WO2017204222A1 - Gas-absorbing film - Google Patents

Gas-absorbing film Download PDF

Info

Publication number
WO2017204222A1
WO2017204222A1 PCT/JP2017/019232 JP2017019232W WO2017204222A1 WO 2017204222 A1 WO2017204222 A1 WO 2017204222A1 JP 2017019232 W JP2017019232 W JP 2017019232W WO 2017204222 A1 WO2017204222 A1 WO 2017204222A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
inorganic
absorbing
absorbing film
absorbent
Prior art date
Application number
PCT/JP2017/019232
Other languages
French (fr)
Japanese (ja)
Inventor
満 野末
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2017204222A1 publication Critical patent/WO2017204222A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gas absorptive film, and more particularly to a gas absorptive film excellent in absorptivity such as carbon dioxide gas.
  • a positive electrode body and a negative electrode body are sealed in an airtight container together with an electrolyte solution, lithium ions in the electrolyte solution are responsible for electrical conduction, and a laminate of an electrode sheet and a separator is formed into a square shape. In this case, it is formed in a sandwich shape, and in the case of a cylindrical shape, it is formed in a roll shape.
  • electrolyte solution is inject
  • a nonaqueous electrolytic solution containing ethylene carbonate or the like is used as the electrolytic solution used in the lithium ion battery.
  • it is effective to increase the usable voltage. Therefore, carbonate-based electrolytes that can be charged and discharged at a particularly high voltage are widely used.
  • Patent Document 1 discloses an electric double layer having a structure in which CO 2 is absorbed by an absorbent mainly composed of a hydroxide such as lithium hydroxide. Capacitors have been proposed.
  • Patent Document 2 discloses a lithium ion battery using zeolite as a gas absorbent.
  • JP 2003-197487 A Japanese Patent Laying-Open No. 2015-5496
  • the pellet-shaped gas absorbing material has a problem that the arrangement position inside the battery is limited, and dust is generated by crushing the pellet.
  • the powdered gas absorbing material needs to be separately stored in a bag or casing so as not to move freely in the battery container, and there is a problem that the arrangement position inside the battery is also limited.
  • carbon dioxide gas may be released from the food itself during the storage process and transportation process, and these packaging films are made of a highly stretchable resin such as polyethylene or polypropylene.
  • a mixture of gas absorbents is used.
  • it can be folded, rolled, or wrapped as it is, and can be accommodated in an arbitrary space in the battery container, which can greatly improve the handleability. It is conceivable to apply such food packaging film technology.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gas-absorbing film that has good handleability and excellent absorbability such as carbon dioxide after long-term storage.
  • the present invention provides a gas absorbent film formed from a resin mixture containing a heat resistant resin and an inorganic gas absorbent (Invention 1).
  • the gas absorber is in the form of a film, the degree of freedom of the shape is large, and the gas absorber can be arranged in a desired space by being folded or rolled. Or it can also be packaged as it is.
  • the inorganic gas absorbing material in the film absorbs gas components such as CO 2 , but the inorganic gas absorbing material adsorbs moisture in the atmosphere during storage. As a result, gas absorption performance decreases. Therefore, by using a heat-resistant resin as a film base, moisture can be removed from the inorganic gas absorbent by heating to reproduce the gas absorption capacity, and the film does not shrink due to heat.
  • the mixing ratio of the inorganic gas absorbent is preferably 0.5 to 70% by weight (Invention 2).
  • invention 2 it can be made into a film shape suitably, exhibiting the gas absorption ability by an inorganic type gas absorption material.
  • the inorganic gas absorbent preferably has a particle size of 10 ⁇ m or less (Invention 3).
  • invention 3 it can be made into a film shape suitably, exhibiting the gas absorption capability by an inorganic type gas absorption material.
  • the gas-absorbing film can be regenerated and used in a high gas-absorbing capacity by heat treatment before use.
  • the heat treatment temperature of the inorganic gas absorbent is not more than the heat resistance temperature of the heat resistant resin (Invention 5).
  • the heat absorption does not cause the film to shrink under the influence of heat, and it is possible to reproduce the gas absorption capacity by removing moisture from the inorganic gas absorbent material.
  • the inorganic gas absorbent is an inorganic porous material (Invention 6).
  • the inorganic gas absorbent is preferably zeolite (Invention 7).
  • these inorganic gas absorbents can absorb CO 2 , hydrocarbon gases and the like quickly and with a high absorption rate.
  • the inorganic gas absorbent preferably has a specific surface area of 100 to 3000 m 2 / g (Invention 8).
  • invention 8 since the contact area between and inorganic gas absorbent and CO 2 and hydrocarbon gas can be sufficiently secured, it is possible to maintain a high absorption rate.
  • the inorganic gas absorbent has a pore diameter of 3 to 10 cm (Invention 9).
  • invention 9 it can be inorganic gas absorbent to absorb these gases more quickly captures the like into the pores CO 2 and hydrocarbon gas.
  • the inorganic gas absorbent is preferably a zeolite having an elemental composition ratio of Si / Al in the range of 1 to 5 (Invention 10).
  • the inorganic gas absorbent is preferably A-type, X-type or LSX-type zeolite (Invention 11).
  • the inorganic gas absorbent is preferably LSX type zeolite ion-exchanged with Li (Invention 12).
  • the inorganic gas absorbent can absorb CO 2 , hydrocarbon gas, and the like more quickly and with a high absorption rate.
  • the inorganic gas absorbent is preferably A-type zeolite ion-exchanged with Ca (Invention 13).
  • the gas-absorbing film is for use in a lithium ion battery or an electricity storage device (Invention 14).
  • the gas absorbing material is in the form of a film, it can be folded or rolled and placed in a lithium ion battery or an electricity storage device, or packaged as it is, CO 2 and hydrocarbon gas generated from these can be absorbed, which is suitable for this application.
  • the gas absorbing film is preferably for food packaging (Invention 15).
  • invention 15 by packaging the food with this gas-absorbing film, it is possible to absorb CO 2 , hydrocarbon-based gas, etc. generated from the food, which is suitable for this application. .
  • the resin mixture obtained by mixing the heat-resistant resin and the inorganic gas absorbing material is used as the gas-absorbing film
  • the resin mixture is arranged in a lithium ion battery or an electricity storage device by folding or rolling. It can be packaged as it is. And it can be used in a state with high gas absorptivity by heat-processing a gas absorptive film before use.
  • the measurement of the inorganic gas absorbing material only requires cutting the sheet, and there is an advantage that dew point management in the film manufacturing process becomes unnecessary by applying heat treatment after forming the film.
  • the gas-absorbing film of this embodiment is formed from a resin mixture containing a heat-resistant resin and an inorganic gas absorbing material.
  • a heat resistant resin in the case of an amorphous resin, a resin having a glass transition temperature of 200 ° C. or higher, particularly 300 ° C. or higher.
  • a crystalline resin it means a resin having a glass transition temperature of 200 ° C. or higher and no melting point or a melting point of 250 ° C. or higher.
  • silicon resin acrylic resin, fluorine resin, aramid resin, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyarylate, polyetherimide, polyamideimide, polyimide, etc. are used. be able to.
  • the inorganic gas absorbing material it is preferable to use an inorganic porous material because it is excellent in absorbability of hydrocarbon gases such as CO 2 , CH 4 , and C 2 H 6 .
  • the inorganic porous material include porous silica, metal porous structure, calcium silicate, magnesium silicate, magnesium metasilicate aluminate, zeolite, activated alumina, titanium oxide, apatite, porous glass, magnesium oxide, and silicic acid. Aluminum or the like is preferred.
  • carbon-based (carbon-based) materials such as activated carbon, carbon black, graphite, carbon molecular sieve, carbon nanotube, and fullerene can be suitably used.
  • inorganic gas absorbers may be used alone or in combination of two or more materials, but zeolite is particularly effective.
  • the inorganic gas absorbent as described above preferably has a specific surface area of 100 to 3000 m 2 / g.
  • the specific surface area is less than 100 m 2 / g, the contact area with gas components such as CO 2 and hydrocarbon gas is small, and sufficient adsorption performance cannot be exhibited.
  • the specific surface area exceeds 3000 m 2 / g, not only the effect of improving the adsorption performance of CO 2 and hydrocarbon gas can be obtained, but also the mechanical strength of the inorganic gas absorbent is lowered, which is not preferable.
  • the inorganic gas absorbent preferably has a pore diameter of 3 to 10 mm.
  • the pore volume is less than 3 mm, it is difficult for gas components such as CO 2 and hydrocarbon gas to enter the pores.
  • the pore volume exceeds 10%, the adsorptive power of CO 2 , hydrocarbon gas, etc. will be weak, and it will not be possible to adsorb most closely in the pores, resulting in a decrease in the amount of adsorption. Absent.
  • the inorganic gas absorbing material is zeolite
  • Zeolite with a Si / Al ratio of less than 1 is structurally unstable, while zeolite with a Si / Al ratio of more than 5 has a low cation content and decreases the amount of adsorption of gas components such as CO 2 and hydrocarbon gases. Therefore, it is not preferable.
  • zeolite of A type, X type or LSX type is preferable to use as the zeolite.
  • LSX type or A type zeolite in which the cation part of the zeolite is ion-exchanged with Li, and A type zeolite in which the cation part of the zeolite is ion-exchanged with Ca are preferable, and more preferably the A type zeolite in which the cation part is ion-exchanged with Ca.
  • Such an inorganic gas absorbent material may absorb humidity in the atmosphere.
  • the inorganic gas absorbent the absorption performance of the hydrocarbon gas components such as CO 2 and CH 4, C 2 H 6 upon absorption of moisture is greatly reduced.
  • various zeolites particularly A-type zeolite ion-exchanged with Ca, can regenerate the gas absorption performance by driving out moisture by heating.
  • the basic material when it is desired to mainly absorb CO 2 it can also be used a basic material having a function of absorbing CO 2 neutralization manner as an inorganic gas absorbent.
  • the basic material include metal carbonates such as potassium carbonate, sodium carbonate, and calcium carbonate, metal hydrogen carbonates such as sodium bicarbonate, magnesium bicarbonate, and calcium bicarbonate, magnesium hydroxide, water Examples thereof include alkaline hydroxides such as sodium oxide and calcium hydroxide, other alkaline minerals, organic substances, and porous materials.
  • the inorganic gas absorbent is preferably in the form of a powder because it is in the form of a film.
  • the average particle size is preferably 10 ⁇ m or less. When the particle size exceeds 10 ⁇ m, the mechanical strength of the gas-absorbing film obtained is lowered.
  • the lower limit of the average particle diameter is preferably 0.5 ⁇ m or more because the handleability is lowered when the average particle size is less than 0.5 ⁇ m, and the gas absorption performance is lowered.
  • the inorganic gas absorbent is mixed with a heat resistant resin to form a film, and the blending ratio of the inorganic gas absorbent is 0.5 with respect to a total of 100% by weight of the heat resistant resin and the inorganic gas absorbent. It is preferably ⁇ 70% by weight. If the blending ratio of the inorganic gas absorbing material is less than 0.5%, the gas absorbing performance of the obtained gas absorbing film is not sufficient. On the other hand, if it exceeds 70% by weight, it becomes difficult to form a film, Even if it can be formed into a shape, the resulting gas-absorbing film has a low mechanical strength, which is not preferable.
  • the compounding quantity of this inorganic type gas absorption material suitably according to the use of a gas absorptive film.
  • the content of the inorganic gas absorbent is 30 to 70% by weight.
  • the content of inorganic gas absorbent is as low as 0.5 to 30% by weight. You only have to set it.
  • the gas-absorbing film of the present embodiment comprising the heat-resistant resin and the inorganic gas absorbent as described above is blended with an inorganic gas absorbent in a molten heat-resistant resin when the heat-resistant resin is thermoplastic. Both are kneaded while heating using a general-purpose kneading device such as a kneader, a Banbury mixer, a biaxial kneader, etc. to prepare a resin composition, which is extruded from a die and then stretched in a uniaxial or biaxial direction. It can be formed into a film by a general-purpose film forming method such as forming, inflation forming, or blow forming.
  • a general-purpose film forming method such as forming, inflation forming, or blow forming.
  • thermosetting or melt kneading When the heat resistant resin is thermosetting or melt kneading is difficult, a dry method or a mixed method in which an inorganic gas absorbent is dispersed in a solution in which the heat resistant resin is dissolved to have a predetermined viscosity.
  • a film may be formed by a wet method. Furthermore, it is good also as a laminated film by apply
  • the thickness of the gas-absorbing film can be 20 to 200 ⁇ m, although it depends on the heat-resistant resin as the base material. For example, in the case of installation in a lithium ion battery or an electricity storage device, it is better to set the film thickness larger because the amount of gas absorption is better if it can be deformed to some extent, while for food packaging etc. When not only gas absorption ability but also transparency and flexibility are required, the film thickness may be set small.
  • the gas-absorbing film of the present embodiment having the above-described configuration is excellent in absorbing performance of hydrocarbon gas components such as CO 2 , CH 4 , and C 2 H 6 , and easily absorbs moisture in the atmosphere.
  • the inorganic gas absorbent, the absorption performance of the gas components such as CO 2 and CH 4, C 2 H 6 when it absorbs moisture as described above is greatly reduced. Therefore, in the present embodiment, by performing a heat treatment on the gas absorbing film, moisture is released from the inorganic gas absorbing material to regenerate the gas absorbing performance. It is preferable that the temperature of this heat processing is below the heat resistant temperature of a heat resistant resin. If the temperature of the heat treatment exceeds the heat resistance temperature, the film will shrink or the film shape cannot be maintained.
  • the moisture release temperature from the inorganic gas absorbent material may be higher than the heat resistant temperature of the heat resistant resin.
  • the gas-absorbing film is placed under a reduced pressure so that moisture absorbed can be easily released, and the treatment may be performed at a temperature lower than the heat-resistant temperature of the heat-resistant resin.
  • the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made.
  • the gas-absorbing film is composed of a resin mixture containing a heat-resistant resin and an inorganic gas-absorbing material, and the method for forming it into a film is not limited to the above-described embodiment.
  • Example 1 When an equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method using Ca-type exchanged A-type zeolite as an inorganic gas absorbent, the CO 2 adsorption amount was 80 mL / g. It was.
  • Example 2 The Ca ion-exchanged A-type zeolite used in Example 1 was pulverized to a particle size of 10 ⁇ m or less, dried at 200 ° C. under reduced pressure (10 hPa reduced pressure condition, the same applies hereinafter), and then added to a silicone resin by 70% by weight. Then, after kneading with a biaxial kneader equipped with a T die, it was discharged from the T die and then stretched in the biaxial direction to produce a gas-absorbing film having a thickness of 50 ⁇ m. The amount of CO 2 gas absorbed in the initial state of the obtained gas-absorbing film was about 56 mL / g.
  • Example 3 After the Ca ion-exchanged A-type zeolite used in Example 1 was pulverized to a particle size of 10 ⁇ m or less and dried at 150 ° C. under reduced pressure, 50 wt% (in terms of polyimide resin) was added to the polyimide resin precursor solution. Then, this mixed solution was applied onto a substrate and then heated to volatilize and dry the liquid. When peeled from the substrate, it was stretched biaxially to produce a gas-absorbing film having a thickness of 50 ⁇ m. The amount of CO 2 gas absorbed in the initial state of this gas absorbent film was about 40 mL / g.
  • Example 1 After the Ca ion-exchanged A-type zeolite used in Example 1 was pulverized to a particle size of 10 ⁇ m or less and dried at 200 ° C. under reduced pressure, 30 wt% was added to the polyethylene resin, and the T-die was provided. After kneading with an axial kneader, the gas was discharged from a T die and then stretched in the biaxial direction to produce a gas-absorbing film having a thickness of 50 ⁇ m. The amount of CO 2 gas absorbed in the initial state of this gas absorbent film was about 24 mL / g.
  • Example 4 Using an LSX-type zeolite with Li ion exchange as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 130 mL / g. .
  • Example 5 Using an X-type zeolite exchanged with Na ions as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 132 mL / g. .
  • Example 6 Using an X-type zeolite exchanged with Ca ions as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 130 mL / g. .
  • Example 7 Using an A-type zeolite exchanged with Na ions as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 70 mL / g. .
  • Example 8 When an Y-type zeolite exchanged with H ions was used as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 15 mL / g. .
  • Example 9 Using ZSM-5 type zeolite with Ca ion exchange as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by gas adsorption method. The CO 2 adsorption amount was 56 mL / g. there were.
  • These inorganic gas absorbent materials of Examples 4 to 9 can also be formed into a film together with the heat-resistant resin as in Example 1 described above, and the CO 2 adsorption capacity can be regenerated by heating.
  • Example 10 A carbon material having pores (CO 2 adsorption amount 50 mL / g) is used as the inorganic gas absorbent, and 70 wt% of this is added to 30 wt% of the silicon resin, and biaxial kneading with a T die is performed. After being kneaded by a machine, it was discharged from a T die, and then stretched in the biaxial direction to produce a gas absorption film having a thickness of 50 ⁇ m. The amount of CO 2 gas absorbed in the initial state of the obtained gas-absorbing film was 30 mL / g.
  • the CO 2 gas absorption amount was about 15 mL / g, about half of the initial value. Therefore, heat treatment was performed at 110 ° C. for 3 hours with a dryer in the atmosphere, and the amount of CO 2 gas absorbed in the gas absorbent film after the treatment was measured. As a result, it was 30 mL / g, and the regeneration rate was 100%. It can be seen that a gas absorption film using a carbon material has a smaller gas absorption amount, but a high regeneration rate can be obtained at a low heat treatment temperature.
  • the gas-absorbing film of the present invention as described above has an absorptivity of CO 2 and hydrocarbon-based gas components, reproduces the gas absorptivity even after long-term storage, and has excellent performance during use. Since it can be demonstrated, its industrial applicability is extremely large.
  • Such a gas absorptive film is suitable for internal use of a lithium ion battery or an electricity storage device or for food packaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

This gas-absorbing film is formed from a resin mixture which contains a heat-resistant resin and an inorganic gas adsorbing material. A resin having a heat resistance of 200°C or higher, especially a resin having a heat resistance of 300°C or higher is used as the heat-resistant resin. In addition, it is preferable that an inorganic porous material, especially zeolite is used as the inorganic gas adsorbing material, since an inorganic porous material, especially zeolite has excellent absorbency of CO2 and hydrocarbon gases such as CH4 and C2H6. It is preferable that this inorganic gas adsorbing material has an average particle diameter of 10 μm or less. This inorganic gas adsorbing material is mixed with the heat-resistant resin, and is subsequently formed into a film. This gas-absorbing film is suitable for internal installation in a lithium ion battery or an electricity storage device, and for food packaging. This gas-absorbing film has good handling properties, and exhibits excellent absorbency of a carbon dioxide gas or the like after long-term storage.

Description

ガス吸収性フィルムGas absorbent film
 本発明はガス吸収性フィルムに関し、特に炭酸ガス等の吸収性に優れたガス吸収性フィルムに関する。 The present invention relates to a gas absorptive film, and more particularly to a gas absorptive film excellent in absorptivity such as carbon dioxide gas.
 近年、大容量、高出力タイプのリチウムイオン電池が実用化されている。このリチウムイオン電池は、大容量、高出力であるがゆえに従来の二次電池よりも高い安全性が求められる。 In recent years, large capacity, high output type lithium ion batteries have been put into practical use. This lithium ion battery is required to have higher safety than conventional secondary batteries because of its large capacity and high output.
 このリチウムイオン電池は、正極体及び負極体が電解液とともに気密容器内に封入され、電解液中のリチウムイオンが電気伝導を担うものであり、電極シートとセパレータとの積層体を、角型の場合にはサンドイッチ状に、円筒型の場合にはロール状にそれぞれ形成し、集電体としての正極体及び負極体のリード部を各々の端子に接続する。そして、上述したような各種形態の積層体をそれぞれの対応する形状の気密容器に収容した後、気密容器の開口部から電解液を注入して積層体に電解液を含浸し、正極体及び負極体の先端を外部に露出した状態で電池容器を封入した構造を有するのが一般的である。 In this lithium ion battery, a positive electrode body and a negative electrode body are sealed in an airtight container together with an electrolyte solution, lithium ions in the electrolyte solution are responsible for electrical conduction, and a laminate of an electrode sheet and a separator is formed into a square shape. In this case, it is formed in a sandwich shape, and in the case of a cylindrical shape, it is formed in a roll shape. And after accommodating the laminated body of various forms as mentioned above in the airtight container of each corresponding shape, electrolyte solution is inject | poured from the opening part of an airtight container, and an electrolyte solution is impregnated into a laminated body, and a positive electrode body and a negative electrode It is common to have a structure in which a battery container is enclosed with the body tip exposed to the outside.
 上記リチウムイオン電池に用いられる電解液としては、炭酸エチレンなどを含有する非水系電解液が用いられるが、リチウムイオン電池のエネルギー密度を向上させるためには使用可能電圧を高めることが有効であることから、特に高い電圧で充放電可能な炭酸エステル系電解液が広く用いられている。 As the electrolytic solution used in the lithium ion battery, a nonaqueous electrolytic solution containing ethylene carbonate or the like is used. In order to improve the energy density of the lithium ion battery, it is effective to increase the usable voltage. Therefore, carbonate-based electrolytes that can be charged and discharged at a particularly high voltage are widely used.
 このような非水系電解液を使用したリチウムイオン電池では、非水系電解液中に含まれる炭酸エステルが長期間の使用における充放電の繰り返し、過充電、あるいは短絡等の異常時の電池内部の温度上昇に起因して、劣化や電気分解をおこす。これにより電池内部でCOなどのガスが発生し、内圧が上昇して気密容器が変形し、内部抵抗が増大する等の不具合を生じる虞があった。そこで、これらのガスを吸収あるいは抑制するための技術が種々提案されている。 In a lithium ion battery using such a non-aqueous electrolyte, the temperature within the battery during abnormalities such as repeated charge / discharge, overcharge, or short-circuiting during long-term use of the carbonate ester contained in the non-aqueous electrolyte Causes degradation and electrolysis due to the rise. As a result, gas such as CO 2 is generated inside the battery, the internal pressure is increased, the hermetic container is deformed, and there is a risk of causing problems such as an increase in internal resistance. Therefore, various techniques for absorbing or suppressing these gases have been proposed.
 このようなガスを吸収したり抑制したりするためのものとして、特許文献1には、水酸化リチウムなどの水酸化物を主成分とする吸収材によりCOを吸収させる構造を有する電気二重層キャパシタが提案されている。また、特許文献2には、ゼオライトをガス吸収材として用いたリチウムイオン電池が開示されている。 As a technique for absorbing and suppressing such a gas, Patent Document 1 discloses an electric double layer having a structure in which CO 2 is absorbed by an absorbent mainly composed of a hydroxide such as lithium hydroxide. Capacitors have been proposed. Patent Document 2 discloses a lithium ion battery using zeolite as a gas absorbent.
特開2003-197487号公報JP 2003-197487 A 特開2015-5496号公報Japanese Patent Laying-Open No. 2015-5496
 しかしながら、特許文献1、2に記載されたガス吸収材は、ペレット状又は粉末状で電池内部に配置するものであるので、以下のような問題点がある。ペレット状のガス吸収材は、電池内部の配置位置に制限あり、また、ペレットの破砕により粉塵が発生するという問題点がある。粉末状のガス吸収材は、電池容器内を自由に移動してしまわぬように、別途袋体やケーシングに収容する必要があり、やはり電池内部の配置位置に制限あるという問題点がある。また、正確な計量が難しく充填量に差異が生じやすいという問題点もある。 However, since the gas absorbing materials described in Patent Documents 1 and 2 are arranged inside the battery in the form of pellets or powder, there are the following problems. The pellet-shaped gas absorbing material has a problem that the arrangement position inside the battery is limited, and dust is generated by crushing the pellet. The powdered gas absorbing material needs to be separately stored in a bag or casing so as not to move freely in the battery container, and there is a problem that the arrangement position inside the battery is also limited. In addition, there is a problem that accurate weighing is difficult and a difference in filling amount is likely to occur.
 さらに、特許文献1、2に記載されたガス吸収材は、COだけでなく大気中の水分なども吸着するため、長期間保管すると水分を吸収してしまうのでCOなどの吸収能が大幅に低下してしまうという問題点もある。 Furthermore, since the gas absorbents described in Patent Documents 1 and 2 adsorb not only CO 2 but also moisture in the atmosphere, they absorb moisture when stored for a long period of time, so the absorption capacity of CO 2 and the like is greatly increased. There is also a problem that it drops.
 ところで、食品包装分野においては、保存過程や輸送過程において、食品自体から炭酸ガスが放出されることがあり、これらの包装用フィルムとしてポリエチレンやポリプロピレンなどの延伸性に富む樹脂を基材とし、これにガス吸収材を混合したものが用いられている。このようなフィルム状の形態であれば、折り畳んだり、丸めたり、あるいはそのまま包装するなどして電池容器内の任意のスペースに収容することが可能となり、取扱い性を大幅に向上させることができることから、かかる食品包装用のフィルムの技術を適用することが考えられる。 By the way, in the food packaging field, carbon dioxide gas may be released from the food itself during the storage process and transportation process, and these packaging films are made of a highly stretchable resin such as polyethylene or polypropylene. A mixture of gas absorbents is used. In such a film-like form, it can be folded, rolled, or wrapped as it is, and can be accommodated in an arbitrary space in the battery container, which can greatly improve the handleability. It is conceivable to apply such food packaging film technology.
 しかしながら、上述したようなポリエチレンやポリプロピレンからなる食品包装用のフィルムでも、水分を吸収しCOなどの吸収能が低下してしまうという課題は依然残る。この対策として、ポリエチレンやポリプロピレンからなるガス吸収性フィルムでは、全製造工程で露点管理を行い水分を忌避しているが、それでも長期間保管すると大気中の水分を吸収しCOなどの吸収能が低下してしまうという問題点がある。このような水分の吸収による性能の低下に対応可能なガス吸収性フィルムを提供できれば、リチウムイオン電池や蓄電キャパシタなどの分野に限らず、食品包装フィルムにも好適に適用することができる。 However, even a food packaging film made of polyethylene or polypropylene as described above still has the problem of absorbing moisture and reducing the absorption capacity of CO 2 and the like. As a countermeasure against this, gas absorbing films made of polyethylene or polypropylene control the dew point in the entire manufacturing process to avoid moisture. However, if they are stored for a long period of time, they absorb moisture in the atmosphere and absorb CO 2 and the like. There is a problem that it decreases. If it is possible to provide a gas-absorbing film that can cope with such performance degradation due to moisture absorption, the present invention can be suitably applied to food packaging films as well as lithium ion batteries and storage capacitors.
 本発明は上記課題に鑑みてなされたものであり、取り扱い性が良好で長期保管後の炭酸ガス等の吸収性に優れたガス吸収性フィルムを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas-absorbing film that has good handleability and excellent absorbability such as carbon dioxide after long-term storage.
 上記目的を達成するために本発明は、耐熱性樹脂及び無機系ガス吸収材を含む樹脂混合物から形成される、ガス吸収性フィルムを提供する(発明1)。 In order to achieve the above object, the present invention provides a gas absorbent film formed from a resin mixture containing a heat resistant resin and an inorganic gas absorbent (Invention 1).
 上記発明(発明1)によれば、このガス吸収体はフィルム状であるので形状の自由度が大きく、折り畳んだり、丸めたりすることで所望のスペースに配置することができる。あるいはそのまま包装することもできる。そして、ガス吸収性フィルムは、フィルム中の無機系ガス吸収材がCOなどのガス成分を吸収するものであるが、保管時などに無機系ガス吸収材が大気中の水分などを吸着することでガス吸収性能が低下する。そこでフィルムの基材として耐熱性樹脂を用いることにより、加熱により無機系ガス吸収材から水分を飛ばしてガス吸収能を再現することができ、しかも熱によりフィルムがシュリンクしたりすることがない。 According to the above invention (Invention 1), since the gas absorber is in the form of a film, the degree of freedom of the shape is large, and the gas absorber can be arranged in a desired space by being folded or rolled. Or it can also be packaged as it is. In the gas-absorbing film, the inorganic gas absorbing material in the film absorbs gas components such as CO 2 , but the inorganic gas absorbing material adsorbs moisture in the atmosphere during storage. As a result, gas absorption performance decreases. Therefore, by using a heat-resistant resin as a film base, moisture can be removed from the inorganic gas absorbent by heating to reproduce the gas absorption capacity, and the film does not shrink due to heat.
 上記発明(発明1)においては、前記無機系ガス吸収材の混合割合が0.5~70重量%であることが好ましい(発明2)。 In the above invention (Invention 1), the mixing ratio of the inorganic gas absorbent is preferably 0.5 to 70% by weight (Invention 2).
 上記発明(発明2)によれば、無機系ガス吸収材によるガス吸収能を発揮しつつ好適にフィルム形状とすることができる。 According to the said invention (invention 2), it can be made into a film shape suitably, exhibiting the gas absorption ability by an inorganic type gas absorption material.
 上記発明(発明1、2)おいては、前記無機系ガス吸収材の粒径が10μm以下であることが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), the inorganic gas absorbent preferably has a particle size of 10 μm or less (Invention 3).
 上記発明(発明3)によれば、無機系ガス吸収材によるガス吸収能を発揮しつつ好適にフィルム形状とすることができる。 According to the said invention (invention 3), it can be made into a film shape suitably, exhibiting the gas absorption capability by an inorganic type gas absorption material.
 上記発明(発明1~3)おいては、前記無機系ガス吸収材のガス吸収能が加熱処理により再生可能であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), it is preferable that the gas absorption capacity of the inorganic gas absorbent can be regenerated by heat treatment (Invention 4).
 上記発明(発明4)によれば、ガス吸収性フィルムを使用前に加熱処理することにより、ガス吸収能が高い状態に再生して使用することができる。 According to the above invention (Invention 4), the gas-absorbing film can be regenerated and used in a high gas-absorbing capacity by heat treatment before use.
 上記発明(発明4)おいては、前記無機系ガス吸収材の加熱処理温度が前記耐熱性樹脂の耐熱温度以下であることが好ましい(発明5)。 In the above invention (Invention 4), it is preferable that the heat treatment temperature of the inorganic gas absorbent is not more than the heat resistance temperature of the heat resistant resin (Invention 5).
 上記発明(発明5)によれば、加熱処理によりフィルムが熱の影響でシュリンクしたりすることがなく、無機系ガス吸収材から水分を飛ばしてガス吸収能を再現することができる。 According to the above invention (Invention 5), the heat absorption does not cause the film to shrink under the influence of heat, and it is possible to reproduce the gas absorption capacity by removing moisture from the inorganic gas absorbent material.
 上記発明(発明1~5)おいては、前記無機系ガス吸収材が無機多孔質材料であることが好ましい(発明6)。特に前記無機系ガス吸収材が、ゼオライトであることが好ましい(発明7)。 In the above inventions (Inventions 1 to 5), it is preferable that the inorganic gas absorbent is an inorganic porous material (Invention 6). In particular, the inorganic gas absorbent is preferably zeolite (Invention 7).
 上記発明(発明6,7)によれば、これらの無機系ガス吸収材はCOや炭化水素系のガスなどを迅速かつ高い吸収率で吸収することができる。 According to the above inventions (Inventions 6 and 7), these inorganic gas absorbents can absorb CO 2 , hydrocarbon gases and the like quickly and with a high absorption rate.
 上記発明(発明6,7)おいては、前記無機系ガス吸収材が100~3000m2/gの比表面積を有することが好ましい(発明8)。 In the above inventions (Inventions 6 and 7), the inorganic gas absorbent preferably has a specific surface area of 100 to 3000 m 2 / g (Invention 8).
 上記発明(発明8)によれば、無機系ガス吸収材とCOや炭化水素系のガスなどとの接触面積を十分に確保することができるので、高い吸収率を維持することができる。 According to the above invention (invention 8), since the contact area between and inorganic gas absorbent and CO 2 and hydrocarbon gas can be sufficiently secured, it is possible to maintain a high absorption rate.
 上記発明(発明6~8)おいては、前記無機系ガス吸収材が3Å~10Åの細孔径を有することが好ましい(発明9)。 In the above inventions (Inventions 6 to 8), it is preferable that the inorganic gas absorbent has a pore diameter of 3 to 10 cm (Invention 9).
 上記発明(発明9)によれば、無機系ガス吸収材がCOや炭化水素系のガスなどを細孔内に捕捉してより迅速にこれらのガスを吸収することができる。 According to the above invention (invention 9), it can be inorganic gas absorbent to absorb these gases more quickly captures the like into the pores CO 2 and hydrocarbon gas.
 上記発明(発明7)おいては、前記無機系ガス吸収材がSi/Al比が1~5の範囲の元素構成比を有するゼオライトであることが好ましい(発明10)。また、前記無機系ガス吸収材がA型、X型あるいはLSX型のゼオライトであることが好ましい(発明11)。また前記無機系ガス吸収材がLiでイオン交換されたLSX型のゼオライトであることが好ましい(発明12)。 In the above invention (Invention 7), the inorganic gas absorbent is preferably a zeolite having an elemental composition ratio of Si / Al in the range of 1 to 5 (Invention 10). The inorganic gas absorbent is preferably A-type, X-type or LSX-type zeolite (Invention 11). The inorganic gas absorbent is preferably LSX type zeolite ion-exchanged with Li (Invention 12).
 上記発明(発明10~12)によれば、無機系ガス吸収材がCOや炭化水素系のガスなどをより迅速に、かつ高い吸収率で吸収することができる。 According to the above inventions (Inventions 10 to 12), the inorganic gas absorbent can absorb CO 2 , hydrocarbon gas, and the like more quickly and with a high absorption rate.
 上記発明(発明7,10,11)おいては、前記無機系ガス吸収材がCaでイオン交換されたA型のゼオライトであることが好ましい(発明13)。 In the above inventions (Inventions 7, 10, and 11), the inorganic gas absorbent is preferably A-type zeolite ion-exchanged with Ca (Invention 13).
 上記発明(発明13)によれば、ゼオライトは水分を吸収すると、COや炭化水素系のガスなど吸収性能が大幅に低減するが、Ca交換されたA型ゼオライトは、加熱乾燥が容易であるので、これらのガス吸収性能が大幅に回復し、耐久性を向上することができる。 According to the above invention (Invention 13), when the zeolite absorbs moisture, absorption performance such as CO 2 and hydrocarbon gas is greatly reduced, but the Ca-exchanged A-type zeolite is easy to dry by heating. Therefore, these gas absorption performances can be significantly recovered and durability can be improved.
 上記発明(発明1~13)おいては、前記ガス吸収性フィルムが、リチウムイオン電池又は蓄電デバイス内設用であることが好ましい(発明14)。 In the above inventions (Inventions 1 to 13), it is preferable that the gas-absorbing film is for use in a lithium ion battery or an electricity storage device (Invention 14).
 上記発明(発明14)によれば、ガス吸収材をフィルム状としているので、これを折り畳む、あるいは丸めるなどしてリチウムイオン電池や蓄電デバイス内に配置したり、あるいはそのまま包装したりすることにより、これらから発生するCOや炭化水素系のガスなどを吸収することができるので、この用途に好適である。 According to the above invention (Invention 14), since the gas absorbing material is in the form of a film, it can be folded or rolled and placed in a lithium ion battery or an electricity storage device, or packaged as it is, CO 2 and hydrocarbon gas generated from these can be absorbed, which is suitable for this application.
 上記発明(発明1~13)おいては、前記ガス吸収性フィルムが食品包装用であることが好ましい(発明15)。 In the above inventions (Inventions 1 to 13), the gas absorbing film is preferably for food packaging (Invention 15).
 上記発明(発明15)によれば、このガス吸収性フィルムで食品を包装することにより、食品から発生するCOや炭化水素系のガスなどを吸収することができるので、この用途に好適である。 According to the above invention (Invention 15), by packaging the food with this gas-absorbing film, it is possible to absorb CO 2 , hydrocarbon-based gas, etc. generated from the food, which is suitable for this application. .
 本発明によれば、耐熱性樹脂と無機系ガス吸収材とを混合した樹脂混合物をガス吸収性フィルムとしているので、折り畳む、あるいは丸めるなどしてリチウムイオン電池や蓄電デバイス内に配置したり、あるいはそのまま包装したりすることができる。そして、ガス吸収性フィルムを使用前に加熱処理することにより、ガス吸収能が高い状態で使用することができる。さらに無機系ガス吸収材の計量はシートを裁断するだけでよく、フィルムとした後熱処理を施すことでフィルム製造工程における露点管理も不要となる、という利点も有する。 According to the present invention, since the resin mixture obtained by mixing the heat-resistant resin and the inorganic gas absorbing material is used as the gas-absorbing film, the resin mixture is arranged in a lithium ion battery or an electricity storage device by folding or rolling. It can be packaged as it is. And it can be used in a state with high gas absorptivity by heat-processing a gas absorptive film before use. Furthermore, the measurement of the inorganic gas absorbing material only requires cutting the sheet, and there is an advantage that dew point management in the film manufacturing process becomes unnecessary by applying heat treatment after forming the film.
 以下、本発明の実施形態について詳細に説明する。ただし、この実施形態は例示であり、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. However, this embodiment is an exemplification, and the present invention is not limited to this.
 本実施形態のガス吸収性フィルムは、耐熱性樹脂及び無機系ガス吸収材を含む樹脂混合物から形成される。ここで、耐熱性樹脂としては、非結晶樹脂の場合、ガラス転移温度が200℃以上、特に300℃以上のものをいう。また、結晶性樹脂の場合は、ガラス転移温度が200℃以上であり、融点を持たないか融点250℃以上の樹脂のことをいう。このような樹脂としては、シリコン系樹脂、アクリル系樹脂、フッ素系樹脂、アラミド樹脂、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリレート、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどを用いることができる。 The gas-absorbing film of this embodiment is formed from a resin mixture containing a heat-resistant resin and an inorganic gas absorbing material. Here, as a heat resistant resin, in the case of an amorphous resin, a resin having a glass transition temperature of 200 ° C. or higher, particularly 300 ° C. or higher. In the case of a crystalline resin, it means a resin having a glass transition temperature of 200 ° C. or higher and no melting point or a melting point of 250 ° C. or higher. As such resin, silicon resin, acrylic resin, fluorine resin, aramid resin, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyarylate, polyetherimide, polyamideimide, polyimide, etc. are used. be able to.
 また、無機系ガス吸収材としては、COやCH、Cなどの炭化水素系ガスの吸収性に優れることから無機多孔質材料を用いることが好ましい。この無機多孔質材料としては、多孔質シリカ、金属ポーラス構造体、ケイ酸カルシウム、ケイ酸マグネシウム、メタケイ酸アルミン酸マグネシウム、ゼオライト、活性アルミナ、酸化チタン、アパタイト、多孔質ガラス、酸化マグネシウム、ケイ酸アルミニウム等が好適である。さらには活性炭、カーボンブラック、グラファイト、カーボンモレキュラーシーブ、カーボンナノチューブ、フラーレンなどの炭素系(カーボン系)素材等も好適に用いることができる。 In addition, as the inorganic gas absorbing material, it is preferable to use an inorganic porous material because it is excellent in absorbability of hydrocarbon gases such as CO 2 , CH 4 , and C 2 H 6 . Examples of the inorganic porous material include porous silica, metal porous structure, calcium silicate, magnesium silicate, magnesium metasilicate aluminate, zeolite, activated alumina, titanium oxide, apatite, porous glass, magnesium oxide, and silicic acid. Aluminum or the like is preferred. Furthermore, carbon-based (carbon-based) materials such as activated carbon, carbon black, graphite, carbon molecular sieve, carbon nanotube, and fullerene can be suitably used.
 これらの無機系ガス吸収材は単独で用いてもよいし、2種類以上の素材を併用してもよいが、ゼオライトが特に有効である。 These inorganic gas absorbers may be used alone or in combination of two or more materials, but zeolite is particularly effective.
 上述したような無機系ガス吸収材は、100~3000m/gの比表面積を有することが好ましい。比表面積が100m/g未満では、COや炭化水素系ガスなどのガス成分との接触面積が小さく、十分な吸着性能を発揮することができない。一方、比表面積が3000m/gを超えてもCOや炭化水素系ガスなどの吸着性能の向上効果が得られないばかりか、無機系ガス吸収材の機械的強度が低下するため好ましくない。 The inorganic gas absorbent as described above preferably has a specific surface area of 100 to 3000 m 2 / g. When the specific surface area is less than 100 m 2 / g, the contact area with gas components such as CO 2 and hydrocarbon gas is small, and sufficient adsorption performance cannot be exhibited. On the other hand, even if the specific surface area exceeds 3000 m 2 / g, not only the effect of improving the adsorption performance of CO 2 and hydrocarbon gas can be obtained, but also the mechanical strength of the inorganic gas absorbent is lowered, which is not preferable.
 また、無機系ガス吸収材は、3Å以上10Å以下の細孔径を有することが好ましい。細孔容積が3Å未満の場合、細孔内へのCOや炭化水素系ガスなどのガス成分の侵入が困難となる。一方、細孔容積が10Åを超えると、COや炭化水素系ガスなどの吸着力が弱くなってしまい、細孔内で最密に吸着できず、結果として吸着量が低下してしまうため好ましくない。 The inorganic gas absorbent preferably has a pore diameter of 3 to 10 mm. When the pore volume is less than 3 mm, it is difficult for gas components such as CO 2 and hydrocarbon gas to enter the pores. On the other hand, if the pore volume exceeds 10%, the adsorptive power of CO 2 , hydrocarbon gas, etc. will be weak, and it will not be possible to adsorb most closely in the pores, resulting in a decrease in the amount of adsorption. Absent.
 さらに、無機系ガス吸収材がゼオライトの場合、Si/Al比が1~5の範囲の元素構成比を有するものを使用するのが好ましい。Si/Al比が1未満のゼオライトは構造上不安定である一方、Si/Al比が5を超えるゼオライトはカチオン含有率が低くCOや炭化水素系ガスなどのガス成分の吸着量が低下するため好ましくない。 Further, when the inorganic gas absorbing material is zeolite, it is preferable to use one having an elemental composition ratio of Si / Al ratio in the range of 1-5. Zeolite with a Si / Al ratio of less than 1 is structurally unstable, while zeolite with a Si / Al ratio of more than 5 has a low cation content and decreases the amount of adsorption of gas components such as CO 2 and hydrocarbon gases. Therefore, it is not preferable.
 なお、ゼオライトとしては、A型、X型あるいはLSX型のゼオライトを用いるのが好ましい。特にゼオライトのカチオン部分がLiでイオン交換されたLSX型あるいはA型のゼオライトやゼオライトのカチオン部分がCaでイオン交換されたA型のゼオライトが好ましく、より好ましくはCaでイオン交換されたA型のゼオライトである。 In addition, it is preferable to use zeolite of A type, X type or LSX type as the zeolite. In particular, LSX type or A type zeolite in which the cation part of the zeolite is ion-exchanged with Li, and A type zeolite in which the cation part of the zeolite is ion-exchanged with Ca are preferable, and more preferably the A type zeolite in which the cation part is ion-exchanged with Ca. Zeolite.
 このような無機系ガス吸収材は、雰囲気中の湿度を吸収することがある。そして、無機系ガス吸収材は、水分を吸収するとCOやCH、Cなどの炭化水素系ガス成分の吸収性能が大幅に低減する。しかしながら、各種ゼオライト、特にCaでイオン交換されたA型のゼオライトは、加熱により水分を追い出すことによりガス吸収性能を再生させることが可能である。 Such an inorganic gas absorbent material may absorb humidity in the atmosphere. The inorganic gas absorbent, the absorption performance of the hydrocarbon gas components such as CO 2 and CH 4, C 2 H 6 upon absorption of moisture is greatly reduced. However, various zeolites, particularly A-type zeolite ion-exchanged with Ca, can regenerate the gas absorption performance by driving out moisture by heating.
 また、COを主に吸収させたい場合には、無機系ガス吸収材としてCOを中和的に吸収する機能を有する塩基性の素材を用いることもできる。この塩基系の素材としては、具体的には、炭酸カリウム、炭酸ナトリウム、炭酸カルシウムなどの金属炭酸塩、炭酸水素ナトリウム、炭酸水素マグネシウム、炭酸水素カルシウムなどの金属炭酸水素塩、水酸化マグネシウム、水酸化ナトリウム、水酸化カルシウムなどのアルカリ性水酸化物、その他アルカリ性の鉱物、有機物、多孔質材料などを挙げることができる。 Further, when it is desired to mainly absorb CO 2 it can also be used a basic material having a function of absorbing CO 2 neutralization manner as an inorganic gas absorbent. Specific examples of the basic material include metal carbonates such as potassium carbonate, sodium carbonate, and calcium carbonate, metal hydrogen carbonates such as sodium bicarbonate, magnesium bicarbonate, and calcium bicarbonate, magnesium hydroxide, water Examples thereof include alkaline hydroxides such as sodium oxide and calcium hydroxide, other alkaline minerals, organic substances, and porous materials.
 上述したような本実施形態においては、無機系ガス吸収材はフィルム状とすることから粉末状とするのが好ましく、具体的には平均粒径を10μm以下とするのが好ましい。粒径が10μmを超えると得られるガス吸収性フィルムの機械的強度が低下する。なお、平均粒径の下限については0.5μm未満では取扱い性が低下するばかりか、かえってガス吸収性能が低下するため0.5μm以上とするのが好ましい。 In the present embodiment as described above, the inorganic gas absorbent is preferably in the form of a powder because it is in the form of a film. Specifically, the average particle size is preferably 10 μm or less. When the particle size exceeds 10 μm, the mechanical strength of the gas-absorbing film obtained is lowered. The lower limit of the average particle diameter is preferably 0.5 μm or more because the handleability is lowered when the average particle size is less than 0.5 μm, and the gas absorption performance is lowered.
 この無機系ガス吸収材を耐熱性樹脂と混合してフィルム化するが、無機系ガス吸収材の配合割合は、耐熱性樹脂と無機系ガス吸収材との合計100重量%に対して0.5~70重量%であることが好ましい。無機系ガス吸収材の配合割合が0.5%未満では、得られるガス吸収性フィルムのガス吸収性能が十分でない一方、70重量%を超えるとフィルム状に成形するのが困難となるか、フィルム状に成形できたとしても得られるガス吸収性フィルムの機械的強度が低くなるため好ましくない。この無機系ガス吸収材の配合量は、ガス吸収性フィルムの用途に応じて適宜設定すればよい。例えば、リチウムイオン電池や蓄電デバイス内に設置用など可変性がありさえすれば、ガス吸収能が高い方がよい用途の場合には、30~70重量%と無機系ガス吸収材の含有率を高く設定すればよい一方、食品包装用などガス吸収能だけでなく透明性・柔軟性も要求される用途の場合には、0.5~30重量%と無機系ガス吸収材の含有率を低く設定すればよい。 The inorganic gas absorbent is mixed with a heat resistant resin to form a film, and the blending ratio of the inorganic gas absorbent is 0.5 with respect to a total of 100% by weight of the heat resistant resin and the inorganic gas absorbent. It is preferably ˜70% by weight. If the blending ratio of the inorganic gas absorbing material is less than 0.5%, the gas absorbing performance of the obtained gas absorbing film is not sufficient. On the other hand, if it exceeds 70% by weight, it becomes difficult to form a film, Even if it can be formed into a shape, the resulting gas-absorbing film has a low mechanical strength, which is not preferable. What is necessary is just to set the compounding quantity of this inorganic type gas absorption material suitably according to the use of a gas absorptive film. For example, as long as there is variability such as installation in a lithium ion battery or an electricity storage device, in a case where it is better to have a high gas absorption capacity, the content of the inorganic gas absorbent is 30 to 70% by weight. On the other hand, for applications such as food packaging that require not only gas absorption capacity but also transparency and flexibility, the content of inorganic gas absorbent is as low as 0.5 to 30% by weight. You only have to set it.
 上述したような耐熱性樹脂と無機系ガス吸収材とからなる本実施形態のガス吸収性フィルムは、耐熱性樹脂が熱可塑性の場合には溶融状態の耐熱性樹脂に無機系ガス吸収材を配合して両者をニーダ、バンバリミキサ、二軸混錬機などの汎用の混錬装置を用いて加熱しながら混練して樹脂組成物を調製し、ダイから押し出した後一軸あるいは二軸方向に延伸する延伸成形やインフレ-ション成形、あるいはブロー成形などの汎用のフィルム成形法によりフィルム状に成形することができる。また、耐熱性樹脂が熱硬化性あるいは溶融混錬が困難な場合には、耐熱性樹脂を所定の粘度となるように溶解した溶液に無機系ガス吸収材を分散させた混合溶液から乾式法または湿式法にて製膜してもよい。さらには、基材フィルム上に耐熱性樹脂と無機系ガス吸収材とからなる樹脂混合物あるいは混合溶液を塗布して積層フィルムとしてもよい。 The gas-absorbing film of the present embodiment comprising the heat-resistant resin and the inorganic gas absorbent as described above is blended with an inorganic gas absorbent in a molten heat-resistant resin when the heat-resistant resin is thermoplastic. Both are kneaded while heating using a general-purpose kneading device such as a kneader, a Banbury mixer, a biaxial kneader, etc. to prepare a resin composition, which is extruded from a die and then stretched in a uniaxial or biaxial direction. It can be formed into a film by a general-purpose film forming method such as forming, inflation forming, or blow forming. When the heat resistant resin is thermosetting or melt kneading is difficult, a dry method or a mixed method in which an inorganic gas absorbent is dispersed in a solution in which the heat resistant resin is dissolved to have a predetermined viscosity. A film may be formed by a wet method. Furthermore, it is good also as a laminated film by apply | coating the resin mixture or mixed solution which consists of a heat resistant resin and an inorganic type gas absorption material on a base film.
 ガス吸収性フィルムの厚さは、基材となる耐熱性樹脂にもよるが、20~200μmとすることができる。例えば、リチウムイオン電池や蓄電デバイス内に設置用などの場合には、ある程度変形可能であればガス吸収量が多い方がよいことからフィルムの厚さを大きく設定すればよい一方、食品包装用などガス吸収能だけでなく透明性・柔軟性も要求される場合には、フィルムの厚さを小さく設定すればよい。 The thickness of the gas-absorbing film can be 20 to 200 μm, although it depends on the heat-resistant resin as the base material. For example, in the case of installation in a lithium ion battery or an electricity storage device, it is better to set the film thickness larger because the amount of gas absorption is better if it can be deformed to some extent, while for food packaging etc. When not only gas absorption ability but also transparency and flexibility are required, the film thickness may be set small.
 上述した構成を有する本実施形態のガス吸収性フィルムは、COやCH、Cなどの炭化水素系ガス成分の吸収性能に優れる一方、雰囲気中の水分も吸湿しやすい。そして、無機系ガス吸収材は、前述したとおり水分を吸収するとCOやCH、Cなどのガス成分の吸収性能が大幅に低減する。そこで、本実施形態においては、ガス吸収性フィルムに対し熱処理を施すことにより、無機系ガス吸収材から水分を放出してガス吸収性能を再生する。この加熱処理の温度は耐熱性樹脂の耐熱温度以下であることが好ましい。加熱処理の温度が耐熱温度を超えると、フィルムがシュリンクしたりしてフィルム形状を保持できなくなる。しかしながら、耐熱性樹脂によっては、無機系ガス吸収材からの水分の放出温度が耐熱性樹脂の耐熱温度よりも高い場合がある。その場合には、ガス吸収性フィルムを減圧下に置くことにより吸湿した水分を放出しやすくして耐熱性樹脂の耐熱温度よりも低い温度で処理すればよい。 The gas-absorbing film of the present embodiment having the above-described configuration is excellent in absorbing performance of hydrocarbon gas components such as CO 2 , CH 4 , and C 2 H 6 , and easily absorbs moisture in the atmosphere. The inorganic gas absorbent, the absorption performance of the gas components such as CO 2 and CH 4, C 2 H 6 when it absorbs moisture as described above is greatly reduced. Therefore, in the present embodiment, by performing a heat treatment on the gas absorbing film, moisture is released from the inorganic gas absorbing material to regenerate the gas absorbing performance. It is preferable that the temperature of this heat processing is below the heat resistant temperature of a heat resistant resin. If the temperature of the heat treatment exceeds the heat resistance temperature, the film will shrink or the film shape cannot be maintained. However, depending on the heat resistant resin, the moisture release temperature from the inorganic gas absorbent material may be higher than the heat resistant temperature of the heat resistant resin. In that case, the gas-absorbing film is placed under a reduced pressure so that moisture absorbed can be easily released, and the treatment may be performed at a temperature lower than the heat-resistant temperature of the heat-resistant resin.
 以上、本発明について説明してきたが、本発明は上記実施形態に限定されず種々の変形実施が可能である。例えば、本発明は耐熱性樹脂及び無機系ガス吸収材を含む樹脂混合物によりガス吸収性フィルムを構成してさえいればよく、フィルム状に成形する方法などは前述した実施形態に限定されない。 Although the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the present invention, it suffices if the gas-absorbing film is composed of a resin mixture containing a heat-resistant resin and an inorganic gas-absorbing material, and the method for forming it into a film is not limited to the above-described embodiment.
 以下の具体的実施例に基づき本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be described in more detail based on the following specific examples, but the present invention is not limited to the following examples.
(実施例1)
 無機系ガス吸収材として、Caイオン交換したA型のゼオライトを用いて、ガス吸着法により、25℃、760mmHgにおけるCOの平衡吸着量を測定したところ、CO吸着量は80mL/gであった。
Example 1
When an equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method using Ca-type exchanged A-type zeolite as an inorganic gas absorbent, the CO 2 adsorption amount was 80 mL / g. It was.
(実施例2)
 実施例1で用いたCaイオン交換したA型のゼオライトを粒径10μm以下に粉砕したものを減圧(10hPa減圧条件、以下同じ)下で200℃にて乾燥した後、シリコン樹脂に70重量%添加し、Tダイを備えた二軸混錬機で混錬した後Tダイより吐出し、続いて2軸方向に延伸して厚さ50μmのガス吸収性フィルムを作製した。得られたガス吸収性フィルムの初期状態におけるCOガス吸収量は約56mL/gであった。
(Example 2)
The Ca ion-exchanged A-type zeolite used in Example 1 was pulverized to a particle size of 10 μm or less, dried at 200 ° C. under reduced pressure (10 hPa reduced pressure condition, the same applies hereinafter), and then added to a silicone resin by 70% by weight. Then, after kneading with a biaxial kneader equipped with a T die, it was discharged from the T die and then stretched in the biaxial direction to produce a gas-absorbing film having a thickness of 50 μm. The amount of CO 2 gas absorbed in the initial state of the obtained gas-absorbing film was about 56 mL / g.
 このガス吸収性フィルムを大気中に24時間放置したところ、COガス吸収量は約2mL/gであり、ほとんど失われていた。そこで、減圧下で200℃にて15時間熱処理を行い、処理後のガス吸収性フィルムのCOガス吸収量を測定した。結果を再生率(初期COガス吸収量に対する熱処理後のCOガス吸収量の割合)とともに表1に示す。 When this gas-absorbing film was left in the atmosphere for 24 hours, the CO 2 gas absorption amount was about 2 mL / g and was almost lost. Therefore, heat treatment was performed at 200 ° C. under reduced pressure for 15 hours, and the CO 2 gas absorption amount of the gas absorbent film after the treatment was measured. The results are shown in Table 1 together with the regeneration rate (ratio of the CO 2 gas absorption after heat treatment to the initial CO 2 gas absorption).
(実施例3)
 実施例1で用いたCaイオン交換したA型のゼオライトを粒径10μm以下に粉砕したものを減圧下で150℃にて乾燥した後、ポリイミド樹脂前駆体溶液に50重量%(ポリイミド樹脂換算)添加し、この混合溶液を基材上に塗布した後加熱して液分の揮発・乾燥を行い、基材より剥離したら2軸方向に延伸して厚さ50μmのガス吸収性フィルムを作製した。このガス吸収性フィルムの初期状態におけるCOガス吸収量は約40mL/gであった。
(Example 3)
After the Ca ion-exchanged A-type zeolite used in Example 1 was pulverized to a particle size of 10 μm or less and dried at 150 ° C. under reduced pressure, 50 wt% (in terms of polyimide resin) was added to the polyimide resin precursor solution. Then, this mixed solution was applied onto a substrate and then heated to volatilize and dry the liquid. When peeled from the substrate, it was stretched biaxially to produce a gas-absorbing film having a thickness of 50 μm. The amount of CO 2 gas absorbed in the initial state of this gas absorbent film was about 40 mL / g.
 このガス吸収性フィルムを大気中に24時間放置したところ、COガス吸収量は約2mL/gであり、ほとんど失われていた。そこで、減圧下で150℃にて24時間熱処理を行い、処理後のガス吸収性フィルムのCOガス吸収量を測定した。結果を再生率とともに表1に示す。 When this gas-absorbing film was left in the atmosphere for 24 hours, the CO 2 gas absorption amount was about 2 mL / g and was almost lost. Therefore, heat treatment was performed at 150 ° C. for 24 hours under reduced pressure, and the CO 2 gas absorption amount of the gas absorbent film after the treatment was measured. The results are shown in Table 1 together with the regeneration rate.
(比較例1)
 実施例1で用いたCaイオン交換したA型のゼオライトを粒径10μm以下に粉砕したものを減圧下で200℃にて乾燥した後、ポリエチレン樹脂に30重量%添加し、Tダイを備えた二軸混錬機で混錬した後Tダイより吐出し、続いて2軸方向に延伸して厚さ50μmのガス吸収性フィルムを作製した。このガス吸収性フィルムの初期状態におけるCOガス吸収量は約24mL/gであった。
(Comparative Example 1)
After the Ca ion-exchanged A-type zeolite used in Example 1 was pulverized to a particle size of 10 μm or less and dried at 200 ° C. under reduced pressure, 30 wt% was added to the polyethylene resin, and the T-die was provided. After kneading with an axial kneader, the gas was discharged from a T die and then stretched in the biaxial direction to produce a gas-absorbing film having a thickness of 50 μm. The amount of CO 2 gas absorbed in the initial state of this gas absorbent film was about 24 mL / g.
 得られたこのガス吸収性フィルムを大気中に24時間放置したところ、COガス吸収量は約2mL/gであり、ほとんど失われていた。そこで減圧下で150℃にて熱処理を行ったところ、フィルムがシュリンクしてしまい、フィルム形状が損なわれた。このため、減圧下でポリエチレンの耐熱温度以下である70℃で24時間熱処理を行い、処理後のガス吸収性フィルムのCOガス吸収量を測定した。結果を再生率とともに表1に示す。 When the obtained gas-absorbing film was left in the atmosphere for 24 hours, the CO 2 gas absorption amount was about 2 mL / g and was almost lost. Therefore, when heat treatment was performed at 150 ° C. under reduced pressure, the film was shrunk and the film shape was impaired. Therefore, for 24 hours heat treatment at 70 ° C. it is heat resistant temperature of the polyethylene below under reduced pressure, to measure the CO 2 gas absorption amount of the gas absorbing film after processing. The results are shown in Table 1 together with the regeneration rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかな通り、耐熱性樹脂であるシリコン樹脂及びポリイミドを用いた実施例2及び実施例3では、加熱によりCOガス吸収量を再生することができ、熱処理によるフィルムに対する影響もなかった。これに対し、ポリエチレン樹脂を用いた比較例1では70℃の熱処理には耐えられたものの、COガス吸収量の再現率は極めて低く、ガス吸収性フィルムとしての実用性に乏しかった。 As is clear from Table 1, in Examples 2 and 3 using silicon resin and polyimide which are heat-resistant resins, the CO 2 gas absorption amount could be regenerated by heating, and there was no influence on the film due to heat treatment. . On the other hand, in Comparative Example 1 using a polyethylene resin, although it could withstand heat treatment at 70 ° C., the CO 2 gas absorption amount reproducibility was extremely low and the practicality as a gas absorbing film was poor.
(実施例4)
 無機系ガス吸収材として、Liイオン交換したLSX型のゼオライトを用いて、ガス吸着法により25℃、760mmHgにおけるCOの平衡吸着量を測定したところ、CO吸着量は130mL/gであった。
Example 4
Using an LSX-type zeolite with Li ion exchange as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 130 mL / g. .
(実施例5)
 無機系ガス吸収材として、Naイオン交換したX型のゼオライトを用いて、ガス吸着法により25℃、760mmHgにおけるCOの平衡吸着量を測定したところ、CO吸着量は132mL/gであった。
(Example 5)
Using an X-type zeolite exchanged with Na ions as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 132 mL / g. .
(実施例6)
 無機系ガス吸収材として、Caイオン交換したX型のゼオライトを用いて、ガス吸着法により25℃、760mmHgにおけるCOの平衡吸着量を測定したところ、CO吸着量は130mL/gであった。
(Example 6)
Using an X-type zeolite exchanged with Ca ions as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 130 mL / g. .
(実施例7)
 無機系ガス吸収材として、Naイオン交換したA型のゼオライトを用いて、ガス吸着法により25℃、760mmHgにおけるCOの平衡吸着量を測定したところ、CO吸着量は70mL/gであった。
(Example 7)
Using an A-type zeolite exchanged with Na ions as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 70 mL / g. .
(実施例8)
 無機系ガス吸収材として、Hイオン交換したY型のゼオライトを用いて、ガス吸着法により25℃、760mmHgにおけるCOの平衡吸着量を測定したところ、CO吸着量は15mL/gであった。
(Example 8)
When an Y-type zeolite exchanged with H ions was used as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by a gas adsorption method, and the CO 2 adsorption amount was 15 mL / g. .
(実施例9)
 無機系ガス吸収材として、Caイオン交換したZSM-5型のゼオライトを用いて、ガス吸着法により25℃、760mmHgにおけるCOの平衡吸着量を測定したところ、CO吸着量は56mL/gであった。
Example 9
Using ZSM-5 type zeolite with Ca ion exchange as an inorganic gas absorbent, the equilibrium adsorption amount of CO 2 at 25 ° C. and 760 mmHg was measured by gas adsorption method. The CO 2 adsorption amount was 56 mL / g. there were.
 これら実施例4~9の無機系ガス吸収材も前述した実施例1と同様に耐熱性樹脂とともにフィルムとすることができ、加熱によりCO吸着能を再生することができる。 These inorganic gas absorbent materials of Examples 4 to 9 can also be formed into a film together with the heat-resistant resin as in Example 1 described above, and the CO 2 adsorption capacity can be regenerated by heating.
(実施例10)
 無機系ガス吸収材として、細孔を有するカーボン素材(CO吸着量50mL/g)を使用し、これをシリコン樹脂30重量%に対して70重量%添加し、Tダイを備えた二軸混練機で混練した後Tダイより吐出し、続いて2軸方向に延伸して厚さ50μmのガス吸収フィムを製作した。得られたガス吸収性フィルムの初期状態におけるCOガス吸収量は30mL/gであった。
(Example 10)
A carbon material having pores (CO 2 adsorption amount 50 mL / g) is used as the inorganic gas absorbent, and 70 wt% of this is added to 30 wt% of the silicon resin, and biaxial kneading with a T die is performed. After being kneaded by a machine, it was discharged from a T die, and then stretched in the biaxial direction to produce a gas absorption film having a thickness of 50 μm. The amount of CO 2 gas absorbed in the initial state of the obtained gas-absorbing film was 30 mL / g.
 得られたガス吸収フィルムを大気中に24時間放置していたところCOガス吸収量は約15mL/gとなり、初期の約半分となった。そこで大気下で乾燥機により110℃で3時間の熱処理を行い、処理後のガス吸収性フィルムのCOガス吸収量を測定したところ30mL/gであり、再生率は100%となった。カーボン素材を用いたガス吸収フィルムの方がガス吸収量は少ないが低い熱処理温度で高い再生率を得ることができることがわかる。 When the obtained gas absorption film was left in the atmosphere for 24 hours, the CO 2 gas absorption amount was about 15 mL / g, about half of the initial value. Therefore, heat treatment was performed at 110 ° C. for 3 hours with a dryer in the atmosphere, and the amount of CO 2 gas absorbed in the gas absorbent film after the treatment was measured. As a result, it was 30 mL / g, and the regeneration rate was 100%. It can be seen that a gas absorption film using a carbon material has a smaller gas absorption amount, but a high regeneration rate can be obtained at a low heat treatment temperature.
 上述したような本発明のガス吸収性フィルムは、COや炭化水素系のガス成分の吸収性を有しており、長期保管後でもガス吸収性を再現して、使用時において優れた性能を発揮することができるので、その産業上の利用可能性は極めて大きい。このようなガス吸収性フィルムは、リチウムイオン電池又は蓄電デバイスの内設用や食品包装用として好適である。 The gas-absorbing film of the present invention as described above has an absorptivity of CO 2 and hydrocarbon-based gas components, reproduces the gas absorptivity even after long-term storage, and has excellent performance during use. Since it can be demonstrated, its industrial applicability is extremely large. Such a gas absorptive film is suitable for internal use of a lithium ion battery or an electricity storage device or for food packaging.

Claims (15)

  1.  耐熱性樹脂及び無機系ガス吸収材を含む樹脂混合物から形成される、ガス吸収性フィルム。 A gas-absorbing film formed from a resin mixture containing a heat-resistant resin and an inorganic gas absorber.
  2.  前記無機系ガス吸収材の混合割合が0.5~70重量%である、請求項1に記載のガス吸収性フィルム。 The gas-absorbing film according to claim 1, wherein the mixing ratio of the inorganic gas absorbent is 0.5 to 70% by weight.
  3.  前記無機系ガス吸収材の粒径が10μm以下である、請求項1又は2に記載のガス吸収性フィルム。 The gas-absorbing film according to claim 1 or 2, wherein the inorganic gas absorbent has a particle size of 10 µm or less.
  4.  前記無機系ガス吸収材のガス吸収能が加熱処理により再生可能である、請求項1~3のいずれかに記載のガス吸収性フィルム。 The gas-absorbing film according to any one of claims 1 to 3, wherein the gas-absorbing ability of the inorganic gas-absorbing material can be regenerated by heat treatment.
  5.  前記無機系ガス吸収材の加熱処理温度が前記耐熱性樹脂の耐熱温度以下である、請求項4に記載のガス吸収性フィルム。 The gas-absorbing film according to claim 4, wherein the heat treatment temperature of the inorganic gas absorbent is equal to or lower than the heat-resistant temperature of the heat-resistant resin.
  6.  前記無機系ガス吸収材が無機多孔質材料である、請求項1~5のいずれかに記載のガス吸収性フィルム。 6. The gas-absorbing film according to claim 1, wherein the inorganic gas absorbing material is an inorganic porous material.
  7.  前記無機系ガス吸収材がゼオライトである、請求項6に記載のガス吸収性フィルム。 The gas absorbent film according to claim 6, wherein the inorganic gas absorbent is zeolite.
  8.  前記無機系ガス吸収材が100~3000m/gの比表面積を有する、請求項6又は7に記載のガス吸収性フィルム。 The gas absorbing film according to claim 6 or 7, wherein the inorganic gas absorbing material has a specific surface area of 100 to 3000 m 2 / g.
  9.  前記無機系ガス吸収材が3Å~10Åの細孔径を有する、請求項6~8のいずれかに記載のガス吸収性フィルム。 The gas-absorbing film according to any one of claims 6 to 8, wherein the inorganic gas absorbing material has a pore diameter of 3 to 10 mm.
  10.  前記無機系ガス吸収材がSi/Al比が1~5の範囲の元素構成比を有するゼオライトである、請求項7に記載のガス吸収性フィルム。 The gas-absorbing film according to claim 7, wherein the inorganic gas-absorbing material is a zeolite having an elemental composition ratio in the range of Si / Al ratio of 1 to 5.
  11.  前記無機系ガス吸収材がA型、X型あるいはLSX型のゼオライトである、請求項7又は10に記載のガス吸収性フィルム。 The gas-absorbing film according to claim 7 or 10, wherein the inorganic gas-absorbing material is an A-type, X-type, or LSX-type zeolite.
  12.  前記無機系ガス吸収材がLiでイオン交換されたLSX型のゼオライトである、請求項7、10又は11に記載のガス吸収性フィルム。 The gas-absorbing film according to claim 7, 10 or 11, wherein the inorganic gas absorbent is an LSX type zeolite ion-exchanged with Li.
  13.  前記無機系ガス吸収材がCaでイオン交換されたA型のゼオライトである、請求項7、10又は11に記載のガス吸収性フィルム。 The gas-absorbing film according to claim 7, 10 or 11, wherein the inorganic gas absorbent is an A-type zeolite ion-exchanged with Ca.
  14.  前記ガス吸収性フィルムがリチウムイオン電池又は蓄電デバイス内設用である、請求項1~13のいずれかに記載のガス吸収性フィルム。 The gas-absorbing film according to any one of claims 1 to 13, wherein the gas-absorbing film is for use in a lithium ion battery or an electricity storage device.
  15.  前記ガス吸収性フィルムが食品包装用である、請求項1~13のいずれかに記載のガス吸収性フィルム。 The gas absorbent film according to any one of claims 1 to 13, wherein the gas absorbent film is for food packaging.
PCT/JP2017/019232 2016-05-26 2017-05-23 Gas-absorbing film WO2017204222A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-105554 2016-05-26
JP2016105554 2016-05-26
JP2016-247189 2016-12-20
JP2016247189 2016-12-20

Publications (1)

Publication Number Publication Date
WO2017204222A1 true WO2017204222A1 (en) 2017-11-30

Family

ID=60411706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019232 WO2017204222A1 (en) 2016-05-26 2017-05-23 Gas-absorbing film

Country Status (2)

Country Link
JP (1) JP6988165B2 (en)
WO (1) WO2017204222A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602221A (en) * 2018-07-10 2021-04-02 日东电工株式会社 Gas adsorption sheet for 2-time battery
JP2021057229A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Outgas absorption packaging material for liquid electrolyte type lithium-ion battery
CN116207383A (en) * 2023-05-05 2023-06-02 四川新能源汽车创新中心有限公司 Dry functional layer for lithium battery, preparation method, composite electrode and preparation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054490A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Gas absorbing film
WO2024080337A1 (en) * 2022-10-12 2024-04-18 大日本印刷株式会社 Power storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043540A (en) * 1996-07-31 1998-02-17 Seibu Giken:Kk Organic gas adsorbing and removing sheet and organic gas adsorbing and removing element
JP2001155790A (en) * 1999-11-30 2001-06-08 Sony Corp Non-aqueous electrolyte cell
JP2005238046A (en) * 2004-02-25 2005-09-08 Toyobo Co Ltd Gas adsorption/desorption apparatus
WO2012032786A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Sheet-shaped gas adsorbent and insulating body using same
JP2013149781A (en) * 2012-01-19 2013-08-01 Kurita Water Ind Ltd Electric double layer capacitor
JP2015005496A (en) * 2013-05-20 2015-01-08 栗田工業株式会社 Lithium ion battery, and electronic device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116488A (en) * 2010-11-29 2012-06-21 Union Showa Kk Water-absorbing packaging material, method of manufacturing the same, and reproducing method
JP6313549B2 (en) * 2013-02-26 2018-04-18 日本バルカー工業株式会社 Adsorption sheet, production method for obtaining the adsorption sheet, adsorption function recovery method, and adsorption method
JP6573597B2 (en) * 2013-03-14 2019-09-11 シーエスピー テクノロジーズ,インコーポレイティド Substances that form channels in entrained polymers, entrained polymers containing such substances, methods for producing such entrained polymers, and products containing the same
JP2014232666A (en) * 2013-05-29 2014-12-11 株式会社カネカ Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043540A (en) * 1996-07-31 1998-02-17 Seibu Giken:Kk Organic gas adsorbing and removing sheet and organic gas adsorbing and removing element
JP2001155790A (en) * 1999-11-30 2001-06-08 Sony Corp Non-aqueous electrolyte cell
JP2005238046A (en) * 2004-02-25 2005-09-08 Toyobo Co Ltd Gas adsorption/desorption apparatus
WO2012032786A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Sheet-shaped gas adsorbent and insulating body using same
JP2013149781A (en) * 2012-01-19 2013-08-01 Kurita Water Ind Ltd Electric double layer capacitor
JP2015005496A (en) * 2013-05-20 2015-01-08 栗田工業株式会社 Lithium ion battery, and electronic device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602221A (en) * 2018-07-10 2021-04-02 日东电工株式会社 Gas adsorption sheet for 2-time battery
EP3823072A4 (en) * 2018-07-10 2022-04-13 Nitto Denko Corporation Gas adsorption sheet for secondary batteries
JP2021057229A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Outgas absorption packaging material for liquid electrolyte type lithium-ion battery
JP7532759B2 (en) 2019-09-30 2024-08-14 大日本印刷株式会社 Outgassing absorbing packaging material for liquid electrolyte type lithium ion batteries
CN116207383A (en) * 2023-05-05 2023-06-02 四川新能源汽车创新中心有限公司 Dry functional layer for lithium battery, preparation method, composite electrode and preparation method
CN116207383B (en) * 2023-05-05 2023-07-25 四川新能源汽车创新中心有限公司 Dry functional layer for lithium battery, preparation method, composite electrode and preparation method

Also Published As

Publication number Publication date
JP2018100389A (en) 2018-06-28
JP6988165B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6988165B2 (en) Gas absorbent film
JP6221854B2 (en) Lithium ion battery and electronic device using the same
US8848338B2 (en) Electric double layer capacitor
JP5966457B2 (en) Ignition prevention material for electricity storage device, ignition prevention system including this ignition prevention material, and electricity storage system using this ignition prevention system
US20090084675A1 (en) Ion adsorption electrode, electosorption purification device having the same and method of manufacturing the electrode
WO2006098518A1 (en) Production method for electric double layer capacitor
JP7073643B2 (en) Lithium ion battery
US20190190057A1 (en) Lithium ion battery
JPH10255860A (en) Nonaqueous battery
JP6318703B2 (en) CO and CO2 adsorbent, power storage device using the same, and method for producing CO and CO2 adsorbent
WO2019097739A1 (en) Gas absorbing material for lithium ion batteries
KR20200087076A (en) Gas absorber for lithium ion batteries
KR20150091898A (en) Lithium secondary battery module and lithium secondary battery pack having enhanced safety
WO2018025422A1 (en) Electrolyte for nonaqueous electrolyte secondary batteries
JP2010182427A (en) Storage body, battery, and battery system
JP5948888B2 (en) Electric double layer capacitor
JP7405507B2 (en) Sulfur-based gas adsorption structure and assembled battery
KR20160130974A (en) Lithium ion battery and electronic device using same
KR20160004247A (en) Lithium secondary battery module and lithium secondary battery pack having enhanced safety
JP2017004627A (en) Ion capturing agent for lithium ion secondary battery and lithium ion secondary battery using the same
JP7524971B2 (en) battery
JP7272872B2 (en) Hydrogen sulfide gas adsorption structure and battery pack
JP5691636B2 (en) Electrolyte ejection preventing material for secondary battery, electrolyte ejection preventing system, and secondary battery system using the same
JP2014053515A (en) Stacked electric double-layer capacitor
JP2014216304A (en) Gas absorption material for power storage device and power storage device including the same, and electrical apparatus and electronic apparatus including the power storage device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802808

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802808

Country of ref document: EP

Kind code of ref document: A1