WO2017204044A1 - Polarization marking - Google Patents

Polarization marking Download PDF

Info

Publication number
WO2017204044A1
WO2017204044A1 PCT/JP2017/018466 JP2017018466W WO2017204044A1 WO 2017204044 A1 WO2017204044 A1 WO 2017204044A1 JP 2017018466 W JP2017018466 W JP 2017018466W WO 2017204044 A1 WO2017204044 A1 WO 2017204044A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
marking
earth metal
metal complex
fluorescence
Prior art date
Application number
PCT/JP2017/018466
Other languages
French (fr)
Japanese (ja)
Inventor
英雄 會田
秀太 内海
柴田 進
美貴 長谷川
Original Assignee
並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 並木精密宝石株式会社 filed Critical 並木精密宝石株式会社
Priority to JP2018519209A priority Critical patent/JPWO2017204044A1/en
Publication of WO2017204044A1 publication Critical patent/WO2017204044A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking

Definitions

  • the present invention relates to marking.
  • the marking described in Patent Document 1 has a technical feature of providing polarization by providing an alignment layer oriented in a certain direction with respect to the upper surface of the reflective layer.
  • the marking described in Patent Document 1 becomes a recording medium in which the recorded contents cannot be visually recognized, and provides an information recording medium and an information card in which recorded information cannot be completely viewed. Furthermore, the effect of reproducing the recorded information is obtained through the polarizing film.
  • Patent Document 1 While having the above-described effects, the marking described in Patent Document 1 required the lamination of a plurality of thin films due to its principle. Furthermore, since the function for each thin film is limited, there is a problem that the marking itself can be easily counterfeited.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a marking that is difficult to forge, has high versatility, and is easy to visualize.
  • the marking of the present invention has a technical feature that it emits linearly polarized fluorescence when irradiated with ultraviolet rays as excitation light.
  • the markings aligned in a uniform direction are excited by the ultraviolet rays to emit linearly polarized fluorescence, and the fluorescence forms the markings.
  • the marking according to the second aspect of the present invention has a technical feature that the marking has a rare earth metal complex oriented in a uniform direction.
  • the rare earth metal complex absorbs ultraviolet rays and emits fluorescence
  • the rare earth metal complex is oriented in a uniform direction to polarize the fluorescence.
  • the marking according to the third aspect of the present invention has a technical feature in that a recess having a uniform direction is provided on the surface of the base material, and the marking has a rare earth metal complex in the recess.
  • a group of dents arranged uniformly is provided on the surface of the base material, and the dents are filled with a rare earth metal complex that absorbs ultraviolet rays and emits fluorescence. .
  • the marking according to the fourth aspect of the present invention is characterized in that the rare earth metal complex is composed of a mixture of at least two rare earth metal complexes containing different rare earth atoms.
  • the rare earth metal complex is characterized by comprising a mixture of at least two rare earth metal complexes having different peak hues, that is, the strongest peak wavelength of fluorescence emitted by absorption of ultraviolet rays.
  • the invention described in this application makes it possible to provide markings that are difficult to counterfeit, are highly versatile, and easy to visualize.
  • the marking of the present invention visualizes a latent image by linearly polarized fluorescence emitted by ultraviolet irradiation. For this reason, unlike the marking that is visualized by the conventional reflection, the marking is hardly affected by the incident light, and the marking can be discriminated by the fluorescent color. Further, since the marking visualized by the fluorescence is formed by linearly polarized fluorescence, forgery can be prevented by setting the polarization direction while facilitating visualization of the marking. In addition, by using ultraviolet light as excitation light and using fluorescence visualization, it becomes possible to always make a marking into a latent image when used in normal natural light. For this reason, the marking which provided the said effect with high versatility can be provided also including jewelry etc. and accessories which require added value to an external appearance, such as a wristwatch.
  • the polarization direction of the marking can be set by the orientation direction of the rare earth metal complex. More specifically, the fluorescence emitted from the marking by the molecular orientation can be polarized by providing the complex in the marking. That is, the rare earth metal complex in this embodiment absorbs the energy of ultraviolet rays as an optical antenna that becomes the path of excitation light, and then the organic ligand that functions as an energy donor, and the rare earth that receives energy from the organic ligand and emits fluorescence. It consists of metal ions. In the rare earth metal complex, energy is transferred from the organic ligand to the rare earth metal ion with high efficiency.
  • the rare earth metal complex exhibits very high luminous efficiency and can function as a clear marking.
  • the complex in the marking absorbs the irradiated ultraviolet light and emits light by ultraviolet excitation
  • the molecules of the complex are aligned in a specific direction in advance so that the ultraviolet light in the polarization direction along the alignment direction. Selectively absorb.
  • the third aspect of the present application it is possible to set the polarization of the marking according to the direction in which the dent is formed. More specifically, a dent in a uniform direction is provided on the surface of the substrate, and a rare earth metal complex that fluoresces by absorbing ultraviolet rays is provided in the dent, so that the orientation in the dent is the same as in the second embodiment.
  • the marking can be visualized only when the polarized rare earth metal complex emits linearly polarized fluorescence and is irradiated with ultraviolet rays polarized in a specific direction.
  • the alignment direction of the rare earth metal complex is aligned by aligning in the recess, and the linearly polarized fluorescence is emitted. Therefore, the orientation direction can be set more clearly, and the visible image can be fluorescent only with respect to the ultraviolet light polarized in the specific direction with higher accuracy.
  • the spectral intensity distribution of the fluorescence emitted from the marking by irradiation with ultraviolet rays can be superposed of the fluorescence derived from each rare earth metal complex having a different peak wavelength. Therefore, by using a polarizing filter and inserting the polarization transmission direction of the polarizing filter so as to be orthogonal to the orientation direction of any one of the rare earth metal complexes, fluorescence derived from any one of the rare earth metal complexes can be obtained. It is possible to greatly reduce the strength of the. Therefore, a change in the hue of the fluorescence emitted from the marking can be confirmed by changing the relative intensity distribution.
  • FIG. 1 It is explanatory drawing of the marking used in embodiment of this invention. It is explanatory drawing which shows the example of a change of the marking used in embodiment of this invention.
  • the polarization transmission direction of the polarizing filter is arranged in parallel with the orientation direction of the rare earth metal complex in which the rare earth atom is Eu, which is arranged in the groove having a pitch of 25 ⁇ m, which is Example 1 of the present invention, It is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex.
  • FIG. 1 It is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex.
  • FIG. 2 is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex, measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged orthogonal to the orientation direction of the rare earth metal complex of Example 1.
  • FIG. The polarization transmission direction of the polarizing filter is arranged in parallel to the orientation direction of the rare earth metal complex in which the rare earth atom is Eu, which is arranged in the grooves having a pitch of 2.4 ⁇ m, which is Example 2 of the present invention. Is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex.
  • FIG. 6 is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex, measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged orthogonal to the orientation direction of the rare earth metal complex of Example 3.
  • FIG. 6 is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex, measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged orthogonal to the orientation direction of the rare earth metal complex of Example 3.
  • a mixture of two rare earth metal complexes of Example 4 of the present invention a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb, is disposed in a groove having a pitch of 2.4 ⁇ m, and It is the spectral intensity distribution of the fluorescence emitted from the rare earth metal complex, measured through the polarizing filter, with the polarization transmission direction of the polarizing filter arranged parallel to the orientation direction of the rare earth metal complex of the mixture.
  • Example 4 it is the spectral intensity distribution of the fluorescence emitted from a rare earth metal complex, which is measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged orthogonal to the orientation direction of the rare earth metal complex.
  • a mixture of two rare earth metal complexes of Example 5 of the present invention a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb, is placed in a groove having a pitch of 25 ⁇ m, and the mixture 2 is a spectral intensity distribution of fluorescence emitted from the rare earth metal complex, measured through the polarizing filter, with the polarization transmission direction of the polarizing filter arranged parallel to the orientation direction of the rare earth metal complex.
  • Example 5 it is the spectral intensity distribution of the fluorescence emitted from a rare earth metal complex, which is measured through the polarizing filter with the polarization transmission direction of the polarizing filter arranged perpendicular to the orientation direction of the rare earth metal complex. It is a molecular structure figure which shows an example of the rare earth metal complex which the marking concerning this invention has.
  • the first feature of the present embodiment is that when the marking is irradiated with ultraviolet rays, linearly polarized fluorescence is emitted.
  • This configuration makes it possible to provide markings that are difficult to forge, are highly versatile, and easy to visualize.
  • the marking of the present invention visualizes a latent image by linearly polarized fluorescence emitted by ultraviolet irradiation. For this reason, unlike the marking that is visualized by the conventional reflection, the marking is hardly affected by the incident light, and the marking can be discriminated by the fluorescent color. Further, since the marking visualized by the fluorescence is formed by linearly polarized fluorescence, forgery can be prevented by setting the polarization direction while facilitating visualization of the marking. In addition, by using ultraviolet light as excitation light and using fluorescence visualization, it becomes possible to always make a marking into a latent image when used in normal natural light. For this reason, the marking which provided the said effect with high versatility can be provided also including jewelry etc. and accessories which require added value to an external appearance, such as a wristwatch.
  • the ultraviolet ray irradiated to the marking has a wavelength band of 250 nm or more and 400 nm or less.
  • the second feature is that it has a rare earth metal complex oriented in a uniform direction.
  • FIG. 13 shows a molecular structure diagram showing an example of the rare earth metal complex according to the present invention.
  • Ln in FIG. 13 shows arbitrary rare earth atoms.
  • the polarization direction of the marking can be set by the orientation direction of the rare earth metal complex. More specifically, the fluorescence emitted from the marking by the molecular orientation can be polarized by providing the complex in the marking. That is, the rare earth metal complex in this embodiment absorbs the energy of ultraviolet rays as an optical antenna that becomes the path of excitation light, and then the organic ligand that functions as an energy donor, and the rare earth that receives energy from the organic ligand and emits fluorescence. It consists of metal ions. In the rare earth metal complex, energy is transferred from the organic ligand to the rare earth metal ion with high efficiency. Therefore, the rare earth metal complex exhibits very high luminous efficiency and can function as a clear marking.
  • the complex in the marking absorbs the irradiated ultraviolet light and emits light by ultraviolet excitation
  • the molecules of the complex are aligned in a specific direction in advance so that the ultraviolet light in the polarization direction along the alignment direction.
  • Selectively absorb thereby, in this aspect, it becomes possible to emit the fluorescence which is excited by specific ultraviolet rays and is linearly polarized, and to reveal the marking.
  • the third feature is that the rare earth metal complex is provided in a dent in a uniform direction provided on the surface of the substrate.
  • the polarization of the marking according to the direction in which the dent is formed. More specifically, a dent in a uniform direction is provided on the surface of the substrate, and a rare earth metal complex that fluoresces by absorbing ultraviolet rays is provided in the dent, so that the orientation in the dent is the same as in the second embodiment.
  • the marking can be visualized only when the polarized rare earth metal complex emits linearly polarized fluorescence and is irradiated with ultraviolet rays polarized in a specific direction.
  • the alignment direction of the rare earth metal complex is aligned by aligning in the recess, and the linearly polarized fluorescence is emitted. Therefore, the orientation direction can be set more clearly, and the visible image can be fluorescent only with respect to the ultraviolet light polarized in the specific direction with higher accuracy.
  • the base material is made of quartz, glass, or sapphire.
  • the fourth feature is that the rare earth metal complex is composed of a mixture of at least two rare earth metal complexes containing different rare earth atoms.
  • the spectral intensity distribution of the fluorescence emitted from the marking by irradiation with ultraviolet rays can be superposed of the fluorescence derived from the respective rare earth metal complexes having different peak wavelengths. Therefore, by using a polarizing filter and inserting the polarization transmission direction of the polarizing filter so as to be orthogonal to the orientation direction of any one of the rare earth metal complexes, fluorescence derived from any one of the rare earth metal complexes can be obtained. It is possible to greatly reduce the strength of the. Therefore, a change in the hue of the fluorescence emitted from the marking can be confirmed by changing the relative intensity distribution.
  • the rare earth metal complex includes a ligand.
  • the peak wavelength refers to the wavelength with the strongest fluorescence emitted by the rare earth metal complex by absorption of ultraviolet rays.
  • FIG. 1 is an explanatory diagram of marking used in the embodiment of the present invention
  • FIG. 2 is an explanatory diagram of the marking modification example.
  • the marking described in the present embodiment is applied to a non-polarized light image portion 1 that is applied on a transparent substrate 3 and is visualized when irradiated with non-polarized light, and a polarized light image that is visualized when irradiated with polarized light.
  • the visible image portion 2 emits linearly polarized fluorescence from the alignment portion C of the rare earth metal complex when irradiated with ultraviolet rays as excitation light.
  • the marking in the marking is visualized when irradiated with non-polarized ultraviolet rays.
  • the polarization image forming unit 2 which is a part has a polarization characteristic, and a marking which is visualized when irradiated with linearly polarized ultraviolet rays can be latent in the same marking. For this reason, unlike the conventional marking that is visualized by reflection, it is possible to discriminate the marking by the fluorescent color, which hardly changes in appearance due to incident light.
  • the polarization image portion 2 that becomes a part of the marking visualized by the fluorescence is visualized by the linearly polarized fluorescence, thereby facilitating the visualization of the marking and by setting the polarization direction.
  • the effect of preventing counterfeiting was also obtained.
  • the marking is formed by applying a rare earth metal complex on the transparent substrate 3. More specifically, the polarization characteristics are obtained by flowing a chloroform solution or an acetonitrile solution of a rare earth metal complex dropped onto the polarization microscope portion 2 that emits the linearly polarized fluorescence in the marking in a uniform direction and applying it.
  • the orientation part C is provided with
  • the alignment direction of the rare earth metal complex in the region is aligned, and ultraviolet rays in the polarization direction along the alignment direction are selectively absorbed, and specified in the visualization in the region.
  • UV light was able to emit linearly polarized fluorescence when excited by UV light.
  • the solution is applied to other marking portions using spin coating to form a visualized portion using non-polarized ultraviolet light as excitation light.
  • both marking parts absorb and absorb some polarized components in the same ultraviolet.
  • the rare earth metal complex at the coating portion by spin coating is also applied in a radially oriented state by the coating means. For this reason, during the irradiation of linearly polarized ultraviolet rays, the marking according to the present embodiment causes the portion corresponding to the linearly polarized light to become fluorescent and visible at a specific incident angle, and the orientation direction in the coating portion by spin coating. Only a part along the line can be fluorescent or visualized.
  • the marking described in this embodiment can be used to combine the linear alignment direction and the central axis during spin coating in the marking shape. Thus, it was possible to give the effect of improving the distinguishability to the conventional marking.
  • the polarization image portion 2 of the present embodiment is also provided with a plurality of grooves D shown in FIG. 2 to form a recess, and a rare earth metal complex is provided in the recess.
  • the polarized light image portion 2 and the alignment portion C can be configured.
  • the present embodiment has the advantage that visualization is easy due to fluorescence using ultraviolet light as excitation light, and the marking provided on the transparent substrate 3 is formed into a latent image during normal use. Visible light can be transmitted. For this reason, it has become possible to provide markings with the above-mentioned effects as well as high versatility, including jewelry such as wristwatches that require added value in appearance.
  • the rare earth metal complex can be changed to a mixture of at least two rare earth metal complexes containing different rare earth atoms.
  • the spectral intensity distribution of the fluorescence emitted from the marking by irradiation with ultraviolet rays can be superposed of the fluorescence derived from the respective rare earth metal complexes having different peak wavelengths. Therefore, by using a polarizing filter and inserting the polarization transmission direction of the polarizing filter so as to be orthogonal to the orientation direction of any one of the rare earth metal complexes, fluorescence derived from any one of the rare earth metal complexes can be obtained. It is possible to greatly reduce the strength of the.
  • rare earth atoms in the rare earth metal complex examples include Eu, Tb, Dy, Sm, and Nd.
  • Example 1 Hereinafter, the marking according to the first embodiment of the present invention will be described with reference to FIGS.
  • a marking having a rare earth metal complex was prepared, and the rare earth atom was Eu (EuLC 18 : L is a ligand, and C 18 is an alkyl chain).
  • a sapphire groove component in which a plurality of grooves having a pitch of 25 ⁇ m and a depth of 10 ⁇ m were formed in parallel by laser scanning was separately prepared.
  • a rare earth metal complex chloroform solution (30 ⁇ M) is adjusted along the groove, and 20 ⁇ l (20 ⁇ L) is dropped into each groove by a micropipette so that a plurality of grooves are filled with the rare earth metal complex in parallel. did. Thereafter, the rare earth metal complex was naturally dried to form an oriented portion in which the rare earth metal complex was oriented in a uniform direction. After drying, the rare earth metal complex was irradiated with ultraviolet rays having a wavelength band of 250 nm or more and 400 nm or less, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
  • a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured.
  • the intensity distribution is shown in FIG.
  • Example 2 marking according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. In addition, description of the same location as the said Example 1 is simplified or abbreviate
  • Example 2 as in Example 1, a marking having a rare earth metal complex in which the rare earth atom is Eu was prepared.
  • the groove part was made of quartz, the groove pitch was 2.4 ⁇ m, and the groove depth was 1.5 ⁇ m.
  • the rare earth metal complex By dropping 20 ⁇ l of a rare earth metal complex chloroform solution into each groove along the groove, the rare earth metal complex is filled and arranged in parallel in a plurality of grooves, and is naturally dried to make the rare earth metal complex uniform. An orientation part oriented in the direction was constructed. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
  • a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured.
  • the intensity distribution is shown in FIG.
  • Example 3 marking according to the third embodiment of the present invention will be described with reference to FIGS. In addition, description of the same location as each said Example 1, 2 is simplified or abbreviate
  • the rare earth metal complex By dropping 20 ⁇ l of a rare earth metal complex chloroform solution into each groove along the groove, the rare earth metal complex is filled and arranged in parallel in a plurality of grooves, and is naturally dried to make the rare earth metal complex uniform. An orientation part oriented in the direction was constructed. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
  • a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured.
  • the intensity distribution is shown in FIG.
  • Example 4 marking according to the fourth embodiment of the present invention will be described with reference to FIGS. 9 and 10. The description of the same parts as in the first to third embodiments will be simplified or omitted. Also in Example 4, a marking having a rare earth metal complex was prepared, but a mixture of two rare earth metal complexes, a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb, is provided in the groove. The rare earth metal complex to be filled was used.
  • the reason why Eu and Tb were selected as the rare earth atoms is that EuLC 18 emits red fluorescence at a wavelength of about 615 nm to 620 nm, which is complementary to the Munsell hue ring, and green fluorescence at a wavelength of about 545 nm to 550 nm. This is because it was predicted that the change in the hue of the fluorescence could be easily confirmed by verifying with TbLC 18 . From FIG. 9, the peak wavelength in this example refers to the vicinity of the wavelength of about 617 nm where the intensity of the fluorescence emitted by the rare earth metal complex is emitted by the absorption of ultraviolet rays.
  • the groove part was made of quartz, the groove pitch was 2.4 ⁇ m, and the groove depth was 1.5 ⁇ m.
  • An alignment portion in which the rare earth metal complex was aligned in a uniform direction was formed by filling and arranging and naturally drying. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
  • a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured.
  • the intensity distribution is shown in FIG.
  • Example 5 marking according to the fifth embodiment of the present invention will be described with reference to FIGS. 11 and 12. The description of the same parts as those of the first to fourth embodiments will be simplified or omitted. Also in Example 5, a marking having a rare earth metal complex was prepared, but a mixture of two rare earth metal complexes of a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb is formed in the groove. The rare earth metal complex to be filled was used.
  • the reason why Eu and Tb were selected as the rare earth atoms is that EuLC 18 emits red fluorescence at a wavelength of about 615 nm to 620 nm, which is complementary to the Munsell hue ring, and green fluorescence at a wavelength of about 545 nm to 550 nm. This is because it was predicted that the change in the hue of the fluorescence could be easily confirmed by verifying with TbLC 18 . From FIG. 11, the peak wavelength in this example refers to the vicinity of the wavelength of about 545 nm where the strongest fluorescence emitted by the rare earth metal complex is generated by absorption of ultraviolet rays.
  • the groove part was made of quartz, the groove pitch was 25 ⁇ m, and the groove depth was 10 ⁇ m.
  • An alignment portion in which the rare earth metal complex was aligned in a uniform direction was formed by filling and arranging and naturally drying. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
  • a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured.
  • the intensity distribution is shown in FIG.
  • the mixing ratio can also be set variously It is.
  • the groove pitch of the groove part can be arbitrarily set, and can be changed in addition to the numerical values of Examples 1 to 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Credit Cards Or The Like (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Polarising Elements (AREA)

Abstract

The purpose of the present invention is to provide a marking that emits linearly-polarized fluorescence upon being irradiated with ultraviolet light serving as excitation light, that is difficult to counterfeit and superior in versatility, and that can be easily seen. The marking according to the present invention can have various uses including uses for accessories and jewelry goods, where value is added in terms of appearance, such as with wrist watches, since the marking is configured to provide the following effects: the marking can be distinguished by using fluorescence since a latent image is visualized with linearly-polarized fluorescence generated by irradiation with ultraviolet light, and thus is less susceptible to incident radiation, unlike with conventional markings that are visualized through reflection; it is possible to easily visualize the marking and prevent counterfeit by setting the polarization direction, since the fluorescence visualized marking is formed by linearly-polarized fluorescence; and the marking can be consistently kept latent under natural light since visualization with fluorescence uses ultraviolet light as excitation light.

Description

偏光マーキングPolarized marking
 本発明はマーキングに関する。 The present invention relates to marking.
 現在、パスポート等の認証媒体のみならず、腕時計等の宝飾品に至るまで、偽造防止用のマーキングが広く用いられている。これらのマーキングには、目視による判定を前提として付与されるものと、紫外線等の照射によって顕像化することを前提として付与されるものとがあり、偽造防止の観点から後者による真贋の判定が有効となっている。特定の照射光によって顕像化するマーキングの内、代表的なものとして、特開平08-276659号公報(以下、特許文献1として記載)、及び特許第5365291号公報(以下、特許文献2として記載)が公開又は登録されている。それぞれのマーキングでは、偏光性を付与した潜像の顕像化を可能としている。 Currently, not only authentication media such as passports, but also anti-counterfeit markings are widely used for jewelry such as watches. Some of these markings are given on the premise of visual judgment, and others are given on the premise that they are visualized by irradiation with ultraviolet rays or the like. It is valid. Among the markings that are visualized by specific irradiation light, as representative examples, Japanese Patent Application Laid-Open No. 08-276659 (hereinafter referred to as Patent Document 1) and Japanese Patent No. 5365291 (hereinafter referred to as Patent Document 2). ) Is published or registered. Each marking enables visualization of a latent image imparted with polarization.
 これら2件のうち、特許文献1記載のマーキングは、反射層上面に対し一定方向に配向された配向層を設けて、偏光性を付与したことをその技術的特徴としている。また、当該技術的特徴により、特許文献1記載のマーキングは、記録内容を目視で認識できない記録媒体となり、記録された情報を完全に目視できないようにした情報記録媒体及び情報カードを提供する。更に、偏光フィルムを介することによる、記録された情報の再生という効果を得ている。 Of these two cases, the marking described in Patent Document 1 has a technical feature of providing polarization by providing an alignment layer oriented in a certain direction with respect to the upper surface of the reflective layer. In addition, due to the technical features, the marking described in Patent Document 1 becomes a recording medium in which the recorded contents cannot be visually recognized, and provides an information recording medium and an information card in which recorded information cannot be completely viewed. Furthermore, the effect of reproducing the recorded information is obtained through the polarizing film.
 一方、特許文献2記載のマーキングでは、偏光子からなる偏光層を積層することで偏光性を付与しており、対応する偏光シートを重ねることによる偏光潜像部の顕像化を可能にしている。 On the other hand, in the marking described in Patent Document 2, polarization is imparted by laminating a polarizing layer made of a polarizer, and the polarization latent image portion can be visualized by overlapping corresponding polarizing sheets. .
特開平08-276659号公報Japanese Patent Laid-Open No. 08-276659 特許第5365291号公報Japanese Patent No. 5365291
 上述した効果を有している一方、特許文献1記載のマーキングはその原理上、複数の薄膜を積層する必要があった。更に薄膜毎の機能が限定されている為、マーキング自体の偽造が容易であるとの課題が有った。 While having the above-described effects, the marking described in Patent Document 1 required the lamination of a plurality of thin films due to its principle. Furthermore, since the function for each thin film is limited, there is a problem that the marking itself can be easily counterfeited.
 また、特許文献2に記載のマーキングでは、顕像化用シートを別途用いることで当該偽造を困難にしている。しかしその反面、マーキング毎に個別のシートを用意する必要があり、マーキングの汎用性が低下するとの課題が有った。 Further, in the marking described in Patent Document 2, forgery is made difficult by using a visualization sheet separately. However, on the other hand, it is necessary to prepare an individual sheet for each marking, and there is a problem that versatility of the marking is lowered.
 本発明は、上記課題に鑑みて成されたものであり、偽造が困難で汎用性が高く、顕像化が容易なマーキングの提供を目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a marking that is difficult to forge, has high versatility, and is easy to visualize.
 上記目的の為に本発明のマーキングは、励起光として紫外線を照射すると、直線偏光した蛍光を発する事を、その技術的特徴としている。 For the above purpose, the marking of the present invention has a technical feature that it emits linearly polarized fluorescence when irradiated with ultraviolet rays as excitation light.
 より具体的には、当該紫外線の照射時に、一様な方向に揃えられたマーキングが当該紫外線により励起されて直線偏光した蛍光を発し、当該蛍光がマーキングを形成していることを特徴としている。 More specifically, when the ultraviolet rays are irradiated, the markings aligned in a uniform direction are excited by the ultraviolet rays to emit linearly polarized fluorescence, and the fluorescence forms the markings.
 また、本発明第2の態様に記載のマーキングは、マーキングが一様な方向に配向した希土類金属錯体を有することを、その技術的特徴としている。 Also, the marking according to the second aspect of the present invention has a technical feature that the marking has a rare earth metal complex oriented in a uniform direction.
 より具体的には、希土類金属錯体が紫外線を吸収して蛍光を発する際に、希土類金属錯体を一様な方向に配向させておくことで、蛍光を偏光させることを特徴としている。 More specifically, when the rare earth metal complex absorbs ultraviolet rays and emits fluorescence, the rare earth metal complex is oriented in a uniform direction to polarize the fluorescence.
 また、本発明第3の態様に記載のマーキングは、基材の表面に一様な方向の凹みを設け、当該凹み内に希土類金属錯体を有するマーキングとしたことを、その技術的特徴としている。 Further, the marking according to the third aspect of the present invention has a technical feature in that a recess having a uniform direction is provided on the surface of the base material, and the marking has a rare earth metal complex in the recess.
 より具体的には、マーキングに対し、一様に配列された凹み群を基材の表面に設け、当該凹み内に紫外線を吸収して蛍光を発する希土類金属錯体を充填したことをその特徴としている。 More specifically, for the marking, a group of dents arranged uniformly is provided on the surface of the base material, and the dents are filled with a rare earth metal complex that absorbs ultraviolet rays and emits fluorescence. .
 また、本発明第4の態様に記載のマーキングは、希土類金属錯体が、異なる希土類原子を含む少なくとも2種類の希土類金属錯体の混合物からなることを、その技術的特徴としている。 Further, the marking according to the fourth aspect of the present invention is characterized in that the rare earth metal complex is composed of a mixture of at least two rare earth metal complexes containing different rare earth atoms.
 より具体的には、希土類金属錯体が、紫外線の吸収により発する蛍光の最も強度の強いピーク波長、すなわち色相が異なる少なくとも2種類の希土類金属錯体の混合物から成ることをその特徴としている。 More specifically, the rare earth metal complex is characterized by comprising a mixture of at least two rare earth metal complexes having different peak hues, that is, the strongest peak wavelength of fluorescence emitted by absorption of ultraviolet rays.
 上述した技術的特徴によって本願記載の発明は、偽造が困難で汎用性が高く、顕像化が容易なマーキングの提供を可能にしている。 Due to the technical features described above, the invention described in this application makes it possible to provide markings that are difficult to counterfeit, are highly versatile, and easy to visualize.
 即ち、本発明のマーキングは、紫外線の照射により発する直線偏光した蛍光によって潜像を顕像化する。この為、従来の反射によって顕像化するマーキングとは異なり、入射光の影響を受けにくく、蛍光色によるマーキングの判別が可能となる。また、当該蛍光によって顕像化されるマーキングが直線偏光した蛍光によって形成されることで、マーキングの顕像化を容易にしつつ、偏光方向の設定により偽造を防止することができる。加えて、紫外線を励起光とし、蛍光による顕像化を用いることで、通常の自然光での使用時に於いて、常にマーキングを潜像化させることが可能となる。この為、腕時計等、外観に付加価値が要求される宝飾品等やアクセサリーも含めて、高い汎用性と共に前記効果を付与したマーキングを提供することができる。 That is, the marking of the present invention visualizes a latent image by linearly polarized fluorescence emitted by ultraviolet irradiation. For this reason, unlike the marking that is visualized by the conventional reflection, the marking is hardly affected by the incident light, and the marking can be discriminated by the fluorescent color. Further, since the marking visualized by the fluorescence is formed by linearly polarized fluorescence, forgery can be prevented by setting the polarization direction while facilitating visualization of the marking. In addition, by using ultraviolet light as excitation light and using fluorescence visualization, it becomes possible to always make a marking into a latent image when used in normal natural light. For this reason, the marking which provided the said effect with high versatility can be provided also including jewelry etc. and accessories which require added value to an external appearance, such as a wristwatch.
 また、本願第2の態様を用いることで前記マーキングの偏光方向を、希土類金属錯体の配向方向によって設定することが可能となる。より具体的には、当該錯体をマーキング内に配向させて設けることで、その分子配向によってマーキングが発する蛍光を偏光とすることができる。即ち、本態様における希土類金属錯体は励起光の通り道となる光アンテナとして紫外線のエネルギーを吸収し、その後エネルギードナーとして機能する有機配位子と、有機配位子からエネルギーを受け取って蛍光を発する希土類金属イオンとによって構成されている。希土類金属錯体においては、前記有機配位子から希土類金属イオンへのエネルギーの受け渡しが高効率に行われるため、非常に高い発光効率を示し、明瞭なマーキングとして機能することが出来る。加えて、前記マーキング内の錯体が照射された紫外線を吸収し、紫外線励起によって発光する際、予め錯体の分子を特定方向へと一様に配向することで、配向方向に沿った偏光方向の紫外線を選択的に吸収する。これにより、本態様では特定の紫外線により励起されて直線偏光した蛍光を発しマーキングを顕在化させることが可能となっている。 Further, by using the second aspect of the present application, the polarization direction of the marking can be set by the orientation direction of the rare earth metal complex. More specifically, the fluorescence emitted from the marking by the molecular orientation can be polarized by providing the complex in the marking. That is, the rare earth metal complex in this embodiment absorbs the energy of ultraviolet rays as an optical antenna that becomes the path of excitation light, and then the organic ligand that functions as an energy donor, and the rare earth that receives energy from the organic ligand and emits fluorescence. It consists of metal ions. In the rare earth metal complex, energy is transferred from the organic ligand to the rare earth metal ion with high efficiency. Therefore, the rare earth metal complex exhibits very high luminous efficiency and can function as a clear marking. In addition, when the complex in the marking absorbs the irradiated ultraviolet light and emits light by ultraviolet excitation, the molecules of the complex are aligned in a specific direction in advance so that the ultraviolet light in the polarization direction along the alignment direction. Selectively absorb. Thereby, in this aspect, it becomes possible to emit the fluorescence which is excited by specific ultraviolet rays and is linearly polarized, and to reveal the marking.
 更に、本願第3の態様を用いることで、前記マーキングの偏光を凹みの形成方向によって設定することが可能となる。より具体的には、一様な方向の凹みを基材表面に設け、当該凹み内に紫外線の吸収によって蛍光する希土類金属錯体を設けることで、前記第2の態様と同様に当該凹み内で配向された希土類金属錯体から直線偏光した蛍光を発し、特定の方向に偏光した紫外線照射時にのみマーキングを顕像化させることができる。尚、本態様記載のマーキングでは、凹み内に配向させることで希土類金属錯体の配向方向を揃え、直線偏光した蛍光を発する。この為、配向方向をより明確に設定することができると共に、より高い精度と共に前記特定の方向に偏光した紫外線に対してのみ顕像を蛍光させることが可能となっている。 Furthermore, by using the third aspect of the present application, it is possible to set the polarization of the marking according to the direction in which the dent is formed. More specifically, a dent in a uniform direction is provided on the surface of the substrate, and a rare earth metal complex that fluoresces by absorbing ultraviolet rays is provided in the dent, so that the orientation in the dent is the same as in the second embodiment. The marking can be visualized only when the polarized rare earth metal complex emits linearly polarized fluorescence and is irradiated with ultraviolet rays polarized in a specific direction. In the marking described in this embodiment, the alignment direction of the rare earth metal complex is aligned by aligning in the recess, and the linearly polarized fluorescence is emitted. Therefore, the orientation direction can be set more clearly, and the visible image can be fluorescent only with respect to the ultraviolet light polarized in the specific direction with higher accuracy.
 更に、本願第4の態様を用いることで、紫外線の照射によりマーキングから発する蛍光の分光強度分布を、ピーク波長の異なるそれぞれの希土類金属錯体由来の蛍光の重ね合せとする事が出来る。従って、偏光フィルタを用いてその偏光フィルタの偏光透過方向を、何れか一方の希土類金属錯体の配向方向に対して直交するように挿入することで、前記何れか一方の希土類金属錯体に由来する蛍光の強度をより大きく低減させる事が可能となる。従って、相対的な強度の分布が変化する事により、マーキングから発せられる蛍光の色相の変化を確認する事が出来る。よって、偏光フィルタの挿入に伴うマーキングの明暗変化による偽造防止効果に加え、色相変化による偽造防止効果もマーキングに付与することが可能となり、より一層マーキングの偽造を困難なものとする事が出来る。 Furthermore, by using the fourth aspect of the present application, the spectral intensity distribution of the fluorescence emitted from the marking by irradiation with ultraviolet rays can be superposed of the fluorescence derived from each rare earth metal complex having a different peak wavelength. Therefore, by using a polarizing filter and inserting the polarization transmission direction of the polarizing filter so as to be orthogonal to the orientation direction of any one of the rare earth metal complexes, fluorescence derived from any one of the rare earth metal complexes can be obtained. It is possible to greatly reduce the strength of the. Therefore, a change in the hue of the fluorescence emitted from the marking can be confirmed by changing the relative intensity distribution. Therefore, in addition to the anti-counterfeit effect due to the change in the brightness of the marking due to the insertion of the polarizing filter, it is possible to give the anti-counterfeit effect due to the hue change to the marking, making it even more difficult to counterfeit the marking.
 以上述べたように、本願請求項記載の発明を用いることによって偽造が困難で汎用性が高く、顕像化が容易なマーキングを提供することができる。 As described above, by using the invention described in the claims of the present application, it is possible to provide a marking that is difficult to forge, has high versatility, and is easy to visualize.
本発明の実施形態に於いて用いるマーキングの説明図である。It is explanatory drawing of the marking used in embodiment of this invention. 本発明の実施形態に於いて用いるマーキングの変更例を示す説明図である。It is explanatory drawing which shows the example of a change of the marking used in embodiment of this invention. 本発明の実施例1である、ピッチ25μmの溝に配置した、希土類原子がEuである希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を平行に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。The polarization transmission direction of the polarizing filter is arranged in parallel with the orientation direction of the rare earth metal complex in which the rare earth atom is Eu, which is arranged in the groove having a pitch of 25 μm, which is Example 1 of the present invention, It is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex. 実施例1の希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を直交に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。FIG. 2 is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex, measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged orthogonal to the orientation direction of the rare earth metal complex of Example 1. FIG. 本発明の実施例2である、ピッチ2.4μmの溝に配置した、希土類原子がEuである希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を平行に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。The polarization transmission direction of the polarizing filter is arranged in parallel to the orientation direction of the rare earth metal complex in which the rare earth atom is Eu, which is arranged in the grooves having a pitch of 2.4 μm, which is Example 2 of the present invention. Is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex. 実施例2の希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を直交に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。It is the spectral intensity distribution of the fluorescence emitted from a rare earth metal complex, which is measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged perpendicular to the orientation direction of the rare earth metal complex of Example 2. 本発明の実施例3である、ピッチ2.4μmの溝に配置した、希土類原子がTbである希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を平行に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。The polarization transmission direction of the polarizing filter is arranged in parallel with the orientation direction of the rare earth metal complex in which the rare earth atom is Tb, which is arranged in the groove having a pitch of 2.4 μm, which is Example 3 of the present invention. Is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex. 実施例3の希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を直交に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。FIG. 6 is a spectral intensity distribution of fluorescence emitted from a rare earth metal complex, measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged orthogonal to the orientation direction of the rare earth metal complex of Example 3. FIG. 本発明の実施例4である、希土類原子がEuである希土類金属錯体と、希土類原子がTbである希土類金属錯体の、2種類の希土類金属錯体の混合物をピッチ2.4μmの溝に配置し、その混合物の希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を平行に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。A mixture of two rare earth metal complexes of Example 4 of the present invention, a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb, is disposed in a groove having a pitch of 2.4 μm, and It is the spectral intensity distribution of the fluorescence emitted from the rare earth metal complex, measured through the polarizing filter, with the polarization transmission direction of the polarizing filter arranged parallel to the orientation direction of the rare earth metal complex of the mixture. 実施例4において、希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を直交に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。In Example 4, it is the spectral intensity distribution of the fluorescence emitted from a rare earth metal complex, which is measured through a polarizing filter, with the polarization transmission direction of the polarizing filter arranged orthogonal to the orientation direction of the rare earth metal complex. 本発明の実施例5である、希土類原子がEuである希土類金属錯体と、希土類原子がTbである希土類金属錯体の、2種類の希土類金属錯体の混合物をピッチ25μmの溝に配置し、その混合物の希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を平行に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。A mixture of two rare earth metal complexes of Example 5 of the present invention, a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb, is placed in a groove having a pitch of 25 μm, and the mixture 2 is a spectral intensity distribution of fluorescence emitted from the rare earth metal complex, measured through the polarizing filter, with the polarization transmission direction of the polarizing filter arranged parallel to the orientation direction of the rare earth metal complex. 実施例5において、希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向を直交に配置し、偏光フィルタを介して測定される、希土類金属錯体から発する蛍光の分光強度分布である。In Example 5, it is the spectral intensity distribution of the fluorescence emitted from a rare earth metal complex, which is measured through the polarizing filter with the polarization transmission direction of the polarizing filter arranged perpendicular to the orientation direction of the rare earth metal complex. 本発明に係るマーキングが有する希土類金属錯体の一例を示す分子構造図である。It is a molecular structure figure which shows an example of the rare earth metal complex which the marking concerning this invention has.
 本実施の形態の第一の特徴は、マーキングに紫外線を照射すると、直線偏光した蛍光を発する事とした。 The first feature of the present embodiment is that when the marking is irradiated with ultraviolet rays, linearly polarized fluorescence is emitted.
 この構成に依れば、偽造が困難で汎用性が高く、顕像化が容易なマーキングの提供を可能にしている。 This configuration makes it possible to provide markings that are difficult to forge, are highly versatile, and easy to visualize.
 即ち、本発明のマーキングは、紫外線の照射により発する直線偏光した蛍光によって潜像を顕像化する。この為、従来の反射によって顕像化するマーキングとは異なり、入射光の影響を受けにくく、蛍光色によるマーキングの判別が可能となる。また、当該蛍光によって顕像化されるマーキングが直線偏光した蛍光によって形成されることで、マーキングの顕像化を容易にしつつ、偏光方向の設定により偽造を防止することができる。加えて、紫外線を励起光とし、蛍光による顕像化を用いることで、通常の自然光での使用時に於いて、常にマーキングを潜像化させることが可能となる。この為、腕時計等、外観に付加価値が要求される宝飾品等やアクセサリーも含めて、高い汎用性と共に前記効果を付与したマーキングを提供することができる。 That is, the marking of the present invention visualizes a latent image by linearly polarized fluorescence emitted by ultraviolet irradiation. For this reason, unlike the marking that is visualized by the conventional reflection, the marking is hardly affected by the incident light, and the marking can be discriminated by the fluorescent color. Further, since the marking visualized by the fluorescence is formed by linearly polarized fluorescence, forgery can be prevented by setting the polarization direction while facilitating visualization of the marking. In addition, by using ultraviolet light as excitation light and using fluorescence visualization, it becomes possible to always make a marking into a latent image when used in normal natural light. For this reason, the marking which provided the said effect with high versatility can be provided also including jewelry etc. and accessories which require added value to an external appearance, such as a wristwatch.
 なお本発明に於いてマーキングに照射する紫外線とは、250nm以上400nm以下の波長帯域を有するものとする。 In the present invention, the ultraviolet ray irradiated to the marking has a wavelength band of 250 nm or more and 400 nm or less.
 また第二の特徴は、一様な方向に配向した希土類金属錯体を有する事とした。 The second feature is that it has a rare earth metal complex oriented in a uniform direction.
 本発明に係る希土類金属錯体の一例を表す分子構造図を、図13に示す。なお、図13中のLnは任意の希土類原子を示す。 FIG. 13 shows a molecular structure diagram showing an example of the rare earth metal complex according to the present invention. In addition, Ln in FIG. 13 shows arbitrary rare earth atoms.
 この構成に依れば、マーキングの偏光方向を、希土類金属錯体の配向方向によって設定することが可能となる。より具体的には、当該錯体をマーキング内に配向させて設けることで、その分子配向によってマーキングが発する蛍光を偏光とすることができる。即ち、本態様における希土類金属錯体は励起光の通り道となる光アンテナとして紫外線のエネルギーを吸収し、その後エネルギードナーとして機能する有機配位子と、有機配位子からエネルギーを受け取って蛍光を発する希土類金属イオンとによって構成されている。希土類金属錯体においては、前記有機配位子から希土類金属イオンへのエネルギーの受け渡しが高効率に行われるため、非常に高い発光効率を示し、明瞭なマーキングとして機能することが出来る。加えて、前記マーキング内の錯体が照射された紫外線を吸収し、紫外線励起によって発光する際、予め錯体の分子を特定方向へと一様に配向することで、配向方向に沿った偏光方向の紫外線を選択的に吸収する。これにより、本態様では特定の紫外線により励起されて直線偏光した蛍光を発しマーキングを顕在化させることが可能となっている。 According to this configuration, the polarization direction of the marking can be set by the orientation direction of the rare earth metal complex. More specifically, the fluorescence emitted from the marking by the molecular orientation can be polarized by providing the complex in the marking. That is, the rare earth metal complex in this embodiment absorbs the energy of ultraviolet rays as an optical antenna that becomes the path of excitation light, and then the organic ligand that functions as an energy donor, and the rare earth that receives energy from the organic ligand and emits fluorescence. It consists of metal ions. In the rare earth metal complex, energy is transferred from the organic ligand to the rare earth metal ion with high efficiency. Therefore, the rare earth metal complex exhibits very high luminous efficiency and can function as a clear marking. In addition, when the complex in the marking absorbs the irradiated ultraviolet light and emits light by ultraviolet excitation, the molecules of the complex are aligned in a specific direction in advance so that the ultraviolet light in the polarization direction along the alignment direction. Selectively absorb. Thereby, in this aspect, it becomes possible to emit the fluorescence which is excited by specific ultraviolet rays and is linearly polarized, and to reveal the marking.
 また第三の特徴は、希土類金属錯体を、基材の表面に設けられた一様な方向の凹み内に有する事とした。 The third feature is that the rare earth metal complex is provided in a dent in a uniform direction provided on the surface of the substrate.
 この構成に依れば、マーキングの偏光を凹みの形成方向によって設定することが可能となる。より具体的には、一様な方向の凹みを基材表面に設け、当該凹み内に紫外線の吸収によって蛍光する希土類金属錯体を設けることで、前記第2の態様と同様に当該凹み内で配向された希土類金属錯体から直線偏光した蛍光を発し、特定の方向に偏光した紫外線照射時にのみマーキングを顕像化させることができる。尚、本態様記載のマーキングでは、凹み内に配向させることで希土類金属錯体の配向方向を揃え、直線偏光した蛍光を発する。この為、配向方向をより明確に設定することができると共に、より高い精度と共に前記特定の方向に偏光した紫外線に対してのみ顕像を蛍光させることが可能となっている。 According to this configuration, it is possible to set the polarization of the marking according to the direction in which the dent is formed. More specifically, a dent in a uniform direction is provided on the surface of the substrate, and a rare earth metal complex that fluoresces by absorbing ultraviolet rays is provided in the dent, so that the orientation in the dent is the same as in the second embodiment. The marking can be visualized only when the polarized rare earth metal complex emits linearly polarized fluorescence and is irradiated with ultraviolet rays polarized in a specific direction. In the marking described in this embodiment, the alignment direction of the rare earth metal complex is aligned by aligning in the recess, and the linearly polarized fluorescence is emitted. Therefore, the orientation direction can be set more clearly, and the visible image can be fluorescent only with respect to the ultraviolet light polarized in the specific direction with higher accuracy.
 なお本発明に於いて基材とは、石英、ガラス、サファイアから成るものである。 In the present invention, the base material is made of quartz, glass, or sapphire.
 また第四の特徴は、希土類金属錯体が、異なる希土類原子を含む少なくとも2種類の希土類金属錯体の混合物からなる事とした。 The fourth feature is that the rare earth metal complex is composed of a mixture of at least two rare earth metal complexes containing different rare earth atoms.
 この構成に依れば、紫外線の照射によりマーキングから発する蛍光の分光強度分布を、ピーク波長の異なるそれぞれの希土類金属錯体由来の蛍光の重ね合せとする事が出来る。従って、偏光フィルタを用いてその偏光フィルタの偏光透過方向を、何れか一方の希土類金属錯体の配向方向に対して直交するように挿入することで、前記何れか一方の希土類金属錯体に由来する蛍光の強度をより大きく低減させる事が可能となる。従って、相対的な強度の分布が変化する事により、マーキングから発せられる蛍光の色相の変化を確認する事が出来る。よって、偏光フィルタの挿入に伴うマーキングの明暗変化による偽造防止効果に加え、色相変化による偽造防止効果もマーキングに付与することが可能となり、より一層マーキングの偽造を困難なものとする事が出来る。 According to this configuration, the spectral intensity distribution of the fluorescence emitted from the marking by irradiation with ultraviolet rays can be superposed of the fluorescence derived from the respective rare earth metal complexes having different peak wavelengths. Therefore, by using a polarizing filter and inserting the polarization transmission direction of the polarizing filter so as to be orthogonal to the orientation direction of any one of the rare earth metal complexes, fluorescence derived from any one of the rare earth metal complexes can be obtained. It is possible to greatly reduce the strength of the. Therefore, a change in the hue of the fluorescence emitted from the marking can be confirmed by changing the relative intensity distribution. Therefore, in addition to the anti-counterfeit effect due to the change in the brightness of the marking due to the insertion of the polarizing filter, it is possible to give the anti-counterfeit effect due to the hue change to the marking, making it even more difficult to counterfeit the marking.
 なお本発明に於いて希土類金属錯体とは、配位子を含むものとする。 In the present invention, the rare earth metal complex includes a ligand.
 また本発明に於いてピーク波長とは、紫外線の吸収により希土類金属錯体が発する蛍光の最も強度の強い波長を指す。 In the present invention, the peak wavelength refers to the wavelength with the strongest fluorescence emitted by the rare earth metal complex by absorption of ultraviolet rays.
 以下に、図1及び図2を用いて、本発明に於ける実施形態を示す。尚、図中の記号及び部品番号について、同じ部品として機能するものには共通の記号又は番号を付与している。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. In addition, about the symbol and component number in a figure, the common symbol or number is provided to what functions as the same component.
 図1に本発明の実施形態に於いて用いるマーキングの説明図を、図2に当該マーキング変更例の説明図を、それぞれ示す。図1に示すように、本実施形態記載のマーキングは、透明基板3上に塗布した、無偏光の光の照射時に顕像する無偏光顕像部1と、偏光光照射時に顕像する偏光顕像部2とで構成され、当該顕像部2は励起光として紫外線を照射した際に、希土類金属錯体の配向部Cより直線偏光された蛍光を発している。より具体的には、マーキングの一部を形成する前記配向部C内にて希土類金属錯体を一様な方向に配向させることで、無偏光の紫外線を照射した際に顕像化するマーキング内の一部となる偏光顕像部2に偏光特性を持たせ、直線偏光の紫外線を照射した際に顕像化するマーキングを同一マーキング内に潜像させる事を可能にしている。この為、従来の反射によって顕像化するマーキングとは異なり、入射光による見え方の変化が起きにくい、蛍光色によるマーキングの判別が可能となる。また、当該蛍光によって顕像化されるマーキングの一部となる偏光顕像部2が直線偏光した蛍光により顕像化されることで、マーキングの顕像化を容易にしつつ、偏光方向の設定による偽造の防止という効果をも得ることができた。 FIG. 1 is an explanatory diagram of marking used in the embodiment of the present invention, and FIG. 2 is an explanatory diagram of the marking modification example. As shown in FIG. 1, the marking described in the present embodiment is applied to a non-polarized light image portion 1 that is applied on a transparent substrate 3 and is visualized when irradiated with non-polarized light, and a polarized light image that is visualized when irradiated with polarized light. The visible image portion 2 emits linearly polarized fluorescence from the alignment portion C of the rare earth metal complex when irradiated with ultraviolet rays as excitation light. More specifically, by aligning the rare earth metal complex in a uniform direction in the alignment portion C that forms a part of the marking, the marking in the marking is visualized when irradiated with non-polarized ultraviolet rays. The polarization image forming unit 2 which is a part has a polarization characteristic, and a marking which is visualized when irradiated with linearly polarized ultraviolet rays can be latent in the same marking. For this reason, unlike the conventional marking that is visualized by reflection, it is possible to discriminate the marking by the fluorescent color, which hardly changes in appearance due to incident light. Further, the polarization image portion 2 that becomes a part of the marking visualized by the fluorescence is visualized by the linearly polarized fluorescence, thereby facilitating the visualization of the marking and by setting the polarization direction. The effect of preventing counterfeiting was also obtained.
 尚、本実施形態では、透明基板3上に対し、希土類金属錯体を塗布してマーキングを形成している。より具体的には、マーキング内の前記直線偏光された蛍光を発する偏光顕像部2に滴下した希土類金属錯体のクロロホルム溶液、又はアセトニトリル溶液を一様な方向に流し、塗布することで前記偏光特性を持たせる配向部Cを構成している。これにより、本態様のマーキングでは当該領域に於ける希土類金属錯体の配向方向を揃え、当該配向方向に沿った偏光方向の紫外線を選択的に吸収すると共に、同領域での顕像化に際し、特定の紫外線により励起されて直線偏光した蛍光を発することができた。また、当該効果により、偏光顕像部2のみによってマーキングを構成することで、特定の紫外線により励起されて直線偏光した蛍光を発するマーキングを提供することが可能となっている。 In the present embodiment, the marking is formed by applying a rare earth metal complex on the transparent substrate 3. More specifically, the polarization characteristics are obtained by flowing a chloroform solution or an acetonitrile solution of a rare earth metal complex dropped onto the polarization microscope portion 2 that emits the linearly polarized fluorescence in the marking in a uniform direction and applying it. The orientation part C is provided with As a result, in the marking according to this aspect, the alignment direction of the rare earth metal complex in the region is aligned, and ultraviolet rays in the polarization direction along the alignment direction are selectively absorbed, and specified in the visualization in the region. Was able to emit linearly polarized fluorescence when excited by UV light. In addition, due to this effect, it is possible to provide a marking that emits fluorescence that has been linearly polarized by being excited by specific ultraviolet rays, by forming the marking only by the polarization imaging unit 2.
 更に、本実施形態では、スピンコートを用いて他のマーキング部分に前記溶液を塗布し、無偏光の紫外線を励起光とする顕像化部分を形成している。これにより、無偏光の紫外線照射時、両マーキング部分は同紫外線内に於ける一部の偏光成分をそれぞれ吸収して蛍光する。尚、スピンコートによる塗布部分の希土類金属錯体もまた、その塗布手段により放射状に配向された状態で塗布される。この為、直線偏光された紫外線の照射時、本実施形態のマーキングは直線偏光に対応した部分が特定の入射角度にて蛍光、顕像化すると共に、スピンコートによる塗布部分に於いて、配向方向に沿った一部のみを蛍光、顕像化させることもできる。(図1、図2中では記載を省略)これらの効果に伴い、本実施形態記載のマーキングを用いることで、マーキングの形状に直線配向方向とスピンコート時の中心軸とを組み合わせることが可能となり、従来のマーキングに対して識別性の向上という効果を付与することができた。 Further, in the present embodiment, the solution is applied to other marking portions using spin coating to form a visualized portion using non-polarized ultraviolet light as excitation light. Thereby, at the time of non-polarized ultraviolet irradiation, both marking parts absorb and absorb some polarized components in the same ultraviolet. Note that the rare earth metal complex at the coating portion by spin coating is also applied in a radially oriented state by the coating means. For this reason, during the irradiation of linearly polarized ultraviolet rays, the marking according to the present embodiment causes the portion corresponding to the linearly polarized light to become fluorescent and visible at a specific incident angle, and the orientation direction in the coating portion by spin coating. Only a part along the line can be fluorescent or visualized. (Description is omitted in FIGS. 1 and 2) With these effects, the marking described in this embodiment can be used to combine the linear alignment direction and the central axis during spin coating in the marking shape. Thus, it was possible to give the effect of improving the distinguishability to the conventional marking.
 また、同技術的見地から、本実施形態の偏光顕像部2について図2に示す複数の溝体Dを設けて凹みを形成し、当該凹み内に希土類金属錯体を設けることによっても、前述した偏光顕像部2及び配向部Cを構成することができる。当該凹みを用いた偏光顕像部及び配向部は対応する励起光の波長に合った配位子を有する錯体に変更することで、凹み内の希土類金属錯体が吸収する紫外線を限定すると共に、当該凹み内への希土類金属錯体の充填率の違いにより、蛍光強度を変化させることができる。この為、上記マーキング内の配向部Cと併用することによって当該マーキングの偽造を困難にしつつ、汎用性を高めることが可能となった。 Further, from the same technical point of view, the polarization image portion 2 of the present embodiment is also provided with a plurality of grooves D shown in FIG. 2 to form a recess, and a rare earth metal complex is provided in the recess. The polarized light image portion 2 and the alignment portion C can be configured. By changing the polarization image portion and the alignment portion using the depression to a complex having a ligand that matches the wavelength of the corresponding excitation light, the ultraviolet light absorbed by the rare earth metal complex in the depression is limited, and The fluorescence intensity can be changed by the difference in the filling rate of the rare earth metal complex into the recess. For this reason, by using together with the orientation part C in the marking, it becomes possible to improve versatility while making it difficult to forge the marking.
 上述した効果に加えて、本実施形態では紫外線を励起光とした蛍光により、顕像化が容易という利点を備えており、通常の使用時に於いては透明基板3に設けたマーキングを潜像化させて可視光を透過させることができる。この為、腕時計等、外観に付加価値が要求される宝飾品も含めて、高い汎用性と共に前記効果を付与したマーキングの提供が可能となった。 In addition to the effects described above, the present embodiment has the advantage that visualization is easy due to fluorescence using ultraviolet light as excitation light, and the marking provided on the transparent substrate 3 is formed into a latent image during normal use. Visible light can be transmitted. For this reason, it has become possible to provide markings with the above-mentioned effects as well as high versatility, including jewelry such as wristwatches that require added value in appearance.
 以上述べたように、本願実施形態記載の構造を用いることによって、偽造が困難で汎用性が高く、顕像化が容易なマーキングを提供することができた。 As described above, by using the structure described in the embodiment of the present application, it is possible to provide a marking that is difficult to forge, is highly versatile, and easy to visualize.
 なお、上記希土類金属錯体は、異なる希土類原子を含む少なくとも2種類の希土類金属錯体の混合物に変更可能である。この構成に依れば、紫外線の照射によりマーキングから発する蛍光の分光強度分布を、ピーク波長の異なるそれぞれの希土類金属錯体由来の蛍光の重ね合せとする事が出来る。従って、偏光フィルタを用いてその偏光フィルタの偏光透過方向を、何れか一方の希土類金属錯体の配向方向に対して直交するように挿入することで、前記何れか一方の希土類金属錯体に由来する蛍光の強度をより大きく低減させる事が可能となる。従って、相対的な強度の分布が変化する事により、マーキングから発せられる蛍光の色相の変化を確認する事が出来る。よって、偏光フィルタの挿入に伴うマーキングの明暗変化による偽造防止効果に加え、色相変化による偽造防止効果もマーキングに付与することが可能となり、より一層マーキングの偽造を困難なものとする事が出来る。 The rare earth metal complex can be changed to a mixture of at least two rare earth metal complexes containing different rare earth atoms. According to this configuration, the spectral intensity distribution of the fluorescence emitted from the marking by irradiation with ultraviolet rays can be superposed of the fluorescence derived from the respective rare earth metal complexes having different peak wavelengths. Therefore, by using a polarizing filter and inserting the polarization transmission direction of the polarizing filter so as to be orthogonal to the orientation direction of any one of the rare earth metal complexes, fluorescence derived from any one of the rare earth metal complexes can be obtained. It is possible to greatly reduce the strength of the. Therefore, a change in the hue of the fluorescence emitted from the marking can be confirmed by changing the relative intensity distribution. Therefore, in addition to the anti-counterfeit effect due to the change in the brightness of the marking due to the insertion of the polarizing filter, it is possible to give the anti-counterfeit effect due to the hue change to the marking, making it even more difficult to counterfeit the marking.
 希土類金属錯体に於ける希土類原子は、Eu、Tb、Dy、Sm、Nd等が挙げられる。 Examples of rare earth atoms in the rare earth metal complex include Eu, Tb, Dy, Sm, and Nd.
 以下に本発明に係る各実施例を説明するが、本発明は以下の実施例にのみ限定されるものではない。 Each example according to the present invention will be described below, but the present invention is not limited to the following example.
(実施例1)
 以下、図3と図4を参照して本発明に係る実施例1のマーキングを説明する。実施例1では、希土類金属錯体を有するマーキングを用意し、希土類原子はEuとした(EuLC18:Lはリガンド、C18はアルキル鎖)。また、レーザの走査によってピッチ25μmで深さ10μmの複数の溝が平行に形成された、サファイア製の溝部品を別途用意した。
Example 1
Hereinafter, the marking according to the first embodiment of the present invention will be described with reference to FIGS. In Example 1, a marking having a rare earth metal complex was prepared, and the rare earth atom was Eu (EuLC 18 : L is a ligand, and C 18 is an alkyl chain). In addition, a sapphire groove component in which a plurality of grooves having a pitch of 25 μm and a depth of 10 μm were formed in parallel by laser scanning was separately prepared.
 その溝に沿って希土類金属錯体のクロロホルム溶液(30μM)を5ml調整し、マイクロピペッターにより20μl(20μL)ずつ各溝に滴下する事で、複数の溝内に平行に希土類金属錯体を充填して配置した。その後、希土類金属錯体を自然乾燥させ、希土類金属錯体が一様な方向に配向した配向部を構成した。乾燥後、その希土類金属錯体に250nm以上400nm以下の波長帯域を有する紫外線を照射し、希土類金属錯体から発する蛍光の分光強度分布を測定した。その結果を、図3に示す。 5 ml of a rare earth metal complex chloroform solution (30 μM) is adjusted along the groove, and 20 μl (20 μL) is dropped into each groove by a micropipette so that a plurality of grooves are filled with the rare earth metal complex in parallel. did. Thereafter, the rare earth metal complex was naturally dried to form an oriented portion in which the rare earth metal complex was oriented in a uniform direction. After drying, the rare earth metal complex was irradiated with ultraviolet rays having a wavelength band of 250 nm or more and 400 nm or less, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
 図3より、希土類原子がEuである希土類金属錯体から発する蛍光は、最も強度の高い波長帯域が約620nm付近の発光スペクトルを示す事が測定された。更に、何れの観察者からも蛍光の色相が赤色であるとの観察結果が得られた。 3. From FIG. 3, it was measured that the fluorescence emitted from the rare earth metal complex whose rare earth atom is Eu shows an emission spectrum with the highest wavelength band around 620 nm. Furthermore, the observation result that the fluorescence hue is red was obtained from any observer.
 次に偏光フィルタを別途用意し、偏光フィルタの偏光透過方向を、溝部品の溝の形成方向に対して直交に配置し、その偏光フィルタを介して測定された、希土類金属錯体から発する蛍光の分光強度分布を図4に示す。 Next, a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured. The intensity distribution is shown in FIG.
 図4より、約620nm付近の発光スペクトルの消光比として、約10%の消光比が得られるとの測定結果が得られた。よって、溝に沿って配置された、希土類原子がEuである希土類金属錯体から発せられる蛍光が、直線偏光である事が確認された。 From FIG. 4, a measurement result was obtained that an extinction ratio of about 10% was obtained as the extinction ratio of the emission spectrum near about 620 nm. Therefore, it was confirmed that the fluorescence emitted from the rare earth metal complex arranged along the groove and having the rare earth atom Eu is linearly polarized light.
(実施例2)
 以下、図5と図6を参照して本発明に係る実施例2のマーキングを説明する。なお、前記実施例1と同一箇所の説明は、簡略化又は省略して説明する。実施例2でも実施例1と同様、希土類原子がEuの希土類金属錯体を有するマーキングを用意した。また、前記溝部品は石英とし、溝のピッチは2.4μm、溝の深さは1.5μmとした。
(Example 2)
Hereinafter, marking according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6. In addition, description of the same location as the said Example 1 is simplified or abbreviate | omitted and demonstrated. In Example 2, as in Example 1, a marking having a rare earth metal complex in which the rare earth atom is Eu was prepared. The groove part was made of quartz, the groove pitch was 2.4 μm, and the groove depth was 1.5 μm.
 その溝に沿って希土類金属錯体のクロロホルム溶液を20μlずつ各溝に滴下する事で、複数の溝内に平行に希土類金属錯体を充填して配置し、自然乾燥させて希土類金属錯体が一様な方向に配向した配向部を構成した。乾燥後、その希土類金属錯体に前記紫外線を照射し、希土類金属錯体から発する蛍光の分光強度分布を測定した。その結果を、図5に示す。 By dropping 20 μl of a rare earth metal complex chloroform solution into each groove along the groove, the rare earth metal complex is filled and arranged in parallel in a plurality of grooves, and is naturally dried to make the rare earth metal complex uniform. An orientation part oriented in the direction was constructed. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
 図5より、希土類金属錯体から発する蛍光は、最も強度の高い波長帯域が約615nm付近の発光スペクトルを示す事が測定された。更に、何れの観察者からも蛍光の色相が赤色であるとの観察結果が得られた。 From FIG. 5, it was measured that the fluorescence emitted from the rare earth metal complex shows an emission spectrum having a wavelength band with the highest intensity around 615 nm. Furthermore, the observation result that the fluorescence hue is red was obtained from any observer.
 次に偏光フィルタを別途用意し、偏光フィルタの偏光透過方向を、溝部品の溝の形成方向に対して直交に配置し、その偏光フィルタを介して測定された、希土類金属錯体から発する蛍光の分光強度分布を図6に示す。 Next, a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured. The intensity distribution is shown in FIG.
 図6より、約615nm付近の発光スペクトルの消光比として、約67%の消光比が得られるとの測定結果が得られた。よって、溝に沿って配置された、希土類原子がEuである希土類金属錯体から発せられる蛍光が、直線偏光である事が確認された。 From FIG. 6, a measurement result was obtained that an extinction ratio of about 67% was obtained as the extinction ratio of the emission spectrum near about 615 nm. Therefore, it was confirmed that the fluorescence emitted from the rare earth metal complex arranged along the groove and having the rare earth atom Eu is linearly polarized light.
(実施例3)
 以下、図7と図8を参照して本発明に係る実施例3のマーキングを説明する。なお、前記各実施例1、2と同一箇所の説明は、簡略化又は省略して説明する。実施例3でも、希土類金属錯体を有するマーキングを用意したが、希土類原子はTbとした(TbLC18:Lはリガンド、C18はアルキル鎖)。また、前記溝部品は石英とし、溝のピッチは2.4μm、溝の深さは1.5μmとした。
(Example 3)
Hereinafter, marking according to the third embodiment of the present invention will be described with reference to FIGS. In addition, description of the same location as each said Example 1, 2 is simplified or abbreviate | omitted and demonstrated. Also in Example 3, a marking having a rare earth metal complex was prepared, but the rare earth atom was Tb (TbLC 18 : L is a ligand, and C 18 is an alkyl chain). The groove part was made of quartz, the groove pitch was 2.4 μm, and the groove depth was 1.5 μm.
 その溝に沿って希土類金属錯体のクロロホルム溶液を20μlずつ各溝に滴下する事で、複数の溝内に平行に希土類金属錯体を充填して配置し、自然乾燥させて希土類金属錯体が一様な方向に配向した配向部を構成した。乾燥後、その希土類金属錯体に前記紫外線を照射し、希土類金属錯体から発する蛍光の分光強度分布を測定した。その結果を、図7に示す。 By dropping 20 μl of a rare earth metal complex chloroform solution into each groove along the groove, the rare earth metal complex is filled and arranged in parallel in a plurality of grooves, and is naturally dried to make the rare earth metal complex uniform. An orientation part oriented in the direction was constructed. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
 図7より、希土類原子がTbである希土類金属錯体から発する蛍光は、最も強度の高い波長帯域が約545nm付近の発光スペクトルを示す事が測定された。更に、何れの観察者からも蛍光の色相が緑色であるとの観察結果が得られた。 7. From FIG. 7, it was measured that the fluorescence emitted from the rare earth metal complex whose rare earth atom is Tb shows an emission spectrum having a wavelength band with the highest intensity around 545 nm. Furthermore, an observation result that the hue of fluorescence was green was obtained from any observer.
 次に偏光フィルタを別途用意し、偏光フィルタの偏光透過方向を、溝部品の溝の形成方向に対して直交に配置し、その偏光フィルタを介して測定された、希土類金属錯体から発する蛍光の分光強度分布を図8に示す。 Next, a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured. The intensity distribution is shown in FIG.
 図8より、約545nm付近の発光スペクトルの消光比として、約43%の消光比が得られるとの測定結果が得られた。よって、溝に沿って配置された、希土類原子がTbである希土類金属錯体から発せられる蛍光が、直線偏光である事が確認された。 From FIG. 8, it was found that the extinction ratio of about 43% was obtained as the extinction ratio of the emission spectrum near about 545 nm. Therefore, it was confirmed that the fluorescence emitted from the rare earth metal complex having the rare earth atom Tb arranged along the groove is linearly polarized light.
(実施例4)
 以下、図9と図10を参照して本発明に係る実施例4のマーキングを説明する。なお、前記各実施例1~3と同一箇所の説明は、簡略化又は省略して説明する。実施例4でも、希土類金属錯体を有するマーキングを用意したが、希土類原子がEuである希土類金属錯体と、希土類原子がTbである希土類金属錯体の、2種類の希土類金属錯体の混合物を、溝に充填する希土類金属錯体とした。
Example 4
Hereinafter, marking according to the fourth embodiment of the present invention will be described with reference to FIGS. 9 and 10. The description of the same parts as in the first to third embodiments will be simplified or omitted. Also in Example 4, a marking having a rare earth metal complex was prepared, but a mixture of two rare earth metal complexes, a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb, is provided in the groove. The rare earth metal complex to be filled was used.
 希土類原子としてEuとTbを選択した理由は、マンセルの色相環で補色の関係に有る波長約615nm~620nm付近の赤色の蛍光を発するEuLC18と、波長約545nm~550nm付近の緑色の蛍光を発するTbLC18で検証する事により、容易に蛍光の色相変化を確認する事が可能になると予測したためである。図9より、本実施例のピーク波長とは、紫外線の吸収により希土類金属錯体が発する蛍光の最も強度の強い波長約617nm付近を指す。また、前記溝部品は石英とし、溝のピッチは2.4μm、溝の深さは1.5μmとした。 The reason why Eu and Tb were selected as the rare earth atoms is that EuLC 18 emits red fluorescence at a wavelength of about 615 nm to 620 nm, which is complementary to the Munsell hue ring, and green fluorescence at a wavelength of about 545 nm to 550 nm. This is because it was predicted that the change in the hue of the fluorescence could be easily confirmed by verifying with TbLC 18 . From FIG. 9, the peak wavelength in this example refers to the vicinity of the wavelength of about 617 nm where the intensity of the fluorescence emitted by the rare earth metal complex is emitted by the absorption of ultraviolet rays. The groove part was made of quartz, the groove pitch was 2.4 μm, and the groove depth was 1.5 μm.
 その溝に沿って希土類金属錯体のクロロホルム溶液(EuLC18:TbLC18=1.5:1.0の割合で混合した溶液)を20μlずつ各溝に滴下する事で、複数の溝内に平行に希土類金属錯体を充填して配置し、自然乾燥させて希土類金属錯体が一様な方向に配向した配向部を構成した。乾燥後、その希土類金属錯体に前記紫外線を照射し、希土類金属錯体から発する蛍光の分光強度分布を測定した。その結果を、図9に示す。 By dropping 20 μl of a rare earth metal complex chloroform solution (a solution mixed at a ratio of EuLC 18 : TbLC 18 = 1.5: 1.0) into each groove along the groove, the rare earth metal complex is parallelized in the plurality of grooves. An alignment portion in which the rare earth metal complex was aligned in a uniform direction was formed by filling and arranging and naturally drying. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
 図9より、EuLC18:TbLC18=1.5:1.0の割合で混合した混合物の希土類金属錯体から発する蛍光は、3.0×105以上の強度を示す波長帯域として、約545nm付近と約620nm付近の発光スペクトルを示す事が測定された。更に、何れの観察者からも蛍光の色相が黄色であるとの観察結果が得られた。 From FIG. 9, the fluorescence emitted from the rare earth metal complex of the mixture mixed at a ratio of EuLC 18 : TbLC 18 = 1.5: 1.0 is emitted in the vicinity of about 545 nm and about 620 nm as wavelength bands showing an intensity of 3.0 × 10 5 or more. It was measured to show a spectrum. Furthermore, the observation result that the fluorescence hue was yellow was obtained from any observer.
 次に偏光フィルタを別途用意し、偏光フィルタの偏光透過方向を、溝部品の溝の形成方向に対して直交に配置し、その偏光フィルタを介して測定された、希土類金属錯体から発する蛍光の分光強度分布を図10に示す。 Next, a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured. The intensity distribution is shown in FIG.
 図10より、より強度の高い約617nm付近の発光スペクトルの消光比として、約43%の消光比が得られるとの測定結果が得られた。よって、溝に沿って配置された、希土類金属錯体から発せられる蛍光が、直線偏光である事が確認されたと共に、波長帯域約617nm付近の強度を相対的に低減(消光)させられる事が判明した。更に、希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向が直交に配置されている事も分かった。偏光フィルタを介し確認したところ、CIE1931色度図で蛍光の色相が、黄色から緑色側に変化した事が確認された。 From FIG. 10, a measurement result was obtained that an extinction ratio of about 43% was obtained as the extinction ratio of the emission spectrum near about 617 nm, which is higher in intensity. Therefore, it was confirmed that the fluorescence emitted from the rare earth metal complex arranged along the groove was linearly polarized light, and the intensity near the wavelength band of about 617 nm was relatively reduced (quenched). did. Furthermore, it has also been found that the polarization transmission direction of the polarizing filter is arranged orthogonal to the orientation direction of the rare earth metal complex. When confirmed through a polarizing filter, the CIE1931 chromaticity diagram confirmed that the hue of the fluorescence had changed from yellow to green.
 よって、偏光方向の設定による偽造防止効果に加え、色相変化による偽造防止効果もマーキングに付与することが可能となり、より一層マーキングの偽造を困難なものとする事が出来ることが確認された。 Therefore, in addition to the anti-counterfeit effect by setting the polarization direction, it is possible to impart an anti-counterfeit effect due to hue change to the marking, and it has been confirmed that the forgery of the marking can be made even more difficult.
(実施例5)
 以下、図11と図12を参照して本発明に係る実施例5のマーキングを説明する。なお、前記各実施例1~4と同一箇所の説明は、簡略化又は省略して説明する。実施例5でも、希土類金属錯体を有するマーキングを用意したが、希土類原子がEuである希土類金属錯体と、希土類原子がTbである希土類金属錯体の、2種類の希土類金属錯体の混合物を、溝に充填する希土類金属錯体とした。
(Example 5)
Hereinafter, marking according to the fifth embodiment of the present invention will be described with reference to FIGS. 11 and 12. The description of the same parts as those of the first to fourth embodiments will be simplified or omitted. Also in Example 5, a marking having a rare earth metal complex was prepared, but a mixture of two rare earth metal complexes of a rare earth metal complex in which the rare earth atom is Eu and a rare earth metal complex in which the rare earth atom is Tb is formed in the groove. The rare earth metal complex to be filled was used.
 希土類原子としてEuとTbを選択した理由は、マンセルの色相環で補色の関係に有る波長約615nm~620nm付近の赤色の蛍光を発するEuLC18と、波長約545nm~550nm付近の緑色の蛍光を発するTbLC18で検証する事により、容易に蛍光の色相変化を確認する事が可能になると予測したためである。図11より、本実施例のピーク波長とは、紫外線の吸収により希土類金属錯体が発する蛍光の最も強度の強い波長約545nm付近を指す。また、前記溝部品は石英とし、溝のピッチは25μm、溝の深さは10μmとした。 The reason why Eu and Tb were selected as the rare earth atoms is that EuLC 18 emits red fluorescence at a wavelength of about 615 nm to 620 nm, which is complementary to the Munsell hue ring, and green fluorescence at a wavelength of about 545 nm to 550 nm. This is because it was predicted that the change in the hue of the fluorescence could be easily confirmed by verifying with TbLC 18 . From FIG. 11, the peak wavelength in this example refers to the vicinity of the wavelength of about 545 nm where the strongest fluorescence emitted by the rare earth metal complex is generated by absorption of ultraviolet rays. The groove part was made of quartz, the groove pitch was 25 μm, and the groove depth was 10 μm.
 その溝に沿って希土類金属錯体のクロロホルム溶液(EuLC18:TbLC18=1.0:3.0の割合で混合した溶液)を20μlずつ各溝に滴下する事で、複数の溝内に平行に希土類金属錯体を充填して配置し、自然乾燥させて希土類金属錯体が一様な方向に配向した配向部を構成した。乾燥後、その希土類金属錯体に前記紫外線を照射し、希土類金属錯体から発する蛍光の分光強度分布を測定した。その結果を、図11に示す。 By dropping 20 μl of a rare earth metal complex chloroform solution (a solution mixed in a ratio of EuLC 18 : TbLC 18 = 1.0: 3.0) into each groove along the groove, the rare earth metal complex is parallelized in the plurality of grooves. An alignment portion in which the rare earth metal complex was aligned in a uniform direction was formed by filling and arranging and naturally drying. After drying, the rare earth metal complex was irradiated with the ultraviolet rays, and the spectral intensity distribution of fluorescence emitted from the rare earth metal complex was measured. The result is shown in FIG.
 図11より、EuLC18:TbLC18=1.0:3.0の割合で混合した混合物の希土類金属錯体から発する蛍光は、2.0×106以上の強度を示す波長帯域として、約545nm付近と約620nm付近の発光スペクトルを示す事が測定された。更に、何れの観察者からも蛍光の色相が黄色であるとの観察結果が得られた。 From FIG. 11, the fluorescence emitted from the rare earth metal complex of the mixture mixed at a ratio of EuLC 18 : TbLC 18 = 1.0: 3.0 is emitted in the vicinity of about 545 nm and about 620 nm as wavelength bands showing an intensity of 2.0 × 10 6 or more. It was measured to show a spectrum. Furthermore, the observation result that the fluorescence hue was yellow was obtained from any observer.
 次に偏光フィルタを別途用意し、偏光フィルタの偏光透過方向を、溝部品の溝の形成方向に対して直交に配置し、その偏光フィルタを介して測定された、希土類金属錯体から発する蛍光の分光強度分布を図12に示す。 Next, a polarizing filter is prepared separately, and the polarization transmission direction of the polarizing filter is arranged perpendicular to the groove forming direction of the groove part, and the fluorescence spectrum emitted from the rare earth metal complex measured through the polarizing filter is measured. The intensity distribution is shown in FIG.
 図12より、より強度の高い約545nm付近の発光スペクトルの消光比として、約13%の消光比が得られるとの測定結果が得られた。よって、溝に沿って配置された、希土類金属錯体から発せられる蛍光が、直線偏光である事が確認されたと共に、波長帯域約545nm付近の強度を相対的に低減(消光)させられる事が判明した。更に、希土類金属錯体の配向方向に対して、偏光フィルタの偏光透過方向が直交に配置されている事も分かった。偏光フィルタを介し確認したところ、CIE1931色度図で蛍光の色相が、黄色から橙色側に変化した事が確認された。 From FIG. 12, a measurement result was obtained that an extinction ratio of about 13% was obtained as the extinction ratio of the emission spectrum near about 545 nm, which is higher in intensity. Therefore, it was confirmed that the fluorescence emitted from the rare earth metal complex arranged along the groove was linearly polarized light, and the intensity near the wavelength band of about 545 nm was relatively reduced (quenched). did. Furthermore, it has also been found that the polarization transmission direction of the polarizing filter is arranged orthogonal to the orientation direction of the rare earth metal complex. When confirmed through a polarizing filter, it was confirmed in the CIE1931 chromaticity diagram that the hue of fluorescence changed from yellow to orange.
 よって、偏光方向の設定による偽造防止効果に加え、色相変化による偽造防止効果もマーキングに付与することが可能となり、より一層マーキングの偽造を困難なものとする事が出来ることが確認された。 Therefore, in addition to the anti-counterfeit effect by setting the polarization direction, it is possible to impart an anti-counterfeit effect due to hue change to the marking, and it has been confirmed that the forgery of the marking can be made even more difficult.
 なお、実施例4又は5におけるEuLC18とTbLC18の各溶液の混合比は、任意に変更可能である。 In addition, the mixing ratio of each solution of EuLC 18 and TbLC 18 in Example 4 or 5 can be arbitrarily changed.
 また、実施例1~5に於ける希土類原子はEu又はTb以外にも任意に変更可能であり、例えば溶液としてDyLC18溶液やSmLC18溶液、NdLC18溶液が挙げられ、混合比も種々設定可能である。 Further, in the rare earth atom in Examples 1-5 can be arbitrarily changed other than Eu or Tb, for example DyLC 18 solution or SMLC 18 solution as a solution, NDLC 18 solution, and the like, the mixing ratio can also be set variously It is.
 なお実施例1~5に示したように、溝部品の溝のピッチは任意に設定可能であり、実施例1~5の数値以外にも変更可能である。 As shown in Examples 1 to 5, the groove pitch of the groove part can be arbitrarily set, and can be changed in addition to the numerical values of Examples 1 to 5.
   1   無偏光顕像部
   2   偏光顕像部
   3   基板
   C   希土類金属錯体の配向部
   D   希土類金属錯体の配向用溝体
DESCRIPTION OF SYMBOLS 1 Non-polarized light image part 2 Polarized light image part 3 Substrate C Orientation part of rare earth metal complex D Groove for orientation of rare earth metal complex

Claims (4)

  1.  紫外線を照射すると、直線偏光した蛍光を発するマーキング。 Marking that emits linearly polarized fluorescence when irradiated with ultraviolet rays.
  2.  一様な方向に配向した希土類金属錯体を有する請求項1記載のマーキング。 The marking according to claim 1, comprising a rare earth metal complex oriented in a uniform direction.
  3.  前記希土類金属錯体を、基材の表面に設けられた一様な方向の凹み内に有する請求項2記載のマーキング。 3. The marking according to claim 2, wherein the rare earth metal complex is provided in a recess in a uniform direction provided on the surface of the substrate.
  4.  前記希土類金属錯体が、異なる希土類原子を含む少なくとも2種類の希土類金属錯体の混合物からなる請求項2又は3記載のマーキング。 The marking according to claim 2 or 3, wherein the rare earth metal complex comprises a mixture of at least two rare earth metal complexes containing different rare earth atoms.
PCT/JP2017/018466 2016-05-21 2017-05-17 Polarization marking WO2017204044A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519209A JPWO2017204044A1 (en) 2016-05-21 2017-05-17 Polarized marking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016102011 2016-05-21
JP2016-102011 2016-05-21

Publications (1)

Publication Number Publication Date
WO2017204044A1 true WO2017204044A1 (en) 2017-11-30

Family

ID=60412254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018466 WO2017204044A1 (en) 2016-05-21 2017-05-17 Polarization marking

Country Status (2)

Country Link
JP (1) JPWO2017204044A1 (en)
WO (1) WO2017204044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108656783A (en) * 2018-04-18 2018-10-16 中国印钞造币总公司 A kind of security article and its detection method and detecting system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535670A (en) * 2006-05-02 2009-10-01 ホログラム インダストリーズ Optical security marking part, method for manufacturing the part, system comprising the part, and reader for checking the part
JP2011022821A (en) * 2009-07-16 2011-02-03 Toppan Printing Co Ltd Anti-counterfeit medium
JP2011131527A (en) * 2009-12-25 2011-07-07 Toppan Printing Co Ltd Forgery preventive medium, and forgery preventive label, printed matter and transfer foil using the forgery preventive medium, and method for determining authenticity of forgery preventive medium
JP2013033127A (en) * 2011-08-02 2013-02-14 Toppan Printing Co Ltd Display body, labeled article and authenticity determination method thereof
JP2014195945A (en) * 2013-03-29 2014-10-16 凸版印刷株式会社 Fluorescent latent image medium, verifier, and verification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535670A (en) * 2006-05-02 2009-10-01 ホログラム インダストリーズ Optical security marking part, method for manufacturing the part, system comprising the part, and reader for checking the part
JP2011022821A (en) * 2009-07-16 2011-02-03 Toppan Printing Co Ltd Anti-counterfeit medium
JP2011131527A (en) * 2009-12-25 2011-07-07 Toppan Printing Co Ltd Forgery preventive medium, and forgery preventive label, printed matter and transfer foil using the forgery preventive medium, and method for determining authenticity of forgery preventive medium
JP2013033127A (en) * 2011-08-02 2013-02-14 Toppan Printing Co Ltd Display body, labeled article and authenticity determination method thereof
JP2014195945A (en) * 2013-03-29 2014-10-16 凸版印刷株式会社 Fluorescent latent image medium, verifier, and verification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108656783A (en) * 2018-04-18 2018-10-16 中国印钞造币总公司 A kind of security article and its detection method and detecting system

Also Published As

Publication number Publication date
JPWO2017204044A1 (en) 2019-03-22

Similar Documents

Publication Publication Date Title
Shi et al. Chiral luminescent liquid crystal with multi‐state‐reversibility: breakthrough in advanced anti‐counterfeiting materials
US9243169B2 (en) Security laminate
US4451521A (en) Security paper with authenticity features in the form of substances luminescing only in the invisible region of the optical spectrum and process for testing the same
RU2361745C2 (en) Layered important document containing paint mixture in one of its layers
US8822954B2 (en) Phosphor based authentication system
EP2882659B1 (en) Capsule or cork comprising security features
CN107209419A (en) Electric light switching device and display device
EP2996880B1 (en) Security laminate
CN102666121A (en) Improvements in security devices
TWI729245B (en) Security ink based security feature
EA005710B1 (en) Improvements in methods of manufacturing substrates
KR102708472B1 (en) Optical marking device
WO2017204044A1 (en) Polarization marking
RU2368013C2 (en) Valuable document
GB2547717A (en) Security elements and security documents
JP6225454B2 (en) Fluorescent latent image medium, verifier, and verification method
WO2014129416A1 (en) Ink set, printed matter and print method
US20200049871A1 (en) Optical device with reflective multicolored and emissive images
RU2137612C1 (en) Method for identifying and protecting excise labels, bank notes, securities, documents, and articles; cryptic image medium as identifying and protective mark
WO2016068232A1 (en) Method for determining authenticity of anti-counterfeit medium and authenticity determining device for anti-counterfeit medium
RU2235021C2 (en) Data carrier with optically variable structure
RU2725599C1 (en) Composite material for marking a material object
RU2403601C2 (en) Method of making optical two-way reflecting protective apparatus and protective apparatus made using said method
JP6967072B2 (en) Luminescent taggant composition, luminescent material containing it, and articles containing it
JP2023178857A (en) Forgery prevention medium and verification method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802636

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802636

Country of ref document: EP

Kind code of ref document: A1