described in more detail. Magnetoplasmonic film according to an embodiment of the present invention can be more specifically specified and understood by the description of the manufacturing method.
본 발명의 일 실시형태에 따르면, 마그네토플라즈모닉 필름의 제조방법은 고분자 필터 멤브레인을 마련하는 단계; 상기 고분자 필터 멤브레인 상에 자기장을 인가하면서 Ag/Fe3O4의 코어/쉘 나노입자층을 형성하는 단계; 및 상기 인가된 자기장을 제거하고, 상기 고분자 필터 멤브레인을 건조하는 단계;를 포함하는 포함할 수 있다.According to one embodiment of the invention, the method for producing a magnetoplasmonic film comprises the steps of preparing a polymer filter membrane; Forming a core / shell nanoparticle layer of Ag / Fe 3 O 4 while applying a magnetic field to the polymer filter membrane; And removing the applied magnetic field and drying the polymer filter membrane.
도 1은 본 발명의 일 실시형태에 따른 마그네토플라즈모닉 필름의 제조방법을 개략적으로 나타내는 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows schematically the manufacturing method of the magnetoplasmonic film which concerns on one Embodiment of this invention.
도 1을 참조하면, 우선 고분자 필터 멤브레인(10, membrane)을 마련할 수 있다.Referring to FIG. 1, first, a polymer filter membrane 10 may be prepared.
고분자 필터 멤브레인은 높은 극성의 고분자로 이루어진 것으로, 높은 공극율을 가지며, 크로스-링크(cross-linked)된 구조를 가질 수 있다. 이에 제한되는 것은 아니나, 예를 들면 나일론 66 필터 멤브레인을 사용할 수 있다.The polymer filter membrane is made of a polymer of high polarity, has a high porosity, and may have a cross-linked structure. For example, but not limited to, nylon 66 filter membrane can be used.
이에 제한되는 것은 아니나, 고분자 필터 멤브레인(10)의 기공의 크기는 0.1 내지 0.5㎛이고, 직경은 30 내지 60mm일 수 있다.Although not limited thereto, the pore size of the polymer filter membrane 10 may be 0.1 to 0.5 μm, and the diameter may be 30 to 60 mm.
다음으로, 고분자 필터 멤브레인에 자기장을 인가하면서, 고분자 필터 멤브레인(10)상에 Ag/Fe3O4의 코어/쉘 나노입자층을 형성할 수 있다. 멤브레인의 일면에 자기장이 인가되도록 하여, 멤브레인에서 나노입자들은 상기 일면에 최소 층을 이루면서 정렬되도록 한다.Next, a core / shell nanoparticle layer of Ag / Fe 3 O 4 may be formed on the polymer filter membrane 10 while applying a magnetic field to the polymer filter membrane. The magnetic field is applied to one side of the membrane, so that the nanoparticles in the membrane are aligned with a minimum layer on the one side.
일반적으로 커피-링 효과(coffee-ring effect)가 유용한 패터닝(patterning) 기술일 때가 많이 있다. 그러나 이것이 바람직하지 않은 효과일 때가 있는데, 예를 들면, DNA 마이크로어레이(microarrays), 케미칼 리커버리(chemical recovery), 및 나노페브리케이션(nanofabrication) 등이다.In general, the coffee-ring effect is often a useful patterning technique. However, there are times when this is an undesirable effect, for example, DNA microarrays, chemical recovery, and nanofabrication.
본 발명에서는 커피-링 효과를 억제하기 위하여, 자기장을 인가하는 방법을 고안하였으며, 이에 따라 균일하고 조밀한 나노입자층을 형성할 수 있다.In the present invention, in order to suppress the coffee-ring effect, a method of applying a magnetic field has been devised, and thus a uniform and dense nanoparticle layer can be formed.
본 발명의 일 실시형태에 따르면, 상기 나노입자층의 형성은 Ag/Fe3O4의 코어/쉘 나노입자를 포함하는 콜로이달 나노입자 용액, 보다 구체적으로는 콜로이달 수분산액(aqueous colloidal suspension)을 액적(droplet) 형태로 적제(dropwise)하여 형성할 수 있다.According to an embodiment of the present invention, the nanoparticle layer may be formed of a colloidal nanoparticle solution including a Ag / Fe 3 O 4 core / shell nanoparticle, more specifically, an aqueous colloidal suspension. It may be formed by dropwise in the form of droplets (droplet).
Ag@Fe3O4 코어/쉘 나노입자의 제조방법은 특별히 제한되지 않으며, 일반적으로 알려진 방법으로 합성할 수 있다.The method for preparing Ag @ Fe 3 O 4 core / shell nanoparticles is not particularly limited and can be synthesized by a generally known method.
상기 콜로이달 수분산액의 농도는 이에 제한되지 않으나, 예를 들면 3 내지 10 mg/ml일 수 있고, 적제량은 멤브레인의 크기 및 형성하고자 하는 필름의 두께에 따라 적절히 조절될 수 있으며, 이에 제한되는 것은 아니나, 예를 들면, 5 내지 30㎕일 수 있다. 이에 제한되는 것은 아니나, Ag/Fe3O4의 코어/쉘 나노입자는 단독 분산된 180 내지 200nm의 직경을 가지는 구형의 입자일 수 있다.The concentration of the colloidal aqueous dispersion is not limited thereto, but may be, for example, 3 to 10 mg / ml, and the loading amount may be appropriately adjusted according to the size of the membrane and the thickness of the film to be formed. But may be, for example, 5 to 30 μl. Although not limited thereto, the core / shell nanoparticles of Ag / Fe 3 O 4 may be spherical particles having a diameter of 180 to 200 nm dispersed alone.
본 발명의 일 실시형태에 따르면, 외부 자기장의 인가는 자석에 의하여 가해질 수 있다. 이에 제한되는 것은 아니나, 예를 들면 네오디뮴(neodymium)(NdFeB) 블록 자석(30)을 사용할 수 있으며, 상기 자석(30)을 고분자 필터 멤브레인의 하부에 배치하여 자기장을 인가할 수 있다. 이에 제한되는 것은 아니나, 예를 들면 인가되는 자기장의 세기는 30 내지 100 mT일 수 있다.According to one embodiment of the invention, the application of an external magnetic field may be applied by a magnet. Although not limited thereto, for example, a neodymium (NdFeB) block magnet 30 may be used, and the magnet 30 may be disposed under the polymer filter membrane to apply a magnetic field. For example, the strength of the applied magnetic field may be 30 to 100 mT.
콜로이달 나노입자 용액의 액적(20, droplet)을 자기장(magnetic field)이 인가된 고분자 필터 멤브레인(10) 상에 떨어뜨리면 액적이 멤브레인 상에 퍼진다. 이때, 나노입자의 모세흐름(capillary flows)는 외부 자기장에 의하여 억제되고, 나노입자층이 균일하고 조밀하게 멤브레인 상에 코팅될 수 있다. 상기 나노입자층은 액적의 양, 자기장의 세기, 용액의 종류 등에 따라 단층 또는 2 이상의 다층으로 형성될 수 있다.A droplet 20 of the colloidal nanoparticle solution is dropped onto the polymer filter membrane 10 to which a magnetic field is applied, and the droplet spreads on the membrane. At this time, capillary flows of the nanoparticles are suppressed by an external magnetic field, and the nanoparticle layer may be coated on the membrane uniformly and densely. The nanoparticle layer may be formed as a single layer or two or more multilayers according to the amount of droplets, the strength of the magnetic field, the type of solution, and the like.
보다 구체적으로, 고분자 필터 멤브레인(10)은 다공성 및 크로스-링크된 구조의 높은 극성의 폴리머로 구성되어 있기 때문에 극성 용매 분자, 예를 들면, 물이 들어갈 때, 용해되지 않고 대신에 팽창할 수 있다. 고분자 필터 멤브레인은 수용액(aqueous solution)이 떨어진 직후에 즉시 팽창하며, 최대의 표면적을 나타낸다. 동시에 나노입자는 무작위적으로 배열되면서 고분자 필터 멤브레인의 표면에 자기적으로 증착된다. 액적이 스며들고, 용매가 증발되기 시작하면, 고분자 멤브레인은 원래의 상태로 수축되고, 나노입자들은 조밀한 층을 형성하기 위해 서로 모이게 된다. 고분자 필터 멤브레인의 친수성 및 높은 다공 특성 때문에 콜로이달 액적은 멤브레인에 떨어진 후 빠르게 건조될 수 있다. More specifically, since the polymer filter membrane 10 is composed of a highly polar polymer having a porous and cross-linked structure, when a polar solvent molecule, for example, water enters, it does not dissolve but instead expands. . The polymer filter membrane expands immediately after the aqueous solution drops and exhibits a maximum surface area. At the same time nanoparticles are randomly arranged and magnetically deposited on the surface of the polymer filter membrane. As the droplets seep and the solvent begins to evaporate, the polymer membrane shrinks to its original state and the nanoparticles gather together to form a dense layer. Because of the hydrophilicity and high porosity of the polymer filter membrane, the colloidal droplets can quickly dry after falling on the membrane.
즉, 본 발명의 일 실시형태에 따라 외부 자기장의 인가 하에 적제된 나노입자는 커피-링 효과 없이 균일하고 조밀한 층을 형성할 수 있게 된다.That is, according to one embodiment of the present invention, the nanoparticles loaded under the application of an external magnetic field can form a uniform and dense layer without a coffee-ring effect.
외부 자기장의 인가 없이 나노입자층을 형성하는 경우 강한 커피-링 효과가 발생할 수 있으며, 이에 따라 중심 영역에는 명확한 반사색(reflected color)이 나타나지 않고, 나노입자 대부분이 진한 빨강의 반사색을 나타내는 얇은 링에 모이게 되며, 나노입자 간의 거리가 균일하지 않고, 멤브레인의 표면에 무작위적으로 분산될 수 있다.When the nanoparticle layer is formed without the application of an external magnetic field, a strong coffee-ring effect may occur, and thus a thin ring in which most of the nanoparticles have a deep red reflection color does not appear in the central region. And the distance between the nanoparticles is not uniform and can be randomly dispersed on the surface of the membrane.
그러나 본 발명의 일 실시형태와 같이 외부 자기장의 인가 하에 나노입자층을 형성하는 경우에는 모든 영역에서 선명한 빨간 반사색(red reflectance)을 나타낼 수 있고, 입자간 거리가 균일하고 조밀한 단층/또는 다층의 나노입자층을 형성할 수 있다.However, in the case of forming the nanoparticle layer under the application of an external magnetic field as in one embodiment of the present invention, it is possible to exhibit a vivid red reflectance in all regions and to have a uniform and dense monolayer / or multilayer between particles. The nanoparticle layer can be formed.
상기 나노입자층의 형성단계가 완료되면, 인가된 자기장을 제거하고, 고분자 필터 멤브레인을 건조하여 마그네토플라즈모닉 필름을 얻을 수 있다. 본 발명의 일 실시형태에 따르면, 건조가 완료된 후에 소정의 온도에서 소정시간 보관할 수 있다. 이에 제한되는 것은 아니나, 예를 들면, 60℃ 온도에서 30분간 보관할 수 있다.When the forming of the nanoparticle layer is completed, the applied magnetic field may be removed, and the polymer filter membrane may be dried to obtain a magnetoplasmonic film. According to one embodiment of the present invention, after drying is completed, it can be stored for a predetermined time at a predetermined temperature. Although not limited to this, for example, it can be stored for 30 minutes at 60 ℃ temperature.
또한, 본 발명의 다른 실시형태는 상기 마그네토플라즈모닉 필름을 포함하는 습도 센서의 제조방법을 제공한다.In addition, another embodiment of the present invention provides a method of manufacturing a humidity sensor comprising the magnetoplasmonic film.
상술한 바와 같이, 상기 고분자 필터 멤브레인이 극성 고분자로 형성되는 경우 물에 대한 우수한 흡수 능력을 가지게 된다.As described above, when the polymer filter membrane is formed of a polar polymer, the polymer filter membrane has excellent water absorption ability.
본 발명의 일 실시형태에 따르면, 고분자 필터 멤브레인에 그 자체는 우수한 습도 흡수 능력을 보여주지 않기 때문에, 상기 고분자 필터 멤브레인에 흡습성 무기염(hygroscopic inorganic salts)을 도핑할 수 있다.According to one embodiment of the invention, since the polymer filter membrane itself does not show excellent moisture absorption capability, it is possible to dope hygroscopic inorganic salts into the polymer filter membrane.
본 발명의 일 실시형태에 따르면, 상기 나노 입자층을 형성한 후에 상기 멤브레인(10)에 흡습성 무기염(hygroscopic inorganic salts)을 도핑하는 단계를 추가적으로 포함할 수 있다.According to one embodiment of the present invention, after forming the nanoparticle layer, it may further include the step of doping hygroscopic inorganic salts (hygroscopic inorganic salts) on the membrane (10).
이에 제한되는 것은 아니나, 상기 흡습성 무기염은 CaCl2, 또는 KOH 및 K2CO3의 혼합물일 수 있다. 이에 제한되는 것은 아니나, 예를 들면, 1 내지 5M의 CaCl2 또는 각각 0.5 내지 1M의 KOH 및 K2CO3 의 혼합물을 사용할 수 있다. 도핑되는 염 용액의 양은 특별히 제한되지 않으며, 예를 들면 5 내지 10㎕일 수 있다.Although not limited thereto, the hygroscopic inorganic salt may be CaCl 2 , or a mixture of KOH and K 2 CO 3 . For example, but not limited to, 1 to 5 M CaCl 2 or 0.5 to 1 M KOH and K 2 CO 3, respectively. Mixtures of these may be used. The amount of the salt solution to be doped is not particularly limited and may be, for example, 5 to 10 μl.
상기 흡습성 무기염을 도핑한 후, 이를 소정의 온도에서 소정시간 보관할 수 있다. 이에 제한되는 것은 아니나, 예를 들면, 60℃ 온도에서 30분간 보관할 수 있다.After doping the hygroscopic inorganic salt, it can be stored for a predetermined time at a predetermined temperature. Although not limited to this, for example, it can be stored for 30 minutes at 60 ℃ temperature.
본 발명의 일 실시형태에 따라 마그네토플라즈모닉 필름을 제조하는 동안에 반사된 색(reflected color)이 파란색에서, 적제가 완료되고 필름이 완전히 건조된 후에 빨간색으로 변하는 것을 관찰할 수 있다. 이러한 색 반응은 나노입자 간의 거리변화 및/또는 주변의 유전률의 변화를 유도하는 팽창(swelling)에서 야기된 것 일수 있다.It can be observed that during the manufacture of the magnetoplasmonic film according to one embodiment of the invention the reflected color changes from blue to red after the loading is complete and the film is completely dried. This color reaction may be due to swelling leading to a change in distance between nanoparticles and / or a change in dielectric constant around.
본 발명의 일 실시형태에 따르면, 마그네토플라즈모닉 필름은 Ag/Fe3O4의 코어/쉘 구조의 나노입자를 포함하는 것으로, 강한 반사색을 나타낸다. 이는 금속 코어입자와 유전체 쉘의 전자기적 상호작용에 기인한 것으로 보여진다. 이러한 특징은 다른 종류 및 형태의 나노입자에 비하여 주변의 미세한 유전율 변화에 반응하며, 반사색의 변화가 가시광 영역에서 일어나는 특징을 갖는다.According to one embodiment of the present invention, the magnetoplasmonic film includes nanoparticles having a core / shell structure of Ag / Fe 3 O 4 , and exhibits strong reflection color. This is believed to be due to the electromagnetic interaction of the metal core particles with the dielectric shell. This feature responds to minute changes in the dielectric constant in comparison with other types and types of nanoparticles, and has a characteristic that the change in the reflection color occurs in the visible region.
본 발명의 일 실시형태에 따르면, 흡습성 무기염의 흡수 능력에 따라 저습 또는 다습의 조건에서 사용될 수 있는데, 예를 들면, 흡습성 무기염으로 CaCl2를 사용하는 경우 상대적으로 낮은 저습 조건에서 사용될 수 있고, KOH 및 K2CO3의 혼합물을 사용하는 경우에는 상대적으로 다습의 조건에서 사용될 수 있다.According to one embodiment of the present invention, it can be used under low humidity or high humidity conditions depending on the absorption ability of the hygroscopic inorganic salt, for example, when using CaCl 2 as the hygroscopic inorganic salt, it can be used under relatively low humidity conditions, When using a mixture of KOH and K 2 CO 3 it can be used in relatively humid conditions.
또한 CaCl2-도핑된 습도 센서의 경우 사람의 날숨 같은 미세한 습도의 차이에도 빠른 색 변화 반응을 나타낼 수 있으며, 습도 센싱의 감도가 우수한 특징을 가질 수 있다.In addition, the CaCl 2 -doped humidity sensor may exhibit a rapid color change response even with minute humidity differences such as human exhalation, and may have excellent sensitivity of humidity sensing.
이하, 본 발명의 일 실시형태에 따라 실시예를 통하여 본 발명을 보다 구체적으로 설명하나, 이들이 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to one embodiment of the present invention, but these are not intended to limit the scope of the present invention.
[실시예 1]Example 1
시약준비Reagent Preparation
질산철 9수화물(Ferric nitrate nonahydrate, Fe(NO3)3·9H2O), 소듐 시트레이트(sodium citrate, C6H5Na3O7·2H2O), 소듐 아세테이트(sodium acetate (CH3COONa, NaAc), 질산은(silver nitrate, AgNO3), 에틸렌 글리콜(ethylene glycol, EG), 디에틸렌 글리콜(diethylene glycol, DEG), 폴리에틸렌 글리콜(polyethylene glycol (PEG, Mn 200)), 수산화칼륨(potassium hydroxide, KOH), 탄산칼륨(potassium carbonate, K2CO3), 염화리튬(lithium chloride, LiCl), 염화마그네슘(Magnesium chloride, MgCl2), 질산 마그네슘 6수화물(magnesium nitrate hexahydrate, Mg(NO3)2·6H2O), 염화칼륨(potassium chloride, KCl) 및 질산칼륨(potassium nitrate, KNO3)은 시그마-알드리치(Sigma-Aldrich Inc., 용인, 한국)로부터 구입했다. 글리콜은 바이오세상(Biosesang, 경기도, 한국)으로부터 구입했다. 염화칼슘은 야쿠리 퓨어 케이칼(Yakuri Pure Chemical Co., 교토, 일본), 염화구리(II)(CuCl2)는 준세이(Junsei, 도쿄, 일본)로부터 구입했다. 시트르산(C6H8O7)은 하야시 퓨어 케미칼(Hayashi Pure Chemical Ind., Ltd., 일본)(Japan)로부터 구입했다. 나일론 필터 멤브레인(0.2㎛ pore size, 47mm diameter)은 와트맨(Whatman, UK)으로부터 구입했다. 탈이온수(Deionized water, (>18 MΩcm-1))는 모든 용액 준비 및 실험에 사용되었다. 모든 물질은 분석 등급 시약이였으며, 추가적인 정제공정 없이 사용되었다.Ferric nitrate nonahydrate (Fe (NO 3 ) 3 9H 2 O), sodium citrate (C 6 H 5 Na 3 O 7 2H 2 O), sodium acetate (CH3COONa, NaAc), silver nitrate (AgNO3), ethylene glycol (EG), diethylene glycol (DEG), polyethylene glycol (PEG, Mn 200), potassium hydroxide (KOH) ), Potassium carbonate (K 2 CO 3 ), lithium chloride (LiCl), magnesium chloride (MgCl 2 ), magnesium nitrate hexahydrate (Mg (NO 3 ) 2 · 6H 2 O), potassium chloride (KCl) and potassium nitrate (KNO3) were purchased from Sigma-Aldrich Inc., Yongin, Korea Glycol was obtained from Biosesang (Biosesang, Gyeonggi-do, Korea) Calcium chloride was obtained from Yakuri Pure Chemical Co. (Kyoto, Japan), Copper (II) chloride (CuCl). 2 ) was purchased from Junsei (Tokyo, Japan) Citric acid (C 6 H 8 O 7 ) was purchased from Hayashi Pure Chemical Ind., Ltd., Japan (Japan) Nylon filter membrane (0.2 μm pore size, 47 mm diameter) was purchased from Whatman, UK Deionized water (> 18 MΩcm-1) was used for all solution preparations and experiments. It was a reagent and was used without further purification.
Ag@Fe3O4 코어/쉘 나노입자의 합성Synthesis of Ag @ Fe3O4 Core / Shell Nanoparticles
Ag@Fe3O4 코어/쉘 나노입자는 일반적으로 알려진 방법으로 합성하였다. 질산철 9수화물(Fe(NO3)3·9H2O) (4 mmol)을 에틸렌 글리콜(40mL)에 용해하고, 소듐아세테이트(35mmol) 및 질산은(AgNO3, 0.59mmol)을 첨가하였다. 상기 혼합물은 모든 반응물이 완전히 용해될 때까지 강하게 저어졌다. 얻어진 혼합물을 50mL 테프론-라인드 스테인레스-스틸 오토클레이브(Teflon-lined stainless-steel autoclave)에 옮기고, 210℃의 온도에서 4시간 동안 가열하였다. 검은색 생성물은 에탄올 및 탈이온수로 여러 번 세척한 후, 60℃의 온도의 진공에서 6시간 동안 건조하였다. 나노입자를 안정화시키기 위하여 제조된 나노입자 15mg을 15ml의 시트르산(0.6 mg/ml)에 분산시켰다. 용액을 2시간 동안 초음파 프로브(Ultrasonic probe)로 초음파처리하였다. 그 다음 자석을 이용하여 나노입자를 탈이온수로 세척하였으며, 세척과정은 3번 반복하였다.Ag @ Fe 3 O 4 core / shell nanoparticles were synthesized by generally known methods. Iron nitrate hexahydrate (Fe (NO 3 ) 3 .9H 2 O) (4 mmol) was dissolved in ethylene glycol (40 mL), and sodium acetate (35 mmol) and silver nitrate (AgNO 3 , 0.59 mmol) were added. The mixture was stirred vigorously until all reactants were completely dissolved. The resulting mixture was transferred to a 50 mL Teflon-lined stainless-steel autoclave and heated at 210 ° C. for 4 hours. The black product was washed several times with ethanol and deionized water and then dried in vacuo at 60 ° C. for 6 hours. 15 mg of the prepared nanoparticles were dispersed in 15 ml of citric acid (0.6 mg / ml) to stabilize the nanoparticles. The solution was sonicated with an ultrasonic probe for 2 hours. Then, the nanoparticles were washed with deionized water using a magnet, and the washing process was repeated three times.
마그네토플라즈모닉 필름의 형성Formation of Magnetoplasmonic Films
Ag@Fe3O4 나노입자의 마그네토프라즈모닉 필름은 외부 자기장의 인가하에 멤브레인 상에 균일하게 형성하였다. 콜로이달 수분산액(aqueous colloidal suspension)(5mg/ml)을 네오디뮴(neodymium) (NdFeB) 블록 자석(block magnets) (40mm×20mm×5mm) (B = 50 mT) 위에 놓인 멤브레인 상에 적제하였다. 나노입자의 모세 흐름(capillary flows)이 외부 자기장에 의하여 억제되고, 균일하게 코팅된 필름이 얻어졌다. 콜로이달 액적(10㎕, droplet)은 멤브레인상에 떨어진 후 12초 후에 빠르게 건조되었다. 완전히 건조 시킨 후, 60℃ 온도의 오븐에 30분간 보관하였다.The magnetoplasmonic film of Ag @ Fe 3 O 4 nanoparticles was uniformly formed on the membrane under the application of an external magnetic field. Aqueous colloidal suspension (5 mg / ml) was loaded onto a membrane placed on neodymium (NdFeB) block magnets (40 mm × 20 mm × 5 mm) ( B = 50 mT). Capillary flows of the nanoparticles were suppressed by an external magnetic field and a uniformly coated film was obtained. Colloidal droplets (10 [mu] l, droplets) rapidly dried after 12 seconds of falling onto the membrane. After drying completely, it was stored for 30 minutes in an oven at 60 ℃ temperature.
습도 센서의 제조Manufacturing of Humidity Sensor
습도 센서는 흡습성 무기염(hygroscopic inorganic salts)을 멤브레인에 도핑하여 제조하였다. 서로 다른 습도 범위를 센싱하기 위해서 2가지의 습도 센서를 제조하였다. 2M CaCl2와 0.625M KOH 및 0.625M K2CO3의 혼합물을 각각 저습 및 다습의 센싱을 위하여 사용하였다. 6㎕의 염 용액(salt solution)을 나노입자가 코팅된 멤브레인에 적제하고, 60℃ 온도에서 30분간 보관하였다. 습도 센서는 습기 공급원으로 다르게 포화 염 용액 300 ㎕를 포함하는 닫힌 박스(petri dish, 38 mm x 10 mm)에 놓았다. 각각 11%, 33%, 52%, 68%, 85% 및 95%의 습도 값을 가지는 LiCl, MgCl2, Mg(NO3)2, CuCl2, KCl 및 KNO3 의 6개의 습도 조절 염 용액을 은 25℃의 온도를 유지하였다.The humidity sensor was prepared by doping hygroscopic inorganic salts to the membrane. Two humidity sensors were fabricated to sense different humidity ranges. A mixture of 2M CaCl 2 and 0.625M KOH and 0.625MK 2 CO 3 was used for the sensing of low humidity and high humidity, respectively. 6 μl of salt solution was loaded onto the membrane coated with nanoparticles and stored at 60 ° C. for 30 minutes. The humidity sensor was placed in a closed box (38 mm x 10 mm) containing 300 μl of saturated salt solution as a moisture source. Six humidity control salt solutions of LiCl, MgCl 2 , Mg (NO 3 ) 2 , CuCl 2 , KCl and KNO 3 with humidity values of 11%, 33%, 52%, 68%, 85% and 95%, respectively The temperature of 25 degreeC was maintained.
[평가][evaluation]
Ag@Fe3O4 NPs 나노입자의 형태(morphology)는 HR-TEM(JEOL, JEM-3010, Japan), FE-SEM(S-4700, Hitachi, Japan)에 의해 측정하였다. 자기 측정(Magnetic measurements)은 슈퍼컨덕팅 퀀텀 인터피어런스 디바이스(Superconducting Quantum Interference Device, SQUID) 마그네토미터(magnetometer)(MPMS XL-7, Quantum Design, Inc., San Diego, CA)를 사용하여 수행하였다. 나노입자의 흡수도(흡광도)absorbance 및 reflectance 는 각각 UV-가시광 스펙트로스코피(UV-Vis spectroscopy)(SCINCO, S310, 한국) 및 UV-가시광-NIR 스펙트로포토미터(UV-Vis-NIR spectrophotometer, Cary 5000, Varian, USA)를 사용하여 수행하였다.The morphology of Ag @ Fe 3 O 4 NPs nanoparticles was measured by HR-TEM (JEOL, JEM-3010, Japan) and FE-SEM (S-4700, Hitachi, Japan). Magnetic measurements were performed using a Superconducting Quantum Interference Device (SQUID) magnetometer (MPMS XL-7, Quantum Design, Inc., San Diego, CA). . Absorbance and reflectance of nanoparticles are determined by UV-Vis spectroscopy (SCINCO, S310, Korea) and UV-Vis-NIR spectrophotometer, Cary 5000, respectively. , Varian, USA).
코어/쉘 나노입자Core / Shell Nanoparticles
Ag 코어 및 Fe3O4 쉘을 가지는 마그네토플라즈모닉 나노입자는 Ag+, Fe3 + 및 EG의 환원반응에 의한 쉬운 원스탭 용매열분해법(facile one-step solvothermal route)에 의해 마련되었다. 나노입자는 하나 또는 둘 이상의 카르복실레이트 작용기를 통해 시트르산의 흡착에 의해 안정되었으며, 표면이 음 전하로 하전 됨을 나타내었다.Magnetoplasmonic nanoparticles with an Ag core and a Fe 3 O 4 shell were prepared by an easy one-step solvothermal route by reduction of Ag + , Fe 3 + and EG. The nanoparticles were stabilized by adsorption of citric acid through one or more carboxylate functional groups, indicating that the surface is negatively charged.
도 2(A)는 상기 실시예에서 제조된 Ag@Fe3O4 나노입자의 SEM 이미지로써, 이를 참조하면, 약 190nm의 직경을 가지는 구형의 나노입자가 단독 분산되어 있음을 확인할 수 있고, 도 2(A)의 확대된 SEM 이미지로부터 나노입자의 표면이 거칠고, 많은 작은 나노입자들로 구성되어 있음을 볼 수 있다. Figure 2 (A) is an SEM image of the Ag @ Fe 3 O 4 nanoparticles prepared in the above example, referring to this, it can be seen that the spherical nanoparticles having a diameter of about 190nm is dispersed alone, FIG. The magnified SEM image of 2 (A) shows that the surface of the nanoparticles is rough and composed of many small nanoparticles.
도 2(B)는 마그네토플라즈모닉 코어/쉘 나노입자의 TEM 이미지로써, Ag 코어는 검은색으로 나타나고, Fe3O4 은 Ag 금속보다 더 높은 전자 밀도 때문에 보다 밝게 나타난다. Ag 코어는 약 65nm의 거의 균일한 크기를 가지며, 쉘(shell)은 62 nm(thickness of ca.)의 두께를 가진다. 2 (B) is a TEM image of the magnetoplasmonic core / shell nanoparticle, in which the Ag core appears black and Fe 3 O 4 appears brighter due to the higher electron density than the Ag metal. The Ag core has a nearly uniform size of about 65 nm and the shell has a thickness of 62 nm (thickness of ca.).
도 3(A)에는 확실히 구별되는 코어-쉘 나노입자의 2개의 피크가 있다. 400nm 및 697nm 주변의 피크는 각각 산화 철 쉘((iron oxide shell)의 미어 산란공명(Mie scattering resonance) 및 Ag 코어의 LSPR(localized surface plasmonic resonance)에 기인한 것이다. 콜로이달 Ag 나노입자는 일반적으로 420nm 주변에 특징적인 SPR 피크를 나타낸다. 코어/쉘 나노입자의 SPR 피크의 큰 레드-쉬프트(697nm로는 Ag 코어를 둘러싸고 있는 유전체 Fe3O4의 높은 반사율(2.42) 에 기인한다. 다공성 코어/쉘 나노입자의 자기 특성은 도 2(B)의 300K에서 자기 이력곡선(magnetic hysteresis loops)에서 확인할 수 있다. 나노입자는 높은 포화 자화(magnetization saturation) (MS = 64 emu/g) 및 보자력( coercivity) HC ~ 3.5Oe와 함께 높은 연 강자성(soft ferromagnetism)을 나타낸다.In Figure 3 (A) there are two peaks of core-shell nanoparticles which are clearly distinguished. Peaks around 400 nm and 697 nm are due to the Mie scattering resonance of the iron oxide shell and the localized surface plasmonic resonance (LSPR) of the Ag core, respectively. The characteristic SPR peak around 420 nm is due to the large red-shift of the SPR peak of the core / shell nanoparticles (high reflectance (2.42) of the dielectric Fe 3 O 4 surrounding the Ag core at 697 nm.) Porous core / shell The magnetic properties of the nanoparticles can be seen in magnetic hysteresis loops at 300 K in Fig. 2 (B) The nanoparticles exhibit high magnetization saturation (M S = 64 emu / g) and coercivity. ) It shows high soft ferromagnetism with H C ~ 3.5Oe.
마그네토플라즈모닉 필름Magnetoplasmonic film
도 4는 본 발명의 일 실시형태에 따라 제조된 마그네토플라즈모닉 필름의 SEM 이미지(C)와 외부자기장의 인가 없이 제조된 마그네토플라즈모닉 필름의 SEM 이미지(B)이다.4 is a SEM image (C) of the magnetoplasmonic film prepared according to an embodiment of the present invention and a SEM image (B) of the magnetoplasmonic film prepared without the application of an external magnetic field.
도 4(A)의 삽입도를 참조하면, 강한 커피-링 효과는 외부 자기장 없이 제조된 필름에서 관찰되는데, 중심의 주요 영역이 명확한 반사색을 나타내지 않는 반면에 나노입자 대부분은 진한 빨강의 반사색을 나타내는 얇은 링에 모여있다. SEM 검사에 의하여, 나노입자는 다양한 범위의 입자 간 거리를 가지며, 멤브레인의 표면에 무작위적으로 분산된 것을 관찰할 수 있었다.Referring to the inset of Figure 4 (A), strong coffee-ring effects are observed in films made without external magnetic fields, where the majority of the nanoparticles have a deep red reflection color, while the central region of the center does not exhibit a clear reflection color. Gathered in a thin ring to indicate. By SEM inspection, the nanoparticles were observed to have random distances on the surface of the membrane with a range of interparticle distances.
이와 대조적으로, 도 4(B)에 나타난 바와 같이, 본 발명의 실시형태에 따라 외부 자기장의 인가하에 제조된 필름은 모든 영역에서 선명한 빨간색(red reflectance)을 나타내고, 입자 간 거리가 균일하며 조밀하고, 다층을 형성하는 것을 확인할 수 있다.In contrast, as shown in FIG. 4 (B), films made under the application of an external magnetic field in accordance with an embodiment of the present invention exhibit vivid red reflectance in all regions, with uniform and dense distances between particles. It can be confirmed that a multilayer is formed.
색 반응 관찰Color reaction
마그네토플라즈모닉 필름을 제조하는 동안, 반사색이 파란색에서, 적제가 완료되고 필름이 완전히 건조되면 빨간색으로 변하는 것을 관찰하였다. 이러한 흥미로운 색 반응은 입자 간의 거리변화 및/또는 주변의 유전율 변화를 유도하는 팽창(swelling)에서 야기된 것 일수 있다.During the preparation of the magnetoplasmonic film, it was observed that the reflection color changed to blue when the loading was completed and the film was completely dried. This interesting color reaction may be due to swelling leading to a change in distance between particles and / or a change in dielectric constant around.
색 변화의 정확한 메카니즘을 설명하기 위하여, 제조된 필름의 형태(morphology) 및 DEG를 첨가한 후에 건조된 것을 SEM으로 검사하였다. 멤브레인은 DEG의 첨가에 의하여 부풀 수 있고, 이후 가역적으로 원래의 상태로 수축된다.In order to explain the exact mechanism of the color change, the morphology of the film produced and the drying after adding DEG were examined by SEM. The membrane can be swollen by the addition of DEG and then reversibly retracted.
상기 실시예에서 제조된 필름과 비교하여, 멤브레인이 부풀었다 수축된 후에 필름을 작은 섬 영역으로 나누는 많은 크랙(cracks)이 있다. 제조된 구조의 제한때문에 각 섬 영역 내에 있는 입자 간 거리는 동일하게 유지되는 반면에, 멤브레인의 팽창 때문에 필름이 분리된 섬 영역들로 분열하게 되는 것을 확인하였다. Compared to the film produced in this example, there are many cracks that divide the film into small island regions after the membrane has swollen and shrunk. Because of the limitations of the fabricated structure, it was found that the distance between the particles in each island region remained the same, while the film split into separate island regions due to the expansion of the membrane.
주변의 유전환경이 색 변화의 원인임을 명확히 하기 위하여, 다양한 용매를 필름에 적용하였다. 나일론 66인 높은 극성 폴리머이기 때문에 극성 용매는 폴리아미드 사슬과 H-결합을 형성하면서 나일론 66과 친화도를 가진다. 나일론 66과 극성용매의 강한 상호작용이 멤브레인을 팽창하게 한다. 대조적으로, 비극성 분자는 나일론 66과 어떠한 극성 상호작용을 가지지 않으며, 멤브레인을 부풀게 할 수 없다. 용매의 종류에 상관없이, 필름은 극성 및 비극성 용매 모두에 명확하게 반응하며, 1 에서 1.52로 반사율의 증가와 함께 퍼플 핑크(purple pink)에서 어두운 보라색(dark violet), 블루 바이올렛(blue violet), 어두운 블루(dark blue) 및 시안(cyan)으로 색이 변화하는 것을 관찰하였다.To clarify that the surrounding dielectric environment is the cause of the color change, various solvents were applied to the film. Because of the high polar polymer of nylon 66, the polar solvent has an affinity with nylon 66, forming H-bonds with the polyamide chains. The strong interaction of nylon 66 with the polar solvent causes the membrane to expand. In contrast, nonpolar molecules do not have any polar interaction with nylon 66 and cannot swell the membrane. Regardless of the type of solvent, the film responds clearly to both polar and nonpolar solvents, with purple to dark violet, blue violet, blue violet, Color change was observed with dark blue and cyan.
마그네토플라즈모닉 필름의 광학 특성Optical Properties of Magnetoplasmonic Films
마그네토플라즈모닉 필름의 광학 특성을 연구하기 위하여, 다양한 종류의 Fe3O4 나노입자를 사용하고, 같은 코팅기술을 사용하여 멤브레인 상에 필름을 제조한 후 반사율을 측정하였다. 샘플의 반사율은 건조된 상태 및 PEG가 도핑된 상태의 2가지 다른 상태에서 측정되었다. PEG 분자는 적제될 때 팽창되어 있는 멤브레인 네트워크로 들어가고, 건조된 후에 그 안에 보유된다. 이것은 완전히 건조된 후의 평형 상태에서 필름을 둘러싸고 있는 주변의 유전환경을 증가시킨다.In order to study the optical properties of magnetoplasmonic films, various kinds of Fe 3 O 4 nanoparticles were used, and the films were prepared on the membrane using the same coating technique, and then reflectance was measured. The reflectance of the sample was measured in two different states, dried and doped with PEG. PEG molecules enter the expanded membrane network when loaded and are retained therein after being dried. This increases the surrounding dielectric environment surrounding the film at equilibrium after complete drying.
도 5는 4가지 종류의 마그네틱 나노입자로 코팅된 마그네토플라즈모닉 필름의 반사스펙트럼 및 이들의 사진(250nm 중공(hollow) Fe3O4(A), 250nm 솔리드(solid) Fe3O4(B), 350nm 솔리드(solid) Fe3O4(C) 및 190nm Ag@Fe3O4(D))이다. FIG. 5 shows reflection spectra of magnetoplasmonic films coated with four kinds of magnetic nanoparticles and photographs thereof (250 nm hollow Fe 3 O 4 (A), 250 nm solid Fe 3 O 4 (B)). , 350 nm solid Fe 3 O 4 (C) and 190 nm Ag @ Fe 3 O 4 (D)).
도 5를 참조하면, 건조된 상태에서 250nm 솔리드(solid) Fe3O4 샘플이 검정색을 나타나는 반면에, 중공 Fe3O4 및 코어/쉘 Fe3O4 샘플이 강한 반사색을 명확히 나타냄을 관찰할 수 있었다. 350nm 솔리드 Fe3O4 샘플은 어두운 청록색(dim blue-green)을 나타낸다. 중공 샘플의 상대적으로 강한 반사색의 원인은 구형 중공의 불균일 및 낮은 밀도 구조의 미어 산란(Mie scattering)에 기인할 수 있다. 전자 및 자기 공명, 및 이들의 상호작용에 강한 영향을 줄 수 있는 입자 구조(particle geometry)는 구형의 산란 방향을 조절하는 데 중요한 역할을 하는 것으로 알려져 있다. 건조된 상태의 중공 샘플의 구조적 파라미터(geometrical parameters)는 청록색으로의 후방산란(도 5(A) 참조)을 나타내는 조건을 만족시킬 가능성이 있다. 반사색 또한 451nm 및 564nm의 2개의 피크를 나타내는 스펙트라와 일치한다. 대조적으로, 상기 방향산란(directional scattering)를 위한 조건은 250nm 및 350nm 솔리드 샘플(도 5(B), (C))에는 만족되지 않는다. 350nm 솔리드 샘플(도 5(C))의 반사 스펙트라에서 분명한 피크가 관찰되지만, 샘플의 사진은 매우 어두운 청록색을 보여준다. 이것은 사람의 눈에는 매우 약하지만, 확산 반사율측정(diffuse reflectance measurement)에 의해 효과적으로 수집될 수 있는 비방향 산란(un-directional scattering)의 증거가 될 수 있다. PEG의 도핑 후, 코어/쉘 샘플만이 강한 반사색을 보여주었다. 250nm 중공 Fe3O4 샘플은 검정색은 나타내는 반면에, 약한 옐로우 및 그린 색깔이 각각 250nm 중공 및 350nm 솔리드 샘플에서 관찰되었다. Referring to FIG. 5, it was observed that the 250 nm solid Fe 3 O 4 sample appeared black in the dried state, while the hollow Fe 3 O 4 and core / shell Fe 3 O 4 samples clearly showed strong reflection colors. Could. 350nm Solid Fe 3 O 4 The sample shows dim blue-green. The reason for the relatively strong reflection color of the hollow sample may be due to the nonuniformity of the spherical hollow and the Mie scattering of the low density structure. Particle geometry, which can strongly affect electron and magnetic resonance, and their interactions, is known to play an important role in controlling the scattering direction of the sphere. The geometrical parameters of the hollow sample in the dried state are likely to satisfy the conditions indicative of backscattering to cyan (see FIG. 5 (A)). The reflected color also matches the spectra representing two peaks of 451 nm and 564 nm. In contrast, the conditions for directional scattering are not satisfied for 250 nm and 350 nm solid samples (FIGS. 5 (B), (C)). Obvious peaks are observed in the reflection spectra of the 350 nm solid sample (FIG. 5C), but the picture of the sample shows very dark cyan. This is very weak for the human eye but can be evidence of un-directional scattering that can be effectively collected by diffuse reflectance measurement. After doping of PEG, only the core / shell sample showed a strong reflection color. The 250 nm hollow Fe 3 O 4 sample was black while the weak yellow and green colors were observed in the 250 nm hollow and 350 nm solid samples, respectively.
도 5(D)를 참조하면, 본 발명의 일 실시형태에 따른 마그네토플라즈모닉 필름의 경우, 건조된 필름의 반사 스펙트럼에서 가시광영역(420nm 및 720nm)에서 2개의 명확한 피크가 있다. 그러나 짧은 파장의 피크에 대한 긴 파장 피크의 높은 강도비(intensity ratio)로 인하여 필름이 빨간색을 나타내게 한다. PEG 도핑 후, 긴 파장의 피크는 사람의 눈으로 볼 수 없는 750nm로 크게 이동하며, 필름은 430 nm의 단-파장 피크와 일치하는 진한 파란색(deep blue) 색을 나타낸다.Referring to FIG. 5D, in the case of the magnetoplasmonic film according to one embodiment of the present invention, there are two distinct peaks in the visible region (420 nm and 720 nm) in the reflection spectrum of the dried film. However, the high intensity ratio of the long wavelength peak to the short wavelength peak causes the film to appear red. After PEG doping, the long wavelength peak shifts significantly to 750 nm, which is invisible to the human eye, and the film shows a deep blue color that matches the short-wavelength peak of 430 nm.
필름의 굴절율 및 민감도Refractive Index and Sensitivity of Film
필름의 굴절율(refractive index) 및 민감도(sensitivity)를 연구하기 위해 PEG를 사용하였다.PEG was used to study the refractive index and sensitivity of the film.
도 6은 PEG가 첨가된 멤브레인의 SEM 이미지 (A) 및 이들의 사진(B)이다.6 is an SEM image (A) and a photograph (B) of the membrane to which PEG was added.
도 6(A)의 SEM 이미지와 같이 멤브레인의 네트워크는 PEG로 채워지며, 다공 특성이 PEG의 농도가 증가함에 따라 명확하게 감소함을 확인할 수 있다.As shown in the SEM image of FIG. 6 (A), the network of the membrane is filled with PEG, and it can be seen that the porosity is clearly reduced as the concentration of PEG increases.
도 7은 PEG가 첨가된 멤브레인의 반사 스펙트럼(A) 및 PEG 농도에 따른 장파장 피크에서의 λmax 및 팽창값(swelling value)의 상관관계를 나타내는 그래프(B)이다.FIG. 7 is a graph (B) showing the correlation between λ max and swelling values at a long wavelength peak according to the reflection spectrum (A) and PEG concentration of a PEG-doped membrane.
도 7(B)을 참조하면, 미 산란 공명(Mie scattering resonance)에 의해 야기된 단-파장 피크는 약간 레드-쉬프트(red-shift) 되는데, 0% PEG가 첨가된 멤브레인의 420nm에서 20% 및 30% PEG가 첨가된 멤브레인은 각각 426nm 및 428nm로 약간 이동되었다. 이 피크는 50, 75 및 100%로 PEG 농도가 증가되면 431nm에서 고정된다. 레드-쉬프트 특성과 함께 상기 피크는 PEG 농도가 증가되면 눈에 띄게 넓어진다. 반면에, 장-파장 피크는 PEG 농도가 0에서 30%로 증가할 때 731nm에서 792nm로 레드-쉬프트하고, 질량 팽창 값(mass swelling value)은 0에서 49%로 증가한다. 100%까지 PEG 농도가 증가하면 질량 팽창은 173%까지 선형적으로 증가한다. 장-파장 피크는 모노크로메이터(monochromator)의 한계 때문에 50% 이상의 PEG 농도에서는 결정될 수 없다.Referring to FIG. 7 (B), the short-wavelength peak caused by Mie scattering resonance is slightly red-shifted, 20% at 420 nm of the membrane to which 0% PEG is added and The membrane with 30% PEG added slightly shifted to 426 nm and 428 nm, respectively. This peak is fixed at 431 nm with increasing PEG concentrations of 50, 75 and 100%. Together with the red-shift properties, the peaks noticeably widen as PEG concentration is increased. On the other hand, the long-wavelength peak red-shifts from 731 nm to 792 nm when the PEG concentration increases from 0 to 30%, and the mass swelling value increases from 0 to 49%. As PEG concentration increases by 100%, mass expansion increases linearly by 173%. Long-wavelength peaks cannot be determined at PEG concentrations above 50% due to the limitation of the monochromator.
도 6(B)를 참조하면, 다양한 PEG 농도가 첨가된 후 건조된 액적(drops)사진은 진한 빨강(deep-red), 바이올렛(violet), 블루-바이올렛(blue-violet)에서 진한 파랑(deep-blue)까지 강하게 반사색을 나타낸다. 이와 같이 색이 변화하는 특성은 상기에서 언급한 바와 같이 2색 특성(bi-color characteristic) 때문일 수 있다(도 7(A) 참조). 0% PEG가 첨가된 필름은 미 산란(Mie scattering)에 대한 플라즈몬 공명 산란(plasmon resonance scattering)의 지배력 때문에 진한 빨강 반사를 보여준다. PEG 농도가 10%까지 증가할 때, 장-파장 피크는 사람의 눈에 보이지 않는 749nm까지 크게 이동하고, 필름은 바이올렛(violet color, 426 nm) 을 나타낸다. 더 높은 PEG 농도에서, 장-파장 피크의 반사색의 기여는 중요하지 않다. 정말로, 필름 주변의 매체의 굴절율이 포화되는(n = 1.46) PEG 농도가 50% 이상일 때 431nm 파장의 색에 따라 필름은 진한 파랑을 나타낸다. Referring to FIG. 6 (B), the droplets dried after various PEG concentrations were added are deep red, violet and blue-violet to deep blue. strongly reflects the color up to -blue). This change in color may be due to a bi-color characteristic as mentioned above (see FIG. 7 (A)). The film with 0% PEG added showed a dark red reflection due to the dominance of plasmon resonance scattering to Mie scattering. When the PEG concentration increased by 10%, the long-wavelength peak shifted significantly to 749 nm, which is invisible to the human eye, and the film showed violet color (426 nm). At higher PEG concentrations, the contribution of the reflection color of the long-wavelength peak is not significant. Indeed, the film appears dark blue according to the color of the 431 nm wavelength when the PEG concentration at which the refractive index of the media around the film is saturated (n = 1.46) is at least 50%.
습도 센서Humidity sensor
상대 습도(relative humidity, RH))에 대한 염-도핑된 필름의 반응은 저습 상태(11%)에서 다습 상태(95%)의 범위로 조절하기 위하여 포화 염(saturated salts)를 포함하는 닫힌 페트리 디쉬(closed petri dishes)에서 수행하였다.The reaction of the salt-doped film to relative humidity (RH) is a closed petri dish containing saturated salts to control the range from low humidity (11%) to high humidity (95%). (closed petri dishes).
도 8은 본 발명의 일 실시형태에 따라 제조된 CaCl2가 도핑된 습도 센서 및 KOH 및 K2CO3 가 도핑된 습도 센서의 다양한 상대습도 환경에서의 반응사진이다.8 is a photograph of reaction in various relative humidity environments of a CaCl 2 doped humidity sensor and a KOH and K 2 CO 3 doped humidity sensor prepared according to one embodiment of the present invention.
도 8을 참조하면, CaCl2-도핑된 필름의 경우, 필름을 디쉬에 놓을 때 빠른 색깔 변화가 관찰되었다. 또한, 상대습도가 11%에서 85%로 변화할 때 눈에 띄는 색깔 변화가 관찰되었다. Referring to FIG. 8, for CaCl 2 -doped films, fast color change was observed when the film was placed in a dish. In addition, noticeable color change was observed when the relative humidity changed from 11% to 85%.
이와 대조적으로, 상대 습도에 대한 KOH,K2CO3-도핑된 필름의 색 반응은 CaCl2-도핑된 필름과 비교하여 비교적 느리게 진행되었다. 게다가 KOH,K2CO3-도핑된 필름은 낮은 범위의 상대습도(11%에서 52%)에서는 색 변화가 나타나지 않았지만, 52%에서 95%에서는 큰 변화가 관찰되었다. 2가지 종류의 습도 센서의 차이는 CaCl2와 KOH 및 K2CO3의 혼합물의 습기 흡수 능력에 기인하는 것으로 판단된다.In contrast, the color reaction of KOH, K 2 CO 3 -doped films to relative humidity proceeded relatively slowly compared to CaCl 2 -doped films. In addition, KOH, K 2 CO 3 -doped films showed no color change at low relative humidity (11% to 52%), but large changes were observed at 52% to 95%. The difference between the two types of humidity sensors is believed to be due to the moisture absorption capacity of the mixture of CaCl 2 and KOH and K 2 CO 3 .
도 9는 본 발명의 일 실시형태에 따른 습도 센서의 날숨에 대한 색 반응을 나타내는 사진이다.9 is a photograph showing color response to exhalation of a humidity sensor according to an embodiment of the present invention.
CaCl2-도핑된 필름을 사용하여 사람의 날숨으로 인한 습도 변화를 센싱하였다. 상기 습도 센서는 날숨에 대해 상당히 빠른 색 반응을 나타내었다. 날숨의 피크에서, 건조된 상태의 진한 빨강에서 레드-바이올렛(red-violet), 바이올렛 블루(violet blue) 및 블루 그린(blue green)로 2.7초 내에 색이 변화하였고, 날숨이 멈춘 후 1.9초 내에 진한 빨강으로 빠르게 돌아왔다.CaCl 2 -doped films were used to sense humidity changes due to human exhalation. The humidity sensor showed a fairly fast color response to exhalation. At the peak of exhalation, the color changed from dry red to red-violet, violet blue and blue green in 2.7 seconds, and within 1.9 seconds after the exhalation stopped. It quickly returned to dark red.
이상, 구현예 및 실시예를 들어 본 발명상세하게 설명하였으나, 본 발명은 상기 구현예들에 한정되지 않으며, 여러 가지 다양한 형태로 변형될 수 있으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함이 명백하다. 또한, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.Although the present invention has been described in detail above with reference to embodiments and examples, the present invention is not limited to the above embodiments, and may be modified in various forms, and is common in the art within the technical spirit of the present invention. It is clear that many variations are possible by the knowledgeable. In addition, various forms of substitution, modification, and alteration may be made by those skilled in the art without departing from the technical spirit of the present invention described in the claims, which are also within the scope of the present invention. something to do.

Claims (14)

  1. 멤브레인; 및Membrane; And
    상기 멤브레인 상 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자가 서로 인접하여 형성된 단층 또는 2 이상의 다층의 Ag/Fe3O4의 코어/쉘 나노입자층을 포함하고,Ag / Fe 3 O 4 core / shell nanoparticles of Ag / Fe 3 O 4 formed on or in the membrane adjacent to each other comprises a single layer or two or more layers of Ag / Fe 3 O 4 core / shell nanoparticle layer,
    상기 코어/쉘 나노입자들 사이의 유전율 변화에 따라 가시광 영역 내에서 색이 변화하는 것을 특징으로 하는,The color is changed in the visible region according to the change in dielectric constant between the core / shell nanoparticles,
    마그네토플라즈모닉 필름(Magnetoplasmonic film).Magnetoplasmonic film.
  2. 제1항에 있어서,The method of claim 1,
    상기 멤브레인은 다공성 극성 고분자임을 특징으로 하는, The membrane is characterized in that the porous polar polymer,
    마그네토플라즈모닉 필름.Magnetoplasmonic film.
  3. 제2항에 있어서,The method of claim 2,
    상기 멤브레인은 기공의 크기가 0.1 내지 0.5㎛이고, 직경은 30 내지 60mm인 것을 특징으로 하는, The membrane has a pore size of 0.1 to 0.5㎛, characterized in that the diameter of 30 to 60mm,
    마그네토플라즈모닉 필름.Magnetoplasmonic film.
  4. 제1항에 있어서,The method of claim 1,
    상기 코어/쉘 나노입자들은 서로 자기적으로 결합되어 있음을 특징으로 하는, The core / shell nanoparticles are characterized in that they are magnetically bonded to each other,
    마그네토플라즈모닉 필름.Magnetoplasmonic film.
  5. 제1항에 있어서,The method of claim 1,
    상기 멤브레인은 팽창 및 수축 가능하도록 구성되어, 나노입자 간의 간격 또는 배열을 바꿈을 특징으로 하는, The membrane is configured to be expandable and contractible, characterized in that changing the spacing or arrangement between nanoparticles,
    마그네토플라즈모닉 필름.Magnetoplasmonic film.
  6. 제1항에 있어서,The method of claim 1,
    상기 Ag/Fe3O4의 코어/쉘 나노입자는 180 내지 200nm의 직경을 가지는 구형의 입자인 것을 특징으로 하는, The core / shell nanoparticles of Ag / Fe 3 O 4 is characterized in that the spherical particles having a diameter of 180 to 200nm,
    마그네토플라즈모닉 필름.Magnetoplasmonic film.
  7. 멤브레인; 및Membrane; And
    상기 멤브레인 상 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자가 서로 인접하여 형성된 단층 또는 2 이상의 다층의 Ag/Fe3O4의 코어/쉘 나노입자층을 포함하고,Ag / Fe 3 O 4 core / shell nanoparticles of Ag / Fe 3 O 4 formed on or in the membrane adjacent to each other comprises a single layer or two or more layers of Ag / Fe 3 O 4 core / shell nanoparticle layer,
    상기 코어/쉘 나노입자들 사이의 유전율 변화에 따라 가시광 영역 내에서 색이 변화하는 것을 특징으로 하는,The color is changed in the visible region according to the change in dielectric constant between the core / shell nanoparticles,
    마그네토플라즈모닉 필름을 포함하는 자석 구조체.Magnetic structure comprising a magnetoplasmonic film.
  8. 멤브레인; 및Membrane; And
    상기 멤브레인 상 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자가 서로 인접하여 형성된 단층 또는 2 이상의 다층의 Ag/Fe3O4의 코어/쉘 나노입자층을 포함하고,Ag / Fe 3 O 4 core / shell nanoparticles of Ag / Fe 3 O 4 formed on or in the membrane adjacent to each other comprises a single layer or two or more layers of Ag / Fe 3 O 4 core / shell nanoparticle layer,
    상기 코어/쉘 나노입자들 사이의 유전율 변화에 따라 가시광 영역 내에서 색이 변화하는 것을 특징으로 하는,The color is changed in the visible region according to the change in dielectric constant between the core / shell nanoparticles,
    습도 센서. Humidity sensor.
  9. 제8항에 있어서,The method of claim 8,
    상기 코어/쉘 나노입자들 주위에 도핑된 흡습성 무기염을 추가로 포함하는,Further comprising a hygroscopic inorganic salt doped around the core / shell nanoparticles,
    습도 센서. Humidity sensor.
  10. 제9에 있어서, The method according to claim 9,
    상기 흡습성 무기염은 CaCl2 또는 KOH 및 K2CO3의 혼합물인 것을 특징으로 하는 습도 센서.The hygroscopic inorganic salt is a humidity sensor, characterized in that the mixture of CaCl 2 or KOH and K 2 CO 3 .
  11. 멤브레인을 마련하는 단계; Providing a membrane;
    멤브레인 표면 또는 내에 Ag/Fe3O4의 코어/쉘 나노입자들을 위치시키고, 상기 멤브레인의 일면에 자기장을 인가하는 단계; 및Placing core / shell nanoparticles of Ag / Fe 3 O 4 in or on a membrane surface and applying a magnetic field to one side of the membrane; And
    상기 멤브레인을 건조하는 단계를 포함하는,Drying the membrane;
    마그네토플라즈모닉 필름의 제조방법.Method for producing a magnetoplasmonic film.
  12. 제11항에 있어서,The method of claim 11,
    상기 자기장의 인가는 자석 블록을 상기 멤브레인의 하부에 배치함으로써 수행되는 것을 특징으로 하는, The application of the magnetic field is characterized in that it is performed by placing a magnetic block below the membrane,
    마그네토플라즈모닉 필름의 제조방법.Method for producing a magnetoplasmonic film.
  13. 제11항에 있어서,The method of claim 11,
    상기 Ag/Fe3O4의 코어/쉘 나노입자를 위치시킴은 Ag/Fe3O4의 코어/쉘 나노입자 분산액을 상기 멤브레인에 적용함을 포함하는, Placing a core / shell nanoparticles of the Ag / Fe 3 O 4 is applied, which method comprises the core / shell nanoparticle dispersion of Ag / Fe 3 O 4 on the membrane,
    마그네토플라즈모닉 필름의 제조방법.Method for producing a magnetoplasmonic film.
  14. 제11항에 있어서,The method of claim 11,
    상기 인가되는 자기장의 세기는 30 내지 100 mT인 것을 특징으로 하는,Characterized in that the intensity of the applied magnetic field is 30 to 100 mT,
    마그네토플라즈모닉 필름의 제조방법.Method for producing a magnetoplasmonic film.
PCT/KR2017/005345 2016-05-23 2017-05-23 Magnetoplasmonic film, humidity sensor including same, and method for manufacturing same film and sensor WO2017204529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0062698 2016-05-23
KR1020160062698A KR101782265B1 (en) 2016-05-23 2016-05-23 Magnetoplasmonic film, humidity sensor and manufacturing methods thereof

Publications (1)

Publication Number Publication Date
WO2017204529A1 true WO2017204529A1 (en) 2017-11-30

Family

ID=60035723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005345 WO2017204529A1 (en) 2016-05-23 2017-05-23 Magnetoplasmonic film, humidity sensor including same, and method for manufacturing same film and sensor

Country Status (2)

Country Link
KR (1) KR101782265B1 (en)
WO (1) WO2017204529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964650A (en) * 2021-02-05 2021-06-15 武汉纺织大学 Fiber-based humidity sensor based on moisture absorption and color change and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102150532B1 (en) * 2018-11-23 2020-09-01 이화여자대학교 산학협력단 Ultrafast colorimetric humidity sensor and method for preparing the same
US11371945B2 (en) 2018-11-23 2022-06-28 EWHA University—Industry Collaboration Foundation Ultrafast colorimetric humidity sensor and method of preparing the same
WO2021096154A1 (en) * 2019-11-12 2021-05-20 충남대학교산학협력단 Magnetic plasmonic particles and structure comprising same
KR102373958B1 (en) * 2020-05-27 2022-03-14 충남대학교산학협력단 Colorimetric sensor for detecting heavy metal ions, method for detecting heavy metal ions using the same, and method for determining concentration of heavy metal ions using the same
KR20220120881A (en) * 2021-02-24 2022-08-31 한국화학연구원 Photonic crystal structure and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143072B2 (en) * 2006-02-08 2012-03-27 The University Of Toledo System for detecting nanoparticles using modulated surface plasmon resonance
US8194302B2 (en) * 2009-12-15 2012-06-05 Hewlett-Packard Development Company, L.P. Active chiral photonic metamaterial
US20120273662A1 (en) * 2011-04-26 2012-11-01 Caldwell Joshua D Three-dimensional coherent plasmonic nanowire arrays for enhancement of optical processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8143072B2 (en) * 2006-02-08 2012-03-27 The University Of Toledo System for detecting nanoparticles using modulated surface plasmon resonance
US8194302B2 (en) * 2009-12-15 2012-06-05 Hewlett-Packard Development Company, L.P. Active chiral photonic metamaterial
US20120273662A1 (en) * 2011-04-26 2012-11-01 Caldwell Joshua D Three-dimensional coherent plasmonic nanowire arrays for enhancement of optical processes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN ET AL.: "Facile One-step Synthesis of Ag@Fe304 Core-shell Nanospheres for Reproducible SERS Substrates", JOURNAL OF MOLECULAR STRUCTURE, vol. 1046, no. 23, 26 April 2013 (2013-04-26), XP028562498 *
XUAN ET AL.: "Magnetically Assembled Photonic Crystal Film for Humidity Sensing", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, 2011, XP055599273 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964650A (en) * 2021-02-05 2021-06-15 武汉纺织大学 Fiber-based humidity sensor based on moisture absorption and color change and preparation method thereof
CN112964650B (en) * 2021-02-05 2022-09-02 武汉纺织大学 Fiber-based humidity sensor based on moisture absorption and color change and preparation method thereof

Also Published As

Publication number Publication date
KR101782265B1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017204529A1 (en) Magnetoplasmonic film, humidity sensor including same, and method for manufacturing same film and sensor
EP2683648B1 (en) Magnetically responsive photonic nanochains
Wang et al. Magnetic-based silver composite microspheres with nanosheet-assembled shell for effective SERS substrate
Li et al. Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis
Tran et al. Rapid assembly of magnetoplasmonic photonic arrays for brilliant, noniridescent, and stimuli‐responsive structural colors
CN110057783B (en) Preparation method of HCl gas sensor based on two-dimensional Au @ MOFs nanoparticle ordered array
Wang et al. Naked eye plasmonic indicator with multi-responsive polymer brush as signal transducer and amplifier
KR20120140072A (en) Mutifunctional colloid nano composite derived from nucleophilic substitution-induced layer-by-layer assembly in organic media and fabrication the same
Ling et al. Continuous and rapid fabrication of photochromic fibers by facilely coating tungsten oxide/polyvinyl alcohol composites
Liu et al. Red to brown to green colorimetric detection of Ag+ based on the formation of Au-Ag core-shell NPs stabilized by a multi-sulfhydryl functionalized hyperbranched polymer
Li et al. Synthesis of strawberry-like Fe3O4@ SiO2@ Ag composite colloidal particles for constructing responsive photonic crystals
Li et al. Preparation and characterization of quantum dots coated magnetic hollow spheres for magnetic fluorescent multimodal imaging and drug delivery
Masoomi et al. A facile polymer mediated dye incorporation method for fluorescence encoded microbeads with large encoding capacities
Li et al. Noniridescent structural color from enhanced electromagnetic resonances of particle aggregations and its applications for reconfigurable patterns
Yu et al. Engineering particles for sensing applications via in-situ synthesizing carbon dots@ SiO2 photonic crystals
Wang et al. Fabrication of intelligent poly (N-isopropylacrylamide)/silver nanoparticle composite films with dynamic surface-enhanced Raman scattering effect
Zeng et al. Preparation and SERS study of triangular silver nanoparticle self‐assembled films
Heo et al. Robust plasmonic sensors based on hybrid nanostructures with facile tunability
Peng et al. Spectral selectivity of 3D magnetophotonic crystal film fabricated from single butterfly wing scales
Yuan et al. Visibly vapor-responsive structurally colored carbon fibers prepared by an electrophoretic deposition method
Wu et al. Electrically responsive structural colors from colloidal crystal arrays of PS@ PANI core–shell nanoparticles
Ji et al. Facile preparation of amorphous photonic structure towards rapid temperature sensing and antibacterial textile
Xu et al. Cuttlefish ink tagged photonic crystal particles and their ion-responsive construction
US8671769B2 (en) Device for measuring deformation of a structure and a method for measuring deformation of a structure using the same
Walters et al. An optrode particle geometry to decrease response time

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803048

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17803048

Country of ref document: EP

Kind code of ref document: A1