WO2017203085A1 - System for drying liquid blood - Google Patents

System for drying liquid blood Download PDF

Info

Publication number
WO2017203085A1
WO2017203085A1 PCT/ES2017/070349 ES2017070349W WO2017203085A1 WO 2017203085 A1 WO2017203085 A1 WO 2017203085A1 ES 2017070349 W ES2017070349 W ES 2017070349W WO 2017203085 A1 WO2017203085 A1 WO 2017203085A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
evaporator
heat
agitators
plates
Prior art date
Application number
PCT/ES2017/070349
Other languages
Spanish (es)
French (fr)
Inventor
José Manuel MAGIDE AMEIJIDE
Hiram VARELA RODRÍGUEZ
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Priority to EP17802255.4A priority Critical patent/EP3466507B1/en
Publication of WO2017203085A1 publication Critical patent/WO2017203085A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Definitions

  • the present invention relates to a system for processing by-products and / or residues of the food industry, more specifically a system for producing a dried product from liquid blood or derivatives.
  • both techniques that extract components from the original blood are contemplated, as well as those that add some component to obtain the derivative.
  • An example of the first case are centrifugal treatments, often used to separate red blood cells. Examples of the type of centrifuges that can be applied for this purpose are those disclosed in US2011 124481 and US4077564.
  • the preservation of blood is framed by the addition of anticoagulant salts, such as sodium citrate.
  • anticoagulant salts such as sodium citrate.
  • the multi-effect evaporators consisting of a series connection of a set of individual evaporators.
  • These systems have the technical advantage that they take advantage of the heat of condensation of the steam generated in each individual evaporator, so that energy savings are proportional to the number of evaporators.
  • the energy expenditure can be reduced to less than 40% that would correspond to a single evaporator.
  • These equipments have a wide use in the state of the prior art, so that extensive explanations will not be entered and emphasis will be placed on those peculiarities thereof that are not usual.
  • the multi-effect evaporators described in the state of the art are not suitable for drying blood, or in the best case they are used to concentrate it to a certain level, for example 25% wet solids , and then send the blood to a terminator device.
  • the finalizing devices are responsible for removing the moisture that could not be eliminated in the previous equipment, up to the desired degree of humidity, which allows its commercialization and conservation. This degree of humidity is typically 8-10%.
  • a typical example of a finishing device is spray or spray dryers. In them, the previously preconcentrated blood is sprayed by an atomization mechanism and is passed through a stream of hot air at about 170 ° C. These teams have serious drawbacks. On the one hand, since the water vapor eliminated by the dry product is not reused, it is more expensive than the multi-effect evaporators mentioned in the previous paragraph. On the other hand, the remarkable increase in temperature, although the contact time between blood and air is very short, contributes to increase protein denaturation.
  • blood is a biologically active fluid, with the presence of animal cells and an important biochemical activity. This characteristic establishes a crucial difference between blood and commonly used industrial fluids. Part of this activity consists in the formation of clots of blood components, largely due to the action of fibrin. These properties must be taken into account in the evaporator system.
  • the present invention relates to a system that allows to obtain a dried product from liquid blood and / or derivatives at low temperature and with a moderate energy cost.
  • the liquid blood to be treated is that obtained preferably from the meat industry, such as a slaughterhouse.
  • blood also includes products derived therefrom that are applicable.
  • blood as a fluid of biological origin, has a biochemical activity that gives it fundamental differences with respect to the majority of fluids that are treated with heat exchangers in the state of the art. This invention was born with the motivation of having all these differences in mind, to provide an effective solution to the blood drying process.
  • the main peculiarity of the blood is the coagulation phenomenon. While it is in circulation in living beings, it is normally inhibited, but once spilled outside, coagulation occurs, in a time that is usually on the order of several minutes. Coagulated blood is difficult to pump, it flows with difficulty and dirties the heat exchange surfaces, so that drying treatments become very difficult.
  • the biochemical mechanism that causes coagulation is as follows.
  • the blood has a protein, fibrinogen, which through the enzyme thrombin is transformed into fibrin, another protein, fibrillar and non-globular, with the ability to polymerize and thus form large three-dimensional networks. These networks act as a glue, and easily trap large amounts of blood cells, thus forming a clot.
  • said mobile surface does not perform any thermal exchange, so there is no problem in the accumulation of fibrin on it.
  • thermal exchange plates in vertical position are arranged as a preferred option, each separated from the adjacent one a distance of the order of several centimeters.
  • the vertical orientation prevents the decantation of particles or clots on the exchange surfaces, and the short separation distance increases the exchange surface / volume ratio of the exchanger.
  • An additional measure includes the inclusion of agitators in the chambers covered by blood. So that between two adjacent vertical plates, it is encased to the Less an agitator.
  • This type of configuration and geometry is of special interest in the treatment of blood, since it produces a turbulent flow of great magnitude, even with stirrers moving at low revolutions per minute, for example of the order of 20 rpm That is, it is minimized energy expenditure while giving the blood a movement, through the turbulence that runs through your breast, which limits clotting.
  • agitators with an angle of attack of 90 ° (later described, called as a second plurality) and which pass at a very small distance from the heat exchange surfaces, of the order of several millimeters.
  • 90 ° angle of attack
  • these agitators When moving, they displace the blood and force a part of it to go through this little separation between agitator and thermal plate.
  • the shear stresses increase greatly, because in that spatial scale the viscous stresses are very relevant.
  • the shear stresses generated are an additional measure that the present invention introduces to limit the formation of newly created fibrin networks, and destabilize those already formed.
  • this type of agitator catches on its surface those polymerized fibrin networks whose formation could not be avoided by turbulence or by shear stress.
  • the production system of a dried product from liquid blood or derivatives object of the present invention is characterized in that it comprises: a. multi-effect evaporator system, characterized in that heat exchangers include stirring mechanisms; b. a heat pump that provides power to the evaporator system; and c. a condenser
  • the system object of the present invention is characterized in that the heat pump absorbs heat from an industrial effluent, which is at a temperature in the range 30-80 ° C.
  • the heat pump comprises a first heat exchanger connected in series to a second heat exchanger.
  • a fluid circulates in a closed circuit, which is subjected to various pressure changes, by the action of a compressor; by way of non-limiting example, this fluid may be the refrigerant R-134a, which in the first heat exchanger operates at a pressure in the range 1 - 5 bar, while in the second heat exchanger it operates at a pressure in the range 15 - 30 bar.
  • the multi-effect evaporator system comprises a. two or more multi-effect evaporators characterized in that they reduce blood moisture to a value less than 25% on a dry basis; b. plate heat exchangers; C. a first plurality of stirring mechanisms characterized in that they scratch the heat exchange surface eliminating scale; and d. a second plurality of agitator mechanisms characterized in that they exert a removal that limits the negative effects of fibrin.
  • steam refers to water vapor with the possibility of incorporating other volatile substances or non-condensable gases, such as C0 2 , atmospheric air, etc., which are released by the blood itself, or accidentally introduced by leaks from outside.
  • the multi-effect evaporator system is located on the same vertical.
  • the multi-effect evaporator system is comprised of two evaporators; In an even more preferred embodiment, the multi-effect evaporator system is comprised of three evaporators.
  • the first plurality of stirring mechanisms sweeps the surfaces of the plate heat exchangers, and comprises rotating blades that press on them by the action of a spring or equivalent mechanism. In an alternative embodiment the first plurality of stirring mechanisms comprises brushes. The action of this first plurality of agitating mechanisms guarantees the removal of those particles that could adhere to the exchange surface, such as red blood cells, fibrin, albumin, or any type of clot.
  • the blades in addition, mechanically break the fluid boundary layer in contact with the surface, thereby significantly increasing the heat transfer coefficient.
  • the heat exchange surface of the heat exchangers comprises plates located vertically.
  • the exchangers have two chambers: a first chamber of the heating fluid and a second chamber of the product to be dried.
  • the fluid that provides heat for drying circulates in the first chamber.
  • Between each two adjacent plates there is a sub-chamber belonging to one of both cameras mentioned.
  • an exchanger with 10 plates correspondingly numbered 1, 2, 3, 10, between pairs 1-2, 3-4, 5-6, 7-8 and 9-10 circulates the blood to be dried, and between the complementary pairs: 2-3, 4-5, 6-7 and 8-9 circulates the heating fluid.
  • the term slender refers to a rectangular geometric configuration in which two sides are several orders of magnitude greater than the other two.
  • the second plurality of stirring mechanisms has a slender rectangular section that maximizes the accumulation of fibrin on its surface, separating it from the rest of the fluid.
  • the last evaporator of the evaporator system is characterized in that it comprises a third plurality of stirring mechanisms comprising one or more blades that displace blood or derivatives in the heat exchanger.
  • the blades of this third plurality of agitator mechanisms have a thicker section than those of the first and second plurality of agitators, in order to withstand the mechanical stresses, which are expected to be greater.
  • a concave section is especially advantageous, since it facilitates a greater accumulation of product on its surface, and therefore a more effective removal thereof.
  • a concave profile by retaining a greater quantity of product, produces that each revolution of the axis moves more quantity of the same and therefore reduces the homogenization time.
  • the term "homogenization time” refers to the time it takes for an agitator mechanism to remove the product until the particles with a higher degree of moisture have dispersed in a homogeneous manner between the particles with a lower degree of humidity, or vice versa.
  • three types of agitators have been contemplated so far. A first plurality exerts a scratching effect on the exchange surfaces, A second plurality generates a removal that limits the adverse effects of the fibrin, and a third plurality is in the last evaporator and homogenizes the product.
  • the outlet steam generated by the evaporator system is collected by a condenser that is fed with water, which comes from the water supply network to an industry and is at the usual network temperature, in the range 7 - 20 ° C.
  • the second plurality of stirring mechanisms generates a movement in the fluid and also promotes adhesion on its surface of fibrin networks that cannot be destabilized with said movement.
  • the evaporator is opened and the fibrin is manually removed.
  • the three pluralities of agitators are located in the confined space between two consecutive exchange plates.
  • the scrapers of the first plurality of stirring mechanisms in their shape in the form of blades, have a very sharp angle edge, designed to offer a high cutting capacity, and that exerts the effect of scratching.
  • the angle of attack of scrapers moving with respect to blood thus defined in analogy with the angle of attack of the wing of an aircraft, is also acute.
  • an angle of attack of 0 o would mean that the agitator is placed parallel to the plate on which it acts, and an angle of 90 ° would mean that it is located perpendicular to the plate. It is contemplated that this angle is less than 30 °.
  • scrapers are subjected to the action of a spring or similar mechanism that presses them against the plates. This implies that they will have a thickness greater than that corresponding to the second plurality of agitators, because they have to withstand higher mechanical stresses.
  • the mobile elements of the second plurality of agitator mechanisms designed for the retention of fibrin and the limitation of coagulation, move with an angle of attack of 90 ° or close to said value.
  • This angle facilitates the formation and maintenance on the agitator of the fibrin clusters that do not destabilize with the turbulence or tangential tension of the fluid. If the angle were smaller, the agitator would cut the fluid more easily and the accumulations would take longer to form on its surface, and once formed they would tend to detach more easily and quickly, which could induce them to stick on more stable surfaces, such as heat exchange plates, which would be very negative.
  • agitators of the second plurality do not exert contact on the exchange plates, but extend in a preferred manner up to a short distance thereof. A short distance can be interpreted in the order of several millimeters.
  • the section of the stirrers, obtained through a cross-sectional plane, is preferably rectangular.
  • the third plurality of stirring mechanisms has the function of displacing the treated product when it has no liquid consistency, in a manner similar to that of a shovel by displacing a granulated product.
  • the agitators are positioned at an angle of attack of 90 ° or close, and it is contemplated that its shape is concave, to enhance the ability to accumulate product and raise it in the upward paths of the agitator.
  • the thickness of this third plurality is expected to be greater than that of the other two, to withstand the mechanical stresses involved.
  • the first and second plurality of agitators formed by scraper elements and elements to limit the negative effects of the fibrin, respectively, describe a circular motion, as they are fixed to a rotary axis that crosses the length of the heat exchanger, driven by a motor located outside the exchanger.
  • defibrination techniques prior to the drying process do not prevent subsequent coagulation. While this process removes most of the fibrin and coagulation tendency is greatly reduced, it is never completely eliminated and clots will occur in the drying process.
  • the present invention provides that the blood is under the action of scrapers and removers in all evaporators in which liquid is found, whereby the removal of fibrin (and blockage of coagulation) is continuous throughout the entire process of dried
  • the last evaporator the one in which the blood leaves the system with the desired degree of humidity, has, in a preferred but not limiting manner, displacement blades and not agitators for the retention of fibrin. This is because in the last evaporator the blood has lost its liquid consistency, and it cannot move like a fluid.
  • the blades have surfaces of similar shape and dimensions to those of the stirrers, but with a greater mechanical resistance, in such a way that they are capable of supporting and displacing the weight of the accumulated blood between each two adjacent plates.
  • Figure 1 shows a flow chart of the system object of the present invention.
  • Figure 2 shows an enlarged detail of an evaporator.
  • Figure 3 shows a particular embodiment of an evaporator.
  • Figure 4 shows an enlarged detail of the evaporator according to Figure 2.
  • Figure 5 shows a perspective of an evaporator according to Figures 2 and 3.
  • Figure 6 shows a sectioned perspective view of two exchange plates
  • Figure 7 shows a representation of the first plurality of agitators present in the first and second evaporators.
  • Figure 8 shows a representation of the second plurality of agitators present in the first and second evaporators.
  • Figure 9 shows the third plurality of agitators. DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 A flow chart of a particular embodiment of the system object of the present invention is shown in Figure 1 - As can be seen in Figure 1, in this particular embodiment three evaporators (1, 2 and 3) are arranged in series, forming as a whole a multi-effect evaporator system that operates under vacuum. Each individual evaporator consists of two chambers: an evaporation chamber (5a, 5b and 5c) and a condensing chamber (4a, 4b and 4c).
  • evaporation chamber 5a, 5b and 5c
  • 4a, 4b and 4c condensing chamber
  • the product to be dried is always found.
  • the R-134a refrigerant circulates through the condensation chamber (4a), which has qualities that make it suitable for use in the food industry.
  • the condensation chamber (4b) of the second evaporator (2) the steam generated in the evaporation chamber (5a) of the first evaporator (1) circulates.
  • the condensation chamber (4c) of the third evaporator (3) the steam generated in the evaporation chamber (5b) of the second evaporator (2) circulates.
  • the inlet and outlet of fluid to the condensation chambers (4a, 4b and 4c) of each evaporator (1, 2 and 3) is done through manifolds (6a, 6b and 6c).
  • the steam that circulates through the condensation chamber (4b) of the second evaporator (2) yields its latent heat of condensation to the blood of the evaporation chamber (5b) of that same evaporator (2), which is possible due to that both chambers (4b and 5b) are at different pressures. Consequently, the steam condensation temperature It is higher than the boiling temperature of the blood, which allows heat transfer.
  • the liquid obtained through the condensation of the steam in the second evaporator (2) is purged out of the system by means of a centrifugal pump (10). Everything described in this paragraph also applies to the third evaporator (3).
  • the steam leaving the third evaporator (3) is conducted to a condenser (11), which comprises a heat exchanger (1 1a) of the casing and tube type.
  • a condenser (11) which comprises a heat exchanger (1 1a) of the casing and tube type.
  • On the side of the housing circulates the steam to condense, and inside the tubes circulates water from the supply network to the meat industry, at a temperature lower than that of the steam. This water comes at a usual temperature between 7 and 20 ° C, depending on the place and time of the year, and is used in large quantities by slaughterhouses, for tasks such as cleaning, sterilization, boiler feed, etc.
  • the mains water is at a higher temperature than the inlet.
  • this exchanger (1 1a) represents energy savings. As an example, it is typical that a slaughterhouse needs to heat 60% of the mains water it consumes at temperatures above 62 ° C, to be used as cleaning water. Mains water is driven through the exchanger (1 1a) by means of a centrifugal pump (1 1 b).
  • the raw blood is extracted from freshly slaughtered animals by a hygienic mechanism consisting of a hollow blade knife connected to a suction tube.
  • a hygienic mechanism consisting of a hollow blade knife connected to a suction tube.
  • the blood is introduced directly into the first evaporator (1), through of an inlet duct (7a).
  • the blood loses moisture and then leaves the evaporator through an outlet duct (8a).
  • the inlet ducts (7a, 7b and 7c) have been placed in a higher position than the outlet ducts (8a, 8b and 8c), and the latter are at the bottom of the evaporator (1, 2 and 3), to facilitate the drainage of blood.
  • the blood that leaves the first evaporator (1) is driven to the inlet duct (7b) of the second evaporator (2) with the help of a peristaltic pump (9a).
  • a peristaltic pump (9a) Once the blood has lost a certain degree of moisture in the second evaporator (2), it leaves it through its outlet duct (8b) and is then displaced, with the help of a peristatic pump (9b), to the duct inlet (7c) of the third and last evaporator (3), where it will reach the desired degree of humidity for marketing as blood meal.
  • the dried product is expelled from the evaporator system, through the outlet duct (8c) of said third evaporator (3).
  • the three evaporators (1, 2 and 3) are in the same vertical, so that the blood moves from one evaporator to the next due to gravity.
  • the energy required for the evaporation of the blood is provided by a heat pump (12), which comprises a shell and tube heat exchanger (12a).
  • a residual effluent from the meat industry circulates inside the housing and externally to the tubes, driven by a centrifugal pump (12b).
  • This effluent includes the industrial cleaning waters, pig scalding waters, animal urine, etc.
  • the cleaning waters it is common that they are used with a temperature of around 65 ° C, with which they usually go to the drain, once used and assuming that there is no heat pump, with a slightly lower temperature, for example 55 ° C.
  • slaughterhouses using the technique of scalding pigs use water at a temperature between 60 and 85 ° C, which once used slightly cools and becomes a contaminating residue, which has been of treating in a purification station.
  • residual fluents have a temperature low enough to make their energy use very difficult or unprofitable by common technical means.
  • the heat pump (12) effectively absorbs the thermal energy of the residual effluents and delivers it to the refrigerant R-134a, which circulates inside the tubes of the exchanger (12a). Being absorbing energy from a residual effluent, which is produced inevitably and whose destination is the drain or a purifier, there is a significant reduction in energy costs in the process of drying the blood.
  • the heat pump can absorb energy from the residual effluent as long as it has a temperature above 30 ° C.
  • the residual effluent enters the exchanger (12a) at a preferred temperature of 40 ° C and leaves it at a preferred temperature of 25 ° C.
  • This heat that has yielded is absorbed by the R-134a fluid, which evaporates inside the exchanger tubes (12a) at a temperature of 10 ° C and a preferred pressure of 4.25 bar.
  • This fluid is conducted to the compressor (12c), which raises its preferred pressure from 19.5 bar, corresponding to a condensation temperature around a preferred temperature of 65 ° C.
  • FIG. 1 A schematic drawing of an evaporator is shown in Figure 2, to illustrate the nomenclature used herein. The measures and proportions are exaggerated in order to increase clarity.
  • a housing (13) can be seen, inside which a total of six heat exchange plates (14a, 14b, 14c, 14d, 14e and 14f) are housed.
  • an evaporation chamber (5) is shown, through which blood circulates, and a condensation chamber (4), through which steam circulates.
  • the paths of blood and steam are indicated representatively by means of sinuous arrows; for the steam the line thickness is thin, and for the thick blood.
  • the separation between both chambers (4 and 5) is watertight, so that at no time contact between the two fluids occurs.
  • the condensation chamber (4) comprises in this particular embodiment a total of three subchambers (20a, 20b and 20c), which are all connected, via pipes (6y), to two manifolds (6), so that they form a single volume, said condensation chamber (4).
  • the evaporation chamber (5) comprises four subchambers (19a, 19b, 19c and 19d), which are also all in communication, also forming a single volume, said evaporation chamber (5).
  • an agitator (23) is housed, driven by a shaft (16).
  • a subchamber is housed between each two adjacent plates.
  • the sub chamber (20a) belonging to the condensation chamber (4).
  • the sub chamber (19b) belonging to the evaporation chamber (5).
  • the sub-chamber (19a and 19d) which as an exception is not located between two adjacent plates (14a, 14b, 14c, 14d, 14e and 14f), but between plate and housing (13).
  • FIG. 3 A particular embodiment of an evaporator is shown in Figure 3, and it can be any of the three (1, 2 or 3).
  • the evaporator comprises an outer casing (13), which houses inside the heat exchange plates (14) and stirrers (23), which describe a rotational movement by means of a fastener to an axis (16), said axis being driven by a motor (17), outside the housing (13).
  • the shaft is supported inside the evaporator by means of respective supports (18), which hold it while promoting its rotation.
  • the supports (18) are constituted as sliding contact bearings, without the need for lubrication.
  • the housing (13) has in its upper part two mouths of man (21), with the purpose of allowing access to its interior for cleaning, inspection, repair, etc. They are especially advantageous for cleaning and manual removal of fibrin clusters, after each work day.
  • a gravimetric settling duct (22) which helps to purify the steam obtained from the boiling of the blood. More specifically, its diameter is selected such that the rate of ascent of the gases is slow enough so that those liquid particles in suspension do not follow the gas its upward path along the conduit (22), but rather precipitate by gravity.
  • a steam outlet pipe (not shown in the figure), to be conducted to the next evaporator (1, 2 or 3), or if necessary the condenser ( eleven).
  • the blood is introduced at a point (not shown in the figure) of the upper evaporator zone, falls by gravity and goes on to occupy the volume of each of the subchambers (19) of the evaporation chamber (5).
  • These subchambers (19) are run by agitators (23), attached to the shaft (16) and that develop a rotational movement. In this way, the blood is at all times under agitation mechanics.
  • the agitators (23) will be of two different types, those belonging to the first and second plurality of agitators, represented in Figures 5 and 6.
  • the agitators (23) will be of two different types, those belonging to the first and second plurality of agitators, represented in Figures 5 and 6.
  • in each of the subchambers (19) are both types of agitators
  • each pair of adjacent plates (14) delimiting a sub-chamber (20) have a circular perforation in its center, traversible by the axis (16), and a concentric cylindrical part (24) with both perforations, but of greater diameter and welded to both plates (14). This ensures the mobility of the shaft (16) and the tightness.
  • enclosures (25) welded around the perimeter of each pair of adjacent plates (14) enclosing a sub chamber (20).
  • the enclosures (25) adapt to the geometry of the joining plates; if, for example, the plates to be joined are circular, the enclosures will have a circular crown shaped section.
  • the outlet duct (8) of the blood is placed in the lower part of the evaporator represented. Through it the blood is evacuated to the next evaporator (2 or 3), or to the outside of the system, if applicable, if it is the third evaporator (3).
  • FIG 4 a detail of Figure 2 is shown. A total of six vertical heat exchange plates (14) are observed. Between each of them adjoining, a subchamber is established. Sub-chambers (19) of the evaporation chamber (5) and sub-chambers (20) of the condensation chamber (4) are appreciated, with their corresponding enclosures (25) that guarantee the tightness between both chambers (4 and 5), which are They have alternately.
  • stirrers (23) are placed, which in this figure are not specified as belonging to any of the three pluralities (23a, 23b or 23c). The agitators (23) are attached to the shaft (16), which gives them the rotation movement.
  • the rotary axis (16) passes through one of its supports (18) and crosses, through its central part, the six plates (14) and the three subchambers (20) of the condensation chamber (4) as shown in this figure.
  • cylindrical pieces (24) concentric with the perforations of the plates (14), are welded into the corresponding pairs of plates (14). The figure shows a total of three of these pieces (24).
  • the shaft (16) is immersed in the evaporation chamber
  • FIG. 5 shows a perspective image of an evaporator according to Figures 2 and 3.
  • the housing (13) is partially sectioned, to make its interior visible, as well as a part of the exchange plates (14 ).
  • the enclosures are equally visible (25). To connect all the subchambers (20) of the condensation chamber (4), and thus constitute a single volume, all of them are connected to a collector
  • FIG. 6 a sectioned perspective view of two exchange plates (14) is shown, the outer enclosures (25) and the cylindrical part (24) being visible between both plates (14).
  • the interior of the cylindrical part (24) is crossed by the shaft that moves the agitators (not shown in this figure).
  • a subchamber (19) of the evaporation chamber and a subchamber (20) of the condensation chamber are indicated.
  • This figure has the utility of showing in perspective the mentioned elements, to help its better understanding, but in no case it constitutes a limiting example of the scope of the invention.
  • FIG 7 a representation of the first plurality of agitators (23a), present in the first (1) and second (2) evaporator is shown. It shows two adjacent exchange plates (14), among which there is a sub-chamber (19) belonging to the evaporation chamber (5). Therefore, it contains blood to dry.
  • the shaft (16) crosses the subchamber (19) and describes a rotation movement, as indicated by the figure.
  • the agitator (23a) comprises a scraper blade (15), which presses against one of the plates (14) by means of the action of a metal sheet (26). Said sheet (26), at rest has a straight conformation, but as seen in the figure, it is installed by forcing a curvature.
  • the sheet (26) by virtue of its tendency to recover its initial straight conformation, exerts a mechanical tension that presses the blade (15) against the wall of the plate (14).
  • the angle of attack with which the blade (15) cuts to the blood is acute and less than 30 °. This configuration favors its ability to descale plate deposits (14), and generates a mechanical destabilization of the fluid boundary layer contact with the plate (14), so that the thermal transfer coefficient increases considerably.
  • the first plurality of agitators (23a) is that which has the conformation that contributes most to the increase in the heat transfer coefficient, by mechanically breaking the boundary layer of blood.
  • FIG. 8 A representation of the second plurality of agitators (23b), present in the first (1) and second (2) evaporator, is shown in Figure 8, as is the first plurality of agitators (23a).
  • Two adjacent thermal plates (14) are observed, among which a sub chamber (19) of the evaporation chamber (5) is housed. That is, it contains blood inside.
  • the rotating shaft (16) and the stirrer (23b) are represented. This has a conformation similar to that of a shovel or paddle, with a slender rectangular section, and approaches the walls of the plates (14) until it is at a preferred distance of 3 mm from each of them.
  • the angle of attack with which it passes through the fluid is 90 ° or close. This arrangement generates a very intense turbulence within the fluid, which favors non-coagulation, and the angle of attack enhances the formation and retention on its surface of those fibrin networks that could not be avoided by agitation.
  • the third plurality of agitators (23c) is shown. In this embodiment of the invention, they are the only agitators present in the third and last evaporator (3), although this characteristic is not limited to the scope of the invention.
  • the three types of stirrers (23a, 23b and 23c) could be available in any of the evaporators (1, 2 or 3), although it is not a preferred configuration.
  • Two adjacent plates (14) are appreciated, among which a sub-chamber (19) belonging to the evaporation chamber (5), bathed in blood, is housed.
  • the rotary axis (16) and the stirrers (23c) are also observed. These have concave shaped shovels, which enhances the ability to drag product.

Abstract

The invention relates to system for drying liquid blood, which can be used to obtain a dried product from liquid blood and/or derivatives at a low temperature and at a moderate energy cost. The system comprises a set of multi-effect evaporators, a condenser and a heat pump. The liquid blood to be treated is obtained preferably from the meat industry, such as, for example, a slaughterhouse.

Description

SISTEMA DE DESECADO DE SANGRE LÍQUIDA  LIQUID BLOOD DRYING SYSTEM
SECTOR TÉCNICO DE LA INVENCIÓN TECHNICAL SECTOR OF THE INVENTION
La presente invención se refiere a un sistema de procesado de subproductos y/o residuos de la industria alimentaria, más concretamente se refiere un sistema de producción de un producto desecado a partir de sangre líquida o derivados.  The present invention relates to a system for processing by-products and / or residues of the food industry, more specifically a system for producing a dried product from liquid blood or derivatives.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Es conocido por el experto en el procesado de sangre líquida que la sangre producida en el sector cárnico es habitualmente sometida a tratamientos que la transforman en un producto derivado de la sangre, como puede ser la pasta de glóbulos rojos, plasma sanguíneo, suero sanguíneo, harina de sangre, etc. En ocasiones, estas transformaciones generan un producto con la apariencia de la sangre, pero que técnicamente no se puede llamar sangre.  It is known by the expert in the processing of liquid blood that the blood produced in the meat sector is usually subjected to treatments that transform it into a blood-derived product, such as the paste of red blood cells, blood plasma, blood serum, blood meal, etc. Sometimes, these transformations generate a product with the appearance of blood, but which technically cannot be called blood.
Cabe destacar que para obtener un derivado de la sangre, se contemplan tanto técnicas que extraen componentes de la sangre original, como aquellas que añaden algún componente para obtener el derivado. Un ejemplo del primer caso son los tratamientos con centrífugas, frecuentemente empleadas para separar glóbulos rojos. Ejemplos del tipo de centrífugas que pueden ser aplicadas para este propósito son las divulgadas en los documentos de patente US2011 124481 y US4077564. En el segundo caso, se encuadra la conservación de sangre mediante la adición de sales anticoagulantes, como el citrato sódico. Son muchas las técnicas que hacen uso del mismo, por ejemplo los procesos de evaporación al vacío en general (dentro de los cuales se encuadra la presente invención), añaden citrato sódico en un paso previo a la introducción de la sangre en el evaporador. El secado de la sangre o derivados, genera un producto de gran valor económico en el mercado. Destaca especialmente su contenido en lisina, un aminoácido esencial en la dieta de muchos animales. A pesar de ello, su revalorización ha sido tradicionalmente muy complicada. La razón es que surgen dos problemas: el elevado coste energético de eliminar el agua de la sangre o derivado, y la necesidad de no elevar demasiado la temperatura del proceso de obtención del producto. El primer problema parte de que la evaporación del agua es muy costosa en términos energéticos, en torno a 550 Kcal/Kg. Por otra parte, el hecho de someter la sangre a temperaturas elevadas provoca que sus proteínas desnaturalicen y pierdan gran parte de su valor económico. Así, cuanto menor sea la temperatura del tratamiento, y cuanto más breve éste, mayor calidad proteica del producto desecado, y por lo tanto mayor valor económico. It should be noted that to obtain a blood derivative, both techniques that extract components from the original blood are contemplated, as well as those that add some component to obtain the derivative. An example of the first case are centrifugal treatments, often used to separate red blood cells. Examples of the type of centrifuges that can be applied for this purpose are those disclosed in US2011 124481 and US4077564. In the second case, the preservation of blood is framed by the addition of anticoagulant salts, such as sodium citrate. There are many techniques that make use of it, for example vacuum evaporation processes in general (within which the present invention fits), add sodium citrate in a step prior to the introduction of blood into the evaporator. The drying of blood or derivatives generates a product of great economic value in the market. It especially highlights its lysine content, an essential amino acid in the diet of many animals. Despite this, its revaluation has traditionally been very complicated. The reason is that two problems arise: the high energy cost of eliminating water from the blood or its derivative, and the need not to raise the temperature of the process of obtaining the product too much. The first problem is that the evaporation of water is very expensive in terms of energy, around 550 Kcal / Kg. On the other hand, the fact of subjecting the blood to high temperatures causes its proteins to denature and lose much of its economic value. So, the smaller the temperature of the treatment, and the shorter it is, the higher the protein quality of the dried product, and therefore the greater the economic value.
Dentro de las técnicas para secar un producto como la sangre, una de las más rentables energéticamente son los evaporadores de múltiple efecto, consistentes en una conexión en serie de un conjunto de evaporadores individuales. Estos sistemas tienen la ventaja técnica de que aprovechan el calor de condensación del vapor generado en cada evaporador individual, de modo que se produce un ahorro energético proporcional al número de evaporadores. A modo de ejemplo, en un sistema de tres evaporadores, el gasto energético puede reducirse a menos del 40% que correspondería a un único evaporador. Estos equipos tienen un amplio uso en el estado de la técnica precedente, por lo que no se entrará en explicaciones extensas y se hará hincapié en aquellas particularidades de los mismos que no sean habituales. Sin embargo, los evaporadores de múltiple efecto descritos en el estado de la técnica actual no son adecuados para el secado de sangre, o en el mejor de los casos se emplean para concentrarla hasta cierto nivel, por ejemplo un 25% de sólidos en base húmeda, para después enviar la sangre a un dispositivo finalizador. Among the techniques for drying a product such as blood, one of the most energy efficient are the multi-effect evaporators, consisting of a series connection of a set of individual evaporators. These systems have the technical advantage that they take advantage of the heat of condensation of the steam generated in each individual evaporator, so that energy savings are proportional to the number of evaporators. As an example, in a three evaporator system, the energy expenditure can be reduced to less than 40% that would correspond to a single evaporator. These equipments have a wide use in the state of the prior art, so that extensive explanations will not be entered and emphasis will be placed on those peculiarities thereof that are not usual. However, the multi-effect evaporators described in the state of the art are not suitable for drying blood, or in the best case they are used to concentrate it to a certain level, for example 25% wet solids , and then send the blood to a terminator device.
Los dispositivos finalizadores, se encargan de retirar la humedad que no pudo ser eliminada en los equipos precedentes, hasta el grado de humedad deseado, que permita su comercialización y conservación. Este grado de humedad es típicamente del 8-10%. Un ejemplo típico de dispositivo finalizador son los secadores de spray o de atomización. En ellos, la sangre, previamente preconcentrada, se pulveriza mediante un mecanismo de atomización y se atraviesa por una corriente de aire caliente a unos 170°C. Estos equipos presentan serios inconvenientes. Por una parte, al no reaprovechar el vapor de agua eliminado por el producto seco, resulta más caro que los evaporadores de múltiple efecto, mencionados en el párrafo anterior. Por otra parte, el notable aumento de temperatura, aunque el tiempo de contacto entre la sangre y el aire sea muy breve, contribuye a aumentar la desnaturalización proteica. The finalizing devices are responsible for removing the moisture that could not be eliminated in the previous equipment, up to the desired degree of humidity, which allows its commercialization and conservation. This degree of humidity is typically 8-10%. A typical example of a finishing device is spray or spray dryers. In them, the previously preconcentrated blood is sprayed by an atomization mechanism and is passed through a stream of hot air at about 170 ° C. These teams have serious drawbacks. On the one hand, since the water vapor eliminated by the dry product is not reused, it is more expensive than the multi-effect evaporators mentioned in the previous paragraph. On the other hand, the remarkable increase in temperature, although the contact time between blood and air is very short, contributes to increase protein denaturation.
La razón principal por la que los evaporadores de múltiple efecto convencionales no son adecuados para realizar todo el proceso de secado de la sangre, es que trabajan mal con fluidos moderadamente viscosos o muy viscosos. Si se trata de evaporadores de circulación natural, pueden presentar problemas de operación incluso a viscosidades bajas. La inclusión de bombas de circulación forzada, permite trabajar con viscosidades mayores, pero que siguen siendo inferiores a las alcanzadas por la sangre durante su proceso de secado. Por otra parte, la sangre tiene tendencia a formar incrustaciones sobre las superficies de intercambio, que disminuyen sensiblemente el coeficiente de transferencia de calor. The main reason why conventional multi-effect evaporators are not suitable for performing the entire blood drying process, is that they work poorly with moderately viscous or very viscous fluids. If they are natural circulation evaporators, they can present operating problems even at low viscosities. The inclusion of forced circulation pumps allows working with higher viscosities, but which are still lower than those reached by the blood during its drying process. On the other hand, blood has a tendency to form scale on the exchange surfaces, which significantly decrease the heat transfer coefficient.
Otro fenómeno de relevancia es que la sangre es un fluido biológicamente activo, con presencia de células animales y una importante actividad bioquímica. Esta característica establece una diferencia crucial entre la sangre y los fluidos industriales de uso común. Parte de dicha actividad consiste en la formación de coágulos de componentes sanguíneos, en gran medida por acción de la fibrina. Estas propiedades han de ser tenidas en cuenta en el sistema de evaporadores. Another relevant phenomenon is that blood is a biologically active fluid, with the presence of animal cells and an important biochemical activity. This characteristic establishes a crucial difference between blood and commonly used industrial fluids. Part of this activity consists in the formation of clots of blood components, largely due to the action of fibrin. These properties must be taken into account in the evaporator system.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Por lo tanto, existe la necesidad de nuevos sistemas de procesado de sangre y/o derivados que solucionen al menos alguno de los problemas mencionados. Es un objetivo de la presente invención satisfacer dicha necesidad. Therefore, there is a need for new blood processing systems and / or derivatives that solve at least some of the problems mentioned. It is an objective of the present invention to satisfy said need.
La presente invención se refiere a un sistema que permite obtener un producto desecado a partir de sangre líquida y/o derivados a baja temperatura y con un coste energético moderado. La sangre líquida a tratar es aquella obtenida preferentemente de la industria cárnica, como por ejemplo un matadero. The present invention relates to a system that allows to obtain a dried product from liquid blood and / or derivatives at low temperature and with a moderate energy cost. The liquid blood to be treated is that obtained preferably from the meat industry, such as a slaughterhouse.
Para la presente invención en el término "sangre" se incluyen también los productos derivados de la misma que fueren de aplicación. For the present invention, the term "blood" also includes products derived therefrom that are applicable.
Como ya se ha explicado, la sangre, como fluido de procedencia biológica, posee una actividad bioquímica que le otorga diferencias fundamentales con respecto a la mayoría de fluidos que son tratados con cambiadores de calor en el estado de la técnica. Esta invención nace con la motivación de, teniendo presentes todas esas diferencias, aportar una solución eficaz al proceso de secado de sangre. As already explained, blood, as a fluid of biological origin, has a biochemical activity that gives it fundamental differences with respect to the majority of fluids that are treated with heat exchangers in the state of the art. This invention was born with the motivation of having all these differences in mind, to provide an effective solution to the blood drying process.
La principal particularidad de la sangre, es el fenómeno de la coagulación. Mientras se halla en circulación en los seres vivos, ésta se encuentra normalmente inhibida, pero una vez derramada al exterior, se produce la coagulación, en un tiempo que habitualmente es del orden de varios minutos. La sangre coagulada es difícil de bombear, fluye con dificultad y ensucia las superficies de intercambio térmico, de modo que dificulta mucho los tratamientos de secado. El mecanismo bioquímico que provoca la coagulación es el siguiente. La sangre posee una proteína, el fibrinógeno, que por mediación de la enzima trombina se transforma en fibrina, otra proteína, de tipo fibrilar y no globular, con capacidad de polimerizarse y formar así grandes redes tridimensionales. Estas redes actúan como un pegamento, y con facilidad atrapan grandes cantidades de células sanguíneas, formando así un coágulo. The main peculiarity of the blood is the coagulation phenomenon. While it is in circulation in living beings, it is normally inhibited, but once spilled outside, coagulation occurs, in a time that is usually on the order of several minutes. Coagulated blood is difficult to pump, it flows with difficulty and dirties the heat exchange surfaces, so that drying treatments become very difficult. The biochemical mechanism that causes coagulation is as follows. The blood has a protein, fibrinogen, which through the enzyme thrombin is transformed into fibrin, another protein, fibrillar and non-globular, with the ability to polymerize and thus form large three-dimensional networks. These networks act as a glue, and easily trap large amounts of blood cells, thus forming a clot.
Existen diversas posibilidades para evitar o limitar la coagulación. La adición de sales anticoagulantes es una muy extendida, pero que presenta el inconveniente de aumentar la temperatura de ebullición, lo que perjudica a los evaporadores y por tanto se descarta en esta invención. Una alternativa es dotar a la sangre de movimiento, pues así se retarda la coagulación. Otra posibilidad, es atravesar la sangre mediante ciertos elementos agitadores, sobre los cuales se peguen las redes de fibrina. Al hacerlo, se separan del resto del fluido y dejan de actuar sobre sus células y demás componentes en suspensión. There are several possibilities to avoid or limit coagulation. The addition of anticoagulant salts is a widespread one, but which has the disadvantage of increasing the boiling temperature, which damages the evaporators and is therefore ruled out in this invention. An alternative is to provide the blood with movement, as coagulation is delayed. Another possibility is to pass through the blood through certain agitator elements, on which the fibrin networks stick together. In doing so, they separate from the rest of the fluid and stop acting on their cells and other suspended components.
En la presente invención, los efectos adversos de la fibrina son contrarrestados mediante las siguientes cuatro actuaciones: In the present invention, the adverse effects of fibrin are counteracted by the following four actions:
1) Dotar a la sangre de movimiento. 2) Ejercer tensiones tangenciales. 1) Provide blood movement. 2) Exercise tangential tensions.
3) Facilitar la acumulación de fibrina sobre una superficie móvil. 3) Facilitate the accumulation of fibrin on a mobile surface.
4) Superficies de intercambio térmico rascadas, para retirar posibles incrustaciones de fibrina o coágulos. 4) Scratched heat exchange surfaces, to remove possible incrustations of fibrin or clots.
El concepto "tensiones tangenciales" se interpreta en este documento desde el punto de vista de la mecánica de medios continuos, como aquella situación en la cual el tensor de tensiones de Cauchy tiene importantes componentes fuera de la diagonal. The concept of "tangential tensions" is interpreted in this document from the point of view of continuous media mechanics, as that situation in which the Cauchy tension tensor has important components outside the diagonal.
En cuanto al punto tercero, dicha superficie móvil no realiza ningún intercambio térmico, por lo cual no existe problema en la acumulación de fibrina sobre la misma. As for the third point, said mobile surface does not perform any thermal exchange, so there is no problem in the accumulation of fibrin on it.
Para dar solución eficaz a las situaciones hasta aquí expuestas, se disponen como opción preferida placas de intercambio térmico en posición vertical, cada una separada de la contigua una distancia del orden de varios centímetros. La orientación vertical evita la decantación de partículas o coágulos sobre las superficies de intercambio, y la escasa distancia de separación incrementa el ratio superficie de intercambio / volumen de intercambiador. Una medida adicional comprende la inclusión de agitadores en las cámaras recorridas por la sangre. De modo que entre dos placas verticales contiguas, quede encajonado al menos un agitador. Este tipo de configuración y geometría, es de especial interés en el tratamiento de la sangre, ya que produce un flujo turbulento de gran magnitud, incluso con agitadores desplazándose a bajas revoluciones por minuto, por ejemplo del orden de 20 r.p.m. Es decir, se minimiza el gasto energético a la vez que se dota a la sangre de un movimiento, a través de la turbulencia que recorre su seno, que limita la coagulación. In order to provide an effective solution to the situations described here, thermal exchange plates in vertical position are arranged as a preferred option, each separated from the adjacent one a distance of the order of several centimeters. The vertical orientation prevents the decantation of particles or clots on the exchange surfaces, and the short separation distance increases the exchange surface / volume ratio of the exchanger. An additional measure includes the inclusion of agitators in the chambers covered by blood. So that between two adjacent vertical plates, it is encased to the Less an agitator. This type of configuration and geometry, is of special interest in the treatment of blood, since it produces a turbulent flow of great magnitude, even with stirrers moving at low revolutions per minute, for example of the order of 20 rpm That is, it is minimized energy expenditure while giving the blood a movement, through the turbulence that runs through your breast, which limits clotting.
Otra medida relevante, de la cual hace uso esta invención, es el empleo de agitadores con ángulo de ataque de 90° (posteriormente descritos, llamados como segunda pluralidad) y que pasan a una distancia muy pequeña de las superficies de intercambio térmico, del orden de varios milímetros. Al entrar en movimiento, desplazan a la sangre y fuerzan a una parte de la misma a atravesar esta escasa separación entre agitador y placa térmica. Durante ese tránsito las tensiones cortantes aumentan en gran medida, debido a que en esa escala espacial los esfuerzos viscosos son muy relevantes. Las tensiones cortantes generadas, son una medida adicional que la presente invención introduce para limitar la formación de redes de fibrina de nueva creación, y desestabilizar las ya formadas. Por último, este tipo de agitadores atrapa sobre su superficie aquellas redes de fibrina polimerizada cuya formación no pudo ser evitada por la turbulencia ni por la tensión cortante. Another relevant measure, which this invention makes use of, is the use of agitators with an angle of attack of 90 ° (later described, called as a second plurality) and which pass at a very small distance from the heat exchange surfaces, of the order of several millimeters. When moving, they displace the blood and force a part of it to go through this little separation between agitator and thermal plate. During this transit the shear stresses increase greatly, because in that spatial scale the viscous stresses are very relevant. The shear stresses generated are an additional measure that the present invention introduces to limit the formation of newly created fibrin networks, and destabilize those already formed. Finally, this type of agitator catches on its surface those polymerized fibrin networks whose formation could not be avoided by turbulence or by shear stress.
El sistema de producción de un producto desecado a partir de sangre líquida o derivados objeto de la presente invención está caracterizado porque comprende: a. sistema de evaporadores de múltiple efecto, caracterizado porque los intercambiadores de calor incluyen unos mecanismos agitadores; b. una bomba de calor que proporciona energía al sistema de evaporadores; y c. un condensador. The production system of a dried product from liquid blood or derivatives object of the present invention is characterized in that it comprises: a. multi-effect evaporator system, characterized in that heat exchangers include stirring mechanisms; b. a heat pump that provides power to the evaporator system; and c. a condenser
El sistema objeto de la presente invención está caracterizado porque la bomba de calor absorbe calor de un efluente industrial, que está a una temperatura comprendida en el rango 30-80 °C. The system object of the present invention is characterized in that the heat pump absorbs heat from an industrial effluent, which is at a temperature in the range 30-80 ° C.
En una realización preferente la bomba de calor comprende un primer cambiador de calor conectado en serie a un segundo cambiador de calor. En la bomba de calor, circula en circuito cerrado, un fluido que se ve sometido a diversos cambios de presión, por acción de un compresor; a modo de ejemplo no limitativo, este fluido puede ser el refrigerante R- 134a, que en el primer cambiador de calor opera a una presión comprendida en el rango 1 - 5 bar, mientras que en el segundo cambiador de calor opera a una presión comprendida en el rango 15 - 30 bar. In a preferred embodiment the heat pump comprises a first heat exchanger connected in series to a second heat exchanger. In the heat pump, a fluid circulates in a closed circuit, which is subjected to various pressure changes, by the action of a compressor; by way of non-limiting example, this fluid may be the refrigerant R-134a, which in the first heat exchanger operates at a pressure in the range 1 - 5 bar, while in the second heat exchanger it operates at a pressure in the range 15 - 30 bar.
El sistema de evaporadores de múltiple efecto comprende a. dos o más evaporadores de múltiple efecto caracterizados porque disminuyen la humedad de la sangre a un valor inferior al 25% en base seca; b. intercambiadores de calor de placas; c. una primera pluralidad de mecanismos agitadores caracterizada porque ejercen un rascado sobre la superficie de intercambio térmico eliminando incrustaciones; y d. una segunda pluralidad de mecanismos agitadores caracterizada porque ejercen una remoción que limita los efectos negativos de la fibrina. The multi-effect evaporator system comprises a. two or more multi-effect evaporators characterized in that they reduce blood moisture to a value less than 25% on a dry basis; b. plate heat exchangers; C. a first plurality of stirring mechanisms characterized in that they scratch the heat exchange surface eliminating scale; and d. a second plurality of agitator mechanisms characterized in that they exert a removal that limits the negative effects of fibrin.
En la presente invención el término vapor se refiere a vapor de agua con posibilidad de tener incorporadas otras sustancias volátiles o gases no condensables, como pudiera ser C02, aire atmosférico, etc., que son liberados por la propia sangre, o introducidos accidentalmente por fugas desde el exterior. En una realización preferente el sistema de evaporadores de múltiple efecto está situado sobre una misma vertical. In the present invention the term "steam" refers to water vapor with the possibility of incorporating other volatile substances or non-condensable gases, such as C0 2 , atmospheric air, etc., which are released by the blood itself, or accidentally introduced by leaks from outside. In a preferred embodiment the multi-effect evaporator system is located on the same vertical.
En una realización preferente el sistema de evaporadores de múltiple efecto está comprendido por dos evaporadores; en una realización aún más preferente el sistema de evaporadores de múltiple efecto está comprendido por tres evaporadores. En una realización particular de la invención la primera pluralidad de mecanismos agitadores barre las superficies de los intercambiadores de calor de placas, y comprende cuchillas giratorias que hacen presión sobre las mismas por acción de un muelle o mecanismo equivalente. En una realización alternativa la primera pluralidad de mecanismos agitadores comprende escobillas. La acción de esta primera pluralidad de mecanismos agitadores garantiza la retirada de aquellas partículas que se pudieran adherir a la superficie de intercambio, tales como glóbulos rojos, fibrina, albúmina, o cualquier tipo de coágulo. Las cuchillas, además, rompen de un modo mecánico la capa límite de fluido en contacto con la superficie, por lo que aumentan notablemente el coeficiente de transmisión de calor. En una realización preferente de la invención la superficie de intercambio térmico de los intercambiadores de calor comprende placas situadas en vertical. En una configuración preferente, los intercambiadores poseen dos cámaras: una primera cámara del fluido calefactor y una segunda cámara del producto a desecar. En la primera cámara circula el fluido que aporta calor para el secado. Entre cada dos placas contiguas, se sitúa una subcámara perteneciente a alguna de ambas cámaras citadas. A modo de ejemplo, considerando un intercambiador con 10 placas, numeradas correlativamente 1 , 2, 3, 10, entre los pares 1-2, 3-4, 5-6, 7-8 y 9-10 circula la sangre a desecar, y entre los pares complementarios: 2-3, 4-5, 6-7 y 8-9 circula el fluido calefactor. Este tipo de configuraciones y su funcionamiento, son conocidos en el estado de la técnica, y no se hacen necesarias mayores aclaraciones. La separación contemplada entre cada par de placas contiguas, es del orden de varios centímetros. In a preferred embodiment the multi-effect evaporator system is comprised of two evaporators; In an even more preferred embodiment, the multi-effect evaporator system is comprised of three evaporators. In a particular embodiment of the invention the first plurality of stirring mechanisms sweeps the surfaces of the plate heat exchangers, and comprises rotating blades that press on them by the action of a spring or equivalent mechanism. In an alternative embodiment the first plurality of stirring mechanisms comprises brushes. The action of this first plurality of agitating mechanisms guarantees the removal of those particles that could adhere to the exchange surface, such as red blood cells, fibrin, albumin, or any type of clot. The blades, in addition, mechanically break the fluid boundary layer in contact with the surface, thereby significantly increasing the heat transfer coefficient. In a preferred embodiment of the invention, the heat exchange surface of the heat exchangers comprises plates located vertically. In a configuration Preferably, the exchangers have two chambers: a first chamber of the heating fluid and a second chamber of the product to be dried. The fluid that provides heat for drying circulates in the first chamber. Between each two adjacent plates, there is a sub-chamber belonging to one of both cameras mentioned. As an example, considering an exchanger with 10 plates, correspondingly numbered 1, 2, 3, 10, between pairs 1-2, 3-4, 5-6, 7-8 and 9-10 circulates the blood to be dried, and between the complementary pairs: 2-3, 4-5, 6-7 and 8-9 circulates the heating fluid. These types of configurations and their operation are known in the state of the art, and no further clarification is necessary. The separation contemplated between each pair of adjacent plates is of the order of several centimeters.
En la presente invención el término esbelto se refiere a una configuración geométrica rectangular en la que dos lados son varios órdenes de magnitud mayor que los otros dos. In the present invention, the term slender refers to a rectangular geometric configuration in which two sides are several orders of magnitude greater than the other two.
La segunda pluralidad de mecanismos agitadores posee una sección rectangular esbelta que maximiza la acumulación de fibrina sobre su superficie, separándola del resto del fluido. El último evaporador del sistema de evaporadores está caracterizado porque comprende una tercera pluralidad de mecanismos agitadores que comprende una o más palas que desplazan la sangre o derivados en el intercambiador de calor. En una configuración preferente las palas de esta tercera pluralidad de mecanismos agitadores poseen una sección de mayor espesor que las de la primera y segunda pluralidad de agitadores, con el fin de soportar los esfuerzos mecánicos, que se prevé que sean mayores. Además, resulta especialmente ventajosa una sección cóncava, puesto que facilita un mayor acúmulo de producto sobre su superficie, y por tanto una remoción del mismo más eficaz. Un perfil cóncavo, al retener mayor cantidad de producto, produce que cada revolución del eje mueva más cantidad del mismo y por tanto reduce el tiempo de homogeneizado. The second plurality of stirring mechanisms has a slender rectangular section that maximizes the accumulation of fibrin on its surface, separating it from the rest of the fluid. The last evaporator of the evaporator system is characterized in that it comprises a third plurality of stirring mechanisms comprising one or more blades that displace blood or derivatives in the heat exchanger. In a preferred configuration, the blades of this third plurality of agitator mechanisms have a thicker section than those of the first and second plurality of agitators, in order to withstand the mechanical stresses, which are expected to be greater. In addition, a concave section is especially advantageous, since it facilitates a greater accumulation of product on its surface, and therefore a more effective removal thereof. A concave profile, by retaining a greater quantity of product, produces that each revolution of the axis moves more quantity of the same and therefore reduces the homogenization time.
En la presente invención el término tiempo de homogeneizado se refiere al tiempo que tarda un mecanismo agitador en remover el producto hasta que las partículas con mayor grado de humedad se han dispersado de una manera homogénea entre las partículas con menor grado de humedad, o viceversa. En resumen, se han contemplado hasta aquí tres tipos de agitadores. Una primera pluralidad, ejerce un efecto de rascado sobre las superficies de intercambio, Una segunda pluralidad, genera una remoción que limita los efectos adversos de la fibrina, y una tercera pluralidad se haya en el último evaporador y homogeniza el producto. El vapor de salida generado por el sistema de evaporadores es recogido por un condensador que es alimentado con agua, que procede de la red de alimentación de agua a una industria y se encuentra a la temperatura de red habitual, en el rango 7 - 20 °C. En un aspecto de la presente invención la segunda pluralidad de mecanismos agitadores genera un movimiento en el fluido y además promueve la adhesión sobre su superficie de las redes de fibrina que no puedan ser desestabilizadas con dicho movimiento. Cuando finaliza el proceso, por ejemplo al final de cada jornada de trabajo, se abre el evaporador y se procede a retirar manualmente la fibrina. Las tres pluralidades de agitadores se sitúan en el espacio confinado entre dos placas de intercambio consecutivas. In the present invention, the term "homogenization time" refers to the time it takes for an agitator mechanism to remove the product until the particles with a higher degree of moisture have dispersed in a homogeneous manner between the particles with a lower degree of humidity, or vice versa. In summary, three types of agitators have been contemplated so far. A first plurality exerts a scratching effect on the exchange surfaces, A second plurality generates a removal that limits the adverse effects of the fibrin, and a third plurality is in the last evaporator and homogenizes the product. The outlet steam generated by the evaporator system is collected by a condenser that is fed with water, which comes from the water supply network to an industry and is at the usual network temperature, in the range 7 - 20 ° C. In one aspect of the present invention the second plurality of stirring mechanisms generates a movement in the fluid and also promotes adhesion on its surface of fibrin networks that cannot be destabilized with said movement. When the process is finished, for example at the end of each working day, the evaporator is opened and the fibrin is manually removed. The three pluralities of agitators are located in the confined space between two consecutive exchange plates.
Los rascadores de la primera pluralidad de mecanismos agitadores, en su conformación en forma de cuchillas, tienen un borde con un ángulo muy agudo, pensado para ofrecer una gran capacidad de corte, y que ejerce el efecto de rascado. El ángulo de ataque de los rascadores en movimiento con respecto a la sangre, así definido en analogía con el ángulo de ataque del ala de una aeronave, es también agudo. Como aclaración, un ángulo de ataque de 0o significaría que el agitador se sitúa paralelo a la placa sobre la que actúa, y un ángulo de 90° significaría que se sitúa perpendicular a la placa. Se contempla que este ángulo sea inferior a 30°. Por otra parte, los rascadores se ven sometidos a la acción de un muelle o mecanismo semejante que los presiona contra las placas. Esto implica que tendrán un grosor superior a aquel correspondiente a la segunda pluralidad de agitadores, por tener que soportar esfuerzos mecánicos superiores. The scrapers of the first plurality of stirring mechanisms, in their shape in the form of blades, have a very sharp angle edge, designed to offer a high cutting capacity, and that exerts the effect of scratching. The angle of attack of scrapers moving with respect to blood, thus defined in analogy with the angle of attack of the wing of an aircraft, is also acute. As a clarification, an angle of attack of 0 o would mean that the agitator is placed parallel to the plate on which it acts, and an angle of 90 ° would mean that it is located perpendicular to the plate. It is contemplated that this angle is less than 30 °. On the other hand, scrapers are subjected to the action of a spring or similar mechanism that presses them against the plates. This implies that they will have a thickness greater than that corresponding to the second plurality of agitators, because they have to withstand higher mechanical stresses.
Los elementos móviles de la segunda pluralidad de mecanismos agitadores, pensados para la retención de fibrina y la limitación de la coagulación, se desplazan con un ángulo de ataque de 90° o cercano a dicho valor. Este ángulo, facilita la formación y mantenimiento sobre el agitador de los acúmulos de fibrina que no se desestabilicen con la turbulencia o tensión tangencial del fluido. Si el ángulo fuera menor, el agitador cortaría el fluido con más facilidad y los acúmulos tardarían más tiempo en formarse sobre su superficie, y una vez formados tenderían a despegarse con más facilidad y rapidez, lo cual podría inducirlos a pegarse en superficies más estables, como las placas de intercambio térmico, lo cual sería muy negativo. Por otra parte, si los acúmulos de fibrina se desprenden del agitador y quedan en suspensión, lo cual sería más probable con un ángulo de ataque agudo, podrían igualmente perjudicar al sistema, pues los acúmulos de fibrina empeoran las propiedades reológicas del fluido y complican la impulsión del mismo mediante eventuales bombas. Al contrario que los rascadores, los agitadores de la segunda pluralidad no ejercen contacto sobre las placas de intercambio, pero se extienden en un modo preferido hasta una corta distancia de las mismas. Una distancia corta puede interpretarse del orden de varios milímetros. La sección de los agitadores, obtenida a través de un plano de corte transversal, es preferentemente rectangular. The mobile elements of the second plurality of agitator mechanisms, designed for the retention of fibrin and the limitation of coagulation, move with an angle of attack of 90 ° or close to said value. This angle facilitates the formation and maintenance on the agitator of the fibrin clusters that do not destabilize with the turbulence or tangential tension of the fluid. If the angle were smaller, the agitator would cut the fluid more easily and the accumulations would take longer to form on its surface, and once formed they would tend to detach more easily and quickly, which could induce them to stick on more stable surfaces, such as heat exchange plates, which would be very negative. On the other hand, if fibrin clusters break off the agitator and remain in suspension, which would be more likely with an acute angle of attack, they could also damage the system, as fibrin clusters worsen the rheological properties of the fluid and complicate the its drive through possible pumps. Unlike scrapers, agitators of the second plurality do not exert contact on the exchange plates, but extend in a preferred manner up to a short distance thereof. A short distance can be interpreted in the order of several millimeters. The section of the stirrers, obtained through a cross-sectional plane, is preferably rectangular.
La tercera pluralidad de mecanismos agitadores, tiene la función de desplazar al producto tratado cuando éste no tiene consistencia líquida, en un modo semejante al de una pala desplazando un producto granulado. Para facilitar esta tarea, los agitadores se sitúan con un ángulo de ataque de 90° o cercano, y se contempla que su forma sea cóncava, para potenciar la capacidad de acumular producto y elevarlo en los trayectos ascendentes del agitador. El espesor de esta tercera pluralidad, se prevé que sea mayor que el de las otras dos, para soportar los esfuerzos mecánicos implicados. The third plurality of stirring mechanisms has the function of displacing the treated product when it has no liquid consistency, in a manner similar to that of a shovel by displacing a granulated product. To facilitate this task, the agitators are positioned at an angle of attack of 90 ° or close, and it is contemplated that its shape is concave, to enhance the ability to accumulate product and raise it in the upward paths of the agitator. The thickness of this third plurality is expected to be greater than that of the other two, to withstand the mechanical stresses involved.
En una realización preferente la primera y segunda pluralidad de agitadores, formada por elementos rascadores y elementos para limitar los efectos negativos de la fibrina, respectivamente, describen un movimiento circular, por hallarse fijados a un eje rotatorio que atraviesa la longitud del intercambiador de calor, accionado por un motor situado en el exterior del intercambiador. In a preferred embodiment the first and second plurality of agitators, formed by scraper elements and elements to limit the negative effects of the fibrin, respectively, describe a circular motion, as they are fixed to a rotary axis that crosses the length of the heat exchanger, driven by a motor located outside the exchanger.
Cabe destacar la especial ventaja que supone el disponer de intercambiadores de calor de placas verticales. Establecen una mejora de gran magnitud con respecto a los equipos de secado de sangre tradicionales, como del tipo digestor, evaporadores tradicionales de circulación forzada, etc. En los digestores, la superficie de intercambio es únicamente un encamisado exterior con forma cilindrica. Al dividir y compartí mentar el volumen del intercambiador mediante una sucesión de placas de intercambio, para un mismo volumen de intercambiador se obtiene una mucho mayor superficie de intercambio. Por otra parte, al estar los agitadores encajonados entre dos placas contiguas, su movimiento genera una turbulencia mucho mayor que la obtenida en los digestores o evaporadores de circulación forzada. A modo de ejemplo, si la separación entre placas contiguas es de 100 mm, el ancho de los agitadores puede ser de 95 mm. Se observa que se desplazan muy cercanos a los bordes de ambas placas. De un modo equivalente al efecto de las placas deflectoras en tanques con agitación, este encajonamiento de los agitadores aumenta en gran medida la turbulencia, que a su vez mejora el intercambio térmico, limita la formación de coágulos y reduce la formación de incrustaciones. It is worth mentioning the special advantage of having vertical plate heat exchangers. They establish an improvement of great magnitude with respect to traditional blood drying equipment, such as the digester type, traditional forced circulation evaporators, etc. In digesters, the exchange surface is only an outer jacket with a cylindrical shape. By dividing and sharing the volume of the exchanger by means of a succession of exchange plates, a much larger exchange surface is obtained for the same volume of exchanger. On the other hand, being the agitators encased between two adjacent plates, their movement generates a much greater turbulence than that obtained in digesters or forced circulation evaporators. As an example, if the separation between adjacent plates is 100 mm, the width of the stirrers can be 95 mm. It is observed that they move very close to the edges of both plates. In an equivalent way to the effect of the baffle plates in tanks with agitation, this boxing of the agitators greatly increases the turbulence, which in turn improves thermal exchange, limits the formation of clots and reduces the formation of scale.
Un fenómeno indeseable presente en los dispositivos del estado de la técnica, y que la presente invención contrarresta, es el aumento de la velocidad de coagulación con la temperatura. Aunque las temperaturas de trabajo de los evaporadores de múltiple efecto pueden ser muy bajas (se contemplan temperaturas inferiores a 55°C en esta invención), siempre inducen una mayor coagulación que a temperatura ambiente o refrigerada. Esta razón ha hecho que en el estado de la técnica los tratamientos encaminados a eliminar la fibrina de la sangre se realicen en una fase previa al proceso de eliminación de agua, normalmente a bajas temperaturas (por ejemplo con enfriamiento a menos de 8°C). Sin embargo, la disposición de agitadores encajonados entre placas verticales genera una turbulencia mayor a la habitual en dispositivos del estado de la técnica, contrarrestando el aumento de coagulación y permitiendo el trabajo con sangre entera que no haya sido previamente desfibrinada. Esta ventaja ahorra tiempo y la necesidad de un depósito agitado y con equipo de enfriamiento en muchos casos. An undesirable phenomenon present in the devices of the state of the art, and which the present invention counteracts, is the increase in coagulation speed with the temperature. Although the working temperatures of the multi-effect evaporators can be very low (temperatures below 55 ° C are contemplated in this invention), they always induce a higher coagulation than at room or refrigerated temperature. This reason has meant that in the state of the art treatments aimed at removing fibrin from the blood are carried out at a stage prior to the water removal process, usually at low temperatures (for example with cooling to less than 8 ° C) . However, the arrangement of agitators encased between vertical plates generates a greater turbulence than usual in devices of the prior art, counteracting the increase in coagulation and allowing the work with whole blood that has not been previously defibrinated. This advantage saves time and the need for a stirred tank with cooling equipment in many cases.
Por otra parte, las técnicas de desfibrinado anteriores al proceso de secado, no evitan que se produzca una posterior coagulación. Si bien este proceso retira la mayor parte de la fibrina y se reduce en gran medida la tendencia a la coagulación, nunca se elimina completamente y se producirán coágulos en el proceso de secado. La presente invención prevé que la sangre se halle bajo la acción de rascadores y removedores en todos los evaporadores en que se halle líquida, con lo cual la retirada de fibrina (y bloqueo de la coagulación) es continua a lo largo de todo el proceso de secado. On the other hand, defibrination techniques prior to the drying process do not prevent subsequent coagulation. While this process removes most of the fibrin and coagulation tendency is greatly reduced, it is never completely eliminated and clots will occur in the drying process. The present invention provides that the blood is under the action of scrapers and removers in all evaporators in which liquid is found, whereby the removal of fibrin (and blockage of coagulation) is continuous throughout the entire process of dried
El último evaporador, aquel en el cual la sangre abandona el sistema con el grado de humedad deseado, dispone, en un modo preferente pero no limitativo, de palas de desplazamiento y no de agitadores para la retención de fibrina. Esto se debe a que en el último evaporador la sangre ha perdido su consistencia líquida, y no se puede desplazar como un fluido. Las palas, tienen superficies de forma y dimensiones semejantes a las de los agitadores, pero con una mayor resistencia mecánica, de tal forma que son capaces de soportar y desplazar el peso de la sangre acumulada entre cada dos placas contiguas. The last evaporator, the one in which the blood leaves the system with the desired degree of humidity, has, in a preferred but not limiting manner, displacement blades and not agitators for the retention of fibrin. This is because in the last evaporator the blood has lost its liquid consistency, and it cannot move like a fluid. The blades have surfaces of similar shape and dimensions to those of the stirrers, but with a greater mechanical resistance, in such a way that they are capable of supporting and displacing the weight of the accumulated blood between each two adjacent plates.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Las modalidades detalladas en las figuras se ilustran a modo de ejemplo y no a modo de limitación:  The modalities detailed in the figures are illustrated by way of example and not by way of limitation:
La Figura 1 muestra un diagrama de flujos del sistema objeto de la presente invención. La Figura 2 muestra un detalle ampliado de un evaporador. La Figura 3 muestra una realización particular de un evaporador. Figure 1 shows a flow chart of the system object of the present invention. Figure 2 shows an enlarged detail of an evaporator. Figure 3 shows a particular embodiment of an evaporator.
La Figura 4 muestra un detalle ampliado del evaporador según la Figura 2. Figure 4 shows an enlarged detail of the evaporator according to Figure 2.
La Figura 5 muestra una perspectiva de un evaporador de acuerdo a las figuras 2 y 3. Figure 5 shows a perspective of an evaporator according to Figures 2 and 3.
La Figura 6 muestra una vista en perspectiva seccionada de dos placas de intercambio La Figura 7 muestra una representación de la primera pluralidad de agitadores presentes en el primer y segundo evaporador. Figure 6 shows a sectioned perspective view of two exchange plates Figure 7 shows a representation of the first plurality of agitators present in the first and second evaporators.
La Figura 8 muestra una representación de la segunda pluralidad de agitadores presentes en el primer y segundo evaporador. Figure 8 shows a representation of the second plurality of agitators present in the first and second evaporators.
La Figura 9muestra tercera pluralidad de agitadores. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Figure 9 shows the third plurality of agitators. DETAILED DESCRIPTION OF THE INVENTION
En la Figura 1 se representa un diagrama de flujos de una realización particular del sistema objeto de la presente invención- Como se puede ver en la Figura 1 , en esta realización particular se disponen en serie tres evaporadores (1 , 2 y 3), conformando en su conjunto un sistema de evaporadores de múltiple efecto que funciona a vacío. Cada evaporador individual se compone de dos cámaras: una cámara de evaporación (5a, 5b y 5c) y una cámara de condensación (4a, 4b y 4c). En el presente documento, cuando se haga referencia a una cámara de evaporación, pero sin especificar a qué evaporador (1 , 2 y 3) pertenece, se indicará mediante (5), y se procederá del mismo modo con las cámaras de evaporación (4). En la cámara de evaporación del primer evaporador (5a), se encuentra siempre el producto a secar. En el primer evaporador (1), por la cámara de condensación (4a) circula el fluido refrigerante R-134a, que posee cualidades que lo hacen apto para empleo en la industria alimentaria. En la cámara de condensación (4b) del segundo evaporador (2), circula el vapor generado en la cámara de evaporación (5a), del primer evaporador (1). Y en la cámara de condensación (4c) del tercer evaporador (3), circula el vapor generado en la cámara de evaporación (5b) del segundo evaporador (2). La entrada y salida de fluido a las cámaras de condensación (4a, 4 b y 4c) de cada evaporador (1 ,2 y 3) se realiza a través de colectores (6a, 6b y 6c).  A flow chart of a particular embodiment of the system object of the present invention is shown in Figure 1 - As can be seen in Figure 1, in this particular embodiment three evaporators (1, 2 and 3) are arranged in series, forming as a whole a multi-effect evaporator system that operates under vacuum. Each individual evaporator consists of two chambers: an evaporation chamber (5a, 5b and 5c) and a condensing chamber (4a, 4b and 4c). In this document, when reference is made to an evaporation chamber, but without specifying to which evaporator (1, 2 and 3) it belongs, it will be indicated by (5), and will proceed in the same way with the evaporation chambers (4 ). In the evaporation chamber of the first evaporator (5a), the product to be dried is always found. In the first evaporator (1), the R-134a refrigerant circulates through the condensation chamber (4a), which has qualities that make it suitable for use in the food industry. In the condensation chamber (4b) of the second evaporator (2), the steam generated in the evaporation chamber (5a) of the first evaporator (1) circulates. And in the condensation chamber (4c) of the third evaporator (3), the steam generated in the evaporation chamber (5b) of the second evaporator (2) circulates. The inlet and outlet of fluid to the condensation chambers (4a, 4b and 4c) of each evaporator (1, 2 and 3) is done through manifolds (6a, 6b and 6c).
El vapor que circula por la cámara de condensación (4b) del segundo evaporador (2), cede su calor latente de condensación a la sangre de la cámara de evaporación (5b) de ese mismo evaporador (2), lo cual es posible debido a que ambas cámaras (4b y 5b) se hallan a distintas presiones. En consecuencia, la temperatura de condensación del vapor es superior a la temperatura de ebullición de la sangre, lo que permite la transferencia de calor. El líquido obtenido a través de la condensación del vapor en el segundo evaporador (2), es purgado hacia el exterior del sistema mediante una bomba centrífuga (10). Todo lo descrito en este párrafo, es igualmente de aplicación para el tercer evaporador (3). The steam that circulates through the condensation chamber (4b) of the second evaporator (2), yields its latent heat of condensation to the blood of the evaporation chamber (5b) of that same evaporator (2), which is possible due to that both chambers (4b and 5b) are at different pressures. Consequently, the steam condensation temperature It is higher than the boiling temperature of the blood, which allows heat transfer. The liquid obtained through the condensation of the steam in the second evaporator (2) is purged out of the system by means of a centrifugal pump (10). Everything described in this paragraph also applies to the third evaporator (3).
El vapor que sale del tercer evaporador (3) es conducido hasta un condensador (11), que comprende un intercambiador de calor (1 1a) del tipo de carcasa y tubos. Por el lado de la carcasa circula el vapor a condensar, y por el interior de los tubos circula agua de red de alimentación a la industria cárnica, a una temperatura inferior a la del vapor. Esta agua viene a una temperatura habitual de entre 7 y 20° C, en función del lugar y época del año, y es usada en grandes cantidades por los mataderos, para cometidos como limpieza, esterilización, alimentación a calderas, etc. A la salida del intercambiador (1 1a), el agua de red se encuentra a una temperatura superior a la de entrada. Teniendo en cuenta que las industrias cárnicas o mataderos necesitan calentar una gran parte del agua de red que consumen, este intercambiador (1 1a) supone un ahorro energético. A modo de ejemplo, es típico que un matadero necesite calentar el 60% del agua de red que consume a temperaturas superiores a 62°C, para emplearla como agua de limpieza. El agua de red es impulsada a través del intercambiador (1 1a) por medio de una bomba centrífuga (1 1 b). The steam leaving the third evaporator (3) is conducted to a condenser (11), which comprises a heat exchanger (1 1a) of the casing and tube type. On the side of the housing circulates the steam to condense, and inside the tubes circulates water from the supply network to the meat industry, at a temperature lower than that of the steam. This water comes at a usual temperature between 7 and 20 ° C, depending on the place and time of the year, and is used in large quantities by slaughterhouses, for tasks such as cleaning, sterilization, boiler feed, etc. At the outlet of the exchanger (1 1a), the mains water is at a higher temperature than the inlet. Taking into account that meat industries or slaughterhouses need to heat a large part of the network water they consume, this exchanger (1 1a) represents energy savings. As an example, it is typical that a slaughterhouse needs to heat 60% of the mains water it consumes at temperatures above 62 ° C, to be used as cleaning water. Mains water is driven through the exchanger (1 1a) by means of a centrifugal pump (1 1 b).
En el interior de la carcasa del intercambiador de calor (11a) del condensador (11), y exteriormente a los tubos, condensa el vapor procedente del tercer evaporador (3), cediendo su calor de condensación al agua de red. El líquido formado es expulsado al exterior del intercambiador (1 1a) mediante una bomba centrífuga (1 1c), situada convenientemente en la zona inferior del intercambiador (11 a), para facilitar su drenaje y el cebado del conducto que aspiración de la bomba (11 c). Aquella parte del vapor que no se haya podido condensar, es expulsada al exterior del condensador (1 1) mediante una bomba de vacío (11 d), situada convenientemente en la zona superior del intercambiador (11 a), para evitar la entrada de líquidos. El vacío operante en la cámara de evaporación (5c) del tercer evaporador (3), es mantenido tanto por la condensación del vapor en el condensador (1 1) como por la acción de la bomba de vacío (11 d). Inside the casing of the heat exchanger (11a) of the condenser (11), and externally to the tubes, condenses the steam from the third evaporator (3), yielding its heat of condensation to the mains water. The liquid formed is expelled to the outside of the exchanger (1 1a) by means of a centrifugal pump (1 1c), conveniently located in the lower area of the exchanger (11 a), to facilitate its drainage and priming of the duct that sucks the pump ( 11 c). That part of the steam that has not been able to condense, is expelled to the outside of the condenser (1 1) by means of a vacuum pump (11 d), conveniently located in the upper area of the exchanger (11 a), to prevent the entry of liquids . The operating vacuum in the evaporation chamber (5c) of the third evaporator (3) is maintained both by the condensation of the steam in the condenser (1 1) and by the action of the vacuum pump (11 d).
La sangre cruda, es extraída de los animales recién sacrificados por un mecanismo higiénico consistente en un cuchillo de hoja hueca conectado a un tubo de aspiración. A continuación, la sangre se introduce directamente en el primer evaporador (1), a través de un conducto de entrada (7a). En este evaporador (1) la sangre pierde humedad para a continuación abandonar el evaporador a través de un conducto de salida (8a). The raw blood is extracted from freshly slaughtered animals by a hygienic mechanism consisting of a hollow blade knife connected to a suction tube. Next, the blood is introduced directly into the first evaporator (1), through of an inlet duct (7a). In this evaporator (1) the blood loses moisture and then leaves the evaporator through an outlet duct (8a).
Los conductos de entrada (7a, 7b y 7c) se hayan situados en una posición más elevada que los conductos de salida (8a, 8b y 8c ), y estos últimos se encuentran en el fondo del evaporador (1 ,2 y 3), para facilitar el drenaje de la sangre. The inlet ducts (7a, 7b and 7c) have been placed in a higher position than the outlet ducts (8a, 8b and 8c), and the latter are at the bottom of the evaporator (1, 2 and 3), to facilitate the drainage of blood.
La sangre que abandona el primer evaporador (1), es impulsada hasta el conducto de entrada (7b) del segundo evaporador (2) con la ayuda de una bomba peristáltica (9a). Una vez la sangre ha perdido un cierto grado de humedad en el segundo evaporador (2), lo abandona por su conducto de salida (8b) y es a continuación desplazada, con la ayuda de una bomba peristática (9b), hasta el conducto de entrada (7c) del tercer y último evaporador (3), donde alcanzará el grado de humedad deseado para su comercialización como harina de sangre. El producto seco se expulsa del sistema de evaporador, a través del conducto de salida (8c) de dicho tercer evaporador (3). The blood that leaves the first evaporator (1) is driven to the inlet duct (7b) of the second evaporator (2) with the help of a peristaltic pump (9a). Once the blood has lost a certain degree of moisture in the second evaporator (2), it leaves it through its outlet duct (8b) and is then displaced, with the help of a peristatic pump (9b), to the duct inlet (7c) of the third and last evaporator (3), where it will reach the desired degree of humidity for marketing as blood meal. The dried product is expelled from the evaporator system, through the outlet duct (8c) of said third evaporator (3).
En una realización alternativa, los tres evaporadores (1 ,2 y 3) se encuentran en una misma vertical, de modo que la sangre se desplaza de un evaporador al siguiente por efecto de la gravedad. In an alternative embodiment, the three evaporators (1, 2 and 3) are in the same vertical, so that the blood moves from one evaporator to the next due to gravity.
La energía necesaria para la evaporación de la sangre es aportada mediante una bomba de calor (12), que comprende un intercambiador de calor de carcasa y tubos (12a). Por el interior a la carcasa y exteriormente a los tubos, circula un efluente residual de la industria cárnica, impulsado mediante una bomba centrífuga (12b). Este efluente comprende las aguas de limpieza de la industria, aguas de escaldado de cerdos, orines de los animales, etc. Las aguas de limpieza, es común que se empleen con una temperatura de entorno a 65°C, con lo cual suelen ir al desagüe, una vez utilizadas y suponiendo que no hay bomba de calor, con una temperatura ligeramente inferior, por ejemplo de 55°C.Por otra parte, los mataderos que emplean la técnica de escaldado de cerdos emplean para tal fin agua a una temperatura entre 60 y 85°C, que una vez utilizada se enfría ligeramente y se convierte en un residuo contaminante, que se ha de tratar en una estación depuradora. Sean de una procedencia u otra, los fluentes residuales poseen una temperatura lo bastante baja como para hacer muy difícil o poco rentable su aprovechamiento energético por los medios técnicos comunes. Sin embargo, la bomba de calor (12), absorbe de una manera eficaz la energía térmica de los efluentes residuales y la entrega al fluido refrigerante R-134a, que circula por el interior de los tubos del intercambiador (12a). Al estar absorbiendo energía de un efluente residual, que se produce inevitablemente y cuyo destino es el desagüe o una depuradora, se produce un importante abaratamiento del coste energético en el proceso de secado de la sangre. La bomba de calor puede absorber energía del efluente residual siempre que éste tenga una temperatura superior a 30°C. The energy required for the evaporation of the blood is provided by a heat pump (12), which comprises a shell and tube heat exchanger (12a). A residual effluent from the meat industry circulates inside the housing and externally to the tubes, driven by a centrifugal pump (12b). This effluent includes the industrial cleaning waters, pig scalding waters, animal urine, etc. The cleaning waters, it is common that they are used with a temperature of around 65 ° C, with which they usually go to the drain, once used and assuming that there is no heat pump, with a slightly lower temperature, for example 55 ° C. On the other hand, slaughterhouses using the technique of scalding pigs use water at a temperature between 60 and 85 ° C, which once used slightly cools and becomes a contaminating residue, which has been of treating in a purification station. Whether from one source or another, residual fluents have a temperature low enough to make their energy use very difficult or unprofitable by common technical means. However, the heat pump (12) effectively absorbs the thermal energy of the residual effluents and delivers it to the refrigerant R-134a, which circulates inside the tubes of the exchanger (12a). Being absorbing energy from a residual effluent, which is produced inevitably and whose destination is the drain or a purifier, there is a significant reduction in energy costs in the process of drying the blood. The heat pump can absorb energy from the residual effluent as long as it has a temperature above 30 ° C.
En esta realización particular, el efluente residual entra al intercambiador (12a) a una temperatura preferente de 40°C y lo abandona a una temperatura preferente de 25°C. Este calor que ha cedido, lo absorbe el fluido R-134a, que se evapora en el interior de los tubos del intercambiador (12a) a una temperatura de 10°C y una presión preferente de 4,25 bar. Este fluido es conducido hasta el compresor (12c), que eleva su presión preferente des 19,5 bar, correspondientes con una temperatura de condensación en torno a una temperatura preferente de 65°C. Una vez entra en la cámara de condensación (4a) del primer evaporador (1), se condensa y entrega el calor de condensación a la sangre cruda que entra a la cámara de evaporación (5a) de ese mismo evaporador (1). Una vez condensado, atraviesa una válvula de laminación (12d), que reduce su presión, y retorna en estado líquido al intercambiador (12a) para ser nuevamente evaporada, y describiendo de esta manera un circuito cerrado. En la Figura 2 se muestra un dibujo esquemático de un evaporador, para ilustrar la nomenclatura empleada en el presente documento. Las medidas y proporciones se encuentran exageradas con el fin de aumentar la claridad. Se aprecia una carcasa (13), en cuyo interior se albergan un total de seis placas de intercambio térmico (14a, 14b, 14c, 14d, 14e y 14f). En esta realización particular se muestra una cámara de evaporación (5), por la que circula sangre, y una cámara de condensación (4), por la que circula vapor. Los recorridos de la sangre y el vapor se indican de forma representativa por medio de flechas de trazo sinuoso; para el vapor el grosor de línea es fino, y para la sangre grueso. La separación entre ambas cámaras (4 y 5) es estanca, de modo que en ningún momento se produce contacto entre los dos fluidos. La cámara de condensación (4) comprende en esta realización particular un total de tres subcámaras (20a, 20b y 20c), que se conectan todas ellas, a través de tuberías (6y), a dos colectores (6), de modo tal que forman un único volumen, la citada cámara de condensación (4). La cámara de evaporación (5) comprende cuatro subcámaras (19a, 19b, 19c y 19d), que se encuentran igualmente en comunicación todas ellas, formando también un único volumen, la citada cámara de evaporación (5). En el interior de cada una de las subcámaras (19a, 19b 19c y 19d) de la cámara de evaporación (5), se alberga un agitador (23), accionado por un eje (16). In this particular embodiment, the residual effluent enters the exchanger (12a) at a preferred temperature of 40 ° C and leaves it at a preferred temperature of 25 ° C. This heat that has yielded is absorbed by the R-134a fluid, which evaporates inside the exchanger tubes (12a) at a temperature of 10 ° C and a preferred pressure of 4.25 bar. This fluid is conducted to the compressor (12c), which raises its preferred pressure from 19.5 bar, corresponding to a condensation temperature around a preferred temperature of 65 ° C. Once it enters the condensing chamber (4a) of the first evaporator (1), it condenses and delivers the heat of condensation to the raw blood entering the evaporation chamber (5a) of that same evaporator (1). Once condensed, it crosses a rolling valve (12d), which reduces its pressure, and returns in a liquid state to the exchanger (12a) to be evaporated again, and thus describing a closed circuit. A schematic drawing of an evaporator is shown in Figure 2, to illustrate the nomenclature used herein. The measures and proportions are exaggerated in order to increase clarity. A housing (13) can be seen, inside which a total of six heat exchange plates (14a, 14b, 14c, 14d, 14e and 14f) are housed. In this particular embodiment an evaporation chamber (5) is shown, through which blood circulates, and a condensation chamber (4), through which steam circulates. The paths of blood and steam are indicated representatively by means of sinuous arrows; for the steam the line thickness is thin, and for the thick blood. The separation between both chambers (4 and 5) is watertight, so that at no time contact between the two fluids occurs. The condensation chamber (4) comprises in this particular embodiment a total of three subchambers (20a, 20b and 20c), which are all connected, via pipes (6y), to two manifolds (6), so that they form a single volume, said condensation chamber (4). The evaporation chamber (5) comprises four subchambers (19a, 19b, 19c and 19d), which are also all in communication, also forming a single volume, said evaporation chamber (5). Inside each of the subchambers (19a, 19b 19c and 19d) of the evaporation chamber (5), an agitator (23) is housed, driven by a shaft (16).
Se aprecia que entre cada dos placas contiguas, se alberga una subcámara. Así por ejemplo, entre las placas (14a) y (14b) se halla la subcámara (20a), pertenenciente a la cámara de condensación (4). Y entre las placas (14b) y (14c) se halla la subcámara (19b), pertenenciente a la cámara de evaporación (5). Nótese que en cada uno de los dos extremos del evaporador se halla una subcámara (19a y 19d), que como excepción no se sitúa entre dos placas contiguas (14a, 14b, 14c, 14d, 14e y 14f), sino entre placa y carcasa (13). It is appreciated that between each two adjacent plates, a subchamber is housed. Thus, for example, between the plates (14a) and (14b) is the sub chamber (20a), belonging to the condensation chamber (4). And between the plates (14b) and (14c) is the sub chamber (19b), belonging to the evaporation chamber (5). Note that at each of the two ends of the evaporator is a sub-chamber (19a and 19d), which as an exception is not located between two adjacent plates (14a, 14b, 14c, 14d, 14e and 14f), but between plate and housing (13).
En la Figura 3 se representa una realización particular de un evaporador, pudiendo ser cualquiera de los tres (1 ,2 ó 3). El evaporador comprende una carcasa exterior (13), que alberga en su interior las placas de intercambio térmico (14) y agitadores (23), que describen un movimiento de rotación por medio de una sujeción a un eje (16), estando dicho eje accionado por un motor (17), exterior a la carcasa (13). El eje se soporta en el interior del evaporador por medio de respectivos soportes (18), que lo sujetan a la vez que promueven su rotación. Para ello, los soportes (18) se constituyen como rodamientos de contacto por deslizamiento, sin necesidad de lubricación. A particular embodiment of an evaporator is shown in Figure 3, and it can be any of the three (1, 2 or 3). The evaporator comprises an outer casing (13), which houses inside the heat exchange plates (14) and stirrers (23), which describe a rotational movement by means of a fastener to an axis (16), said axis being driven by a motor (17), outside the housing (13). The shaft is supported inside the evaporator by means of respective supports (18), which hold it while promoting its rotation. For this, the supports (18) are constituted as sliding contact bearings, without the need for lubrication.
La carcasa (13) posee en su parte superior dos bocas de hombre (21), con la finalidad de permitir el acceso a su interior para limpieza, inspección, reparación, etc. Resultan especialmente ventajosas para proceder a la limpieza y retirada manual de los acúmulos de fibrina, tras cada jornada de trabajo. En la parte central se sitúa un conducto de decantación gravimétrica (22), que ayuda a purificar el vapor que se obtiene de la ebullición de la sangre. Más específicamente, su diámetro se selecciona de modo tal que la velocidad de ascenso de los gases sea lo bastante lenta para que aquellas partículas líquidas en suspensión no sigan al gas el su trayecto ascendente a lo largo del conducto (22), sino que precipiten por gravedad. En la zona superior de dicho conducto (22), se dispone de una tubería de salida del vapor (no representada en la figura), para ser conducido hasta el siguiente evaporador (1 , 2 ó 3), o en su caso el condensador (11). La sangre es introducida en un punto (no representado en la figura) de la zona superior del evaporador, cae por gravedad y pasa a ocupar el volumen de cada una de las subcámaras (19) de la cámara de evaporación (5). Estas subcámaras (19) se encuentran recorridas por agitadores (23), sujetos al eje (16) y que desarrollan un movimiento de rotación. De esta manera, la sangre se encuentra en todo momento bajo agitación mecánica. Si el evaporador representado es el primero (1) o el segundo (2), los agitadores (23) serán de dos tipos distintos, aquellos pertenecientes a la primera y segunda pluralidad de agitadores, representados en las Figuras 5 y 6. De forma preferente, en cada una de las subcámaras (19) se encuentran ambos tipos de agitadores The housing (13) has in its upper part two mouths of man (21), with the purpose of allowing access to its interior for cleaning, inspection, repair, etc. They are especially advantageous for cleaning and manual removal of fibrin clusters, after each work day. In the central part is a gravimetric settling duct (22), which helps to purify the steam obtained from the boiling of the blood. More specifically, its diameter is selected such that the rate of ascent of the gases is slow enough so that those liquid particles in suspension do not follow the gas its upward path along the conduit (22), but rather precipitate by gravity. In the upper area of said duct (22), there is a steam outlet pipe (not shown in the figure), to be conducted to the next evaporator (1, 2 or 3), or if necessary the condenser ( eleven). The blood is introduced at a point (not shown in the figure) of the upper evaporator zone, falls by gravity and goes on to occupy the volume of each of the subchambers (19) of the evaporation chamber (5). These subchambers (19) are run by agitators (23), attached to the shaft (16) and that develop a rotational movement. In this way, the blood is at all times under agitation mechanics. If the evaporator represented is the first (1) or the second (2), the agitators (23) will be of two different types, those belonging to the first and second plurality of agitators, represented in Figures 5 and 6. Preferably , in each of the subchambers (19) are both types of agitators
Las subcámaras (20) de la cámara de condensación (4) deben permitir ser atravesadas por el eje (16) rotatorio, y al mismo tiempo mantener la estanqueidad entre ambas cámaras (4 y 5). Para ello, cada par de placas (14) contiguas que delimita una subcámara (20), poseen una perforación circular en su centro, atravesable por el eje (16), y se dispone una pieza cilindrica (24) concéntrica con ambas perforaciones, pero de mayor diámetro y soldada a ambas placas (14). De esta manera se asegura la movilidad del eje (16) y la estanqueidad. Para delimitar la cámara de condensación (4) y hacerla estanca, se disponen cerramientos (25) soldados alrededor del perímetro de cada par de placas (14) contiguas que encierren una subcámara (20). Los cerramientos (25) se adaptan a la geometría de las placas que unen; si por ejemplo las placas a unir son circulares, los cerramientos poseerán sección en forma de corona circular. Las soluciones descritas en este párrafo y en el anterior, son habituales en el estado de la técnica, y no se consideran necesarias mayores explicaciones. The sub-chambers (20) of the condensation chamber (4) must allow them to be traversed by the rotating shaft (16), and at the same time maintain the tightness between both chambers (4 and 5). For this, each pair of adjacent plates (14) delimiting a sub-chamber (20), have a circular perforation in its center, traversible by the axis (16), and a concentric cylindrical part (24) with both perforations, but of greater diameter and welded to both plates (14). This ensures the mobility of the shaft (16) and the tightness. To delimit the condensation chamber (4) and make it sealed, there are enclosures (25) welded around the perimeter of each pair of adjacent plates (14) enclosing a sub chamber (20). The enclosures (25) adapt to the geometry of the joining plates; if, for example, the plates to be joined are circular, the enclosures will have a circular crown shaped section. The solutions described in this paragraph and in the previous one are common in the state of the art, and further explanations are not considered necessary.
En la zona más inferior del evaporador representado, se sitúa el conducto de salida (8) de la sangre. Por él es evacuada la sangre hacia el siguiente evaporador (2 ó 3), o hacia el exterior del sistema, en su caso, si se trata del tercer evaporador (3). In the lower part of the evaporator represented, the outlet duct (8) of the blood is placed. Through it the blood is evacuated to the next evaporator (2 or 3), or to the outside of the system, if applicable, if it is the third evaporator (3).
En la Figura 4, se representa un detalle de la figura 2. Se observan un total de seis placas (14) verticales de intercambio térmico. Entre cada dos de ellas contiguas, se establece una subcámara. Se aprecian subcámaras (19) de la cámara de evaporación (5) y subcámaras (20) de la cámara de condensación (4), con sus correspondientes cerramientos (25) que garantizan la estanqueidad entre ambas cámaras (4 y 5), que se disponen alternativamente. En las primeras (19), se sitúan agitadores (23), que en esta figura no se especifican como pertenecientes a ninguna de las tres pluralidades (23a, 23b ó 23c). Los agitadores (23) se sujetan al eje (16), que les dota del movimiento de rotación. El eje rotatorio (16), pasa por uno de sus soportes (18) y atraviesa, por su parte central, las seis placas (14) y las tres subcámaras (20) de la cámara de condensación (4) según se muestra en esta figura. Para garantizar la estanqueidad, se sueldan en los correspondientes pares de placas (14) piezas cilindricas (24), concéntricas con las perforaciones de las placas (14). En la figura se aprecian un total de tres de estas piezas (24). Según se aprecia, el eje (16) se encuentra inmerso en la cámara de evaporaciónIn Figure 4, a detail of Figure 2 is shown. A total of six vertical heat exchange plates (14) are observed. Between each of them adjoining, a subchamber is established. Sub-chambers (19) of the evaporation chamber (5) and sub-chambers (20) of the condensation chamber (4) are appreciated, with their corresponding enclosures (25) that guarantee the tightness between both chambers (4 and 5), which are They have alternately. In the first (19), stirrers (23) are placed, which in this figure are not specified as belonging to any of the three pluralities (23a, 23b or 23c). The agitators (23) are attached to the shaft (16), which gives them the rotation movement. The rotary axis (16) passes through one of its supports (18) and crosses, through its central part, the six plates (14) and the three subchambers (20) of the condensation chamber (4) as shown in this figure. To ensure tightness, cylindrical pieces (24), concentric with the perforations of the plates (14), are welded into the corresponding pairs of plates (14). The figure shows a total of three of these pieces (24). As can be seen, the shaft (16) is immersed in the evaporation chamber
(5) , y por tanto está bañado por el producto a desecar. (5), and therefore it is bathed by the product to be dried.
En la Figura 5 se observa una imagen en perspectiva de un evaporador de acuerdo con las figuras 2 y 3. La carcasa (13) se encuentra parcialmente seccionada, para hacer visible su interior, así como también una parte de las placas de intercambio (14). Se aprecia el motor (17), el eje (16) que éste acciona, y agitadores (23) sujetos al mismo, sin definir a qué pluralidad pertenecen (23a, 23b ó 23c). Son igualmente visibles los cerramientos (25). Para poner en contacto todas las subcámaras (20) de la cámara de condensación (4), y constituir así un único volumen, se conectan todas ellas a un colectorFigure 5 shows a perspective image of an evaporator according to Figures 2 and 3. The housing (13) is partially sectioned, to make its interior visible, as well as a part of the exchange plates (14 ). The motor (17), the shaft (16) that it drives, and agitators (23) attached to it, without defining to which plurality they belong (23a, 23b or 23c) are appreciated. The enclosures are equally visible (25). To connect all the subchambers (20) of the condensation chamber (4), and thus constitute a single volume, all of them are connected to a collector
(6) , a través de tuberías (6a). En la figura, se sitúa una tubería (6a) por cada subcámara (20), donde las tuberías (6a) entran al interior de las subcámaras (20), atravesando sus cerramientos (25). En este caso, el colector (6) es de salida, por hallarse en una zona inferior, y el fluido condensado (R-134a ó vapor, en su caso), se acumula sobre él. Por un criterio de simplicidad, en esta figura se han omitido las bocas de hombre (21) y el conducto de decantación (22). (6), through pipes (6a). In the figure, a pipe (6a) is placed for each subchamber (20), where the pipes (6a) enter the interior of the subchambers (20), crossing their enclosures (25). In this case, the manifold (6) is an outlet, since it is in a lower area, and the condensed fluid (R-134a or steam, if applicable), accumulates on it. By a criterion of simplicity, in this figure the mouths of man (21) and the conduit of decantation (22) have been omitted.
En la Figura 6, se muestra una vista en perspectiva seccionada de dos placas de intercambio (14), siendo visibles los cerramientos exteriores (25) y la pieza cilindrica (24) entre ambas placas (14). El interior de la pieza cilindrica (24) es atravesado por el eje que mueve a los agitadores (no representados en esta figura). Se indica una subcámara (19) de la cámara de evaporación y una subcámara (20) de la cámara de condensación. Esta figura tiene la utilidad de mostrar en perspectiva los elementos citados, para ayudar a su mejor comprensión, pero en ningún caso constituye un ejemplo limitativo del alcance de la invención. In Figure 6, a sectioned perspective view of two exchange plates (14) is shown, the outer enclosures (25) and the cylindrical part (24) being visible between both plates (14). The interior of the cylindrical part (24) is crossed by the shaft that moves the agitators (not shown in this figure). A subchamber (19) of the evaporation chamber and a subchamber (20) of the condensation chamber are indicated. This figure has the utility of showing in perspective the mentioned elements, to help its better understanding, but in no case it constitutes a limiting example of the scope of the invention.
En la Figura 7, se muestra una representación de la primera pluralidad de agitadores (23a), presentes en el primer (1) y segundo (2) evaporador. En ella se representan dos placas de intercambio (14) contiguas, entre las cuales se alberga una subcámara (19) perteneciente a la cámara de evaporación (5). Por tanto, contiene sangre a secar. El eje (16) atraviesa la subcámara (19) y describe un movimiento de rotación, según indica la figura. El agitador (23a) comprende una cuchilla (15) rascadora, que ejerce presión contra una de las placas (14) por medio de la acción de una lámina metálica (26). Dicha lámina (26), en reposo posee una conformación recta, pero según se aprecia en la figura, se instala forzándole una curvatura. De esta manera la lámina (26), en virtud de su tendencia a recuperar su conformación recta inicial, ejerce una tensión mecánica que hace presionar a la cuchilla (15) contra la pared de la placa (14). El ángulo de ataque con el cual la cuchilla (15) corta a la sangre, es agudo e inferior a 30°. Esta configuración favorece la capacidad de la misma para desincrustar depósitos de la placa (14), y genera una desestabilización mecánica de la capa límite del fluido el contacto con la placa (14), de modo que el coeficiente de transferencia térmica aumenta considerablemente. In Figure 7, a representation of the first plurality of agitators (23a), present in the first (1) and second (2) evaporator is shown. It shows two adjacent exchange plates (14), among which there is a sub-chamber (19) belonging to the evaporation chamber (5). Therefore, it contains blood to dry. The shaft (16) crosses the subchamber (19) and describes a rotation movement, as indicated by the figure. The agitator (23a) comprises a scraper blade (15), which presses against one of the plates (14) by means of the action of a metal sheet (26). Said sheet (26), at rest has a straight conformation, but as seen in the figure, it is installed by forcing a curvature. In this way, the sheet (26), by virtue of its tendency to recover its initial straight conformation, exerts a mechanical tension that presses the blade (15) against the wall of the plate (14). The angle of attack with which the blade (15) cuts to the blood is acute and less than 30 °. This configuration favors its ability to descale plate deposits (14), and generates a mechanical destabilization of the fluid boundary layer contact with the plate (14), so that the thermal transfer coefficient increases considerably.
Para la limitación de la coagulación se buscan dos fenómenos: una turbulencia importante en el seno del fluido, y la capacidad de atraer y acumular la fibrina sobre ciertas superficies, de modo que se separe del resto del fluido, limitando así su capacidad de formar coágulos. En este sentido, las cuchillas no generan una turbulencia en el seno del fluido que sea de la magnitud adecuada, aunque sí que la generan en la capa límite. Por otra parte, su ángulo de ataque dificulta la adhesión y posterior consolidación de la fibrina sobre su superficie. Por estas razones, resulta imprescindible separar las funciones de desincrustación y rotura de la capa límite, de la limitación de la coagulación, que se reserva de forma particular para la segunda pluralidad de agitadores (23b). For the limitation of coagulation, two phenomena are sought: an important turbulence within the fluid, and the ability to attract and accumulate fibrin on certain surfaces, so that it separates from the rest of the fluid, thus limiting its ability to form clots. . In this sense, the blades do not generate a turbulence within the fluid that is of the appropriate magnitude, although they do generate it in the boundary layer. On the other hand, its angle of attack hinders the adhesion and subsequent consolidation of fibrin on its surface. For these reasons, it is essential to separate the functions of descaling and breaking the boundary layer, from the limitation of coagulation, which is reserved in particular for the second plurality of agitators (23b).
Cabe destacar que la primera pluralidad de agitadores (23a) es aquella que posee la conformación que contribuye en mayor medida al aumento del coeficiente de transferencia de calor, por romper mecánicamente la capa límite de la sangre. It should be noted that the first plurality of agitators (23a) is that which has the conformation that contributes most to the increase in the heat transfer coefficient, by mechanically breaking the boundary layer of blood.
En la Figura 8 se muestra una representación de la segunda pluralidad de agitadores (23b), presentes en el primer (1) y segundo (2) evaporador, al igual que la primera pluralidad de agitadores (23a). Se observan dos placas térmicas (14) contiguas, entre las cuales se alberga una subcámara (19) de la cámara de evaporación (5). Es decir, contiene sangre en su interior. Se representa al eje (16) giratorio y al agitador (23b). Éste posee una conformación semejante a la de una pala o remo, con una sección rectangular esbelta, y se aproxima a las paredes de las placas (14) hasta quedar a una distancia preferente de 3 mm de cada una de ellas. El ángulo de ataque con el que atraviesa al fluido es de 90° ó próximo. Esta disposición genera una turbulencia muy intensa en el seno del fluido, lo cual favorece la no coagulación, y el ángulo de ataque potencia la formación y retención sobre su superficie de aquellas redes de fibrina que no pudieron ser evitadas mediante la agitación. A representation of the second plurality of agitators (23b), present in the first (1) and second (2) evaporator, is shown in Figure 8, as is the first plurality of agitators (23a). Two adjacent thermal plates (14) are observed, among which a sub chamber (19) of the evaporation chamber (5) is housed. That is, it contains blood inside. The rotating shaft (16) and the stirrer (23b) are represented. This has a conformation similar to that of a shovel or paddle, with a slender rectangular section, and approaches the walls of the plates (14) until it is at a preferred distance of 3 mm from each of them. The angle of attack with which it passes through the fluid is 90 ° or close. This arrangement generates a very intense turbulence within the fluid, which favors non-coagulation, and the angle of attack enhances the formation and retention on its surface of those fibrin networks that could not be avoided by agitation.
Se observa que a través de la citada separación entre las placas (14) y el agitador (23b), de 3mm, se fuerza a circular un cierto volumen de sangre. El paso por este espacio estrecho, genera unos esfuerzos cortantes elevados que desestabilizan la formación de redes de fibrina. It is observed that through the said separation between the plates (14) and the stirrer (23b), of 3mm, a certain volume of blood is forced to circulate. The passage through this narrow space generates high shear stresses that destabilize the formation of fibrin networks.
Otro fenómeno de relevancia aquí es que cuanto más cercanas se encuentren ambas placas (14), mayor será el efecto de la tensión cortante sobre la fibrina. Esto se debe a que al aproximar las placas (14), se mantiene la misma superficie barrida por los agitadores (23b), pero el volumen de sangre entre ambas placas (14) es menor, de modo que el cociente: (superficie a atravesar) / (volumen de sangre) se hace más grande. Como consecuencia, cuanto más próximas las placas, menor tiempo tarda la totalidad del volumen de sangre entre placas (14), en atravesar la citada separación entre agitador (23b) y placa (4), que en esta realización es de 3 mm. Another relevant phenomenon here is that the closer both plates (14) are, the greater the effect of the shear stress on the fibrin. This is because when approaching the plates (14), the same surface swept by the stirrers (23b) is maintained, but the volume of blood between both plates (14) is smaller, so that the ratio: (surface to be traversed ) / (blood volume) gets bigger. As a consequence, the closer the plates, the less time it takes for the entire volume of blood between plates (14) to pass through said separation between agitator (23b) and plate (4), which in this embodiment is 3 mm.
En la Figura 9, se representa la tercera pluralidad de agitadores (23c). En esta realización de la invención, son los únicos agitadores presentes en el tercer y último evaporador (3), si bien esta característica no es limitativa del alcance de la invención. Se podría disponer de los tres tipos de agitadores (23a, 23b y 23c) en cualquiera de los evaporadores (1 , 2 ó 3), si bien no es una configuración preferida. Se aprecian dos placas (14) contiguas, entre las que queda albergada una subcámara (19) perteneciente a la cámara de evaporación (5), bañada de sangre. Se observan igualmente el eje rotatorio (16) y los agitadores (23c). Estos poseen unas palas con forma cóncava, lo cual potencia la capacidad de arrastre de producto. El espesor de las mismas es diseñado para aportar una resistencia mecánica adecuada para desplazar el peso de la sangre cuando ésta ha dejado de ser un fluido. Esta diferenciación en el diseño es fundamental, puesto que un agitador que estuviera diseñado para remover la sangre fluida, si es empleado para remover sangre que ha dejado de fluir, se vería sometido a estreses mecánicos muy importantes que limitarían en gran medida su vida útil. In Figure 9, the third plurality of agitators (23c) is shown. In this embodiment of the invention, they are the only agitators present in the third and last evaporator (3), although this characteristic is not limited to the scope of the invention. The three types of stirrers (23a, 23b and 23c) could be available in any of the evaporators (1, 2 or 3), although it is not a preferred configuration. Two adjacent plates (14) are appreciated, among which a sub-chamber (19) belonging to the evaporation chamber (5), bathed in blood, is housed. The rotary axis (16) and the stirrers (23c) are also observed. These have concave shaped shovels, which enhances the ability to drag product. Their thickness is designed to provide adequate mechanical resistance to displace the weight of the blood when it has ceased to be a fluid. This differentiation in the design is fundamental, since an agitator that was designed to remove fluid blood, if used to remove blood that has stopped flowing, would be subjected to very important mechanical stresses that would greatly limit its useful life.

Claims

REIVINDICACIONES
1. Sistema de producción de un producto desecado a partir de sangre líquida o derivados caracterizado porque comprende: a. sistema de evaporadores de múltiple efecto, caracterizado porque los intercambiadores de calor incluyen mecanismos agitadores; b. una bomba de calor que proporciona energía al sistema de evaporadores; y c. un condensador. 1. System for producing a dried product from liquid blood or derivatives characterized in that it comprises: a. multi-effect evaporator system, characterized in that heat exchangers include stirring mechanisms; b. a heat pump that provides power to the evaporator system; and c. a condenser
2. El sistema, según la reivindicación 1 , caracterizado porque la bomba de calor absorbe calor de un efluente industrial. 2. The system according to claim 1, characterized in that the heat pump absorbs heat from an industrial effluent.
3. El sistema, según las reivindicaciones 1 y 2, caracterizado porque la bomba de calor comprende un primer cambiador de calor conectado en serie a un segundo cambiador de calor. 3. The system according to claims 1 and 2, characterized in that the heat pump comprises a first heat exchanger connected in series to a second heat exchanger.
4. El sistema, según la reivindicación 3, caracterizado porque el primer cambiador de calor opera a una presión comprendida en el rango 1 - 5 bar. 4. The system according to claim 3, characterized in that the first heat exchanger operates at a pressure in the range 1-5 bar.
5. El sistema, según la reivindicación 3, caracterizado porque el segundo cambiador de calor opera a una presión comprendida en el rango 15 - 30 bar 5. The system according to claim 3, characterized in that the second heat exchanger operates at a pressure in the range 15-30 bar
6. El sistema, según la reivindicación 2, caracterizado porque el efluente industrial está a una temperatura comprendida en el rango 30°C - 80°C. 6. The system according to claim 2, characterized in that the industrial effluent is at a temperature in the range 30 ° C - 80 ° C.
7. El sistema, según la reivindicación 1 , caracterizado porque el sistema de evaporadores de múltiple efecto comprende a. dos o más evaporadores de múltiple efecto caracterizados porque disminuyen la humedad de la sangre a un valor inferior al 25% en base seca; b. intercambiadores de calor de placas; c. una primera pluralidad de mecanismos agitadores caracterizada porque ejercen un rascado sobre la superficie de intercambio térmico eliminando incrustaciones; y d. una segunda pluralidad de mecanismos agitadores caracterizada porque ejercen una remoción que limita los efectos negativos de la fibrina y/o la coagulación de la sangre. 7. The system according to claim 1, characterized in that the multi-effect evaporator system comprises a. two or more multi-effect evaporators characterized in that they reduce blood moisture to a value less than 25% on a dry basis; b. plate heat exchangers; C. a first plurality of stirring mechanisms characterized in that they scratch the heat exchange surface eliminating scale; Y d. a second plurality of agitator mechanisms characterized in that they exert a removal that limits the negative effects of fibrin and / or blood clotting.
8. El sistema, según la reivindicación 7, caracterizado porque la primera pluralidad de agitadores posee un ángulo de ataque agudo, y la segunda pluralidad de agitadores posee un ángulo de ataque de 90° The system according to claim 7, characterized in that the first plurality of agitators has an acute angle of attack, and the second plurality of agitators has an angle of attack of 90 °
9. El sistema, según la reivindicación 7, caracterizado porque la segunda pluralidad de agitadores posee un ángulo de ataque de 90° y pasa a una distancia de 3 milímetros de las placas de intercambio térmico. 9. The system according to claim 7, characterized in that the second plurality of agitators has an angle of attack of 90 ° and passes at a distance of 3 millimeters from the heat exchange plates.
10. El sistema, según la reivindicación 7, caracterizado porque el sistema de evaporadores de múltiple efecto está situado sobre una misma vertical. 10. The system according to claim 7, characterized in that the multi-effect evaporator system is located on the same vertical.
11. El sistema, según la reivindicación 7, caracterizado porque la segunda pluralidad de mecanismos agitadores posee sección rectangular esbelta. 11. The system according to claim 7, characterized in that the second plurality of stirring mechanisms has a slender rectangular section.
12. El sistema, según la reivindicación 7, caracterizado porque el último evaporador del sistema de evaporadores está caracterizado porque comprende una tercera pluralidad de mecanismos agitadores. 12. The system according to claim 7, characterized in that the last evaporator of the evaporator system is characterized in that it comprises a third plurality of stirring mechanisms.
13. El sistema, según la reivindicación 12, caracterizado porque la tercera pluralidad de mecanismos agitadores comprende una o más palas que desplazan la sangre o derivados en el intercambiador de calor. 13. The system according to claim 12, characterized in that the third plurality of stirring mechanisms comprises one or more blades that displace blood or derivatives in the heat exchanger.
14. El sistema, según la reivindicación 1 , caracterizado porque el vapor de salida generado por el sistema de evaporadores es recogido por un condensador que es alimentado con agua. 14. The system according to claim 1, characterized in that the steam generated by the evaporator system is collected by a condenser that is fed with water.
15. El sistema, según la reivindicación 1 , caracterizado porque el agua procede de la red de alimentación de agua a una industria, a la temperatura de red habitual. 15. The system according to claim 1, characterized in that the water comes from the water supply network to an industry, at the usual network temperature.
PCT/ES2017/070349 2016-05-25 2017-05-24 System for drying liquid blood WO2017203085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17802255.4A EP3466507B1 (en) 2016-05-25 2017-05-24 System for drying liquid blood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201630675A ES2597584B2 (en) 2016-05-25 2016-05-25 LIQUID BLOOD DRYING SYSTEM
ESP201630675 2016-05-25

Publications (1)

Publication Number Publication Date
WO2017203085A1 true WO2017203085A1 (en) 2017-11-30

Family

ID=57792551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070349 WO2017203085A1 (en) 2016-05-25 2017-05-24 System for drying liquid blood

Country Status (3)

Country Link
EP (1) EP3466507B1 (en)
ES (1) ES2597584B2 (en)
WO (1) WO2017203085A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617042A (en) * 2021-07-20 2021-11-09 汪家炜 Spherical concentrator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314791B (en) * 2022-03-04 2022-06-03 山西理工智联科技有限公司 Coal slime water concentration treatment system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB203109A (en) * 1922-06-28 1923-09-06 Hermann Plauson Improved process and apparatus for preserving foods or the like
GB796331A (en) * 1954-12-23 1958-06-11 Joachim Wiegand Method of and apparatus for evaporating in down-flow evaporators
CA2065582A1 (en) * 1991-04-12 1992-10-13 Daniel A. Mayolo Movable industrial plant to dry into powder different liquids
CN105000782A (en) * 2015-07-24 2015-10-28 中山沃尔威多水处理设备有限公司 Plate-type vaporizing drying system and technology for treating oily sludge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067119A (en) * 1976-10-20 1978-01-10 Glen Overton Method of drying blood
US5645693A (en) * 1991-06-28 1997-07-08 Goede; Gabor Plant for sea water desalinizing using solar energy
US6261419B1 (en) * 1999-02-08 2001-07-17 Ovation Products Corporation Rotating plate heat exchanger
BR112012031530B1 (en) * 2010-06-22 2020-11-10 I.D.E. Technologies Ltd horizontal tube evaporator and method for intensifying heat transfer through said horizontal tube evaporator which are vertically elongated
EP2716341A1 (en) * 2012-10-05 2014-04-09 VITO NV (Vlaamse Instelling voor Technologisch Onderzoek NV) Device and method for liquid treatment by mechanical vapor recompression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB203109A (en) * 1922-06-28 1923-09-06 Hermann Plauson Improved process and apparatus for preserving foods or the like
GB796331A (en) * 1954-12-23 1958-06-11 Joachim Wiegand Method of and apparatus for evaporating in down-flow evaporators
CA2065582A1 (en) * 1991-04-12 1992-10-13 Daniel A. Mayolo Movable industrial plant to dry into powder different liquids
CN105000782A (en) * 2015-07-24 2015-10-28 中山沃尔威多水处理设备有限公司 Plate-type vaporizing drying system and technology for treating oily sludge

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE EPODOC Database accession no. CN -201510444140-A *
See also references of EP3466507A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617042A (en) * 2021-07-20 2021-11-09 汪家炜 Spherical concentrator
CN113617042B (en) * 2021-07-20 2022-11-11 湖北广辰药业有限公司 Spherical concentrator

Also Published As

Publication number Publication date
EP3466507A1 (en) 2019-04-10
EP3466507B1 (en) 2022-10-19
ES2597584B2 (en) 2017-05-04
EP3466507A4 (en) 2020-01-15
ES2597584A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
ES2434331T3 (en) Hydrolysis process for raw materials from the fisheries and meat industries and deposits used therein
JP6224043B2 (en) Method and system for processing fluids
ES2597584B2 (en) LIQUID BLOOD DRYING SYSTEM
KR101606328B1 (en) Apparatus for concentrating
US9976805B2 (en) Processing system intended to dehydrate food waste
EP3919147B1 (en) Treatment fluid preparation system
RU2017106211A (en) PORTABLE SYSTEM FOR HEATING, WASHING AND SUCTION OF LIQUIDS FOR LAPAROSCOPIC AND LAPAROTOMIC SURGERY, GYNECOLOGY AND UROLOGY
CN106017195B (en) A kind of air-source water heater with defrosting snaking function
BR102015020083A2 (en) method and apparatus for internal surface disinfection in freezers and the like
BR112016023451B1 (en) HORIZONTAL SHOVEL DRYER
ES2709875T3 (en) Water decontamination system and water vapor generation
JP2003056983A (en) Vacuum dryer
CN211050923U (en) Vacuum concentration tank and vacuum concentration system
CN208990815U (en) A kind of cage stirring crystallizing evaporator
EP3569296B1 (en) Device and method for obtaining a desiccated product from blood or blood derivatives
KR101270995B1 (en) The honey concentrator
CN108640186A (en) A kind of energy saving curtain formula evaporator
ES2200826T3 (en) APPARATUS FOR THE RECTIFICATION OF LIQUID MIXTURES AND / OR GAS CLEANING
KR102036053B1 (en) Drying apparatus for producing bean sprouts waste as feed
CN208613356U (en) A kind of animal carcass harmless processor
CN208055238U (en) Zero discharge environment-friendly type scallop albumen multiple stage circulation concentration purification production line
CN205392390U (en) Dehydration cauldron
CN207487495U (en) A kind of central air-conditioning fan coiler cleaning apparatus
JP2004340523A (en) Air conditioner
CN109499081A (en) A kind of luwa evaporator of belt scraping plate heating function

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017802255

Country of ref document: EP

Effective date: 20190102