WO2017203812A1 - Fuel supply pump - Google Patents

Fuel supply pump Download PDF

Info

Publication number
WO2017203812A1
WO2017203812A1 PCT/JP2017/011297 JP2017011297W WO2017203812A1 WO 2017203812 A1 WO2017203812 A1 WO 2017203812A1 JP 2017011297 W JP2017011297 W JP 2017011297W WO 2017203812 A1 WO2017203812 A1 WO 2017203812A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction valve
fuel supply
supply pump
pressurizing chamber
flow path
Prior art date
Application number
PCT/JP2017/011297
Other languages
French (fr)
Japanese (ja)
Inventor
俊亮 有冨
菅波 正幸
樋熊 真人
越坂 敦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2017203812A1 publication Critical patent/WO2017203812A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages

Definitions

  • the present invention relates to a fuel supply pump provided with a suction valve.
  • Japanese Patent Application Laid-Open No. 2010-169080 discloses a structure in which a plurality of through holes are provided in the circumferential direction of the stopper member of the suction valve to form a flow path to the pressurizing chamber.
  • Japanese Patent Application Publication No. 2013-512399 discloses a structure in which an annular clearance is provided on the outer periphery of the suction valve stopper to form a flow path to the pressurizing chamber.
  • JP 2010-169080 A Special table 2013-512399 gazette
  • an object of the present invention is to provide a suction valve that can secure a sufficient flow path cross-sectional area with a simple structure with few processing steps, and a low-cost fuel supply pump to which the suction valve is applied.
  • the present invention includes a pump body 1 in which a pressurizing chamber 11 is formed, and a suction valve 30 disposed on the suction side of the pressurizing chamber 11.
  • the overlapping portion 32d that is disposed between the pressurizing chamber 11 and the suction valve 30 and overlaps the suction valve 30 in the suction valve axial direction, and on the outer peripheral side of the outer peripheral side surface of the overlapping portion.
  • a plurality of fixing portions 32c that are formed integrally with the overlapping portion and fix the overlapping portion 32d, and are arranged on the outer peripheral side of the outer peripheral side surface of the overlapping portion 32d and the outer peripheral side surface of the overlapping portion 32d.
  • a first flow path 32e is formed between the housing portion 31c, the first flow path 32e is connected to the second flow path 32f on the pressurizing chamber side with respect to the pressurizing chamber side surface of the overlapping portion 32d, and the first flow path 32e is connected to the second flow path 32f.
  • 1 channel 3 e and the second flow path 32f is formed so as to be connected in succession by the housing part 31c.
  • FIG. 1 is an overall configuration of a system that implements Embodiments 1 and 2. It is sectional drawing at the time of fuel supply pump attachment which implements Example 1 and 2. FIG. It is sectional drawing in the suction
  • FIG. 1 It is the longitudinal cross-sectional view and 45 degree
  • FIG. It is a perspective view of the suction valve stopper which implements Example 2.
  • FIG. It is the longitudinal cross-sectional view and 45 degree
  • FIG. 2 is a diagram showing an example of the overall configuration of a fuel supply system including a fuel supply pump to which the present invention can be applied.
  • a portion 1 surrounded by a broken line indicates a fuel supply pump main body, and the mechanisms and components shown in the broken line indicate that the fuel supply pump main body 1 is integrally incorporated.
  • Fuel is fed from the fuel tank 20 to the fuel supply pump main body 1 via the feed pump 21, and pressurized fuel is sent from the fuel supply pump main body 1 to the injector 24 side.
  • the engine control unit (control unit) 27 takes in the fuel pressure from the pressure sensor 26 and controls the feed pump 21, the electromagnetic coil 43 in the fuel supply pump main body 1, and the injector 24 in order to optimize this.
  • the fuel in the fuel tank 20 is first pumped up by a feed pump 21 based on a control signal S 1 from an engine control unit (control unit) 27, pressurized to an appropriate feed pressure, and fed through a suction pipe 28.
  • 1 low-pressure fuel inlet (suction joint) 10a The fuel that has passed through the low-pressure fuel suction port 10a reaches the suction port 31b of the electromagnetic suction valve 300 that constitutes the variable capacity mechanism via the pressure pulsation reducing mechanism 9 and the suction passage 10d.
  • the pressure pulsation reducing mechanism 9 communicates with the annular low-pressure fuel chamber 7a, which makes the pressure variable in conjunction with the plunger 2 that reciprocates by an engine cam mechanism (not shown). The pulsation of the fuel pressure sucked into the suction port 31b is reduced.
  • the fuel that has flowed into the suction port 31 b of the electromagnetic suction valve 300 passes through the suction valve 30 and flows into the pressurizing chamber 11.
  • the valve position of the intake valve 30 is determined by controlling the electromagnetic coil 43 in the fuel supply pump main body 1 based on the control signal S2 from the engine control unit (control unit) 27.
  • the reciprocating power is given to the plunger 2 by an engine cam mechanism (not shown). Due to the reciprocating motion of the plunger 2, fuel is sucked from the suction valve 30 in the lowering process of the plunger 2, and the sucked fuel is pressurized in the lifting process of the plunger 2, and the pressure sensor 26 is mounted via the discharge valve mechanism 8.
  • Fuel is pumped to the common rail 23. Thereafter, the injector 24 injects fuel into the engine based on a control signal S3 from the engine control unit (control unit) 27.
  • the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 includes a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge that urges the discharge valve 8b toward the discharge valve sheet 8a. It is comprised by the valve spring 8c etc. According to the discharge valve mechanism 8, the discharge valve 8b opens when the internal pressure of the pressurizing chamber 11 is higher than the pressure on the discharge passage 12 downstream of the discharge valve 8b and overcomes the drag determined by the discharge valve spring 8c. The pressurized fuel is pumped from the pressurizing chamber 11 to the discharge passage 12 side.
  • 30 is a suction valve
  • 35 is a rod for controlling the position of the suction valve
  • 36 is an anchor portion
  • 33 is a suction valve spring
  • 40 is a rod biasing spring
  • 41 is an anchor portion biasing spring.
  • the intake valve 30 is urged in the valve closing direction by the intake valve spring 33, and is urged in the valve opening direction by the rod urging spring 40 via the rod 35.
  • the anchor portion 36 is biased in the valve closing direction by an anchor portion biasing spring.
  • the valve position of the suction valve 30 is controlled by driving the rod 35 by the electromagnetic coil 43.
  • the fuel supply pump 1 is configured such that the electromagnetic coil 43 in the fuel supply pump main body 1 is controlled by the control signal S2 given to the electromagnetic intake valve 300 by the engine control unit (control unit) 27, and the common rail is connected via the discharge valve mechanism 8.
  • the fuel flow rate is discharged so that the fuel pumped to 23 becomes a desired supply fuel.
  • the pressurizing chamber 11 and the common rail 23 are communicated by a relief valve 100.
  • the relief valve 100 is a valve mechanism arranged in parallel with the discharge valve mechanism 8. In the relief valve 100, when the pressure on the common rail 23 side exceeds the set pressure of the relief valve 100, the relief valve 100 is opened and the fuel is returned to the pressurizing chamber 11 of the fuel supply pump 1, whereby the pressure in the common rail 23 is increased. Prevent abnormal high pressure conditions.
  • the relief valve 100 forms a high-pressure channel 110 that communicates the discharge passage 12 on the downstream side of the discharge valve 8b in the fuel supply pump body 1 and the pressurizing chamber 11, and is provided so as to bypass the discharge valve 8b. It is what was done.
  • the high-pressure channel 110 is provided with a relief valve 102 that restricts the flow of fuel in only one direction from the discharge channel to the pressurizing chamber 11.
  • the relief valve 102 is pressed against the relief valve seat 101 by a relief spring 105 that generates a pressing force, and the pressure difference between the pressure chamber 11 and the high-pressure channel 110 is determined by the relief spring 105. If it becomes above, it is set so that the relief valve 102 may leave
  • the differential pressure between the discharge passage 110 and the pressurizing chamber 11 becomes equal to or higher than the valve opening pressure of the relief valve 102. Then, the relief valve 102 is opened, and the fuel having an abnormally high pressure is returned from the discharge passage 110 to the pressurizing chamber 11 to protect the high-pressure section piping such as the common rail 23.
  • FIG. 1 is a diagram showing a specific example of a fuel supply pump body 1 that is mechanically integrated. According to this figure, a plunger 2 that reciprocates (in this case, up and down) by an engine cam mechanism (not shown) in the central height direction shown in the figure is arranged in the cylinder 6, A pressurizing chamber 11 is formed.
  • the mechanism on the electromagnetic suction valve 300 side is disposed on the left side of the center of the figure, and the discharge valve mechanism 8 is disposed on the right side of the center of the figure.
  • a low-pressure fuel suction port 10a, a pressure pulsation reduction mechanism 9, a suction passage 10d, and the like are disposed as a fuel suction side mechanism.
  • a plunger internal combustion engine side mechanism 150 is described in the lower center portion of FIG.
  • the plunger internal combustion engine side mechanism 150 is a portion that is embedded and fixed in the internal combustion engine body as shown in FIG.
  • the relief valve 100 mechanism is not shown in the display cross section of FIG.
  • the relief valve 100 mechanism can be displayed in a display section at a different angle, but since it is not directly related to the present invention, explanation and display are omitted.
  • FIG. 3 shows a state in which the mounting root (plunger internal combustion engine side mechanism) 150 is embedded and fixed in the internal combustion engine body.
  • the attachment root 150 since the attachment root 150 is described as a center, description of other parts is omitted.
  • reference numeral 90 denotes a thick portion of the cylinder head of the internal combustion engine.
  • An attachment root attaching hole 95 is formed in advance in the cylinder head 90 of the internal combustion engine.
  • the attachment root portion mounting hole 95 is configured with a two-stage diameter according to the shape of the attachment root portion 150, and the attachment root portion 150 is fitted and disposed in the root portion attachment hole 95.
  • the mounting root 150 is airtightly fixed to the cylinder head 90 of the internal combustion engine.
  • the fuel supply pump is in close contact with the plane of the cylinder head 90 of the internal combustion engine using a flange 1 e provided in the pump body 1 and fixed with a plurality of bolts 91.
  • the mounting flange 1e is welded to the pump body 1 at the welded portion 1f to form an annular fixed portion.
  • laser welding is used for welding the welded portion 1f.
  • an O-ring 61 is fitted into the pump body 1 for sealing between the cylinder head 90 and the pump body 1 to prevent engine oil from leaking to the outside.
  • the plunger root 150 arranged in an airtight manner in this manner is provided with a tappet 92 that converts the rotational movement of the cam 93 attached to the camshaft of the internal combustion engine into a vertical movement and transmits it to the plunger 2 at the lower end 2b of the plunger 2. It has been.
  • the plunger 2 is pressure-bonded to the tappet 92 by the spring 4 through the retainer 15. Thereby, the plunger 2 is reciprocated up and down with the rotational movement of the cam 93.
  • a plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a state in which the plunger seal 13 slidably contacts the outer periphery of the plunger 2 in the lower part of the cylinder 6 in the figure.
  • the fuel can be sealed even when the plunger 2 slides to prevent the fuel from leaking to the outside.
  • lubricating oil including engine oil
  • for lubricating the sliding portion in the internal combustion engine is prevented from flowing into the pump body 1.
  • the plunger root 150 arranged in an airtight manner reciprocates within the cylinder 6 as the plunger 2 inside the plunger 2 rotates.
  • a cylinder in which a fuel supply pump main body 1 guides the reciprocating motion of a plunger 2 and has an end (upper side in FIG. 1) formed in a bottomed cylindrical shape so as to form a pressurizing chamber 11 therein. 6 is attached.
  • the pressurizing chamber 11 is connected to an electromagnetic suction valve 300 for supplying fuel and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to the discharge passage.
  • a plurality of communication holes 6b are provided to communicate the groove 6a with the pressurizing chamber.
  • the cylinder 6 is press-fitted and fixed to the fuel supply pump main body 1 at the outer diameter, and is sealed with a press-fitted portion cylindrical surface so that fuel pressurized from the gap with the fuel supply pump main body 1 does not leak to the low pressure side.
  • the cylinder 6 has a small-diameter portion 6 c at the outer diameter on the pressurizing chamber side.
  • the cylinder 6 exerts a force on the low pressure fuel chamber 10c side.
  • the pump body 1 with the small diameter portion 1a the cylinder 6 is pulled out on the low pressure fuel chamber 10c side. To prevent that.
  • By bringing the surfaces into contact with a plane in the axial direction in addition to the sealing of the contact cylindrical surface of the fuel supply pump main body 1 and the cylinder 6, it also functions as a double seal.
  • a damper cover 14 is fixed to the head of the fuel supply pump main body 1.
  • the damper cover 14 is provided with a suction joint 51 and forms a low-pressure fuel suction port 10a.
  • the fuel that has passed through the low-pressure fuel suction port 10a passes through the filter 52 fixed inside the suction joint 51, and reaches the suction port 31b of the electromagnetic suction valve 300 via the pressure pulsation reducing mechanism 9 and the low-pressure fuel flow path 10d. .
  • the suction filter 52 in the suction joint 51 serves to prevent foreign matter existing between the fuel tank 20 and the low-pressure fuel inlet 10a from being absorbed into the fuel supply pump by the flow of fuel.
  • the plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, so that the volume of the annular low-pressure fuel chamber 7a increases and decreases by the reciprocating motion of the plunger.
  • the volume increase / decrease is communicated with the low-pressure fuel chamber 10 by the fuel passage 1d (FIG. 3), so that when the plunger 2 is lowered, the pressure is reduced from the annular low-pressure fuel chamber 7a to the low-pressure fuel chamber 10; A fuel flow is generated from the fuel chamber 10 to the annular low-pressure fuel chamber 7a.
  • the low pressure fuel chamber 10 is provided with a pressure pulsation reducing mechanism 9 for reducing the pressure pulsation generated in the fuel supply pump from spreading to the fuel pipe 28 (FIG. 2).
  • a pressure pulsation reducing mechanism 9 for reducing the pressure pulsation generated in the fuel supply pump from spreading to the fuel pipe 28 (FIG. 2).
  • the pressure pulsation reducing mechanism 9 provided in the low-pressure fuel chamber 10 is formed of a metal damper in which two corrugated disk-shaped metal plates are bonded together on the outer periphery and an inert gas such as argon is injected inside. The pressure pulsation is absorbed and reduced as the metal damper expands and contracts.
  • Reference numeral 9b denotes a mounting bracket for fixing the metal damper to the inner peripheral portion of the fuel supply pump main body 1, and since it is installed on the fuel passage, a plurality of holes are provided to allow fluid to freely flow between the front and back of the mounting bracket 9b. I can do it.
  • the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 includes a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge valve spring that urges the discharge valve 8b toward the discharge valve sheet 8a. 8c, a discharge valve holder 8d that accommodates the discharge valve 8b and the discharge valve seat 8a.
  • the discharge valve sheet 8a and the discharge valve holder 8d are joined by welding at a contact portion 8e to form an integral discharge valve mechanism 8. Forming.
  • a stepped portion 8f that forms a stopper that restricts the stroke of the discharge valve 8b is provided inside the discharge valve holder 8d.
  • the stroke is too large, and the fuel discharged at high pressure to the fuel discharge port 12 due to the delay in closing the discharge valve 8b can be prevented from flowing back into the pressurizing chamber 11 again, and the efficiency of the fuel supply pump is reduced. Can be suppressed.
  • the discharge valve 8b repeats opening and closing movements, the discharge valve 8b is guided on the inner peripheral surface of the discharge valve holder 8d so as to move only in the stroke direction. By doing so, the discharge valve mechanism 8 becomes a check valve that restricts the flow direction of fuel.
  • FIGS. 4 shows the state in the suction process among the steps of suction, return, and discharge in the pump operation
  • FIGS. 5 and 6 show the state in the discharge process.
  • the structure on the electromagnetic suction valve 300 side is mainly composed of a suction valve part A mainly composed of the suction valve 30, a solenoid mechanism part B mainly composed of the rod 35 and the anchor part 36, and an electromagnetic coil 43.
  • the intake valve portion A includes an intake valve 30, an intake valve seat 31, an intake valve stopper 32, an intake valve biasing spring 33, and an intake valve holder 34.
  • the suction valve seat 31 is cylindrical, and has a seat portion 31a in the axial direction on the inner peripheral side and a plurality of suction passage portions 31b radially about the cylindrical axis.
  • the intake valve holder 34 has claws in two or more directions radially, and the outer peripheral side of the claws is fitted and held coaxially on the inner peripheral side of the intake valve seat 31. Further, a suction valve stopper 32 having a cylindrical shape and a collar shape at one end is fitted and held on the inner peripheral cylindrical surface of the suction valve holder 34.
  • the suction valve urging spring 33 is disposed on the inner peripheral side of the suction valve stopper 32 in a small diameter part for stabilizing one end of the spring coaxially, and the suction valve 30 is inhaled with the suction valve seat part 31a. Between the valve stoppers 32, a suction valve biasing spring 33 is fitted into the valve guide portion 30b.
  • the suction valve urging spring 33 is a compression coil spring and is installed so that the urging force acts in a direction in which the suction valve 30 is pressed against the suction valve seat portion 31a. It is not limited to the compression coil spring, and any form may be used as long as it can obtain an urging force, and a leaf spring having an urging force integrated with the suction valve may be used.
  • the suction valve portion A By configuring the suction valve portion A in this way, in the pump suction process, the fuel that has passed through the suction passage 31b and entered the interior passes between the suction valve 30 and the seat portion 31a, and the suction valve 30 The fuel passes through between the outer peripheral side and the claw of the suction valve holder 34, passes through the passage of the fuel supply pump main body 1 and the cylinder, and flows the fuel into the pressurizing chamber. Further, in the pump discharge process, the intake valve 30 performs contact sealing with the intake valve seat portion 31a, thereby fulfilling the function of a check valve that prevents backflow of fuel to the inlet side.
  • a passage 32 a is provided in order to release the hydraulic pressure on the inner peripheral side of the suction valve stopper according to the movement of the suction valve 30.
  • the axial movement amount 30e of the suction valve 30 is limited by the suction valve stopper 32. This is because if the amount of movement is too large, the reverse flow rate increases due to a response delay when the intake valve 30 is closed, and the performance as a pump decreases.
  • the restriction of the movement amount can be defined by the axial shape and size of the suction valve seat 31a, the suction valve 30, and the suction valve stopper 32, and the fixed position.
  • the suction valve stopper 32 is provided with a protrusion 32b so that the contact area with the suction valve stopper 32 is reduced when the suction valve 32 is open. This is because the intake valve 32 is likely to be separated from the intake valve stopper 32 during the transition from the open state to the closed state, that is, the valve closing response is improved.
  • a large squeeze force acts between the intake valve 30 and the intake valve stopper 32, and the intake valve 30 is difficult to be separated from the intake valve 32.
  • the suction valve 30, the suction valve seat 31a, and the suction valve stopper 32 are made of a heat-treated martensitic stainless steel that has high strength, high hardness, and excellent corrosion resistance in order to repeatedly collide with each other.
  • the suction valve spring 33 and the suction valve holder 34 are made of austenitic stainless steel in consideration of corrosion resistance.
  • the solenoid mechanism part B includes a rod 35 that is a movable part, an anchor part 36, a rod guide 37 that is a fixed part, an outer core 38, a fixed core 39, a rod biasing spring 40, and an anchor part biasing spring 41.
  • the rod 35 and the anchor part 36 which are movable parts are configured as separate members.
  • the rod 35 is slidably held in the axial direction on the inner peripheral side of the rod guide 37, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35. That is, both the rod 35 and the anchor portion 36 are configured to be slidable in the axial direction as long as they are geometrically restricted.
  • the anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely and smoothly in the axial direction in the fuel, and eliminates the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
  • the rod guide 37 is inserted in the radial direction on the inner peripheral side of the hole into which the intake valve of the fuel supply pump main body 1 is inserted, and in the axial direction, is abutted against one end portion of the intake valve seat.
  • the outer core 38 that is fixed to the main body 1 by welding and the fuel supply pump main body 1 are arranged in a sandwiched manner.
  • the rod guide 37 is also provided with a through hole 37a penetrating in the axial direction in the same manner as the anchor portion 36, and the pressure of the fuel chamber on the anchor portion side controls the movement of the anchor portion so that the anchor portion can move freely and smoothly. It is configured not to interfere.
  • the outer core 38 has a thin cylindrical shape on the side opposite to the portion to be welded with the fuel supply pump main body, and is fixed by welding in such a manner that the fixed core 39 is inserted on the inner peripheral side thereof.
  • a rod urging spring 40 is arranged on the inner peripheral side of the fixed core 39 with the narrow diameter portion as a guide, the rod 35 comes into contact with the suction valve 30, and the suction valve is pulled away from the suction valve seat portion 31a, that is, suction. Energizing force is applied in the valve opening direction.
  • the anchor portion biasing spring 41 is disposed so as to apply a biasing force to the anchor portion 36 in the direction of the rod collar portion 35a while inserting one end into a cylindrical central bearing portion 37b provided on the center side of the rod guide 37 and maintaining the same axis. It is said.
  • the movement amount 36e of the anchor portion 36 is set to be larger than the movement amount 30e of the intake valve 30. This is because the intake valve 30 is surely closed.
  • the intake valve portion A and the solenoid mechanism portion B are configured by organically arranging three springs.
  • the suction valve biasing spring 33 configured in the suction valve unit A, the rod biasing spring 40 and the anchor unit biasing spring 41 configured in the solenoid mechanism unit B correspond to this.
  • any spring uses a coil spring, but any spring can be used as long as it can obtain an urging force.
  • the coil portion C includes a first yoke 42, an electromagnetic coil 43, a second yoke 44, a bobbin 45, a terminal 46, and a connector 47.
  • a coil 43 in which a copper wire is wound around the bobbin 45 is disposed so as to be surrounded by the first yoke 42 and the second yoke 44, and is molded and fixed integrally with a connector which is a resin member.
  • the respective ends of the two terminals 46 are respectively connected to both ends of the copper wire of the coil so as to be energized.
  • the terminal 46 is molded integrally with the connector, and the remaining end can be connected to the engine control unit side.
  • the coil part C is fixed by press-fitting the hole at the center of the first yoke 42 into the outer core 38. At that time, the inner diameter side of the second yoke 44 is in contact with the fixed core 39 or close to a slight clearance.
  • Both the first yoke 42 and the second yoke 44 are made of magnetic stainless steel in order to constitute a magnetic circuit and in consideration of corrosion resistance, and the bobbin 45 and the connector 47 are made of high strength heat resistant resin in consideration of strength characteristics and heat resistance characteristics.
  • the coil 43 is made of copper, and the terminal 46 is made of brass plated with metal.
  • the outer core 38, the first yoke 42, the second yoke 44, the fixed core 39, the anchor part 36 As shown by the arrow part in FIG.
  • a magnetic circuit is formed and a current is applied to the coil, a magnetic attractive force is generated between the fixed core 39 and the anchor portion 36, and a force attracted to each other is generated.
  • the axial portion where the fixed core 39 and the anchor portion 36 generate the magnetic attractive force is made as thin as possible, so that almost all of the magnetic flux passes between the fixed core 39 and the anchor portion 36. The magnetic attractive force can be obtained efficiently.
  • the operation is performed as follows in each step of suction, return, and discharge in the pump operation.
  • the inhalation process will be described.
  • the plunger 2 moves in the direction of the cam 93 (the plunger 2 is lowered) by the rotation of the cam 93 in FIG. That is, the position of the plunger 2 is moved from the top dead center to the bottom dead center.
  • the suction process state for example, referring to FIG. 1, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases.
  • FIG. 4 The positional relationship of each part on the electromagnetic suction valve 300 side in the suction process is shown in FIG. 4 and will be described with reference to FIG. In this state, the electromagnetic coil 43 remains in a non-energized state and no magnetic biasing force is acting. Therefore, the suction valve 30 is pressed against the rod 35 by the urging force of the rod urging spring 40 and remains open.
  • the plunger 2 moves in the upward direction by the rotation of the cam 93 in FIG. That is, the plunger 2 position starts to move from the bottom dead center to the top dead center.
  • the volume of the pressurizing chamber 11 decreases with the compression motion after the suction in the plunger 2, but in this state, the fuel once sucked into the pressurizing chamber 11 is again sucked through the suction valve 30 in the valve open state. Since the pressure is returned to the passage 10d, the pressure in the pressurizing chamber does not increase. This process is called a return process.
  • FIG. 5 shows the positional relationship of the respective parts on the electromagnetic suction valve 300 side when the magnetic attractive force is applied, and this will be described with reference to FIG.
  • a magnetic circuit is formed by the outer core 38, the first yoke 42, the second yoke 44, the fixed core 39, and the anchor portion 36.
  • a force is generated and a force that is attracted to each other is generated.
  • the anchor portion 36 is sucked by the fixed core 39 which is a fixed portion, the rod 35 moves in a direction away from the intake valve 30 by the locking mechanism of the anchor portion 36 and the rod collar portion 35a.
  • the suction valve 30 is closed by the biasing force of the suction valve biasing spring 33 and the fluid force caused by the fuel flowing into the suction passage 10d.
  • the fuel pressure in the pressurizing chamber 11 rises with the upward movement of the plunger 2, and when the pressure exceeds the pressure at the fuel discharge port 12, high-pressure discharge of fuel is performed via the discharge valve mechanism 8, and to the common rail 23. Supplied. This process is called a discharge process.
  • the compression process of the plunger 2 includes a return process and a discharge process.
  • the quantity of the high-pressure fuel discharged can be controlled by controlling the energization timing to the coil 43 of the electromagnetic suction valve 300. If the timing of energizing the electromagnetic coil 43 is advanced, the ratio of the return process in the compression process is small and the ratio of the discharge process is large. That is, the amount of fuel returned to the suction passage 10d is small and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of energization is delayed, the ratio of the return process in the compression process is large and the ratio of the discharge process is small. That is, the amount of fuel returned to the suction passage 10d is large, and the amount of fuel discharged at high pressure is small.
  • the energization timing to the electromagnetic coil 43 is controlled by a command from the engine control unit (control unit) 27.
  • the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine by controlling the timing of energizing the electromagnetic coil 43.
  • FIG. 6 shows the positional relationship of each part on the electromagnetic suction valve 300 side in the discharge process.
  • a diagram of a non-energized state in which the energization of the electromagnetic coil 43 is released in a state where the suction valve is closed after the pressure in the pressurizing chamber has sufficiently increased is shown.
  • a system is in place to effectively generate and act the next magnetic attractive force. This structure is characterized by the establishment of this system.
  • suction valve holder 34 is integrated with the suction valve stopper 32 and the flow path structure of the present invention is formed by the shape thereof will be described as an example.
  • the shape of the suction valve stopper 32 in this embodiment is shown in FIG.
  • the purpose of this embodiment is to secure a sufficient flow path cross-sectional area with a simple structure with a small number of processing steps, and to prevent an increase in pressure loss even when the flow rate of discharged fuel is increased.
  • the detailed structure for this will be described below.
  • the suction valve stopper 32 is provided with a fixed portion 32c on the outermost periphery thereof, and this portion is fitted and held in the inner peripheral cylindrical surface of the housing portion 31c. Further, a disc-like overlapping portion 32d is provided near the center portion, and the suction valve 30 is arranged on the side surface.
  • FIG. 8 shows a cross-sectional view of the suction valve portion A when the suction valve stopper 32 shown in FIG. 7 is assembled.
  • a vertical sectional view is shown in the upper stage, and a 45 degree sectional view is shown in the lower stage.
  • the overlapping portion 32d is disposed between the pressurizing chamber 11 and the suction valve 30 and overlaps the suction valve 30 in the suction valve axial direction, and is formed integrally with the overlapping portion 32d on the outer peripheral side of the outer peripheral side surface of the overlapping portion 32d.
  • a plurality of fixing portions 32c for fixing the overlapping portion 32d for fixing the overlapping portion 32d.
  • the 1st flow path 32e is formed between the outer peripheral side surface of the overlap part 32d, and the housing part 31c arrange
  • the first flow path 32e and the second flow path 32f are formed so as to be continuously connected by the housing portion 31c while being connected to the second flow path 32f closer to the pressurization chamber than the side surface of the pressurization chamber.
  • the plurality of fixing portions 32c are configured to be positioned on the pressure chamber side with respect to the suction valve side surface of the overlapping portion 32d, and the outer peripheral side surface of the overlapping portion 32d and the suction valve side of the plurality of fixing portions 32c are arranged.
  • a first flow path 32e is formed by the surface, and a second flow path 32f that connects the first flow path 32e and the pressurizing chamber 11 is formed between adjacent fixing portions 32d.
  • the thickness of the plurality of fixed portions 32c in the suction valve axial direction is configured to be thinner than the thickness of the overlapping portion 32d in the suction valve axial direction, and the surface on the pressure chamber side of the plurality of fixed portions 32c is You may comprise so that it may be located in the suction valve side rather than the surface by the side of the pressurization chamber of the overlap part 32d.
  • the flow path cross-sectional area of the second flow path 32f is smaller than the first flow path 32e by the fixed portion 32c, and the contribution to the pressure loss is large.
  • the axial distance of the second flow path 32f that greatly contributes to pressure loss can be shortened, which is advantageous from the viewpoint of reducing pressure loss. .
  • the overlapping portion 32d comes into contact with the suction valve 30 so that the suction valve stopper 32 restricts the movement in the valve opening direction, or the overlapping portion 32d.
  • biases the suction valve 30 in the valve closing direction may be formed.
  • the plurality of fixing portions 32d have a press-fit portion 32i that is press-fitted into the inner peripheral surface of the hole 1c formed in the pump body 1 or the inner peripheral surface of the housing portion 31c on the outer peripheral side.
  • the overlapping portion 32d and the plurality of fixing portions 32c are preferably formed of a pressed part or a forged part.
  • the plurality of fixing portions 32c are arranged at a predetermined interval in the circumferential direction on the outer peripheral side of the outermost peripheral end portion of the outer peripheral side surface of the overlapping portion 32d, and the second flow path 32f is overlapped. It forms in the outer peripheral side rather than the outermost peripheral edge part of the outer peripheral side surface of the part 32d. Further, the outermost peripheral end portion of the outer peripheral side surface of the overlapping portion 32 c is configured to be positioned on the outer peripheral side with respect to the outermost peripheral end portion of the outer peripheral surface of the suction valve 30.
  • FIG. 9 shows the shape of the suction valve stopper 32 according to the present embodiment.
  • a feature is that a portion (shown by a dotted line) between a plurality of adjacent fixing portions 32c is excluded.
  • FIG. 10 shows a cross-sectional view of the suction valve portion A when the suction valve stopper 32 shown in FIG. 9 is assembled. A vertical sectional view is shown in the upper stage, and a 45 degree sectional view is shown in the lower stage.
  • the plurality of fixing portions 32c are configured to be positioned on the pressure chamber side with respect to the suction valve side surface of the overlapping portion 32d, and the outer peripheral side surface of the overlapping portion 32d and the suction valve side surface of the plurality of fixing portions 32c
  • the first flow path 32e is formed
  • the second flow path 32f that connects the first flow path 32e and the pressurizing chamber 11 is formed between the adjacent fixing portions 32c.
  • the plurality of fixing portions 32c overlap with the inner peripheral surface of the plurality of fixing portions 32c in the suction valve axial direction, and the space 32g is closer to the pressurizing chamber than the pressurizing chamber side surface of the overlapping portion 32d.
  • the space 32g is formed so as to form a part of the second flow path 32f. By doing so, the second flow path 32f is enlarged in the radial direction more than the projected area seen from the axial direction, and a larger cross-sectional area can be secured with a simple structure, which is advantageous for reducing pressure loss. It
  • the plurality of fixing portions 32c are formed by pressing the plurality of fixing portions 32c toward the axial pressure chamber side with respect to the overlapping portion 32d by a press manufacturing method or a forging manufacturing method. Is configured to be arranged closer to the pressurizing chamber than the surface of the overlapping portion 32d on the pressurizing chamber side.
  • the plurality of fixing portions 32c are configured so that substantially all of the fixing portions 32c are arranged closer to the pressurizing chamber side than the end portion on the pressurizing chamber side of the surface of the overlapping portion 32d on the pressurizing chamber side.
  • the suction valve stopper 32 may be provided with a spring holding portion 32h as in the case of the first embodiment.
  • the overlapping portion 32d has a recess 32j that is recessed toward the pressurizing chamber on the inner peripheral side, and holds the spring 33 that biases the suction valve 30 in the valve closing direction in the recess 32j.
  • fixed part 32c are substantially the same in the suction valve axial direction.
  • the flow passage cross-sectional area is secured larger than that of the first embodiment with a simple structure with fewer processing steps, and even when the flow rate of discharged fuel is increased, the pressure loss is reduced. It is possible to provide an intake valve that prevents the increase and realizes highly accurate flow rate control, and a low-cost fuel supply pump to which the intake valve is applied.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The objective of the present invention is to provide: a suction valve which has a simple structure requiring a small number of man-hours for processing and ensures a sufficient flow path cross-sectional area so as to enable highly accurate flow rate control by preventing increase in pressure loss even when the flow rate of discharge fuel is high; and a low-cost fuel supply pump using the suction valve. The abovementioned objective can be achieved by a fuel supply pump provided with a pump body having a pressurization chamber formed therein, and with a suction valve disposed on the suction side of the pressurization chamber, the fuel supply pump being further provided with: an overlap part which is disposed between the pressurization chamber and the suction valve and which overlaps with the suction valve in the axial direction of the suction valve; and a plurality of fixation parts which, on a side closer to an outer periphery than an outer-periphery-side surface of the overlap part, are integrally formed with the overlap part, and fix the overlap part, wherein a first flow path is formed between the outer-periphery-side surface of the overlap part and a housing part disposed at a side further closer to the outer periphery than the outer-periphery-side surface of the overlap part, the first flow path is connected to a second flow path on a side closer to the pressurization chamber than a pressurization-chamber-side surface of the overlap part, and the first flow path and the second flow path are formed so as to be contiguously connected by the housing part.

Description

燃料供給ポンプFuel supply pump
 本発明は吸入弁を備えた燃料供給ポンプに関する。 The present invention relates to a fuel supply pump provided with a suction valve.
 従来から、吸入弁と加圧室を繋ぐ流路構造に関して各種提案がなされている。その中で、例えば特開2010-169080号公報には、吸入弁のストッパ部材の周方向に複数の貫通穴を設けて、加圧室への流路を形成する構造が開示されている。また特表2013-512399号公報には、吸入弁ストッパの外周に環状の隙間を設けて、加圧室への流路を形成する構造が開示されている。 Conventionally, various proposals have been made regarding the flow path structure connecting the suction valve and the pressurizing chamber. Among them, for example, Japanese Patent Application Laid-Open No. 2010-169080 discloses a structure in which a plurality of through holes are provided in the circumferential direction of the stopper member of the suction valve to form a flow path to the pressurizing chamber. Japanese Patent Application Publication No. 2013-512399 discloses a structure in which an annular clearance is provided on the outer periphery of the suction valve stopper to form a flow path to the pressurizing chamber.
特開2010-169080号公報JP 2010-169080 A 特表2013-512399号公報Special table 2013-512399 gazette
 昨今、内燃機関の高出力・低燃費・低コスト化が精力的に進められている。これを受け、燃料供給ポンプには、高出力・低燃費に対応する吐出燃料の大流量、高圧化や、その制御精度の向上、低コスト化に対応する加工工数の低減などが強く求められている。なかでも吸入弁は、これらの要求性能を満足する上で最も重要な部品の一つであり、その性能向上が重要な課題となっている。そこで、吐出燃料の大流量化に対応し、かつ流量の制御精度を向上させる例として、特許文献1に示したような流路構造が挙げられる。本構造では、吐出燃料を大流量化した場合にも当該流路の前後で圧力損失が増大しないよう、複数の貫通穴を設けることで十分な流路断面積を確保している。 Recently, vigorous efforts have been made to reduce the internal combustion engine's output, fuel efficiency and cost. In response to this, fuel supply pumps are strongly required to have a large flow rate and high pressure of discharged fuel corresponding to high output and low fuel consumption, to improve its control accuracy, and to reduce processing man-hours corresponding to low cost. Yes. Among these, the intake valve is one of the most important parts for satisfying these required performances, and improving the performance is an important issue. Thus, as an example of increasing the flow rate of discharged fuel and improving the flow rate control accuracy, there is a flow channel structure as shown in Patent Document 1. In this structure, a sufficient flow path cross-sectional area is secured by providing a plurality of through-holes so that pressure loss does not increase before and after the flow path even when the discharged fuel is increased in flow rate.
 しかしながら、この場合、貫通穴の個数にともなって加工工数が増加し、コストが増加してしまう可能性がある。さらに、より簡素な構造で流路断面積を確保する例として、特許文献2に示したような流路構造が挙げられる。本構造では、吸入弁ストッパの外周を環状の通路にすることで十分な流路断面積を確保している。一方、吸入弁ストッパは弁体の変位を規制する機能を有する必要があるため、ポンプボディなどに固定されている必要がある。しかしながら、本構造ではその方法が開示されておらず、吸入弁ストッパとしての機能を十分に果たすことができない可能性がある。 However, in this case, the number of processing steps increases with the number of through holes, and the cost may increase. Furthermore, as an example of securing the channel cross-sectional area with a simpler structure, there is a channel structure as shown in Patent Document 2. In this structure, a sufficient cross-sectional area is ensured by making the outer periphery of the suction valve stopper an annular passage. On the other hand, since the suction valve stopper needs to have a function of regulating the displacement of the valve body, it needs to be fixed to the pump body or the like. However, the method is not disclosed in this structure, and there is a possibility that the function as the suction valve stopper cannot be sufficiently achieved.
 そこで本発明では、加工工数の少ない簡素な構造で十分な流路断面積を確保することができる吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供することを目的とする。 Therefore, an object of the present invention is to provide a suction valve that can secure a sufficient flow path cross-sectional area with a simple structure with few processing steps, and a low-cost fuel supply pump to which the suction valve is applied.
 上記課題を解決するために本発明は、請求項1に記載の通り、加圧室11が形成されるポンプボディ1と、前記加圧室11の吸入側に配置された吸入弁30とを備えた燃料供給ポンプにおいて、前記加圧室11と前記吸入弁30との間に配置され、吸入弁軸方向において前記吸入弁30と重なる重なり部32dと、前記重なり部の外周側面よりも外周側において、前記重なり部と一体で形成され、前記重なり部32dを固定する複数の固定部32cとを備え、前記重なり部32dの外周側面と前記重なり部32dの外周側面よりもさらに外周側に配置されたハウジング部31cとの間に第1流路32eが形成され、前記第1流路32eは前記重なり部32dの加圧室側面よりも加圧室側の第2流路32fと繋がるとともに、前記第1流路32e及び前記第2流路32fは前記ハウジング部31cにより連続して繋がるように形成する。 In order to solve the above problems, the present invention includes a pump body 1 in which a pressurizing chamber 11 is formed, and a suction valve 30 disposed on the suction side of the pressurizing chamber 11. In the fuel supply pump, the overlapping portion 32d that is disposed between the pressurizing chamber 11 and the suction valve 30 and overlaps the suction valve 30 in the suction valve axial direction, and on the outer peripheral side of the outer peripheral side surface of the overlapping portion. A plurality of fixing portions 32c that are formed integrally with the overlapping portion and fix the overlapping portion 32d, and are arranged on the outer peripheral side of the outer peripheral side surface of the overlapping portion 32d and the outer peripheral side surface of the overlapping portion 32d. A first flow path 32e is formed between the housing portion 31c, the first flow path 32e is connected to the second flow path 32f on the pressurizing chamber side with respect to the pressurizing chamber side surface of the overlapping portion 32d, and the first flow path 32e is connected to the second flow path 32f. 1 channel 3 e and the second flow path 32f is formed so as to be connected in succession by the housing part 31c.
 本発明によれば、加工工数の少ない簡素な構造で十分な流路断面積を確保することができる吸入弁、及びそれを適用した低コストな燃料供給ポンプを提供することができる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。 According to the present invention, it is possible to provide a suction valve that can secure a sufficient flow path cross-sectional area with a simple structure with few processing steps, and a low-cost fuel supply pump to which the suction valve is applied. Other configurations, operations, and effects of the present invention will be described in detail in the following examples.
実施例1および2を実施する燃料供給ポンプの断面図である。It is sectional drawing of the fuel supply pump which implements Example 1 and 2. FIG. 実施例1および2を実施するシステムの全体構成である。1 is an overall configuration of a system that implements Embodiments 1 and 2. 実施例1および2を実施する燃料供給ポンプ取り付け時の断面図である。It is sectional drawing at the time of fuel supply pump attachment which implements Example 1 and 2. FIG. 実施例1および2を実施する電磁弁の吸入工程における断面図である。It is sectional drawing in the suction | inhalation process of the solenoid valve which implements Example 1 and 2. FIG. 実施例1および2を実施する電磁弁の吐出工程、通電時における断面図である。It is sectional drawing at the time of the discharge process of the solenoid valve which implements Example 1 and 2, and electricity supply. 実施例1および2を実施する電磁弁の吐出工程、無通電時における断面図である。It is sectional drawing at the time of the discharge process of the solenoid valve which implements Example 1 and 2, and no electricity supply. 実施例1を実施する吸入弁ストッパの斜視図である。It is a perspective view of the suction valve stopper which implements Example 1. FIG. 実施例1を実施する吸入弁周辺流路の縦断面図および45度断面図である。It is the longitudinal cross-sectional view and 45 degree | times cross-sectional view of the suction valve periphery flow path which implement Example 1. FIG. 実施例2を実施する吸入弁ストッパの斜視図である。It is a perspective view of the suction valve stopper which implements Example 2. FIG. 実施例2を実施する吸入弁周辺流路の縦断面図および45度断面図である。It is the longitudinal cross-sectional view and 45 degree | times cross-sectional view of the flow path around the suction valve which implements Example 2. FIG.
 以下、図を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図2は、本発明が適用可能な燃料供給ポンプを含む燃料供給システムの全体構成の一例を示す図である。この図を用いて、はじめに、全体システムの構成と動作を説明する。 
 図2において、破線で囲まれた部分1が燃料供給ポンプ本体を示し、この破線の中に示されている機構、部品は燃料供給ポンプ本体1に一体に組み込まれていることを示す。燃料供給ポンプ本体1には、燃料タンク20からフィードポンプ21を経由して燃料が送り込まれ、燃料供給ポンプ本体1からインジェクタ24側に加圧された燃料が送られる。エンジンコントロールユニット(制御部)27は圧力センサ26から燃料の圧力を取り込み、これを最適化すべくフィードポンプ21、燃料供給ポンプ本体1内の電磁コイル43、インジェクタ24を制御する。
FIG. 2 is a diagram showing an example of the overall configuration of a fuel supply system including a fuel supply pump to which the present invention can be applied. First, the configuration and operation of the entire system will be described with reference to this figure.
In FIG. 2, a portion 1 surrounded by a broken line indicates a fuel supply pump main body, and the mechanisms and components shown in the broken line indicate that the fuel supply pump main body 1 is integrally incorporated. Fuel is fed from the fuel tank 20 to the fuel supply pump main body 1 via the feed pump 21, and pressurized fuel is sent from the fuel supply pump main body 1 to the injector 24 side. The engine control unit (control unit) 27 takes in the fuel pressure from the pressure sensor 26 and controls the feed pump 21, the electromagnetic coil 43 in the fuel supply pump main body 1, and the injector 24 in order to optimize this.
 図2において、まず燃料タンク20の燃料は、エンジンコントロールユニット(制御部)27からの制御信号S1に基づきフィードポンプ21によって汲み上げられ、適切なフィード圧力に加圧されて吸入配管28を通して燃料供給ポンプ1の低圧燃料吸入口(吸入ジョイント)10aに送られる。低圧燃料吸入口10aを通過した燃料は、圧力脈動低減機構9、吸入通路10dを介して容量可変機構を構成する電磁吸入弁300の吸入ポート31bに至る。なお圧力脈動低減機構9は、エンジンのカム機構(図示せず)により往復運動を行うプランジャ2に連動して圧力を可変とする、環状低圧燃料室7aに連通することで、電磁吸入弁300の吸入ポート31bに吸入する燃料圧力の脈動を低減している。 In FIG. 2, the fuel in the fuel tank 20 is first pumped up by a feed pump 21 based on a control signal S 1 from an engine control unit (control unit) 27, pressurized to an appropriate feed pressure, and fed through a suction pipe 28. 1 low-pressure fuel inlet (suction joint) 10a. The fuel that has passed through the low-pressure fuel suction port 10a reaches the suction port 31b of the electromagnetic suction valve 300 that constitutes the variable capacity mechanism via the pressure pulsation reducing mechanism 9 and the suction passage 10d. The pressure pulsation reducing mechanism 9 communicates with the annular low-pressure fuel chamber 7a, which makes the pressure variable in conjunction with the plunger 2 that reciprocates by an engine cam mechanism (not shown). The pulsation of the fuel pressure sucked into the suction port 31b is reduced.
 電磁吸入弁300の吸入ポート31bに流入した燃料は、吸入弁30を通過し加圧室11に流入する。なお吸入弁30の弁位置は、エンジンコントロールユニット(制御部)27からの制御信号S2に基づき、燃料供給ポンプ本体1内の電磁コイル43が制御されることで定まる。加圧室11では、エンジンのカム機構(図示せず)により、プランジャ2に往復運動する動力が与えられている。プランジャ2の往復運動により、プランジャ2の下降工程では吸入弁30から燃料を吸入し、プランジャ2の上昇工程では吸入した燃料が加圧され、吐出弁機構8を介して圧力センサ26が装着されているコモンレール23へ燃料が圧送される。この後、エンジンコントロールユニット(制御部)27からの制御信号S3に基づきインジェクタ24がエンジンへ燃料を噴射する。 The fuel that has flowed into the suction port 31 b of the electromagnetic suction valve 300 passes through the suction valve 30 and flows into the pressurizing chamber 11. The valve position of the intake valve 30 is determined by controlling the electromagnetic coil 43 in the fuel supply pump main body 1 based on the control signal S2 from the engine control unit (control unit) 27. In the pressurizing chamber 11, the reciprocating power is given to the plunger 2 by an engine cam mechanism (not shown). Due to the reciprocating motion of the plunger 2, fuel is sucked from the suction valve 30 in the lowering process of the plunger 2, and the sucked fuel is pressurized in the lifting process of the plunger 2, and the pressure sensor 26 is mounted via the discharge valve mechanism 8. Fuel is pumped to the common rail 23. Thereafter, the injector 24 injects fuel into the engine based on a control signal S3 from the engine control unit (control unit) 27.
 なお、加圧室11の出口に設けられた吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8cなどで構成されている。この吐出弁機構8によれば、加圧室11内部圧力が吐出弁8bの下流側の吐出通路12側圧力よりも高く、かつ吐出弁ばね8cが定める抗力に打ち勝つときに吐出弁8bが開放し、加圧室11から吐出通路12側に加圧された燃料が圧送供給される。 The discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 includes a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge that urges the discharge valve 8b toward the discharge valve sheet 8a. It is comprised by the valve spring 8c etc. According to the discharge valve mechanism 8, the discharge valve 8b opens when the internal pressure of the pressurizing chamber 11 is higher than the pressure on the discharge passage 12 downstream of the discharge valve 8b and overcomes the drag determined by the discharge valve spring 8c. The pressurized fuel is pumped from the pressurizing chamber 11 to the discharge passage 12 side.
 また図2の電磁吸入弁300を構成する各部品について、30は吸入弁、35は吸入弁30の位置を制御するロッド、36はアンカー部、33は吸入弁ばね、40はロッド付勢ばね、41はアンカー部付勢ばねである。この機構によれば吸入弁30は、吸入弁ばね33により閉弁方向に付勢され、ロッド付勢ばね40によりロッド35を介して開弁方向に付勢されている。また、アンカー部36はアンカー部付勢ばねにより閉弁方向に付勢されている。吸入弁30の弁位置は、電磁コイル43によりロッド35を駆動することで制御される。 2, 30 is a suction valve, 35 is a rod for controlling the position of the suction valve 30, 36 is an anchor portion, 33 is a suction valve spring, 40 is a rod biasing spring, 41 is an anchor portion biasing spring. According to this mechanism, the intake valve 30 is urged in the valve closing direction by the intake valve spring 33, and is urged in the valve opening direction by the rod urging spring 40 via the rod 35. Further, the anchor portion 36 is biased in the valve closing direction by an anchor portion biasing spring. The valve position of the suction valve 30 is controlled by driving the rod 35 by the electromagnetic coil 43.
 このように燃料供給ポンプ1は、エンジンコントロールユニット(制御部)27が電磁吸入弁300へ与える制御信号S2により燃料供給ポンプ本体1内の電磁コイル43が制御され、吐出弁機構8を介してコモンレール23へ圧送される燃料が所望の供給燃料となるように燃料流量を吐出する。 As described above, the fuel supply pump 1 is configured such that the electromagnetic coil 43 in the fuel supply pump main body 1 is controlled by the control signal S2 given to the electromagnetic intake valve 300 by the engine control unit (control unit) 27, and the common rail is connected via the discharge valve mechanism 8. The fuel flow rate is discharged so that the fuel pumped to 23 becomes a desired supply fuel.
 また燃料供給ポンプ1においては、加圧室11とコモンレール23の間が、リリーフバルブ100により連通されている。このリリーフバルブ100は、吐出弁機構8と並列配置された弁機構である。リリーフバルブ100は、コモンレール23側の圧力がリリーフバルブ100の設定圧力以上に上昇すると、リリーフバルブ100が開弁し燃料供給ポンプ1の加圧室11内に燃料が戻されることでコモンレール23内の異常な高圧状態を防止する。 In the fuel supply pump 1, the pressurizing chamber 11 and the common rail 23 are communicated by a relief valve 100. The relief valve 100 is a valve mechanism arranged in parallel with the discharge valve mechanism 8. In the relief valve 100, when the pressure on the common rail 23 side exceeds the set pressure of the relief valve 100, the relief valve 100 is opened and the fuel is returned to the pressurizing chamber 11 of the fuel supply pump 1, whereby the pressure in the common rail 23 is increased. Prevent abnormal high pressure conditions.
 リリーフバルブ100は、燃料供給ポンプ本体1内の吐出弁8bの下流側の吐出通路12と加圧室11とを連通する高圧流路110を形成し、ここに吐出弁8bをバイパスするように設けられたものである。高圧流路110には燃料の流れを吐出流路から加圧室11への一方向のみに制限するリリーフ弁102が設けられている。リリーフ弁102は、押付力を発生するリリーフばね105によりリリーフ弁シート101に押付けられており、加圧室11内と高圧流路110内との間の圧力差がリリーフばね105で定まる規定の圧力以上になるとリリーフ弁102がリリーフ弁シート101から離れ、開弁するように設定されている。 The relief valve 100 forms a high-pressure channel 110 that communicates the discharge passage 12 on the downstream side of the discharge valve 8b in the fuel supply pump body 1 and the pressurizing chamber 11, and is provided so as to bypass the discharge valve 8b. It is what was done. The high-pressure channel 110 is provided with a relief valve 102 that restricts the flow of fuel in only one direction from the discharge channel to the pressurizing chamber 11. The relief valve 102 is pressed against the relief valve seat 101 by a relief spring 105 that generates a pressing force, and the pressure difference between the pressure chamber 11 and the high-pressure channel 110 is determined by the relief spring 105. If it becomes above, it is set so that the relief valve 102 may leave | separate from the relief valve seat 101, and may open.
 この結果、燃料供給ポンプ1の電磁吸入弁300の故障等によりコモンレール23が異常な高圧となった場合、吐出流路110と加圧室11の差圧がリリーフ弁102の開弁圧力以上になると、リリーフ弁102が開弁し、異常高圧となった燃料は吐出流路110から加圧室11へと戻され、コモンレール23等の高圧部配管が保護される。 As a result, when the common rail 23 has an abnormally high pressure due to a failure of the electromagnetic suction valve 300 of the fuel supply pump 1 or the like, the differential pressure between the discharge passage 110 and the pressurizing chamber 11 becomes equal to or higher than the valve opening pressure of the relief valve 102. Then, the relief valve 102 is opened, and the fuel having an abnormally high pressure is returned from the discharge passage 110 to the pressurizing chamber 11 to protect the high-pressure section piping such as the common rail 23.
 図1は、機構的に一体に構成された燃料供給ポンプ本体1の具体事例を示した図である。この図によれば、図示中央高さ方向にエンジンのカム機構(図示せず)により往復運動
(この場合には上下動)を行うプランジャ2がシリンダ6内に配置され、プランジャ上部のシリンダ6内に加圧室11が形成されている。
FIG. 1 is a diagram showing a specific example of a fuel supply pump body 1 that is mechanically integrated. According to this figure, a plunger 2 that reciprocates (in this case, up and down) by an engine cam mechanism (not shown) in the central height direction shown in the figure is arranged in the cylinder 6, A pressurizing chamber 11 is formed.
 またこの図によれば、図示中央左側に電磁吸入弁300側の機構を配置し、図示中央右側に吐出弁機構8を配置している。また図示上部には、燃料吸入側の機構として低圧燃料吸入口10a、圧力脈動低減機構9、吸入通路10dなどを配置している。さらに、図1中央下部にはプランジャ内燃機関側機構150を記述している。プランジャ内燃機関側機構150は、図3に示すように内燃機関本体に埋め込まれて固定される部分であることから、ここでは取り付け根部と称することにする。なお、図1の表示断面では、リリーフバルブ100機構を図示していない。リリーフバルブ100機構は、別角度の表示断面内には表示可能であるが、本発明と直接関係がないので説明、表示を割愛する。 Further, according to this figure, the mechanism on the electromagnetic suction valve 300 side is disposed on the left side of the center of the figure, and the discharge valve mechanism 8 is disposed on the right side of the center of the figure. In the upper part of the figure, a low-pressure fuel suction port 10a, a pressure pulsation reduction mechanism 9, a suction passage 10d, and the like are disposed as a fuel suction side mechanism. Further, a plunger internal combustion engine side mechanism 150 is described in the lower center portion of FIG. The plunger internal combustion engine side mechanism 150 is a portion that is embedded and fixed in the internal combustion engine body as shown in FIG. Note that the relief valve 100 mechanism is not shown in the display cross section of FIG. The relief valve 100 mechanism can be displayed in a display section at a different angle, but since it is not directly related to the present invention, explanation and display are omitted.
 図2各部の詳細説明は後述することにして、まず取り付け根部の取り付けについて図3で説明する。図3は、取り付け根部(プランジャ内燃機関側機構)150が内燃機関本体に埋め込まれて、固定された状態を示したものである。但し図3では取り付け根部150を中心として記述しているので、他の部分の記述を割愛している。図3において、90は内燃機関のシリンダヘッドの肉厚部分を示している。内燃機関のシリンダヘッド90には、予め取り付け根部取り付け用孔95が形成されている。取り付け根部取り付け用孔95は、取り付け根部150の形状に合わせて2段の径で構成されており、この根部取り付け用孔95に、取り付け根部150が嵌装配置される。 2 will be described later in detail. First, attachment of the attachment root will be described with reference to FIG. FIG. 3 shows a state in which the mounting root (plunger internal combustion engine side mechanism) 150 is embedded and fixed in the internal combustion engine body. However, in FIG. 3, since the attachment root 150 is described as a center, description of other parts is omitted. In FIG. 3, reference numeral 90 denotes a thick portion of the cylinder head of the internal combustion engine. An attachment root attaching hole 95 is formed in advance in the cylinder head 90 of the internal combustion engine. The attachment root portion mounting hole 95 is configured with a two-stage diameter according to the shape of the attachment root portion 150, and the attachment root portion 150 is fitted and disposed in the root portion attachment hole 95.
 そのうえで、取り付け根部150が内燃機関のシリンダヘッド90に気密に固定される。図3の気密固定配置例では、燃料供給ポンプはポンプ本体1に設けられたフランジ1eを用い内燃機関のシリンダヘッド90の平面に密着し、複数のボルト91で固定される。
そのうえで取付けフランジ1eは、溶接部1fにてポンプ本体1に全周を溶接結合されて環状固定部を形成している。本実施例では、溶接部1fの溶接のためにレーザー溶接を用いている。またシリンダヘッド90とポンプ本体1間のシールのためにOリング61がポンプ本体1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。
In addition, the mounting root 150 is airtightly fixed to the cylinder head 90 of the internal combustion engine. In the example of the airtight fixing arrangement of FIG. 3, the fuel supply pump is in close contact with the plane of the cylinder head 90 of the internal combustion engine using a flange 1 e provided in the pump body 1 and fixed with a plurality of bolts 91.
In addition, the mounting flange 1e is welded to the pump body 1 at the welded portion 1f to form an annular fixed portion. In this embodiment, laser welding is used for welding the welded portion 1f. Further, an O-ring 61 is fitted into the pump body 1 for sealing between the cylinder head 90 and the pump body 1 to prevent engine oil from leaking to the outside.
 このように気密固定配置されたプランジャ根部150は、プランジャ2の下端2bにおいて、内燃機関のカムシャフトに取り付けられたカム93の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね4にてタペット92に圧着されている。これによりカム93の回転運動に伴い、プランジャ2を上下に往復運動させている。 The plunger root 150 arranged in an airtight manner in this manner is provided with a tappet 92 that converts the rotational movement of the cam 93 attached to the camshaft of the internal combustion engine into a vertical movement and transmits it to the plunger 2 at the lower end 2b of the plunger 2. It has been. The plunger 2 is pressure-bonded to the tappet 92 by the spring 4 through the retainer 15. Thereby, the plunger 2 is reciprocated up and down with the rotational movement of the cam 93.
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されており、環状低圧燃料室7aの燃料をプランジャ2が摺動した場合にでもシール可能な構造とし、外部に燃料が漏れることを防止する。同時に内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプ本体1の内部に流入するのを防止する。 A plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a state in which the plunger seal 13 slidably contacts the outer periphery of the plunger 2 in the lower part of the cylinder 6 in the figure. The fuel can be sealed even when the plunger 2 slides to prevent the fuel from leaking to the outside. At the same time, lubricating oil (including engine oil) for lubricating the sliding portion in the internal combustion engine is prevented from flowing into the pump body 1.
 図3のように気密固定配置されたプランジャ根部150は、その内部のプランジャ2が内燃機関の回転運動に伴い、シリンダ6内で往復運動をすることになる。この往復運動に伴う各部の働きについて、図1に戻り説明する。図1において、燃料供給ポンプ本体1にはプランジャ2の往復運動をガイドし、かつ内部に加圧室11を形成するよう端部(図1では上側)が有底筒型状に形成されたシリンダ6が取り付けられている。さらに加圧室11は燃料を供給するための電磁吸入弁300と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8に連通するよう、外周側に環状の溝6aと、環状の溝6aと加圧室とを連通する複数個の連通穴6bが設けられている。 As shown in FIG. 3, the plunger root 150 arranged in an airtight manner reciprocates within the cylinder 6 as the plunger 2 inside the plunger 2 rotates. Returning to FIG. 1, description will be given of the operation of each part accompanying this reciprocating motion. In FIG. 1, a cylinder in which a fuel supply pump main body 1 guides the reciprocating motion of a plunger 2 and has an end (upper side in FIG. 1) formed in a bottomed cylindrical shape so as to form a pressurizing chamber 11 therein. 6 is attached. Further, the pressurizing chamber 11 is connected to an electromagnetic suction valve 300 for supplying fuel and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to the discharge passage. A plurality of communication holes 6b are provided to communicate the groove 6a with the pressurizing chamber.
 シリンダ6はその外径において、燃料供給ポンプ本体1と圧入固定され、燃料供給ポンプ本体1との隙間から加圧した燃料が低圧側に漏れないよう圧入部円筒面でシールしている。また、シリンダ6の加圧室側外径に小径部6cを有する。加圧室11の燃料が加圧されることによりシリンダ6が低圧燃料室10c側に力が作用するが、ポンプ本体1に小径部1aを設けることで、シリンダ6が低圧燃料室10c側に抜けることを防止している。
お互いの面を軸方向に平面に接触させることで、燃料供給ポンプ本体1とシリンダ6との前記接触円筒面のシールに加え、二重のシールの機能をも果たす。
The cylinder 6 is press-fitted and fixed to the fuel supply pump main body 1 at the outer diameter, and is sealed with a press-fitted portion cylindrical surface so that fuel pressurized from the gap with the fuel supply pump main body 1 does not leak to the low pressure side. In addition, the cylinder 6 has a small-diameter portion 6 c at the outer diameter on the pressurizing chamber side. When the fuel in the pressurizing chamber 11 is pressurized, the cylinder 6 exerts a force on the low pressure fuel chamber 10c side. However, by providing the pump body 1 with the small diameter portion 1a, the cylinder 6 is pulled out on the low pressure fuel chamber 10c side. To prevent that.
By bringing the surfaces into contact with a plane in the axial direction, in addition to the sealing of the contact cylindrical surface of the fuel supply pump main body 1 and the cylinder 6, it also functions as a double seal.
 燃料供給ポンプ本体1の頭部にはダンパカバー14が固定されている。ダンパカバー14には吸入ジョイント51が設けられており、低圧燃料吸入口10aを形成している。低圧燃料吸入口10aを通過した燃料は、吸入ジョイント51の内側に固定されたフィルタ52を通過し、圧力脈動低減機構9、低圧燃料流路10dを介して電磁吸入弁300の吸入ポート31bに至る。 A damper cover 14 is fixed to the head of the fuel supply pump main body 1. The damper cover 14 is provided with a suction joint 51 and forms a low-pressure fuel suction port 10a. The fuel that has passed through the low-pressure fuel suction port 10a passes through the filter 52 fixed inside the suction joint 51, and reaches the suction port 31b of the electromagnetic suction valve 300 via the pressure pulsation reducing mechanism 9 and the low-pressure fuel flow path 10d. .
 吸入ジョイント51内の吸入フィルタ52は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって燃料供給ポンプ内に吸収することを防ぐ役目がある。 The suction filter 52 in the suction joint 51 serves to prevent foreign matter existing between the fuel tank 20 and the low-pressure fuel inlet 10a from being absorbed into the fuel supply pump by the flow of fuel.
 プランジャ2は、大径部2aと小径部2bを有することにより、プランジャの往復運動によって環状低圧燃料室7aの体積は増減を行う。体積の増減分は、燃料通路1d(図3)により低圧燃料室10と連通していることにより、プランジャ2の下降時は、環状低圧燃料室7aから低圧燃料室10へ、上昇時は、低圧燃料室10から環状低圧燃料室7aへと燃料の流れが発生する。このことにより、ポンプの吸入工程もしくは、戻し工程におけるポンプ内外への燃料流量を低減することができ、脈動を低減する機能を有している。 The plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, so that the volume of the annular low-pressure fuel chamber 7a increases and decreases by the reciprocating motion of the plunger. The volume increase / decrease is communicated with the low-pressure fuel chamber 10 by the fuel passage 1d (FIG. 3), so that when the plunger 2 is lowered, the pressure is reduced from the annular low-pressure fuel chamber 7a to the low-pressure fuel chamber 10; A fuel flow is generated from the fuel chamber 10 to the annular low-pressure fuel chamber 7a. As a result, the flow rate of fuel into and out of the pump in the pump suction process or return process can be reduced, and the function of reducing pulsation is provided.
 低圧燃料室10には燃料供給ポンプ内で発生した圧力脈動が燃料配管28(図2)へ波及するのを低減させる圧力脈動低減機構9が設置されている。一度加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁体30を通して吸入通路10d(吸入ポート31b)へと戻される場合、吸入通路10d(吸入ポート31b)へ戻された燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けた圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。9bは金属ダンパを燃料供給ポンプ本体1の内周部に固定するための取付け金具であり、燃料通路上に設置されるため、複数の穴を設け前記取付金具9bの表裏に流体が自由に行き来できるようにしている。 The low pressure fuel chamber 10 is provided with a pressure pulsation reducing mechanism 9 for reducing the pressure pulsation generated in the fuel supply pump from spreading to the fuel pipe 28 (FIG. 2). When the fuel that has once flowed into the pressurizing chamber 11 is returned to the suction passage 10d (suction port 31b) through the suction valve body 30 that is opened again for capacity control, it is returned to the suction passage 10d (suction port 31b). Pressure pulsation occurs in the low pressure fuel chamber 10 due to the fuel. However, the pressure pulsation reducing mechanism 9 provided in the low-pressure fuel chamber 10 is formed of a metal damper in which two corrugated disk-shaped metal plates are bonded together on the outer periphery and an inert gas such as argon is injected inside. The pressure pulsation is absorbed and reduced as the metal damper expands and contracts. Reference numeral 9b denotes a mounting bracket for fixing the metal damper to the inner peripheral portion of the fuel supply pump main body 1, and since it is installed on the fuel passage, a plurality of holes are provided to allow fluid to freely flow between the front and back of the mounting bracket 9b. I can do it.
 加圧室11の出口に設けられた吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bと吐出弁シート8aとを収容する吐出弁ホルダ8dから構成され、吐出弁シート8aと吐出弁ホルダ8dとは当接部8eで溶接により接合されて一体の吐出弁機構8を形成している。なお、吐出弁ホルダ8dの内部には、吐出弁8bのストロークを規制するストッパを形成する段付部8fが設けられている。 The discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 includes a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge valve spring that urges the discharge valve 8b toward the discharge valve sheet 8a. 8c, a discharge valve holder 8d that accommodates the discharge valve 8b and the discharge valve seat 8a. The discharge valve sheet 8a and the discharge valve holder 8d are joined by welding at a contact portion 8e to form an integral discharge valve mechanism 8. Forming. A stepped portion 8f that forms a stopper that restricts the stroke of the discharge valve 8b is provided inside the discharge valve holder 8d.
 図1において、加圧室11と燃料吐出口12に燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、燃料吐出口12の燃料圧力よりも大きくなった時に始めて、吐出弁8bは吐出弁ばね8cに逆らって開弁し、加圧室11内の燃料は燃料吐出口12を経てコモンレール23へと高圧吐出される。吐出弁8bは開弁した際、吐出弁ストッパ8fと接触し、ストロークが制限される。したがって、吐出弁8bのストロークは吐出弁ストッパ8dによって適切に決定される。これによりストロークが大きすぎて、吐出弁8bの閉じ遅れにより、燃料吐出口12へ高圧吐出された燃料が、再び加圧室11内に逆流してしまうのを防止でき、燃料供給ポンプの効率低下が抑制できる。また、吐出弁8bが開弁および閉弁運動を繰り返す時に、吐出弁8bがストローク方向にのみ運動するように、吐出弁ホルダ8dの内周面にてガイドしている。以上のようにすることで、吐出弁機構8は燃料の流通方向を制限する逆止弁となる。 In FIG. 1, when there is no fuel differential pressure in the pressurizing chamber 11 and the fuel discharge port 12, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the fuel discharge port 12, the discharge valve 8 b opens against the discharge valve spring 8 c, and the fuel in the pressurization chamber 11 is discharged from the fuel discharge port. 12 is discharged to the common rail 23 through a high pressure. When the discharge valve 8b is opened, it comes into contact with the discharge valve stopper 8f, and the stroke is limited. Accordingly, the stroke of the discharge valve 8b is appropriately determined by the discharge valve stopper 8d. As a result, the stroke is too large, and the fuel discharged at high pressure to the fuel discharge port 12 due to the delay in closing the discharge valve 8b can be prevented from flowing back into the pressurizing chamber 11 again, and the efficiency of the fuel supply pump is reduced. Can be suppressed. In addition, when the discharge valve 8b repeats opening and closing movements, the discharge valve 8b is guided on the inner peripheral surface of the discharge valve holder 8d so as to move only in the stroke direction. By doing so, the discharge valve mechanism 8 becomes a check valve that restricts the flow direction of fuel.
 次に本発明の主要部である電磁吸入弁300側の構造について、図4、図5、図6を用いて説明する。なお図4はポンプ作動における吸入、戻し、吐出の各工程のうち、吸入工程における状態、図5、図6は吐出工程における状態を表している。まず図4により、電磁吸入弁300側の構造について説明する。電磁吸入弁300側の構造は、吸入弁30を主体に構成された吸入弁部Aと、ロッド35とアンカー部36を主体に構成されたソレノイド機構部Bと、電磁コイル43を主体に構成されたコイル部Cに大別して説明する
 まず吸入弁部Aは、吸入弁30、吸入弁シート31、吸入弁ストッパ32、吸入弁付勢ばね33、吸入弁ホルダ34からなる。このうち吸入弁シート31は円筒型で、内周側軸方向にシート部31a、円筒の軸を中心に放射状に複数の吸入通路部31bを有する。
Next, the structure on the electromagnetic suction valve 300 side, which is the main part of the present invention, will be described with reference to FIGS. 4 shows the state in the suction process among the steps of suction, return, and discharge in the pump operation, and FIGS. 5 and 6 show the state in the discharge process. First, the structure on the electromagnetic suction valve 300 side will be described with reference to FIG. The structure on the electromagnetic suction valve 300 side is mainly composed of a suction valve part A mainly composed of the suction valve 30, a solenoid mechanism part B mainly composed of the rod 35 and the anchor part 36, and an electromagnetic coil 43. First, the intake valve portion A includes an intake valve 30, an intake valve seat 31, an intake valve stopper 32, an intake valve biasing spring 33, and an intake valve holder 34. Among these, the suction valve seat 31 is cylindrical, and has a seat portion 31a in the axial direction on the inner peripheral side and a plurality of suction passage portions 31b radially about the cylindrical axis.
 吸入弁ホルダ34は、放射状に2方向以上の爪を有し、爪外周側が吸入弁シート31の内周側で同軸に嵌合保持される。さらに円筒型で一端部につば形状を持つ吸入弁ストッパ32が吸入弁ホルダ34の内周円筒面に嵌合保持される。 The intake valve holder 34 has claws in two or more directions radially, and the outer peripheral side of the claws is fitted and held coaxially on the inner peripheral side of the intake valve seat 31. Further, a suction valve stopper 32 having a cylindrical shape and a collar shape at one end is fitted and held on the inner peripheral cylindrical surface of the suction valve holder 34.
 吸入弁付勢ばね33は、吸入弁ストッパ32の内周側に、一部前記ばねの一端を同軸に安定させるための細径部に配置され、吸入弁30が、吸入弁シート部31aと吸入弁ストッパ32の間に、弁ガイド部30bに吸入弁付勢ばね33が嵌合する形で構成される。吸入弁付勢ばね33は圧縮コイルばねであり、吸入弁30が吸入弁シート部31aに押し付けられる方向に付勢力が働く様に設置される。圧縮コイルばねに限らず、付勢力を得られるものであれば形態を問わないし、吸入弁と一体になった付勢力を持つ板ばねの様なものでも良い。 The suction valve urging spring 33 is disposed on the inner peripheral side of the suction valve stopper 32 in a small diameter part for stabilizing one end of the spring coaxially, and the suction valve 30 is inhaled with the suction valve seat part 31a. Between the valve stoppers 32, a suction valve biasing spring 33 is fitted into the valve guide portion 30b. The suction valve urging spring 33 is a compression coil spring and is installed so that the urging force acts in a direction in which the suction valve 30 is pressed against the suction valve seat portion 31a. It is not limited to the compression coil spring, and any form may be used as long as it can obtain an urging force, and a leaf spring having an urging force integrated with the suction valve may be used.
 この様に吸入弁部Aを構成することで、ポンプの吸入工程においては、吸入通路31bを通過し内部に入った燃料が、吸入弁30とシート部31aの間を通過し、吸入弁30の外周側及び吸入弁ホルダ34の爪の間を通り、燃料供給ポンプ本体1及びシリンダの通路を通過し、加圧室へ燃料を流入させる。また、ポンプの吐出工程においては、吸入弁30が吸入弁シート部31aと接触シールすることで、燃料の入口側への逆流を防ぐ逆止弁の機能を果たす。 By configuring the suction valve portion A in this way, in the pump suction process, the fuel that has passed through the suction passage 31b and entered the interior passes between the suction valve 30 and the seat portion 31a, and the suction valve 30 The fuel passes through between the outer peripheral side and the claw of the suction valve holder 34, passes through the passage of the fuel supply pump main body 1 and the cylinder, and flows the fuel into the pressurizing chamber. Further, in the pump discharge process, the intake valve 30 performs contact sealing with the intake valve seat portion 31a, thereby fulfilling the function of a check valve that prevents backflow of fuel to the inlet side.
 なお、吸入弁30の動きを滑らかにするために、吸入弁ストッパの内周側の液圧を吸入弁30の動きに応じて逃がすために、通路32aが設けられている。 In order to smooth the movement of the suction valve 30, a passage 32 a is provided in order to release the hydraulic pressure on the inner peripheral side of the suction valve stopper according to the movement of the suction valve 30.
 吸入弁30の軸方向の移動量30eは、吸入弁ストッパ32によって有限に規制されている。移動量が大きすぎると吸入弁30の閉じる時の応答遅れにより前記逆流量が多くなりポンプとしての性能が低下するためである。この移動量の規制は、吸入弁シート31a、吸入弁30、吸入弁ストッパ32の軸方向の形状寸法及び、固定位置で規定することが可能である。 The axial movement amount 30e of the suction valve 30 is limited by the suction valve stopper 32. This is because if the amount of movement is too large, the reverse flow rate increases due to a response delay when the intake valve 30 is closed, and the performance as a pump decreases. The restriction of the movement amount can be defined by the axial shape and size of the suction valve seat 31a, the suction valve 30, and the suction valve stopper 32, and the fixed position.
 吸入弁ストッパ32には、突起32bが設けられ、吸入弁32が開弁している状態において、吸入弁ストッパ32との接触面積を小さくしている。開弁状態から閉弁状態へ遷移時、吸入弁32が吸入弁ストッパ32から離れやすい様、すなわち閉弁応答性を向上させるためである。前記環状突起が無い場合、すなわち前記接触面積が大きい場合、吸入弁30と吸入弁ストッパ32の間に大きなスクイーズ力が働き、吸入弁30が吸入弁32から離れにくくなる。 The suction valve stopper 32 is provided with a protrusion 32b so that the contact area with the suction valve stopper 32 is reduced when the suction valve 32 is open. This is because the intake valve 32 is likely to be separated from the intake valve stopper 32 during the transition from the open state to the closed state, that is, the valve closing response is improved. When there is no annular protrusion, that is, when the contact area is large, a large squeeze force acts between the intake valve 30 and the intake valve stopper 32, and the intake valve 30 is difficult to be separated from the intake valve 32.
 吸入弁30、吸入弁シート31a、吸入弁ストッパ32は、お互い作動時に衝突を繰返すため、高強度、高硬度で耐食性にも優れるマルテンサイト系ステンレスに熱処理を施した材料を使用する。吸入弁スプリング33及び吸入弁ホルダ34には耐食性を考慮しオーステナイト系ステンレス材を用いる。 The suction valve 30, the suction valve seat 31a, and the suction valve stopper 32 are made of a heat-treated martensitic stainless steel that has high strength, high hardness, and excellent corrosion resistance in order to repeatedly collide with each other. The suction valve spring 33 and the suction valve holder 34 are made of austenitic stainless steel in consideration of corrosion resistance.
 次にソレノイド機構部Bについて述べる。ソレノイド機構部Bは、可動部であるロッド35、アンカー部36、固定部であるロッドガイド37、アウターコア38、固定コア39、そして、ロッド付勢ばね40、アンカー部付勢ばね41からなる。 Next, the solenoid mechanism B will be described. The solenoid mechanism part B includes a rod 35 that is a movable part, an anchor part 36, a rod guide 37 that is a fixed part, an outer core 38, a fixed core 39, a rod biasing spring 40, and an anchor part biasing spring 41.
 可動部であるロッド35とアンカー部36は、別部材に構成している。ロッド35はロッドガイド37の内周側で軸方向に摺動自在に保持され、アンカー部36の内周側は、ロッド35の外周側で摺動自在に保持される。すなわち、ロッド35及びアンカー部36共に幾何学的に規制される範囲で軸方向に摺動可能に構成されている。 The rod 35 and the anchor part 36 which are movable parts are configured as separate members. The rod 35 is slidably held in the axial direction on the inner peripheral side of the rod guide 37, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35. That is, both the rod 35 and the anchor portion 36 are configured to be slidable in the axial direction as long as they are geometrically restricted.
 アンカー部36は燃料中で軸方向に自在に滑らかに動くために、部品軸方向に貫通する貫通穴36aを1つ以上有し、アンカー部前後の圧力差による動きの制限を極力排除している。 The anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely and smoothly in the axial direction in the fuel, and eliminates the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
 ロッドガイド37は、径方向には、燃料供給ポンプ本体1の吸入弁が挿入される穴の内周側に挿入され、軸方向には、吸入弁シートの一端部に突き当てられ、燃料供給ポンプ本体1に溶接固定されるアウターコア38と燃料供給ポンプ本体1との間に挟み込まれる形で配置される構成としている。ロッドガイド37にもアンカー部36と同様に軸方向に貫通する貫通穴37aが設けられ、アンカー部が自在に滑らかに動くことができる様、アンカー部側の燃料室の圧力がアンカー部の動きを妨げない様に構成している。 The rod guide 37 is inserted in the radial direction on the inner peripheral side of the hole into which the intake valve of the fuel supply pump main body 1 is inserted, and in the axial direction, is abutted against one end portion of the intake valve seat. The outer core 38 that is fixed to the main body 1 by welding and the fuel supply pump main body 1 are arranged in a sandwiched manner. The rod guide 37 is also provided with a through hole 37a penetrating in the axial direction in the same manner as the anchor portion 36, and the pressure of the fuel chamber on the anchor portion side controls the movement of the anchor portion so that the anchor portion can move freely and smoothly. It is configured not to interfere.
 アウターコア38は、燃料供給ポンプ本体と溶接される部位との反対側の形状を薄肉円筒形状としており、その内周側に固定コア39が挿入される形で溶接固定される。固定コア39の内周側にはロッド付勢ばね40が、細径部をガイドに配置され、ロッド35が吸入弁30と接触し、前記吸入弁が吸入弁シート部31aから引き離す方向、すなわち吸入弁の開弁方向に付勢力を与える。 The outer core 38 has a thin cylindrical shape on the side opposite to the portion to be welded with the fuel supply pump main body, and is fixed by welding in such a manner that the fixed core 39 is inserted on the inner peripheral side thereof. A rod urging spring 40 is arranged on the inner peripheral side of the fixed core 39 with the narrow diameter portion as a guide, the rod 35 comes into contact with the suction valve 30, and the suction valve is pulled away from the suction valve seat portion 31a, that is, suction. Energizing force is applied in the valve opening direction.
 アンカー部付勢ばね41は、ロッドガイド37の中心側に設けた円筒径の中央軸受部37bに方端を挿入し同軸を保ちながら、アンカー部36にロッドつば部35a方向に付勢力を与える配置としている。アンカー部36の移動量36eは吸入弁30の移動量30eよりも大きく設定される。確実に吸入弁30が閉弁するためである。 The anchor portion biasing spring 41 is disposed so as to apply a biasing force to the anchor portion 36 in the direction of the rod collar portion 35a while inserting one end into a cylindrical central bearing portion 37b provided on the center side of the rod guide 37 and maintaining the same axis. It is said. The movement amount 36e of the anchor portion 36 is set to be larger than the movement amount 30e of the intake valve 30. This is because the intake valve 30 is surely closed.
 ロッド35とロッドガイド37にはお互い摺動するため、またロッド35は吸入弁30と衝突を繰返すため、硬度と耐食性を考慮しマルテンサイト系ステンレスに熱処理を施したものを使用する。アンカー部36と固定コア39は磁気回路を形成するため磁性ステンレスを用い、ロッド付勢ばね40、アンカー部付勢ばね41には耐食性を考慮しオーステナイト系ステンレスを用いる。 Since the rod 35 and the rod guide 37 slide with each other and the rod 35 repeatedly collides with the intake valve 30, a heat-treated martensitic stainless steel is used in consideration of hardness and corrosion resistance. The anchor portion 36 and the fixed core 39 use magnetic stainless steel to form a magnetic circuit, and the rod urging spring 40 and the anchor portion urging spring 41 use austenitic stainless steel in consideration of corrosion resistance.
 上記構成によれば、吸入弁部Aとソレノイド機構部Bには、3つのばねが有機的に配置されて構成されている。吸入弁部Aに構成される吸入弁付勢ばね33と、ソレノイド機構部Bに構成されるロッド付勢ばね40、アンカー部付勢ばね41がこれに相当する。本実施例ではいずれのばねもコイルばねを使用しているが付勢力を得られる形態であればいかなるものでも構成可能である。 According to the above configuration, the intake valve portion A and the solenoid mechanism portion B are configured by organically arranging three springs. The suction valve biasing spring 33 configured in the suction valve unit A, the rod biasing spring 40 and the anchor unit biasing spring 41 configured in the solenoid mechanism unit B correspond to this. In this embodiment, any spring uses a coil spring, but any spring can be used as long as it can obtain an urging force.
 この3つのばね力の関係は、下記の式で構成する。
(数1)ロッド付勢ばね40力>アンカー部付勢ばね41力+吸入弁付勢ばね33力+流体により吸入弁が閉じようとする力    ‥‥(1)
 (1)式の関係により、無通電時では、各ばね力により、ロッド35は吸入弁30を吸入弁シート部31aから引き離す方向、すなわち弁が開弁する方向に力f1として作用する。(1)式より、弁が開弁する方向の力f1は下記の(2)式で表現される。
(数2)
 f1=ロッド付勢ばね力-(アンカー部付勢ばね力+吸入弁付勢ばね力+流体により吸入弁が閉じようとする力) ‥‥(2)
The relationship between these three spring forces is constituted by the following equation.
(Equation 1) Rod biasing spring 40 force> Anchor portion biasing spring 41 force + suction valve biasing spring 33 force + force for closing the suction valve by fluid (1)
Due to the relationship of the expression (1), the rod 35 acts as a force f1 in the direction in which the intake valve 30 is pulled away from the intake valve seat portion 31a, that is, in the direction in which the valve opens, due to each spring force when no current is applied. From the equation (1), the force f1 in the direction in which the valve opens is expressed by the following equation (2).
(Equation 2)
f1 = Rod biasing spring force− (anchor portion biasing spring force + suction valve biasing spring force + force for closing the suction valve by fluid) (2)
 最後に、コイル部Cの構成について述べる。コイル部Cは、第1ヨーク42、電磁コイル43、第2ヨーク44、ボビン45、端子46、コネクタ47から成る。ボビン45に銅線が複数回巻かれたコイル43が、第1ヨーク42と第2ヨーク44により取り囲まれる形で配置され、樹脂部材であるコネクタと一体にモールドされ固定される。二つの端子46のそれぞれの方端はコイルの銅線の両端にそれぞれ通電可能に接続される。端子46も同様にコネクタと一体にモールドされ残りの方端がエンジン制御ユニット側と接続可能な構成としている。 Finally, the configuration of the coil part C will be described. The coil portion C includes a first yoke 42, an electromagnetic coil 43, a second yoke 44, a bobbin 45, a terminal 46, and a connector 47. A coil 43 in which a copper wire is wound around the bobbin 45 is disposed so as to be surrounded by the first yoke 42 and the second yoke 44, and is molded and fixed integrally with a connector which is a resin member. The respective ends of the two terminals 46 are respectively connected to both ends of the copper wire of the coil so as to be energized. Similarly, the terminal 46 is molded integrally with the connector, and the remaining end can be connected to the engine control unit side.
 コイル部Cは第1ヨーク42の中心部の穴部が、アウターコア38に圧入され固定される。その時、第2ヨーク44の内径側は、固定コア39と接触もしくは僅かなクリアランス近接する構成となる。 The coil part C is fixed by press-fitting the hole at the center of the first yoke 42 into the outer core 38. At that time, the inner diameter side of the second yoke 44 is in contact with the fixed core 39 or close to a slight clearance.
 第1ヨーク42、第2ヨーク44共に、磁気回路を構成するために、また耐食性を考慮し磁性ステンレス材料とし、ボビン45、コネクタ47は強度特性、耐熱特性を考慮し、高強度耐熱樹脂を用いる。コイルに43は銅、端子46には真鍮に金属めっきを施した物を使用する。 Both the first yoke 42 and the second yoke 44 are made of magnetic stainless steel in order to constitute a magnetic circuit and in consideration of corrosion resistance, and the bobbin 45 and the connector 47 are made of high strength heat resistant resin in consideration of strength characteristics and heat resistance characteristics. . The coil 43 is made of copper, and the terminal 46 is made of brass plated with metal.
 上述の様にソレノイド機構部Bとコイル部Cとを構成することで、図4の矢印部に示す様に、アウターコア38、第1ヨーク42、第2ヨーク44、固定コア39、アンカー部36で磁気回路を形成し、コイルに電流を与えると、固定コア39、アンカー部36間に磁気吸引力が発生し、互いに引き寄せられる力が発生する。アウターコア38において、固定コア39とアンカー部36とがお互い磁気吸引力を発生させる軸方向部位を極力薄肉にすることで、磁束のほぼ全てが固定コア39とアンカー部36の間を通過するため、効率良く磁気吸引力を得ることができる。 By configuring the solenoid mechanism part B and the coil part C as described above, the outer core 38, the first yoke 42, the second yoke 44, the fixed core 39, the anchor part 36, as shown by the arrow part in FIG. When a magnetic circuit is formed and a current is applied to the coil, a magnetic attractive force is generated between the fixed core 39 and the anchor portion 36, and a force attracted to each other is generated. In the outer core 38, the axial portion where the fixed core 39 and the anchor portion 36 generate the magnetic attractive force is made as thin as possible, so that almost all of the magnetic flux passes between the fixed core 39 and the anchor portion 36. The magnetic attractive force can be obtained efficiently.
 上記磁気吸引力が前記(2)式の弁が開弁する方向の力f1を上回った時に、可動部であるアンカー部36がロッド35と共に固定コア39に引き寄せられる運動、またコア39とアンカー部36が接触し、接触を継続することを可能とする。 When the magnetic attraction force exceeds the force f1 in the direction in which the valve of formula (2) opens, the movement of the anchor portion 36, which is a movable portion, together with the rod 35 to the fixed core 39, and the core 39 and the anchor portion 36 makes contact and allows contact to continue.
 本発明に係る燃料供給ポンプの上記構成によれば、ポンプ作動における吸入、戻し、吐出の各工程において、以下のように作動する。 According to the above configuration of the fuel supply pump according to the present invention, the operation is performed as follows in each step of suction, return, and discharge in the pump operation.
 まず吸入工程について説明する。吸入工程では、図3のカム93の回転により、プランジャ2がカム93方向に移動(プランジャ2が下降)する。つまりプランジャ2位置が上死点から下死点に移動している。吸入工程状態にある時は、例えば図1を参照しながら説明すると、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この工程で加圧室11内の燃料圧力が吸入通路10dの圧力よりも低くなると、燃料は、開口状態にある吸入弁30を通り、燃料供給ポンプ本体1に設けられた連通穴1bと、シリンダ外周通路6a、6bを通過し、加圧室11に流入する。 First, the inhalation process will be described. In the suction process, the plunger 2 moves in the direction of the cam 93 (the plunger 2 is lowered) by the rotation of the cam 93 in FIG. That is, the position of the plunger 2 is moved from the top dead center to the bottom dead center. When in the suction process state, for example, referring to FIG. 1, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. In this step, when the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the suction passage 10d, the fuel passes through the suction valve 30 in the open state, and the communication hole 1b provided in the fuel supply pump main body 1 and the cylinder It passes through the outer peripheral passages 6 a and 6 b and flows into the pressurizing chamber 11.
 吸入工程における電磁吸入弁300側の各部位置関係が図4に示されているので図4を参照しながら説明する。この状態では、電磁コイル43は無通電状態を維持したままであり磁気付勢力は作用していない。よって、吸入弁30は、ロッド付勢ばね40の付勢力により、ロッド35に押圧された状態であり、開弁したままである。 The positional relationship of each part on the electromagnetic suction valve 300 side in the suction process is shown in FIG. 4 and will be described with reference to FIG. In this state, the electromagnetic coil 43 remains in a non-energized state and no magnetic biasing force is acting. Therefore, the suction valve 30 is pressed against the rod 35 by the urging force of the rod urging spring 40 and remains open.
 次に戻し工程について説明する。戻し工程では、図3のカム93の回転により、プランジャ2が上昇方向に移動する。つまりプランジャ2位置が下死点から上死点に向かって、移動し始めている。このとき加圧室11の容積は、プランジャ2における吸入後の圧縮運動に伴い減少するが、この状態では、一度加圧室11に吸入された燃料が、再び開弁状態の吸入弁30を通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この工程を戻し工程と称する。 Next, the return process will be described. In the returning step, the plunger 2 moves in the upward direction by the rotation of the cam 93 in FIG. That is, the plunger 2 position starts to move from the bottom dead center to the top dead center. At this time, the volume of the pressurizing chamber 11 decreases with the compression motion after the suction in the plunger 2, but in this state, the fuel once sucked into the pressurizing chamber 11 is again sucked through the suction valve 30 in the valve open state. Since the pressure is returned to the passage 10d, the pressure in the pressurizing chamber does not increase. This process is called a return process.
 この状態で、エンジンコントロールユニット(制御部)27からの制御信号が電磁吸入弁300に印加されると、戻し工程から吐出工程に移行する。制御信号が電磁吸入弁300に印加されると、コイル部Cにおいて磁気吸引力が発生し、これが各部に作用することになる。磁気吸引力作用時における電磁吸入弁300側の各部位置関係が図5に示されているので図5を参照しながら説明する。この状態では、アウターコア38、第1ヨーク42、第2ヨーク44、固定コア39、アンカー部36で磁気回路を形成し、コイルに電流を与えると、固定コア39、アンカー部36間に磁気吸引力が発生し、互いに引き寄せられる力が発生する。アンカー部36が固定部である固定コア39に吸引されると、アンカー部36とロッドつば部35aの係止機構により、ロッド35が吸入弁30から離れる方向に移動する。このとき、吸入弁付勢ばね33による付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁30が閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12の圧力以上になると、吐出弁機構8を介して燃料の高圧吐出が行われ、コモンレール23へと供給される。この工程を吐出工程と称する。 In this state, when a control signal from the engine control unit (control unit) 27 is applied to the electromagnetic suction valve 300, the process returns from the return process to the discharge process. When the control signal is applied to the electromagnetic suction valve 300, a magnetic attractive force is generated in the coil part C, and this acts on each part. FIG. 5 shows the positional relationship of the respective parts on the electromagnetic suction valve 300 side when the magnetic attractive force is applied, and this will be described with reference to FIG. In this state, a magnetic circuit is formed by the outer core 38, the first yoke 42, the second yoke 44, the fixed core 39, and the anchor portion 36. When a current is applied to the coil, magnetic attraction is performed between the fixed core 39 and the anchor portion 36. A force is generated and a force that is attracted to each other is generated. When the anchor portion 36 is sucked by the fixed core 39 which is a fixed portion, the rod 35 moves in a direction away from the intake valve 30 by the locking mechanism of the anchor portion 36 and the rod collar portion 35a. At this time, the suction valve 30 is closed by the biasing force of the suction valve biasing spring 33 and the fluid force caused by the fuel flowing into the suction passage 10d. After closing the valve, the fuel pressure in the pressurizing chamber 11 rises with the upward movement of the plunger 2, and when the pressure exceeds the pressure at the fuel discharge port 12, high-pressure discharge of fuel is performed via the discharge valve mechanism 8, and to the common rail 23. Supplied. This process is called a discharge process.
 すなわち、プランジャ2の圧縮工程(下始点から上始点までの間の上昇工程)は、戻し工程と吐出工程からなる。そして、電磁吸入弁300のコイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル43へ通電するタイミングを早くすれば、圧縮工程中の、戻し工程の割合が小さく、吐出工程の割合が大きい。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば圧縮工程中の、戻し工程の割合が大きく吐出工程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル43への通電タイミングは、エンジンコントロールユニット(制御部)27からの指令によって制御される。 That is, the compression process of the plunger 2 (the ascending process from the lower start point to the upper start point) includes a return process and a discharge process. And the quantity of the high-pressure fuel discharged can be controlled by controlling the energization timing to the coil 43 of the electromagnetic suction valve 300. If the timing of energizing the electromagnetic coil 43 is advanced, the ratio of the return process in the compression process is small and the ratio of the discharge process is large. That is, the amount of fuel returned to the suction passage 10d is small and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of energization is delayed, the ratio of the return process in the compression process is large and the ratio of the discharge process is small. That is, the amount of fuel returned to the suction passage 10d is large, and the amount of fuel discharged at high pressure is small. The energization timing to the electromagnetic coil 43 is controlled by a command from the engine control unit (control unit) 27.
 以上のように構成することで、電磁コイル43への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。 By configuring as described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine by controlling the timing of energizing the electromagnetic coil 43.
 図6には、吐出工程における電磁吸入弁300側の各部位置関係が示されている。ここには、加圧室の圧力が十分増加した後の吸入弁が閉まった状態での、電磁コイル43への通電が解除された無通電の状態の図を示している。この状態では、次の周期の工程に備えて、次回の磁気吸引力発生、作用を有効に行わせるための体制を整えている。本構造では、この体制整備を行うことに特徴を有している。 FIG. 6 shows the positional relationship of each part on the electromagnetic suction valve 300 side in the discharge process. Here, a diagram of a non-energized state in which the energization of the electromagnetic coil 43 is released in a state where the suction valve is closed after the pressure in the pressurizing chamber has sufficiently increased is shown. In this state, in preparation for the next cycle process, a system is in place to effectively generate and act the next magnetic attractive force. This structure is characterized by the establishment of this system.
 本実施例では、吸入弁ストッパ32に吸入弁ホルダ34を一体化し、その形状により本発明の流路構造を形成する場合を例に説明する。本実施例における吸入弁ストッパ32の形状を図7に示す。そして本実施例では、加工工数の少ない簡素な構造で十分な流路断面積を確保し、吐出燃料を大流量化した際にも圧力損失の増大を防止可能とすることを目的としており、このための詳細な構造を以下、説明する。これにより、高精度な流量制御を実現する電磁吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供するが可能となる。 In this embodiment, a case where the suction valve holder 34 is integrated with the suction valve stopper 32 and the flow path structure of the present invention is formed by the shape thereof will be described as an example. The shape of the suction valve stopper 32 in this embodiment is shown in FIG. The purpose of this embodiment is to secure a sufficient flow path cross-sectional area with a simple structure with a small number of processing steps, and to prevent an increase in pressure loss even when the flow rate of discharged fuel is increased. The detailed structure for this will be described below. As a result, it is possible to provide an electromagnetic suction valve that realizes highly accurate flow rate control and a low-cost fuel supply pump to which it is applied.
 吸入弁ストッパ32は、その最外周に固定部32cが設けられており、この部分でハウジング部31cの内周円筒面内に嵌合保持される。また、中央部付近には円盤状の重なり部32dが設けられており、この側面に吸入弁30が配置される構造となっている。 The suction valve stopper 32 is provided with a fixed portion 32c on the outermost periphery thereof, and this portion is fitted and held in the inner peripheral cylindrical surface of the housing portion 31c. Further, a disc-like overlapping portion 32d is provided near the center portion, and the suction valve 30 is arranged on the side surface.
 図8には、図7で示した吸入弁ストッパ32を組み付けた際の吸入弁部Aの断面図を示す。上段に縦断面図、下段に45度断面図を示した。加圧室11と吸入弁30との間に配置され、吸入弁軸方向において吸入弁30と重なる重なり部32dと、重なり部32dの外周側面よりも外周側において、重なり部32dと一体で形成され、重なり部32dを固定する複数の固定部32cとを設ける。そして、重なり部32dの外周側面と重なり部32dの外周側面よりもさらに外周側に配置されたハウジング部31cとの間に第1流路32eを形成し、第1流路32eは重なり部32dの加圧室側面よりも加圧室側の第2流路32fと繋がるとともに、第1流路32eおよび第2流路32fはハウジング部31cにより連続して繋がるように形成する。また、複数の固定部32cを、重なり部32dの吸入弁側の面に対して加圧室側に位置するように構成し、重なり部32dの外周側面と複数の固定部32cの吸入弁側の面とで、第1流路32eを形成するとともに、隣り合う固定部32dの間に第1流路32eと加圧室11とを連通する第2流路32fを形成する。 FIG. 8 shows a cross-sectional view of the suction valve portion A when the suction valve stopper 32 shown in FIG. 7 is assembled. A vertical sectional view is shown in the upper stage, and a 45 degree sectional view is shown in the lower stage. The overlapping portion 32d is disposed between the pressurizing chamber 11 and the suction valve 30 and overlaps the suction valve 30 in the suction valve axial direction, and is formed integrally with the overlapping portion 32d on the outer peripheral side of the outer peripheral side surface of the overlapping portion 32d. And a plurality of fixing portions 32c for fixing the overlapping portion 32d. And the 1st flow path 32e is formed between the outer peripheral side surface of the overlap part 32d, and the housing part 31c arrange | positioned further on the outer peripheral side rather than the outer peripheral side surface of the overlap part 32d, and the 1st flow path 32e is the overlap part 32d. The first flow path 32e and the second flow path 32f are formed so as to be continuously connected by the housing portion 31c while being connected to the second flow path 32f closer to the pressurization chamber than the side surface of the pressurization chamber. Further, the plurality of fixing portions 32c are configured to be positioned on the pressure chamber side with respect to the suction valve side surface of the overlapping portion 32d, and the outer peripheral side surface of the overlapping portion 32d and the suction valve side of the plurality of fixing portions 32c are arranged. A first flow path 32e is formed by the surface, and a second flow path 32f that connects the first flow path 32e and the pressurizing chamber 11 is formed between adjacent fixing portions 32d.
 この構成を取ることにより、加工工数の多い穴加工を実施することなく流路形成ができ、合わせて吸入弁ストッパ32をハウジング部31cに固定することができるため、低コスト化の観点で有利である。 By adopting this configuration, it is possible to form a flow path without carrying out drilling with a large number of processing steps, and it is possible to fix the suction valve stopper 32 to the housing portion 31c, which is advantageous in terms of cost reduction. is there.
 また、複数の固定部32cの吸入弁軸方向の厚みは、重なり部32dの吸入弁軸方向の厚みよりも薄くなるように構成し、かつ、複数の固定部32cの加圧室側の面は重なり部32dの加圧室側の面よりも吸入弁側に位置するように構成してもよい。 Further, the thickness of the plurality of fixed portions 32c in the suction valve axial direction is configured to be thinner than the thickness of the overlapping portion 32d in the suction valve axial direction, and the surface on the pressure chamber side of the plurality of fixed portions 32c is You may comprise so that it may be located in the suction valve side rather than the surface by the side of the pressurization chamber of the overlap part 32d.
 第2流路32fの流路断面積は、第1流路32eに比べて固定部32cの分だけ小さく、圧力損失への寄与が大きい。上記のように、複数の固定部32cの厚みを薄くすることで、圧力損失への寄与が大きい第2流路32fの軸方向距離を短くすることができ、圧力損失低減の観点から有利である。 The flow path cross-sectional area of the second flow path 32f is smaller than the first flow path 32e by the fixed portion 32c, and the contribution to the pressure loss is large. As described above, by reducing the thickness of the plurality of fixing portions 32c, the axial distance of the second flow path 32f that greatly contributes to pressure loss can be shortened, which is advantageous from the viewpoint of reducing pressure loss. .
 また本実施例で前提としているように、重なり部32dの一部が吸入弁30に接触することで、開弁方向への移動を規制する吸入弁ストッパ32となるよう構成したり、重なり部32dが、吸入弁30を閉弁方向に付勢する吸入弁ばね33を保持する、ばね保持部32hを形成するよう構成してもよい。さらに吸入弁ストッパ32の固定方法に関して、複数の固定部32dは、ポンプボディ1に形成された孔部1cの内周面、またはハウジング部31cの内周面に圧入される圧入部32iを外周側に備えるよう構成する。そして、これらの重なり部32dおよび複数の固定部32cは、プレス部品、または鍛造部品で形成することが好ましい。 Further, as assumed in the present embodiment, a part of the overlapping portion 32d comes into contact with the suction valve 30 so that the suction valve stopper 32 restricts the movement in the valve opening direction, or the overlapping portion 32d. However, you may comprise so that the spring holding | maintenance part 32h which hold | maintains the suction valve spring 33 which urges | biases the suction valve 30 in the valve closing direction may be formed. Further, with respect to the fixing method of the suction valve stopper 32, the plurality of fixing portions 32d have a press-fit portion 32i that is press-fitted into the inner peripheral surface of the hole 1c formed in the pump body 1 or the inner peripheral surface of the housing portion 31c on the outer peripheral side. To prepare for. The overlapping portion 32d and the plurality of fixing portions 32c are preferably formed of a pressed part or a forged part.
 これにより、吸入弁ストッパ32に複数の機能を集約し有効にスペースを活用することで、吸入弁部Aの構造を簡素化することができる。合わせて、吸入弁ストッパ32を穴加工に比べて加工工数の少ないプレス製法や鍛造製法で形成することで加工工数を低減することができ、低コスト化の観点から有利である。 This makes it possible to simplify the structure of the intake valve portion A by consolidating a plurality of functions in the intake valve stopper 32 and effectively utilizing the space. In addition, by forming the suction valve stopper 32 by a press manufacturing method or a forging manufacturing method that requires fewer processing steps than hole processing, the processing steps can be reduced, which is advantageous from the viewpoint of cost reduction.
 また、固定部32cの配置に関して、複数の固定部32cを、重なり部32dの外周側面の最外周端部よりも外周側において周方向に所定間隔を空けて配置し、第2流路32fを重なり部32dの外周側面の最外周端部よりも外周側に形成する。また、重なり部32cの外周側面の最外周端部が吸入弁30の外周面の最外周端部よりも外周側に位置するように構成する。 Further, regarding the arrangement of the fixing portion 32c, the plurality of fixing portions 32c are arranged at a predetermined interval in the circumferential direction on the outer peripheral side of the outermost peripheral end portion of the outer peripheral side surface of the overlapping portion 32d, and the second flow path 32f is overlapped. It forms in the outer peripheral side rather than the outermost peripheral edge part of the outer peripheral side surface of the part 32d. Further, the outermost peripheral end portion of the outer peripheral side surface of the overlapping portion 32 c is configured to be positioned on the outer peripheral side with respect to the outermost peripheral end portion of the outer peripheral surface of the suction valve 30.
 こうすることで、加圧室11からの燃料流れが直接吸入弁30に当たり、閉弁方向の流体力が増大して誤閉弁が起こることを防止しすることができる。これにより、ひいては流量制御精度の向上を達成することができる。 By doing so, it is possible to prevent the fuel flow from the pressurizing chamber 11 from directly hitting the suction valve 30 and increasing the fluid force in the valve closing direction to cause erroneous valve closing. Thereby, the improvement of flow control accuracy can be achieved.
 総じて、本実施例の構成を用いれば、加工工数の少ない簡素な構造で十分な流路断面積を確保し、吐出燃料を大流量化した際にも圧力損失の増大を防止して、高精度な流量制御を実現する吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供することができる。 Overall, using the configuration of this embodiment ensures a sufficient flow path cross-sectional area with a simple structure with few processing steps, and prevents an increase in pressure loss even when the flow rate of discharged fuel is increased. It is possible to provide an intake valve that realizes a proper flow rate control and a low-cost fuel supply pump to which the intake valve is applied.
 本実施例では実施例1の変形例について説明する。図9は、本実施例に係る吸入弁ストッパ32の形状を示す。図7に示した、実施例1の形状に対して、隣り合う複数の固定部32cの間の部位(点線にて図示)が排除されている点が特徴である。
図10には、図9で示した吸入弁ストッパ32を組み付けた際の吸入弁部Aの断面図を示す。上段に縦断面図、下段に45度断面図を示した。複数の固定部32cを、重なり部32dの吸入弁側の面に対して加圧室側に位置するように構成し、重なり部32dの外周側面と複数の固定部32cの吸入弁側の面とで、第1流路32eを形成するとともに、隣り合う固定部32cの間に第1流路32eと加圧室11とを連通する第2流路32fを形成する。そして、複数の固定部32cは、複数の固定部32cの内周側の面と吸入弁軸方向において重なる位置で、重なり部32dの加圧室側の面よりも加圧室側に空間32gが形成され、かつ空間32gが第2流路32fの一部を形成するように構成する。
こうすることで、軸方向から見た投影面積以上に、径方向にも第2流路32fが拡大され、簡素な構造でより大きな流路断面積を確保することができ、圧力損失低減に有利である。
In the present embodiment, a modification of the first embodiment will be described. FIG. 9 shows the shape of the suction valve stopper 32 according to the present embodiment. With respect to the shape of the first embodiment shown in FIG. 7, a feature is that a portion (shown by a dotted line) between a plurality of adjacent fixing portions 32c is excluded.
FIG. 10 shows a cross-sectional view of the suction valve portion A when the suction valve stopper 32 shown in FIG. 9 is assembled. A vertical sectional view is shown in the upper stage, and a 45 degree sectional view is shown in the lower stage. The plurality of fixing portions 32c are configured to be positioned on the pressure chamber side with respect to the suction valve side surface of the overlapping portion 32d, and the outer peripheral side surface of the overlapping portion 32d and the suction valve side surface of the plurality of fixing portions 32c Thus, the first flow path 32e is formed, and the second flow path 32f that connects the first flow path 32e and the pressurizing chamber 11 is formed between the adjacent fixing portions 32c. The plurality of fixing portions 32c overlap with the inner peripheral surface of the plurality of fixing portions 32c in the suction valve axial direction, and the space 32g is closer to the pressurizing chamber than the pressurizing chamber side surface of the overlapping portion 32d. The space 32g is formed so as to form a part of the second flow path 32f.
By doing so, the second flow path 32f is enlarged in the radial direction more than the projected area seen from the axial direction, and a larger cross-sectional area can be secured with a simple structure, which is advantageous for reducing pressure loss. It is.
 また、これらの形状を形成する上で、プレス製法や鍛造製法にて、複数の固定部32cを重なり部32dに対して軸方向加圧室側に押し出すよう成形することで、複数の固定部32cは、重なり部32dの加圧室側の面よりも加圧室側に配置されるよう構成する。または、複数の固定部32cは吸入弁軸方向において、ほぼ全てが重なり部32dの加圧室側の面の最加圧室側端部よりも加圧室側に配置されるよう構成する。
こうすることで、流路を形成するのと同時に複数の固定部32cおよび空間32gを形成することが可能であり、加工工数を低減することが可能である。
さらに、実施例1の場合と同様に吸入弁ストッパ32にばね保持部32hを備えてもよい。その場合、重なり部32dは、内周側に加圧室側に凹む凹み部32jを有し、凹み部32jにおいて吸入弁30を閉弁方向に付勢するばね33を保持する構成とする。そして、凹み部32jにおいて最も加圧室側に形成される凹み部端部と、複数の固定部32cにおいて最も加圧室側に形成される固定部端部とを、吸入弁軸方向においてほぼ同じ位置に形成する、または凹み部端部の方が固定部端部よりも加圧室側に位置するように形成する。
こうすることで、吸入弁ストッパに複数の機能を集約し、構造を簡素化することができるとともに、凹み部32jも、プレス製法や鍛造製法にて流路形成と同時に形成することで、加工工数を低減することができ、低コスト化の観点から有利である。
Further, in forming these shapes, the plurality of fixing portions 32c are formed by pressing the plurality of fixing portions 32c toward the axial pressure chamber side with respect to the overlapping portion 32d by a press manufacturing method or a forging manufacturing method. Is configured to be arranged closer to the pressurizing chamber than the surface of the overlapping portion 32d on the pressurizing chamber side. Alternatively, the plurality of fixing portions 32c are configured so that substantially all of the fixing portions 32c are arranged closer to the pressurizing chamber side than the end portion on the pressurizing chamber side of the surface of the overlapping portion 32d on the pressurizing chamber side.
By doing so, it is possible to form a plurality of fixing portions 32c and spaces 32g simultaneously with the formation of the flow path, and to reduce the number of processing steps.
Further, the suction valve stopper 32 may be provided with a spring holding portion 32h as in the case of the first embodiment. In this case, the overlapping portion 32d has a recess 32j that is recessed toward the pressurizing chamber on the inner peripheral side, and holds the spring 33 that biases the suction valve 30 in the valve closing direction in the recess 32j. And the recessed part end part most formed in the pressurizing chamber side in the recessed part 32j and the fixing | fixed part end part formed in the most pressurizing chamber side in the some fixing | fixed part 32c are substantially the same in the suction valve axial direction. It forms in a position, or it forms so that the direction of a recessed part edge part may be located in the pressurization chamber side rather than a fixed part edge part.
In this way, a plurality of functions can be integrated into the suction valve stopper and the structure can be simplified, and the recess 32j can be formed simultaneously with the flow path formation by a press manufacturing method or a forging manufacturing method. This is advantageous from the viewpoint of cost reduction.
 総じて、本実施例の構成を用いれば、加工工数の少ない簡素な構造で、実施例1の場合よりもさらに大きな流路断面積を確保し、吐出燃料を大流量化した際にも圧力損失の増大を防止して、高精度な流量制御を実現する吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供することができる。 In general, if the configuration of this embodiment is used, the flow passage cross-sectional area is secured larger than that of the first embodiment with a simple structure with fewer processing steps, and even when the flow rate of discharged fuel is increased, the pressure loss is reduced. It is possible to provide an intake valve that prevents the increase and realizes highly accurate flow rate control, and a low-cost fuel supply pump to which the intake valve is applied.
 以上ですべての説明を終えるが、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、実施形態は、本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although all the explanations are finished above, the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1:ポンプ本体
 2:プランジャ
 6:シリンダ
 7:シールホルダ
 8:吐出弁機構
 9:圧力脈動低減機構
 10a:低圧燃料吸入口
 11:加圧室
 12:燃料吐出口
 13:プランジャシール
 27:エンジンコントロールユニット(制御部)
 30:吸入弁
 31:吸入弁シート
 32:吸入弁ストッパ
 33:吸入弁ばね
 35:ロッド
 36:アンカー部
 38:アウターコア
 39:固定コア
 40:ロッド付勢ばね
 41:アンカー部付勢ばね
 43:電磁コイル
1: Pump body 2: Plunger 6: Cylinder 7: Seal holder 8: Discharge valve mechanism 9: Pressure pulsation reduction mechanism 10a: Low pressure fuel inlet 11: Pressurization chamber 12: Fuel outlet 13: Plunger seal 27: Engine control unit (Control part)
30: Suction valve 31: Suction valve seat 32: Suction valve stopper 33: Suction valve spring 35: Rod 36: Anchor part 38: Outer core 39: Fixed core 40: Rod biasing spring 41: Anchor part biasing spring 43: Electromagnetic coil

Claims (15)

  1.  加圧室が形成されるポンプボディと、前記加圧室の吸入側に配置された吸入弁とを備えた燃料供給ポンプにおいて、
     前記加圧室と前記吸入弁との間に配置され、吸入弁軸方向において前記吸入弁と重なる重なり部と、前記重なり部の外周側面よりも外周側において、前記重なり部と一体で形成され、前記重なり部を固定する複数の固定部とを備え、
     前記重なり部の外周側面と前記重なり部の外周側面よりもさらに外周側に配置されたハウジング部との間に第1流路が形成され、前記第1流路は前記重なり部の加圧室側面よりも加圧室側の第2流路と繋がるとともに、前記第1流路及び前記第2流路は前記ハウジング部により連続して繋がるように形成された燃料供給ポンプ。
    In a fuel supply pump comprising a pump body in which a pressurizing chamber is formed, and a suction valve arranged on the suction side of the pressurizing chamber,
    An overlapping portion that is disposed between the pressurizing chamber and the suction valve and overlaps the suction valve in the suction valve axial direction, is formed integrally with the overlapping portion on the outer peripheral side of the outer peripheral side surface of the overlapping portion, A plurality of fixing portions for fixing the overlapping portion;
    A first flow path is formed between the outer peripheral side surface of the overlapping portion and the housing portion disposed further on the outer peripheral side than the outer peripheral side surface of the overlapping portion, and the first flow path is a side surface of the pressure chamber of the overlapping portion. The fuel supply pump is formed so as to be connected to the second flow path closer to the pressurizing chamber and to be continuously connected to the first flow path and the second flow path by the housing portion.
  2.  請求項1に記載の燃料供給ポンプにおいて、
     前記複数の固定部は、前記重なり部の吸入弁側の面に対して加圧室側に位置するように構成され、前記重なり部の外周側面と前記複数の固定部の吸入弁側の面とで、前記第1流路が形成されるとともに、隣り合う前記固定部の間に前記第1流路と前記加圧室とを連通する前記第2流路が形成された燃料供給ポンプ。 
    The fuel supply pump according to claim 1, wherein
    The plurality of fixing portions are configured to be positioned on the pressure chamber side with respect to the suction valve side surface of the overlapping portion, and the outer peripheral side surface of the overlapping portion and the suction valve side surface of the plurality of fixing portions; In the fuel supply pump, the first flow path is formed, and the second flow path is formed between the adjacent fixing portions to communicate the first flow path and the pressurizing chamber.
  3.  加圧室が形成されるポンプボディと、前記加圧室の吸入側に配置された吸入弁とを備えた燃料供給ポンプにおいて、
     前記加圧室と前記吸入弁との間に配置され、吸入弁軸方向において前記吸入弁と重なる重なり部と、前記重なり部の外周側面よりも外周側において、前記重なり部と一体で形成され、前記重なり部を固定する複数の固定部とを備え、
     前記複数の固定部は、前記重なり部の吸入弁側の面に対して加圧室側に位置するように構成され、前記重なり部の外周側面と前記複数の固定部の吸入弁側の面とで、第1流路が形成されるとともに、隣り合う前記固定部の間に前記第1流路と前記加圧室とを連通する第2流路が形成された燃料供給ポンプ。
    In a fuel supply pump comprising a pump body in which a pressurizing chamber is formed, and a suction valve arranged on the suction side of the pressurizing chamber,
    An overlapping portion that is disposed between the pressurizing chamber and the suction valve and overlaps the suction valve in the suction valve axial direction, is formed integrally with the overlapping portion on the outer peripheral side of the outer peripheral side surface of the overlapping portion, A plurality of fixing portions for fixing the overlapping portion;
    The plurality of fixing portions are configured to be positioned on the pressure chamber side with respect to the suction valve side surface of the overlapping portion, and the outer peripheral side surface of the overlapping portion and the suction valve side surface of the plurality of fixing portions; Thus, a fuel supply pump in which a first flow path is formed and a second flow path is formed between the adjacent fixing portions to communicate the first flow path and the pressurizing chamber.
  4.  請求項3に記載の燃料供給ポンプにおいて、
     前記複数の固定部は、前記複数の固定部の内周側の面と吸入弁軸方向において重なる位置で、前記重なり部の加圧室側の面よりも加圧室側に空間が形成され、かつ前記空間が前記第2流路の一部を形成する燃料供給ポンプ。
    The fuel supply pump according to claim 3.
    The plurality of fixing portions are formed at a position overlapping the inner peripheral surface of the plurality of fixing portions in the suction valve axial direction, and a space is formed closer to the pressurizing chamber than the pressurizing chamber side surface of the overlapping portion, A fuel supply pump in which the space forms part of the second flow path.
  5.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記複数の固定部の吸入弁軸方向の厚みは、前記重なり部の吸入弁軸方向の厚みよりも薄くなるように構成され、かつ、前記複数の固定部の加圧室側の面は前記重なり部の加圧室側の面よりも吸入弁側に位置するように構成された燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The thickness of the plurality of fixed portions in the suction valve axial direction is configured to be thinner than the thickness of the overlapping portions in the suction valve axial direction, and the surfaces of the plurality of fixed portions on the pressure chamber side are overlapped with each other. A fuel supply pump configured to be positioned closer to the suction valve than the surface of the pressurizing chamber.
  6.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記複数の固定部は、前記重なり部の加圧室側の面よりも加圧室側に配置された燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The plurality of fixing portions are fuel supply pumps arranged closer to the pressurizing chamber than the surface of the overlapping portion on the pressurizing chamber.
  7.  請求項5に記載の燃料供給ポンプにおいて、
     前記複数の固定部は吸入弁軸方向において、ほぼ全てが前記重なり部の加圧室側の面の最加圧室側端部よりも加圧室側に配置された燃料供給ポンプ。
    The fuel supply pump according to claim 5, wherein
    The plurality of fixed portions are fuel supply pumps in which substantially all of the plurality of fixed portions are arranged closer to the pressurizing chamber side than the end portion on the pressurizing chamber side of the surface of the overlapping portion on the pressurizing chamber side.
  8.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記重なり部は前記吸入弁の開弁方向への移動を規制する吸入弁ストッパである燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The fuel supply pump is a suction valve stopper that restricts movement of the suction valve in the valve opening direction.
  9.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記重なり部は前記吸入弁を閉弁方向に付勢するばねを保持するばね保持部を含む燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The fuel supply pump including a spring holding portion that holds a spring that biases the suction valve in a valve closing direction.
  10.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記複数の固定部は、前記重なり部の外周側面の最外周端部よりも外周側において周方向に所定間隔を空けて配置され、
     前記第2流路が前記重なり部の外周側面の最外周端部よりも外周側に形成された燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The plurality of fixed portions are arranged at a predetermined interval in the circumferential direction on the outer peripheral side than the outermost peripheral end portion of the outer peripheral side surface of the overlapping portion,
    The fuel supply pump in which the second flow path is formed on the outer peripheral side of the outermost peripheral end portion of the outer peripheral side surface of the overlapping portion.
  11.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記複数の固定部は、前記重なり部の加圧室側の面よりも加圧室側に配置され、前記複数の固定部の内周側の面と吸入弁軸方向において重なる位置で前記重なり部の加圧室側の面の加圧室側に空間が形成され、かつ前記空間が前記第2流路と連通するように形成された燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The plurality of fixing portions are arranged closer to the pressurizing chamber than the surface of the overlapping portion on the pressurizing chamber side, and the overlapping portion is positioned at a position overlapping the inner peripheral surface of the plurality of fixing portions in the suction valve axial direction. A fuel supply pump in which a space is formed in the pressurizing chamber side of the surface of the pressurizing chamber and the space communicates with the second flow path.
  12.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記重なり部及び前記複数の固定部は、プレス部品、又は鍛造部品で形成された燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The overlapping portion and the plurality of fixed portions are fuel supply pumps formed of pressed parts or forged parts.
  13.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記複数の固定部は、前記ポンプボディに形成された孔部に圧入される圧入部を外周側に備えた燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The plurality of fixed portions are fuel supply pumps having press-fitting portions, which are press-fitted into holes formed in the pump body, on an outer peripheral side.
  14.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記重なり部の外周側面の最外周端部が前記吸入弁の外周面の最外周端部よりも外周側に位置するように構成された燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    A fuel supply pump configured such that an outermost peripheral end portion of an outer peripheral side surface of the overlapping portion is positioned on an outer peripheral side with respect to an outermost peripheral end portion of an outer peripheral surface of the suction valve.
  15.  請求項1又は3に記載の燃料供給ポンプにおいて、
     前記重なり部は、内周側に加圧室側に凹む凹み部を有し、前記凹み部において前記吸入弁を閉弁方向に付勢するばねを保持し、
     前記凹み部において最も加圧室側に形成される凹み部端部と前記複数の固定部において最も加圧室側に形成される固定部端部とは吸入弁軸方向においてほぼ同じ位置に形成される、又は前記凹み部端部の方が前記固定部端部よりも加圧室側に位置するように形成された燃料供給ポンプ。
    The fuel supply pump according to claim 1 or 3,
    The overlapping portion has a concave portion recessed on the inner circumferential side toward the pressurizing chamber side, and holds a spring that biases the suction valve in the valve closing direction in the concave portion,
    The end of the recessed portion formed closest to the pressurizing chamber in the recessed portion and the end of the fixed portion formed closest to the pressurizing chamber in the plurality of fixed portions are formed at substantially the same position in the suction valve axial direction. Or a fuel supply pump formed such that the end of the recess is positioned closer to the pressurizing chamber than the end of the fixed part.
PCT/JP2017/011297 2016-05-27 2017-03-22 Fuel supply pump WO2017203812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016105757A JP6685176B2 (en) 2016-05-27 2016-05-27 Fuel supply pump
JP2016-105757 2016-05-27

Publications (1)

Publication Number Publication Date
WO2017203812A1 true WO2017203812A1 (en) 2017-11-30

Family

ID=60412280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011297 WO2017203812A1 (en) 2016-05-27 2017-03-22 Fuel supply pump

Country Status (2)

Country Link
JP (1) JP6685176B2 (en)
WO (1) WO2017203812A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024071B2 (en) * 2018-05-30 2022-02-22 日立Astemo株式会社 Fuel supply pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514571A (en) * 2002-01-07 2005-05-19 シーメンス アクチエンゲゼルシヤフト Inlet or outlet valve for pump
JP2012154295A (en) * 2011-01-28 2012-08-16 Denso Corp High pressure pump
JP2014141896A (en) * 2013-01-22 2014-08-07 Denso Corp High pressure pump
JP2015057554A (en) * 2014-12-26 2015-03-26 日立オートモティブシステムズ株式会社 High pressure fuel supply pump including electromagnetic drive type suction valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514571A (en) * 2002-01-07 2005-05-19 シーメンス アクチエンゲゼルシヤフト Inlet or outlet valve for pump
JP2012154295A (en) * 2011-01-28 2012-08-16 Denso Corp High pressure pump
JP2014141896A (en) * 2013-01-22 2014-08-07 Denso Corp High pressure pump
JP2015057554A (en) * 2014-12-26 2015-03-26 日立オートモティブシステムズ株式会社 High pressure fuel supply pump including electromagnetic drive type suction valve

Also Published As

Publication number Publication date
JP6685176B2 (en) 2020-04-22
JP2017210935A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6293290B2 (en) High pressure fuel supply pump
JP6869005B2 (en) Fuel supply pump
WO2017056568A1 (en) High-pressure fuel pump
EP3467297B1 (en) High-pressure fuel feeding pump
JP6779370B2 (en) High pressure fuel pump
JP6235518B2 (en) High pressure fuel supply pump and method of assembling high pressure fuel supply pump
JP2016142143A (en) High pressure fuel supply pump
WO2013080253A1 (en) High-pressure fuel supply pump
JP2018087548A (en) High-pressure fuel supply pump
CN109072843B (en) Control device for high-pressure fuel supply pump and high-pressure fuel supply pump
JP2021014791A (en) High-pressure fuel pump
WO2018092538A1 (en) High-pressure fuel supply pump
CN110651117B (en) Valve mechanism, electromagnetic suction valve mechanism, and high-pressure fuel pump
WO2017203812A1 (en) Fuel supply pump
JP2017145731A (en) High pressure fuel supply pump
JP7178504B2 (en) Fuel pump
JP6770193B2 (en) High pressure fuel supply pump
JP7024071B2 (en) Fuel supply pump
JP2019203437A (en) High-pressure fuel supply pump
JP6932629B2 (en) High pressure fuel pump
JP6754902B2 (en) Electromagnetic suction valve and high-pressure fuel pump equipped with it
JP7077212B2 (en) High pressure fuel pump
US20240159208A1 (en) Electromagnetic Valve Mechanism and Fuel Pump
JP6602692B2 (en) High pressure fuel supply pump control method and high pressure fuel supply pump using the same
WO2020085041A1 (en) Electromagnetic valve mechanism and high-pressure fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17802414

Country of ref document: EP

Kind code of ref document: A1