WO2017201981A1 - 一种用于彩色显示设备的増彩膜及其制备方法 - Google Patents

一种用于彩色显示设备的増彩膜及其制备方法 Download PDF

Info

Publication number
WO2017201981A1
WO2017201981A1 PCT/CN2016/105760 CN2016105760W WO2017201981A1 WO 2017201981 A1 WO2017201981 A1 WO 2017201981A1 CN 2016105760 W CN2016105760 W CN 2016105760W WO 2017201981 A1 WO2017201981 A1 WO 2017201981A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
light
film
base film
coated
Prior art date
Application number
PCT/CN2016/105760
Other languages
English (en)
French (fr)
Inventor
明天
肖蔓达
徐荣
刘纪宏
肖慧
Original Assignee
武汉保丽量彩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610347549.7A external-priority patent/CN106019638A/zh
Priority claimed from CN201610544078.9A external-priority patent/CN105974497B/zh
Application filed by 武汉保丽量彩科技有限公司 filed Critical 武汉保丽量彩科技有限公司
Publication of WO2017201981A1 publication Critical patent/WO2017201981A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements

Definitions

  • the present invention relates to the field of color display, and in particular to a color enhancement film for improving color rendering capability of a color display device and improving color gamut.
  • OLED Organic Light Emitting Display
  • Color flat panel display as an output device for color images, its ability to reproduce color - color gamut is an important performance indicator.
  • CIE International Commission on Illumination
  • NTSC developed a color gamut standard for color television based on the 1931 xy chromaticity diagram.
  • the NTSC gamut is an outer triangle as shown in Figure 1, and the outer triangle is surrounded by an area of 100% NTSC gamut.
  • the red, green and blue primary colors emitted from the LCD display are spectrally measured and mathematically analyzed to obtain the stimulus values of the three primary colors of the spectrum, and the corresponding color color coordinates are quantized in the CIE 1931 xy chromaticity diagram, and the corresponding coordinates are calculated by the color coordinates.
  • the red, green and blue primary colors of different display outputs are different in the color coordinate position in the CIE 1931 xy chromaticity diagram, and the enclosed triangle area is different, and the red, green and blue primary colors are different.
  • the closer to the solid color the closer the color coordinates are to the edge of the baseline in the CIE 1931 xy chromaticity diagram.
  • the larger the area of the triangle enclosed the larger the range of colors that the display can represent, and the higher the color gamut.
  • the display color gamut of the LCD is determined by the purity of the backlight base color in the backlight module and the color purity of the color filter in the liquid crystal module.
  • the backlight module is one of the main components of the LCD panel, which provides sufficient brightness and uniform distribution of white light sources for the liquid crystal panel, which are realized by the backlight source and the optical module.
  • the currently widely used LCD film layer structure is shown in Figures 2 and 3.
  • the backlight module is divided into a direct type and a side light type according to the position where the light source is distributed.
  • the side light type is to set the point light source on the side of the specially designed light guide plate; the direct type does not need the light guide plate, and the LED array is placed at the bottom of the light box.
  • the top of the module is provided with an optical film layer to provide brightness, uniformity and the like to the backlight of the liquid crystal panel, and the common direct-type and side-light module structures are as follows.
  • the advantages of the direct-lit backlight are high brightness, good light-emitting angle, simple structure, and dynamic adjustment of brightness in each area.
  • the direct-type type uses spatial distance to mix light, a certain reservation between the LED light source and the optical module is required.
  • the space of the direct-lit backlight module is thicker and has the problem of heat dissipation; while the side-light type has the advantage of being able to create a slim and light display body, and the cost is lower, but when applied to a large-sized LCD display, There is a problem that the picture uniformity is poor and the area control cannot be achieved.
  • the sidelight type has become the mainstream of development.
  • the optical film layer of the backlight module includes a diffusion film, a brightness enhancement film (prism sheet), a reflective polarizer, etc., and the configuration of the optical film layer is different depending on the application range of the module and the product grade.
  • the reflector performs specular reflection on the light to improve the utilization rate of the light;
  • the light guide plate converts the point source or the line source into a surface light source;
  • the diffusion plate serves to broaden the viewing angle and conceal the function of the light guide plate dot; two mutually perpendicular
  • the prism sheet concentrates the diffused light at a certain angle to increase the axial brightness.
  • the LED-LCD display which dominates the display, has a set of light-emitting diodes (LEDs) as a white light source and a white light source.
  • LEDs light-emitting diodes
  • Light intensity and spectral distribution directly affect the visual effect of the liquid crystal display.
  • the commonly used white light source is a white light that is excited by a blue LED chip (wavelength 445-460 nm) to excite yellow YAG:Ce3+ phosphor (luminescence peak wavelength 580 nm).
  • This white light exhibits a low color rendering index due to lack of red light component.
  • the mixed color filter has a poor color mixing effect, resulting in a narrow white color gamut formed through the panel, generally 65%-75% NTSC.
  • Another high-color white light source that is used more is to emit white light by a blue LED chip (wavelength 445-460nm) excited by red KSF phosphor (luminescence peak wavelength 630nm) with green ⁇ -SiAlON phosphor (luminescence peak wavelength 530nm). This way, the white color gamut can be increased to about 85% NTSC.
  • the display color gamut of 85% NTSC on LCD monitors is far from satisfying consumers' demand for color authenticity.
  • How to improve the color performance of LCD displays, that is, to improve the color gamut of displays is a hot topic in current research.
  • the improved color gamut can achieve a wider color coverage by optimizing the output color purity of the backlight source and the color filter film, and the essence is to expand the range of the display output color.
  • the main idea is that the purer white light formed by the backlight is better, and how the liquid crystal filter film achieves more pure three primary colors has always been the main direction of optimization.
  • the present invention has a new way to convert light in a first predetermined wavelength range into a second predetermined wavelength range by adding a 5-100 micron color-increasing coating to the light-emitting module, especially the backlight module.
  • the light makes the half-width of the illuminating spectrum of the red, green and blue light-emitting modules narrow, and thus has better penetration absorption in the liquid crystal color filter.
  • the three primary colors after the filter are closer to the solid color. To make the display reach a higher color gamut.
  • the present invention provides a color enhancement film that can be used in a color display device to increase the display color gamut.
  • the present invention provides a enamel film for a color display device, characterized in that the color enhancement film comprises: a transparent base film, and a color enhancement coated on the transparent base film a coating having discretely distributed light wavelength conversion materials therein for converting at least a portion of the light in the first predetermined wavelength range to light in the second predetermined wavelength range.
  • the first predetermined wavelength range includes: 0-430 nm, 470 nm-500 nm, 560 nm-610 nm, 660 nm-750 nm, and any one or more of the above wavelength ranges;
  • the second predetermined The wavelength range includes: 430 nm to 470 nm, 500 nm to 560 nm, 610 nm to 660 nm, and any one or more of the above wavelength ranges.
  • the second predetermined wavelength range further includes 750 nm to 1 mm and any one of the ranges. Or multiple bands.
  • the transparent base film is a PET base film having a thickness of 10 micrometers to 350 micrometers; and the enamel coating layer has a thickness of 5 micrometers to 100 micrometers.
  • the color display device adopts a light-emitting core based on a blue light-emitting chip.
  • a light source of the sheet the second predetermined wavelength range being selected from one or more of 500 nm to 560 nm and 610 nm to 660 nm.
  • the color enhancing coating is symmetrically coated on both sides of the transparent base film.
  • the first side of the transparent base film is coated with the color enhancement coating layer, and the second side of the transparent base film is coated with a light diffusion composite coating layer, and the light diffusion composite coating layer is coated.
  • the layer includes: light diffusing particles and a polymer resin; or
  • the first side of the transparent base film is coated with the color enhancement coating layer
  • the second side of the transparent base film is coated with a light diffusion composite coating layer
  • the light diffusion composite coating layer comprises: surface imprinted with disorder a microstructured polymer resin having a light diffusing function; or
  • the first side of the transparent base film is coated with the color enhancement coating layer
  • the second side of the transparent base film is coated with a color enhancement-light diffusion composite coating layer
  • the color enhancement-light diffusion composite coating layer comprises: Light wavelength conversion material, light diffusion particle and polymer resin; or
  • the first side of the transparent base film is coated with the color enhancement coating layer
  • the second side of the transparent base film is coated with a color enhancement-light diffusion composite coating layer
  • the color enhancement-light diffusion composite coating layer comprises: a light wavelength conversion material, a polymer resin having a light diffusion function embossed with a disordered microstructure; or
  • the first side of the transparent base film is coated with the color enhancement coating
  • the second side of the transparent base film is coated with a brightness enhancement coating
  • the brightness enhancement coating is made of a polymer resin with a brightening structure Constitute
  • the first side of the transparent base film is coated with the color enhancement coating layer, and the second side of the transparent base film is coated with a color enhancement-brightening composite coating layer, and the color enhancement-brightening composite coating layer is provided by the belt a light-wavelength converting material of a brightening structure and a polymer resin; or
  • the first side of the transparent base film is coated with the color enhancement coating
  • the second side of the transparent base film is coated with an eye protection coating
  • the eye protection coating is composed of one or more light absorbing materials And polymer resin;
  • the first side of the transparent base film is coated with the color enhancement coating layer
  • the second side of the transparent base film is coated with a color enhancement-eye protection composite coating layer
  • the color enhancement-eye protection composite coating layer is composed of one It is composed of one or more light absorbing materials, one or more light wavelength converting materials, and a polymer resin.
  • the optical wavelength conversion material is an organic molecular fluorescent dye, preferably Sulforhodamine 101, Rhodamine 101, HR101. More preferably, the color enhancement coating further comprises a white balance compensation material. The compensation band of the white balance compensation material and the target band of the light wavelength conversion material belong to different primary colors of the three primary colors of light, respectively.
  • the optical wavelength converting material is a mixture of one or more of Rhodamine and its derivatives, Phthalocyanine and its derivatives, Tetrazaporphyrine and its derivatives, Coumarin and its derivatives, preferably
  • the color enhancement coating further comprises a white balance compensation material.
  • the present invention provides a method of preparing a color enhancement film, the method comprising the steps of:
  • the light wavelength conversion material is capable of converting at least a portion of the light in the first predetermined wavelength range to light in the second predetermined wavelength range
  • the liquid matrix material comprises: an acrylate monomer, a prepolymer resin and a photoinitiator;
  • the base film is a PET base film having a thickness of from 10 micrometers to 350 micrometers; and the enamel coating layer has a thickness of from 5 micrometers to 50 micrometers.
  • the first predetermined wavelength range includes: 350-430 nm, 470 nm-500 nm, 560 nm-610 nm, 660 nm-750 nm, and any one or more of the above wavelength ranges.
  • the second predetermined wavelength range includes: 430 nm to 470 nm, 500 nm to 560 nm, 610 nm to 660 nm, and any one or more of the above wavelength ranges.
  • the second predetermined wavelength range further includes: 750 nm- 1mm and any one or more bands in the wavelength range.
  • the color enhancement film is used for a display device of a light emitting chip based on a blue light emitting chip, and the second predetermined wavelength range is selected from the group consisting of 500 nm to 560 nm and 610 nm. One or more bands in 660 nm.
  • the invention converts the light between the three bands of the red, green and blue light bands emitted by the light source into at least part of the three-base chromatography band, thereby increasing the purity of the illumination light and augmenting the color gamut.
  • the present invention is mainly used for a display device based on a three-primary color light-emitting device as a light source (especially a backlight source), and particularly for obtaining a three-primary light source by converting blue light based on a blue light-emitting device. display screen.
  • a light source especially a backlight source
  • the color enhancement film of the present invention to display devices of other illumination forms, as long as the display devices of other illumination forms do not contradict the principle of the augmented color gamut of the present invention, and other application forms are also included. It is included in the scope of the invention.
  • the color enhancement coating is further doped with a white balance compensation material
  • the “white balance compensation material” refers to the conversion of light in the three primary color gaps into three by using the optical wavelength conversion material of the present invention.
  • One or more of the primary colors change the ratio between the three primary colors, causing a white balance shift, and in order to return the white balance to the white curve, there is no conversion of the light source wavelength conversion material to the three primary colors. Enhance or enhance the weaker light to compensate (ie, increase the amount of light in the primary color).
  • the white balance compensation material compensates for a non-converted target optical band of the optical wavelength conversion material in the three primary colors, preferably, if the conversion target light of the optical wavelength conversion material belongs to green
  • the base or red base color compensates for the other of the green or red base colors.
  • the white balance compensation material by combining the light wavelength conversion material and the white balance compensation material, it is possible to achieve an increase in color gamut, a decrease in color temperature, and an improvement in conversion efficiency. If the conversion target light of the light wavelength conversion material belongs to the blue primary color, both the green primary color and the red primary color are compensated.
  • the target wavelength of the optical wavelength conversion material of the present invention is set in the range of the green primary color (500 nm to 560 nm) or the red primary color (610 nm to 660 nm), which we call the target primary color, and the white balance compensation
  • the compensation band of the material is set in the wavelength band of the non-target primary color in the green base color or the red base color.
  • the target wavelength of the optical wavelength conversion material of the present invention can also be set in the range of 750 nm to 1 mm. It is a function of improving the color gamut in order to convert the stray light of the non-red, green and blue primary colors of the low color gamut into invisible light.
  • the first predetermined wavelength range does not include its node wavelength
  • the second predetermined wavelength range includes its node wavelengths of 430 nm, 470 nm, 500 nm, 560 nm, 610 nm, 660 nm, and 750 nm.
  • the optical wavelength conversion material is an organic molecular fluorescent dye, which is a mixture of one or more of Sulforhodamine 101, Rhodamine 101, HR101, Phthalocyanine and its derivatives, Tetrazaporphyrine and its derivatives, Coumarin a mixture of one or more of its derivatives.
  • the light wavelength conversion material is a rare earth ion doped up-conversion crystal powder.
  • the polymer resin is an acrylate resin, a modified polyacrylate, a polyurethane, a modified polyurethane, an epoxy resin, a polycarbonate, a silicone resin, a silicone resin, an organosiloxane resin, a modified silicone resin.
  • the curing mode of the polymer resin is UV curing or heat curing.
  • the mass ratio of the optical wavelength conversion material to the polymer resin is from 1:10 to 1:10000.
  • the "polymer resin having a light-diffusing function whose surface is imprinted with a disordered microstructure" as referred to in the present invention means: on a layer of 5-100 ⁇ m thick and cured polymer resin coating, An irregular convex-concave structure with a characteristic dimension of 0.5 micron to 20 micron, continuous, confluent or partially covered with a coated surface. Such a structure scatters light in a random direction at a random position, thereby forming diffuse scattering of light, and functions as a so-called light diffusion.
  • the "polymer resin with brightening structure" referred to in the present invention means: on a layer of 10-100 micron thick and cured polymer resin coating, having a characteristic dimension of 10-50 microns
  • the prismatic structure, all such triangular prisms are parallel to each other and extend along a direction of the base film surface to the base film boundary.
  • the cross section of the triangular prism is an isosceles right triangle.
  • the display color gamut is greatly improved, and the contradiction between brightness and color gamut in the prior art is solved, that is, the solution with high color gamut has low brightness, and the solution with high brightness has low color gamut.
  • the function of diffusing, brightening, and protecting the eye of the single-color enamel function optical film is not increased or even reduced in the light source module.
  • the display color gamut is improved on the basis of the total number of the diaphragms and the total thickness, and the problem of increasing the color gamut in the prior art requires additionally changing the structure of the film group, greatly increasing the cost, and increasing the thickness and weight of the display.
  • Figure 1 is a schematic diagram of an NTSC color gamut
  • FIG. 2 is a schematic diagram of a direct-lit backlight module of an LCD display (with the addition of the color enhancement film of the present invention);
  • FIG. 3 is a schematic diagram of an edge-lit backlight module of an LCD display (with the addition of the color enhancement film of the present invention).
  • Figure 4 is a photograph of a color enhancement film prepared in Example 1 of the present invention.
  • FIG. 5 is a schematic view showing the basic structure of a color enhancement film in Embodiment 1 of the present invention.
  • FIG. 6 is an NTSC color gamut diagram of a color enhancement film in Embodiment 1 of the present invention.
  • Example 7 is a comparison diagram of white light spectrum before and after adding a color enhancement film in Example 1 of the present invention.
  • Figure 8 is a schematic view showing a color enhancement film having a double-sided coating in Example 2 of the present invention.
  • Figure 9 is a color enhancement film with a light diffusing coating
  • Figure 10 is a double-sided color enhancement film with a light diffusion coating
  • Figure 11 is a color enhancement film with a light-enhancing coating
  • Figure 12 is a double-sided color enhancement film with a light-enhancing coating
  • Figure 13 is a view showing an NTSC color gamut before and after adding a color enhancement film in Embodiment 4 of the present invention.
  • Figure 14 is a color enhancement film with an eye protection coating
  • Figure 15 is a double-sided color enhanced film with an eye protection coating.
  • the acrylate monomer comprises a monofunctional, difunctional and polyfunctional reactive monomer
  • the prepolymer resin comprises urethane acrylate, modified epoxy acrylate;
  • the photoinitiator is 1-hydroxy-cyclohexyl benzophenone or the like;
  • the auxiliary agent includes a combination of one or more of an antistatic agent, a leveling agent, and an antifoaming agent.
  • the above raw materials are uniformly mixed in a weight ratio, and the light wavelength conversion material is uniformly and discretely distributed in the coating material. Then, the obtained color-enhancing film layer raw material was uniformly coated on one side of the PET base film by coating.
  • the PET base film has a thickness of from 10 micrometers to 350 micrometers, and the enamel coating has a thickness of from 5 micrometers to 100 micrometers.
  • the above specific coating method is to apply a film of a color-increasing film layer on the optical glass to a film having a thickness of 10 to 200 ⁇ m by a coating film on an automatic film coating machine to which a clean optical glass is fixed, and the film thickness can be controlled by coating.
  • the height and speed of the film scraper are adjusted.
  • the color enhanced film layer was covered with a transparent PET base film, and then exposed and cured with an ultraviolet lamp.
  • the photoinitiator generates cations or free radicals to initiate acrylic acid under UV light.
  • the ester monomer is crosslinked with the prepolymer resin, solidified, and formed into a film.
  • the method has the advantages of fast curing, no use of organic solvent, low toxicity, simple production process and low cost.
  • the exposure curing time is from 1 to 200 seconds, preferably from 4 to 80 seconds.
  • acrylate monomers, prepolymer resins, photoinitiators and auxiliaries mentioned in the above methods are all substrates for carrying the light wavelength conversion material, and those skilled in the art should understand that the present invention also Other materials having similar functions can be used as the matrix.
  • FIG. 5 is a schematic view showing the structure of a color enhancement film according to Embodiment 1 of the present invention.
  • a layer of enamel coating is applied as described above, and the color enhanced coating includes a substrate 502 and a photoconverting material 503.
  • the thickness of the PET base film is 75 microns; the thickness of the enamel coating is 100 microns.
  • the light wavelength conversion material in the color enhancing coating is uniformly discretely distributed in the polymer resin for converting at least a portion of the light in the first predetermined wavelength range to light in the second predetermined wavelength range.
  • the mass ratio of the light wavelength conversion material to the polymer resin is from 1:10 to 1:10000.
  • the optical wavelength conversion material is an organic molecular fluorescent dye Sulforhodamine 101.
  • the absorption peak of Sulforhodamine 101 is in the wavelength range of 560-600 nm, and the emission peak is in the wavelength range of 610-660 nm.
  • the first predetermined wavelength range of light is at least partially absorbed, and this effect enhances the color purity of the three primary colors, thereby improving the color gamut.
  • the energy of the first predetermined wavelength range of light is at least partially converted into light of the second predetermined wavelength range (within the three primary color ranges), thereby reducing the loss of brightness.
  • the color gamut of the display can reach 85%.
  • Applying the color enhancement film of the invention in such a display can increase the display color gamut to 100% NTSC or above, as shown in FIG. 6, wherein it can be seen that the display color gamut processed by the color enhancement film of the present invention can be To achieve 100% NTSC, the color gamut coverage can be increased from 94% to 106% in terms of DCI-P3 color gamut standards.
  • the color enhancement film is inserted into the LCD backlight module, and the placement position is between the upper diffusion film and the brightness enhancement film. The contrast spectrum of the white light before and after the color enhancement film is placed is shown in FIG.
  • the 702 is the original display.
  • White light spectrum, 701 is the white light spectrum after placing the color enhancement film.
  • the gray area in the figure indicates 560 to 610 in the non-red, green and blue three primary color bands. Light in the nano-wavelength range is absorbed by Sulforhodamine 101 and converted into light in the 610 to 660 nm band.
  • the inventors of the present application have improved the embodiment 1.
  • the polymer resin and the optical wavelength conversion material used in this embodiment are similar to those of Embodiment 1, and will not be further described herein.
  • a enamel coating is applied to one side of the PET base film, and the coating has a certain shrinkage upon curing, and the specific shrinkage ratio depends on the raw materials and ratios selected for the coating.
  • the coating is cured and shrunk, a stress in the direction of the film is generated.
  • the stress is different from the stress in the film direction of the PET base film itself, the warpage of the film on the side of the stress is large. This warpage is more pronounced when the PET base film is thinner, mainly because the thinner PET is less stiff and difficult to resist.
  • a warpage-increasing color-increasing film is designed.
  • the color enhancement film in this embodiment includes a PET base film 801 and a first color enhancement coating layer and a second color enhancement coating layer, both of which are included in the first color enhancement coating layer and the second color enhancement coating layer.
  • Both sides of the PET base film are coated with a enamel coating having the same thickness or a small difference in thickness. Applying a enamel coating on both sides simultaneously balances the stress generated by the coating on both sides.
  • the inventors of the present application further improved the color enhancement film of Example 2.
  • each optical film has a certain thickness, and an additional optical film increases the thickness and weight. Therefore, the inventors wish to provide a function of augmenting the color gamut without increasing or decreasing the thickness of the optical film, which is more desirable.
  • a color-increasing film having a composite function is designed, which has the functions of enamel and light diffusion. Therefore, a diffusion film that must be used in the backlight module is directly replaced, thereby avoiding an additional increase in the number of optical films.
  • FIG. 9 shows an implementation of the composite color enhancement film of the present embodiment.
  • one side of the PET base film 901 is coated with a color enhancement coating, and the color enhancement coating layer comprises a matrix 902 and a light conversion material.
  • the other side is coated with the light diffusion coating 904, so as to avoid warping and increase the color enhancement and light diffusion functions, the optical expansion in this embodiment
  • the dispersion coating 904 adopts a polymer resin having a light diffusion function with a surface-imprinted disordered microstructure, which scatters light in a random direction at a random position, thereby forming diffuse scattering of light, so-called Light diffusion function.
  • FIG. 10 shows another implementation manner of the composite color enhancement film of the present embodiment.
  • one side of the PET base film 1001 is coated with a color enhancement coating, and the other side is coated with color enhancement and light diffusion.
  • the mixed coating 1004 includes a matrix 1002 and a light wavelength conversion material 1003 in the color enhancement coating layer, and the light wavelength conversion material 1003 is also included in the color enhancement and light diffusion hybrid coating 1004.
  • the composite coating can be understood as a light wavelength conversion material doped with a color enhancing coating in a light diffusion coating, and can also be understood as a composition of a light diffusion coating doped in the color enhancement coating.
  • the diffusing particles of the light diffusion coating are titanium dioxide.
  • the light diffusion coating can be completed by the surface microstructure: a layer of color-increasing coating material is coated on the PET film, and the structure is wheel imprinted to transfer the microstructure onto the coating. , after exposure to ultraviolet light, curing.
  • the method achieves the effects of color enhancement and light diffusion by the light conversion of the color-increasing coating and the treatment of the surface microstructure.
  • this embodiment performs another modification on the basis of Embodiment 2, and provides a composite color enhancement film which simultaneously has the functions of enamel and brightness enhancement.
  • FIG. 11 shows an implementation of the composite color enhancement film of the present embodiment.
  • one side of the PET base film 1101 is coated with a color enhancement coating, and the color enhancement coating includes a matrix 1102 and a wavelength conversion of light.
  • the material 1103 is coated on the other side with a prismatic coating 1104 having a brightness enhancing function to avoid warping while increasing color enhancement and brightness enhancement.
  • the prismatic structure coating 1104 has a triangular prism structure with a characteristic dimension of 10-50 microns, all of which are parallel to each other and extend along a direction of the base film surface to the base film boundary.
  • the cross section of the triangular prism is an isosceles right triangle.
  • FIG. 12 shows another implementation of the composite color enhancement film of the present embodiment.
  • one side of the PET base film 1201 is coated with a color enhancement coating, and the other side is coated with color enhancement and brightening.
  • the mixed coating 1204 includes a matrix 1202 and a light wavelength conversion material 1203 in the color enhancement coating.
  • the composite coating can be understood as a doping of a light wavelength conversion material in a prismatic coating having a brightness enhancement function, and can also be understood as forming a prism structure having a brightness enhancement function in a color enhancement coating.
  • the prism structure is prepared by coating the coating material on the PET base film, rolling the mold with a fine structure on the surface, engraving the prism structure, and performing ultraviolet exposure and curing.
  • the prism structure on the color enhancement film can be The light emitted from the diffusion film and diffused at various angles converges to the axial angle to increase the axial brightness.
  • a brightness enhancement film of a horizontal or vertical direction may be replaced with another brightness enhancement film perpendicular to the prism structure thereof. Maximizes brightness.
  • a color-increasing film with a light-increasing function is inserted into the LCD backlight module, and the specific placement position is between the upper diffusion film and the brightness enhancement film.
  • the NTSC color gamut pattern before and after the placement is shown in FIG. 13, and the inner triangle is the initial color gamut. It is 85% NTSC; the outer triangle is the color gamut after using the color enhancement film, which is 100% NTSC.
  • the color gamut coverage can be increased from 94% to about 106%.
  • the color gamut of the color display has a significant increase, indicating that the composite optical material of the present invention can turn a common color gamut color display into a high color gamut high value-added color display.
  • the present invention is mainly applied to a display device based on a blue light-emitting device, considering that blue light has high single-photon energy, it is highly irritating to the human eye, especially blue-violet light in the wavelength range of 370 nm to 430 nm, which is the main cause of human eye fatigue. . Eliminating the blue-violet light of 350nm-430nm can protect the eyesight and reduce the effect of visual fatigue.
  • the embodiment provides a color-increasing film having a composite function, and has the functions of both enamel and eye protection. This avoids the addition of an optical film with eye protection to avoid an additional increase in the number of optical films.
  • the present embodiment provides a composite color enhancement film of two structures having both enamel and eye protection functions.
  • FIG. 14 shows an implementation manner of the composite color enhancement film of the embodiment. In this implementation manner,
  • the color enhancement coating layer comprises a matrix 1402 and a light wavelength conversion material 1403, and the eye protection coating comprises: a matrix and light absorption or light.
  • the conversion material 1405, 1405 can be Coumarin 6. This avoids warping and increases color and eye protection.
  • FIG. 15 shows another implementation manner of the composite color enhancement film of the present embodiment.
  • both sides of the PET base film 1501 are coated with a color-increasing eye-protecting mixed coating, color mixing and eye-protecting mixing.
  • the coating includes a substrate 1502, a light wavelength converting material 1503, a light absorbing or light wavelength converting material 1504.
  • the composite coating can be understood as a light wavelength conversion material which is doped with a color-enhancing coating in an eye protection coating, and can also be understood as a component which is doped with an eye protection coating in a color-increasing coating.
  • the light wavelength conversion material used in the eye protection coating in this embodiment is Coumarin 6, the effective absorption wavelength is 440 nm, the absorption range is narrow, mainly between 400-460 nm, and the blue light can be effectively absorbed, thereby protecting the human eye and reducing The effect of visual fatigue. At the same time, Courmarin 6 converts the absorbed photon fraction to 510-540nm. Green light base light.
  • the optical wavelength conversion material used in the polymer resin and the color enhancement coating layer used in this embodiment is similar to that of Embodiment 1, and will not be described herein.
  • the composite function color-increasing film in the embodiment is placed in the backlight module of the LCD display, which can reduce the blue component and improve the purity of the red and green light, so the composite functional film can simultaneously achieve eye protection and increase The effect of color.

Abstract

一种用于彩色显示设备的増彩膜及其制备方法。増彩膜包括透明基膜(801)和涂布在透明基膜(801)上的增彩涂层,増彩涂层内离散地分布有光波长转化材料(803)。光波长转换材料(803)可将第一预定波长范围内的光中的至少部分转化为第二预定波长范围内的光,来提升显示器背光源中红、绿、蓝三基色的色彩纯度,从而增广显示色域,增加显示器的色彩真实度。该增彩膜可与显示器发光模组中的功能性光学膜功能复合,包括光扩散功能、增亮功能和护眼功能。还提供了增彩膜的制备方法。

Description

一种用于彩色显示设备的増彩膜及其制备方法
相关申请
本申请主张于2016年7月12日提交的、名称为“一种用于彩色显示设备的増彩膜及其制备方法”的中国发明专利申请:201610544078.9的优先权,以及于2016年5月24日提交的、名称为“一种用于增广色域的复合光学材料及其制备方法与应用”的中国发明专利申请:201610347549.7的优先权。
技术领域
本发明涉及彩色显示领域,具体涉及一种用于改善彩色显示设备色彩表现能力、提高色域的增彩膜。
背景技术
平板显示技术兴起于二十世纪六十年代以后,经过四十多年的发展尤其是近年来,随着电视、移动电脑、平板、智能手机等显示器的广泛应用,平板显示产业规模急剧增大,与大规模集成电路产业和软件产业一起成为信息产业中的三大支柱产业。
在平板显示器市场中,液晶显示器(Liquid Crystal Display,LCD)占据着主导地位,它具有低能耗、使用寿命长、节省空间等优点。同时,基于有机发光二极管(Organic Light Emitting Display,OLED)的显示技术也已经出现,OLED是以有机薄膜作为发光体的自发光显示器,相对于LCD有更高的明暗对比度。但是其有机发光染料在聚集状态下发光峰较宽,色彩纯度不足,且寿命较短。尤其在17寸或以上的中大尺寸OLED显示器,成品率低,成本高,市场占有率远低于1%。
彩色平板显示器作为彩色图像的输出设备,其再现色彩的能力——色域是一项重要的性能指标。国际照明委员会(CIE)为了量化色彩视觉,制定了CIE色彩空间,其中使用最广泛的为CIE 1931 xy色度图。NTSC基于1931 xy色度图制定了关于彩色电视的色域标准,NTSC色域图为如图1中所示的外三角形,外三角形所围成的面积为100%NTSC色域。从LCD显示器中发出的红、绿、蓝三基色光经过光谱测量和数学分析得到光谱三基色的刺激值,在CIE 1931 xy色度图中量化得到对应色彩色坐标,通过色坐标计算得出相应色域。不同的显示器输出的红、绿、蓝三基色在CIE 1931 xy色度图中色坐标位置不同,所围成的三角形面积就不同,红、绿、蓝三基色 越接近纯色,对应色坐标在CIE 1931 xy色度图中越靠近基线边缘,其所围成的三角形面积越大,即显示器所能表现的色彩范围越大,色域就越高。
LCD的显示色域由背光模组中背光源基色纯度、液晶模组中的彩色滤光片色纯度共同决定。背光模组是LCD面板的主要组件之一,它为液晶面板提供充足的亮度与分布均匀的白色光源,这些通过背光光源与光学模组共同实现。
目前广泛使用的LCD膜层结构如图2和图3。背光模组按光源分布的位置分为直下式和侧光式。侧光式是将点状光源设置在经过特殊设计的导光板侧边;直下式不需要导光板,LED阵列置于灯箱底部。无论是直下式还是侧光式背光模组中,模组的顶部都设有光学膜层来给液晶面板提供亮度、均匀度等符合要求的背光,常见的直下式和侧光式模组结构如图2和图3所示。直下式背光的优点是高辉度、出光角度好、结构简单,并可实现各个区域亮度的动态调控,但由于直下式是利用空间距离混光,LED光源与光学模组之间需预留一定的空间,故直下式背光模组的厚度较厚且存在散热的问题;而侧光式的优点在于可以打造轻薄的显示器机身,成本也更低,但是在应用到大尺寸LCD显示器上时,存在画面均匀性不佳、无法实现区域控制的问题。随着LCD模组不断向更亮、更轻、更薄的方向发展,侧光式成为发展的主流。
背光模组的光学膜层包括扩散膜、增亮膜(棱镜片)、反射式偏光片等,依据模组的应用范围和产品档次的不同,光学膜层的配置也有所不同。背光模组中,反射板将光进行镜面反射,提高光的使用率;导光板将点光源或线光源转换为面光源;扩散板起拓宽视角,隐蔽导光板网点的作用;两张相互垂直的棱镜片将扩散的光在一定角度内聚光,提高轴向亮度。
自2011年开始至2016年,乃至不远的将来,占显示器主导地位的LED-LCD显示器,其背光模组都是以一组发光二极管(Light-Emitting Diode,LED)作为白光光源,白光光源的光强度和光谱分布直接影响到液晶显示器的视觉效果。目前常用的白光光源是通过蓝光LED芯片(波长445-460nm)来激发黄色YAG:Ce3+荧光粉(发光峰波长580nm)实现白光,这种白光由于缺乏红光成分而表现出较低的显色指数,加上所搭配的彩色滤光片混色效果较差,导致透过面板形成的白光色域较窄,一般为65%-75%NTSC。另一种用得较多的高色域白光光源是通过蓝光LED芯片(波长445-460nm)激发红色KSF荧光粉(发光峰波长630nm)搭配绿色β-SiAlON荧光粉(发光峰波长530nm)实现白光,这种方式可将白光色域提高到85%NTSC左右。
目前,消费者越来越追求更加真实的视觉体验,而LCD显示器85%NTSC左右的显示色域已远远满足不了消费者对色彩真实性的需求。如何提高LCD显示器的色彩表现能力,即提高显示器的色域是当前研究的一个热点。通过以上对LCD色域的分析可知,提高色域可通过优化背光光源和滤色膜的输出色彩纯度来实现更加宽广的色彩覆盖能力,其本质是拓展显示器输出色彩的范围。主要思路是背光形成的白光越纯越好,而液晶滤色膜如何实现更加纯正的三原色效果一直是优化的主要方向。目前,有研究采用三基色LED作为背光源,其理论值色域可达到115%NTSC,但这种背光成本非常高,且电路控制复杂程度大大提高,难以推广开来,而液晶滤色膜方面,如今已经没有太大的改进空间了。
发明内容
针对上述问题,本发明另辟蹊径,通过在发光模组,尤其是背光模组中增加一层5-100微米的增彩涂层,将第一预定波长范围内的光转换为第二预定波长范围内的光,使发光模组红、绿、蓝三基色发光光谱半峰宽变窄,进而在液晶彩色滤光片中有更好的穿透吸收,经过滤光片后的三基色就更接近纯色,使显示器达到更高的色域。
具体而言,本发明提供一种应用在彩色显示设备中的,能使显示色域增广的增彩膜。
更具体而言,一方面,本发明提供一种用于彩色显示设备的増彩膜,其特征在于:所述增彩膜包括:透明基膜、涂布在所述透明基膜上的增彩涂层,所述増彩涂层内离散地分布有光波长转化材料,用于将第一预定波长范围内的光中的至少部分转化为第二预定波长范围内的光。
在一种优选实现方式中,所述第一预定波长范围包括:0-430nm、470nm-500nm、560nm-610nm、660nm-750nm以及上述波长范围内的任意一个或多个波段;所述第二预定波长范围包括:430nm-470nm、500nm-560nm、610nm-660nm及上述波长范围内的任意一个或多个波段,优选地,所述第二预定波长范围还包括750nm-1mm及该范围内的任意一个或多个波段。
在另一种优选实现方式中,所述透明基膜为PET基膜,所述PET基膜的厚度为10微米至350微米;所述増彩涂层的厚度为5微米至100微米。
在另一种优选实现方式中,所述彩色显示设备采用以蓝色发光芯片为基础发光芯 片的光源,所述第二预定波长范围选自500nm-560nm、610nm-660nm中的一个或多个波段。
在另一种优选实现方式中,所述增彩涂层对称地涂布在所述透明基膜的两侧。
在另一种优选实现方式中,所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布光扩散复合涂层,所述光扩散复合涂层包括:光扩散粒子和聚合物树脂;或者
所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布光扩散复合涂层,所述光扩散复合涂层包括:表面压印有无序微结构的有光扩散功能的聚合物树脂;或者
所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-光扩散复合涂层,所述增彩-光扩散复合涂层包括:光波长转化材料、光扩散粒子和聚合物树脂;或者
所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-光扩散复合涂层,所述增彩-光扩散复合涂层包括:光波长转化材料、表面压印有无序微结构的有光扩散功能的聚合物树脂;或者
所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布有增亮涂层,所述增亮涂层由带增亮结构的聚合物树脂构成;或者
所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-增亮复合涂层,所述增彩-增亮复合涂层由带增亮结构的光波长转换材料和聚合物树脂构成;或者
所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布有护眼涂层,所述护眼涂层由一种或多种光吸收材料和聚合物树脂构成;或者
所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-护眼复合涂层,所述增彩-护眼复合涂层由一种或多种光吸收材料、一种或多种光波长转换材料以及聚合物树脂构成。
在另一种优选实现方式中,所述光波长转化材料为有机分子荧光染料,优选为Sulforhodamine101、Rhodamine101、HR101,更优选地,所述增彩涂层中还包含有白平衡补偿材料,所述白平衡补偿材料的补偿波段与所述光波长转化材料的目标波段分别属于三基色光中的不同基色。
在另一种实现方式中,所述光波长转化材料为Rhodamine及其衍生物、Phthalocyanine及其衍生物、Tetrazaporphyrine及其衍生物、Coumarin及其衍生物中的一种或多种的混合物,优选地,所述增彩涂层中还包含有白平衡补偿材料。
另一方面,本发明提供一种制备增彩膜的方法,其特征在于,所述方法包括下述步骤:
(1)准备基膜、液态基质材料和光波长转化材料;
(2)将所述光波长转化材料按预定比例加入到所述液态基质材料中,制成增彩涂料;
(3)将所述增彩涂料涂布在所述基膜的一侧或两侧;
(4)对所涂布的增彩涂层进行固化,
所述光波长转化材料能够将第一预定波长范围内的光中的至少部分转化为第二预定波长范围内的光,
优选地,所述液态基质材料中包括:丙烯酸酯类单体、预聚物树脂和光引发剂;
更优选地,所述基膜为PET基膜,所述PET基膜的厚度为10微米至350微米;所述増彩涂层的厚度为5微米至50微米。
在另一种优选实现方式中,在所述方法中,所述第一预定波长范围包括:350-430nm、470nm-500nm、560nm-610nm、660nm-750nm以及上述波长范围内的任意一个或多个波段;所述第二预定波长范围包括:430nm-470nm、500nm-560nm、610nm-660nm及上述波长范围内的任意一个或多个波段,优选地,所述第二预定波长范围还包括:750nm-1mm及该波长范围内的任意一个或多个波段.
在另一种优选实现方式中,在所述方法中,所述增彩膜用于以蓝色发光芯片为基础发光芯片的显示设备,所述第二预定波长范围选自500nm-560nm和610nm-660nm中的一个或多个波段。
本发明将光源所发出的红、绿、蓝三基色光带隙间的光至少部分转化到三基色谱带中,进而增加了照明光的纯度,增广色域。
需要说明的是,本发明主要是用于基于三基色发光器件作为光源(尤其是背光光源)的显示设备,尤其是用于以蓝光发光器件为基础,通过对蓝光的转化获得三基色光光源的显示设备。当然,不排除将本发明的增彩膜应用于其它照明形式的显示设备,只要其他照明形式的显示设备与本发明增广色域的原理不相违背,其它应用形式也包 含在本发明的范围内。
优选地,所述增彩涂层中还掺杂白平衡补偿材料,所述的“白平衡补偿材料”指的是由于采用本发明的光波长转化材料将三基色间隙中的光转化成了三基色光中的一种或多种,改变了三基色光之间的比例,造成白平衡偏移,为了使白平衡返回到白色曲线上而对三基色光中没有因光波长转化材料的转化而增强或增强较弱的光进行补偿(即,增加该基色光的含量)。
在本发明的一种优选实现方式中,所述白平衡补偿材料对三基色光中的光波长转化材料的非转化目标光波段进行补偿,优选地,如果光波长转化材料的转化目标光属于绿基色或红基色,则对绿基色或红基色中的另一个进行补偿。在这种情况下,通过光波长转化材料以及白平衡补偿材料二者的配合,即可以实现提高色域、降低色温并且提高转化效率,一举三得。如果光波长转化材料的转化目标光属于蓝基色,则对绿基色和红基色二者进行补偿。
因此,优选地,本发明的光波长转化材料的目标波长设定在绿基色(500nm-560nm)或者红基色(610nm-660nm)波段范围内,我们将该基色称为目标基色,而白平衡补偿材料的补偿波段设定在绿基色或者红基色中非目标基色所在波段中,这样,在光源发光强度不变的情况下,能够既保证光效,又降低色温,同时可以增广色域。
本发明的光波长转化材料的目标波长亦可设定在750nm-1mm范围内。是为将拉低色域的非红、绿、蓝基色的杂光转化为不可见光,同样具有提高色域的功能。
需要说明的是,所述第一预定波长范围不包含其节点波长,而所述第二预定波长范围包含其节点波长430nm、470nm、500nm、560nm、610nm、660nm、750nm。
优选地,所述光波长转化材料为有机分子荧光染料,所述有机分子荧光染料为Sulforhodamine101、Rhodamine101、HR101、Phthalocyanine及其衍生物、Tetrazaporphyrine及其衍生物中的一种或多种的混合物、Coumarin及其衍生物中的一种或多种的混合物。
优选地,所述光波长转化材料为稀土离子掺杂的上转换晶体粉末。
所述聚合物树脂为丙烯酸酯类树脂、改性聚丙烯酸酯、聚氨酯、改性聚氨酯、环氧树脂、聚碳酸酯、硅树脂、硅氧树脂、有机硅氧烷类树脂、改性有机硅树脂、聚丙烯、聚乙烯、聚氯乙烯以及聚苯乙烯中的一种、或两种、或两种以上的叠加或组合。 聚合物树脂的固化方式为UV固化或热固化。
所述光波长转化材料与聚合物树脂的质量比为1:10至1:10000。
本发明所提到的“表面压印有无序微结构的有光扩散功能的聚合物树脂”指的是:在一层5-100微米厚,并已固化的聚合物树脂涂层上,有特征尺度为0.5微米至20微米的,连续的,铺满或部分铺满涂层表面的不规则凸凹结构。这种结构会在随机的位置,向随机的方向散射光,从而形成光的漫散射,起到所谓的光扩散功能。
本发明所提到的“带增亮结构的聚合物树脂”指的是:在一层10-100微米厚,并已固化的聚合物树脂涂层上,有特征尺度为10-50微米的三棱柱结构,所有这种三棱柱相互平行,沿着基膜表面的某一方向延伸至基膜边界。这种三棱柱的横切面为等腰直角三角形。
本发明的增彩膜具有如下优点:
在亮度损失低的前提下,大幅提高显示色域,解决现有技术中亮度和色域的矛盾,即色域高的解决方案亮度低,亮度高的解决方案色域低。
对于优选实现方式中的技术方案而言,还具有额外的优点,即:将单张増彩功能光学薄膜复合光扩散、增亮、护眼等功能,在不增加,甚至降低光源模组中光学膜片总数量和总厚度的基础上提高显示色域,解决现有技术中提高色域而需另外改变膜组结构,大幅增加成本,增加显示器厚度和重量的难题。
附图说明
图1为NTSC色域示意图;
图2是LCD显示器直下式背光模组示意图(添加了本发明的增彩膜);
图3是LCD显示器侧光式背光模组示意图(添加了本发明的增彩膜);
图4为本发明实施例1所制备的增彩膜的照片;
图5为本发明实施例1中的增彩膜基本结构示意图;
图6为本发明实施例1中的增彩膜的NTSC色域图;
图7为本发明实施例1中加入增彩膜前后白光光谱对照图;
图8为本发明实施例2中的具有双面涂层的增彩膜的示意图;
图9为带光扩散涂层的增彩膜;
图10为带光扩散涂层的双面增彩膜;
图11为带光增亮涂层的增彩膜;
图12为带光增亮涂层的双面增彩膜;
图13本发明实施例4中加入增彩膜前后的NTSC色域图;
图14为带护眼涂层的增彩膜;
图15为带护眼涂层的双面增彩膜。
具体实施方式
下面通过实施例对本发明的具体实施方式作进一步的详细说明,但并不因此将本发明的保护范围限制在实施例描述的范围之中。
在对具体实施例进行具体描述之前,首先介绍一下本发明的增彩膜的制备方法。
首先准备増彩涂层涂料,増彩涂层的涂料由下述重量份数的原料均匀混合而成:
Figure PCTCN2016105760-appb-000001
其中,丙烯酸酯类单体包括单官能基、双官能基和多官能基反应单体;
其中,预聚物树脂包括聚氨酯丙烯酸酯、改性环氧丙烯酸酯;
其中,光引发剂为1-羟基-环己基苯酮等;
其中,助剂包括抗静电剂、流平剂和消泡剂中的一种或多种的组合。
将上述原料按重量份配比混合均匀,使光波长转换材料均匀离散地分布在涂料内。然后将得到的增彩膜层原料通过涂布的方式,厚度均匀地设置在PET基膜的一侧。PET基膜的厚度为10微米至350微米,増彩涂层的厚度为5微米至100微米。
上述具体的涂布方法是在固定有干净光学玻璃的自动涂膜机上,通过涂膜刮刀将增彩膜层原料在光学玻璃上刮成厚度为10-200微米的薄膜,膜厚可通过控制涂膜刮刀的高度及速度来调节。在刮好湿膜后,用透明PET基膜去覆盖增彩膜层,然后用紫外灯进行曝光固化。在UV光的照射下,光引发剂产生阳离子或者自由基引发丙烯酸 酯类单体与预聚物树脂交联、固化、成膜。该方法有固化快、不使用有机溶剂、毒性低、生产工艺简单、成本较低的优势。曝光固化时间为1-200秒,优选为4-80秒。待到增彩膜层完全固化后,将PET基膜随同吸光膜层薄膜从玻璃基板上取下,并按所需尺寸进行切割,得到如图4所示的增彩膜。
需要说明的是上面方法中所提到的丙烯酸酯类单体、预聚物树脂、光引发剂和助剂均是用于承载光波长转化材料的基质,本领域技术人员应该理解,本发明还可以采用其他具有类似功能的材料作为基质。
实施例1:图5示出了本发明实施例1的增彩膜结构示意图。在PET基膜的一侧,按上述方法涂布一层増彩涂层,增彩涂层包括基质502和光转化材料503。
在本实施例中,PET基膜的厚度为75微米;増彩涂层的厚度为100微米。增彩涂层中的光波长转化材料均匀离散分布在聚合物树脂中,用于将第一预定波长范围内的光中的至少部分转化为第二预定波长范围内的光。光波长转化材料与聚合物树脂的质量比为1:10至1:10000。
在本实施例中,光波长转化材料采用有机分子荧光染料Sulforhodamine101。Sulforhodamine101的吸收峰在560-600nm波长范围内,发射峰在610-660nm波长范围内。
LCD背光模组中的LED光源发出的白色光通过増彩膜后,所述的第一预定波长范围的光被至少部分吸收,这个效果提升了三基色色彩纯度,使得色域提高。与此同时,第一预定波长范围光的能量被至少部分的转化为第二预定波长范围(三基色范围内)的光,从而降低了亮度的损失。
目前,使用搭载有KSF红色荧光粉和β-SiAlON绿色荧光粉的白光LED,显示器的色域可达到85%。在这种显示器中应用本发明的增彩膜,可将显示色域提升到100%NTSC或以上,如图6所示,其中可以看出经本发明的增彩膜处理后的显示色域可以达到100%NTSC,以DCI-P3色域标准来看,其色域覆盖率可从94%提升至106%左右。具体而言,将该增彩膜插入到LCD背光模组中,放置位置为上扩散膜与增亮膜之间,增彩膜放置前后的白光光谱对比图如图7所示,702为原显示器的白光光谱,701为放置增彩膜后的白光光谱,图中灰色区域表明在非红绿蓝三基色波段的560至610 纳米波长区间内的光被Sulforhodamine101吸收,并转化成610至660纳米波段的光。
实施例2
在本实施例中,本申请的发明人对实施例1进行了改进。本实施例中的所用的聚合物树脂和光波长转换材料与实施例1类似,在此不再进行赘述。
具体而言,发明人注意到在PET基膜的一侧涂覆増彩涂层,涂层在固化时会有一定的收缩,具体收缩比例取决于涂料所选用的原材料和配比。在涂层固化收缩时会产生延薄膜方向的应力,当这种应力与PET基膜本身沿薄膜方向的应力差别较大时,薄膜整体会发生向应力较大一侧的翘曲。这种翘曲在PET基膜较薄时会比较明显,主要因为较薄的PET挺括性较低,难以抵抗这种应力差。
为解决这个翘曲问题,在本实施例中,设计了一种防翘曲的增彩膜。
如图8所示,本实施例中的增彩膜包括PET基膜801以及第一增彩涂层和第二增彩涂层,第一增彩涂层和第二增彩涂层中均包含基质802和光波长转化材料803。PET基膜的两侧,涂布有厚度相等或厚度差别较小的増彩涂层。在两侧同时涂覆増彩涂层,可以平衡两侧涂层所产生的应力。
实施例3
在本实施例中,本申请的发明人对实施例2的增彩膜进行了进一步改进。
具体而言,发明人考虑到在实际的背光模组中,每张光学膜都有一定的厚度,额外增加一张光学膜会带来厚度、重量的增加。因此,发明人希望在不增加或少增加光学膜厚度的前提下,提供增广色域的功能,则更为理想。
目前,在液晶显示器中有一张必须使用的光学膜或涂层,即光扩散膜或涂层。为了不增加背光中光学膜的数量,本实施例中,设计了一种具有复合功能的增彩膜,同时兼具増彩和光扩散的功能。从而直接替代掉背光模组中必须使用的一张扩散膜,避免额外增加光学膜的数量。
图9所示为本实施例的复合增彩膜的一种实现方式,在该实现方式中,PET基膜901的一侧涂覆增彩涂层,增彩涂层中包含基质902和光转化材料903,另一侧涂覆光扩散涂层904,这样避免翘曲的同时,增加增彩和光扩散功能,本实施例中的光扩 散涂层904采用表面压印有无序微结构的有光扩散功能的聚合物树脂,这种结构会在随机的位置,向随机的方向散射光,从而形成光的漫散射,起到所谓的光扩散功能。
图10所示为本实施例的复合增彩膜的另一种实现方式,在该实现方式中,PET基膜1001的一侧涂覆增彩涂层,另一侧涂覆增彩、光扩散混合涂层1004,增彩涂层中包含基质1002和光波长转化材料1003,增彩、光扩散混合涂层1004中也包含光波长转化材料1003。该复合涂层可以理解为在光扩散涂层中掺杂增彩涂层的光波长转化材料,也可以理解为在增彩涂层中掺杂光扩散涂层的成分。
其中光扩散涂层的扩散粒子为二氧化钛。另外,光扩散涂层可通过表面微结构的制作来完成:在PET膜上涂布一层增彩涂层原料,经刻有微结构的结构轮压印,将微结构转印到涂层上,再经过紫外光曝光、固化。该方法通过增彩涂层的光转换和表面微结构的处理,同时达到增彩和光扩散的效果。
实施例4
类似于实施例3,本实施例在实施例2的基础上进行另一种改进,提供一种同时兼具増彩和增亮的功能的复合增彩膜。
图11所示为本实施例的复合增彩膜的一种实现方式,在该实现方式中,PET基膜1101的一侧涂覆增彩涂层,增彩涂层中包含基质1102和光波长转化材料1103,另一侧涂覆具有增亮功能的棱镜结构涂层1104,这样避免翘曲的同时,增加增彩和增亮功能。棱镜结构涂层1104上有特征尺度为10-50微米的三棱柱结构,所有这种三棱柱相互平行,沿着基膜表面的某一方向延伸至基膜边界。这种三棱柱的横切面为等腰直角三角形。
图12所示为本实施例的复合增彩膜的另一种实现方式,在该实现方式中,PET基膜1201的一侧涂覆增彩涂层,另一侧涂覆增彩、增亮混合涂层1204,增彩涂层中包含基质1202和光波长转化材料1203。该复合涂层可以理解为在具有增亮功能的棱镜结构涂层中掺杂光波长转化材料,也可以理解为在增彩涂层中形成具有增亮功能的棱镜结构。
其中棱镜结构的制作方式为:将涂层原料涂布在PET基膜上,经表面刻有细微结构的模具滚压,刻出棱镜结构,再进行紫外曝光、固化。增彩膜上的棱镜结构可以将 从扩散膜射出的向各个角度发散的光汇聚到轴向角度上,提高轴向亮度。
将该实施例中带增亮功能的增彩膜应用到背光模组中时,可代替一层水平或垂直方向的增亮膜,和另一层与其棱镜结构相互垂直的增亮膜搭配使用,可最大限度地提高亮度。LCD背光模组中插入带光增亮功能的增彩膜,具体放置位置为上扩散膜与增亮膜之间,放置前后的NTSC色域图如图13所示,内三角形是初始色域,为85%NTSC;外三角形是使用增彩膜之后的色域,为100%NTSC,以DCI-P3色域标准来看,其色域覆盖率可从94%提升至106%左右。彩色显示器的色域有明显增广,说明本发明的复合光学材料可以将一台普通色域彩色显示器变成一台高色域高附加值彩色显示器。
实施例5
由于本发明主要应用于采用基于蓝光发光器件的显示设备,考虑到蓝光由于单光子能量高,对人眼刺激较大,尤其是370nm-430nm波长范围的蓝紫光,是人眼视疲劳的主要诱因。消除350nm-430nm的蓝紫光可起到保护人眼视力,降低视疲劳的效果。
因此,本实施例提供一种具有复合功能的增彩膜,同时兼具増彩和护眼的功能。从而避免额外增加一张具有护眼功能的光学膜,避免额外增加光学膜的数量。
类似于实施例3、实施例4,本实施例提供同时兼具増彩和护眼功能的两种结构的复合增彩膜。
图14所示为本实施例的复合增彩膜的一种实现方式,在该实现方式中,
PET基膜1401的一侧涂覆增彩涂层,另一侧涂覆护眼涂层1404,增彩涂层中包含基质1402和光波长转化材料1403,护眼涂层包括:基质和光吸收或光转化材料1405,1405可以是Coumarin 6。这样避免翘曲的同时,增加增彩和护眼功能。
图15所示为本实施例的复合增彩膜的另一种实现方式,在该实现方式中,PET基膜1501的两侧均涂覆增彩护眼混合涂层,增彩、护眼混合涂层包括基质1502,光波长转化材料1503,光吸收或光波长转化材料1504。该复合涂层可以理解为在护眼涂层中掺杂增彩涂层的光波长转换材料,也可以理解为在增彩涂层中掺杂护眼涂层的成分。
本实施例中护眼涂层所使用的光波长转换材料为Coumarin 6,其有效吸收波长为440nm,吸收范围狭窄,主要在400-460nm之间,可以有效吸收蓝光,起到保护人眼、降低视疲劳的效果。于此同时,Courmarin 6可将吸收的光子部分转化为510-540nm 的绿光基色光。本实施例中的所用的聚合物树脂和增彩涂层中的光波长转换材料与实施例1类似,在此不再进行赘述。
将该实施例中的复合功能增彩膜放置在LCD显示器背光模组中,既可降低蓝光成分,同时红光和绿光基色光的纯度提高,故该复合功能膜可同时达到护眼和增彩的效果。
虽然上面结合本发明的优选实施例对本发明的原理进行了详细的描述,本领域技术人员应该理解,上述实施例仅仅是对本发明的示意性实现方式的解释,并非对本发明包含范围的限定。实施例中的细节并不构成对本发明范围的限制,在不背离本发明的精神和范围的情况下,任何基于本发明技术方案的等效变换、简单替换等显而易见的改变,均落在本发明保护范围之内。

Claims (10)

  1. 一种用于彩色显示设备的増彩膜,其特征在于:所述增彩膜包括:透明基膜、涂布在所述透明基膜上的增彩涂层,所述増彩涂层内离散地分布有光波长转化材料,用于将第一预定波长范围内的光中的至少部分转化为第二预定波长范围内的光。
  2. 根据权利要求1所述的用于彩色显示设备的増彩膜,其特征在于,所述第一预定波长范围包括:0-430nm、470nm-500nm、560nm-610nm、660nm-750nm以及上述波长范围内的任意一个或多个波段;所述第二预定波长范围包括:430nm-470nm、500nm-560nm、610nm-660nm及上述波长范围内的任意一个或多个波段,优选地,所述第二预定波长范围还包括750nm-1mm及该范围内的任意一个或多个波段。
  3. 根据权利要求1或2所述的用于彩色显示设备的増彩膜,其特征在于,所述透明基膜为PET基膜,所述PET基膜的厚度为10微米至350微米;所述増彩涂层的厚度为5微米至100微米。
  4. 根据权利要求2所述的用于彩色显示设备的増彩膜,其特征在于,所述彩色显示设备采用以蓝色发光芯片为基础发光芯片的光源,所述第二预定波长范围选自500nm-560nm、610nm-660nm中的一个或多个波段。
  5. 根据权利要求1或2所述的用于彩色显示设备的増彩膜,其特征在于,所述增彩涂层对称地涂布在所述透明基膜的两侧。
  6. 根据权利要求1或2所述的用于彩色显示设备的増彩膜,其特征在于:
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布光扩散复合涂层,所述光扩散复合涂层包括:光扩散粒子和聚合物树脂;或者
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布光扩散复合涂层,所述光扩散复合涂层包括:表面压印有无序微结构的有光扩散功能的聚合物树脂;或者
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-光扩散复合涂层,所述增彩-光扩散复合涂层包括:光波长转化材料、光扩散粒子和聚合物树脂;或者
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-光扩散复合涂层,所述增彩-光扩散复合涂层包括:光波长转化材料、表面压印有无序 微结构的有光扩散功能的聚合物树脂;或者
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布有增亮涂层,所述增亮涂层由带增亮结构的聚合物树脂构成;或者
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-增亮复合涂层,所述增彩-增亮复合涂层由带增亮结构的光波长转换材料和聚合物树脂构成;或者
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布有护眼涂层,所述护眼涂层由一种或多种光吸收材料和聚合物树脂构成。
    所述透明基膜的第一侧涂布所述增彩涂层,所述透明基膜的第二侧涂布增彩-护眼复合涂层,所述增彩-护眼复合涂层由一种或多种光吸收材料、一种或多种光波长转换材料以及聚合物树脂构成。
  7. 根据权利要求1或2所述的用于彩色显示设备的増彩膜,其特征在于,所述光波长转化材料为有机分子荧光染料,优选为Sulforhodamine101、Rhodamine101、HR101、Coumarin6中的一种或多种的混合物,更优选地,所述增彩涂层中还包含有白平衡补偿材料,所述白平衡补偿材料的补偿波段与所述光波长转化材料的目标波段分别属于三基色光中的不同基色;或者,所述光波长转化材料为Rhodamine及其衍生物、Phthalocyanine及其衍生物、Tetrazaporphyrine及其衍生物、Coumarin及其衍生物中的一种或多种的混合物,优选地,所述增彩涂层中还包含有白平衡补偿材料。
  8. 一种制备增彩膜的方法,其特征在于,所述方法包括下述步骤:
    (1)准备基膜、液态基质材料和光波长转化材料;
    (2)将所述光波长转化材料按预定比例加入到所述液态基质材料中,制成增彩涂料;
    (3)将所述增彩涂料涂布在所述基膜的一侧或两侧;
    (4)对所涂布的增彩涂层进行固化,
    所述光波长转化材料能够将第一预定波长范围内的光中的至少部分转化为第二预定波长范围内的光,
    优选地,所述液态基质材料中包括:丙烯酸酯类单体、预聚物树脂和光引发剂;
    更优选地,所述基膜为PET基膜,所述PET基膜的厚度为10微米至350微米;所述増彩涂层的厚度为5微米至50微米。
  9. 根据权利要求8所述的制备增彩膜的方法,其特征在于,所述第一预定波长范围包括:350-430nm、470nm-500nm、560nm-610nm、660nm-750nm以及上述波长范围内的任意一个或多个波段;所述第二预定波长范围包括:430nm-470nm、500nm-560nm、610nm-660nm及上述波长范围内的任意一个或多个波段,优选地,所述第二预定波长范围还包括:750nm-1mm及该波长范围内的任意一个或多个波段.
  10. 根据权利要求8所述的制备增彩膜的方法,其特征在于,
    所述增彩膜用于以蓝色发光芯片为基础发光芯片的显示设备,所述第二预定波长范围选自500nm-560nm和610nm-660nm中的一个或多个波段。
PCT/CN2016/105760 2016-05-24 2016-11-14 一种用于彩色显示设备的増彩膜及其制备方法 WO2017201981A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610347549.7 2016-05-24
CN201610347549.7A CN106019638A (zh) 2016-05-24 2016-05-24 一种用于增广色域的复合光学材料及其制备方法与应用
CN201610544078.9A CN105974497B (zh) 2016-07-12 2016-07-12 一种用于彩色显示设备的増彩膜及其制备方法
CN201610544078.9 2016-07-12

Publications (1)

Publication Number Publication Date
WO2017201981A1 true WO2017201981A1 (zh) 2017-11-30

Family

ID=60411093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105760 WO2017201981A1 (zh) 2016-05-24 2016-11-14 一种用于彩色显示设备的増彩膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2017201981A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869391A (zh) * 2014-03-28 2014-06-18 明天 色彩增强膜、使用结构、使用方法和制作方法
CN204439860U (zh) * 2014-07-22 2015-07-01 翰博高新材料(合肥)股份有限公司 一种量子点扩散膜
WO2015199310A1 (ko) * 2014-06-27 2015-12-30 엘지전자 주식회사 백라이트 유닛 및 이를 구비하는 디스플레이 장치
CN105278157A (zh) * 2014-06-27 2016-01-27 富士胶片株式会社 背光单元及液晶显示装置
CN105974497A (zh) * 2016-07-12 2016-09-28 武汉保丽量彩科技有限公司 一种用于彩色显示设备的増彩膜及其制备方法
CN106019638A (zh) * 2016-05-24 2016-10-12 武汉保丽量彩科技有限公司 一种用于增广色域的复合光学材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869391A (zh) * 2014-03-28 2014-06-18 明天 色彩增强膜、使用结构、使用方法和制作方法
WO2015199310A1 (ko) * 2014-06-27 2015-12-30 엘지전자 주식회사 백라이트 유닛 및 이를 구비하는 디스플레이 장치
CN105278157A (zh) * 2014-06-27 2016-01-27 富士胶片株式会社 背光单元及液晶显示装置
CN204439860U (zh) * 2014-07-22 2015-07-01 翰博高新材料(合肥)股份有限公司 一种量子点扩散膜
CN106019638A (zh) * 2016-05-24 2016-10-12 武汉保丽量彩科技有限公司 一种用于增广色域的复合光学材料及其制备方法与应用
CN105974497A (zh) * 2016-07-12 2016-09-28 武汉保丽量彩科技有限公司 一种用于彩色显示设备的増彩膜及其制备方法

Similar Documents

Publication Publication Date Title
KR101745599B1 (ko) 양자점 광학시트 및 이의 제조방법
CN209843702U (zh) 面光源模组
JP5519317B2 (ja) ライトユニット及びこれを備える表示装置
WO2016011691A1 (zh) 高色域液晶显示模组结构
CN106019697A (zh) 显示装置
WO2016086416A1 (zh) 一种量子点背光模组以及显示装置
US8777437B2 (en) Light-emitting module
WO2020025054A1 (zh) 一种发光装置及其制备方法
WO2015081692A1 (zh) 一种导光板、背光源及液晶显示装置
CN109828410A (zh) 一种新型led背光模组的显示器
US11391989B2 (en) Light emitting apparatus, and method of adjusting emission spectrum thereof, backlight module and liquid crystal display apparatus
CN106647020A (zh) 直下式背光模组与包括其的显示装置
CN110007508A (zh) 彩膜基板、液晶显示面板及液晶显示装置
US8531626B2 (en) Optical element, liquid crystal display and manufacture method thereof
KR101779606B1 (ko) 일체형 광변환시트, 이를 구비한 백라이트유닛 및 액정표시장치 모듈
US20210080785A1 (en) Backlight module
CN108873470A (zh) 一种量子点彩膜背光结构
CN101144582A (zh) 发光二极管背光模块
US7857472B2 (en) Backlight source having first and second electroluminescence devices
CN105974497B (zh) 一种用于彩色显示设备的増彩膜及其制备方法
CN106980208A (zh) 光可控型量子点背光源
CN201177708Y (zh) 液晶结构
CN209858903U (zh) 一种复合光学膜、背光装置和显示装置
KR102298922B1 (ko) 액정표시장치
WO2017201981A1 (zh) 一种用于彩色显示设备的増彩膜及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902965

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902965

Country of ref document: EP

Kind code of ref document: A1