WO2017204202A1 - Oxide semiconductor - Google Patents

Oxide semiconductor Download PDF

Info

Publication number
WO2017204202A1
WO2017204202A1 PCT/JP2017/019148 JP2017019148W WO2017204202A1 WO 2017204202 A1 WO2017204202 A1 WO 2017204202A1 JP 2017019148 W JP2017019148 W JP 2017019148W WO 2017204202 A1 WO2017204202 A1 WO 2017204202A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
oxide
semiconductor
type
pyrochlore structure
Prior art date
Application number
PCT/JP2017/019148
Other languages
French (fr)
Japanese (ja)
Inventor
直人 菊地
相浦 義弘
浩史 川中
瑞平 王
浩 高島
朱音 三溝
紳太郎 池田
外岡 和彦
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2017204202A1 publication Critical patent/WO2017204202A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum

Definitions

  • the present invention relates to an oxide semiconductor composed of an oxide composite, and more particularly to an oxide semiconductor capable of realizing p-type semiconductor characteristics.
  • transparent conductor materials and transparent semiconductor materials having high transparency in the visible light region and high electrical conductivity are known as oxide composites, and are widely used for transparent electrodes and the like.
  • transparent semiconductors In 2 O 3 , ZnO, SnO 2 , and Sn-added In 2 O 3 , impurities added to these base materials, Al-added ZnO, Ga-added ZnO, Sb-added SnO 2 , and F-added SnO are used. 2 and the like are known, but these are all n-type semiconductors in which electrons serve as charge carriers.
  • semiconductors include p-type semiconductors that use holes as charge carriers. If n-type and p-type semiconductors that are transparent in the visible light region are prepared, forming a pn junction makes it possible to produce a diode, transistor, solar cell, or the like that is transparent in the visible light region.
  • Cu 2 O, NiO, and the like are already known as p-type semiconductors, but are not transparent because they absorb light in the visible light region and have strong coloration. Since 1990, research and development of transparent p-type conductors has been promoted, and several new transparent p-type conductors have been reported.
  • a compound having a delafossite structure has low hole mobility.
  • the oxychalcogenide compound has a considerably high mobility and hole concentration, but is oxidized in the air atmosphere, so that the characteristic deterioration is remarkable.
  • zinc oxide is an n-type semiconductor that originally uses electrons as charge carriers, it is necessary to reduce the concentration of structural defects that generate electrons to the limit and introduce structural defects that express p-type semiconductor characteristics such as nitrogen. There is. For this reason, it is difficult to produce zinc oxide having p-type semiconductor characteristics and poor reproducibility due to the difficulty in generating n-type structural defects accompanying the introduction of p-type structural defects and reducing the concentration of n-type structural defects. Therefore, it is difficult to realize a transparent p-type semiconductor suitable for an electronic device.
  • An oxide semiconductor is expected as a semiconductor material resistant to an oxidation reaction in an atmosphere containing oxygen.
  • it is difficult to realize p-type conductivity with an oxide. This is because in the oxide, electrons at the upper end of the valence band are localized on oxygen ions.
  • a metal d-orbital component is introduced at the upper end of the valence band
  • a p-orbital component of a chalcogen element is introduced at the upper end of the valence band. The presence is reduced.
  • Non-Patent Document 1 a metal oxide having a pyrochlore structure represented by a composition formula Sn 2 Ta 2 O 7 is composed of a 5s component of Sn at the upper end of the valence band.
  • Patent Document 2 reports a photocatalyst of an oxide complex composed of Sn 2 Nb 2 O 7 (oxide semiconductor) and titanium oxide.
  • the photocatalyst is composed of an oxide composite having a junction made of different kinds of oxide semiconductors having different energy levels of electrons at the bottom of the conduction band and electrons at the top of the valence band.
  • Ta is listed as an option similar to Nb.
  • Patent Document 3 discloses ABO 4 + x (where ⁇ 0.25 ⁇ x ⁇ 0.5, A ions are Sn elements, B ions are one or more elements selected from Nb and Ta), and fluorite. Pyrochlore-related structure in which oxygen vacancies are regularly present and oxygen vacancies in the pyrochlore structure where cations are regularly arranged are filled with oxygen, either ⁇ -PbO 2 -related structures or rutile-related structures A photocatalyst having a structure has been reported.
  • Non-Patent Document 3 reports that Sn 2 Nb 2 O 7 having a pyrochlore structure does not develop a photocatalyst, whereas Sn 2 Ta 2 O 7 having the same pyrochlore structure has a weak photocatalytic activity.
  • the present invention is intended to solve these problems, and an object of the present invention is to provide a novel oxide semiconductor that has low light absorption in the visible light region and can realize high charge carrier mobility. And It is another object of the present invention to provide an oxide semiconductor that exhibits p-type semiconductor characteristics.
  • the present invention has the following features in order to achieve the above object.
  • the present invention relates to an oxide semiconductor, and is composed of an oxide composite having a crystal structure including Sn and Ta and including at least a pyrochlore structure, and a composition ratio Sn / Ta is 0.60 ⁇ Sn / Ta ⁇ 1.0. It is characterized by being.
  • the oxide semiconductor of the present invention is characterized in that holes serve as charge carriers.
  • a transparent and high mobility semiconductor having a wide gap can be realized in an oxide semiconductor.
  • a p-type oxide semiconductor was realized by the oxide semiconductor of the present invention.
  • the p-type is realized by generating the structural defect V ′′ Sn.
  • the composition ratio Sn / Ta is 0.60 or more, it takes a crystal structure including at least a pyrochlore structure.
  • the oxide semiconductor of the present invention is composed of a 5s component of Sn at the upper end of the valence band.
  • the semiconductor of the present invention is made of an oxide and has weather resistance
  • an electronic device having excellent weather resistance can be realized by forming a pn junction of the p-type oxide semiconductor and the n-type oxide semiconductor of the present invention. .
  • the oxide semiconductor of the present invention has at least a pyrochlore structure containing Sn and Ta having a band gap of 3.0 eV, and when Ta 2 O 5 coexists slightly, the band gap of Ta 2 O 5 Is 4.0-4.5 eV, a wide gap can be realized and high transparency is obtained in the visible light region.
  • complex in 1st Embodiment. is there. It is a figure which shows the change of the specific resistance with respect to the analysis composition value (Sn / Ta) after in 1st Embodiment. It is a figure which shows the change of the density
  • the present inventor conducted research and development by paying attention to the fact that semiconductor characteristics are influenced by the composition ratio of Sn / Ta in an oxide composite having a pyrochlore structure, and has excellent semiconductor characteristics. Thus, an oxide semiconductor having semiconductor characteristics has been obtained.
  • SnO having a small bandgap in which the upper end portion of the valence band is composed of 5s orbitals of Sn is bonded to ions by forming a double oxide with Ta 2 O 5.
  • the crystal structure has at least a pyrochlore structure, and the Sn / Ta composition ratio Sn / Ta is 0.60 ⁇ It is a semiconductor with Sn / Ta ⁇ 1.0.
  • the oxide semiconductor according to the embodiment of the present invention is Sn 2 Ta 2 O 7 having a small composition with respect to the stoichiometric composition ratio so as to form holes that are p-type charge carriers.
  • Non-Patent Document 2 in a compound described as Sn 2 Ta 2 O 7 with a simple composition formula, if two structural defects are represented, Sn 2-x (Ta 2-y Sn y ) O 7-x-0.5y .
  • these two structural defects are V ′′ Sn and Sn ′ Ta , respectively, according to the Crager-Bink notation, and both are structural defects having negative charges. Therefore, when these defects are generated, it is considered that any of them becomes a center of a structural defect that causes generation of holes. That is, less than the stoichiometric composition, that is, Sn / Ta ⁇ 1 indicates a structural defect represented by V ′′ Sn .
  • No oxide composite having a pyrochlore structure has developed p-type semiconductor characteristics, including Non-Patent Document 2 above. It generates a -2 valence defect V '' Sn simultaneously generates +2 oxygen vacancy V ⁇ ⁇ O, so resulting in charge compensation, the expression of p-type conduction is not obtained due to holes generated Therefore, it is considered.
  • the amount of V ′′ Sn and V ⁇ O produced is considered to depend on the temperature and the atmospheric gas conditions when the oxide composite is produced. In the present invention, the generation of V ′′ Sn is controlled by changing the composition ratio Sn / Ta at the time of sample preparation, while V ⁇ O appropriately controls the atmospheric gas conditions.
  • n-type semiconductor suitable for forming a pn junction with the p-type semiconductor of this embodiment In 2 O 3 , ZnO, SnO 2 , Sn-doped In 2 O 3 in which impurities are added to these base materials, Al adding ZnO, Ga added ZnO, Sb added SnO 2, F added SnO 2.
  • ZnO is preferable from the standpoints that, in addition to the feature that it is possible to fabricate from an insulator to a semiconductor due to easy control of the carrier concentration, there is no problem of etching and easiness of patterning and the scarcity of raw materials.
  • an oxide semiconductor including an oxide composite including Sn and Ta and having at least a pyrochlore structure will be described.
  • the characteristics corresponding to the composition ratio Sn / Ta were examined.
  • the composition ratio Sn / Ta is 0.81 ⁇ Sn / Ta ⁇ 1.0, indicating a single phase of the pyrochlore structure, and 0.60 ⁇ Sn / Ta ⁇ 0.81, and the pyrochlore structure and Ta 2 O 5 Shows a coexisting crystal structure.
  • Ta 2 O 5 coexists in the crystal structure by a maximum of 25%.
  • p-type semiconductor characteristics using holes as charge carriers are exhibited at 0.60 ⁇ Sn / Ta ⁇ 1.0.
  • the band gap of Ta 2 O 5 exhibits 4.0 to 4.5 eV.
  • the oxide semiconductor embodiment of the present invention at least has the pyrochlore structure containing Sn and Ta which is the band gap showing the 3.0 eV, if further slightly coexist Ta 2 O 5 is the wide gap Ta 2 Since it contains O 5 , a wide gap can be realized even if it is not a single phase with a pyrochlore structure, and it has high transparency in the visible light region.
  • Example 1 Weighed SnO powder (purity 99.5%, Purity Chemical Laboratory Co., Ltd.) and Ta 2 O 5 (purity 99.9% Purity Chemical Laboratory, Inc.) into an agate mortar and added ethanol (Japanese Wet mixing was carried out for about 1 hour while adding Kogyo Pharmaceutical Co., Ltd. special grade). At this time, SnO and Ta 2 O 5 were mixed so that the ratio of Sn to Ta (Sn / Ta) was 0.60, 0.70, 0.80, and 1.00 in terms of atomic ratio. This charged composition value is hereinafter referred to as “(Sn / Ta) before ”. Table 1 summarizes the amount of reagent weighed during sample preparation.
  • the mixture was allowed to stand overnight at room temperature to dry the ethanol, and the powder divided into approximately six equal parts was uniaxially pressed (diameter: 15 mm, 170 MPa) to produce six disk-shaped green compacts.
  • the green compact was placed on an alumina boat, placed in an electric furnace having an alumina furnace tube having a diameter of 50 mm and a length of 800 mm, and pre-baked at 900 ° C. for 4 hours while flowing a nitrogen gas at a flow rate of 150 ml / min.
  • the calcined green compact was crushed in an agate mortar, and an aqueous polyvinyl alcohol solution as a binder was 2 wt. % And mixed with ethanol and left to dry overnight at room temperature.
  • the particle size was adjusted to 212 ⁇ m or less by sieving, and uniaxial pressing (diameter: 15 mm, 170 MPa) followed by hydrostatic pressing (285 MPa) to produce a molded body having a diameter of about 15 mm and a thickness of about 1.2 mm.
  • the obtained molded body was placed on an alumina boat and subjected to main firing at 750 ° C. for 4 hours while flowing nitrogen gas (flow rate: 50 ml / min).
  • Sample Nos. 1 to 4 have a charge composition value ((Sn / Ta) before ) of 0.60, 0.70, 0.80, and 1.00, respectively, and nitrogen during firing. This is a sample prepared under the condition of a gas (N 2 gas) flow rate of 50 ml / min.
  • Example 1 [Analytical composition value and electrical property of oxide composite having pyrochlore structure containing Sn and Ta]
  • the crystal structure of the sample obtained in Example 1 was identified by an X-ray diffractometer (Panalytic X'Pert Pro MRD).
  • a wavelength dispersive X-ray fluorescence analyzer (Rigaku ZSX) was used.
  • the analytical composition value after firing is expressed as “(Sn / Ta) after ”.
  • the evaluation of the electrical characteristics of the sample was performed using a Hall effect measuring device (Toyo Technica Resitest 8310) with a van der Pau arrangement prepared by depositing gold electrodes on the four corners of a circular sample.
  • the Seebeck coefficient of the sample was evaluated using a thermoelectric property evaluation apparatus (Advanced Riko ZEM-3). All measurements were performed at room temperature.
  • FIG. 1 shows changes in the X-ray diffraction pattern of the Sn 2 Ta 2 O 7 sample in Example 1 by (Sn / Ta) after .
  • the horizontal axis in FIG. 1 is the diffraction angle 2 ⁇ with respect to the incident angle ⁇ using CuK ⁇ rays.
  • a peak attributed to Sn 2 Ta 2 O 7 having a pyrochlore structure belonging to a cubic system shown by a black circle (222)) (400) (440) (622) etc.
  • Table 2 shows the analytical composition value (Sn / Ta) after and electrical measurement results (specific resistance, concentration of charge carrier, mobility, Seebeck coefficient) for samples prepared by changing the charged composition value ((Sn / Ta) before ).
  • FIG. 2 shows a change in specific resistance with respect to (Sn / Ta) after .
  • the nitrogen flow rate at the time of firing in Table 2 is 50 ml / min.
  • the case of producing under the conditions (white circle) is shown.
  • the error bar in the figure indicates the standard deviation ⁇ .
  • FIG. 2 shows specific resistance values in Table 2 in the range of (Sn / Ta) after of about 0.60 to about 1.0 (specifically 0.998).
  • the specific resistance of the sample is (Sn / Ta) after in this range from 5 ⁇ 10 1 to 4 ⁇ 10 2 ⁇ cm, and both exhibit electrical conductivity.
  • FIG. 3 shows changes in the concentration of the charge carrier with respect to (Sn / Ta) after .
  • the error bar indicates the standard deviation ⁇ .
  • the concentration of the charge carrier increases as (Sn / Ta) after decreases. It can be seen that it has increased. This is presumably because Sn in the pyrochlore structure was deficient and Sn vacancies V ′′ Sn were generated by the decrease in Sn / Ta. Since Sn vacancies V ′′ Sn are defects that generate carrier holes, it is considered that the concentration of holes, which are charge carriers of the p-type semiconductor, increased as V ′′ Sn increased.
  • thermoelectric property evaluation apparatus shown in Table 2 all showed positive values. This indicates that all of sample numbers 1 to 4 in Example 1 have holes as charge carriers.
  • the composition ratio Sn / Ta it is clear that when p is 0.60 ⁇ Sn / Ta ⁇ 1.0, it exhibits a p-type semiconductor characteristic having a crystal structure including at least a pyrochlore structure and using holes as charge carriers.
  • Thin-film oxide semiconductors can be produced by sputtering, heating, electron beam deposition, ion plating, and other oxide film production methods such as spin coating and spray coating using solutions as starting materials. Can be manufactured by technology.
  • the oxide semiconductor of the present invention can realize a p-type semiconductor, a pn junction can be realized by an n-type semiconductor and a p-type semiconductor that are transparent in the visible light region, and widely used in devices such as a transmissive display and a transparent transistor. Can be industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided is an oxide semiconductor having excellent transparency, mobility, and weather resistance with which it is possible to realize a p-type semiconductor in an oxide semiconductor. An oxide semiconductor was realized by an oxide semiconductor having a pyrochlore structure including Sn and Ta and a compositional ratio Sn/Ta of 0.60 ≤ Sn/Ta < 1.0. The oxide semiconductor has a wide gap of about 3.0 eV, and is therefore a p-type semiconductor having transparency in the visible light region and high mobility. When the amount of Sn is small with respect to the stoichiometric composition of the compositional formula Sn2Ta2O7, i.e., when Sn/Ta < 1, a p-type can be realized by generation of a structural defect V''Sn, and a pyrochlore structure is obtained when the compositional ratio Sn/Ta is at least 0.60.

Description

酸化物半導体Oxide semiconductor
 本発明は、酸化物複合体により構成される酸化物半導体に係り、特にp型半導体特性を実現可能とする酸化物半導体に関する。 The present invention relates to an oxide semiconductor composed of an oxide composite, and more particularly to an oxide semiconductor capable of realizing p-type semiconductor characteristics.
 従来、酸化物複合体として、可視光領域で高い透明性をもち、かつ高い電気伝導性を示す透明導電体材料や透明半導体材料が知られ、透明電極等に広く用いられている。例えば、透明半導体には、In、ZnO、SnO、及びこれらの母体材料に不純物を添加したSn添加In、Al添加ZnO、Ga添加ZnO、Sb添加SnO、F添加SnOなどが知られているが、これらは全て電子が荷電担体となるn型半導体である。一方、半導体には正孔を荷電担体とするp型半導体がある。可視光領域で透明なn型とp型の半導体がそろえば、pn接合を形成することによって、可視光領域で透明なダイオードやトランジスタ、太陽電池などを作ることが可能となる。 Conventionally, transparent conductor materials and transparent semiconductor materials having high transparency in the visible light region and high electrical conductivity are known as oxide composites, and are widely used for transparent electrodes and the like. For example, for transparent semiconductors, In 2 O 3 , ZnO, SnO 2 , and Sn-added In 2 O 3 , impurities added to these base materials, Al-added ZnO, Ga-added ZnO, Sb-added SnO 2 , and F-added SnO are used. 2 and the like are known, but these are all n-type semiconductors in which electrons serve as charge carriers. On the other hand, semiconductors include p-type semiconductors that use holes as charge carriers. If n-type and p-type semiconductors that are transparent in the visible light region are prepared, forming a pn junction makes it possible to produce a diode, transistor, solar cell, or the like that is transparent in the visible light region.
 すでにCuOやNiOなどがp型半導体として知られているが、可視光領域に光吸収があり、強い着色を持っているため、透明ではない。1990年以降、透明p型導電体の研究開発がすすめられ、いくつかの新しい透明p型導電体が報告された。例えばデラフォサイト構造をもつABO(A=CuまたはAgの少なくとも1種類、B=Al、Ga、In、Sc、Y、Cr、RhまたはLaの少なくとも1種類)の化学式で表される酸化物複合体、LnCuOCh(Ln=ランタノイド元素またはYの少なくとも1種類、Ch=S、Se、またはTeの少なくとも一種類)の化学式で表されるオキシカルコゲナイド化合物、ZnOの化学式で表される酸化亜鉛などである。しかし、デラフォサイト構造をもつ化合物は正孔の移動度が低い。また、オキシカルコゲナイド化合物は、移動度や正孔濃度はかなり高いが、大気雰囲気中で酸化してしまい、特性劣化が著しい。また、酸化亜鉛は、もともと電子を荷電担体とするn型半導体であるため、電子を生成する構造欠陥濃度を極限まで少なくし、かつ窒素などのp型半導体特性を発現する構造欠陥を導入する必要がある。そのため、p型の構造欠陥導入にともなうn型構造欠陥生成やn型構造欠陥濃度の低減の困難さなどから、p型半導体特性を有する酸化亜鉛の作製が難しく再現性に乏しい。よって、電子デバイスに適した透明p型半導体は実現が困難である。 Cu 2 O, NiO, and the like are already known as p-type semiconductors, but are not transparent because they absorb light in the visible light region and have strong coloration. Since 1990, research and development of transparent p-type conductors has been promoted, and several new transparent p-type conductors have been reported. For example, an oxide represented by a chemical formula of ABO 2 having a delafossite structure (A = at least one of Cu or Ag, B = at least one of Al, Ga, In, Sc, Y, Cr, Rh, or La) A complex, an oxychalcogenide compound represented by a chemical formula of LnCuOCh (at least one of Ln = lanthanoid element or Y, Ch = S, Se, or Te), zinc oxide represented by a chemical formula of ZnO, etc. is there. However, a compound having a delafossite structure has low hole mobility. In addition, the oxychalcogenide compound has a considerably high mobility and hole concentration, but is oxidized in the air atmosphere, so that the characteristic deterioration is remarkable. In addition, since zinc oxide is an n-type semiconductor that originally uses electrons as charge carriers, it is necessary to reduce the concentration of structural defects that generate electrons to the limit and introduce structural defects that express p-type semiconductor characteristics such as nitrogen. There is. For this reason, it is difficult to produce zinc oxide having p-type semiconductor characteristics and poor reproducibility due to the difficulty in generating n-type structural defects accompanying the introduction of p-type structural defects and reducing the concentration of n-type structural defects. Therefore, it is difficult to realize a transparent p-type semiconductor suitable for an electronic device.
 酸化物半導体は、酸素を含む大気中で酸化反応に強い半導体材料として期待されている。ところが、酸化物でp型伝導性を実現することは難しい。これは酸化物では価電子帯上端部の電子が酸素イオン上に局在するためである。デラフォサイト化合物では価電子帯上端部に金属のd軌道成分を導入し、オキシカルコゲナイド化合物では価電子帯上端部にカルコゲン元素のp軌道成分を導入して、価電子帯上端部の電子の局在性を低下させている。また、価電子帯の上端部にd軌道やp軌道よりも大きな電子軌道半径をもつ金属元素のs軌道を導入すれば、価電子帯上端部の電子の局在性を低下させ、高い移動度が期待できる。加えてs軌道の等方的な球状構造は結合角や結合距離のばらつきを引き起こす結晶構造の乱れに対する移動度の低下を抑制できることが期待される。この考え方に基づいて価電子帯上端部にスズのs軌道成分を導入した酸化スズ(SnO)においてp-チャンネルトランジスタの作製が報告されている(例えば特許文献1参照)。また、SnOのバンドギャップは0.7eVと可視光領域よりも小さいエネルギーのため可視光領域に強い着色があり、可視光領域での透明性は確保できないことが知られている。 An oxide semiconductor is expected as a semiconductor material resistant to an oxidation reaction in an atmosphere containing oxygen. However, it is difficult to realize p-type conductivity with an oxide. This is because in the oxide, electrons at the upper end of the valence band are localized on oxygen ions. In the delafossite compound, a metal d-orbital component is introduced at the upper end of the valence band, and in the oxychalcogenide compound, a p-orbital component of a chalcogen element is introduced at the upper end of the valence band. The presence is reduced. In addition, if an s orbital of a metal element having an electron orbit radius larger than the d orbital or p orbital is introduced at the upper end portion of the valence band, the localization of electrons at the upper end portion of the valence band is lowered and high mobility is achieved. Can be expected. In addition, the isotropic spherical structure of the s orbitals is expected to suppress a decrease in mobility with respect to the disorder of the crystal structure that causes variations in bond angles and bond distances. Based on this idea, the production of a p-channel transistor has been reported for tin oxide (SnO) in which a tin s orbital component is introduced at the upper end of the valence band (see, for example, Patent Document 1). In addition, it is known that SnO has a band gap of 0.7 eV, which is smaller than that of the visible light region, so that the visible light region is strongly colored, and transparency in the visible light region cannot be ensured.
 パイロクロア構造の酸化物に関連して、次のような公知文献がある。 There are the following publicly known documents relating to oxides having a pyrochlore structure.
 組成式SnTaで表されるパイロクロア構造を有する金属酸化物は、価電子帯上端部がSnの5s成分から構成されることが報告されている(非特許文献1参照)。 It has been reported that a metal oxide having a pyrochlore structure represented by a composition formula Sn 2 Ta 2 O 7 is composed of a 5s component of Sn at the upper end of the valence band (see Non-Patent Document 1).
 簡便な組成式でSnTaと記述される化合物の構造に関する研究で、(1)2価のSnサイトの一部が欠損していること、(2)5価のTaサイトの一部に酸化されて4価になったSnの一部が置換されること、が知られている。これら2つの構造欠陥を表記すれば、Sn2-x(Ta2-ySn)O7-x-0.5yとなる。さらにx、y=0.1-0.48の範囲でパイロクロア構造を維持すると記載されている(非特許文献2)。 In a study on the structure of a compound described as Sn 2 Ta 2 O 7 with a simple composition formula, (1) a part of the divalent Sn site is missing, and (2) one of the pentavalent Ta sites. It is known that a part of Sn which has been oxidized to a tetravalent part is substituted. If these two structural defects are expressed, it becomes Sn 2-x (Ta 2-y Sn y ) O 7-x-0.5y . Further, it is described that the pyrochlore structure is maintained in the range of x, y = 0.1-0.48 (Non-patent Document 2).
 また、Snを含むパイロクロア構造の酸化物は、光を照射することによって有機物の分解が起こり光触媒として働くとの報告がある(特許文献2、3、非特許文献3参照)。特許文献2には、SnNb(酸化物半導体)と酸化チタンとからなる酸化物複合体の光触媒が報告されている。特許文献2では、該光触媒は、伝導帯底部の電子のエネルギーレベルと価電子帯頂上の電子のエネルギーレベルがそれぞれ異なる異種の酸化物半導体による接合部を有する酸化物複合体により構成される。また特許文献2は、Nbと同様の選択肢としてTaが挙げられている。特許文献3には、ABO4+x(ただし、-0.25≦x≦0.5、AイオンはSn元素、BイオンはNb、Taから選択された1種以上の元素)で表され、蛍石構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造、α-PbO関連構造あるいはルチル関連構造のいずれかの構造を有する光触媒が報告されている。非特許文献3にはパイロクロア構造をもつSnNbが光触媒を発現しないのに対し、同じパイロクロア構造をもつSnTaに弱い光触媒活性があることが報告されている。 Further, it has been reported that an oxide having a pyrochlore structure containing Sn decomposes an organic substance when irradiated with light and acts as a photocatalyst (see Patent Documents 2 and 3 and Non-Patent Document 3). Patent Document 2 reports a photocatalyst of an oxide complex composed of Sn 2 Nb 2 O 7 (oxide semiconductor) and titanium oxide. In Patent Document 2, the photocatalyst is composed of an oxide composite having a junction made of different kinds of oxide semiconductors having different energy levels of electrons at the bottom of the conduction band and electrons at the top of the valence band. In Patent Document 2, Ta is listed as an option similar to Nb. Patent Document 3 discloses ABO 4 + x (where −0.25 ≦ x ≦ 0.5, A ions are Sn elements, B ions are one or more elements selected from Nb and Ta), and fluorite. Pyrochlore-related structure in which oxygen vacancies are regularly present and oxygen vacancies in the pyrochlore structure where cations are regularly arranged are filled with oxygen, either α-PbO 2 -related structures or rutile-related structures A photocatalyst having a structure has been reported. Non-Patent Document 3 reports that Sn 2 Nb 2 O 7 having a pyrochlore structure does not develop a photocatalyst, whereas Sn 2 Ta 2 O 7 having the same pyrochlore structure has a weak photocatalytic activity.
国際公開2010/010802号公報International Publication No. 2010/010802 特開2003-117407号公報JP 2003-117407 A 特開2004-344733号公報JP 2004-344733 A
 従来、酸素を含む大気中で酸化反応に強い酸化物半導体において、電子デバイスに適した透明p型半導体は実現が困難であった。特に、可視光領域で透明なn型とp型の半導体が揃えばpn接合が作成でき、透明な半導体装置が期待されるが、実現が困難であった。 Conventionally, it has been difficult to realize a transparent p-type semiconductor suitable for an electronic device in an oxide semiconductor resistant to an oxidation reaction in an atmosphere containing oxygen. In particular, if n-type and p-type semiconductors that are transparent in the visible light region are aligned, a pn junction can be formed and a transparent semiconductor device is expected, but it is difficult to realize.
 本発明は、これらの問題を解決しようとするものであり、本発明は、可視光領域で光吸収が少なく、かつ高い荷電担体の移動度が実現できる新規な酸化物半導体を提供することを目的とする。また、本発明は、p型の半導体特性を示す酸化物半導体を提供することを目的とする。 The present invention is intended to solve these problems, and an object of the present invention is to provide a novel oxide semiconductor that has low light absorption in the visible light region and can realize high charge carrier mobility. And It is another object of the present invention to provide an oxide semiconductor that exhibits p-type semiconductor characteristics.
 本発明は、前記目的を達成するために、以下の特徴を有するものである。 The present invention has the following features in order to achieve the above object.
 本発明は、酸化物半導体に関し、Sn及びTaを含み、パイロクロア構造を少なくとも含む結晶構造を有する酸化物複合体で構成され、組成比Sn/Taが0.60≦Sn/Ta<1.0であることを特徴とする。また、本発明の酸化物半導体は、正孔が荷電担体となることを特徴とする。 The present invention relates to an oxide semiconductor, and is composed of an oxide composite having a crystal structure including Sn and Ta and including at least a pyrochlore structure, and a composition ratio Sn / Ta is 0.60 ≦ Sn / Ta <1.0. It is characterized by being. In addition, the oxide semiconductor of the present invention is characterized in that holes serve as charge carriers.
 本発明によれば、酸化物半導体において、ワイドギャップを有する透明でかつ高移動度の半導体を実現できた。また、本発明の酸化物半導体により、p型の酸化物半導体を実現できた。本発明によれば、Snが組成式SnTaの量論組成に対して少ないとき、即ちSn/Ta<1のときに、構造欠陥V’’Snの生成により、p型を実現でき、組成比Sn/Taが0.60以上のとき、少なくともパイロクロア構造を含む結晶構造をとる。 According to the present invention, a transparent and high mobility semiconductor having a wide gap can be realized in an oxide semiconductor. In addition, a p-type oxide semiconductor was realized by the oxide semiconductor of the present invention. According to the present invention, when Sn is less than the stoichiometric composition of the composition formula Sn 2 Ta 2 O 7 , that is, when Sn / Ta <1, the p-type is realized by generating the structural defect V ″ Sn. When the composition ratio Sn / Ta is 0.60 or more, it takes a crystal structure including at least a pyrochlore structure.
 本発明の酸化物半導体は価電子帯上端部がSnの5s成分から構成される。このことにより、s軌道は軌道半径が大きく等方的な球状であるため、電子の局在性を低下させ、高い移動度が構造乱れに対しても実現できるという効果を奏する。 The oxide semiconductor of the present invention is composed of a 5s component of Sn at the upper end of the valence band. As a result, since the s orbit has an isotropic spherical shape with a large orbit radius, there is an effect that the localization of electrons is lowered and high mobility can be realized even for structural disturbance.
 本発明の半導体は、酸化物からなるので、耐候性を有するため、本発明のp型酸化物半導体とn型酸化物半導体によるpn接合を形成すれば、耐候性に優れた電子デバイスを実現できる。 Since the semiconductor of the present invention is made of an oxide and has weather resistance, an electronic device having excellent weather resistance can be realized by forming a pn junction of the p-type oxide semiconductor and the n-type oxide semiconductor of the present invention. .
 また、本発明の酸化物半導体は、バンドギャップが3.0eVを示すSnとTaを含むパイロクロア構造を少なくとも有し、さらにわずかにTaが共存する場合は、Taのバンドギャップが4.0-4.5eVであるので、ワイドギャップを実現でき可視光領域で高い透明性を有する。 Further, the oxide semiconductor of the present invention has at least a pyrochlore structure containing Sn and Ta having a band gap of 3.0 eV, and when Ta 2 O 5 coexists slightly, the band gap of Ta 2 O 5 Is 4.0-4.5 eV, a wide gap can be realized and high transparency is obtained in the visible light region.
第1の実施の形態における、酸化物複合体の分析組成値(Sn/Ta)afterが0.60、0.71、0.81、0.998である場合のX線回折パターンを示す図である。The figure which shows the X-ray-diffraction pattern in case analysis value (Sn / Ta) after of 0.60, 0.71, 0.81, and 0.998 of an oxide composite_body | complex in 1st Embodiment. is there. 第1の実施の形態における、分析組成値(Sn/Ta)afterに対する比抵抗の変化を示す図である。It is a figure which shows the change of the specific resistance with respect to the analysis composition value (Sn / Ta) after in 1st Embodiment. 第1の実施の形態における、分析組成値(Sn/Ta)afterに対する荷電担体の濃度の変化を示す図である。It is a figure which shows the change of the density | concentration of the charge carrier with respect to the analysis composition value (Sn / Ta) after in 1st Embodiment.
 本発明の実施の形態について以下説明する。 Embodiments of the present invention will be described below.
 本発明者は、パイロクロア構造の酸化物複合体において、半導体特性がSn/Taの組成比により影響をうけることに着目して研究開発を行い、優れた半導体特性を有し、また、p型の半導体特性を有する酸化物半導体を得るに到ったものである。 The present inventor conducted research and development by paying attention to the fact that semiconductor characteristics are influenced by the composition ratio of Sn / Ta in an oxide composite having a pyrochlore structure, and has excellent semiconductor characteristics. Thus, an oxide semiconductor having semiconductor characteristics has been obtained.
 本発明の実施の形態の酸化物半導体は、価電子帯の上端部がSnの5s軌道から構成されたバンドギャップの小さいSnOに対して、Taとの複酸化物形成によって結合のイオン性を高め、バンドギャップのワイド化を実現した組成式SnTaにおいて、結晶構造がパイロクロア(pyrochlore)構造を少なくとも有し、かつSnとTaの組成比Sn/Taが0.60≦Sn/Ta<1.0である半導体である。 In the oxide semiconductor according to the embodiment of the present invention, SnO having a small bandgap in which the upper end portion of the valence band is composed of 5s orbitals of Sn is bonded to ions by forming a double oxide with Ta 2 O 5. In the composition formula Sn 2 Ta 2 O 7 which has improved the property and widened the band gap, the crystal structure has at least a pyrochlore structure, and the Sn / Ta composition ratio Sn / Ta is 0.60 ≦ It is a semiconductor with Sn / Ta <1.0.
 また、本発明の実施の形態の酸化物半導体は、p型の荷電担体である正孔を形成するように、Snが量論組成比に対して少ない組成をもつSnTaであって、構造欠陥の表記法であるクレーガー=ビンク(Kroger-Vink)の表記法で「V’’Sn」と表記される構造欠陥を有する半導体である。 In addition, the oxide semiconductor according to the embodiment of the present invention is Sn 2 Ta 2 O 7 having a small composition with respect to the stoichiometric composition ratio so as to form holes that are p-type charge carriers. A semiconductor having a structural defect represented by “V ″ Sn ” in the Kroger-Vink notation which is a notation of a structural defect.
 p型半導体特性が発現する機構は以下のように考えることができる。 The mechanism by which p-type semiconductor characteristics are manifested can be considered as follows.
 上記非特許文献2の説明で述べたように、簡便な組成式でSnTaと記述される化合物において、2つの構造欠陥を表記すればSn2-x(Ta2-ySn)O7-x-0.5yとなる。x、y=0.1-0.48の範囲でパイロクロア構造を維持する。 As described in the description of Non-Patent Document 2, in a compound described as Sn 2 Ta 2 O 7 with a simple composition formula, if two structural defects are represented, Sn 2-x (Ta 2-y Sn y ) O 7-x-0.5y . The pyrochlore structure is maintained in the range of x, y = 0.1-0.48.
 ところで、これらの2つの構造欠陥は、クレーガー=ビンクの表記法によれば、それぞれV’’SnとSn’Taとなり、いずれも負電荷をもった構造欠陥となる。したがって、これらの欠陥が生成した場合、いずれも正孔の生成をもたらす構造欠陥中心となると考えられる。つまり、量論組成よりも少ない、すなわちSn/Ta<1は、V’’Snで表される構造欠陥を示していることになる。 By the way, these two structural defects are V ″ Sn and Sn ′ Ta , respectively, according to the Crager-Bink notation, and both are structural defects having negative charges. Therefore, when these defects are generated, it is considered that any of them becomes a center of a structural defect that causes generation of holes. That is, less than the stoichiometric composition, that is, Sn / Ta <1 indicates a structural defect represented by V ″ Sn .
 パイロクロア構造の酸化物複合体において、上記非特許文献2をはじめ、従来、p型半導体特性が発現したものはなかった。それは、-2価の欠陥V’’Snの生成は、同時に+2価の酸素欠損V・・ を生成し、電荷補償してしまうので、正孔の生成によるp型伝導の発現が得られないため、と考えられる。V’’SnとV・・ の生成量は酸化物複合体を作製するときの温度や雰囲気ガス条件に依存すると考えられる。本発明では、V’’Snの生成を試料調製時の組成比Sn/Taを変えることで制御する一方、V・・ は雰囲気ガス条件を適切に制御する。これによりV’’SnとV・・ の同時生成による電荷補償を抑制し、p型半導体特性の発現につながったと考えられる。p型半導体特性はバルク状でも薄膜状でも発現する。 No oxide composite having a pyrochlore structure has developed p-type semiconductor characteristics, including Non-Patent Document 2 above. It generates a -2 valence defect V '' Sn simultaneously generates +2 oxygen vacancy V · · O, so resulting in charge compensation, the expression of p-type conduction is not obtained due to holes generated Therefore, it is considered. The amount of V ″ Sn and V ·· O produced is considered to depend on the temperature and the atmospheric gas conditions when the oxide composite is produced. In the present invention, the generation of V ″ Sn is controlled by changing the composition ratio Sn / Ta at the time of sample preparation, while V ·· O appropriately controls the atmospheric gas conditions. As a result, it is considered that charge compensation due to simultaneous generation of V ″ Sn and V ·· O is suppressed, leading to the development of p-type semiconductor characteristics. The p-type semiconductor characteristics are manifested in a bulk form or a thin film form.
 本実施の形態のp型半導体とpn接合を形成するのに適するn型半導体として、In、ZnO、SnO、及びこれらの母体材料に不純物を添加したSn添加In、Al添加ZnO、Ga添加ZnO、Sb添加SnO、F添加SnO等が挙げられる。特にZnOが、キャリア濃度の制御の容易性による絶縁体から半導体まで作製できる特徴に加え、パターニングの際のエッチングやしやすさや原料の希少性の問題がないこと等の点から好ましい。 As an n-type semiconductor suitable for forming a pn junction with the p-type semiconductor of this embodiment, In 2 O 3 , ZnO, SnO 2 , Sn-doped In 2 O 3 in which impurities are added to these base materials, Al adding ZnO, Ga added ZnO, Sb added SnO 2, F added SnO 2. In particular, ZnO is preferable from the standpoints that, in addition to the feature that it is possible to fabricate from an insulator to a semiconductor due to easy control of the carrier concentration, there is no problem of etching and easiness of patterning and the scarcity of raw materials.
(第1の実施の形態)
 本実施の形態では、Sn及びTaを含み、少なくともパイロクロア構造を有する酸化物複合体を含む酸化物半導体について説明する。Sn、Ta及び酸素からなるパイロクロア構造を有する酸化物複合体において、組成比Sn/Taに対応する特性を調べた。以下に示すように、組成比Sn/Taが0.81≦Sn/Ta≦1.0でパイロクロア構造単相を示し、0.60≦Sn/Ta<0.81でパイロクロア構造とTaが共存する結晶構造を示す。なお、ここで、Taは最大25%ほど結晶構造中に共存する。また0.60≦Sn/Ta<1.0において正孔を荷電担体とするp型半導体特性を発現する。
(First embodiment)
In this embodiment, an oxide semiconductor including an oxide composite including Sn and Ta and having at least a pyrochlore structure will be described. In the oxide composite having a pyrochlore structure composed of Sn, Ta and oxygen, the characteristics corresponding to the composition ratio Sn / Ta were examined. As shown below, the composition ratio Sn / Ta is 0.81 ≦ Sn / Ta ≦ 1.0, indicating a single phase of the pyrochlore structure, and 0.60 ≦ Sn / Ta <0.81, and the pyrochlore structure and Ta 2 O 5 Shows a coexisting crystal structure. Here, Ta 2 O 5 coexists in the crystal structure by a maximum of 25%. Further, p-type semiconductor characteristics using holes as charge carriers are exhibited at 0.60 ≦ Sn / Ta <1.0.
 ところで、Taのバンドギャップが4.0-4.5eVを示すことが従来から知られている。本発明の実施の形態の酸化物半導体において、バンドギャップが3.0eVを示すSnとTaを含むパイロクロア構造を少なくとも有し、さらにわずかにTaも共存する場合は、ワイドギャップのTaを含有するので、パイロクロア構造単相でなくとも、ワイドギャップを実現でき、可視光領域で高い透明性を有する。 Incidentally, it has been conventionally known that the band gap of Ta 2 O 5 exhibits 4.0 to 4.5 eV. In the oxide semiconductor embodiment of the present invention, at least has the pyrochlore structure containing Sn and Ta which is the band gap showing the 3.0 eV, if further slightly coexist Ta 2 O 5 is the wide gap Ta 2 Since it contains O 5 , a wide gap can be realized even if it is not a single phase with a pyrochlore structure, and it has high transparency in the visible light region.
[Sn及びTaを含むパイロクロア構造を有する酸化物複合体の製造]
(実施例1)
 SnO粉末(株式会社高純度化学研究所 純度99.5%)とTa(株式会社高純度化学研究所 純度99.9%)を秤量したものを、メノウ製乳鉢に入れ、エタノール(和光純薬株式会社 特級)を加えながら約1時間湿式混合した。このとき、SnOとTaは、SnとTaの比(Sn/Ta)が原子数比で0.60、0.70、0.80、1.00となるように混合した。この仕込み組成値を以後「(Sn/Ta)before」と表記する。試料調整時の試薬秤量の量を表1にまとめて示す。
[Production of oxide composite having pyrochlore structure containing Sn and Ta]
Example 1
Weighed SnO powder (purity 99.5%, Purity Chemical Laboratory Co., Ltd.) and Ta 2 O 5 (purity 99.9% Purity Chemical Laboratory, Inc.) into an agate mortar and added ethanol (Japanese Wet mixing was carried out for about 1 hour while adding Kogyo Pharmaceutical Co., Ltd. special grade). At this time, SnO and Ta 2 O 5 were mixed so that the ratio of Sn to Ta (Sn / Ta) was 0.60, 0.70, 0.80, and 1.00 in terms of atomic ratio. This charged composition value is hereinafter referred to as “(Sn / Ta) before ”. Table 1 summarizes the amount of reagent weighed during sample preparation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その後、室温で一晩放置してエタノールを乾燥させ、およそ6等分した粉末を一軸加圧(直径15ミリ、170MPa)し、6個の円板状の圧粉体を作製した。アルミナボート上に圧粉体をのせ、直径50ミリ、長さ800ミリのアルミナ炉心管をもつ電気炉中に入れ、窒素ガスを流量150ml/分 流しながら900℃で4時間仮焼成した。仮焼成した圧粉体はメノウ製乳鉢内で解砕し、バインダーとしてポリビニルアルコール水溶液を試料に対して2wt.%となるように添加してエタノールとともに混合し、室温で一晩放置して乾燥させた。その後、ふるいで粒径を212μm以下にそろえ、一軸加圧(直径15ミリ、170MPa)した後に静水圧成形(285MPa)を行い、直径約15mm、厚さ約1.2mmの成形体を作製した。得られた成形体はアルミナボートに乗せ、窒素ガス(流量:50ml/分)を流しながら750℃で4時間本焼成した。後述する表2に示すように、試料番号1乃至4は、仕込み組成値((Sn/Ta)before)がそれぞれ0.60、0.70、0.80、1.00で、焼成時の窒素ガス(Nガス)流量が50ml/分の条件で作製した試料である。 Thereafter, the mixture was allowed to stand overnight at room temperature to dry the ethanol, and the powder divided into approximately six equal parts was uniaxially pressed (diameter: 15 mm, 170 MPa) to produce six disk-shaped green compacts. The green compact was placed on an alumina boat, placed in an electric furnace having an alumina furnace tube having a diameter of 50 mm and a length of 800 mm, and pre-baked at 900 ° C. for 4 hours while flowing a nitrogen gas at a flow rate of 150 ml / min. The calcined green compact was crushed in an agate mortar, and an aqueous polyvinyl alcohol solution as a binder was 2 wt. % And mixed with ethanol and left to dry overnight at room temperature. Thereafter, the particle size was adjusted to 212 μm or less by sieving, and uniaxial pressing (diameter: 15 mm, 170 MPa) followed by hydrostatic pressing (285 MPa) to produce a molded body having a diameter of about 15 mm and a thickness of about 1.2 mm. The obtained molded body was placed on an alumina boat and subjected to main firing at 750 ° C. for 4 hours while flowing nitrogen gas (flow rate: 50 ml / min). As shown in Table 2 to be described later, Sample Nos. 1 to 4 have a charge composition value ((Sn / Ta) before ) of 0.60, 0.70, 0.80, and 1.00, respectively, and nitrogen during firing. This is a sample prepared under the condition of a gas (N 2 gas) flow rate of 50 ml / min.
[Sn及びTaを含むパイロクロア構造を有する酸化物複合体の分析組成値と電気特性]
 実施例1で得られた試料の結晶構造の同定は、X線回折装置(パナリティカル X’Pert Pro MRD)により行った。焼成後のSn/Taの組成比の見積もりは波長分散型蛍光X線分析装置(リガクZSX)を用いた。焼成後の分析組成値は「(Sn/Ta)after」と表記する。試料の電気特性の評価は、円形試料の四隅に金電極を蒸着した試料を準備し、ファンデルパウ配置によりホール効果測定装置(東陽テクニカ Resitest 8310)を用いて行った。試料のゼーベック係数評価は熱電特性評価装置(アドバンス理工 ZEM-3)を用いて行った。すべての測定は室温で行った。
[Analytical composition value and electrical property of oxide composite having pyrochlore structure containing Sn and Ta]
The crystal structure of the sample obtained in Example 1 was identified by an X-ray diffractometer (Panalytic X'Pert Pro MRD). For the estimation of the Sn / Ta composition ratio after firing, a wavelength dispersive X-ray fluorescence analyzer (Rigaku ZSX) was used. The analytical composition value after firing is expressed as “(Sn / Ta) after ”. The evaluation of the electrical characteristics of the sample was performed using a Hall effect measuring device (Toyo Technica Resitest 8310) with a van der Pau arrangement prepared by depositing gold electrodes on the four corners of a circular sample. The Seebeck coefficient of the sample was evaluated using a thermoelectric property evaluation apparatus (Advanced Riko ZEM-3). All measurements were performed at room temperature.
 図1に、実施例1におけるSnTa試料の(Sn/Ta)afterによるX線回折パターンの変化を示す。図1の横軸は、CuKα線を使った入射角度Θに対する回折角度2Θである。(Sn/Ta)afterが0.81、0.998の場合のX線回折パターンには、立方晶系に属するパイロクロア構造をもつSnTaに帰属するピーク(黒丸で示す(222)(400)(440)(622)等)のみが表れている。一方、(Sn/Ta)afterが0.60、0.71では、パイロクロア構造をもつSnTaに帰属するピークに加え、斜方晶系に属する構造をもつTaに帰属する弱いピークが見られた。このことから、分析組成値が0.60≦(Sn/Ta)after<1.00の範囲の試料は、少なくとも立方晶系に属するパイロクロア構造をもつSnTaを含む結晶構造を有することがわかる。 FIG. 1 shows changes in the X-ray diffraction pattern of the Sn 2 Ta 2 O 7 sample in Example 1 by (Sn / Ta) after . The horizontal axis in FIG. 1 is the diffraction angle 2Θ with respect to the incident angle Θ using CuKα rays. In the X-ray diffraction pattern when (Sn / Ta) after is 0.81 or 0.998, a peak attributed to Sn 2 Ta 2 O 7 having a pyrochlore structure belonging to a cubic system (shown by a black circle (222)) (400) (440) (622) etc.) only appears. On the other hand, when (Sn / Ta) after is 0.60 or 0.71, in addition to the peak attributed to Sn 2 Ta 2 O 7 having a pyrochlore structure, it is attributed to Ta 2 O 5 having an orthorhombic structure. A weak peak was observed. From this, the sample having an analytical composition value of 0.60 ≦ (Sn / Ta) after <1.00 has a crystal structure containing at least Sn 2 Ta 2 O 7 having a pyrochlore structure belonging to a cubic system. I understand that.
 表2に、仕込み組成値((Sn/Ta)before)を変えて作製した試料の、分析組成値(Sn/Ta)afterと電気測定結果(比抵抗、荷電担体の濃度、移動度、ゼーベック係数)をまとめて示す。 Table 2 shows the analytical composition value (Sn / Ta) after and electrical measurement results (specific resistance, concentration of charge carrier, mobility, Seebeck coefficient) for samples prepared by changing the charged composition value ((Sn / Ta) before ). )
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図2に、(Sn/Ta)afterに対する比抵抗の変化を示す。図2では、表2の、焼成時の窒素流量が50ml/min.の条件で作製した(白丸)場合を示した。なお、図中のエラーバーは標準偏差σを示す。図2は、表2の、(Sn/Ta)afterがおよそ0.60からおよそ1.0(詳細には0.998)の範囲における、比抵抗の値を示す。図2から、試料の比抵抗は(Sn/Ta)afterはこの範囲において5×10から4×10Ωcmの範囲にあり、いずれも電気伝導性が発現していることがわかる。 FIG. 2 shows a change in specific resistance with respect to (Sn / Ta) after . In FIG. 2, the nitrogen flow rate at the time of firing in Table 2 is 50 ml / min. The case of producing under the conditions (white circle) is shown. The error bar in the figure indicates the standard deviation σ. FIG. 2 shows specific resistance values in Table 2 in the range of (Sn / Ta) after of about 0.60 to about 1.0 (specifically 0.998). As can be seen from FIG. 2, the specific resistance of the sample is (Sn / Ta) after in this range from 5 × 10 1 to 4 × 10 2 Ωcm, and both exhibit electrical conductivity.
 図3に、(Sn/Ta)afterに対する荷電担体の濃度の変化を示す。図3においても、エラーバーは標準偏差σを示す。図3に示されるように、(Sn/Ta)afterがおよそ0.60からおよそ1.0(詳細には0.998)の範囲において、(Sn/Ta)afterの減少に従って荷電担体の濃度が増加していることが分かる。これはパイロクロア構造中のSnが欠損し、Snの空孔V’’SnがSn/Taの減少によって生成したものと考えられる。Snの空孔V’’Snはキャリア正孔を生成する欠陥であるため、V’’Snの増加に伴いp型半導体の荷電担体である正孔の濃度が増加したと考えられる。 FIG. 3 shows changes in the concentration of the charge carrier with respect to (Sn / Ta) after . Also in FIG. 3, the error bar indicates the standard deviation σ. As shown in FIG. 3, when the (Sn / Ta) after is in the range of about 0.60 to about 1.0 (specifically 0.998), the concentration of the charge carrier increases as (Sn / Ta) after decreases. It can be seen that it has increased. This is presumably because Sn in the pyrochlore structure was deficient and Sn vacancies V ″ Sn were generated by the decrease in Sn / Ta. Since Sn vacancies V ″ Sn are defects that generate carrier holes, it is considered that the concentration of holes, which are charge carriers of the p-type semiconductor, increased as V ″ Sn increased.
 表2に示された熱電特性評価装置によるゼーベック係数は、全てプラスの値を示した。これは、実施例1の試料番号1乃至4がいずれも正孔が荷電担体となることを示している。 The Seebeck coefficients obtained by the thermoelectric property evaluation apparatus shown in Table 2 all showed positive values. This indicates that all of sample numbers 1 to 4 in Example 1 have holes as charge carriers.
 以上、X線回折による結晶相の同定、およびホール効果測定および熱電特性測定による電気特性評価の結果から、簡便な組成式でSnTaと表される化合物では、組成比Sn/Taが0.60≦Sn/Ta<1.0となる場合において、少なくともパイロクロア構造を含む結晶構造を有し、かつ正孔を荷電担体とするp型半導体特性を発現することが明らかである。 As described above, in the compound represented by Sn 2 Ta 2 O 7 in a simple composition formula based on the identification of the crystal phase by X-ray diffraction and the evaluation of the electrical properties by Hall effect measurement and thermoelectric property measurement, the composition ratio Sn / Ta It is clear that when p is 0.60 ≦ Sn / Ta <1.0, it exhibits a p-type semiconductor characteristic having a crystal structure including at least a pyrochlore structure and using holes as charge carriers.
 上述の酸化物複合体の製造方法によりバルク状の複合体の場合を例示したが、薄膜状でも同様のp型特性が得られる。薄膜状の酸化物半導体は、スパッタリング法、加熱や電子ビームによる蒸着法、イオンプレーティング法などの真空成膜技術に加え、溶液を出発原料としたスピンコーティング法やスプレーコーティング等の酸化物薄膜製造技術により製造できる。 Although the case of a bulk composite was illustrated by the above-described oxide composite manufacturing method, the same p-type characteristics can be obtained even in a thin film form. Thin-film oxide semiconductors can be produced by sputtering, heating, electron beam deposition, ion plating, and other oxide film production methods such as spin coating and spray coating using solutions as starting materials. Can be manufactured by technology.
 なお、上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。 In addition, the example shown by the said embodiment etc. was described in order to make invention easy to understand, and is not limited to this form.
 本発明の酸化物半導体は、p型半導体を実現可能であるので、可視光領域で透明なn型とp型の半導体によりpn接合を実現でき、透過型ディスプレイや透明トランジスタ等の装置に広く利用でき、産業上有用である。

 
Since the oxide semiconductor of the present invention can realize a p-type semiconductor, a pn junction can be realized by an n-type semiconductor and a p-type semiconductor that are transparent in the visible light region, and widely used in devices such as a transmissive display and a transparent transistor. Can be industrially useful.

Claims (2)

  1.  Sn及びTaを含み、パイロクロア構造を少なくとも含む結晶構造を有する酸化物複合体で構成され、組成比Sn/Taが0.60≦Sn/Ta<1.0であることを特徴とする酸化物半導体。 An oxide semiconductor comprising an oxide composite containing Sn and Ta and having a crystal structure including at least a pyrochlore structure, wherein the composition ratio Sn / Ta is 0.60 ≦ Sn / Ta <1.0 .
  2.  正孔が荷電担体となることを特徴とする請求項1記載の酸化物半導体。

     
    2. The oxide semiconductor according to claim 1, wherein holes serve as charge carriers.

PCT/JP2017/019148 2016-05-25 2017-05-23 Oxide semiconductor WO2017204202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016104471 2016-05-25
JP2016-104471 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017204202A1 true WO2017204202A1 (en) 2017-11-30

Family

ID=60411340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019148 WO2017204202A1 (en) 2016-05-25 2017-05-23 Oxide semiconductor

Country Status (1)

Country Link
WO (1) WO2017204202A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219703A (en) * 1982-06-01 1983-12-21 イ−・アイ・デユ・ポン・ドウ・ヌム−ル・アンド・カンパニ− Method of doping oxidized tin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219703A (en) * 1982-06-01 1983-12-21 イ−・アイ・デユ・ポン・ドウ・ヌム−ル・アンド・カンパニ− Method of doping oxidized tin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAO KITA ET AL.: "a -Pb02-retated phase appearing in the SnIV-Ta-0 system transformed from cation-ordered fluorite-related phase", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 122, no. 1430, October 2014 (2014-10-01), pages 902 - 907, XP055600322 *
MASAO KITA ET AL.: "Synthesis of novel cation-ordered compounds with fluorite-related structure prepared by oxidation of Sn-Ta-0 pyrochlore", JOURNAL OF SOLID STATE CHEMISTRY, vol. 178, no. 4, April 2005 (2005-04-01), pages 1254 - 1261, XP004866195 *
W. BIEGER ET AL.: "Thermodynamic investigations in the system Sn-Ta- 0", MATERIALS SCIENCE FORUM, vol. 62 - 64, 1990, pages 325 - 327 *

Similar Documents

Publication Publication Date Title
Guo et al. Chemical intercalations in layered transition metal chalcogenides: syntheses, structures, and related properties
JP6562321B2 (en) Oxide semiconductor
Xin et al. A systematic spectroscopic study of laboratory synthesized manganese oxides relevant to Mars
JP2014040331A (en) Method for manufacturing zinc tin oxide
WO2018155034A1 (en) Oxide semiconductor and semiconductor device
Shaili et al. Revealing the impact of strontium doping on the optical, electronic and electrical properties of nanostructured 2H-CuFeO 2 delafossite thin films
WO2017204202A1 (en) Oxide semiconductor
JP7037197B2 (en) Oxide semiconductors and semiconductor devices
Qian et al. Synthesizing Mono-and Bimetallic 2D Selenophosphates Using a P2Se5 Reactive Flux
Tiedje et al. Bridging from ThCr 2 Si 2-type materials to hexagonal dichalcogenides: An ab initio and experimental study of KCu 2 Se 2
US20120037857A1 (en) Method for Manufacturing a Powder for the Production of P-Type Transparent Conductive Films
Besprozvannykh et al. SrO-Bi 2 O 3-Fe 2 O 3-Based Composites: Synthesis and Electrophysical Properties
Peiteado et al. Preparation of ZnO-SnO2 ceramic materials by a coprecipitation method
Roelsgaard et al. The hydrothermal synthesis, crystal structure and electrochemical properties of MnSb 2 O 4
Abbattista et al. Preparation and crystallographic characteristics of the new phase La2Au0. 5Li0. 5O4
Shan et al. New n-type thermoelectric oxide, Cd3TeO6
Šimuneková et al. The first transition metal iodato peroxido complex: the synthesis, vibrational spectra and crystal structure from powder diffraction data of K3 [V2O2 (O2) 4 (IO3)]· H2O
Hamdi et al. Synthesis, structural and electrical characterizations of Er0. 33Sr1. 67Ni0. 8Cu0. 2O4− δ
Kamel et al. Tunability of transport properties of semi-exfoliated AgxCoO2-δ within 0.4< x< 1 crystals
Douma et al. Structural determination of new solid solutions [Y2-xMx][Sn2-xMx] o7-3x/2 (M= Mg or Zn) by Rietveld method
Kharroubi et al. Synthesis and Properties of (Bi, Cd)-doped CuMn2O4 thin films by sol-gel dip-coating method
Rickert The Impact of Local Coordination Environments on Transparency and Conductivity in Select Fluorite-Related Systems
Ding et al. Preparation, optical and magnetic properties of Ni-doped CuAlO2 nanocrystalline films
Shang Preparation and characterization of praseodymium oxide films and powders
Bazzaouia et al. EMERGENCE OF A-SITE CATION ORDER IN THE SMALL RARE-EARTH MELILITES SrREGa3O7 (RE= Dy–Lu, Y)

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802788

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP