WO2017203680A1 - Cooling unit - Google Patents

Cooling unit Download PDF

Info

Publication number
WO2017203680A1
WO2017203680A1 PCT/JP2016/065692 JP2016065692W WO2017203680A1 WO 2017203680 A1 WO2017203680 A1 WO 2017203680A1 JP 2016065692 W JP2016065692 W JP 2016065692W WO 2017203680 A1 WO2017203680 A1 WO 2017203680A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
cooling unit
refrigerant
heater
drain pan
Prior art date
Application number
PCT/JP2016/065692
Other languages
French (fr)
Japanese (ja)
Inventor
英希 大野
啓三 福原
考倫 松浦
剛志 水町
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018518906A priority Critical patent/JP6689376B2/en
Priority to CN201690001676.5U priority patent/CN209246477U/en
Priority to PCT/JP2016/065692 priority patent/WO2017203680A1/en
Publication of WO2017203680A1 publication Critical patent/WO2017203680A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to a cooling unit having a heater disposed below a drain pan.
  • Patent Document 1 has a problem that frost cannot be removed efficiently. Because the air heated by exchanging heat with the hot gas flowing in the evaporator expands and becomes less dense, warm air gathers on the upper side and cold air on the lower side in the space where the evaporator is accommodated. Gather. Therefore, the heat of the air in the space in which the evaporator is accommodated cannot be efficiently used for removing frost.
  • the present invention has been made in view of the above-described problems, and an object thereof is to obtain a cooling unit that can efficiently perform defrosting of an evaporator.
  • a cooling unit includes at least an evaporator of a refrigerant circuit formed by connecting a compressor, a condenser, an expansion device, and an evaporator with refrigerant piping, and a drain pan disposed below the evaporator.
  • the heater is disposed below the drain pan, and includes a heater that performs heating, and a cover that covers at least a part of the heater together with the drain pan.
  • the drain pan heated by the heater warms the evaporator from below the evaporator, so that the evaporator can be efficiently defrosted.
  • FIG. 3 is a diagram schematically showing an AA cross section of FIG. 2. It is the figure which described typically the state which looked at the drain pan and heater described in FIG. 3 from the bottom. It is the figure which described typically the state which looked at the cover of FIG. 3 from diagonally.
  • FIG. 1 is a diagram schematically showing a refrigeration cycle apparatus in which an evaporator according to Embodiment 1 of the present invention is arranged.
  • the refrigeration cycle apparatus 1 includes a refrigerant circuit 2 and a hot gas path 4.
  • a refrigerant is enclosed in the refrigeration cycle apparatus 1.
  • the refrigerant used in the refrigeration cycle apparatus 1 of this embodiment is a refrigerant having a low global warming potential (GWP) such as R410A, R32, or CO2, for example, but includes at least one of them. It may be a refrigerant or another type of refrigerant different from these.
  • GWP global warming potential
  • the refrigerant circuit 2 circulates the refrigerant, and is formed by connecting the compressor 10, the condenser 12, the expansion device 14, and the evaporator 16 through the refrigerant pipe 3.
  • the compressor 10 compresses the refrigerant.
  • the compressor 10 is an inverter compressor that is controlled by an inverter, for example, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the operating frequency.
  • the compressor 10 may be a constant speed compressor that operates at a constant operating frequency.
  • the condenser 12 is, for example, a heat exchanger that exchanges heat between the refrigerant flowing through the condenser 12 and air, and condenses the refrigerant.
  • the condenser 12 is a fin tube type heat exchanger that includes a tube (not shown) through which a refrigerant flows and fins (not shown) attached to the tube.
  • a blower (not shown) that blows air to the condenser 12 is disposed in the vicinity of the condenser 12.
  • the expansion device 14 expands the refrigerant.
  • the expansion device 14 is an electronic expansion valve that can adjust the opening degree, but may be an apparatus that cannot adjust the opening degree of a capillary tube or the like.
  • the evaporator 16 is a heat exchanger that exchanges heat between the refrigerant flowing through the evaporator 16 and air, and evaporates the refrigerant.
  • the evaporator 16 is a fin tube type heat exchanger formed including a tube (not shown) through which a refrigerant flows and fins (not shown) attached to the tube.
  • a blower (not shown in FIG. 1) that blows air to the evaporator 16 is disposed in the vicinity of the evaporator 16.
  • a distributor 15 and a header 17 are connected to the evaporator 16.
  • the distributor 15 distributes the refrigerant expanded by the expansion device 14 and flows it into the evaporator 16.
  • the header 17 joins the refrigerant evaporated by the evaporator 16 and flowing out of the evaporator 16.
  • a drain pan 104 that receives water dropped from the evaporator 16 is disposed below the evaporator 16.
  • the hot gas path 4 allows the high-temperature and high-pressure refrigerant compressed by the compressor 10 to flow to the evaporator 16.
  • the hot gas path 4 includes a hot gas bypass pipe 6 and an on-off valve 18.
  • the hot gas bypass pipe 6 is a pipe that bypass-connects between the discharge unit of the compressor 10 and the condenser 12 and between the expansion device 14 and the evaporator 16.
  • the hot gas bypass pipe 6 branches from between the discharge portion of the compressor 10 and the condenser 12, passes through the vicinity of the drain pan 104, and then joins between the expansion device 14 and the evaporator 16.
  • a portion of the hot gas bypass pipe 6 passing through the vicinity of the drain pan 104 forms a heater 106 that heats the drain pan 104.
  • a portion of the hot gas bypass pipe 6 connected between the expansion device 14 and the evaporator 16 is connected to the distributor 15.
  • the on-off valve 18 is disposed in the hot gas bypass pipe 6 and controls the inflow of the refrigerant into the hot gas path 4 by opening and closing operation.
  • the on-off valve 18 is, for example, an on-off switching valve that simply switches between opening and closing, but may be an electric valve that can adjust the opening.
  • the on-off valve 18 may be provided in the hot gas bypass pipe 6 that extends from between the discharge portion of the compressor 10 and the condenser 12 and approaches the drain pan 104.
  • hot gas refrigerant is allowed to flow through the hot gas passage 4 to heat the evaporator 16, thereby removing frost attached to the evaporator 16. That is, when the on-off valve 18 is opened, the high-temperature and high-pressure refrigerant compressed by the compressor 10 flows into the hot gas bypass pipe 6. The refrigerant flowing through the hot gas bypass pipe 6 passes through the vicinity of the drain pan 104, heats the drain pan 104, and then flows into the evaporator 16.
  • the refrigerant flowing through the evaporator 16 heats the evaporator 16 and removes frost attached to the evaporator 16.
  • the expansion device 14 may be closed, but the expansion device 14 may be opened.
  • FIG. 2 is a diagram schematically illustrating a state where the cooling unit containing the evaporator illustrated in FIG. 1 is viewed from an oblique direction
  • FIG. 3 is a diagram schematically illustrating the AA cross section of FIG.
  • FIG. 4 is a diagram schematically illustrating a state where the drain pan and the heater illustrated in FIG. 3 are viewed from below.
  • FIG. 5 is a diagram schematically illustrating a state where the cover illustrated in FIG. 3 is viewed obliquely.
  • FIG. A cooling unit 100 shown in FIG. 2 is disposed inside a room and cools the room.
  • the cooling unit 100 includes, for example, an attachment portion 103 that is attached to the ceiling of a room in which the cooling unit 100 is disposed, and is suspended from the ceiling of the room.
  • the room in which the cooling unit 100 is disposed is, for example, a refrigeration warehouse managed at 0 degrees Celsius to minus 35 degrees Celsius.
  • the cooling unit 100 includes a casing 102, an evaporator 16, a drain pan 104, a heater 106, a cover 108, a blower 110, a hood 112, and a damper 114.
  • the casing 102 is a housing that houses the evaporator 16 and the blower 110.
  • a suction port 102 ⁇ / b> A for sucking air is formed on the rear surface of the casing 102, and a blower outlet 102 ⁇ / b> B for blowing air is formed on the front surface of the casing 102.
  • the cooling unit 100 is disposed so that the suction port 102A is closer to the wall surface than the air outlet 102B, but is disposed so that the air outlet 102B is closer to the wall surface than the suction port 102A. May be.
  • the air sucked from the suction port 102A is cooled by the evaporator 16, and the conditioned air cooled by the evaporator 16 is blown out from the air outlet 102B.
  • a hood 112 is attached to the suction port 102A.
  • the hood 112 covers other than the lower part of the suction port 102A. Since the hood 112 is attached to the suction port 102A, air is sucked from below the suction port 102A.
  • the blower outlet 102B is provided with a damper 114 that opens and closes the blower outlet 102B.
  • the damper 114 is opened when the blower 110 is operated and blows air, and is closed when the blower 110 is stopped and blown is stopped.
  • the drain pan 104 is disposed below the evaporator 16 and receives water or the like dripped from the evaporator 16.
  • the heater 106 is disposed below the drain pan 104 and performs heating.
  • the heater 106 is formed including a part of the hot gas bypass pipe 6.
  • the hot gas bypass pipe 6 includes a distribution header 160 that distributes the refrigerant and a plurality of unit channels 162 that flow the refrigerant distributed by the distribution header 160 in the middle thereof.
  • a merge header 164 that merges the refrigerants flowing out from the plurality of unit channels 162.
  • the heater 106 includes a distribution header 160, a plurality of unit channels 162, and a merge header 164.
  • the evaporator 16 can be efficiently defrosted. Can do. This is because the length of each of the plurality of unit channels 162 can be shortened and the area of the unit channel 162 in contact with the drain pan 104 can be increased by adopting a configuration having the plurality of unit channels 162. By reducing the length of the unit flow path 162, the temperature of the refrigerant that has passed through the unit flow path 162 is prevented from excessively decreasing. Frost can be performed efficiently. Furthermore, since the area of the unit flow path 162 in contact with the drain pan 104 is increased, the defrosting of the evaporator 16 performed by heating the drain pan 104 can be performed efficiently.
  • the unit channel 162 is attached in contact with the lower surface forming a part of the outer surface of the drain pan 104.
  • the unit channel 162 is sandwiched between the fixed plate 166 and the lower surface of the drain pan 104 using a plurality of fixed plates 166.
  • the fixing plate 166 is preferably formed of a material having high thermal conductivity such as metal.
  • the cover 108 covers at least a part of the heater 106 together with the drain pan 104.
  • the distribution header 160, the unit channel 162, and the merge header 164 are accommodated in a space covered with the drain pan 104 and the cover 108. Since the distribution header 160, the unit flow path 162, and the merge header 164 are accommodated in the space covered with the drain pan 104 and the cover 108, the design of the cooling unit 100 is improved. Furthermore, in the example of this embodiment, since the heater 106 is covered with the drain pan 104 and the cover 108, the heater 106 can efficiently heat the drain pan 104. In addition, since the heater 106 is covered with the drain pan 104 and the cover 108, the room is prevented from being warmed by heat generated when the heater 106 is heated.
  • the cover 108 is formed with a plurality of pairs of vent holes 180.
  • One vent hole 180A of the pair of vent holes 180 is formed on the back surface where the suction port 102A is formed, and the other vent hole 180B of the pair of vent holes 180 is formed by the air outlet 102B. Is formed on the front.
  • the possibility that frost adheres to the heater 106 and the like inside the space covered with the drain pan 104 and the cover 108 is reduced.
  • the number, size, position, shape, and the like of the pair of vent holes 180 are not particularly limited.
  • vent holes 180 may be formed so as to be ventilated in a space covered with the drain pan 104 and the cover 108 and accommodating the heater 106. It should be noted that, as in the example of this embodiment, the structure in which the vent holes 180 are arranged in a row improves the strength of the cover 108 in which the vent holes 180 are formed, and further in the space in which the heater 106 is accommodated. Aeration is performed uniformly.
  • the vent hole 180 is formed below the unit channel 162. By forming the vent hole 180 below the unit flow path 162, the unit flow path 162 is difficult to be visually observed, so that the design of the cooling unit 100 can be further improved. Further, since the vent hole 180 is formed below the unit flow path 162, the air flow generated by the vent hole 180 is not easily obstructed by the unit flow path 162. Further, since the vent hole 180 is formed in the lower part of the cover 108 in the vertical direction, it is easy for cold air to be discharged to the outside of the cover 108 through the vent hole 180, and warm air is It is configured to be easily held inside. In the example of this embodiment, since warm air is easily held inside the cover 108, the drain pan 104 can be heated efficiently.
  • the configuration is such that cold air, in particular, cold air containing moisture is easily discharged from the vent hole 180 formed on the lower side of the cover 108 in the vertical direction.
  • the vent hole 180 is formed, for example, below the center of the cover 108 in the vertical direction.
  • the vent hole 180 is a lower part in the vicinity of the bent portion at the lower part of the cover 108. Formed in the region.
  • the cooling unit 100 includes the evaporator 16, the drain pan 104 disposed below the evaporator 16, and the heater that is disposed below the drain pan 104 and performs heating. 106 and a cover 108 that covers at least a part of the heater 106 together with the drain pan 104.
  • the drain pan 104 warmed by the heater 106 warms the evaporator 16 from below the evaporator 16, so that the evaporator 16 can be defrosted efficiently.
  • the heater 106 can efficiently perform heating.
  • an increase in the temperature of the cooling space when the heater 106 is heated is suppressed.
  • the heater 106 includes at least a part of the hot gas bypass pipe 6 that bypasses the refrigerant circuit 2 between the discharge unit of the compressor 10 and the condenser 12 and between the expansion device 14 and the evaporator 16. Formed.
  • the heater 106 heats the evaporator 16 from below the evaporator 16, and further the refrigerant that has flowed through the hot gas bypass pipe 6 flows through the evaporator 16 to heat the evaporator 16. Therefore, the defrosting of the evaporator 16 can be performed efficiently.
  • the configuration of the cooling unit 100 is simplified.
  • the drain pan 104 can be efficiently heated.
  • an on-off valve 18 disposed in the hot gas bypass pipe 6 may be further provided so that the refrigerant flows through the hot gas bypass pipe 6 when the evaporator 16 is defrosted.
  • a distributor 15 that distributes the refrigerant expanded by the expansion device 14 and flows into the evaporator 16 is further provided.
  • a portion of the hot gas bypass pipe 6 connected between the expansion device 14 and the evaporator 16 is connected to the distributor 15.
  • the heater 106 includes a distribution header 160 that distributes the refrigerant, a plurality of unit flow paths 162 that flow the refrigerant distributed by the distribution header 160, and a plurality of unit flow paths in the middle of the hot gas bypass pipe 6. And a merge header 164 that merges the refrigerant that has flowed out of 162.
  • the heater 106 includes a plurality of unit flow paths 162 between the distribution header 160 and the merge header 164, the evaporator 16 can be defrosted efficiently. This is because the length of each of the plurality of unit channels 162 can be shortened and the area of the plurality of unit channels 162 in contact with the drain pan 104 can be increased by adopting a configuration having the plurality of unit channels 162.
  • the drain pan 104 is efficiently heated by increasing the area in contact with the drain pan 104 of the plurality of unit channels 162, the defrosting of the evaporator 16 performed by heating the drain pan 104 is efficiently performed. Can do.
  • the design of the cooling unit 100 is improved by covering the distribution header 160, the plurality of unit flow paths 162, and the merge header 164 with the cover 108.
  • a casing 102 that houses at least the evaporator 16 is further provided, and at least a pair of ventilation holes 180 that ventilate the heater 106 are formed in the casing 102 or the cover 108.
  • the ventilation hole 180 that ventilates the heater 106 an air flow is generated in the space in which the heater 106 is accommodated, so that generation of frost in the space in which the heater 106 is accommodated is suppressed.
  • the vent hole 180 is formed in the cover 108 has been described.
  • the ventilation hole 180 may be formed in the casing 102.
  • At least a part of the heater 106 is disposed above the vent hole 180. Since at least a part of the heater 106 is disposed above the vent hole 180, the heater 106 is difficult to see through the vent hole 180, so that the design is improved. Furthermore, since the air flow generated by the vent hole 180 is not easily obstructed by the heater 106, the possibility that frost adheres to the heater 106 and the like covered with the drain pan 104 and the cover 108 is reduced. Further, at least a part of the heater 106 is disposed above the vent hole 180, so that cold air can be easily discharged to the outside of the cover 108 through the vent hole 180, and warm air is Since it becomes easy to hold
  • the portion formed above the vent hole 180 of the heater 106 is a plurality of unit flow paths 162 between the distribution header 160 and the merge header 164.
  • the cooling unit 100 further includes a suction port 102A that is formed on the back surface of the cooling unit 100 and sucks air, and an air outlet 102B that is formed on the front surface of the cooling unit 100 and blows out air.
  • a suction port 102A that is formed on the back surface of the cooling unit 100 and sucks air
  • an air outlet 102B that is formed on the front surface of the cooling unit 100 and blows out air.
  • one vent hole 180A is formed on the surface on which the suction port 102A corresponding to the back surface is formed
  • the other vent hole 180B is formed on the air outlet 102B corresponding to the back surface. It is formed on the formed surface. Therefore, when the blower 110 operates and air is sucked in from the suction port 102A and air is blown out from the air outlet 102B, air flows in from the other vent hole 180B and air flows out from the one vent hole 180A.
  • Air flow is generated. That is, when the cooling unit 100 is performing air conditioning, an air flow is easily generated in the space in which the heater 106 is disposed. For example, the above-described air flow is more easily generated by including a hood 112 that covers the upper side of the suction port 102A and sucks air from below into the suction port 102A.
  • the cooling unit 100 further includes a damper 114 that opens and closes the air outlet 102 ⁇ / b> B.
  • a damper 114 that opens and closes the air outlet 102 ⁇ / b> B.
  • the cooling unit 100 is suspended from the ceiling, and in such a case, the above-described effect becomes particularly remarkable.
  • the cooling unit of the present invention may be one in which the cover 108 is omitted. That is, the cooling unit of the present invention includes an evaporator 16, a drain pan 104 disposed below the evaporator 16, and a heater 106 disposed below the drain pan 104 and performing heating. 106 includes at least a part of the hot gas bypass pipe 6 that bypasses the refrigerant circuit 2 between the discharge unit of the compressor 10 and the condenser 12 and between the expansion device 14 and the evaporator 16. It may be what was done. When the evaporator 16 is defrosted, the refrigerant that heated the drain pan 104 flows into the evaporator 16, so that the evaporator 16 can be defrosted efficiently.
  • the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
  • the heater 106 is formed including the hot gas bypass pipe 6
  • the heater 106 is formed including other components such as a heating wire. May be.
  • 1 refrigeration cycle device 2 refrigerant circuit, 3 refrigerant piping, 4 hot gas passage, 6 hot gas bypass piping, 10 compressor, 12 condenser, 14 expansion device, 15 distributor, 16 evaporator, 17 header, 18 on-off valve , 100 cooling unit, 102 casing, 102A inlet, 102B outlet, 103 mounting part, 104 drain pan, 106 heater, 108 cover, 110 blower, 112 hood, 114 damper, 160 distribution header, 162 unit flow path, 164 merge header 166 fixing plate, 180 vents, 180A vents, 180B vents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Defrosting Systems (AREA)

Abstract

This cooling unit is provided with: an evaporator; a drain pan disposed below the evaporator; a heater, which is disposed below the drain pan, and which performs heating; and a cover, which covers, with the drain pan, at least a part of the heater.

Description

冷却ユニットCooling unit
 この発明は、ドレンパンの下方に配設されたヒーターを有する冷却ユニットに関するものである。 The present invention relates to a cooling unit having a heater disposed below a drain pan.
 従来から、蒸発器に付着した霜を除去する技術が知られている。例えば、特許文献1に記載されている従来技術では、圧縮機から吐出されたホットガスを蒸発器に流すことで、蒸発器に付着した霜を除去するホットガスデフロストを行っている(例えば、特許文献1参照)。 Conventionally, a technique for removing frost attached to an evaporator is known. For example, in the prior art described in Patent Document 1, hot gas defrosting is performed to remove frost adhering to the evaporator by flowing hot gas discharged from the compressor to the evaporator (for example, patents). Reference 1).
特開昭63-169458号公報JP-A 63-169458
 しかしながら、特許文献1に記載されているような従来技術では、効率よく霜を除去することができないという課題がある。なぜなら、蒸発器に流れるホットガスと熱交換を行って温められた空気は、膨張して密度が小さくなるため、蒸発器が収容された空間において、上側に温かい空気が集まり、下側に冷たい空気が集まる。したがって、蒸発器が収容された空間における空気の熱を、霜の除去に、効率よく利用できていない。 However, the conventional technique as described in Patent Document 1 has a problem that frost cannot be removed efficiently. Because the air heated by exchanging heat with the hot gas flowing in the evaporator expands and becomes less dense, warm air gathers on the upper side and cold air on the lower side in the space where the evaporator is accommodated. Gather. Therefore, the heat of the air in the space in which the evaporator is accommodated cannot be efficiently used for removing frost.
 この発明は、上記のような課題を鑑みてなされたものであって、蒸発器の除霜を効率よく行うことができる冷却ユニットを得ることを目的としている。 The present invention has been made in view of the above-described problems, and an object thereof is to obtain a cooling unit that can efficiently perform defrosting of an evaporator.
 この発明に係る冷却ユニットは、圧縮機と凝縮器と膨張装置と蒸発器とが冷媒配管で接続されて形成される冷媒回路の、少なくとも蒸発器と、蒸発器の下方に配設されたドレンパンと、ドレンパンの下方に配設されており、加熱を行うヒーターと、ドレンパンとともに、ヒーターの少なくとも一部分を覆うカバーと、を備えたものである。 A cooling unit according to the present invention includes at least an evaporator of a refrigerant circuit formed by connecting a compressor, a condenser, an expansion device, and an evaporator with refrigerant piping, and a drain pan disposed below the evaporator. The heater is disposed below the drain pan, and includes a heater that performs heating, and a cover that covers at least a part of the heater together with the drain pan.
 この発明によれば、ヒーターによって温められたドレンパンが、蒸発器の下方から蒸発器を温めるため、蒸発器の除霜を効率よく行うことができる。 According to the present invention, the drain pan heated by the heater warms the evaporator from below the evaporator, so that the evaporator can be efficiently defrosted.
この発明の実施の形態1に係る蒸発器が配設される冷凍サイクル装置を模式的に記載した図である。It is the figure which described typically the refrigerating-cycle apparatus by which the evaporator which concerns on Embodiment 1 of this invention is arrange | positioned. 図1に記載の蒸発器を収容した冷却ユニットを斜めから見た状態を模式的に記載した図である。It is the figure which described typically the state which looked at the cooling unit which accommodated the evaporator of FIG. 1 from diagonally. 図2のA-A断面を模式的に記載した図である。FIG. 3 is a diagram schematically showing an AA cross section of FIG. 2. 図3に記載のドレンパンおよびヒーターを下から見た状態を模式的に記載した図である。It is the figure which described typically the state which looked at the drain pan and heater described in FIG. 3 from the bottom. 図3に記載のカバーを斜めから見た状態を模式的に記載した図である。It is the figure which described typically the state which looked at the cover of FIG. 3 from diagonally.
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、この発明の範囲内で適宜変更することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. In addition, the shape, size, arrangement, and the like of the configuration described in each drawing can be changed as appropriate within the scope of the present invention.
[冷凍サイクル装置]
 実施の形態1.
 図1は、この発明の実施の形態1に係る蒸発器が配設される冷凍サイクル装置を模式的に記載した図である。図1に示すように、冷凍サイクル装置1は、冷媒回路2とホットガス路4とを含んで形成されている。冷凍サイクル装置1には、冷媒が封入されている。この実施の形態の冷凍サイクル装置1で使用される冷媒は、例えば、R410A、R32またはCO2等の地球温暖化係数(GWP)が低い冷媒であるが、これらのうちの少なくとも1つを含んだ混合冷媒またはこれらとは異なる他の種類の冷媒であってもよい。
[Refrigeration cycle equipment]
Embodiment 1 FIG.
FIG. 1 is a diagram schematically showing a refrigeration cycle apparatus in which an evaporator according to Embodiment 1 of the present invention is arranged. As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a refrigerant circuit 2 and a hot gas path 4. A refrigerant is enclosed in the refrigeration cycle apparatus 1. The refrigerant used in the refrigeration cycle apparatus 1 of this embodiment is a refrigerant having a low global warming potential (GWP) such as R410A, R32, or CO2, for example, but includes at least one of them. It may be a refrigerant or another type of refrigerant different from these.
[冷媒回路]
 冷媒回路2は、冷媒が循環するものであり、圧縮機10と凝縮器12と膨張装置14と蒸発器16とが冷媒配管3で接続されることによって形成されている。圧縮機10は、冷媒を圧縮するものである。圧縮機10は、例えば、インバータで制御が行われるインバータ圧縮機であり、運転周波数を任意に変化させて、容量(単位時間あたりに冷媒を送り出す量)を変化させることができる。なお、圧縮機10は、一定の運転周波数で動作する一定速圧縮機であってもよい。凝縮器12は、例えば、凝縮器12に流れる冷媒を空気と熱交換させる熱交換器であり、冷媒を凝縮させるものである。例えば、凝縮器12は、冷媒が流れるチューブ(図示を省略)と、該チューブに取り付けられたフィン(図示を省略)と、を含んで形成されているフィンチューブ式の熱交換器である。凝縮器12の近傍には、凝縮器12への送風を行う送風機(図示を省略)が配設されている。膨張装置14は、冷媒を膨張させるものであり、例えば、開度を調整できる電子膨張弁であるが、毛細管等の開度を調整できないものであってもよい。
[Refrigerant circuit]
The refrigerant circuit 2 circulates the refrigerant, and is formed by connecting the compressor 10, the condenser 12, the expansion device 14, and the evaporator 16 through the refrigerant pipe 3. The compressor 10 compresses the refrigerant. The compressor 10 is an inverter compressor that is controlled by an inverter, for example, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the operating frequency. The compressor 10 may be a constant speed compressor that operates at a constant operating frequency. The condenser 12 is, for example, a heat exchanger that exchanges heat between the refrigerant flowing through the condenser 12 and air, and condenses the refrigerant. For example, the condenser 12 is a fin tube type heat exchanger that includes a tube (not shown) through which a refrigerant flows and fins (not shown) attached to the tube. A blower (not shown) that blows air to the condenser 12 is disposed in the vicinity of the condenser 12. The expansion device 14 expands the refrigerant. For example, the expansion device 14 is an electronic expansion valve that can adjust the opening degree, but may be an apparatus that cannot adjust the opening degree of a capillary tube or the like.
 蒸発器16は、蒸発器16に流れる冷媒を空気と熱交換させる熱交換器であり、冷媒を蒸発させるものである。例えば、蒸発器16は、冷媒が流れるチューブ(図示を省略)と、該チューブに取り付けられたフィン(図示を省略)と、を含んで形成されているフィンチューブ式の熱交換器である。蒸発器16の近傍には、蒸発器16への送風を行う送風機(図1では図示を省略)が配設されている。また、蒸発器16には、分配器15とヘッダ17とが接続されている。分配器15は、膨張装置14で膨張された冷媒を分配して蒸発器16に流入させるものである。ヘッダ17は、蒸発器16で蒸発されて蒸発器16から流出した冷媒を合流させるものである。蒸発器16の下方には、蒸発器16から滴下した水等を受けるドレンパン104が配設されている。 The evaporator 16 is a heat exchanger that exchanges heat between the refrigerant flowing through the evaporator 16 and air, and evaporates the refrigerant. For example, the evaporator 16 is a fin tube type heat exchanger formed including a tube (not shown) through which a refrigerant flows and fins (not shown) attached to the tube. A blower (not shown in FIG. 1) that blows air to the evaporator 16 is disposed in the vicinity of the evaporator 16. In addition, a distributor 15 and a header 17 are connected to the evaporator 16. The distributor 15 distributes the refrigerant expanded by the expansion device 14 and flows it into the evaporator 16. The header 17 joins the refrigerant evaporated by the evaporator 16 and flowing out of the evaporator 16. A drain pan 104 that receives water dropped from the evaporator 16 is disposed below the evaporator 16.
[冷媒回路の動作]
 次に、冷媒回路2の動作について説明する。圧縮機10で圧縮された冷媒は、凝縮器12で凝縮する。凝縮器12で凝縮した冷媒は、膨張装置14で膨張する。膨張装置14で膨張した冷媒は、蒸発器16で蒸発する。蒸発器16で蒸発した冷媒は、圧縮機10に吸入され、再び圧縮される。
[Operation of refrigerant circuit]
Next, the operation of the refrigerant circuit 2 will be described. The refrigerant compressed by the compressor 10 is condensed by the condenser 12. The refrigerant condensed by the condenser 12 is expanded by the expansion device 14. The refrigerant expanded by the expansion device 14 is evaporated by the evaporator 16. The refrigerant evaporated in the evaporator 16 is sucked into the compressor 10 and compressed again.
[ホットガス路]
 ホットガス路4は、圧縮機10で圧縮された高温高圧の冷媒を、蒸発器16に流すものである。ホットガス路4は、ホットガスバイパス配管6と開閉弁18とを含んでいる。ホットガスバイパス配管6は、圧縮機10の吐出部と凝縮器12との間と、膨張装置14と蒸発器16との間と、をバイパス接続する配管である。例えば、ホットガスバイパス配管6は、圧縮機10の吐出部と凝縮器12との間から分岐し、ドレンパン104の近傍を通ったのちに、膨張装置14と蒸発器16との間に合流する。ホットガスバイパス配管6の、ドレンパン104の近傍を通る部分は、ドレンパン104を加熱するヒーター106を形成している。ホットガスバイパス配管6の膨張装置14と蒸発器16との間に接続される部分は、分配器15と接続されている。開閉弁18は、ホットガスバイパス配管6に配設されており、開閉動作することで、ホットガス路4への冷媒の流入を制御するものである。開閉弁18は、例えば、単純に開閉を切り替える開閉切替弁であるが、開度を調整できる電動弁等であってもよい。開閉弁18は、ホットガスバイパス配管6の、圧縮機10の吐出部と凝縮器12との間から分岐してドレンパン104に近づくまでの配管に設けられるとよい。
[Hot gas path]
The hot gas path 4 allows the high-temperature and high-pressure refrigerant compressed by the compressor 10 to flow to the evaporator 16. The hot gas path 4 includes a hot gas bypass pipe 6 and an on-off valve 18. The hot gas bypass pipe 6 is a pipe that bypass-connects between the discharge unit of the compressor 10 and the condenser 12 and between the expansion device 14 and the evaporator 16. For example, the hot gas bypass pipe 6 branches from between the discharge portion of the compressor 10 and the condenser 12, passes through the vicinity of the drain pan 104, and then joins between the expansion device 14 and the evaporator 16. A portion of the hot gas bypass pipe 6 passing through the vicinity of the drain pan 104 forms a heater 106 that heats the drain pan 104. A portion of the hot gas bypass pipe 6 connected between the expansion device 14 and the evaporator 16 is connected to the distributor 15. The on-off valve 18 is disposed in the hot gas bypass pipe 6 and controls the inflow of the refrigerant into the hot gas path 4 by opening and closing operation. The on-off valve 18 is, for example, an on-off switching valve that simply switches between opening and closing, but may be an electric valve that can adjust the opening. The on-off valve 18 may be provided in the hot gas bypass pipe 6 that extends from between the discharge portion of the compressor 10 and the condenser 12 and approaches the drain pan 104.
[ホットガス路の動作]
 蒸発器16に霜が付着すると、蒸発器16の熱交換の効率が悪化する。そこで、この実施の形態の例では、ホットガス路4にホットガス冷媒を流して、蒸発器16を加熱することで、蒸発器16に付着した霜を除去する。すなわち、開閉弁18を開状態とすると、圧縮機10で圧縮された高温高圧の冷媒が、ホットガスバイパス配管6に流れる。ホットガスバイパス配管6を流れる冷媒は、ドレンパン104の近傍を通り、ドレンパン104を加熱したのちに、蒸発器16に流れる。蒸発器16を流れる冷媒は、蒸発器16を加熱して、蒸発器16に付着した霜を除去する。なお、ホットガス路4に、冷媒を流すときは、膨張装置14が閉じられていてもよいが、膨張装置14が開けられていてもよい。
[Hot gas path operation]
If frost adheres to the evaporator 16, the efficiency of heat exchange of the evaporator 16 deteriorates. Therefore, in the example of this embodiment, hot gas refrigerant is allowed to flow through the hot gas passage 4 to heat the evaporator 16, thereby removing frost attached to the evaporator 16. That is, when the on-off valve 18 is opened, the high-temperature and high-pressure refrigerant compressed by the compressor 10 flows into the hot gas bypass pipe 6. The refrigerant flowing through the hot gas bypass pipe 6 passes through the vicinity of the drain pan 104, heats the drain pan 104, and then flows into the evaporator 16. The refrigerant flowing through the evaporator 16 heats the evaporator 16 and removes frost attached to the evaporator 16. In addition, when flowing a refrigerant into the hot gas path 4, the expansion device 14 may be closed, but the expansion device 14 may be opened.
[冷却ユニット]
 図2は、図1に記載の蒸発器を収容した冷却ユニットを斜めから見た状態を模式的に記載した図であり、図3は、図2のA-A断面を模式的に記載した図であり、図4は、図3に記載のドレンパンおよびヒーターを下から見た状態を模式的に記載した図であり、図5は、図3に記載のカバーを斜めから見た状態を模式的に記載した図である。図2に記載の冷却ユニット100は、部屋の内部の室内に配設され、室内の冷却を行うものである。冷却ユニット100は、例えば、冷却ユニット100が配設される部屋の天井に取り付けられる取付け部103を有しており、部屋の天井から吊り下げされている。冷却ユニット100が配設される部屋は、例えば、セ氏0度~マイナス35度に管理される冷凍倉庫である。
[Cooling unit]
FIG. 2 is a diagram schematically illustrating a state where the cooling unit containing the evaporator illustrated in FIG. 1 is viewed from an oblique direction, and FIG. 3 is a diagram schematically illustrating the AA cross section of FIG. FIG. 4 is a diagram schematically illustrating a state where the drain pan and the heater illustrated in FIG. 3 are viewed from below. FIG. 5 is a diagram schematically illustrating a state where the cover illustrated in FIG. 3 is viewed obliquely. FIG. A cooling unit 100 shown in FIG. 2 is disposed inside a room and cools the room. The cooling unit 100 includes, for example, an attachment portion 103 that is attached to the ceiling of a room in which the cooling unit 100 is disposed, and is suspended from the ceiling of the room. The room in which the cooling unit 100 is disposed is, for example, a refrigeration warehouse managed at 0 degrees Celsius to minus 35 degrees Celsius.
 冷却ユニット100は、図3に示すように、ケーシング102と、蒸発器16と、ドレンパン104と、ヒーター106と、カバー108と、送風機110と、フード112と、ダンパー114と、を有している。ケーシング102は、蒸発器16および送風機110を収容する筐体である。ケーシング102の背面には、空気を吸い込む吸込口102Aが形成されており、ケーシング102の前面には、空気を吹き出す吹出口102Bが形成されている。例えば、冷却ユニット100は、吹出口102Bと比較して吸込口102Aが壁面と近くなるように配設されているが、吸込口102Aと比較して吹出口102Bが壁面と近くなるように配設されていてもよい。吸込口102Aから吸い込まれた空気は、蒸発器16で冷却されて、蒸発器16で冷却された空調空気が、吹出口102Bから吹き出される。吸込口102Aには、フード112が取り付けられている。フード112は、吸込口102Aの下方以外を覆うものである。吸込口102Aにフード112が取り付けられているため、吸込口102Aの下方から空気が吸い込まれる。吹出口102Bには、吹出口102Bを開閉するダンパー114が設けられている。ダンパー114は、送風機110が動作して送風を行うことで開状態となり、送風機110が停止して送風が停止されることで閉状態となるものである。 As shown in FIG. 3, the cooling unit 100 includes a casing 102, an evaporator 16, a drain pan 104, a heater 106, a cover 108, a blower 110, a hood 112, and a damper 114. . The casing 102 is a housing that houses the evaporator 16 and the blower 110. A suction port 102 </ b> A for sucking air is formed on the rear surface of the casing 102, and a blower outlet 102 </ b> B for blowing air is formed on the front surface of the casing 102. For example, the cooling unit 100 is disposed so that the suction port 102A is closer to the wall surface than the air outlet 102B, but is disposed so that the air outlet 102B is closer to the wall surface than the suction port 102A. May be. The air sucked from the suction port 102A is cooled by the evaporator 16, and the conditioned air cooled by the evaporator 16 is blown out from the air outlet 102B. A hood 112 is attached to the suction port 102A. The hood 112 covers other than the lower part of the suction port 102A. Since the hood 112 is attached to the suction port 102A, air is sucked from below the suction port 102A. The blower outlet 102B is provided with a damper 114 that opens and closes the blower outlet 102B. The damper 114 is opened when the blower 110 is operated and blows air, and is closed when the blower 110 is stopped and blown is stopped.
 ドレンパン104は、蒸発器16の下方に配設され、蒸発器16から滴下した水等を受けるものである。ヒーター106は、ドレンパン104の下方に配設され、加熱を行うものである。この実施の形態の例では、図1および図4に示すように、ヒーター106は、ホットガスバイパス配管6の一部分を含んで形成されている。具体的には、図4に示すように、ホットガスバイパス配管6は、その途中部に、冷媒を分配する分配ヘッダ160と、分配ヘッダ160で分配された冷媒を流す複数の単位流路162と、複数の単位流路162から流出した冷媒を合流させる合流ヘッダ164と、を有している。そして、ヒーター106は、分配ヘッダ160と、複数の単位流路162と、合流ヘッダ164と、を含んで形成されている。この実施の形態の例では、ヒーター106が、分配ヘッダ160と合流ヘッダ164との間の、複数の単位流路162を含んで形成されているため、蒸発器16の除霜を効率よく行うことができる。なぜなら、複数の単位流路162を有する構成とすることによって、複数の単位流路162のそれぞれの長さを短くし、且つドレンパン104と接触する単位流路162の面積を大きくすることができる。単位流路162の長さが短くなることで、単位流路162を通過した冷媒の温度の低下しすぎが抑制されるため、蒸発器16に流れる冷媒を利用して行われる蒸発器16の除霜を効率よく行うことができる。さらに、ドレンパン104と接触する単位流路162の面積が大きくなることで、ドレンパン104の加熱によって行われる蒸発器16の除霜を効率よく行うことができる。 The drain pan 104 is disposed below the evaporator 16 and receives water or the like dripped from the evaporator 16. The heater 106 is disposed below the drain pan 104 and performs heating. In the example of this embodiment, as shown in FIGS. 1 and 4, the heater 106 is formed including a part of the hot gas bypass pipe 6. Specifically, as shown in FIG. 4, the hot gas bypass pipe 6 includes a distribution header 160 that distributes the refrigerant and a plurality of unit channels 162 that flow the refrigerant distributed by the distribution header 160 in the middle thereof. And a merge header 164 that merges the refrigerants flowing out from the plurality of unit channels 162. The heater 106 includes a distribution header 160, a plurality of unit channels 162, and a merge header 164. In the example of this embodiment, since the heater 106 is formed including a plurality of unit flow paths 162 between the distribution header 160 and the merge header 164, the evaporator 16 can be efficiently defrosted. Can do. This is because the length of each of the plurality of unit channels 162 can be shortened and the area of the unit channel 162 in contact with the drain pan 104 can be increased by adopting a configuration having the plurality of unit channels 162. By reducing the length of the unit flow path 162, the temperature of the refrigerant that has passed through the unit flow path 162 is prevented from excessively decreasing. Frost can be performed efficiently. Furthermore, since the area of the unit flow path 162 in contact with the drain pan 104 is increased, the defrosting of the evaporator 16 performed by heating the drain pan 104 can be performed efficiently.
 単位流路162は、ドレンパン104の外側の面の一部分を形成する下面と接触した状態で取り付けられている。単位流路162は、複数の固定板166を利用して、固定板166とドレンパン104の下面との間に挟持されている。単位流路162が、固定板166とドレンパン104の下面との間に挟持される構成とすることで、単位流路162に流れる冷媒の熱が、ドレンパン104に効率よく伝達される。なお、固定板166は、金属等の熱伝導率が高い材質で形成されるとよい。 The unit channel 162 is attached in contact with the lower surface forming a part of the outer surface of the drain pan 104. The unit channel 162 is sandwiched between the fixed plate 166 and the lower surface of the drain pan 104 using a plurality of fixed plates 166. By adopting a configuration in which the unit channel 162 is sandwiched between the fixed plate 166 and the lower surface of the drain pan 104, the heat of the refrigerant flowing in the unit channel 162 is efficiently transmitted to the drain pan 104. Note that the fixing plate 166 is preferably formed of a material having high thermal conductivity such as metal.
 図2および図3に示すように、カバー108は、ドレンパン104とともに、ヒーター106の少なくとも一部分を覆うものである。図2~図5に示すように、この実施の形態の例では、分配ヘッダ160と単位流路162と合流ヘッダ164とが、ドレンパン104とカバー108とで覆われた空間に収容されている。ドレンパン104とカバー108とで覆われた空間に、分配ヘッダ160と単位流路162と合流ヘッダ164とが収容されているため、冷却ユニット100の意匠性が向上されている。さらに、この実施の形態の例では、ヒーター106が、ドレンパン104とカバー108とで覆われているため、ヒーター106が効率よくドレンパン104を加熱することができる。また、ヒーター106が、ドレンパン104とカバー108とで覆われているため、ヒーター106が加熱したときの熱によって、室内が温められることが抑制されている。 2 and 3, the cover 108 covers at least a part of the heater 106 together with the drain pan 104. As shown in FIGS. 2 to 5, in the example of this embodiment, the distribution header 160, the unit channel 162, and the merge header 164 are accommodated in a space covered with the drain pan 104 and the cover 108. Since the distribution header 160, the unit flow path 162, and the merge header 164 are accommodated in the space covered with the drain pan 104 and the cover 108, the design of the cooling unit 100 is improved. Furthermore, in the example of this embodiment, since the heater 106 is covered with the drain pan 104 and the cover 108, the heater 106 can efficiently heat the drain pan 104. In addition, since the heater 106 is covered with the drain pan 104 and the cover 108, the room is prevented from being warmed by heat generated when the heater 106 is heated.
 カバー108には、図5に示すように、一対の通気孔180が複数形成されている。一対の通気孔180のうちの一方の通気孔180Aは、吸込口102Aが形成されている背面に形成されており、一対の通気孔180のうちの他方の通気孔180Bは、吹出口102Bが形成されている前面に形成されている。この実施の形態の例では、カバー108に、少なくとも一対の通気孔180が形成されているため、カバー108で覆われた空間に、空気流れが生じる構成となっている。したがって、この実施の形態の例では、ドレンパン104とカバー108とで覆われている空間の内部のヒーター106等に、霜が付着するおそれが低減されている。なお、一対の通気孔180の個数、大きさ、位置、形状等は、特に限定されるものではない。すなわち、少なくとも一対の通気孔180は、ドレンパン104とカバー108とで覆われ、ヒーター106が収容されている空間に、通気が行われるように形成されていればよい。なお、この実施の形態の例のように、通気孔180が一列に並ぶ構成とすることで、通気孔180が形成されたカバー108の強度が向上され、さらにヒーター106が収容されている空間に均一的に通気が行われる。 As shown in FIG. 5, the cover 108 is formed with a plurality of pairs of vent holes 180. One vent hole 180A of the pair of vent holes 180 is formed on the back surface where the suction port 102A is formed, and the other vent hole 180B of the pair of vent holes 180 is formed by the air outlet 102B. Is formed on the front. In the example of this embodiment, since at least a pair of vent holes 180 is formed in the cover 108, an air flow is generated in the space covered with the cover 108. Therefore, in the example of this embodiment, the possibility that frost adheres to the heater 106 and the like inside the space covered with the drain pan 104 and the cover 108 is reduced. Note that the number, size, position, shape, and the like of the pair of vent holes 180 are not particularly limited. In other words, at least the pair of vent holes 180 may be formed so as to be ventilated in a space covered with the drain pan 104 and the cover 108 and accommodating the heater 106. It should be noted that, as in the example of this embodiment, the structure in which the vent holes 180 are arranged in a row improves the strength of the cover 108 in which the vent holes 180 are formed, and further in the space in which the heater 106 is accommodated. Aeration is performed uniformly.
 通気孔180は、単位流路162よりも下方に形成されている。通気孔180が単位流路162よりも下方に形成されることで、単位流路162が目視され難い構成となるため、冷却ユニット100の意匠性をさらに向上させることができる。また、通気孔180が単位流路162よりも下方に形成されることで、通気孔180によって発生する空気流れが、単位流路162によって阻害され難くなる。さらに、通気孔180が、カバー108の上下方向の下部に形成されているため、冷たい空気が、通気孔180を通ってカバー108の外部に排出されやすくなり、且つ、温かい空気が、カバー108の内部に保持されやすい構成となっている。この実施の形態の例では、温かい空気がカバー108の内部に保持されやすい構成となっているため、ドレンパン104の加熱を効率よく行うことができる。さらに、この実施の形態の例では、冷たい空気、特に水分を含んだ冷たい空気が、カバー108の上下方向の下側に形成された通気孔180から排出されやすい構成となっているため、ヒーター106およびドレンパン104等が凍結するおそれ等が抑制されている。なお、通気孔180は、例えば、カバー108の上下方向の中央よりも下部に形成されるものであるが、好適には、通気孔180は、カバー108の下部の曲げ形状部の近傍である下部領域に形成される。 The vent hole 180 is formed below the unit channel 162. By forming the vent hole 180 below the unit flow path 162, the unit flow path 162 is difficult to be visually observed, so that the design of the cooling unit 100 can be further improved. Further, since the vent hole 180 is formed below the unit flow path 162, the air flow generated by the vent hole 180 is not easily obstructed by the unit flow path 162. Further, since the vent hole 180 is formed in the lower part of the cover 108 in the vertical direction, it is easy for cold air to be discharged to the outside of the cover 108 through the vent hole 180, and warm air is It is configured to be easily held inside. In the example of this embodiment, since warm air is easily held inside the cover 108, the drain pan 104 can be heated efficiently. Further, in the example of this embodiment, the configuration is such that cold air, in particular, cold air containing moisture is easily discharged from the vent hole 180 formed on the lower side of the cover 108 in the vertical direction. In addition, the possibility of the drain pan 104 and the like being frozen is suppressed. The vent hole 180 is formed, for example, below the center of the cover 108 in the vertical direction. Preferably, the vent hole 180 is a lower part in the vicinity of the bent portion at the lower part of the cover 108. Formed in the region.
 上記のように、この実施の形態に係る冷却ユニット100は、蒸発器16と、蒸発器16の下方に配設されたドレンパン104と、ドレンパン104の下方に配設されており、加熱を行うヒーター106と、ドレンパン104とともに、ヒーター106の少なくとも一部分を覆うカバー108と、を有するものである。この実施の形態の例の冷却ユニット100では、ヒーター106によって温められたドレンパン104が、蒸発器16の下方から蒸発器16を温めるため、蒸発器16の除霜を効率よく行うことができる。さらに、この実施の形態の例の冷却ユニット100では、ヒーター106の少なくとも一部分が、ドレンパン104とカバー108とで覆われているため、ヒーター106が加熱を効率よく行うことができる。さらに、この実施の形態の例では、ヒーター106の少なくとも一部分がドレンパン104とカバー108とで覆われているため、ヒーター106が加熱したときの、冷却空間の温度の上昇が抑制される。 As described above, the cooling unit 100 according to this embodiment includes the evaporator 16, the drain pan 104 disposed below the evaporator 16, and the heater that is disposed below the drain pan 104 and performs heating. 106 and a cover 108 that covers at least a part of the heater 106 together with the drain pan 104. In the cooling unit 100 of the example of this embodiment, the drain pan 104 warmed by the heater 106 warms the evaporator 16 from below the evaporator 16, so that the evaporator 16 can be defrosted efficiently. Furthermore, in the cooling unit 100 of the example of this embodiment, since at least a part of the heater 106 is covered with the drain pan 104 and the cover 108, the heater 106 can efficiently perform heating. Furthermore, in the example of this embodiment, since at least a part of the heater 106 is covered with the drain pan 104 and the cover 108, an increase in the temperature of the cooling space when the heater 106 is heated is suppressed.
 例えば、ヒーター106は、冷媒回路2の、圧縮機10の吐出部と凝縮器12との間と、膨張装置14と蒸発器16との間と、をバイパスするホットガスバイパス配管6の少なくとも一部分を含んで形成される。この実施の形態の例では、ヒーター106が蒸発器16の下方から蒸発器16を加熱し、さらに、ホットガスバイパス配管6を流れた冷媒が蒸発器16を流れることで蒸発器16を加熱する構成となっているため、蒸発器16の除霜を効率よく行うことができる。さらに、この実施の形態の例では、ホットガスバイパス配管6を利用してヒーター106が形成されているため、冷却ユニット100の構成が簡略化されている。 For example, the heater 106 includes at least a part of the hot gas bypass pipe 6 that bypasses the refrigerant circuit 2 between the discharge unit of the compressor 10 and the condenser 12 and between the expansion device 14 and the evaporator 16. Formed. In the example of this embodiment, the heater 106 heats the evaporator 16 from below the evaporator 16, and further the refrigerant that has flowed through the hot gas bypass pipe 6 flows through the evaporator 16 to heat the evaporator 16. Therefore, the defrosting of the evaporator 16 can be performed efficiently. Furthermore, in the example of this embodiment, since the heater 106 is formed using the hot gas bypass pipe 6, the configuration of the cooling unit 100 is simplified.
 また、例えば、ヒーター106を形成しているホットガスバイパス配管6の少なくとも一部分が、ドレンパン104に接触した状態で、ドレンパン104に取り付けられることによって、ドレンパン104の加熱を効率よく行うことができる。 Further, for example, by attaching at least a part of the hot gas bypass pipe 6 forming the heater 106 to the drain pan 104 in contact with the drain pan 104, the drain pan 104 can be efficiently heated.
 また、例えば、ホットガスバイパス配管6に配設された開閉弁18をさらに備えており、蒸発器16の除霜を行うときに、ホットガスバイパス配管6に冷媒が流れる構成とすることもできる。 Further, for example, an on-off valve 18 disposed in the hot gas bypass pipe 6 may be further provided so that the refrigerant flows through the hot gas bypass pipe 6 when the evaporator 16 is defrosted.
 また、例えば、膨張装置14で膨張された冷媒を分配して蒸発器16に流入させる分配器15をさらに備えている。そして、ホットガスバイパス配管6の膨張装置14と蒸発器16との間に接続される部分が、分配器15と接続されている。ホットガスバイパス配管6が分配器15と接続される構成とすることによって、ホットガスバイパス配管6の接続を確実化し且つホットガスバイパス配管6の接続を容易化することができる。 Further, for example, a distributor 15 that distributes the refrigerant expanded by the expansion device 14 and flows into the evaporator 16 is further provided. A portion of the hot gas bypass pipe 6 connected between the expansion device 14 and the evaporator 16 is connected to the distributor 15. By adopting a configuration in which the hot gas bypass pipe 6 is connected to the distributor 15, the connection of the hot gas bypass pipe 6 can be ensured and the connection of the hot gas bypass pipe 6 can be facilitated.
 また、例えば、ヒーター106は、ホットガスバイパス配管6の途中部の、冷媒を分配する分配ヘッダ160と、分配ヘッダ160で分配された冷媒を流す複数の単位流路162と、複数の単位流路162から流出した冷媒を合流させる合流ヘッダ164と、を含んで形成されている。ヒーター106が、分配ヘッダ160と合流ヘッダ164との間の複数の単位流路162を含んで形成されることで、蒸発器16の除霜を効率よく行うことができる。なぜなら、複数の単位流路162を有する構成とすることによって、複数の単位流路162のそれぞれの長さを短くし、且つ複数の単位流路162のドレンパン104と接触する面積を大きくすることができる。単位流路162の長さが短くなることで、単位流路162を通過した冷媒の温度の低下しすぎが抑制されるため、蒸発器16に流れる冷媒を利用して行われる蒸発器16の除霜を効率よく行うことができる。さらに、複数の単位流路162のドレンパン104と接触する面積が大きくなることで、ドレンパン104の加熱が効率よく行われるため、ドレンパン104の加熱によって行われる蒸発器16の除霜を効率よく行うことができる。 Further, for example, the heater 106 includes a distribution header 160 that distributes the refrigerant, a plurality of unit flow paths 162 that flow the refrigerant distributed by the distribution header 160, and a plurality of unit flow paths in the middle of the hot gas bypass pipe 6. And a merge header 164 that merges the refrigerant that has flowed out of 162. By forming the heater 106 including a plurality of unit flow paths 162 between the distribution header 160 and the merge header 164, the evaporator 16 can be defrosted efficiently. This is because the length of each of the plurality of unit channels 162 can be shortened and the area of the plurality of unit channels 162 in contact with the drain pan 104 can be increased by adopting a configuration having the plurality of unit channels 162. it can. By reducing the length of the unit flow path 162, the temperature of the refrigerant that has passed through the unit flow path 162 is prevented from excessively decreasing. Frost can be performed efficiently. Furthermore, since the drain pan 104 is efficiently heated by increasing the area in contact with the drain pan 104 of the plurality of unit channels 162, the defrosting of the evaporator 16 performed by heating the drain pan 104 is efficiently performed. Can do.
 また、例えば、分配ヘッダ160と複数の単位流路162と合流ヘッダ164とが、カバー108で覆われることで、冷却ユニット100の意匠性が向上される。 Further, for example, the design of the cooling unit 100 is improved by covering the distribution header 160, the plurality of unit flow paths 162, and the merge header 164 with the cover 108.
 また、例えば、少なくとも蒸発器16を収容しているケーシング102をさらに備えており、ケーシング102またはカバー108に、ヒーター106への通気を行う、少なくとも一対の通気孔180が形成される。ヒーター106への通気を行う通気孔180が形成されることによって、ヒーター106が収容された空間に空気流れが生じるため、ヒーター106が収容された空間における霜の発生等が抑制される。なお、上記では、カバー108に通気孔180が形成された例について説明したが、ヒーター106が、ケーシング102とドレンパン104とカバー108とで覆われた空間に配設されているような場合には、ケーシング102に通気孔180が形成されることもある。 Further, for example, a casing 102 that houses at least the evaporator 16 is further provided, and at least a pair of ventilation holes 180 that ventilate the heater 106 are formed in the casing 102 or the cover 108. By forming the ventilation hole 180 that ventilates the heater 106, an air flow is generated in the space in which the heater 106 is accommodated, so that generation of frost in the space in which the heater 106 is accommodated is suppressed. In the above, an example in which the vent hole 180 is formed in the cover 108 has been described. However, when the heater 106 is disposed in a space covered with the casing 102, the drain pan 104, and the cover 108. The ventilation hole 180 may be formed in the casing 102.
 また、例えば、ヒーター106の少なくとも一部分が、通気孔180よりも上方に配設されている。ヒーター106の少なくとも一部分が、通気孔180よりも上方に配設されることで、ヒーター106が、通気孔180を通じて見え難い構成となるため、意匠性が向上される。さらに、通気孔180によって生じる空気流れが、ヒーター106によって阻害され難い構成となるため、ドレンパン104とカバー108とで覆われているヒーター106等に霜が付着するおそれが低減される。さらに、ヒーター106の少なくとも一部分が、通気孔180よりも上方に配設される構成とすることによって、冷たい空気が、通気孔180を通ってカバー108の外部に排出されやすく、温かい空気が、カバー108の内部に保持されやすくなるため、ドレンパン104の加熱を効率よく行うことができる。さらに、冷たい空気、特に水分を含んだ冷たい空気が、通気孔180から排出されやすい構成となっているため、ヒーター106およびドレンパン104等が凍結するおそれ等が抑制されている。なお、例えば、ヒーター106の通気孔180よりも上方に形成される部分は、分配ヘッダ160と合流ヘッダ164との間の複数の単位流路162である。 Further, for example, at least a part of the heater 106 is disposed above the vent hole 180. Since at least a part of the heater 106 is disposed above the vent hole 180, the heater 106 is difficult to see through the vent hole 180, so that the design is improved. Furthermore, since the air flow generated by the vent hole 180 is not easily obstructed by the heater 106, the possibility that frost adheres to the heater 106 and the like covered with the drain pan 104 and the cover 108 is reduced. Further, at least a part of the heater 106 is disposed above the vent hole 180, so that cold air can be easily discharged to the outside of the cover 108 through the vent hole 180, and warm air is Since it becomes easy to hold | maintain inside 108, the drain pan 104 can be heated efficiently. Furthermore, since cold air, in particular, cold air containing moisture is easily discharged from the vent hole 180, the possibility that the heater 106, the drain pan 104, and the like are frozen is suppressed. For example, the portion formed above the vent hole 180 of the heater 106 is a plurality of unit flow paths 162 between the distribution header 160 and the merge header 164.
 また、例えば、冷却ユニット100は、冷却ユニット100の背面に形成され、空気を吸い込む吸込口102Aと、冷却ユニット100の前面に形成され、空気を吹き出す吹出口102Bと、をさらに有している。そして、一対の通気孔180のうちの、一方の通気孔180Aが、背面と対応する吸込口102Aが形成された面に形成されており、他方の通気孔180Bが背面と対応する吹出口102Bが形成された面に形成されている。したがって、送風機110が動作して、吸込口102Aから空気が吸い込まれ、吹出口102Bから空気が吹き出されると、他方の通気孔180Bから空気が流入し、一方の通気孔180Aから空気が流出する空気流れが生じる。つまり、冷却ユニット100が空調を行っているときに、ヒーター106が配設された空間に空気流れが発生しやすい構成となっている。例えば、吸込口102Aの上方を覆い、吸込口102Aに下方から空気を吸い込ませるフード112を有する構成とすることで、上記の空気流れがさらに生じやすい構成となる。 Further, for example, the cooling unit 100 further includes a suction port 102A that is formed on the back surface of the cooling unit 100 and sucks air, and an air outlet 102B that is formed on the front surface of the cooling unit 100 and blows out air. Of the pair of vent holes 180, one vent hole 180A is formed on the surface on which the suction port 102A corresponding to the back surface is formed, and the other vent hole 180B is formed on the air outlet 102B corresponding to the back surface. It is formed on the formed surface. Therefore, when the blower 110 operates and air is sucked in from the suction port 102A and air is blown out from the air outlet 102B, air flows in from the other vent hole 180B and air flows out from the one vent hole 180A. Air flow is generated. That is, when the cooling unit 100 is performing air conditioning, an air flow is easily generated in the space in which the heater 106 is disposed. For example, the above-described air flow is more easily generated by including a hood 112 that covers the upper side of the suction port 102A and sucks air from below into the suction port 102A.
 また、例えば、冷却ユニット100は、吹出口102Bを開閉するダンパー114をさらに備えており、蒸発器16の除霜を行う除霜運転時に、ダンパー114が閉状態となることで、蒸発器16の除霜を効率よく行うことができる。 In addition, for example, the cooling unit 100 further includes a damper 114 that opens and closes the air outlet 102 </ b> B. When the damper 114 is closed during the defrosting operation in which the evaporator 16 is defrosted, Defrosting can be performed efficiently.
 また、例えば、冷却ユニット100は、天井から吊り下げられるものであり、そのようなものである場合に、上記の効果が特に顕著となる。 Further, for example, the cooling unit 100 is suspended from the ceiling, and in such a case, the above-described effect becomes particularly remarkable.
 なお、この発明の冷却ユニットは、カバー108が省略されたものであってもよい。つまり、この発明の冷却ユニットは、蒸発器16と、蒸発器16の下方に配設されたドレンパン104と、ドレンパン104の下方に配設されており、加熱を行うヒーター106と、を備え、ヒーター106が、冷媒回路2の、圧縮機10の吐出部と凝縮器12との間と、膨張装置14と蒸発器16との間と、をバイパスするホットガスバイパス配管6の少なくとも一部分を含んで形成されたものであってもよい。蒸発器16の除霜を行うときに、ドレンパン104を加熱した冷媒が、蒸発器16に流れる構成とすることによって、蒸発器16の除霜を効率よく行うことができる。 Note that the cooling unit of the present invention may be one in which the cover 108 is omitted. That is, the cooling unit of the present invention includes an evaporator 16, a drain pan 104 disposed below the evaporator 16, and a heater 106 disposed below the drain pan 104 and performing heating. 106 includes at least a part of the hot gas bypass pipe 6 that bypasses the refrigerant circuit 2 between the discharge unit of the compressor 10 and the condenser 12 and between the expansion device 14 and the evaporator 16. It may be what was done. When the evaporator 16 is defrosted, the refrigerant that heated the drain pan 104 flows into the evaporator 16, so that the evaporator 16 can be defrosted efficiently.
 この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 The present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
 例えば、上記の実施の形態では、ヒーター106が、ホットガスバイパス配管6を含んで形成された例についての説明を行ったが、ヒーター106は、電熱線等の他の構成を含んで形成されていてもよい。 For example, in the above-described embodiment, the example in which the heater 106 is formed including the hot gas bypass pipe 6 has been described. However, the heater 106 is formed including other components such as a heating wire. May be.
 また、例えば、上記の実施の形態では、開閉弁18の開閉を切り替えることで、ホットガス路4への冷媒の流通を切り替える例についての説明を行ったが、開閉弁18を省略した構成とすることもできる。 For example, in the above-described embodiment, the example of switching the refrigerant flow to the hot gas path 4 by switching the opening and closing of the opening and closing valve 18 has been described, but the opening and closing valve 18 is omitted. You can also.
 1 冷凍サイクル装置、2 冷媒回路、3 冷媒配管、4 ホットガス路、6 ホットガスバイパス配管、10 圧縮機、12 凝縮器、14 膨張装置、15 分配器、16 蒸発器、17 ヘッダ、18 開閉弁、100 冷却ユニット、102 ケーシング、102A 吸込口、102B 吹出口、103 取付け部、104 ドレンパン、106 ヒーター、108 カバー、110 送風機、112 フード、114 ダンパー、160 分配ヘッダ、162 単位流路、164 合流ヘッダ、166 固定板、180 通気孔、180A 通気孔、180B 通気孔。 1 refrigeration cycle device, 2 refrigerant circuit, 3 refrigerant piping, 4 hot gas passage, 6 hot gas bypass piping, 10 compressor, 12 condenser, 14 expansion device, 15 distributor, 16 evaporator, 17 header, 18 on-off valve , 100 cooling unit, 102 casing, 102A inlet, 102B outlet, 103 mounting part, 104 drain pan, 106 heater, 108 cover, 110 blower, 112 hood, 114 damper, 160 distribution header, 162 unit flow path, 164 merge header 166 fixing plate, 180 vents, 180A vents, 180B vents.

Claims (15)

  1.  圧縮機と凝縮器と膨張装置と蒸発器とが冷媒配管で接続されて形成される冷媒回路の、少なくとも前記蒸発器と、
     前記蒸発器の下方に配設されたドレンパンと、
     前記ドレンパンの下方に配設されており、加熱を行うヒーターと、
     前記ドレンパンとともに、前記ヒーターの少なくとも一部分を覆うカバーと、
     を備えた、
     冷却ユニット。
    At least the evaporator of a refrigerant circuit formed by connecting a compressor, a condenser, an expansion device, and an evaporator with refrigerant piping;
    A drain pan disposed below the evaporator;
    Disposed below the drain pan, and a heater for heating;
    A cover that covers at least a portion of the heater together with the drain pan;
    With
    Cooling unit.
  2.  前記ヒーターは、前記冷媒回路の、前記圧縮機の吐出部と前記凝縮器との間と、前記膨張装置と前記蒸発器との間と、をバイパスするホットガスバイパス配管の少なくとも一部分を含んで形成されている、
     請求項1に記載の冷却ユニット。
    The heater includes at least a part of a hot gas bypass pipe that bypasses between the discharge unit of the compressor and the condenser and between the expansion device and the evaporator of the refrigerant circuit. Being
    The cooling unit according to claim 1.
  3.  前記ホットガスバイパス配管の少なくとも一部分が、前記ドレンパンに接触した状態で、前記ドレンパンに取り付けられている、
     請求項2に記載の冷却ユニット。
    At least a part of the hot gas bypass pipe is attached to the drain pan in a state in contact with the drain pan.
    The cooling unit according to claim 2.
  4.  前記ホットガスバイパス配管に配設された開閉弁をさらに備えた、
     請求項2または請求項3に記載の冷却ユニット。
    Further comprising an on-off valve disposed in the hot gas bypass pipe,
    The cooling unit according to claim 2 or 3.
  5.  前記膨張装置で膨張された冷媒を分配して前記蒸発器に流入させる分配器をさらに備え、
     前記ホットガスバイパス配管の前記膨張装置と前記蒸発器との間に接続される部分が、前記分配器と接続されている、
     請求項2~請求項4の何れか一項に記載の冷却ユニット。
    A distributor for distributing the refrigerant expanded by the expansion device to flow into the evaporator;
    The portion of the hot gas bypass pipe connected between the expansion device and the evaporator is connected to the distributor.
    The cooling unit according to any one of claims 2 to 4.
  6.  前記ヒーターは、前記ホットガスバイパス配管の途中部の、冷媒を分配する分配ヘッダと、前記分配ヘッダで分配された冷媒を流す複数の単位流路と、複数の前記単位流路から流出した冷媒を合流させる合流ヘッダと、を含み、
     前記分配ヘッダと複数の前記単位流路と前記合流ヘッダとが前記カバーで覆われている、
     請求項2~請求項5の何れか一項に記載の冷却ユニット。
    The heater includes a distribution header that distributes the refrigerant, a plurality of unit flow paths that flow the refrigerant distributed by the distribution header, and a refrigerant that has flowed out of the plurality of unit flow paths in the middle of the hot gas bypass pipe. A merge header, and
    The distribution header, the plurality of unit flow paths, and the merge header are covered with the cover,
    The cooling unit according to any one of claims 2 to 5.
  7.  少なくとも前記蒸発器を収容しているケーシングをさらに備え、
     前記ケーシングまたは前記カバーに、前記ヒーターへの通気を行う、少なくとも一対の通気孔が形成されている、
     請求項1~請求項6の何れか一項に記載の冷却ユニット。
    A casing containing at least the evaporator;
    In the casing or the cover, at least a pair of ventilation holes for ventilating the heater is formed.
    The cooling unit according to any one of claims 1 to 6.
  8.  前記ヒーターの少なくとも一部分が、前記通気孔よりも上方に配設されている、
     請求項7に記載の冷却ユニット。
    At least a portion of the heater is disposed above the vent;
    The cooling unit according to claim 7.
  9.  少なくとも前記蒸発器を収容しているケーシングをさらに備え、
     前記ケーシングまたは前記カバーに、前記ヒーターへの通気を行う、少なくとも一対の通気孔が形成されており、
     前記ヒーターは、前記ホットガスバイパス配管に配設され、冷媒を分配する分配ヘッダと、前記分配ヘッダで分配された冷媒を流す複数の単位流路と、複数の前記単位流路から流出した冷媒を合流させる合流ヘッダと、を含んでおり、
     少なくとも1つの前記単位流路が、前記通気孔よりも上方に形成されている、
     請求項2~請求項5の何れか一項に記載の冷却ユニット。
    A casing containing at least the evaporator;
    The casing or the cover is formed with at least a pair of ventilation holes for ventilating the heater,
    The heater is disposed in the hot gas bypass pipe, and distributes a refrigerant, a plurality of unit flow paths for distributing the refrigerant distributed in the distribution header, and a refrigerant flowing out of the plurality of unit flow paths. A merging header for merging, and
    At least one of the unit channels is formed above the vent hole;
    The cooling unit according to any one of claims 2 to 5.
  10.  背面に形成され、空気を吸い込む吸込口と、前面に形成され、空気を吹き出す吹出口と、をさらに有し、
     一対の前記通気孔のうちの、一方が、前記背面と対応する面に形成されており、他方が前記前面と対応する面に形成されている、
     請求項7~請求項9の何れか一項に記載の冷却ユニット。
    A suction port that is formed in the back surface and sucks air; and a blowout port that is formed in the front surface and blows out air;
    One of the pair of vent holes is formed on a surface corresponding to the back surface, and the other is formed on a surface corresponding to the front surface.
    The cooling unit according to any one of claims 7 to 9.
  11.  前記背面と対応する面に取り付けられ、前記吸込口の上方を覆い、前記吸込口に下方から空気を吸い込ませるフードをさらに有する、
     請求項10に記載の冷却ユニット。
    The hood is attached to a surface corresponding to the back surface, covers an upper portion of the suction port, and further has a hood for sucking air from below into the suction port.
    The cooling unit according to claim 10.
  12.  前記前面と対応する面に取り付けられ、前記吹出口を開閉するダンパーをさらに備えた、
     請求項10または請求項11に記載の冷却ユニット。
    A damper attached to a surface corresponding to the front surface and further opening and closing the air outlet,
    The cooling unit according to claim 10 or 11.
  13.  前記蒸発器の除霜を行う除霜運転時に、前記ダンパーが閉状態となる、
     請求項12に記載の冷却ユニット。
    During the defrosting operation for defrosting the evaporator, the damper is in a closed state.
    The cooling unit according to claim 12.
  14.  天井から吊り下げられている、
     請求項1~請求項13の何れか一項に記載の冷却ユニット。
    Suspended from the ceiling,
    The cooling unit according to any one of claims 1 to 13.
  15.  圧縮機と凝縮器と膨張装置と蒸発器とが冷媒配管で接続されて形成される冷媒回路の、少なくとも前記蒸発器と、
     前記蒸発器の下方に配設されたドレンパンと、
     前記ドレンパンの下方に配設されており、加熱を行うヒーターと、
     を備え、
     前記ヒーターは、前記冷媒回路の、前記圧縮機の吐出部と前記凝縮器との間と、前記膨張装置と前記蒸発器との間と、をバイパスするホットガスバイパス配管の少なくとも一部分を含んで形成されている、
     冷却ユニット。
    At least the evaporator of a refrigerant circuit formed by connecting a compressor, a condenser, an expansion device, and an evaporator with refrigerant piping;
    A drain pan disposed below the evaporator;
    Disposed below the drain pan, and a heater for heating;
    With
    The heater includes at least a part of a hot gas bypass pipe that bypasses between the discharge unit of the compressor and the condenser and between the expansion device and the evaporator of the refrigerant circuit. Being
    Cooling unit.
PCT/JP2016/065692 2016-05-27 2016-05-27 Cooling unit WO2017203680A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018518906A JP6689376B2 (en) 2016-05-27 2016-05-27 Cooling unit
CN201690001676.5U CN209246477U (en) 2016-05-27 2016-05-27 Cooling unit
PCT/JP2016/065692 WO2017203680A1 (en) 2016-05-27 2016-05-27 Cooling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065692 WO2017203680A1 (en) 2016-05-27 2016-05-27 Cooling unit

Publications (1)

Publication Number Publication Date
WO2017203680A1 true WO2017203680A1 (en) 2017-11-30

Family

ID=60411567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065692 WO2017203680A1 (en) 2016-05-27 2016-05-27 Cooling unit

Country Status (3)

Country Link
JP (1) JP6689376B2 (en)
CN (1) CN209246477U (en)
WO (1) WO2017203680A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022103988A (en) * 2020-12-28 2022-07-08 アクア株式会社 refrigerator
CN115540443A (en) * 2021-06-29 2022-12-30 青岛海尔电冰箱有限公司 Refrigerating and freezing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185189U (en) * 1984-05-19 1985-12-07 株式会社 東洋製作所 Ice generation prevention device when defrosting the cooler
JPH01179876A (en) * 1987-12-29 1989-07-17 Daikin Ind Ltd Refrigerating device
JPH08219599A (en) * 1995-02-08 1996-08-30 Mitsubishi Electric Corp Refrigerating plant
JP2004020099A (en) * 2002-06-18 2004-01-22 Sanyo Electric Co Ltd Refrigeration unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185189U (en) * 1984-05-19 1985-12-07 株式会社 東洋製作所 Ice generation prevention device when defrosting the cooler
JPH01179876A (en) * 1987-12-29 1989-07-17 Daikin Ind Ltd Refrigerating device
JPH08219599A (en) * 1995-02-08 1996-08-30 Mitsubishi Electric Corp Refrigerating plant
JP2004020099A (en) * 2002-06-18 2004-01-22 Sanyo Electric Co Ltd Refrigeration unit

Also Published As

Publication number Publication date
JP6689376B2 (en) 2020-04-28
CN209246477U (en) 2019-08-13
JPWO2017203680A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6827542B2 (en) Refrigeration cycle equipment
JP2018159524A (en) Integrated air conditioner
JP6091302B2 (en) Air conditioner
KR20070106018A (en) Refrigerating and/or freezing appliance
WO2017017813A1 (en) Exterior unit
JP2013257114A (en) Refrigerator
JP6641752B2 (en) Cooling system
JP7369434B2 (en) refrigerator
JP2009079778A (en) Refrigerator
WO2017203680A1 (en) Cooling unit
JP2007170758A (en) Refrigerating device
KR20020079619A (en) All in one type usual habit and thermo airconditioner
WO2021258819A1 (en) Refrigerator
JP2016156543A (en) Indoor unit and air conditioner
KR101680095B1 (en) One body type heat-pump air-conditioner
JP6865854B2 (en) Indoor unit of air conditioner and air conditioner
KR100600070B1 (en) Air conditioner
JP7461409B2 (en) Air Conditioning Equipment
KR200239556Y1 (en) All in one type usual habit and thermo airconditioner
JP2014052094A (en) Refrigerator
JP7008472B2 (en) Outdoor unit
JP4711567B2 (en) Air conditioner
JP3685752B2 (en) Air conditioner
JP2018185054A (en) Cooling storage
JP3702119B2 (en) Cooling storage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518906

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16903161

Country of ref document: EP

Kind code of ref document: A1