WO2017203769A1 - Sight line detection method - Google Patents

Sight line detection method Download PDF

Info

Publication number
WO2017203769A1
WO2017203769A1 PCT/JP2017/007189 JP2017007189W WO2017203769A1 WO 2017203769 A1 WO2017203769 A1 WO 2017203769A1 JP 2017007189 W JP2017007189 W JP 2017007189W WO 2017203769 A1 WO2017203769 A1 WO 2017203769A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
subject
eye region
detected
face
Prior art date
Application number
PCT/JP2017/007189
Other languages
French (fr)
Japanese (ja)
Inventor
山下 龍麿
正行 中西
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2018519093A priority Critical patent/JP6767482B2/en
Publication of WO2017203769A1 publication Critical patent/WO2017203769A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Definitions

  • the present invention relates to a gaze detection method for detecting a gaze direction of a subject.
  • the center position of the face, the center position of the parts constituting the face, the organ position such as the pupil position, and the like are detected from the acquired image data, and the detected center Using the position and the organ position, normalization is performed so that the size of the face is a predetermined size and the orientation of the face is upright. After that, using the normalized image data, the feature amount corresponding to the face direction and the feature amount of the eye region are extracted, and the gaze direction is estimated using these feature amounts.
  • an object of the present invention is to provide a gaze detection method capable of increasing the speed by suppressing the burden of calculation processing while ensuring the accuracy of gaze direction detection.
  • the eye gaze detection method of the present invention determines whether or not an eye region image of a subject is included in a predetermined range of images acquired for extracting an eye region image at a constant cycle.
  • a first discriminating step for discriminating when the eye region image of the subject is included in the image of the predetermined range in the first discriminating step, the eye region image is extracted, and the extracted eye region image is Based on this, the direction of the subject's line of sight is detected, and when the eye area image of the subject is not included in the image in the predetermined range in the first determination step, the whole image is newly acquired, and the subject
  • a face image of the subject, the eye area image of the subject person is extracted from the detected face image, the line-of-sight direction of the subject person is detected based on the extracted eye area image, and the range including the extracted eye area image Is updated as a predetermined range.
  • the gaze direction is calculated, the calculation processing load can be suppressed while maintaining the accuracy of the gaze direction calculation, and the processing speed can be increased.
  • the entire image acquired in the second determination step has a lower resolution than the image in the predetermined range determined in the first determination step, and the subject's face image from the entire image acquired in the second determination step Cannot be detected, a new whole image is acquired without waiting for the next first determination step, the face image of the subject is detected from this image, and the eye area image of the subject is detected from the detected face image.
  • image acquisition is performed by an image sensor in which a plurality of pixels are arranged in a horizontal direction and a vertical direction and driven by a rolling shutter system, and the predetermined range is aligned in the horizontal direction of the image sensor. It is preferable to be composed of one or two or more lines. As a result, the cost of the image sensor can be reduced, and the burden of calculation processing can be reduced, and high-speed and high-precision gaze direction detection can be realized.
  • the line-of-sight detection method of the present invention it is possible to reduce the processing load and ensure high-speed processing while ensuring the accuracy of line-of-sight detection.
  • FIG. 5 is a figure which shows typically the light emission period of a 1st light source and a 2nd light source. It is a flowchart which shows the flow of a gaze detection based on 1st Embodiment of this invention. It is a flowchart which shows the flow of a gaze detection based on 2nd Embodiment of this invention.
  • FIG. 1 is a functional block diagram showing the configuration of the line-of-sight detection device 10 according to the first embodiment
  • FIG. 2 is a functional block diagram showing the configuration of the image acquisition unit 20 of the first embodiment
  • FIG. It is a functional block diagram which shows the structure of the gaze detection part 60 of 1st Embodiment.
  • FIG. 4 is a diagram illustrating an example of an image of a subject.
  • the line-of-sight detection device 10 includes a control unit 11, a memory 12, an image acquisition unit 20, a face detection unit 30, a normalization processing unit 40, and an eye region image.
  • An acquisition unit 50 and a line-of-sight detection unit 60 are provided.
  • the line-of-sight detection device 10 is installed, for example, on an instrument panel in an automobile interior or an upper part of a windshield so as to face the driver's face as a subject.
  • the face detection unit 30 extracts the face image A2 (FIG. 4) from the entire image A1 (FIG. 4) of the subject SB acquired by the image acquisition unit 20, for example, an image in a range corresponding to the upper body.
  • the normalization processing unit 40 performs normalization processing on the face image A2.
  • a predetermined range A3 (FIG. 4) including the eye region is set in the eye region image acquisition unit 50, and an eye region image within this predetermined range is extracted and output to the line-of-sight detection unit 60. Is done.
  • the line-of-sight detection unit 60 extracts a feature amount based on the received image, and detects the gaze direction of the subject based on the feature amount.
  • Processing from image acquisition by the image acquisition unit 20 to detection of the line-of-sight direction by the line-of-sight detection unit 60 is executed according to control by the control unit 11, information necessary for the processing, processing results, and the like are stored in the memory 12 and necessary. Reads accordingly.
  • the predetermined range set by the eye area image acquisition unit 50 is stored in the memory 12, and after the gaze direction is detected by the line-of-sight detection unit 60, the next image is acquired within this predetermined range, and this image includes the eye area image. It is determined by the control unit 11 as a determination unit. If an eye area image is included in the acquired image, the line-of-sight direction is detected in the same manner as the above-described processing. As a result of the determination by the control unit 11, when the eye area image is not included in the image in the predetermined range, the entire image is acquired by the image acquisition unit 20, and the detection of the face image and the normalization processing are performed based on this image.
  • a predetermined range is newly set, and the data in the predetermined range stored in the memory 12 is updated with this range. Further, when an eye area image is included in the image acquired in the predetermined range, the line-of-sight direction is detected based on the feature amount extracted from the eye area image.
  • each constituent member / block will be described.
  • the image acquisition unit 20 includes a first light source 21, a second light source 22, a first camera 23, a second camera 24, an exposure control unit 25, and a light source control unit 26. .
  • the first light source 21 includes a plurality of LED (light emitting diode) light sources. These LED light sources are arranged outside the lens of the first camera 23 so as to surround the lens.
  • the second light source 22 is also composed of a plurality of LED light sources. These LED light sources are arranged outside the lens of the second camera 24 so as to surround the lens.
  • the LED light source of the first light source 21 and the LED light source of the second light source 22 emit infrared light (near infrared light) of 800 nm or more and 1000 nm or less, and this detection light can be given to the driver's eyes.
  • infrared light near infrared light
  • 850 nm is a wavelength with a low light absorption rate in the eyeball of a human eye, and this light is easily reflected by the retina at the back of the eyeball.
  • the cameras 23 and 24 have, for example, CMOS (complementary metal oxide semiconductor) as an image sensor.
  • CMOS complementary metal oxide semiconductor
  • This image sensor acquires an image of a face including the driver's eyes, and light is detected by a plurality of pixels arranged in the horizontal direction and the vertical direction.
  • band pass filters it is preferable to arrange band pass filters in accordance with the wavelengths of the detection lights emitted from the two light sources 21 and 22. Thereby, the extraction of the pupil image in the bright pupil image detection unit 61 and the dark pupil image detection unit 62 and the calculation of the gaze direction in the gaze direction calculation unit 65 can be performed with high accuracy.
  • the cameras 23 and 24 can switch the shooting range and resolution according to the control of the control unit 11.
  • the shooting range can be switched between, for example, an entire image and a partial image.
  • the entire image is an image of the upper body of the driver who has arrived at the driver's seat as a position that is the target of gaze detection.
  • the partial image is an image in a predetermined range set by the eye region image acquisition unit 50 based on the entire image, that is, an image in a range corresponding to the driver's eye region.
  • the shooting resolution can be switched between high resolution and low resolution, for example.
  • a high-resolution image is an image having a resolution capable of extracting at least a feature amount necessary for detecting the gaze direction, and a low-resolution image can detect at least a feature portion of the face. It is an image having a resolution that can be detected.
  • the distance between the optical axes of the LED light sources of the first camera 23 and the first light source 21 is determined based on the optical axes of the first camera 23 and the second camera 24 in consideration of the distance between the line-of-sight detection unit 60 and the driver as the driver.
  • the distance is sufficiently short. Therefore, the first light source 21 can be regarded as having substantially the same optical axis as the first camera 23.
  • the distance between the optical axes of the LED light sources of the second camera 24 and the second light source 22 is sufficiently shorter than the distance between the optical axes of the first camera 23 and the second camera 24. It can be considered that the optical axes 22 of the second camera 24 are substantially coaxial with each other.
  • the optical axes of the first camera 23 and the second camera 24 are not coaxial.
  • the above arrangement may be expressed as two members being substantially coaxial and the like, and the two members being non-coaxial.
  • the timing of lighting (light emission) of the first light source 21 and the second light source 22 is controlled by the light source control unit 26.
  • the timing of this lighting is set by an instruction signal from the exposure control unit 25, and the exposure control unit 25 performs shooting described later so as to be synchronized with the lighting of the first light source 21 and the second light source 22 according to the control of the control unit 11.
  • the first camera 23 and the second camera 24 are caused to perform imaging under conditions (bright pupil imaging conditions, dark pupil imaging conditions).
  • the face detection unit 30 performs downsizing on the entire image A1 (FIG. 4) acquired by the image acquisition unit 20 to reduce the number of pixels by binning processing or the like as preprocessing.
  • This downsizing is to reduce the resolution and reduce the size of the image data by combining a predetermined number of adjacent pixels in the entire image A1 into one pixel.
  • This downsizing process is set to a level at which a later face detection process can be performed, and the number of pixels to be combined into one pixel is determined in accordance with this level. As a result, the data size of the image is reduced, and the speed can be increased while ensuring the accuracy of the subsequent face detection processing.
  • the face detection unit 30 performs face detection by applying various detection methods to the image after the downsizing process. For example, initial detection is performed based on the Haar-like face detection method, and information on general facial feature parts registered in the memory 12 in advance, for example, eyebrow, eyeball, iris, nose, lip position, shape, The face is detected according to the collation result in comparison with the size data.
  • the face orientation is also detected by comparing the acquired image with information on each characteristic part for a plurality of face orientations, for example, front, diagonal right direction, and diagonal left direction.
  • the face detection unit 30 also uses a plurality of landmarks corresponding to each feature part, such as eyebrows, eyeballs, irises, lip contours, and nasal ridge lines, based on the color and brightness of the detected face image. Is detected.
  • landmarks corresponding to each feature part, such as eyebrows, eyeballs, irises, lip contours, and nasal ridge lines, based on the color and brightness of the detected face image. Is detected.
  • a combination of facial feature information of a specific individual and a name or other identification information that identifies the individual is registered in advance. The individual may be authenticated together with the face detection by collating with the image acquired by the image acquisition unit 20.
  • the normalization processing unit 40 maintains the relationship between the plurality of landmarks detected by the face detection unit 30, and converts the face to face forward and has a predetermined size by, for example, affine transformation, This normalizes the face image.
  • the eye region image acquisition unit 50 predetermines a range in which an image including both eyes is included in the image normalized by the normalization processing unit 40 based on the position / range information of the eyeball detected as a landmark. Set as a range. Furthermore, the eye area image acquisition unit 50 acquires, as the eye area image, a bright pupil image and a dark pupil image corresponding to a predetermined range among the images acquired by the image acquisition unit 20. The set predetermined range is stored in the memory 12, and the acquired eye region image is output to the line-of-sight detection unit 60.
  • FIG. 5 is a diagram schematically illustrating an example of image acquisition timing from a rolling shutter type imaging device and light emission timing of a light source.
  • 5A shows image acquisition timing from the image sensor
  • FIG. 5B shows light emission periods of the first light source 21 and the second light source 22.
  • the image sensor drive system includes a global shutter system and a rolling shutter system, and the cameras 23 and 24 of the first embodiment can use any image sensor, but here the case of the rolling shutter system will be described. To do.
  • H000, H100, H200, H300, H400, H500, H600, H700, and H800 are lines of pixels arranged in the horizontal direction in order from the top to the bottom in the vertical direction in the image sensor. Respectively.
  • the image sensor is driven for each of these lines by a rolling shutter system.
  • “VSYNC” in FIG. 5A is a vertical synchronization signal output from the cameras 23 and 24 and is determined by the frame rate of the camera, and the control unit 11 is synchronized with these vertical synchronization signals, Capture image data corresponding to a pixel line of an image sensor of a corresponding camera.
  • B11 to B18, B21 to... Indicate the timing of capturing image data corresponding to each pixel line of the image sensor, which means horizontal synchronization signals.
  • FIG. 5B shows the detection light emission periods I11, I12, and I13 from the first light source 21, and the detection light emission periods I21 and I22 from the second light source 22, respectively.
  • the light emission times of the light sources 21 and 22 are the same, and light is emitted alternately at a constant cycle.
  • the image sensor is driven frame by frame from the line H000 to the line H800.
  • the image obtained by driving for one frame corresponds to the entire image of the subject, and one or a plurality of pixel lines can be set as a predetermined range corresponding to the eye region in the image.
  • the line-of-sight detection unit 60 is composed of a CPU and a memory of a computer, and the processing by each block shown in FIG. 3 is performed by executing software installed in advance.
  • the gaze detection unit 60 includes a bright pupil image detection unit 61, a dark pupil image detection unit 62, a pupil center calculation unit 63, a corneal reflection light center detection unit 64, and a gaze direction calculation unit 65. .
  • the image given to the line-of-sight detection unit 60 is read into the bright pupil image detection unit 61 and the dark pupil image acquisition unit 62, respectively.
  • the bright pupil image detection unit 61 detects an eye image when the light source and the camera are combined, which satisfies any of the following bright pupil imaging conditions (a).
  • the dark pupil image detection unit 62 detects the following dark pupils: An eye image when the combination of the light source and the camera satisfies any one of the imaging conditions (b) is detected.
  • A-2) During the lighting period of the second light source 22 An image is acquired by the substantially coaxial second camera 24 (b) Dark pupil photographing condition (b-1) An image is acquired by the non-coaxial second camera 24 during the lighting period of the first light source 21 (b-2) During the lighting period of the second light source 22, an image is acquired by the first camera 23 that is non-coaxial with the first light source 22.
  • the infrared light reflected by the retina is transmitted to the second camera 24.
  • the pupil appears dark because it is hardly incident. Therefore, this image is extracted by the dark pupil image detection unit 62 as a dark pupil image. The same applies to an image acquired by the non-coaxial first camera 23 when the second light source 22 is turned on.
  • the pupil center calculation unit 63 subtracts the dark pupil image detected by the dark pupil image detection unit 62 from the bright pupil image detected by the bright pupil image detection unit 61 to generate a pupil image signal whose pupil shape is bright. To be acquired.
  • the pupil image signal is image-processed and binarized, and an area image corresponding to the shape and area of the pupil is calculated. Further, an ellipse including this area image is extracted, and an intersection point between the major axis and the minor axis of the ellipse is calculated as a feature amount as the center position of the pupil.
  • the center position of the pupil may be calculated from the luminance distribution of the pupil image.
  • the dark pupil image signal detected by the dark pupil image detection unit 62 is given to the corneal reflection light center detection unit 64.
  • the dark pupil image signal includes a luminance signal by reflected light reflected from the reflection point of the cornea.
  • the reflected light from the reflection point of the cornea forms a Purkinje image, and is acquired as a spot image with a very small area by the imaging devices of the cameras 23 and 24.
  • the corneal reflection light center detection unit 64 performs image processing on the spot image, and obtains the center of the reflected light from the reflection point of the cornea as a feature amount.
  • the pupil center calculated value calculated by the pupil center calculating unit 63 and the corneal reflected light center calculated value calculated by the corneal reflected light center detecting unit 64 are given to the gaze direction calculating unit 65.
  • the line-of-sight direction calculation unit 65 detects the direction of the line of sight from the pupil center calculated value and the corneal reflection light center calculated value.
  • the line-of-sight direction calculation unit 65 calculates a linear distance ⁇ between the center of the pupil and the center of the reflection point from the cornea. In addition, XY coordinates with the center of the pupil as the origin are set, and an inclination angle ⁇ between the line connecting the center of the pupil and the center of the reflection point and the X axis is calculated. Further, the line-of-sight direction is calculated from the linear distance ⁇ and the inclination angle ⁇ .
  • the calculated gaze direction data is output to the control unit 11 as a detection result by the gaze direction calculation unit 65.
  • the line-of-sight direction may be calculated using the iris center instead of the pupil center.
  • the iris center for example, the difference between the reflectance of the iris (black eye) and white eye of the image satisfying the bright pupil photographing condition is used to extract the iris part into an ellipse or a circle, and the center of the extracted figure is calculated.
  • the difference between the reflectance of the iris (black eye) and white eye of the image satisfying the bright pupil photographing condition is used to extract the iris part into an ellipse or a circle, and the center of the extracted figure is calculated.
  • FIG. 6 is a flowchart showing the flow of gaze detection according to the first embodiment.
  • the entire image A1 (FIG. 4) of the subject SB is acquired by the image acquisition unit 20 (step S11 in FIG. 6).
  • the first light source 21 and the second light source 22 emit light alternately, and the first camera 23 and the second camera 24 simultaneously capture images in synchronization with the lighting of the first light source 21.
  • a bright pupil image is acquired by the first camera 23 and a dark pupil image is acquired by the second camera 24.
  • the first camera 23 and the second camera 24 capture images simultaneously in synchronization with the lighting.
  • a dark pupil image is acquired by the first camera 23 and a bright pupil image is acquired by the second camera 24.
  • the captured image data is stored in the memory 12, and the bright pupil image acquired by the first camera 23 or the second camera 24 is given to the face detection unit 30 as the entire image A1.
  • the face detection unit 30 performs face detection processing on the entire image A1 (FIG. 4) given from the image acquisition unit 20 (step S12 in FIG. 6).
  • the face detection unit 30 Prior to face detection processing, the face detection unit 30 performs downsizing to reduce the number of pixels by binning processing or the like.
  • the face detection unit 30 performs face detection by applying various detection methods to the downsized image, and extracts a face image A2. For example, initial detection is performed based on the Haar-like face detection method, and information on general facial feature parts registered in the memory 12 in advance, for example, the eyebrow BR and eyeball EB in the entire image A1 shown in FIG.
  • the face image A2 is extracted by comparing the positions, shapes, sizes, etc.
  • the face orientation is also detected by comparing the acquired image with information on each characteristic part for a plurality of face orientations, for example, front, diagonal right direction, and diagonal left direction.
  • the face detection unit 30 is based on the color and brightness of the detected face image, and a plurality of landmarks corresponding to each feature part, for example, the contour lines of the eyebrows BR, the eyeballs EB, the iris IR, and the lips LP. The ridgeline of the nose NS is detected. Detection information about the detected face image A2 and landmark is output to the normalization processing unit 40.
  • the normalization processing unit 40 maintains the relationship between the plurality of landmarks detected by the face detection unit 30 so that the face is directed frontward and has a predetermined size by, for example, affine transformation.
  • the face image is normalized by this conversion (step S13).
  • the normalized image data is sent to the eye region image acquisition unit 50, and the eye region image acquisition unit 50 generates an image including the eyeballs of both eyes based on the position / range information of the eyeballs detected as landmarks.
  • the included range is set as the initial predetermined range A3 (FIG. 4) (step S14).
  • the eye region image acquisition unit 50 reads the bright pupil image and the dark pupil image acquired by the image acquisition unit 20 from the memory 12, and extracts and acquires an image in a range corresponding to the predetermined range A3 in these images. (Step S15).
  • the image acquired in this way is given to the control unit 11 as a determination unit.
  • the control unit 11 determines whether or not an eye region image is included in the image received from the eye region image acquisition unit 50 (step S16, first determination step). This determination is performed by comparing general eye feature information registered in advance in the memory 12 with, for example, the position, shape, and size of the eyeball and iris.
  • the control unit 11 adds the eye region image to the image received from the eye region image acquisition unit 50. Is included (YES in step S16).
  • the control unit 11 outputs the image received from the eye area image acquisition unit 50 to the line-of-sight detection unit 60.
  • the bright pupil image detection unit 61 detects the bright pupil image
  • the dark pupil image detection unit 62 detects the dark pupil image.
  • the pupil center calculation unit 63 subtracts the dark pupil image from the bright pupil image to obtain a pupil image signal in which the shape of the pupil is bright, and based on this signal, a portion corresponding to the shape and area of the pupil The center position of the pupil is calculated as a feature amount from the ellipse including this area image (step S17).
  • the corneal reflection light center detection unit 64 performs image processing on the spot image included in the dark pupil image signal, and obtains the center of the reflection light from the reflection point of the cornea as a feature amount (step S17).
  • the gaze direction calculation unit 65 detects the gaze direction from the pupil center calculation value calculated by the pupil center calculation unit 63 and the corneal reflection light center calculation value calculated by the corneal reflection light center detection unit 64. (Step S18).
  • step S15 After detecting the line-of-sight direction, an image is acquired within the predetermined range set in step S14 (step S15).
  • the first light source 21 and the second light source 22 are alternately turned on, and the pupil images corresponding to the imaging conditions are captured by the two cameras 23 and 24.
  • the control unit 11 determines whether or not an eye region image is included (step S16, first determination step).
  • the line-of-sight detection unit 60 extracts the positions of the pupil center and the corneal reflection light center as the feature amount. (Step S17). Based on this feature amount, the line-of-sight direction calculation unit 65 detects the line-of-sight direction (step S18).
  • step S16 determines whether the eye area image is included as a result of the determination by the control unit 11 (step S16) (NO in step S16).
  • step S11 the entire image is acquired again (step S11).
  • face image detection (step S12) and normalization processing (step S13) are executed, and a new predetermined range is set for the normalized image.
  • step S14 the data of the predetermined range stored in the memory 12 is updated (step S14), and the subsequent processing after image acquisition (step S15) is performed.
  • the eye region image when only the image of the eyeball of one eye is included, the image of the eyeball of both eyes has sufficient density and resolution for feature amount detection. The case where there was not.
  • the visual line detection method has the following effects.
  • (1) In the first determination step (step S16 in FIG. 6), it is determined whether or not the eye area image of the subject is included in the image of the predetermined range. Without detecting the entire image, the line-of-sight direction is continuously detected based on the image in the predetermined range. For this reason, it is possible to suppress the data size of the image acquired every time while ensuring the accuracy of the line-of-sight detection, and to reduce the processing load and increase the processing speed.
  • (2) When an image sensor driven by a rolling shutter system is used, the cost of the image sensor can be reduced, and the burden of calculation processing can be reduced and high-speed and high-precision gaze direction detection can be realized. .
  • the second determination step is executed by periodically acquiring a low resolution whole image.
  • the line-of-sight detection apparatus according to the second embodiment has the same configuration as the line-of-sight detection apparatus 10 according to the first embodiment.
  • detailed description of the same configuration, processing, action, and the like as in the first embodiment will be omitted.
  • FIG. 7 is a flowchart showing the flow of gaze detection according to the second embodiment.
  • the image acquisition unit 20 acquires the entire image A1 (FIG. 4) of the subject SB (step S21 in FIG. 7), and uses this entire image A1.
  • the face detection unit 30 performs face detection processing and extracts the face image A2 (step S22). Further, the face detection unit 30 detects a face orientation and a plurality of landmarks corresponding to each feature part.
  • step S23 the normalization of the face image in the normalization processing unit 40 (step S23), the setting of the predetermined range A3 in the eye region image acquisition unit 50 (step S24), and the determination in the control unit 11 as the determination unit (step S26,
  • the first determination step is the same as in the first embodiment.
  • step S24 and S25 since the predetermined range A3 is set based on the image including the eyeballs of both eyes, the control unit 11 adds the eye region image to the image received from the eye region image acquisition unit 50. Is included (YES in step S26), and the image received from the eye region image acquisition unit 50 is output to the line-of-sight detection unit 60.
  • the bright pupil image detection unit 61 detects the bright pupil image
  • the dark pupil image detection unit 62 detects the dark pupil image.
  • the pupil center calculation unit 63 subtracts the dark pupil image from the bright pupil image to obtain a pupil image signal in which the shape of the pupil is bright, and based on this signal, a portion corresponding to the shape and area of the pupil The center position of the pupil is calculated as a feature amount from the ellipse including this area image (step S27).
  • the corneal reflection light center detection unit 64 performs image processing on the spot image included in the dark pupil image signal, and obtains the center of the reflected light from the reflection point of the cornea as a feature amount (step S27). Subsequently, the gaze direction calculation unit 65 detects the gaze direction from the pupil center calculation value calculated by the pupil center calculation unit 63 and the corneal reflection light center calculation value calculated by the corneal reflection light center detection unit 64. (Step S28).
  • step S29 the entire image of the subject SB is acquired by the image acquisition unit 20 (step S29).
  • This image has a resolution lower than that of the image acquired in step S21, and has a minimum resolution that enables simple face image detection described below.
  • face image detection processing is executed based on this image (step S30, second determination step).
  • this face image detection it is confirmed that the position and orientation of the face are not deviated by a predetermined amount or more with respect to the face image detection in step S22 by comparing feature parts, and the detection of landmarks is omitted.
  • This predetermined amount is set as a reference amount in which the eye area image is again included in the predetermined range A3 once set in the general feature site arrangement.
  • step S24 is performed.
  • An image is acquired for the predetermined range set in (Step S25).
  • the resolution of the image acquired here is as high as the image acquired in step S21, and is higher than the resolution of the image acquired in step S29.
  • the first light source 21 and the second light source 22 are turned on alternately, and the pupil images corresponding to the imaging conditions are captured by the two cameras 23 and 24, as in step S21.
  • the control unit 11 determines whether or not an eye area image is included (step S26, first determination step).
  • the line-of-sight detection unit 60 extracts the positions of the pupil center and the corneal reflection light center as the feature amount. (Step S27). Based on this feature amount, the line-of-sight direction calculation unit 65 detects the line-of-sight direction (step S28).
  • step S26 As a result of the determination by the control unit 11 (step S26), when an eye area image is not included (NO in step S26), and (2) when a face image cannot be detected in step S30 ( If NO in step S30), that is, if the face position and orientation have deviated by a predetermined amount or more with respect to the result of face image detection in step S22, the entire image is acquired again (step S21). Face image detection (step S22) and normalization processing (step S23) are executed for the entire image, a new predetermined range is set for the normalized image, and the new predetermined range is stored in the memory 12. The data in the predetermined range is updated (step S24), and the subsequent processing after image acquisition (step S25) is performed.
  • step S30 of FIG. 7 is executed every time the detection of the line-of-sight direction (step S28) ends, but this execution interval may be set every predetermined number of times instead of every time. Further, instead of the second determination step shown in step S30 of FIG. 7, the second determination step may be executed independently of the processing flow shown in FIG.
  • the line-of-sight detection method of the second embodiment since it is possible to perform the determination with an image having a small data amount in the second determination step, it is possible to reduce the burden of calculation processing while ensuring the accuracy of line-of-sight detection. it can.
  • Other operations, effects, and modifications are the same as those in the first embodiment.
  • the line-of-sight detection method according to the present invention is useful in that the processing load can be reduced and the processing speed can be increased while ensuring the accuracy of line-of-sight detection.

Abstract

[Problem] To provide a sight line detection method which, while ensuring precision in sight line direction detection, is capable of reducing computational processing load and achieving greater speed. [Solution] Provided is a sight line detection method, comprising a first assessment step of periodically assessing whether eye region images of a subject are included in an image of a prescribed range which is acquired in order to extract the eye region images. If the eye region images of the subject are included in the image of the prescribed range in the first assessment step, the eye region images are extracted and the sight line direction of the subject is detected on the basis of the extracted eye region images. If the eye region images of the subject are not included in the image of the prescribed range in the first assessment step, a new overall image is acquired, a face image of the subject is detected from the overall image, eye region images of the subject are extracted from the detected face image, the sight line direction of the subject is detected on the basis of the extracted eye region images, and furthermore, a range which includes the extracted eye region images is updated as the prescribed range.

Description

視線検出方法Gaze detection method
 本発明は、対象者の視線方向を検出する視線検出方法に関する。 The present invention relates to a gaze detection method for detecting a gaze direction of a subject.
 特許文献1に記載の視線検出装置では、まず、取得された画像データから、顔の中心位置、顔を構成するパーツの中心位置、瞳の位置等の器官位置などが検出され、検出された中心位置や器官位置を使用して、顔の大きさが所定のサイズで、かつ顔の向きが正立するように正規化が行われる。その後、正規化された画像データを使用して、顔の向きに対応する特徴量と目領域の特徴量が抽出され、これらの特徴量を使用して視線方向の推定が行われる。 In the line-of-sight detection device described in Patent Document 1, first, the center position of the face, the center position of the parts constituting the face, the organ position such as the pupil position, and the like are detected from the acquired image data, and the detected center Using the position and the organ position, normalization is performed so that the size of the face is a predetermined size and the orientation of the face is upright. After that, using the normalized image data, the feature amount corresponding to the face direction and the feature amount of the eye region are extracted, and the gaze direction is estimated using these feature amounts.
特開2012-037934号公報JP 2012-037934 A
 しかしながら、特許文献1に記載の視線検出装置においては、視線方向の推定を更新するたびに、正規化処理から、顔の向きに対応する特徴量と目領域の特徴量の抽出までの演算処理を行うため、毎回の処理量が多くなり、視線検出処理を高速化することが困難となっている。さらに、近年では、目領域の特徴量の抽出精度を上げて視線方向の推定の確度を高めることが求められつつあり、このために画像の解像度を高めると上記演算処理の負担はさらに高いものとなる。 However, in the gaze detection device described in Patent Document 1, every time the gaze direction estimation is updated, the calculation process from the normalization process to the extraction of the feature quantity corresponding to the face direction and the feature quantity of the eye area is performed. Therefore, the amount of processing increases each time, and it is difficult to speed up the line-of-sight detection process. Furthermore, in recent years, it has been demanded to improve the accuracy of eye direction estimation by increasing the accuracy of eye area feature amount extraction. Become.
 そこで本発明は、視線方向検出の精度を確保しつつ、演算処理の負担を抑えて高速化を図ることができる視線検出方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a gaze detection method capable of increasing the speed by suppressing the burden of calculation processing while ensuring the accuracy of gaze direction detection.
 上記課題を解決するために、本発明の視線検出方法は、眼領域画像を抽出するために取得された、所定範囲の画像に対象者の眼領域画像が含まれているか否かを一定周期で判別する第1の判別ステップを有し、第1の判別ステップにおいて所定範囲の画像に対象者の眼領域画像が含まれている場合は、その眼領域画像を抽出し、抽出した眼領域画像に基づいて対象者の視線方向を検出し、第1の判別ステップにおいて所定範囲の画像に対象者の眼領域画像が含まれていない場合は、新たに全体画像を取得し、この全体画像から対象者の顔画像を検出し、検出した顔画像から対象者の眼領域画像を抽出して、抽出した眼領域画像に基づいて対象者の視線方向を検出し、さらに、抽出した眼領域画像を含む範囲を所定範囲として更新することを特徴としている。
 これにより、所定範囲の画像に眼領域画像が含まれている限り、すなわち、所定範囲から眼領域画像がロストしない限り、全体画像を取得せずに所定範囲の画像から抽出した眼領域画像に基づいて視線方向を算出するため、視線方向の算出の精度を維持しつつ、演算処理の負担を抑えることができ、処理の高速化を図ることができる。
In order to solve the above-described problem, the eye gaze detection method of the present invention determines whether or not an eye region image of a subject is included in a predetermined range of images acquired for extracting an eye region image at a constant cycle. A first discriminating step for discriminating; when the eye region image of the subject is included in the image of the predetermined range in the first discriminating step, the eye region image is extracted, and the extracted eye region image is Based on this, the direction of the subject's line of sight is detected, and when the eye area image of the subject is not included in the image in the predetermined range in the first determination step, the whole image is newly acquired, and the subject A face image of the subject, the eye area image of the subject person is extracted from the detected face image, the line-of-sight direction of the subject person is detected based on the extracted eye area image, and the range including the extracted eye area image Is updated as a predetermined range. It is set to.
As a result, as long as the eye area image is included in the image in the predetermined range, that is, unless the eye area image is lost from the predetermined range, the entire image is not acquired and the eye area image extracted from the image in the predetermined range is used. Since the gaze direction is calculated, the calculation processing load can be suppressed while maintaining the accuracy of the gaze direction calculation, and the processing speed can be increased.
 本発明の視線検出方法において、第1の判別ステップとは独立して、全体画像を取得し、取得した全体画像から対象者の顔画像が検出できるか否かを判別する第2の判別ステップを有し、第2の判別ステップにおいて取得する全体画像は、第1の判別ステップで判別される所定範囲の画像よりも解像度が低く、第2の判別ステップにおいて取得した全体画像から対象者の顔画像が検出できない場合は、次の第1の判別ステップを待たずに、新たに全体画像を取得し、この画像から対象者の顔画像を検出し、検出した顔画像から対象者の眼領域画像を抽出して、抽出した眼領域画像に基づいて対象者の視線方向を検出し、さらに、抽出した眼領域画像を含む範囲を所定範囲として更新することが好ましい。
 これにより、データ量の小さな画像で判別を行うことができるため、視線検出の精度を確保しつつ、演算処理の負担を軽減することができる。
In the line-of-sight detection method of the present invention, independent of the first determination step, a second determination step of acquiring an entire image and determining whether or not the face image of the subject can be detected from the acquired entire image. The entire image acquired in the second determination step has a lower resolution than the image in the predetermined range determined in the first determination step, and the subject's face image from the entire image acquired in the second determination step Cannot be detected, a new whole image is acquired without waiting for the next first determination step, the face image of the subject is detected from this image, and the eye area image of the subject is detected from the detected face image. It is preferable to extract and detect the gaze direction of the subject based on the extracted eye region image, and further update the range including the extracted eye region image as a predetermined range.
Thereby, since it can discriminate | determine with an image with small data amount, the burden of arithmetic processing can be reduced, ensuring the accuracy of a gaze detection.
 本発明の視線検出方法において、画像の取得は、複数の画素が水平方向及び垂直方向に配列され、ローリングシャッタ方式で駆動される撮像素子で行われ、所定範囲は、撮像素子の水平方向に並ぶ1つまたは2以上のラインで構成されることが好ましい。
 これにより、撮像素子のコストを下げることができるとともに、演算処理の負担を軽減して高速かつ高精度の視線方向検出を実現することができる。
In the line-of-sight detection method of the present invention, image acquisition is performed by an image sensor in which a plurality of pixels are arranged in a horizontal direction and a vertical direction and driven by a rolling shutter system, and the predetermined range is aligned in the horizontal direction of the image sensor. It is preferable to be composed of one or two or more lines.
As a result, the cost of the image sensor can be reduced, and the burden of calculation processing can be reduced, and high-speed and high-precision gaze direction detection can be realized.
 本発明の視線検出方法によると、視線方向検出の精度を確保しつつ、演算処理の負担を抑え、処理の高速化を図ることができる。 According to the line-of-sight detection method of the present invention, it is possible to reduce the processing load and ensure high-speed processing while ensuring the accuracy of line-of-sight detection.
本発明の第1実施形態に係る視線検出装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the gaze detection apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態の画像取得部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the image acquisition part of 1st Embodiment of this invention. 本発明の第1実施形態の視線検出部の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the gaze detection part of 1st Embodiment of this invention. 対象者の画像の例を示す図である。It is a figure which shows the example of a subject's image. (A)は、撮像素子からの画像取得タイミングを模式的に示す図、図5(B)は第1光源と第2光源の発光期間を模式的に示す図である。(A) is a figure which shows typically the image acquisition timing from an image pick-up element, FIG.5 (B) is a figure which shows typically the light emission period of a 1st light source and a 2nd light source. 本発明の第1実施形態に係る視線検出の流れを示すフローチャートである。It is a flowchart which shows the flow of a gaze detection based on 1st Embodiment of this invention. 本発明の第2実施形態に係る視線検出の流れを示すフローチャートである。It is a flowchart which shows the flow of a gaze detection based on 2nd Embodiment of this invention.
 以下、本発明の実施形態に係る視線検出方法について図面を参照しつつ詳しく説明する。
 <第1実施形態>
<視線検出装置の構成>
 図1~図3を参照して、第1実施形態に係る視線検出方法に用いる視線検出装置について説明する。ここで、図1は、第1実施形態に係る視線検出装置10の構成を示す機能ブロック図、図2は、第1実施形態の画像取得部20の構成を示す機能ブロック図、図3は、第1実施形態の視線検出部60の構成を示す機能ブロック図である。図4は、対象者の画像の例を示す図である。
Hereinafter, a gaze detection method according to an embodiment of the present invention will be described in detail with reference to the drawings.
<First Embodiment>
<Configuration of eye gaze detection device>
With reference to FIG. 1 to FIG. 3, a visual line detection device used in the visual line detection method according to the first embodiment will be described. Here, FIG. 1 is a functional block diagram showing the configuration of the line-of-sight detection device 10 according to the first embodiment, FIG. 2 is a functional block diagram showing the configuration of the image acquisition unit 20 of the first embodiment, and FIG. It is a functional block diagram which shows the structure of the gaze detection part 60 of 1st Embodiment. FIG. 4 is a diagram illustrating an example of an image of a subject.
 図1に示すように、第1実施形態に係る視線検出装置10は、制御部11と、メモリ12と、画像取得部20と、顔検出部30と、正規化処理部40と、眼領域画像取得部50と、視線検出部60とを備える。視線検出装置10は、例えば、自動車の車室内のインストルメントパネルやウインドシールドの上部などに、対象者としての運転者の顔に向けるように設置される。 As shown in FIG. 1, the line-of-sight detection device 10 according to the first embodiment includes a control unit 11, a memory 12, an image acquisition unit 20, a face detection unit 30, a normalization processing unit 40, and an eye region image. An acquisition unit 50 and a line-of-sight detection unit 60 are provided. The line-of-sight detection device 10 is installed, for example, on an instrument panel in an automobile interior or an upper part of a windshield so as to face the driver's face as a subject.
 視線検出装置10においては、画像取得部20によって取得された対象者SBの全体画像A1(図4)、例えば上半身に対応する範囲の画像から顔検出部30において顔画像A2(図4)を抽出し、この顔画像A2について正規化処理部40で正規化処理を行う。正規化処理された顔画像は、眼領域画像取得部50において、眼領域を含む所定範囲A3(図4)が設定され、この所定範囲内の眼領域画像が抽出されて視線検出部60へ出力される。視線検出部60では、受け取った画像に基づいて特徴量を抽出し、この特徴量に基づいて対象者の視線方向を検出する。画像取得部20による画像取得から視線検出部60による視線方向の検出までの処理は制御部11による制御にしたがって実行され、その処理に必要な情報、処理結果などはメモリ12に保存され、必要に応じて読み出される。 In the line-of-sight detection device 10, the face detection unit 30 extracts the face image A2 (FIG. 4) from the entire image A1 (FIG. 4) of the subject SB acquired by the image acquisition unit 20, for example, an image in a range corresponding to the upper body. The normalization processing unit 40 performs normalization processing on the face image A2. For the normalized face image, a predetermined range A3 (FIG. 4) including the eye region is set in the eye region image acquisition unit 50, and an eye region image within this predetermined range is extracted and output to the line-of-sight detection unit 60. Is done. The line-of-sight detection unit 60 extracts a feature amount based on the received image, and detects the gaze direction of the subject based on the feature amount. Processing from image acquisition by the image acquisition unit 20 to detection of the line-of-sight direction by the line-of-sight detection unit 60 is executed according to control by the control unit 11, information necessary for the processing, processing results, and the like are stored in the memory 12 and necessary. Reads accordingly.
 眼領域画像取得部50で設定された所定範囲はメモリ12に記憶され、視線検出部60による視線方向の検出後は、この所定範囲で次の画像が取得され、この画像に眼領域画像が含まれるか否かが判別部としての制御部11によって判別される。取得された画像に眼領域画像が含まれていれば上述の処理と同様に視線方向が検出される。制御部11による判別の結果、所定範囲の画像に眼領域画像が含まれていない場合は、改めて画像取得部20によって全体画像が取得され、この画像に基づいて顔画像の検出と正規化処理の後に、所定範囲を新たに設定して、この範囲をもって、メモリ12に記憶された所定範囲のデータを更新する。さらに、この所定範囲で取得した画像に眼領域画像が含まれている場合には、この眼領域画像から抽出した特徴量に基づいて視線方向を検出する。以下、各構成部材・ブロックについて説明する。 The predetermined range set by the eye area image acquisition unit 50 is stored in the memory 12, and after the gaze direction is detected by the line-of-sight detection unit 60, the next image is acquired within this predetermined range, and this image includes the eye area image. It is determined by the control unit 11 as a determination unit. If an eye area image is included in the acquired image, the line-of-sight direction is detected in the same manner as the above-described processing. As a result of the determination by the control unit 11, when the eye area image is not included in the image in the predetermined range, the entire image is acquired by the image acquisition unit 20, and the detection of the face image and the normalization processing are performed based on this image. Later, a predetermined range is newly set, and the data in the predetermined range stored in the memory 12 is updated with this range. Further, when an eye area image is included in the image acquired in the predetermined range, the line-of-sight direction is detected based on the feature amount extracted from the eye area image. Hereinafter, each constituent member / block will be described.
 画像取得部20は、図2に示すように、第1光源21と、第2光源22と、第1カメラ23と、第2カメラ24と、露光制御部25と、光源制御部26とを備える。 As shown in FIG. 2, the image acquisition unit 20 includes a first light source 21, a second light source 22, a first camera 23, a second camera 24, an exposure control unit 25, and a light source control unit 26. .
 第1光源21は複数個のLED(発光ダイオード)光源からなる。これらのLED光源は、第1カメラ23のレンズの外側において、レンズを囲むように配置されている。
 第2光源22も複数個のLED光源からなる。これらのLED光源は、第2カメラ24のレンズの外側において、レンズを囲むように配置されている。
The first light source 21 includes a plurality of LED (light emitting diode) light sources. These LED light sources are arranged outside the lens of the first camera 23 so as to surround the lens.
The second light source 22 is also composed of a plurality of LED light sources. These LED light sources are arranged outside the lens of the second camera 24 so as to surround the lens.
 第1光源21のLED光源、および、第2光源22のLED光源は、800nm以上1000nm以下の赤外光(近赤外光)を出射し、この検知光を運転者の眼に与えることができるように配置されている。特に、850nmは、人の眼の眼球内での光吸収率が低い波長であり、この光は眼球の奥の網膜で反射されやすい。 The LED light source of the first light source 21 and the LED light source of the second light source 22 emit infrared light (near infrared light) of 800 nm or more and 1000 nm or less, and this detection light can be given to the driver's eyes. Are arranged as follows. In particular, 850 nm is a wavelength with a low light absorption rate in the eyeball of a human eye, and this light is easily reflected by the retina at the back of the eyeball.
 カメラ23、24は、撮像素子として、例えばCMOS(相補型金属酸化膜半導体)を有している。この撮像素子は運転者の眼を含む顔の画像を取得し、水平方向および垂直方向に配列された複数の画素で光が検出される。
 これらのカメラ23、24においては、2つの光源21、22から出射される検知光の波長に合わせたバンドパスフィルタを配置していることが好ましい。これにより、明瞳孔画像検出部61や暗瞳孔画像検出部62における瞳孔画像の抽出や、視線方向算出部65における視線方向の算出を精度良く行うことができる。
The cameras 23 and 24 have, for example, CMOS (complementary metal oxide semiconductor) as an image sensor. This image sensor acquires an image of a face including the driver's eyes, and light is detected by a plurality of pixels arranged in the horizontal direction and the vertical direction.
In these cameras 23 and 24, it is preferable to arrange band pass filters in accordance with the wavelengths of the detection lights emitted from the two light sources 21 and 22. Thereby, the extraction of the pupil image in the bright pupil image detection unit 61 and the dark pupil image detection unit 62 and the calculation of the gaze direction in the gaze direction calculation unit 65 can be performed with high accuracy.
 カメラ23、24は、制御部11の制御にしたがって、撮影の範囲および解像度を切り替えることができる。
 撮影の範囲は、例えば全体画像と部分画像に切り替えることができる。全体画像は、例えば車両の運転者を対象とする場合は、視線検出の対象となる位置としての運転席に着いた運転者の上半身の画像である。部分画像は、全体画像に基づいて眼領域画像取得部50で設定した所定範囲の画像、すなわち、運転者の眼領域に対応する範囲の画像である。
The cameras 23 and 24 can switch the shooting range and resolution according to the control of the control unit 11.
The shooting range can be switched between, for example, an entire image and a partial image. For example, when the driver of the vehicle is the target, the entire image is an image of the upper body of the driver who has arrived at the driver's seat as a position that is the target of gaze detection. The partial image is an image in a predetermined range set by the eye region image acquisition unit 50 based on the entire image, that is, an image in a range corresponding to the driver's eye region.
 撮影の解像度は、例えば高解像度と低解像度に切り替えることができる。高解像度の画像は、少なくとも、視線方向の検出に必要な特徴量を抽出可能な解像度を有する画像であり、低解像度の画像は、少なくとも、顔の特徴部位の検出ができ、これによって顔画像の検出が可能な解像度を有する画像である。 The shooting resolution can be switched between high resolution and low resolution, for example. A high-resolution image is an image having a resolution capable of extracting at least a feature amount necessary for detecting the gaze direction, and a low-resolution image can detect at least a feature portion of the face. It is an image having a resolution that can be detected.
 第1カメラ23と第1光源21のLED光源の光軸間距離は、視線検出部60と運転者としての運転者との距離を考慮して、第1カメラ23と第2カメラ24の光軸間距離に対して十分に短くしている。そのため、第1光源21は第1カメラ23に対して互いの光軸が略同軸であるとみなすことができる。同様に、第2カメラ24と第2光源22のLED光源の光軸間距離は、第1カメラ23と第2カメラ24の光軸間距離に対して十分に短くしているため、第2光源22は第2カメラ24に対して互いの光軸が略同軸であるとみなすことができる。 The distance between the optical axes of the LED light sources of the first camera 23 and the first light source 21 is determined based on the optical axes of the first camera 23 and the second camera 24 in consideration of the distance between the line-of-sight detection unit 60 and the driver as the driver. The distance is sufficiently short. Therefore, the first light source 21 can be regarded as having substantially the same optical axis as the first camera 23. Similarly, the distance between the optical axes of the LED light sources of the second camera 24 and the second light source 22 is sufficiently shorter than the distance between the optical axes of the first camera 23 and the second camera 24. It can be considered that the optical axes 22 of the second camera 24 are substantially coaxial with each other.
 これに対して、第1カメラ23と第2カメラ24の光軸間距離を十分に長くとっているため、第1光源21および第1カメラ23の各光軸と、第2光源22および第2カメラ24の各光軸とは、同軸ではない。以下の説明においては、上記配置を、2つの部材が略同軸である等と表現し、2つの部材が非同軸である等と表現することがある。 On the other hand, since the distance between the optical axes of the first camera 23 and the second camera 24 is sufficiently long, the optical axes of the first light source 21 and the first camera 23, the second light source 22 and the second light source 22. The optical axes of the camera 24 are not coaxial. In the following description, the above arrangement may be expressed as two members being substantially coaxial and the like, and the two members being non-coaxial.
 第1光源21と第2光源22の点灯(発光)のタイミングは光源制御部26によって制御される。この点灯のタイミングは露光制御部25からの指示信号によって設定され、露光制御部25は、制御部11の制御に従って、第1光源21と第2光源22の点灯に同期させるように、後述の撮影条件(明瞳孔撮影条件、暗瞳孔撮影条件)で、第1カメラ23と第2カメラ24に撮像を行わせる。 The timing of lighting (light emission) of the first light source 21 and the second light source 22 is controlled by the light source control unit 26. The timing of this lighting is set by an instruction signal from the exposure control unit 25, and the exposure control unit 25 performs shooting described later so as to be synchronized with the lighting of the first light source 21 and the second light source 22 according to the control of the control unit 11. The first camera 23 and the second camera 24 are caused to perform imaging under conditions (bright pupil imaging conditions, dark pupil imaging conditions).
 顔検出部30は、画像取得部20で取得した全体画像A1(図4)に対して、前処理としてビニング処理などにより画素の数を減らすダウンサイジングを行う。このダウンサイジングは、全体画像A1において隣り合う所定数の画素を1画素にまとめることによって解像度を低下させ、画像データのサイズを小さくするものである。このダウンサイジング処理は、後の顔検出処理が可能なレベルに設定されており、このレベルに対応して1画素にまとめる画素数も定められている。これにより、画像のデータサイズが小さくなるため、後の顔検出処理の精度を確保しつつ高速化することができる。 The face detection unit 30 performs downsizing on the entire image A1 (FIG. 4) acquired by the image acquisition unit 20 to reduce the number of pixels by binning processing or the like as preprocessing. This downsizing is to reduce the resolution and reduce the size of the image data by combining a predetermined number of adjacent pixels in the entire image A1 into one pixel. This downsizing process is set to a level at which a later face detection process can be performed, and the number of pixels to be combined into one pixel is determined in accordance with this level. As a result, the data size of the image is reduced, and the speed can be increased while ensuring the accuracy of the subsequent face detection processing.
 さらに、顔検出部30は、ダウンサイジング処理後の画像に各種の検出方法を適用することによって顔検出を行う。例えば、Haar-like顔検出法に基づいて初期検出を行い、さらに、あらかじめメモリ12に登録した一般的な顔の特徴部位の情報、例えば、眉、眼球、虹彩、鼻、唇の位置、形状、大きさなどのデータと照らし合わせて、この照合結果にしたがって顔の検出を行う。また、立体的な顔のデータとして、複数の顔向き、例えば正面、斜め右向き、斜め左向きについての各特徴部位の情報と、取得した画像とを照らし合わせることにより顔向きの検出も行う。 Furthermore, the face detection unit 30 performs face detection by applying various detection methods to the image after the downsizing process. For example, initial detection is performed based on the Haar-like face detection method, and information on general facial feature parts registered in the memory 12 in advance, for example, eyebrow, eyeball, iris, nose, lip position, shape, The face is detected according to the collation result in comparison with the size data. In addition, as the three-dimensional face data, the face orientation is also detected by comparing the acquired image with information on each characteristic part for a plurality of face orientations, for example, front, diagonal right direction, and diagonal left direction.
 また、顔検出部30は、検出された顔画像における色や明るさなどに基づいて、各特徴部位に対応する複数のランドマーク、例えば、眉、眼球、虹彩、唇の輪郭線、鼻の稜線を検出する。
 なお、一般的な顔の特徴部位の情報に加えて、または、これに代えて、特定の個人の顔の特徴部位の情報と、その個人を特定する氏名その他の識別情報とを組み合わせて予め登録し、画像取得部20で取得した画像との照合によって、顔検出とともに個人を認証するようにしてもよい。
The face detection unit 30 also uses a plurality of landmarks corresponding to each feature part, such as eyebrows, eyeballs, irises, lip contours, and nasal ridge lines, based on the color and brightness of the detected face image. Is detected.
In addition to or instead of general facial feature information, a combination of facial feature information of a specific individual and a name or other identification information that identifies the individual is registered in advance. The individual may be authenticated together with the face detection by collating with the image acquired by the image acquisition unit 20.
 正規化処理部40は、顔検出部30で検出された複数のランドマーク間の関係を維持しつつ、例えばアフィン変換によって、顔を正面向きとし、かつ、所定のサイズとなるように変換させ、これによって顔画像を正規化する。 The normalization processing unit 40 maintains the relationship between the plurality of landmarks detected by the face detection unit 30, and converts the face to face forward and has a predetermined size by, for example, affine transformation, This normalizes the face image.
 眼領域画像取得部50は、正規化処理部40で正規化された画像において、ランドマークとして検出された眼球の位置・範囲情報に基づいて、両眼の眼球を含む画像が含まれる範囲を所定範囲として設定する。さらに、眼領域画像取得部50は、画像取得部20で取得した画像のうち、所定範囲に対応する明瞳孔画像と暗瞳孔画像を眼領域画像として取得する。設定された所定範囲はメモリ12に保存され、取得された眼領域画像は視線検出部60へ出力される。 The eye region image acquisition unit 50 predetermines a range in which an image including both eyes is included in the image normalized by the normalization processing unit 40 based on the position / range information of the eyeball detected as a landmark. Set as a range. Furthermore, the eye area image acquisition unit 50 acquires, as the eye area image, a bright pupil image and a dark pupil image corresponding to a predetermined range among the images acquired by the image acquisition unit 20. The set predetermined range is stored in the memory 12, and the acquired eye region image is output to the line-of-sight detection unit 60.
 ここで所定範囲の設定例について説明する。図5は、ローリングシャッタ方式の撮像素子からの画像取得タイミングと光源の発光タイミングの例を模式的に示す図である。図5(A)は、撮像素子からの画像取得タイミングを示し、図5(B)は第1光源21と第2光源22の発光期間を示す。
 撮像素子の駆動方式には、グローバルシャッタ方式とローリングシャッタ方式があり、第1実施形態のカメラ23、24はいずれの方式の撮像素子も使用可能であるが、ここではローリングシャッタ方式の場合について説明する。
Here, an example of setting the predetermined range will be described. FIG. 5 is a diagram schematically illustrating an example of image acquisition timing from a rolling shutter type imaging device and light emission timing of a light source. 5A shows image acquisition timing from the image sensor, and FIG. 5B shows light emission periods of the first light source 21 and the second light source 22.
The image sensor drive system includes a global shutter system and a rolling shutter system, and the cameras 23 and 24 of the first embodiment can use any image sensor, but here the case of the rolling shutter system will be described. To do.
 図5(A)において、H000、H100、H200、H300、H400、H500、H600、H700、及び、H800は、撮像素子において垂直方向の上から下側へ順に並んだ、水平方向に並ぶ画素のラインをそれぞれ示している。撮像素子は、ローリングシャッタ方式で、これらのラインごとに駆動される。また、図5(A)の「VSYNC」は、カメラ23、24から出力される垂直同期信号であって、カメラのフレームレートにより決定され、制御部11はこれらの垂直同期信号に同期して、対応するカメラの撮像素子の画素のラインに対応する撮像データを取り込む。また、B11~B18、B21~・・・は、撮像素子の各画素ラインに対応する撮像データを取り込むタイミングを示しており、水平同期信号を意味している。 In FIG. 5A, H000, H100, H200, H300, H400, H500, H600, H700, and H800 are lines of pixels arranged in the horizontal direction in order from the top to the bottom in the vertical direction in the image sensor. Respectively. The image sensor is driven for each of these lines by a rolling shutter system. Further, “VSYNC” in FIG. 5A is a vertical synchronization signal output from the cameras 23 and 24 and is determined by the frame rate of the camera, and the control unit 11 is synchronized with these vertical synchronization signals, Capture image data corresponding to a pixel line of an image sensor of a corresponding camera. B11 to B18, B21 to... Indicate the timing of capturing image data corresponding to each pixel line of the image sensor, which means horizontal synchronization signals.
 図5(B)は、第1光源21からの検知光の出射期間I11、I12、I13と、第2光源22からの検知光の出射期間I21、I22とを示している。図5(B)に示す例では、光源21、22の発光時間は同じであり、一定の周期で交互に発光している。第1光源21または第2光源22からの検知光が発光しているそれぞれの期間において、撮像素子がラインH000からラインH800までの1フレーム分ずつ駆動される。この1フレーム分の駆動により得られる画像は対象者の全体画像に対応し、この画像のうちで眼領域に対応する所定範囲として、1つまたは複数の画素のラインを設定することができる。 FIG. 5B shows the detection light emission periods I11, I12, and I13 from the first light source 21, and the detection light emission periods I21 and I22 from the second light source 22, respectively. In the example shown in FIG. 5B, the light emission times of the light sources 21 and 22 are the same, and light is emitted alternately at a constant cycle. In each period in which the detection light from the first light source 21 or the second light source 22 is emitted, the image sensor is driven frame by frame from the line H000 to the line H800. The image obtained by driving for one frame corresponds to the entire image of the subject, and one or a plurality of pixel lines can be set as a predetermined range corresponding to the eye region in the image.
 視線検出部60は、コンピュータのCPUやメモリで構成されており、図3に示す各ブロックによる処理は、予めインストールされたソフトウエアを実行することで行われる。視線検出部60には、明瞳孔画像検出部61と、暗瞳孔画像検出部62と、瞳孔中心算出部63と、角膜反射光中心検出部64と、視線方向算出部65とが設けられている。 The line-of-sight detection unit 60 is composed of a CPU and a memory of a computer, and the processing by each block shown in FIG. 3 is performed by executing software installed in advance. The gaze detection unit 60 includes a bright pupil image detection unit 61, a dark pupil image detection unit 62, a pupil center calculation unit 63, a corneal reflection light center detection unit 64, and a gaze direction calculation unit 65. .
 視線検出部60に与えられた画像は、明瞳孔画像検出部61と暗瞳孔画像取得部62にそれぞれ読み込まれる。明瞳孔画像検出部61では、以下の明瞳孔撮影条件(a)のいずれかを満たす、光源とカメラの組み合わせのときの眼の画像が検出され、暗瞳孔画像検出部62では、以下の暗瞳孔撮影条件(b)のいずれかを満たす、光源とカメラの組み合わせのときの眼の画像が検出される。
(a)明瞳孔撮影条件
 (a-1)第1光源21の点灯期間に、これと略同軸の第1カメラ23で画像を取得
 (a-2)第2光源22の点灯期間に、これと略同軸の第2カメラ24で画像を取得
(b)暗瞳孔撮影条件
 (b-1)第1光源21の点灯期間に、これと非同軸の第2カメラ24で画像を取得
 (b-2)第2光源22の点灯期間に、これと非同軸の第1カメラ23で画像を取得
The image given to the line-of-sight detection unit 60 is read into the bright pupil image detection unit 61 and the dark pupil image acquisition unit 62, respectively. The bright pupil image detection unit 61 detects an eye image when the light source and the camera are combined, which satisfies any of the following bright pupil imaging conditions (a). The dark pupil image detection unit 62 detects the following dark pupils: An eye image when the combination of the light source and the camera satisfies any one of the imaging conditions (b) is detected.
(A) Bright pupil photographing condition (a-1) An image is acquired by the first camera 23 substantially coaxial with the first light source 21 during the lighting period. (A-2) During the lighting period of the second light source 22 An image is acquired by the substantially coaxial second camera 24 (b) Dark pupil photographing condition (b-1) An image is acquired by the non-coaxial second camera 24 during the lighting period of the first light source 21 (b-2) During the lighting period of the second light source 22, an image is acquired by the first camera 23 that is non-coaxial with the first light source 22.
<明瞳孔画像と暗瞳孔画像>
 光源21、22からの出射光の波長850nmは、運転者の眼の網膜に至る眼球内での吸収率が低いため、この波長の光は網膜で反射されやすい。例えば第1光源21が点灯したときに、第1光源21と略同軸の第1カメラ23で取得される画像では、網膜で反射された赤外光が瞳孔を通じて検出され、瞳孔が明るく見える。この画像が明瞳孔画像として明瞳孔画像検出部61で抽出される。これは、第2光源22が点灯したときに、これと略同軸の第2カメラ24で取得される画像についても同様である。
<Light pupil image and dark pupil image>
Since the wavelength 850 nm of the light emitted from the light sources 21 and 22 has a low absorption rate in the eyeball reaching the retina of the driver's eye, light of this wavelength is easily reflected by the retina. For example, when the first light source 21 is turned on, in the image acquired by the first camera 23 that is substantially coaxial with the first light source 21, infrared light reflected by the retina is detected through the pupil, and the pupil looks bright. This image is extracted as a bright pupil image by the bright pupil image detection unit 61. The same applies to an image acquired by the second camera 24 that is substantially coaxial with the second light source 22 when it is turned on.
 これに対して、第1光源21を点灯したときに、第1光源21と非同軸の第2カメラ24で画像を取得する場合には、網膜で反射された赤外光が第2カメラ24にほとんど入射しないため、瞳孔が暗く見える。したがって、この画像は暗瞳孔画像として、暗瞳孔画像検出部62で抽出される。これは、第2光源22が点灯したときに、非同軸の第1カメラ23で取得される画像についても同様である。 On the other hand, when the first light source 21 is turned on and an image is acquired by the second camera 24 that is non-coaxial with the first light source 21, the infrared light reflected by the retina is transmitted to the second camera 24. The pupil appears dark because it is hardly incident. Therefore, this image is extracted by the dark pupil image detection unit 62 as a dark pupil image. The same applies to an image acquired by the non-coaxial first camera 23 when the second light source 22 is turned on.
 瞳孔中心算出部63では、明瞳孔画像検出部61で検出された明瞳孔画像から暗瞳孔画像検出部62で検出された暗瞳孔画像が減算されて、瞳孔の形状が明るくなった瞳孔画像信号が取得される。瞳孔中心算出部63では、瞳孔画像信号が画像処理されて二値化され、瞳孔の形状と面積に対応する部分のエリア画像が算出される。さらに、このエリア画像を含む楕円が抽出され、特徴量として、楕円の長軸と短軸との交点が、瞳孔の中心位置として算出される。あるいは、瞳孔画像の輝度分布により瞳孔の中心位置が算出されてもよい。 The pupil center calculation unit 63 subtracts the dark pupil image detected by the dark pupil image detection unit 62 from the bright pupil image detected by the bright pupil image detection unit 61 to generate a pupil image signal whose pupil shape is bright. To be acquired. In the pupil center calculation unit 63, the pupil image signal is image-processed and binarized, and an area image corresponding to the shape and area of the pupil is calculated. Further, an ellipse including this area image is extracted, and an intersection point between the major axis and the minor axis of the ellipse is calculated as a feature amount as the center position of the pupil. Alternatively, the center position of the pupil may be calculated from the luminance distribution of the pupil image.
 暗瞳孔画像検出部62で検出された暗瞳孔画像信号は、角膜反射光中心検出部64に与えられる。暗瞳孔画像信号は、角膜の反射点から反射された反射光による輝度信号が含まれている。角膜の反射点からの反射光はプルキニエ像を結像するものであり、カメラ23、24の撮像素子では、きわめて小さい面積のスポット画像として取得される。角膜反射光中心検出部64では、このスポット画像が画像処理されて、特徴量として、角膜の反射点からの反射光の中心が求められる。 The dark pupil image signal detected by the dark pupil image detection unit 62 is given to the corneal reflection light center detection unit 64. The dark pupil image signal includes a luminance signal by reflected light reflected from the reflection point of the cornea. The reflected light from the reflection point of the cornea forms a Purkinje image, and is acquired as a spot image with a very small area by the imaging devices of the cameras 23 and 24. The corneal reflection light center detection unit 64 performs image processing on the spot image, and obtains the center of the reflected light from the reflection point of the cornea as a feature amount.
 瞳孔中心算出部63で算出された瞳孔中心算出値と角膜反射光中心検出部64で算出された角膜反射光中心算出値は、視線方向算出部65に与えられる。視線方向算出部65では、瞳孔中心算出値と角膜反射光中心算出値とから視線の向きが検出される。 The pupil center calculated value calculated by the pupil center calculating unit 63 and the corneal reflected light center calculated value calculated by the corneal reflected light center detecting unit 64 are given to the gaze direction calculating unit 65. The line-of-sight direction calculation unit 65 detects the direction of the line of sight from the pupil center calculated value and the corneal reflection light center calculated value.
 視線方向算出部65では、瞳孔の中心と、角膜からの反射点の中心との直線距離αが算出される。また瞳孔の中心を原点とするX-Y座標が設定され、瞳孔の中心と反射点の中心とを結ぶ線とX軸との傾き角度βが算出される。さらに、前記直線距離αと前記傾き角度βとから、視線方向が算出される。算出された視線方向のデータは、視線方向算出部65による検出結果として制御部11へ出力される。
 なお、瞳孔中心に代えて虹彩中心を用いて視線方向を算出してもよい。虹彩中心は、例えば、明瞳孔撮影条件を満たす画像の虹彩(黒目)と白目の反射率の違いを利用して、虹彩部分を楕円状または円形状に抽出し、抽出した図形の中心を算出することによって求める。
The line-of-sight direction calculation unit 65 calculates a linear distance α between the center of the pupil and the center of the reflection point from the cornea. In addition, XY coordinates with the center of the pupil as the origin are set, and an inclination angle β between the line connecting the center of the pupil and the center of the reflection point and the X axis is calculated. Further, the line-of-sight direction is calculated from the linear distance α and the inclination angle β. The calculated gaze direction data is output to the control unit 11 as a detection result by the gaze direction calculation unit 65.
The line-of-sight direction may be calculated using the iris center instead of the pupil center. For the iris center, for example, the difference between the reflectance of the iris (black eye) and white eye of the image satisfying the bright pupil photographing condition is used to extract the iris part into an ellipse or a circle, and the center of the extracted figure is calculated. Ask by.
<視線検出の流れ>
 図4と図6を参照しつつ第1実施形態の視線検出装置10を用いた視線検出の流れについて説明する。図6は、第1実施形態に係る視線検出の流れを示すフローチャートである。
<Flow of gaze detection>
A flow of gaze detection using the gaze detection device 10 of the first embodiment will be described with reference to FIGS. 4 and 6. FIG. 6 is a flowchart showing the flow of gaze detection according to the first embodiment.
 まず、画像取得部20によって対象者SBの全体画像A1(図4)を取得する(図6のステップS11)。具体的には、第1光源21と第2光源22を交互に発光させ、第1光源21の点灯に同期させて、第1カメラ23と第2カメラ24で同時に撮像を行う。このとき第1カメラ23で明瞳孔画像が取得され、第2カメラ24で暗瞳孔画像が取得される。第2光源22が点灯している期間についても、点灯に同期させて、第1カメラ23と第2カメラ24で同時に撮像が行われる。このときは、第1カメラ23で暗瞳孔画像が取得され、第2カメラ24で明瞳孔画像が取得される。撮像された画像データはメモリ12にそれぞれ保存され、第1カメラ23または第2カメラ24で取得された明瞳孔画像が全体画像A1として顔検出部30へ与えられる。 First, the entire image A1 (FIG. 4) of the subject SB is acquired by the image acquisition unit 20 (step S11 in FIG. 6). Specifically, the first light source 21 and the second light source 22 emit light alternately, and the first camera 23 and the second camera 24 simultaneously capture images in synchronization with the lighting of the first light source 21. At this time, a bright pupil image is acquired by the first camera 23 and a dark pupil image is acquired by the second camera 24. Even during the period when the second light source 22 is lit, the first camera 23 and the second camera 24 capture images simultaneously in synchronization with the lighting. At this time, a dark pupil image is acquired by the first camera 23 and a bright pupil image is acquired by the second camera 24. The captured image data is stored in the memory 12, and the bright pupil image acquired by the first camera 23 or the second camera 24 is given to the face detection unit 30 as the entire image A1.
 次に、顔検出部30は、画像取得部20から与えられた全体画像A1(図4)に対して顔検出処理を行う(図6のステップS12)。顔検出部30は、顔検出処理に先立って、ビニング処理などにより画素の数を減らすダウンサイジングを行う。顔検出部30は、ダウンサイズされた画像に対して各種の検出方法を適用することによって顔検出を行い、顔画像A2を抽出する。例えば、Haar-like顔検出法に基づいて初期検出を行い、さらに、あらかじめメモリ12に登録した一般的な顔の特徴部位の情報と、例えば、図4に示す全体画像A1における眉BR、眼球EB、虹彩IR、鼻NS、唇LPなどの位置、形状、大きさなどとを互いに照らし合わせることによって顔画像A2を抽出する。また、立体的な顔のデータとして、複数の顔向き、例えば正面、斜め右向き、斜め左向きについての各特徴部位の情報と、取得した画像とを照らし合わせることにより顔向きの検出も行う。さらに、顔検出部30は、検出された顔画像における色や明るさなどに基づいて、各特徴部位に対応する複数のランドマーク、例えば、眉BR、眼球EB、虹彩IR、唇LPの輪郭線、鼻NSの稜線を検出する。検出された顔画像A2およびランドマークについての検出情報は正規化処理部40へ出力される。 Next, the face detection unit 30 performs face detection processing on the entire image A1 (FIG. 4) given from the image acquisition unit 20 (step S12 in FIG. 6). Prior to face detection processing, the face detection unit 30 performs downsizing to reduce the number of pixels by binning processing or the like. The face detection unit 30 performs face detection by applying various detection methods to the downsized image, and extracts a face image A2. For example, initial detection is performed based on the Haar-like face detection method, and information on general facial feature parts registered in the memory 12 in advance, for example, the eyebrow BR and eyeball EB in the entire image A1 shown in FIG. The face image A2 is extracted by comparing the positions, shapes, sizes, etc. of the iris IR, the nose NS, the lips LP, etc. with each other. In addition, as the three-dimensional face data, the face orientation is also detected by comparing the acquired image with information on each characteristic part for a plurality of face orientations, for example, front, diagonal right direction, and diagonal left direction. Furthermore, the face detection unit 30 is based on the color and brightness of the detected face image, and a plurality of landmarks corresponding to each feature part, for example, the contour lines of the eyebrows BR, the eyeballs EB, the iris IR, and the lips LP. The ridgeline of the nose NS is detected. Detection information about the detected face image A2 and landmark is output to the normalization processing unit 40.
 つづいて、正規化処理部40は、顔検出部30で検出された複数のランドマーク間の関係を維持しつつ、例えばアフィン変換によって、顔を正面向きとし、かつ、所定のサイズとなるように変換させ、これによって顔画像を正規化する(ステップS13)。正規化された画像データは眼領域画像取得部50へ送られ、眼領域画像取得部50においては、ランドマークとして検出された眼球の位置・範囲情報に基づいて、両眼の眼球を含む画像が含まれる範囲が初期の所定範囲A3(図4)として設定される(ステップS14)。さらに、眼領域画像取得部50は、画像取得部20で取得した明瞳孔画像と暗瞳孔画像をメモリ12から読み出し、これらの画像において、上記所定範囲A3に対応する範囲の画像を抽出・取得する(ステップS15)。このように取得された画像は判別部としての制御部11へ与えられる。 Subsequently, the normalization processing unit 40 maintains the relationship between the plurality of landmarks detected by the face detection unit 30 so that the face is directed frontward and has a predetermined size by, for example, affine transformation. The face image is normalized by this conversion (step S13). The normalized image data is sent to the eye region image acquisition unit 50, and the eye region image acquisition unit 50 generates an image including the eyeballs of both eyes based on the position / range information of the eyeballs detected as landmarks. The included range is set as the initial predetermined range A3 (FIG. 4) (step S14). Furthermore, the eye region image acquisition unit 50 reads the bright pupil image and the dark pupil image acquired by the image acquisition unit 20 from the memory 12, and extracts and acquires an image in a range corresponding to the predetermined range A3 in these images. (Step S15). The image acquired in this way is given to the control unit 11 as a determination unit.
 次に、判別部としての制御部11は、眼領域画像取得部50から受け取った画像に眼領域画像が含まれているか否かを判別する(ステップS16、第1の判別ステップ)。この判別は、あらかじめメモリ12に登録した一般的な目の特徴部位の情報と、例えば、眼球や虹彩の位置、形状、大きさなどとを互いに照らし合わせることによって行う。ここで、上記ステップS14、S15において、両眼の眼球を含む画像に基づいて所定範囲A3が設定されていることから、制御部11は、眼領域画像取得部50から受け取った画像に眼領域画像が含まれていると判別する(ステップS16でYES)。制御部11は、眼領域画像取得部50から受け取った画像を視線検出部60へ出力する。 Next, the control unit 11 as a determination unit determines whether or not an eye region image is included in the image received from the eye region image acquisition unit 50 (step S16, first determination step). This determination is performed by comparing general eye feature information registered in advance in the memory 12 with, for example, the position, shape, and size of the eyeball and iris. Here, in step S14 and S15, since the predetermined range A3 is set based on the image including the eyeballs of both eyes, the control unit 11 adds the eye region image to the image received from the eye region image acquisition unit 50. Is included (YES in step S16). The control unit 11 outputs the image received from the eye area image acquisition unit 50 to the line-of-sight detection unit 60.
 眼領域画像を受け取った視線検出部60では、まず、明瞳孔画像検出部61で明瞳孔画像が検出され、暗瞳孔画像検出部62で暗瞳孔画像が検出される。さらに、瞳孔中心算出部63において、明瞳孔画像から暗瞳孔画像が減算されて、瞳孔の形状が明るくなった瞳孔画像信号が取得され、この信号に基づいて、瞳孔の形状と面積に対応する部分のエリア画像が算出され、このエリア画像を含む楕円から、特徴量として瞳孔の中心位置が算出される(ステップS17)。また、角膜反射光中心検出部64では、暗瞳孔画像信号に含まれるスポット画像が画像処理されて、特徴量として、角膜の反射点からの反射光の中心が求められる(ステップS17)。 In the line-of-sight detection unit 60 that has received the eye region image, first, the bright pupil image detection unit 61 detects the bright pupil image, and the dark pupil image detection unit 62 detects the dark pupil image. Further, the pupil center calculation unit 63 subtracts the dark pupil image from the bright pupil image to obtain a pupil image signal in which the shape of the pupil is bright, and based on this signal, a portion corresponding to the shape and area of the pupil The center position of the pupil is calculated as a feature amount from the ellipse including this area image (step S17). Further, the corneal reflection light center detection unit 64 performs image processing on the spot image included in the dark pupil image signal, and obtains the center of the reflection light from the reflection point of the cornea as a feature amount (step S17).
 次に、視線方向算出部65において、瞳孔中心算出部63で算出された瞳孔中心算出値と角膜反射光中心検出部64で算出された角膜反射光中心算出値とから、視線方向が検出される(ステップS18)。 Next, the gaze direction calculation unit 65 detects the gaze direction from the pupil center calculation value calculated by the pupil center calculation unit 63 and the corneal reflection light center calculation value calculated by the corneal reflection light center detection unit 64. (Step S18).
 視線方向の検出後は、上記ステップS14で設定した所定範囲で画像が取得される(ステップS15)。この画像の取得方法は上記ステップS11と同様に、第1光源21と第2光源22を交互に点灯させて、2つのカメラ23、24で撮影条件に対応した瞳孔画像を撮影する。ここでは全体画像ではなく、所定範囲の画像のみを取得するため、データのサイズを小さく抑えることができ、その後の処理も高速に実行することが可能となる。ここで取得された画像については、制御部11において、眼領域画像が含まれているか否かが判別される(ステップS16、第1の判別ステップ)。 After detecting the line-of-sight direction, an image is acquired within the predetermined range set in step S14 (step S15). In this image acquisition method, as in step S11, the first light source 21 and the second light source 22 are alternately turned on, and the pupil images corresponding to the imaging conditions are captured by the two cameras 23 and 24. Here, not the entire image but only an image in a predetermined range is acquired, so that the data size can be kept small, and the subsequent processing can be executed at high speed. For the image acquired here, the control unit 11 determines whether or not an eye region image is included (step S16, first determination step).
 制御部11による判別(ステップS16)の結果、眼領域画像が含まれている場合(ステップS16でYES)は、視線検出部60において、特徴量として、瞳孔中心と角膜反射光中心の位置が抽出され(ステップS17)。この特徴量に基づいて、視線方向算出部65において視線方向が検出される(ステップS18)。 When the eye region image is included as a result of the determination by the control unit 11 (step S16) (YES in step S16), the line-of-sight detection unit 60 extracts the positions of the pupil center and the corneal reflection light center as the feature amount. (Step S17). Based on this feature amount, the line-of-sight direction calculation unit 65 detects the line-of-sight direction (step S18).
 これに対して、制御部11による判別(ステップS16)の結果、眼領域画像が含まれていなかった場合(ステップS16でNO)は、全体画像が再び取得され(ステップS11)、この全体画像について、顔画像の検出(ステップS12)と正規化処理(ステップS13)が実行され、この正規化画像に対して新たな所定範囲が設定される。この新しい所定範囲によって、メモリ12に記憶された所定範囲のデータは更新され(ステップS14)、その後の画像取得(ステップS15)以下の処理が行われる。ここで、眼領域画像が含まれていなかった場合としては、片眼の眼球の画像だけが含まれていた場合、両眼の眼球の画像が特徴量検出に十分な濃度、解像度を有していなかった場合などが挙げられる。 On the other hand, if the eye area image is not included as a result of the determination by the control unit 11 (step S16) (NO in step S16), the entire image is acquired again (step S11). Then, face image detection (step S12) and normalization processing (step S13) are executed, and a new predetermined range is set for the normalized image. With this new predetermined range, the data of the predetermined range stored in the memory 12 is updated (step S14), and the subsequent processing after image acquisition (step S15) is performed. Here, when the eye region image is not included, when only the image of the eyeball of one eye is included, the image of the eyeball of both eyes has sufficient density and resolution for feature amount detection. The case where there was not.
 以上のように構成されたことから、第1実施形態の視線検出方法によれば、次の効果を奏する。
(1)第1の判別ステップ(図6のステップS16)において所定範囲の画像に対象者の眼領域画像が含まれているか否かを判別し、眼領域画像が含まれている間は、新たに全体画像を取得せずに、所定範囲の画像に基づいて視線方向を検出し続ける。このため、視線検出の精度は確保しつつ、毎回取得する画像のデータサイズを抑えることができ、演算処理の負担を抑えて処理の高速化を図ることができる。
(2)ローリングシャッタ方式で駆動される撮像素子を用いた場合、撮像素子のコストを下げることができるとともに、演算処理の負担を軽減して高速かつ高精度の視線方向検出を実現することができる。
With the configuration as described above, the visual line detection method according to the first embodiment has the following effects.
(1) In the first determination step (step S16 in FIG. 6), it is determined whether or not the eye area image of the subject is included in the image of the predetermined range. Without detecting the entire image, the line-of-sight direction is continuously detected based on the image in the predetermined range. For this reason, it is possible to suppress the data size of the image acquired every time while ensuring the accuracy of the line-of-sight detection, and to reduce the processing load and increase the processing speed.
(2) When an image sensor driven by a rolling shutter system is used, the cost of the image sensor can be reduced, and the burden of calculation processing can be reduced and high-speed and high-precision gaze direction detection can be realized. .
 <第2実施形態>
 つづいて、本発明の第2実施形態について説明する。第2実施形態においては、所定範囲に眼領域画像が含まれているか否かに拘わらず、定期的に低解像度の全体画像を取得して第2の判別ステップを実行する点が第1実施形態と異なる。第2実施形態に係る視線検出装置は、第1実施形態に係る視線検出装置10と同様の構成を備える。以下、第1実施形態と同様の構成・処理・作用等については詳細な説明は省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described. In the second embodiment, regardless of whether or not an eye region image is included in a predetermined range, the second determination step is executed by periodically acquiring a low resolution whole image. And different. The line-of-sight detection apparatus according to the second embodiment has the same configuration as the line-of-sight detection apparatus 10 according to the first embodiment. Hereinafter, detailed description of the same configuration, processing, action, and the like as in the first embodiment will be omitted.
 図7は、第2実施形態に係る視線検出の流れを示すフローチャートである。
 まず、第1実施形態の視線検出(図6)と同様に、画像取得部20によって対象者SBの全体画像A1(図4)を取得(図7のステップS21)し、この全体画像A1を用いて、顔検出部30において顔検出処理を行い、顔画像A2を抽出する(ステップS22)。また、顔検出部30では、顔向きの検出や各特徴部位に対応する複数のランドマークの検出を行う。さらに、正規化処理部40における顔画像の正規化(ステップS23)と、眼領域画像取得部50における所定範囲A3の設定(ステップS24)と、判別部としての制御部11における判別(ステップS26、第1の判別ステップ)とも第1実施形態と同様である。ここで、上記ステップS24、S25において、両眼の眼球を含む画像に基づいて所定範囲A3が設定されていることから、制御部11は、眼領域画像取得部50から受け取った画像に眼領域画像が含まれていると判別(ステップS26でYES)し、眼領域画像取得部50から受け取った画像を視線検出部60へ出力する。
FIG. 7 is a flowchart showing the flow of gaze detection according to the second embodiment.
First, similarly to the line-of-sight detection (FIG. 6) of the first embodiment, the image acquisition unit 20 acquires the entire image A1 (FIG. 4) of the subject SB (step S21 in FIG. 7), and uses this entire image A1. Then, the face detection unit 30 performs face detection processing and extracts the face image A2 (step S22). Further, the face detection unit 30 detects a face orientation and a plurality of landmarks corresponding to each feature part. Further, the normalization of the face image in the normalization processing unit 40 (step S23), the setting of the predetermined range A3 in the eye region image acquisition unit 50 (step S24), and the determination in the control unit 11 as the determination unit (step S26, The first determination step is the same as in the first embodiment. Here, in step S24 and S25, since the predetermined range A3 is set based on the image including the eyeballs of both eyes, the control unit 11 adds the eye region image to the image received from the eye region image acquisition unit 50. Is included (YES in step S26), and the image received from the eye region image acquisition unit 50 is output to the line-of-sight detection unit 60.
 眼領域画像を受け取った視線検出部60では、第1実施形態と同様に、まず、明瞳孔画像検出部61で明瞳孔画像が検出され、暗瞳孔画像検出部62で暗瞳孔画像が検出される。さらに、瞳孔中心算出部63において、明瞳孔画像から暗瞳孔画像が減算されて、瞳孔の形状が明るくなった瞳孔画像信号が取得され、この信号に基づいて、瞳孔の形状と面積に対応する部分のエリア画像が算出され、このエリア画像を含む楕円から、特徴量として瞳孔の中心位置が算出される(ステップS27)。また、角膜反射光中心検出部64では、暗瞳孔画像信号に含まれるスポット画像が画像処理されて、特徴量として、角膜の反射点からの反射光の中心が求められる(ステップS27)。つづいて、視線方向算出部65において、瞳孔中心算出部63で算出された瞳孔中心算出値と角膜反射光中心検出部64で算出された角膜反射光中心算出値とから、視線方向が検出される(ステップS28)。 In the line-of-sight detection unit 60 that has received the eye region image, as in the first embodiment, first, the bright pupil image detection unit 61 detects the bright pupil image, and the dark pupil image detection unit 62 detects the dark pupil image. . Further, the pupil center calculation unit 63 subtracts the dark pupil image from the bright pupil image to obtain a pupil image signal in which the shape of the pupil is bright, and based on this signal, a portion corresponding to the shape and area of the pupil The center position of the pupil is calculated as a feature amount from the ellipse including this area image (step S27). In addition, the corneal reflection light center detection unit 64 performs image processing on the spot image included in the dark pupil image signal, and obtains the center of the reflected light from the reflection point of the cornea as a feature amount (step S27). Subsequently, the gaze direction calculation unit 65 detects the gaze direction from the pupil center calculation value calculated by the pupil center calculation unit 63 and the corneal reflection light center calculation value calculated by the corneal reflection light center detection unit 64. (Step S28).
 次に、画像取得部20によって対象者SBの全体画像が取得される(ステップS29)。この画像は、上記ステップS21で取得する画像よりも低い解像度であり、以下に述べる簡易的な顔画像検出ができる最低限の解像度を有している。顔検出部30においては、この画像に基づいて顔画像検出処理が実行される(ステップS30、第2の判別ステップ)。この顔画像検出においては、特徴部位の照合によって、顔の位置、向きが上記ステップS22における顔画像検出に対して、所定量以上ずれていないことを確認し、ランドマークの検出は省略する。この所定量は、一般的な特徴部位の配置において、いったん設定した所定範囲A3内に眼領域画像が再び含まれる基準量として設定される。 Next, the entire image of the subject SB is acquired by the image acquisition unit 20 (step S29). This image has a resolution lower than that of the image acquired in step S21, and has a minimum resolution that enables simple face image detection described below. In the face detection unit 30, face image detection processing is executed based on this image (step S30, second determination step). In this face image detection, it is confirmed that the position and orientation of the face are not deviated by a predetermined amount or more with respect to the face image detection in step S22 by comparing feature parts, and the detection of landmarks is omitted. This predetermined amount is set as a reference amount in which the eye area image is again included in the predetermined range A3 once set in the general feature site arrangement.
 顔画像検出ができた場合(ステップS30でYES)、すなわち、顔の位置、向きが上記ステップS22における顔画像検出の結果に対して所定量未満のずれ量の範囲内にある場合、上記ステップS24で設定した所定範囲について画像が取得される(ステップS25)。ここで取得される画像の解像度は、上記ステップS21で取得する画像と同等の高い解像度であり、かつ、上記ステップS29で取得される画像の解像度よりも高い。画像の取得方法は上記ステップS21と同様に、第1光源21と第2光源22を交互に点灯させて、2つのカメラ23、24で撮影条件に対応した瞳孔画像を撮影する。ここで取得された画像については、制御部11において、眼領域画像が含まれているか否かが判別される(ステップS26、第1の判別ステップ)。 When the face image is detected (YES in step S30), that is, when the face position and orientation are within the range of the deviation amount less than the predetermined amount with respect to the result of the face image detection in step S22, step S24 is performed. An image is acquired for the predetermined range set in (Step S25). The resolution of the image acquired here is as high as the image acquired in step S21, and is higher than the resolution of the image acquired in step S29. As in the image acquisition method, the first light source 21 and the second light source 22 are turned on alternately, and the pupil images corresponding to the imaging conditions are captured by the two cameras 23 and 24, as in step S21. For the acquired image, the control unit 11 determines whether or not an eye area image is included (step S26, first determination step).
 制御部11による判別(ステップS26)の結果、眼領域画像が含まれている場合(ステップS26でYES)は、視線検出部60において、特徴量として、瞳孔中心と角膜反射光中心の位置が抽出され(ステップS27)。この特徴量に基づいて、視線方向算出部65において視線方向が検出される(ステップS28)。 When the eye region image is included as a result of the determination by the control unit 11 (step S26) (YES in step S26), the line-of-sight detection unit 60 extracts the positions of the pupil center and the corneal reflection light center as the feature amount. (Step S27). Based on this feature amount, the line-of-sight direction calculation unit 65 detects the line-of-sight direction (step S28).
 (1)制御部11による判別(ステップS26)の結果、眼領域画像が含まれていなかった場合(ステップS26でNO)、および、(2)上記ステップS30において顔画像検出ができなかった場合(ステップS30でNO)、すなわち、顔の位置、向きが上記ステップS22における顔画像検出の結果に対して所定量以上のずれを生じていた場合は、全体画像が再び取得され(ステップS21)、この全体画像について、顔画像の検出(ステップS22)と正規化処理(ステップS23)が実行され、正規化画像に対して新たな所定範囲が設定され、この新しい所定範囲によって、メモリ12に記憶された所定範囲のデータは更新され(ステップS24)、その後の画像取得(ステップS25)以下の処理が行われる。 (1) As a result of the determination by the control unit 11 (step S26), when an eye area image is not included (NO in step S26), and (2) when a face image cannot be detected in step S30 ( If NO in step S30), that is, if the face position and orientation have deviated by a predetermined amount or more with respect to the result of face image detection in step S22, the entire image is acquired again (step S21). Face image detection (step S22) and normalization processing (step S23) are executed for the entire image, a new predetermined range is set for the normalized image, and the new predetermined range is stored in the memory 12. The data in the predetermined range is updated (step S24), and the subsequent processing after image acquisition (step S25) is performed.
 なお、図7のステップS30で示す第2判別ステップは、視線方向の検出(ステップS28)が終わるたびに毎回実行されていたが、この実行間隔は毎回ではなく所定回数ごととしてもよい。また、図7のステップS30で示す第2判別ステップに代えて、図7に示す処理の流れとは独立した形で第2判別ステップを実行させてもよい。 Note that the second determination step shown in step S30 of FIG. 7 is executed every time the detection of the line-of-sight direction (step S28) ends, but this execution interval may be set every predetermined number of times instead of every time. Further, instead of the second determination step shown in step S30 of FIG. 7, the second determination step may be executed independently of the processing flow shown in FIG.
 第2実施形態の視線検出方法によれば、第2の判別ステップにおいてデータ量の小さな画像で判別を行うことができるため、視線検出の精度を確保しつつ、演算処理の負担を軽減することができる。
 なお、その他の作用、効果、変形例は第1実施形態と同様である。
 本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。
According to the line-of-sight detection method of the second embodiment, since it is possible to perform the determination with an image having a small data amount in the second determination step, it is possible to reduce the burden of calculation processing while ensuring the accuracy of line-of-sight detection. it can.
Other operations, effects, and modifications are the same as those in the first embodiment.
Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.
 以上のように、本発明に係る視線検出方法は、視線検出の精度を確保しつつ、処理負担を軽減して高速化を図ることができる点で有用である。 As described above, the line-of-sight detection method according to the present invention is useful in that the processing load can be reduced and the processing speed can be increased while ensuring the accuracy of line-of-sight detection.
 10  視線検出装置
 11  制御部
 12  メモリ
 20  画像取得部
 21  第1光源
 22  第2光源
 23  第1カメラ
 24  第2カメラ
 25  露光制御部
 26  光源制御部
 30  顔検出部
 40  正規化処理部
 50  眼領域画像取得部
 60  視線検出部
 61  明瞳孔画像検出部
 62  暗瞳孔画像検出部
 63  瞳孔中心算出部
 64  角膜反射光中心検出部
 65  視線方向算出部
 A1  全体画像
 A2  顔画像
 A3  所定範囲
DESCRIPTION OF SYMBOLS 10 Eye-gaze detection apparatus 11 Control part 12 Memory 20 Image acquisition part 21 1st light source 22 2nd light source 23 1st camera 24 2nd camera 25 Exposure control part 26 Light source control part 30 Face detection part 40 Normalization process part 50 Eye area | region image Acquisition unit 60 Gaze detection unit 61 Bright pupil image detection unit 62 Dark pupil image detection unit 63 Pupil center calculation unit 64 Corneal reflection light center detection unit 65 Gaze direction calculation unit A1 Whole image A2 Face image A3 Predetermined range

Claims (3)

  1.  眼領域画像を抽出するために取得された、所定範囲の画像に対象者の眼領域画像が含まれているか否かを一定周期で判別する第1の判別ステップを有し、
     前記第1の判別ステップにおいて前記所定範囲の画像に前記対象者の眼領域画像が含まれている場合は、その眼領域画像を抽出し、抽出した眼領域画像に基づいて前記対象者の視線方向を検出し、
     前記第1の判別ステップにおいて前記所定範囲の画像に前記対象者の眼領域画像が含まれていない場合は、新たに全体画像を取得し、この全体画像から前記対象者の顔画像を検出し、検出した顔画像から前記対象者の眼領域画像を抽出して、前記抽出した眼領域画像に基づいて前記対象者の視線方向を検出し、さらに、前記抽出した眼領域画像を含む範囲を前記所定範囲として更新することを特徴とする視線検出方法。
    A first determination step of determining at regular intervals whether or not the eye area image of the subject is included in an image of a predetermined range acquired to extract the eye area image;
    When the target region's eye region image is included in the image of the predetermined range in the first determination step, the eye region image is extracted, and the subject's eye direction is based on the extracted eye region image Detect
    If the eye area image of the subject is not included in the image of the predetermined range in the first determination step, a new whole image is obtained, and the face image of the subject is detected from the whole image, An eye region image of the subject is extracted from the detected face image, a line-of-sight direction of the subject is detected based on the extracted eye region image, and a range including the extracted eye region image is defined as the predetermined range. A line-of-sight detection method characterized by updating as a range.
  2.  前記第1の判別ステップとは独立して、全体画像を取得し、取得した全体画像から前記対象者の顔画像が検出できるか否かを判別する第2の判別ステップを有し、
     前記第2の判別ステップにおいて取得する全体画像は、前記第1の判別ステップで判別される所定範囲の画像よりも解像度が低く、
     前記第2の判別ステップにおいて取得した前記全体画像から前記対象者の顔画像が検出できない場合は、次の前記第1の判別ステップを待たずに、新たに全体画像を取得し、この画像から前記対象者の顔画像を検出し、検出した顔画像から前記対象者の眼領域画像を抽出して、前記抽出した眼領域画像に基づいて前記対象者の視線方向を検出し、さらに、前記抽出した眼領域画像を含む範囲を前記所定範囲として更新することを特徴とする請求項1に記載の視線検出方法。
    Independently of the first determination step, there is a second determination step of acquiring an entire image and determining whether or not the subject's face image can be detected from the acquired entire image,
    The entire image acquired in the second determination step has a lower resolution than the image in the predetermined range determined in the first determination step.
    If the face image of the subject cannot be detected from the entire image acquired in the second determination step, a new entire image is acquired without waiting for the next first determination step, and the image is A face image of the subject is detected, the eye region image of the subject is extracted from the detected face image, a line-of-sight direction of the subject is detected based on the extracted eye region image, and the extracted The line-of-sight detection method according to claim 1, wherein a range including an eye region image is updated as the predetermined range.
  3.  画像の取得は、複数の画素が水平方向及び垂直方向に配列され、ローリングシャッタ方式で駆動される撮像素子で行われ、
     前記所定範囲は、前記撮像素子の前記水平方向に並ぶ1つまたは2以上のラインで構成されることを特徴とする請求項1または請求項2に記載の視線検出方法。
    Image acquisition is performed by an imaging device in which a plurality of pixels are arranged in a horizontal direction and a vertical direction and driven by a rolling shutter system.
    The line-of-sight detection method according to claim 1, wherein the predetermined range includes one or more lines arranged in the horizontal direction of the image sensor.
PCT/JP2017/007189 2016-05-23 2017-02-24 Sight line detection method WO2017203769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018519093A JP6767482B2 (en) 2016-05-23 2017-02-24 Line-of-sight detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016102080 2016-05-23
JP2016-102080 2016-05-23

Publications (1)

Publication Number Publication Date
WO2017203769A1 true WO2017203769A1 (en) 2017-11-30

Family

ID=60412231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007189 WO2017203769A1 (en) 2016-05-23 2017-02-24 Sight line detection method

Country Status (2)

Country Link
JP (1) JP6767482B2 (en)
WO (1) WO2017203769A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524975A (en) * 2018-05-04 2021-09-16 グーグル エルエルシーGoogle LLC Invoking automation assistant features based on detected gestures and gaze
WO2021210041A1 (en) * 2020-04-13 2021-10-21 三菱電機株式会社 Face detection device and face detection method
US11614794B2 (en) 2018-05-04 2023-03-28 Google Llc Adapting automated assistant based on detected mouth movement and/or gaze
US11688417B2 (en) 2018-05-04 2023-06-27 Google Llc Hot-word free adaptation of automated assistant function(s)
JP7317241B2 (en) 2020-01-08 2023-07-28 シャンハイ センスタイム リンガン インテリジェント テクノロジー カンパニー リミテッド Facial expression identification method and device, equipment, computer-readable storage medium, and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004062393A (en) * 2002-07-26 2004-02-26 Japan Science & Technology Corp Method and device for determining attention
JP2012038106A (en) * 2010-08-06 2012-02-23 Canon Inc Information processor, information processing method and program
JP2012187178A (en) * 2011-03-09 2012-10-04 Fujitsu Ltd Visual line detection device and visual line detection method
JP2016049258A (en) * 2014-08-29 2016-04-11 アルプス電気株式会社 Lighting and imaging device and visual axis detecting apparatus including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004062393A (en) * 2002-07-26 2004-02-26 Japan Science & Technology Corp Method and device for determining attention
JP2012038106A (en) * 2010-08-06 2012-02-23 Canon Inc Information processor, information processing method and program
JP2012187178A (en) * 2011-03-09 2012-10-04 Fujitsu Ltd Visual line detection device and visual line detection method
JP2016049258A (en) * 2014-08-29 2016-04-11 アルプス電気株式会社 Lighting and imaging device and visual axis detecting apparatus including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524975A (en) * 2018-05-04 2021-09-16 グーグル エルエルシーGoogle LLC Invoking automation assistant features based on detected gestures and gaze
US11493992B2 (en) 2018-05-04 2022-11-08 Google Llc Invoking automated assistant function(s) based on detected gesture and gaze
US11614794B2 (en) 2018-05-04 2023-03-28 Google Llc Adapting automated assistant based on detected mouth movement and/or gaze
JP7277569B2 (en) 2018-05-04 2023-05-19 グーグル エルエルシー Invoke automation assistant functions based on detected gestures and gazes
US11688417B2 (en) 2018-05-04 2023-06-27 Google Llc Hot-word free adaptation of automated assistant function(s)
JP7317241B2 (en) 2020-01-08 2023-07-28 シャンハイ センスタイム リンガン インテリジェント テクノロジー カンパニー リミテッド Facial expression identification method and device, equipment, computer-readable storage medium, and computer program
WO2021210041A1 (en) * 2020-04-13 2021-10-21 三菱電機株式会社 Face detection device and face detection method

Also Published As

Publication number Publication date
JP6767482B2 (en) 2020-10-14
JPWO2017203769A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US11699293B2 (en) Neural network image processing apparatus
WO2017203769A1 (en) Sight line detection method
US10489648B2 (en) Eye tracking using time multiplexing
JP4895797B2 (en) Wrinkle detection device, wrinkle detection method and program
US10896324B2 (en) Line-of-sight detection device and method for detecting line of sight
JP5366028B2 (en) Face image capturing device
WO2018030515A1 (en) Line-of-sight detection device
KR20120057033A (en) Gaze tracking system and method for controlling internet protocol tv at a distance
JP4452836B2 (en) Method and apparatus for detecting pupils
US11361560B2 (en) Passenger state detection device, passenger state detection system, and passenger state detection method
US20160063334A1 (en) In-vehicle imaging device
JP2017111746A (en) Sight line detection device and sight line detection method
JP6957048B2 (en) Eye image processing device
JPWO2016031666A1 (en) Gaze detection device
JP6555707B2 (en) Pupil detection device, pupil detection method, and pupil detection program
JP2016028669A (en) Pupil detection device and pupil detection method
JP7046347B2 (en) Image processing device and image processing method
JP2016051317A (en) Visual line detection device
JP7228885B2 (en) Pupil detector
WO2017154356A1 (en) Sight line detection device and sight line detection method
CN109415020B (en) Luminance control device, luminance control system and luminance control method
JP6370168B2 (en) Illumination imaging apparatus and line-of-sight detection apparatus including the same
JP2018190213A (en) Face recognition device and sight line detection device
JP2020024750A (en) Line-of-sight detection device, line-of-sight detection method, and computer program
JP6693149B2 (en) Pupil detection device and pupil detection method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018519093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802371

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802371

Country of ref document: EP

Kind code of ref document: A1