WO2017203334A1 - A novel z-section lock ring for rear dual wheels of heavy transport vehicle - Google Patents

A novel z-section lock ring for rear dual wheels of heavy transport vehicle Download PDF

Info

Publication number
WO2017203334A1
WO2017203334A1 PCT/IB2016/054560 IB2016054560W WO2017203334A1 WO 2017203334 A1 WO2017203334 A1 WO 2017203334A1 IB 2016054560 W IB2016054560 W IB 2016054560W WO 2017203334 A1 WO2017203334 A1 WO 2017203334A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
tyre
wheel rim
outboard
inboard
Prior art date
Application number
PCT/IB2016/054560
Other languages
French (fr)
Inventor
Balaji AVALUR NAGARAJAN
Original Assignee
Wheels India Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wheels India Limited filed Critical Wheels India Limited
Publication of WO2017203334A1 publication Critical patent/WO2017203334A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B11/00Units comprising multiple wheels arranged side by side; Wheels having more than one rim or capable of carrying more than one tyre
    • B60B11/06Wheels with more than one rim mounted on a single wheel body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B25/00Rims built-up of several main parts ; Locking means for the rim parts
    • B60B25/04Rims with dismountable flange rings, seat rings, or lock rings
    • B60B25/10Seat rings for the tyre bead part, e.g. split
    • B60B25/12Seat rings for the tyre bead part, e.g. split with integral flange part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B25/00Rims built-up of several main parts ; Locking means for the rim parts
    • B60B25/04Rims with dismountable flange rings, seat rings, or lock rings
    • B60B25/14Locking means for flange rings or seat rings
    • B60B25/18Arrangement of split rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B11/00Units comprising multiple wheels arranged side by side; Wheels having more than one rim or capable of carrying more than one tyre
    • B60B11/02Units of separate wheels mounted for independent or coupled rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B25/00Rims built-up of several main parts ; Locking means for the rim parts
    • B60B25/04Rims with dismountable flange rings, seat rings, or lock rings
    • B60B25/14Locking means for flange rings or seat rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/30Increase in
    • B60B2900/331Safety or security
    • B60B2900/3313Safety or security during maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/50Improvement of
    • B60B2900/531User-friendliness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/50Improvement of
    • B60B2900/541Servicing

Definitions

  • the embodiment herein generally relates to a dual wheel rim assembly in heavy transport vehicles.
  • the invention relates to an improved dual wheel rim assembly provided with a two-piece Z-section segmented lock ring retained in position inside a suitable groove on the wheel rim which permits for changing the inner tyre of dual wheel rim assembly quickly without removing the outboard wheel rim assembly.
  • Dual wheel assemblies are used on rear, driving and non-steering axles of heavy transport vehicles, such as mining and earthmoving vehicles, to increase their load bearing capacity and help maintain vehicle drivability.
  • a typical dual wheel assembly comprises a pair of adjacent wheel rims mounted on a common hub with each wheel rim fitted with an identical tyre. Even though the dual wheel rims are used in heavy transport vehicles, changing the tyre of the inboard wheel of the dual is a laborious and time-consuming process.
  • tyre support components are different and are not interchangeable between inboard and outboard rims which pose difficulty in spares inventory management.
  • Tyre support components typically comprise a tyre bead seat band, tyre wall support flange or tyre flange.
  • structural and geometric design of final planetary drive are constrained by the smaller outboard wheel rim diameter which ultimately impacts the gear reduction.
  • a main object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle without removal of outboard wheel rim.
  • Another object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle with a self-locking feature without a need of additional fasteners.
  • Yet another object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle with identical wheel rim assembly for both outboard and inboard.
  • Another object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle with identical wheel assembly to facilitate interchanging the bead seat bands between wheel rims.
  • an embodiment herein provides a novel locking mechanism in wheel rim assembly, which facilitates quick tyre change for inboard of rear duals of a heavy transport vehicle.
  • the embodiments herein achieve this by providing a two-piece Z-section segmented lock retained in position inside a suitable groove on the outboard wheel rim, which can be used in dual wheel assembly of heavy transport vehicles.
  • the novel locking mechanism comprises of a two-piece Z-section segmented lock ring retained in position inside a suitable groove on the wheel rim in the inner portion of the outboard wheel rim and a conventional split lock ring in the outer portion of the outboard wheel rim of rear dual wheel rim assembly of the heavy transport vehicle. Accordingly the shape of the lock ring, gutter section or groove in the inner portion of the wheel is designed.
  • the outer portion of the inboard wheel rim is provided with conventional lock ring and the inner portion of the inboard wheel rim of the rear dual is usually provided with a lock ring integral to the rim base.
  • the tyre expands and thereby pushing the tyre support components namely the bead seat bands so that they abuts- against the respective lock rings.
  • a taper of 45 degrees in the bead seat band on the inner portion of the outboard wheel abuts against the matching taper provided on the outboard tyre side surface of the two-piece Z-section segmented lock ring.
  • a taper provided on the other side of two-piece Z-section segmented lock ring is pressed against an internal taper provided on the outboard wheel rim.
  • the taper is a self-locking type and the half angle of the conical frustum with respect to wheel rim axis may vary depending on the wheel size, torque and other tribological conditions.
  • the bead seat band which has conjoined with the outboard tyre may move away from the 45 degree taper butting surface of the two-piece Z-section segmented lock ring towards the inside of the outboard rim.
  • the two-piece Z-section segmented lock ring retained inside the groove of the outboard wheel rim due to wedge action of self-locking taper cannot move from its position until an external force is applied on the two-piece Z-section segmented lock ring towards the direction of the outboard tyre.
  • the wheel rim lip portion of the groove acts as a hood over the two- piece Z-section segmented lock ring and prevents any loose parts flying off the rim during the tyre burst.
  • Fig.1 illustrates a schematic sectional elevation of dual wheel assembly, according to an embodiment therein;
  • Fig.2 illustrates an enlarged sectional elevation of inboard wheel rim showing the removable bead seat band of the dual wheel assembly, according to an embodiment therein;
  • FIG.3 illustrates an enlarged sectional elevation of outer bead seat band portion of inboard wheel rim of dual wheel assembly, according to an embodiment therein;
  • FIG.4a illustrates of an enlarged sectional elevation of inner bead seat portion of outboard wheel rim of the dual wheel assembly, according to an embodiment therein;
  • Fig.4b illustrates an enlarged sectional elevation of outer bead seat band portion of outboard wheel rim of the dual wheel assembly, according to an embodiment therein;
  • Fig.5 illustrates an exploded view of outboard wheel rim of the dual wheel assembly, according to an embodiment therein.
  • the novel locking mechanism comprises of a two-piece Z-section segmented lock ring retained in position inside a suitable groove on the wheel rim in the inner portion of the outboard wheel rim and a conventional split lock ring in the outer portion of the outboard wheel rim of rear dual wheel rim assembly of the heavy transport vehicle. Accordingly the shape of the lock ring, gutter section or groove in the inner portion of the wheel is designed.
  • the outer portion of the inboard wheel rim is provided with conventional lock ring and the inner portion of the inboard wheel rim of the rear dual is usually provided with a lock ring integral to the rim base.
  • the tyre expands and thereby pushing the tyre support components namely the bead seat bands so that they abuts against the respective lock rings.
  • a taper of 45 degrees in the bead seat band on the inner portion of the outboard wheel abuts against the matching taper provided on the outboard tyre side surface of the two-piece Z-section segmented lock ring.
  • a taper provided on the other side of two-piece Z-section segmented lock ring is pressed against an internal taper provided on the outboard wheel rim.
  • the taper is a self-locking type and the half angle of the conical frustum with respect to wheel rim axis may vary depending on the wheel size, torque and other tribological conditions.
  • the bead seat band which has conjoined with the outboard tyre may move away from the 45 degree taper butting surface of the two-piece Z-section segmented lock ring towards the inside of the outboard rim.
  • the two-piece Z-section segmented lock ring retained inside the groove of the outboard wheel rim due to wedge action of self-locking taper cannot move from its position until an external force is applied on the two-piece Z-section segmented lock ring towards the direction of the outboard tyre.
  • a wheel rim lip portion of the groove acts as a hood over the two-piece Z-section segmented lock ring and prevents any loose parts flying off the rim during the tyre burst.
  • Fig.1 illustrates a schematic sectional elevation 100 of the dual wheel assembly, according to an embodiment.
  • the dual wheel rim assembly for a heavy transport vehicle comprises a pair of wheels 201, 401 that mounted side-by-side on a common axle hub 301.
  • the wheel 201 has a cylindrical inboard wheel rim 206 on which a tyre 202 is mounted.
  • the inboard wheel rim 206 has a knave 208 that is fixed to the inside thereof having a series of bolt holes spaced circumferentially around an annular flange.
  • the knave 208 is used to mount the inboard wheel rim 206 to a shoulder of the common axle hub 301.
  • the inboard wheel rim 206 has an annular flange 211 at one end thereof which may extend radially outwardly.
  • the portion of the inboard wheel rim 206 adjacent to the end flange 211 is tapered outwardly towards the end flange 211 to form a fixed bead seat band 210 for one bead of the inboard tyre 202.
  • the bead may abut against the annular flange 211.
  • Fig.2 illustrates an enlarged sectional elevation of the inner end of inboard wheel rim showing the removable bead seat band 200 of the dual wheel assembly, according to another embodiment.
  • the removable bead seat band 215 is generally a cylindrical or ring-like member with a tapered thickness which provides a seat for an inner bead of the tyre 202.
  • An O-ring 214 is located in an annular groove on the inboard wheel rim 206 to provide an air tight seal between the removable bead seat band 215 and the inboard wheel rim 206.
  • the tyre flange 212 is mounted on the removable bead seat band 215 to retain and support the inner side wall of the inboard tyre 202.
  • the removable bead seat band 215 is retained in position by the annular flange 207 which extends radially outwardly.
  • FIG.3 illustrates an enlarged sectional elevation of outer bead seat band portion of the inboard wheel rim 300 of the dual wheel assembly, according to an embodiment.
  • a removable bead seat band 204 is mounted to the outer end of the inboard wheel rim 206.
  • the removable bead seat band at the outer end of the inboard wheel 204 is generally a cylindrical or ring-like member of tapered thickness, which provides a seat for the outer bead of the tyre 202.
  • An O-ring 213 is located in an annular groove on the inboard wheel rim 206 to provide an air tight seal between the removable bead seat band at the outer end of the wheel 204 and the inboard wheel rim 206.
  • a tyre flange at the outer end of the wheel 203 is mounted on the removable bead seat band at the outer end of the wheel 204 to retain and support the outer side wall of the tyre 202.
  • the removable bead seat band at the outer end of the wheel 204 is retained in position, in use, by a split lock ring 205 which has an inner bead which locates in an annular groove around the inboard wheel rim 206.
  • the outboard wheel 400 may have a cylindrical wheel rim 420 on which an outboard tyre 402 can be mounted.
  • the mounting holes on its knave 408 are circumferentially arranged in a smaller diameter circle for mounting to the smaller outer end of the common axle hub 301.
  • the inboard and outboard tyres 202, 402 are of the same, standard size and may be fitted interchangeably to either inboard or outboard wheel rim 201, 401.
  • Fig.4a illustrates of an enlarged sectional elevation of inner bead seat portion 400a of the outboard wheel rim of the dual wheel assembly, according to an embodiment.
  • the wheel rim 420 of the outboard wheel 401 is generally of cylindrical shape. Grooves for O-ring and lock rings are machined in the front and rear end of the rim for the purposes described below.
  • the inner end of outboard wheel rim 402 is provided with an annular groove 414.
  • the annular groove is provided with an internal female tapered surface 413 extending inwardly.
  • the two- piece Z-section segmented lock ring 409a and 409b are disposed about the groove such that the internal tapered surface 413 is butting to a matching taper provided in the Z- section segmented lock rings.
  • a portion on the external surface of the two-piece Z- section segmented lock ring 409a and 409b is tapered to form seat 405 for the bead seat band 412.
  • the inner bead seat band at outboard wheel 412 provides a seat for the inner bead of the tyre 402.
  • the inner bead seat band 412 at the outboard wheel has an annular flange 404 extending radially outwardly.
  • a tyre flange 403 is mounted on the inner bead seat band 412 at the outboard wheel to retain and support the inner wall of the tyre 402.
  • An O-ring 410 is located in the groove on the inner portion of the outboard wheel rim 420 to provide air tight seal between inner bead seat band 412 and outboard wheel rim 420.
  • Fig.4b illustrates an enlarged sectional elevation of outer bead seat band portion 400b of the outboard wheel rim of the dual wheel assembly, according to an embodiment.
  • a bead seat band 415 is provided at the outer end of the outboard wheel rim 420.
  • the bead seat bands at both inner and the outer end of inboard and outboard wheel 215, 204, 412 and 415 are of the same and identical size and is fitted interchangeably to either wheel 201, 401.
  • An annular flange at wheel 417 is projecting radially outwardly from the outer bead seat band 415 to serve as a stopper for a tyre flange 416 at the outer end of the wheel and outer bead of the tyre 402.
  • An O-ring 419 of outboard wheel is located in the groove to provide air tight seal between bead seat band 415 and outboard wheel rim 420.
  • a lock ring 418 is mounted to the outer end of the wheel rim 420 to retain the outer bead seat band 415 on the outboard wheel rim 420.
  • Fig.5 illustrates an exploded view of the outboard wheel rim 500 of the dual wheel assembly, according to an embodiment.
  • the wheel rim 420 of the outboard wheel 401 is generally of cylindrical shape. Grooves for O-ring and lock rings are machined in the front and rear end of the rim.
  • the inboard wheel assembly is done by the following steps; wherein the inboard wheel rim 206 is mounted on to the inboard face of the axle hub 301.
  • the inboard wheel rim 206 is secured to the axle hub 301 by using multiple fasteners.
  • the inboard wheel rim 206 includes an inflation valve and its spud.
  • the outboard wheel rim 420 is mounted onto the outboard face of the axle hub 301.
  • the outboard wheel rim 420 is secured to the axle hub 301 by using multiple fasteners.
  • the outboard wheel rim 420 includes the inflation valve and its spud.
  • the inner tyre flange 212 of the wheel is positioned on the inboard wheel rim 206.
  • the tyre 202 is placed on the inboard wheel rim 206.
  • the outer tyre flange 203 of the inboard wheel is placed over the tyre 202.
  • the removable bead seat band 204 of the wheel is inserted through the gap between the tyre 202, tyre flange 212 and the inboard wheel rim 206.
  • the removable bead seat band 204 of the inboard wheel is pushed inwardly to expose the groove for O-ring 213.
  • the O-ring 213 is placed over the groove.
  • the split lock ring 205 is disposed of in the groove provided on the inboard wheel rim 206.
  • the outboard tyre can be assembled by the following method.
  • the two-piece Z-section segmented lock rings 409a, 409b are placed on the inner lock ring groove 414 of the outboard wheel rim 420.
  • the two-piece Z- section segmented lock rings are held in position on the groove by the lip 407 formed on the outboard wheel rim 420.
  • the lock rings are pushed inside the groove so that the taper is butting against the matching taper 413 provided in the outboard wheel rim 420 beneath the lip 407.
  • the O-ring 410 is disposed on the inner groove of the wheel rim 420.
  • the bead seat band 412 is placed over the wheel rim 420 and pressed against the taper of the two-piece Z-section segmented lock ring 409a and 409b.
  • the inner tyre flange 403 is placed over the bead seat band 412.
  • the tyre 402 is placed over the wheel rim 420.
  • the outer tyre flange 416 is placed on the wheel rim 420.
  • the bead seat band 415 is inserted through the gap between the tyre 402, tyre flange 416 and the wheel rim 420.
  • the bead seat band 415 is pushed over inwardly to expose the groove for O-ring 419.
  • the O-ring 419 is placed over the groove.
  • lock ring 418 is disposed on the groove provided on the wheel rim.
  • the tyre When the tyre is inflated, it expands sideways, causing the tyre beads and the tyre flanges to move axially outwardly and sit on the respective bead seat bands in a tight fit. This expansion also causes the bead seat bands to move outwardly to abut against the end flange and locking ring respectively.
  • the above procedure is reversed. It will be noted that the tyre 402 is removed from the rim 420 without removing the rim from the hub 301. Before removal of tyres, both tyres are deflated completely. To ensure complete removal of air, valve core is also removed from both the wheels. The lock ring 418 is removed from the outboard wheel 401. In practice, the tyre flange 416, bead seat band 415 at the outer end of the outboard wheel and the tyre flange 403, bead seat band 412 at the inner end of the outboard wheel may already be held with the tyre.
  • the present invention has many advantages. That is the outer tyre can be mounted and demounted without removing wheel rim from the axle hub.
  • the inner tyre can be mounted and demounted without removing the outboard wheel rim from the hub.
  • the inventory of tyre support components can be greatly reduced.
  • the bead seat bands can be identical and interchangeable between wheel rims for dual wheel assembly.
  • the tyre flanges can be identical and interchangeable between wheel rims.
  • the lock rings can also be identical and interchangeable between the wheel rims.
  • the two wheel rims may be of the same diameter and there may not be any reduction in outboard wheel rim diameter, the larger ring gear of final planetary drive may also be possible and hence higher rim pull at machine level can be achievable.
  • the lock rings are retained in the wheel rim due to wedge action of self-locking taper and cannot move from its position until an external force is applied on the lock ring towards the direction of the tyre position.
  • the lip acts as a hood over the two-piece Z-section segmented lock rings and prevents any loose parts flying off the rim during the tyre burst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

The present invention provides a novel design for quick tyre change in rear dual wheel assembly in a heavy transport vehicle. The invention provides a safe design that comprises a two-piece Z-section segmented lock ring retained in position inside a groove provided with female taper on the wheel rim. A portion of Z-section lock ring is tapered to 45 degrees on its exterior surface and abuts against a self locking taper on the bead seat band. The Z-section lock rings are retained inside the groove due to wedge action of self-locking taper cannot move from its position until an external force is applied on the ring towards the direction of the tyre position. A lip of the wheel rim acts as a hood over the Z-section segmented lock rings and prevents any loose parts flying off the rim during the tyre burst. Further in this safe design both inboard and outboard rim tyre support components are identical as both rims are of same diameter.

Description

A NOVEL Z-SECTION LOCK RING FOR REAR DUAL WHEELS OF HEAVY
TRANSPORT VEHICLE
FIELD OF INVENTION
[0001] The embodiment herein generally relates to a dual wheel rim assembly in heavy transport vehicles. Specifically, the invention relates to an improved dual wheel rim assembly provided with a two-piece Z-section segmented lock ring retained in position inside a suitable groove on the wheel rim which permits for changing the inner tyre of dual wheel rim assembly quickly without removing the outboard wheel rim assembly.
BACKGROUND AND PRIOR ART
[0002] Dual wheel assemblies are used on rear, driving and non-steering axles of heavy transport vehicles, such as mining and earthmoving vehicles, to increase their load bearing capacity and help maintain vehicle drivability. A typical dual wheel assembly comprises a pair of adjacent wheel rims mounted on a common hub with each wheel rim fitted with an identical tyre. Even though the dual wheel rims are used in heavy transport vehicles, changing the tyre of the inboard wheel of the dual is a laborious and time-consuming process.
[0003] In order to reduce the time consumption and labor requirement, it is known from the US Patent No. 6,568,764 heavy transport vehicles utilize dual wheel assemblies in which the outboard wheel rim is provided with a smaller diameter than that of the inboard wheel rim. The smaller diameter of outboard wheel rim enables the inner tyre and removable tyre support components to pass over the outboard wheel rim and thereby enabling the removal and assembly of the inner tyre without removing the outboard wheel rim. When the dual wheel rims are mounted onto the vehicle, inboard is defined as the direction facing towards the centre of the vehicle and outboard is defined as the direction facing away from the vehicle.
[0004] There are some difficulties in having different diameters for the wheel rims. Firstly, the tyre support components are different and are not interchangeable between inboard and outboard rims which pose difficulty in spares inventory management. Tyre support components typically comprise a tyre bead seat band, tyre wall support flange or tyre flange. Secondly, the structural and geometric design of final planetary drive are constrained by the smaller outboard wheel rim diameter which ultimately impacts the gear reduction. Thirdly the alignment of tyre and tyre support components of the inboard wheel at on-site conditions while refitting procedure is difficult as the tyre and tyre support components after having moved over the smaller diameter of the outboard rim have to be aligned with the larger inboard wheel rim.
[0005] There is another design known to those familiar in the art as double gutter design. In such designs, the inner lock ring of outboard wheel rim is of two-piece segmented type. These two-piece lock rings are held together by use of fasteners.
[0006] Therefore, there is a need for a lock ring mechanism which does not require any additional fasteners to hold the wheel rim. Further, the wheel lock ring must have a self-locking arrangement by which the tyre can be held in the rim. Furthermore, there is a need for an identical wheel assembly for both outer and inner wheel rim assembly and also for interchanging the bead seat band between wheels.
OBJECTS OF THE INVENTION
[0007] Some of the objects of the present disclosure are described herein below:
[0008] A main object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle without removal of outboard wheel rim.
[0009] Another object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle with a self-locking feature without a need of additional fasteners.
[00010] Yet another object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle with identical wheel rim assembly for both outboard and inboard. [00011 ] Another object of the present invention is to provide a novel locking mechanism to facilitate quick tyre change for inboard wheel rim of rear duals of a heavy transport vehicle with identical wheel assembly to facilitate interchanging the bead seat bands between wheel rims.
[00012] The other objects and advantages of the present invention will be apparent from the following description when read in conjunction with the accompanying drawings, which are incorporated for illustration of preferred embodiments of the present invention and are not intended to limit the scope thereof.
SUMMARY OF THE INVENTION
[00013] In view of the foregoing, an embodiment herein provides a novel locking mechanism in wheel rim assembly, which facilitates quick tyre change for inboard of rear duals of a heavy transport vehicle. The embodiments herein achieve this by providing a two-piece Z-section segmented lock retained in position inside a suitable groove on the outboard wheel rim, which can be used in dual wheel assembly of heavy transport vehicles.
[00014] In accordance to an embodiment, removal and assembly of the tyre to the inboard wheel rim of dual rear wheel in heavy transport vehicle can be performed without removing outboard wheel rim assembly. Further, the necessity of de-torquing and torquing of large number of wheel fasteners are also not required. The novel locking mechanism comprises of a two-piece Z-section segmented lock ring retained in position inside a suitable groove on the wheel rim in the inner portion of the outboard wheel rim and a conventional split lock ring in the outer portion of the outboard wheel rim of rear dual wheel rim assembly of the heavy transport vehicle. Accordingly the shape of the lock ring, gutter section or groove in the inner portion of the wheel is designed. The outer portion of the inboard wheel rim is provided with conventional lock ring and the inner portion of the inboard wheel rim of the rear dual is usually provided with a lock ring integral to the rim base. During inflation the tyre expands and thereby pushing the tyre support components namely the bead seat bands so that they abuts- against the respective lock rings. A taper of 45 degrees in the bead seat band on the inner portion of the outboard wheel abuts against the matching taper provided on the outboard tyre side surface of the two-piece Z-section segmented lock ring. A taper provided on the other side of two-piece Z-section segmented lock ring is pressed against an internal taper provided on the outboard wheel rim. The taper is a self-locking type and the half angle of the conical frustum with respect to wheel rim axis may vary depending on the wheel size, torque and other tribological conditions. In the event of any tyre burst, only the bead seat band which has conjoined with the outboard tyre may move away from the 45 degree taper butting surface of the two-piece Z-section segmented lock ring towards the inside of the outboard rim. The two-piece Z-section segmented lock ring retained inside the groove of the outboard wheel rim due to wedge action of self-locking taper cannot move from its position until an external force is applied on the two-piece Z-section segmented lock ring towards the direction of the outboard tyre. The wheel rim lip portion of the groove acts as a hood over the two- piece Z-section segmented lock ring and prevents any loose parts flying off the rim during the tyre burst.
[00015] These and other aspects of the embodiments herein will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following descriptions, while indicating preferred embodiments and numerous specific details thereof, are given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the embodiments herein without departing from the spirit thereof, and the embodiments herein include all such modifications.
BRIEF DESCRIPTION OF DRAWINGS
[00016] The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items. [00017] Fig.1 illustrates a schematic sectional elevation of dual wheel assembly, according to an embodiment therein;
[00018] Fig.2 illustrates an enlarged sectional elevation of inboard wheel rim showing the removable bead seat band of the dual wheel assembly, according to an embodiment therein;
[00019] Fig.3 illustrates an enlarged sectional elevation of outer bead seat band portion of inboard wheel rim of dual wheel assembly, according to an embodiment therein;
[00020] Fig.4a illustrates of an enlarged sectional elevation of inner bead seat portion of outboard wheel rim of the dual wheel assembly, according to an embodiment therein;
[00021 ] Fig.4b illustrates an enlarged sectional elevation of outer bead seat band portion of outboard wheel rim of the dual wheel assembly, according to an embodiment therein; and
[00022] Fig.5 illustrates an exploded view of outboard wheel rim of the dual wheel assembly, according to an embodiment therein.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[00023] The embodiments herein and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and detailed in the following description. Descriptions of well-known components and processing techniques are omitted so as to not unnecessarily obscure the embodiments herein. The examples used herein are intended merely to facilitate an understanding of ways in which the embodiments herein may be practiced and to further enable those of skill in the art to practice the embodiments herein. Accordingly, the examples should not be construed as limiting the scope of the embodiments herein.
[00024] As mentioned above, there is a need for a dual wheel rim assembly, which facilitates quick tyre change for inboard wheel of rear duals of a heavy transport vehicle. The embodiments herein achieve this by providing a two-piece Z-section segmented lock ring retained in position inside a suitable groove on the outboard wheel rim, which can be used in dual wheel assembly of heavy transport vehicles. Referring now to the drawings, and more particularly to FIGS. 1 through 5, where similar reference characters denote corresponding features consistently throughout the figures, there are shown preferred embodiments.
[00025] In accordance to an embodiment, removal and assembly of the tyre to the inboard wheel rim of dual rear wheel in heavy transport vehicle can be performed without removing outboard wheel rim assembly. Further, the necessity of de-torquing and torquing of large number of wheel fasteners are also not required. The novel locking mechanism comprises of a two-piece Z-section segmented lock ring retained in position inside a suitable groove on the wheel rim in the inner portion of the outboard wheel rim and a conventional split lock ring in the outer portion of the outboard wheel rim of rear dual wheel rim assembly of the heavy transport vehicle. Accordingly the shape of the lock ring, gutter section or groove in the inner portion of the wheel is designed. The outer portion of the inboard wheel rim is provided with conventional lock ring and the inner portion of the inboard wheel rim of the rear dual is usually provided with a lock ring integral to the rim base. During inflation the tyre expands and thereby pushing the tyre support components namely the bead seat bands so that they abuts against the respective lock rings. A taper of 45 degrees in the bead seat band on the inner portion of the outboard wheel abuts against the matching taper provided on the outboard tyre side surface of the two-piece Z-section segmented lock ring. A taper provided on the other side of two-piece Z-section segmented lock ring is pressed against an internal taper provided on the outboard wheel rim. The taper is a self-locking type and the half angle of the conical frustum with respect to wheel rim axis may vary depending on the wheel size, torque and other tribological conditions. In the event of any tyre burst, only the bead seat band which has conjoined with the outboard tyre may move away from the 45 degree taper butting surface of the two-piece Z-section segmented lock ring towards the inside of the outboard rim. The two-piece Z-section segmented lock ring retained inside the groove of the outboard wheel rim due to wedge action of self-locking taper cannot move from its position until an external force is applied on the two-piece Z-section segmented lock ring towards the direction of the outboard tyre. A wheel rim lip portion of the groove acts as a hood over the two-piece Z-section segmented lock ring and prevents any loose parts flying off the rim during the tyre burst.
[00026] Fig.1 illustrates a schematic sectional elevation 100 of the dual wheel assembly, according to an embodiment. The dual wheel rim assembly for a heavy transport vehicle comprises a pair of wheels 201, 401 that mounted side-by-side on a common axle hub 301. Generally, the wheel 201 has a cylindrical inboard wheel rim 206 on which a tyre 202 is mounted. The inboard wheel rim 206 has a knave 208 that is fixed to the inside thereof having a series of bolt holes spaced circumferentially around an annular flange. The knave 208 is used to mount the inboard wheel rim 206 to a shoulder of the common axle hub 301.
[00027] In accordance to an embodiment, the inboard wheel rim 206 has an annular flange 211 at one end thereof which may extend radially outwardly. The portion of the inboard wheel rim 206 adjacent to the end flange 211 is tapered outwardly towards the end flange 211 to form a fixed bead seat band 210 for one bead of the inboard tyre 202. When the inboard tyre 202 fitted to the inboard rim 206, the bead may abut against the annular flange 211. It is common practice to place a tyre flange 212 between the end flange 211 and the inboard tyre 202 to retain and support the inner side wall of the inboard tyre 202, in which case the tyre still abuts against the end flange 211 but indirectly via the inboard tyre flange 212.
[00028] Fig.2 illustrates an enlarged sectional elevation of the inner end of inboard wheel rim showing the removable bead seat band 200 of the dual wheel assembly, according to another embodiment. Those familiar in the art can appreciate that the inner end of the wheel is provided with removable bead seat band 215. The removable bead seat band 215 is generally a cylindrical or ring-like member with a tapered thickness which provides a seat for an inner bead of the tyre 202. An O-ring 214 is located in an annular groove on the inboard wheel rim 206 to provide an air tight seal between the removable bead seat band 215 and the inboard wheel rim 206. The tyre flange 212 is mounted on the removable bead seat band 215 to retain and support the inner side wall of the inboard tyre 202. The removable bead seat band 215 is retained in position by the annular flange 207 which extends radially outwardly.
[00029] Fig.3 illustrates an enlarged sectional elevation of outer bead seat band portion of the inboard wheel rim 300 of the dual wheel assembly, according to an embodiment. A removable bead seat band 204 is mounted to the outer end of the inboard wheel rim 206. The removable bead seat band at the outer end of the inboard wheel 204 is generally a cylindrical or ring-like member of tapered thickness, which provides a seat for the outer bead of the tyre 202. An O-ring 213 is located in an annular groove on the inboard wheel rim 206 to provide an air tight seal between the removable bead seat band at the outer end of the wheel 204 and the inboard wheel rim 206. Again, a tyre flange at the outer end of the wheel 203 is mounted on the removable bead seat band at the outer end of the wheel 204 to retain and support the outer side wall of the tyre 202. The removable bead seat band at the outer end of the wheel 204 is retained in position, in use, by a split lock ring 205 which has an inner bead which locates in an annular groove around the inboard wheel rim 206. The above-described design and construction of the inboard wheel assembly is known in the art, and need not be further described in detail.
[00030] According to an embodiment, generally the outboard wheel 400 may have a cylindrical wheel rim 420 on which an outboard tyre 402 can be mounted. The mounting holes on its knave 408 are circumferentially arranged in a smaller diameter circle for mounting to the smaller outer end of the common axle hub 301. The inboard and outboard tyres 202, 402 are of the same, standard size and may be fitted interchangeably to either inboard or outboard wheel rim 201, 401.
[00031] Fig.4a illustrates of an enlarged sectional elevation of inner bead seat portion 400a of the outboard wheel rim of the dual wheel assembly, according to an embodiment. As with conventional wheel rim, the wheel rim 420 of the outboard wheel 401 is generally of cylindrical shape. Grooves for O-ring and lock rings are machined in the front and rear end of the rim for the purposes described below. The inner end of outboard wheel rim 402 is provided with an annular groove 414. The annular groove is provided with an internal female tapered surface 413 extending inwardly. The two- piece Z-section segmented lock ring 409a and 409b are disposed about the groove such that the internal tapered surface 413 is butting to a matching taper provided in the Z- section segmented lock rings. A portion on the external surface of the two-piece Z- section segmented lock ring 409a and 409b is tapered to form seat 405 for the bead seat band 412.
[00032] According to an embodiment, the inner bead seat band at outboard wheel 412 provides a seat for the inner bead of the tyre 402. The inner bead seat band 412 at the outboard wheel has an annular flange 404 extending radially outwardly. A tyre flange 403 is mounted on the inner bead seat band 412 at the outboard wheel to retain and support the inner wall of the tyre 402. An O-ring 410 is located in the groove on the inner portion of the outboard wheel rim 420 to provide air tight seal between inner bead seat band 412 and outboard wheel rim 420.
[00033] Fig.4b illustrates an enlarged sectional elevation of outer bead seat band portion 400b of the outboard wheel rim of the dual wheel assembly, according to an embodiment. A bead seat band 415 is provided at the outer end of the outboard wheel rim 420. The bead seat bands at both inner and the outer end of inboard and outboard wheel 215, 204, 412 and 415 are of the same and identical size and is fitted interchangeably to either wheel 201, 401. An annular flange at wheel 417 is projecting radially outwardly from the outer bead seat band 415 to serve as a stopper for a tyre flange 416 at the outer end of the wheel and outer bead of the tyre 402. An O-ring 419 of outboard wheel is located in the groove to provide air tight seal between bead seat band 415 and outboard wheel rim 420. A lock ring 418 is mounted to the outer end of the wheel rim 420 to retain the outer bead seat band 415 on the outboard wheel rim 420.
[00034] Fig.5 illustrates an exploded view of the outboard wheel rim 500 of the dual wheel assembly, according to an embodiment. The wheel rim 420 of the outboard wheel 401 is generally of cylindrical shape. Grooves for O-ring and lock rings are machined in the front and rear end of the rim. [00035] In accordance to an embodiment, the inboard wheel assembly is done by the following steps; wherein the inboard wheel rim 206 is mounted on to the inboard face of the axle hub 301. The inboard wheel rim 206 is secured to the axle hub 301 by using multiple fasteners. The inboard wheel rim 206 includes an inflation valve and its spud. The outboard wheel rim 420 is mounted onto the outboard face of the axle hub 301. The outboard wheel rim 420 is secured to the axle hub 301 by using multiple fasteners. The outboard wheel rim 420 includes the inflation valve and its spud. The inner tyre flange 212 of the wheel is positioned on the inboard wheel rim 206. The tyre 202 is placed on the inboard wheel rim 206. The outer tyre flange 203 of the inboard wheel is placed over the tyre 202. The removable bead seat band 204 of the wheel is inserted through the gap between the tyre 202, tyre flange 212 and the inboard wheel rim 206. The removable bead seat band 204 of the inboard wheel is pushed inwardly to expose the groove for O-ring 213. The O-ring 213 is placed over the groove. The split lock ring 205 is disposed of in the groove provided on the inboard wheel rim 206.
[00036] According to an embodiment, the outboard tyre can be assembled by the following method. The two-piece Z-section segmented lock rings 409a, 409b are placed on the inner lock ring groove 414 of the outboard wheel rim 420. The two-piece Z- section segmented lock rings are held in position on the groove by the lip 407 formed on the outboard wheel rim 420. The lock rings are pushed inside the groove so that the taper is butting against the matching taper 413 provided in the outboard wheel rim 420 beneath the lip 407. The O-ring 410 is disposed on the inner groove of the wheel rim 420. The bead seat band 412 is placed over the wheel rim 420 and pressed against the taper of the two-piece Z-section segmented lock ring 409a and 409b. The inner tyre flange 403 is placed over the bead seat band 412. The tyre 402 is placed over the wheel rim 420. The outer tyre flange 416 is placed on the wheel rim 420. Then the bead seat band 415 is inserted through the gap between the tyre 402, tyre flange 416 and the wheel rim 420. The bead seat band 415 is pushed over inwardly to expose the groove for O-ring 419. The O-ring 419 is placed over the groove. Finally the lock ring 418 is disposed on the groove provided on the wheel rim. When the tyre is inflated, it expands sideways, causing the tyre beads and the tyre flanges to move axially outwardly and sit on the respective bead seat bands in a tight fit. This expansion also causes the bead seat bands to move outwardly to abut against the end flange and locking ring respectively.
[00037] According to an embodiment, to remove the tyres from the wheel rims, the above procedure is reversed. It will be noted that the tyre 402 is removed from the rim 420 without removing the rim from the hub 301. Before removal of tyres, both tyres are deflated completely. To ensure complete removal of air, valve core is also removed from both the wheels. The lock ring 418 is removed from the outboard wheel 401. In practice, the tyre flange 416, bead seat band 415 at the outer end of the outboard wheel and the tyre flange 403, bead seat band 412 at the inner end of the outboard wheel may already be held with the tyre. Hence, all these components along with the tyre 402 can be removed from the wheel rim 420. External force is applied in the outboard direction on the two-piece segmented Z-section lock ring 409a and 409b to remove from the wedge lock over the internal female self-locking taper 413. With the outboard wheel rim, 420 held on the axle hub 301, the inboard tyre can be removed. The lock ring 205 for the inboard wheel rim 206 is removed. As explained earlier, the inner tyre 202 along with tyre flanges 212, 203 and bead set band 204 can be removed by passing over the outboard wheel rim 420.
[00038] According to an embodiment, the present invention has many advantages. That is the outer tyre can be mounted and demounted without removing wheel rim from the axle hub. The inner tyre can be mounted and demounted without removing the outboard wheel rim from the hub. The inventory of tyre support components can be greatly reduced. Further, the bead seat bands can be identical and interchangeable between wheel rims for dual wheel assembly. Similarly, the tyre flanges can be identical and interchangeable between wheel rims. Further, the lock rings can also be identical and interchangeable between the wheel rims.
[00039] According to an embodiment, the two wheel rims may be of the same diameter and there may not be any reduction in outboard wheel rim diameter, the larger ring gear of final planetary drive may also be possible and hence higher rim pull at machine level can be achievable. It can be known from the embodiments that there is no need of fasteners for holding the two-piece Z-section segmented lock rings. The lock rings are retained in the wheel rim due to wedge action of self-locking taper and cannot move from its position until an external force is applied on the lock ring towards the direction of the tyre position. The lip acts as a hood over the two-piece Z-section segmented lock rings and prevents any loose parts flying off the rim during the tyre burst.
[00040] The foregoing description of the specific embodiments will so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modification within the spirit and scope of the embodiments as described herein.

Claims

What is Claimed is:
1. A rear dual wheel assembly with a novel self-locking mechanism in a heavy transport vehicle comprises
a common axle hub, an inboard wheel assembly and an outboard wheel assembly at each side of the heavy transport vehicle;
wherein each outboard wheel assembly comprises,
a knave for connecting the wheel rim to the axle hub;
a removable bead seat in an outer and inner portion of the outboard wheel; a two-piece Z-section segmented lock ring in the inner portion;
a split lock ring in the outer portion;
a tyre flange at both outer and inner portion;
a wheel rim lip at inner portion of the outboard wheel; and
an O-ring at the inner and outer portion of the outboard wheel,
wherein each inboard wheel assembly comprises,
a knave for connecting the wheel rim to the axle hub;
a removable bead seat in an outer portion of the inboard wheel;
a fixed bead seat in an inner portion of the inboard wheel;
a split lock ring;
a tyre flange at both outer and inner portion;
an annular flange at inner portion; and
an O-ring at the outer portion of the inboard wheel.
2. The rear dual wheel assembly of claim 1, the inner portion of the outboard wheel assembly provided with an annular groove or a gutter section according to the shape of the two-piece Z-section segmented lock ring.
3. The rear dual wheel assembly of claim 1, the removable bead seat band at the inner portion of the outboard wheel is provided with a taper of 45 degrees that abuts against the matching taper provided on the tyre side surface of the two-piece Z- section segmented lock ring.
4. The rear dual wheel assembly of claim 1, the taper provided on the other side of Z- section ring is pressed against the internal taper provided on the wheel rim; wherein the taper provided on the two-piece Z-section segmented lock ring is a self-locking type and the half angle of the conical frustum with respect to wheel rim axis may vary depending on the wheel size, torque and other tribological conditions.
5. The rear dual wheel assembly of claim 1, the two-piece Z-section segmented lock ring retained inside the groove of the wheel rim due to wedge action of self-locking taper moves from its position when an external force is applied on the two-piece Z- section segmented lock ring towards the direction of the tyre; wherein the wheel rim lip acts as a hood over the two-piece Z-section segmented lock rings and prevents any loose parts flying off the rim during the tyre burst.
6. The rear dual wheel assembly of claim 1, the two-piece Z-section segmented lock rings not require any fasteners.
7. The rear dual wheel assembly of claim 1, the removable bead seat bands, the lock rings, the tyre flanges, the inboard and outboard wheel rims are identical and interchangeable between the wheel rims for dual wheel assembly.
8. A rear dual wheel assembly with a novel self-locking mechanism in a heavy transport vehicle comprises
a common axle hub, an inboard wheel assembly and an outboard wheel assembly at each side of the heavy transport vehicle;
wherein each outboard wheel assembly comprises,
a knave for connecting the wheel rim to the axle hub;
a removable bead seat in an outer and inner portion of the outboard wheel; a two-piece Z-section segmented lock ring in the inner portion;
a split lock ring in the outer portion;
a tyre flange at both outer and inner portion;
a wheel rim lip at inner portion of the outboard wheel; and
an O-ring at the inner and outer portion of the outboard wheel,
wherein each inboard wheel assembly comprises, a removable bead seat in an outer portion and inner portion;
a split lock ring;
a tyre flange at both outer and inner portion;
an annular flange at the inner portion; and
an O-ring at the inner and outer portion of the outboard wheel.
9. A method for mounting the inboard and outboard wheel of rear dual wheel assembly comprising the step of,
mounting an inboard wheel rim on to an inboard face of an axle hub;
securing the wheel rim to the axle hub using multiple fasteners; wherein the inboard wheel rim includes an inflation valve and its spud;
mounting an outboard wheel rim onto the outboard face of an axle hub;
securing the wheel rim to the axle hub using multiple fasteners; wherein the wheel rim includes an inflation valve and its spud;
positioning an inner tyre flange on the inboard wheel rim;
placing the tyre on the wheel rim;
placing an outer tyre flange over the tyre;
inserting the removable bead seat band through the gap between the tyre, tyre flange, and the wheel rim;
pushing the bead seat band inwardly to expose a groove for O-ring; wherein the O- ring is placed over the groove; and
disposing of a split lock ring in the groove provided on the wheel rim.
10. The method of claim 9, wherein the method for mounting the inboard and outboard wheel of rear dual wheel assembly further comprising the step of,
placing a two-piece Z-section segmented lock ring on an inner lock ring groove of the outboard wheel rim and holding the two-piece Z-section segmented lock rings in position on the groove by a lip formed on the wheel rim;
pushing the two-piece Z-section segmented lock rings inside the groove so that a taper provided on the two-piece Z-section segmented lock rings is butting against the matching taper provided in the wheel rim beneath the lip. disposing an O-ring on an inner groove of the wheel rim;
placing a removable bead seat band over the wheel rim and pressing against a taper of the two-piece Z-section segmented lock ring;
placing the inner tyre flange over the bead seat band;
placing the tyre over the outboard wheel rim and placing the outer tyre flange on the wheel rim;
inserting the removable bead seat band through the gap between the tyre, tyre flange and the outboard wheel rim;
pushing the bead seat band over inwardly to expose the groove for O-ring;
placing the O-ring over the groove;
disposing the lock ring on the groove provided on the wheel rim; and
reversing the above process for demounting the outboard wheel;
11. The method of claim 10, wherein the method for demounting the outboard wheel of rear dual wheel assembly comprising the step of,
removing the tyre from the rim without removing the outboard wheel rim from the axle hub;
deflating both tyres completely before removal of tyres;
removing valve core from both the wheels to ensure complete removal of air; removing the lock ring from the outboard wheel;
holding the tyre flange, the bead seat band at the outer and inner end of the outboard wheel with the tyre and removing all these components along with the tyre from the wheel rim;
applying the external force in the outboard direction on the two-piece Z-section segmented lock ring to remove from the wedge lock over the self-locking taper; removing the inner tyre by holding the outboard wheel rim on the axle hub; removing the lock ring for the inboard wheel rim; and
removing the inboard tyre along with the tyre flanges and the bead set band by passing over the outboard wheel rim.
PCT/IB2016/054560 2016-05-23 2016-07-29 A novel z-section lock ring for rear dual wheels of heavy transport vehicle WO2017203334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201641017657 2016-05-23
IN201641017657 2016-05-23

Publications (1)

Publication Number Publication Date
WO2017203334A1 true WO2017203334A1 (en) 2017-11-30

Family

ID=60411129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/054560 WO2017203334A1 (en) 2016-05-23 2016-07-29 A novel z-section lock ring for rear dual wheels of heavy transport vehicle

Country Status (1)

Country Link
WO (1) WO2017203334A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108357295A (en) * 2018-03-19 2018-08-03 河南宏源车轮股份有限公司 A kind of inner tube-free wheel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568764B2 (en) * 2001-01-18 2003-05-27 James Mcneil And Ruby Mcneil Dual wheel assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568764B2 (en) * 2001-01-18 2003-05-27 James Mcneil And Ruby Mcneil Dual wheel assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108357295A (en) * 2018-03-19 2018-08-03 河南宏源车轮股份有限公司 A kind of inner tube-free wheel

Similar Documents

Publication Publication Date Title
US6568764B2 (en) Dual wheel assembly
US9884511B2 (en) Wheel assembly
US9527343B2 (en) Vehicle wheel
US20100194180A1 (en) Unitized hub and rim for off-road vehicles
US11285757B2 (en) Saddle lock ring for rear dual wheels of heavy transport vehicle
US20150246578A1 (en) Multi-piece rim assembly
US20200122503A1 (en) Wheel assembly with opposed removable bead locks
US1954757A (en) Rim for pneumatic tires
WO2017203334A1 (en) A novel z-section lock ring for rear dual wheels of heavy transport vehicle
US20230202231A1 (en) A Novel Saddle Lock Ring for Rear Dual Wheels of Heavy Transport Vehicle
US20140084670A1 (en) Safety Wheel and Tire Assembly
US20070245562A1 (en) Vehicle rim intended for mounting a tire and a bearing support and mounting process for a tire/wheel assembly provided with such a rim
US11577545B1 (en) Wheel assembly for heavy load tires
RU2348538C2 (en) Wheel disk for large pneumatic tyre and wheel equipped with this disk
US11833852B2 (en) Lock for wheel rim and assemblies, systems, and methods thereof
GB2066172A (en) Vehicle wheel assembly
ZA200207424B (en) A dual wheel assembly.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903023

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903023

Country of ref document: EP

Kind code of ref document: A1