WO2017201687A1 - 用于小区切换的方法、基站和控制节点 - Google Patents

用于小区切换的方法、基站和控制节点 Download PDF

Info

Publication number
WO2017201687A1
WO2017201687A1 PCT/CN2016/083285 CN2016083285W WO2017201687A1 WO 2017201687 A1 WO2017201687 A1 WO 2017201687A1 CN 2016083285 W CN2016083285 W CN 2016083285W WO 2017201687 A1 WO2017201687 A1 WO 2017201687A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
base station
target
cells
location information
Prior art date
Application number
PCT/CN2016/083285
Other languages
English (en)
French (fr)
Inventor
彭劲东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16902677.0A priority Critical patent/EP3448086B1/en
Priority to JP2018561505A priority patent/JP6817336B2/ja
Priority to CA3025568A priority patent/CA3025568C/en
Priority to CN201680085943.6A priority patent/CN109155947B/zh
Priority to PCT/CN2016/083285 priority patent/WO2017201687A1/zh
Publication of WO2017201687A1 publication Critical patent/WO2017201687A1/zh
Priority to US16/198,146 priority patent/US10368276B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method, base station and control node for cell handover.
  • the Long Term Evolution (LTE) protocol stipulates that the user equipment (User Equipment, UE) needs to report the physical cell identifier (PCI) of the target cell to the serving base station (or the source base station) during the handover process. .
  • the serving base station determines the target cell according to the PCI of the target cell reported by the UE. And send a handover command to complete the cell handover.
  • PCI resources are limited.
  • the LTE system only provides 504 PCIs. Therefore, in practical applications, in a neighboring cell of a cell, there may be cases where different neighboring cells have the same PCI, that is, PCI confusion occurs.
  • the serving base station when the serving base station receives the PCI of the target cell reported by the UE, if the reported PCI corresponds to multiple neighboring cells, the serving base station cannot select the correct target cell for the UE according to the PCI. That is, the serving base station cannot correctly select the target cell that the UE needs to handover from among the multiple neighboring cells in the same PCI.
  • the base station in order to solve the problem of PCI confusion caused by the UE during the handover process, the base station reconfigures the reading of the global cell identifier (CGI) of the target cell to the UE after the PCI confusion occurs. Since CGI can uniquely identify a cell. Therefore, by acquiring the CGI of the target cell, the base station can correctly select the target cell that the UE needs to handover from the cell having the same PCI.
  • CGI global cell identifier
  • the reading of the CGI requires the base station to re-configure the UE after the measurement report is reported by the UE. Since the signaling interaction is increased, the delay of the cell handover is increased.
  • the present application provides a method, a base station, and a control node for cell handover.
  • a PCI is confusing
  • the target cell can be determined without increasing the delay, and the cell handover is completed.
  • the present application provides a method for cell handover, which is applied to a communication system including a first base station, at least two second base stations, and a user equipment UE, where the first base station corresponds to a first cell, and the first a cell is a serving cell of the UE, the at least two second base stations and at least two second Corresponding to the cell, the at least two second cells are neighboring cells of the first cell, and the at least two second cells are in one-to-one correspondence with at least two global cell identifiers CGI, and each CGI is used to uniquely in the communication system.
  • each second base station storing configuration information, where the configuration information is used to indicate time-frequency resources used by the UE to send the sounding reference signal SRS to the first base station, where the method includes: the first base station Receiving a handover request sent by the UE, the handover request is used to indicate that the UE requests to switch to a target second cell in the at least two second cells, where the handover request carries a physical cell identifier PCI of the target second cell; The first base station determines that the PCI corresponds to multiple second cells; the first base station receives location information of the UE sent by the target second base station corresponding to the target second cell in the at least two second base stations, where the location information is And obtaining, by the first base station, the target second cell from the plurality of second cells according to the location information.
  • the source base station reconfigures the CGI of the read target cell to the UE. Since the CGI can uniquely identify a cell globally, after acquiring the CGI of the target cell, the target cell can be uniquely determined without causing confusion.
  • the process of configuring the CGI read by the serving base station requires an increase in signaling interaction, thereby increasing the delay of the handover.
  • the serving base station sends the configuration information of the time-frequency resource used by the UE to the serving base station to send the uplink sounding reference signal SRS to the target base station (that is, the base station to which the UE needs to be handed over), so that the target base station can
  • the SRS signal sent by the UE to the serving base station is detected on the time-frequency resource indicated in the configuration information. If the UE can detect the signal, the UE location information is acquired, that is, the “UE is approaching”, and the information of the UE is reported to the serving base station, so that the base station participates in the judgment of the location of the user equipment UE. Thereby, the serving base station can learn the target cell that the UE is currently approaching. In this way, the serving base station does not need to configure the target cell CGI read mode to the UE to determine the target cell to which the UE needs to handover.
  • the signaling interaction is reduced compared to the prior art. Thereby, the delay can be reduced.
  • the location information carries a CGI of the target second cell
  • the first base station determines, according to the location information, the plurality of second cells.
  • the target second cell includes: the first base station determines the target second cell from the plurality of second cells according to the CGI.
  • the first base station receives the location information of the UE sent by the target second base station corresponding to the target second cell in the at least two second base stations
  • the method further includes: the first base station sending configuration information to the target second base station, so that the target second base station acquires location information of the UE according to the configuration information, and sends the location information to the first Base station.
  • the present application provides a method for cell handover, which is applied to a communication system including a first base station, at least two second base stations, and a user equipment UE, where the first base station corresponds to a first cell, and the first A cell is a serving cell of the UE, the at least two second base stations are corresponding to at least two second cells, the at least two second cells are neighboring cells of the first cell, and the at least two second cells are at least
  • the two global cell identifiers CGI are in one-to-one correspondence, and each CGI is used to uniquely identify a corresponding second cell in the communication system, and each second base station stores configuration information, where the configuration information is used to indicate that the UE is to the first
  • the time-frequency resource used by the base station to transmit the sounding reference signal SRS the method includes: the target second base station in the at least two second base stations acquires location information of the UE according to the configuration information; The first base station sends the location information, so that when the first base station receives the handover
  • the location information carries a CGI of the target second cell, so that the first base station is configured from the multiple second cells corresponding to the PCI according to the CGI.
  • the target second cell is determined.
  • the method before the target second base station of the at least two second base stations acquires the location information of the UE, the method further includes: the target second base station receiving the The configuration information sent by the base station; and the second base station acquiring the location information of the UE according to the configuration information, where the target second base station performs SRS signal detection on the time-frequency resource indicated by the configuration information; When the target second base station detects the SRS signal on the time-frequency resource, the target second base station acquires location information of the UE.
  • a method for cell handover where the first base station corresponds to a first cell, where the first base station corresponds to the first cell, where the method is applied to the control system, the first base station, the at least two second base stations, and the user equipment UE.
  • the first cell is a serving cell of the UE
  • the at least two second base stations are corresponding to at least two second cells
  • the at least two second cells are neighboring cells of the first cell
  • the at least two second cells are At least two global cell identifiers CGI are in one-to-one correspondence
  • each CGI is used to uniquely identify a corresponding second cell in the communication system
  • each second base station stores configuration information
  • the configuration information is used to indicate the time-frequency resource used by the UE to send the sounding reference signal SRS to the first base station
  • the method includes: the control node acquiring a handover request, the handover request is used to indicate that the UE requests to switch to the at least two a target second cell in the second cell, where the handover request carries a physical cell identifier PCI of the target second cell; the control node determines that the PCI corresponds to multiple second cells; and the control node acquires location information of the UE; The node determines the target second cell from the plurality of second cells according
  • the location information carries a CGI of the target second cell
  • the control node determines the target from the multiple second cells according to the location information.
  • the second cell includes: the control node determines the target second cell from the plurality of second cells according to the CGI.
  • control node is an access gateway (AG).
  • the application provides a base station for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the base station comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the application provides a base station for performing the method in any of the possible implementations of the second aspect or the second aspect.
  • the base station comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides a control node for performing the method in any of the possible implementations of the third aspect or the third aspect.
  • the control node comprises means for performing the method of any of the third or third aspects of the possible implementation.
  • the application provides a base station including a receiver, a transmitter, a processor, a memory, and a bus system.
  • the receiver, the transmitter, the processor and the memory are connected by a bus system, the memory is used for storing instructions, and the processor is configured to execute instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals.
  • the processor executes the instructions stored in the memory, the method of causing the processor to perform the first aspect or any of the possible implementations of the first aspect is performed.
  • the present application provides a base station including a receiver, a transmitter, a processor, a memory, and a bus system.
  • the receiver, the transmitter, the processor and the memory are connected by a bus system, the memory is used for storing instructions, and the processor is configured to execute instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals.
  • the processor performs memory storage At the time of the instruction, the method of causing the processor to perform the second aspect or any of the possible implementations of the second aspect is performed.
  • the present application provides a control node including a receiver, a transmitter, a processor, a memory, and a bus system.
  • the receiver, the transmitter, the processor and the memory are connected by a bus system, the memory is used for storing instructions, and the processor is configured to execute instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals.
  • the processor executes the instructions stored in the memory, the method of causing the processor to perform the third aspect or any of the possible implementations of the third aspect is performed.
  • the application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the third aspect or any of the possible implementations of the third aspect.
  • the technical solution provided by the present application can determine that the base station participates in the location of the user equipment, and when the PCI of the target cell is confusing, the base station can obtain the same PCI according to the location information of the user equipment without increasing the delay.
  • the target cell is determined in the plurality of cells, and the handover is completed.
  • FIG. 1 is a schematic diagram of an application scenario of a method for cell handover applicable to an embodiment of the present invention.
  • Figure 2 shows a schematic of PCI confusion.
  • FIG. 3 shows a schematic interaction diagram of a method for cell handover in accordance with an embodiment of the present invention.
  • FIG. 4 shows a schematic interaction diagram of a method for cell handover according to another embodiment of the present invention.
  • FIG. 5 shows a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 6 shows a schematic block diagram of a base station according to another embodiment of the present invention.
  • FIG. 7 shows a schematic block diagram of a control node in accordance with yet another embodiment of the present invention.
  • FIG. 8 shows a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 shows a schematic structural diagram of a base station according to another embodiment of the present invention.
  • FIG. 10 shows a schematic structural diagram of a control node according to still another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • a user equipment may be referred to as a terminal (Mobile), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), etc.
  • the user equipment may be A Radio Access Network (RAN) communicates with one or more core networks.
  • the user equipment may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., for example, a user equipment. It can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • the base station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in WCDMA. It may be an evolved base station (Evolutional Node B, eNB or e-NodeB) in LTE, and the present invention is not limited thereto.
  • the method for handover in the embodiment of the present invention may be applicable to handover of a UE between macro base stations, handover of a UE between micro base stations, and various situations in which a UE switches between a macro base station and a micro base station.
  • the method for cell handover according to the embodiment of the present invention is described by taking the UE as the example of the handover from the macro base station to the micro base station.
  • the first base station may be a macro base station, and correspondingly, the first cell may be a macro cell.
  • the second base station may be a micro base station, a pico base station, a femto base station, or the like.
  • the second cell may be a micro cell, a pico cell, and a femto cell, respectively.
  • the embodiment of the present invention does not limit this.
  • FIG. 1 shows an application scenario of a method for cell handover applicable to an embodiment of the present invention.
  • the scenario includes one macro base station A and a plurality of (six in FIG. 1) micro base stations.
  • the macro base station corresponds to one cell (hereinafter referred to as a macro cell for convenience of distinction and description).
  • Each micro base station corresponds to one cell and is within the coverage of the macro cell.
  • the PCI is composed of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • terminals distinguish different wireless signals according to different PCIs.
  • a total of 504 PCIs are provided in the existing LTE of PCI, and the value ranges from 0 to 503.
  • PCI needs to configure a base station after unified planning in one area.
  • the plan is reasonable, it can be ensured that the cells in one area use different PCIs.
  • PCI plan is unreasonable, PCI confusion may occur.
  • Figure 2 shows a schematic of PCI confusion.
  • the current serving cell of the user equipment UE is cell A
  • cell A has three neighboring cells, which are cell B, cell C, and cell D, respectively.
  • the values of the PCI of the cell B and the cell C are both
  • the UE may first perform measurement on multiple neighboring cells of the serving cell, and then select a target cell from the multiple neighboring cells and report the PCI of the target cell to the base station.
  • the eNB triggers an alarm if it finds that it has two neighboring cells with the same PCI in the process of neighboring cell management.
  • the alarm is used to instruct the administrator to manually modify or reassign the PCI.
  • labor costs are high.
  • modifying PCI may affect existing network planning.
  • the serving base station will reconfigure the CGI read for the UE. Since the CGI is the global cell identity of the cell, one cell can be uniquely identified.
  • the cell identity ID and the eNB identity ID of the target cell can be obtained, thereby finding the target cell.
  • re-reading the CGI requires the serving base station to re-configure the UE after receiving the measurement report sent by the UE, increasing the delay, and there is a risk of dropped calls, which affects the user experience.
  • reading the CGI requires reconfiguring the discontinuous reception (DRX) for the UE. DRX can be interrupted, that is, there may be a risk of read failure, causing the switch to fail. It can be seen that in the existing technical solutions for solving PCI confusion, the process of signaling interaction is added, and the handover delay is increased.
  • a method for cell handover can be applied to multiple scenarios. For example, there is no control node, only the macro base station and the micro base station are in the same frequency coverage scenario, one macro base station and multiple micro base stations, and the number of neighboring areas is large (ie, scene one). For example, there are control nodes, only the macro base station and the micro base station are in the same frequency coverage scenario, one macro base station and multiple micro base stations, and the number of neighboring areas is large (ie, scene 2).
  • FIG. 3 shows a schematic interaction diagram of a method for cell handover in accordance with an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • the macro base station receives a handover request sent by the UE, where the handover request carries the PCI of the target second cell.
  • the UE After completing the cell measurement, the UE determines the PCI of the target cell to be handed over. Then, the UE sends a handover request to the serving base station, and reports the measurement result.
  • the process of the UE performing cell measurement and reporting the measurement result may be the same as the prior art, and is not described herein for brevity.
  • the macro base station receives a handover request sent by the UE, and the handover request is used to indicate that the UE requests to handover from the serving cell to the target cell.
  • the handover request carries the PCI of the target cell.
  • the macro base station determines that the PCI corresponds to multiple second cells.
  • the macro base station receives location information of the UE sent by the target micro base station.
  • the target micro base station herein refers to a micro base station corresponding to the target cell among multiple neighboring cells in the coverage of the macro base station.
  • the location information of the UE is obtained by the target micro base station (ie, an example of the target second base station) according to the configuration information.
  • the configuration information is used to indicate a time-frequency resource used by the UE when transmitting a Sounding Reference Signal (SRS) to the macro base station.
  • SRS Sounding Reference Signal
  • each micro base station stores the configuration information.
  • time-frequency resource #A for convenience of distinction and understanding
  • all the micro base stations perform SRS signal detection on the time-frequency resource #A.
  • the micro base station C does not detect the SRS signal on the time-frequency resource #A, it means "the UE has left”, or "the UE is not yet close”. It can be seen that the cell that the UE needs to handover is not the cell corresponding to the micro base station C.
  • the micro base station B If the micro base station B receives the SRS signal on the time-frequency resource #A, it indicates that the UE is approaching, or "the UE is already in the cell corresponding to the micro base station B.” At this time, the micro base station B acquires the location information of the UE.
  • the macro base station may also send the configuration information to all the micro base stations before receiving the location information sent by the micro base station.
  • the configuration information may be pre-stored by the micro base station, or may be an acer base. After receiving the handover request from the UE, the station sends it to each micro base station. In this way, each micro base station can perform signal detection based on the time-frequency resources indicated in the configuration information to confirm whether the UE is approaching itself.
  • the macro base station sends the configuration information to all the micro base stations in the coverage of the macro cell.
  • the base station corresponding to the cell A sends the configuration information to the base stations corresponding to all the neighboring cells (ie, the cell B, the cell C, and the cell D).
  • the base station corresponding to each of the cell B, the cell C, and the cell D receives the configuration information.
  • the configuration information generated by the macro base station includes the time-frequency resources used by the multiple UEs to send the SRS information to the macro base station.
  • the configuration information is generated (or configured) by the macro base station. And, the process of generating configuration information by the macro base station is the same as the prior art. I will not repeat them here.
  • the location information of the UE is information that “the location of the UE is approaching”.
  • the micro base station receives the SRS signal sent by the UE to the macro base station on the time-frequency resource, and the micro base station can obtain the UE that transmits the SRS signal by decoding the SRS signal.
  • the macro base station may configure different time-frequency resources for different UEs, so that each UE uses time-frequency resources different from other UEs. And sending configuration information to each micro base station.
  • the micro base station performs SRS signal detection according to the time-frequency resource indicated in the configuration information.
  • the UE transmitting the SRS signal on the time-frequency resource can be known by the correspondence between the UE and the time-frequency resource.
  • the location information of the UE is transmitted to the macro base station.
  • the macro base station may also configure the same time-frequency resource for different UEs, and distinguish different UEs by means of code division.
  • the micro base station can determine the UE that transmits the SRS signal by decoding the received SRS signal. And transmitting the location information of the UE to the macro base station.
  • the macro base station determines, according to the location information, a target cell from a plurality of cells corresponding to the PCI reported by the UE.
  • the macro base station receives the location information of the UE sent by the micro base station B, and can obtain that the UE is currently acquiring The close micro base station is the micro base station B. Therefore, the target cell to which the UE needs to handover is the cell corresponding to the micro base station B. In this way, the macro base station can determine from the micro base station B and the micro base station C that the target micro base station is the micro base station B instead of the micro base station C. In other words, the micro base station B is determined, and the cell corresponding to the determined micro base station B is the target cell.
  • the macro base station may select, from the plurality of cells, the target cell to which the UE needs to handover according to the strength or quality of the SRS signal received by each micro base station.
  • FIG. 1 continue to take FIG. 1 as an example.
  • the micro base station B and the micro base station C detect the SRS signal sent by the UE to the macro base station, the location information of “the UE is approaching” is sent to the macro base station.
  • the micro base station B and the micro base station C carry the size, quality, and the like of the received SRS signal in the location information transmitted to the macro base station. It can be understood that since the UE is continuously close to the micro base station B, the micro base station B and the micro base station C should receive the SRS signal strength stronger than the micro base station C.
  • the macro base station can also determine the strength of the SRS signal received by the micro base station, the quality, and the like, from the micro base station B and the micro base station C, and determine the micro base station B having the strong SRS signal strength as the target micro base station. . Thereby, the target cell is determined.
  • the location information carries a CGI of the target cell.
  • the target base station when the target base station sends the location information of the UE to the macro base station, the target base station may carry the CGI of the target cell in the location information.
  • the macro base station receives the CGI of the target cell sent by the target base station, and can determine the target cell from multiple cells having the same PCI according to the CGI of the target cell.
  • the CGI is a global cell identifier and can uniquely identify a cell.
  • the macro base station receives the CGI of the target cell, and can uniquely determine the target cell from the plurality of cells.
  • the base station in a case where the base station participates in the judgment of the location of the user equipment, in the case that the PCI of the target cell is confusing, the base station can obtain the same PCI according to the location information of the user equipment.
  • the target cell is determined in a plurality of cells, and the handover is completed. Compared with the prior art, cell handover can be completed without increasing the delay.
  • the neighboring base station reports to the serving base station after detecting the location information of the UE (in this case, the neighboring base station is the target base station), which avoids the handover failure caused by the CGI may fail to read. Therefore, can Increase the success rate of switching.
  • FIG. 4 shows a schematic interaction diagram of a method for cell handover according to another embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the macro base station sends configuration information to the control node.
  • control node may be an access gateway (AC), or a virtual e-NB. This embodiment of the present invention does not limit this.
  • the configuration information may be pre-stored by the control node.
  • the macro base station may send the handover request sent by the UE to the control node.
  • the control node stores the configuration information in advance.
  • the configuration information configured by the macro base station changes, the macro base station sends the reconfigured configuration information to the control node. This embodiment of the present invention does not limit this.
  • the control node sends the configuration information to each micro base station.
  • the configuration information is used to indicate a time-frequency resource used by the UE to send an SRS signal to the macro base station.
  • the configuration information refer to the description in the previous section, which is not described here.
  • each micro base station herein refers to all micro base stations that are within the coverage of the macro cell corresponding to the macro base station.
  • the “each micro base station” is a base station corresponding to each of the neighboring cells of the macro cell.
  • the micro base station performs SRS signal detection on the time-frequency resource indicated by the configuration information.
  • the micro base station (including the target micro base station) detects the SRS signal on the SRS slot of the macro base station. If the SRS signal can be received, it means “the UE is approaching”. If it is not received, it means "UE has left", or "UE is not near”.
  • the control node receives location information of the UE sent by the target micro base station.
  • the target micro base station may also send the location information of the UE to the macro base station, and the macro base station forwards the information to the control node.
  • the location information of the UE is directly sent to the control node by the target micro base station as an example.
  • the embodiment of the present invention does not limit this.
  • the macro base station receives a measurement report sent by the UE, where the measurement report carries the PCI of the target cell.
  • the macro base station needs to send a handover measurement indication to the UE, instructing the UE to perform measurement on the neighboring cell.
  • the UE sends a measurement report to the macro base station, where the measurement report carries the PCI of the target cell.
  • the UE sending the measurement report to the macro base station may be based on periodic reporting, or may be Based on event reporting.
  • the process of reporting is similar to the prior art and will not be described here.
  • the macro base station sends the PCI of the target cell to the control node.
  • the PCI is sent to the control node as an example for description.
  • the UE can also directly send the PCI of the target cell to the control node.
  • the control node determines the target cell according to the location information of the UE sent by the target micro base station and the PCI of the target cell.
  • the control node first determines a plurality of cells (including the target cell) corresponding to the PCI, and combines the location information of the UE, and determines, from the plurality of cells, that the cell that the UE is currently approaching is the target cell.
  • control node After determining the target cell, the control node sends a handover indication to the target cell to complete the cell handover.
  • the macro base station described in the above FIG. 3 and FIG. 4 is an example of the first base station in the embodiment of the present invention.
  • the target micro base station is an example of a target second base station in accordance with an embodiment of the present invention.
  • the macro cell is an example of the first cell, and the plurality of cells corresponding to the plurality of micro base stations are an example of the plurality of second cells in the embodiment of the present invention.
  • the base station can correctly determine the target cell from among a plurality of cells having the same PCI by determining the location of the user equipment. There is no need to increase the interaction of signaling. Therefore, when PCI confusion occurs, the cell handover can be completed without increasing the delay.
  • a method for cell handover according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 4, and a base station and a control node for cell handover according to an embodiment of the present invention will be described below with reference to FIG. 5 to FIG. Be explained.
  • FIG. 5 shows a schematic diagram of a base station 400 in accordance with an embodiment of the present invention.
  • the base station 400 includes:
  • the receiving unit 410 is configured to receive a handover request sent by the UE, where the handover request is used to indicate that the UE requests to switch to a target second cell in the at least two second cells, where the handover request is carried a physical cell identifier PCI of the target second cell;
  • the processing unit 420 is configured to determine that the PCI corresponds to multiple second cells
  • the receiving unit 410 is further configured to receive location information of the UE sent by the target second base station corresponding to the target second cell in the at least two second base stations, where the location information is that the target second base station according to the configuration information Obtained
  • the processing unit 420 is further configured to determine the target second cell from the plurality of second cells according to the location information.
  • the respective units in the base station 400 and the other operations or functions according to the embodiments of the present invention are respectively used to implement the corresponding processes performed by the first base station in the method for cell handover in the embodiment of the present invention. For the sake of brevity, it will not be repeated here.
  • the target second base station when the PCI confusion occurs, the target second base station can determine the location of the user equipment, and send the location information of the user equipment to the first base station, so that the first base station can enable the first base station to The target cell is correctly determined. Since there is no need to increase the interaction of signaling, cell handover can be completed without increasing the delay.
  • FIG. 6 shows a schematic diagram of a base station 500 in accordance with an embodiment of the present invention.
  • the base station 500 includes:
  • the obtaining unit 510 is configured to acquire location information of the UE according to the configuration information.
  • the sending unit 520 is configured to send the location information to the first base station, so that when the first base station receives the handover request sent by the UE, according to the location information, the physicality of the target second cell carried in the handover request
  • a plurality of second cells corresponding to the cell identifier PCI determine a target second cell to which the UE needs to handover, where the base station is a base station corresponding to the target second cell among the at least two base stations.
  • the units in the base station 500 and the other operations or functions described above according to the embodiments of the present invention are respectively configured to implement the corresponding processes performed by the target second base station in the embodiment of the present invention. For the sake of brevity, it will not be repeated here.
  • the target second base station when the PCI confusion occurs, the target second base station can determine the location of the user equipment, and send the location information of the user equipment to the first base station, so that the first base station can enable the first base station to The target cell is correctly determined. Since there is no need to increase the interaction of signaling, cell handover can be completed without increasing the delay.
  • FIG. 7 shows a schematic diagram of a control node 600 in accordance with an embodiment of the present invention.
  • the control node 600 includes:
  • the obtaining unit 610 is configured to acquire a handover request, where the handover request is used to indicate that the UE requests to handover to a target second cell in the at least two second cells, where the handover request carries a physical cell identifier of the target second cell. ;
  • the processing unit 620 is configured to determine that the PCI corresponds to multiple second cells
  • the acquiring unit 610 is further configured to acquire location information of the UE.
  • the processing unit 620 is further configured to determine the target second cell from the plurality of second cells according to the location information.
  • control node 600 and the other operations or functions described above according to the embodiments of the present invention are respectively implemented in order to implement the corresponding processes performed by the control node in the embodiment of the present invention. For the sake of brevity, it will not be repeated here.
  • the target second base station determines the location of the user equipment, and sends the location information of the user equipment to the control node, so that the control node can correctly Determine the target cell. Since there is no need to increase the interaction of signaling, cell handover can be completed without increasing the delay.
  • FIG. 8 shows a schematic structural diagram of a base station 700 according to an embodiment of the present invention.
  • the base station 700 is configured in a communication system including at least two second base stations and a user equipment UE, where the base station is corresponding to the first cell, the first cell is a serving cell of the UE, and the at least two second base stations are at least two Corresponding to the second cell, the at least two second cells are neighboring cells of the first cell, and the at least two second cells are in one-to-one correspondence with at least two global cell identifiers CGI, and each CGI is used in the communication system.
  • the second cell is uniquely identified, and each of the second base stations stores configuration information, where the configuration information is used to indicate the time-frequency resource used by the UE to send the sounding reference signal SRS to the base station.
  • the base station 700 includes a receiver 710, a transmitter 720, a processor 730, a memory 740, and a bus system 750.
  • the receiver 710, the transmitter 720, the processor 730 and the memory 740 are connected by a bus system 750 for storing instructions for executing instructions stored by the memory 740 to control the receiver 710 to receive. Signaling and controlling the transmitter 720 to send a signal, wherein
  • the receiver 710 is configured to receive a handover request sent by the UE, where the handover request is used to indicate that the UE requests to switch to a target second cell in the at least two second cells, where the handover request carries the destination Marking the physical cell identifier PCI of the second cell;
  • the processor 730 is configured to determine that the PCI corresponds to multiple second cells.
  • the receiver 710 is further configured to receive location information of the UE sent by the target second base station corresponding to the target second cell in the at least two second base stations, where the location information is that the target second base station according to the configuration information Obtained
  • the processor 730 is further configured to determine the target second cell from the plurality of second cells according to the location information.
  • the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 830. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • the bus system 750 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 750 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the steps of the method for cell handover disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 740, and processor 730 reads the information in memory 740 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the units in the base station 700 and the other operations or functions described above in accordance with an embodiment of the present invention are respectively configured to perform respective processes performed by the first base station in the embodiments of the present invention. For the sake of brevity, it will not be repeated here.
  • the base station according to the embodiment of the present invention can correctly determine the target cell by receiving the location information of the user equipment sent by the target second base station when PCI confusion occurs. Since there is no need to increase the interaction of signaling, cell handover can be completed without increasing the delay.
  • FIG. 9 shows a schematic structural diagram of a base station 800 according to an embodiment of the present invention.
  • the base station 800 is configured in a communication system including a first base station, at least two base stations, and a user equipment UE, where the first base station is corresponding to the first cell, the first cell is a serving cell of the UE, and the at least two base stations are Corresponding to at least two second cells, the at least two second cells are neighboring cells of the first cell, and the at least two second cells are in one-to-one correspondence with at least two global cell identifiers CGI, where each CGI is used for
  • the communication system uniquely identifies the corresponding second cell, and each of the base stations stores configuration information, where the configuration information is used to indicate the time-frequency resource used by the UE to send the sounding reference signal SRS signal to the first base station.
  • the base station 800 includes a receiver 810, a transmitter 820, a processor 830, a memory 840, and a bus system 850.
  • the receiver 810, the transmitter 820, the processor 830, and the memory 840 are connected by a bus system 850 for storing instructions for executing instructions stored in the memory 840 to control the receiver 810 to receive.
  • Signaling and controlling the transmitter 820 to send a signal wherein
  • the processor 830 is configured to acquire location information of the UE according to the configuration information.
  • the transmitter 820 is configured to send the location information to the first base station, so that when the first base station receives the handover request sent by the UE, the first base station carries the target second cell from the handover request according to the location information.
  • the physical cell identifier identifies a target second cell to which the UE needs to be handed over, and the target second cell is the at least two second base stations corresponding to the target second cell. Base station.
  • the processor 830 may be a central processing unit (“CPU"), and the processor 830 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 840 can include read only memory and random access memory and provides instructions and data to the processor 830. A portion of the memory 840 may also include a non-volatile random access memory. For example, the memory 840 can also store information of the device type.
  • the bus system 850 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 850 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 830 or an instruction in the form of software.
  • the steps of the method can be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 840, and processor 830 reads the information in memory 840 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the units in the base station 800 and the other operations or functions described above according to the embodiments of the present invention are respectively configured to implement the corresponding processes performed by the target second base station in the embodiment of the present invention. For the sake of brevity, it will not be repeated here.
  • the base station when the PCI confusion occurs, determines the location of the user equipment, and transmits the location information of the user equipment to the first base station, so that the first base station can correctly determine the target cell. Since there is no need to increase the interaction of signaling, cell handover can be completed without increasing the delay.
  • FIG. 10 shows a schematic structural diagram of a control node 900 according to an embodiment of the present invention.
  • the control node 900 is configured in a communication system including a first base station, at least two second base stations, and a user equipment UE, where the first base station is corresponding to the first cell, and the first cell is a serving cell of the UE,
  • the at least two second base stations correspond to at least two second cells, the at least two second cells are neighboring cells of the first cell, the at least two second cells and at least two global cell identifiers
  • Each CGI is used to uniquely identify a corresponding second cell in the communication system, and each second base station stores configuration information, where the configuration information is used to indicate that the UE is to the first
  • the control node 900 includes a receiver 910, a transmitter 920, a processor 930, a memory 940, and a bus system 950.
  • the receiver 910, the transmitter 920, the processor 930, and the memory 940 are connected by a bus system 950 for storing instructions for executing instructions stored by the memory 940 to control the receiver 910 to receive.
  • Signaling and controlling the transmitter 920 to send a signal wherein
  • the receiver 910 is configured to receive a handover request, where the handover request is used to indicate that the UE requests to switch to a target second cell in the at least two second cells, where the handover request carries a physical cell identifier of the target second cell.
  • PCI PCI
  • the processor 930 is configured to determine that the PCI corresponds to multiple second cells.
  • the receiver 910 is further configured to receive location information of the UE.
  • the processor 930 is further configured to determine the target from the plurality of second cells according to the location information. Mark the second cell.
  • the processor 930 may be a central processing unit (“CPU"), and the processor 930 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 940 can include read only memory and random access memory and provides instructions and data to the processor 930. A portion of the memory 940 can also include a non-volatile random access memory. For example, the memory 940 can also store information of the device type.
  • the bus system 950 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 950 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 930 or an instruction in a form of software.
  • the steps of the method for cell handover disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 940, and processor 930 reads the information in memory 940 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • control node 900 and the other operations or functions according to the embodiments of the present invention are respectively corresponding flows executed by the control node in the method for cell handover according to the embodiment of the present invention. For the sake of brevity, it will not be repeated here.
  • the control node of the embodiment of the present invention when the PCI confusion occurs, the control node can correctly determine the target cell by acquiring the location information of the UE. Since there is no need to increase the interaction of signaling, cell handover can be completed without increasing the delay.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于小区切换的方法,基站和控制节点,应用于包括第一基站、至少两个第二基站和用户设备UE的通信系统中,该至少两个第二小区与至少两个全球小区标识CGI一一对应,该方法包括:该第一基站接收该UE发送的切换请求,该切换请求用于指示该UE请求切换至该至少两个第二小区中的目标第二小区,该切换请求中携带该目标第二小区的物理小区标识PCI;该第一基站确定该PCI对应多个第二小区;该第一基站接收该至少两个第二基站中与该目标第二小区对应的目标第二基站发送的该UE的位置信息,该位置信息是该目标第二基站根据该配置信息获取的;该第一基站根据该位置信息,从该多个第二小区中确定该目标第二小区。

Description

用于小区切换的方法、基站和控制节点 技术领域
本发明涉及通信领域,并且更具体地,涉及一种用于小区切换的方法、基站和控制节点。
背景技术
长期演进(Long Term Evolution,LTE)协议规定,用户设备(User Equipment,UE)在切换过程中,需要向服务基站(或者说,源基站)上报目标小区的物理小区标识(Physical Cell Identifier,PCI)。服务基站根据UE上报的目标小区的PCI,确定目标小区。并发送切换指令,完成小区切换。但是,在现有的LTE系统中,PCI资源是有限的。LTE系统仅提供504个PCI。因此,在实际应用中,在一个小区的邻区中,会存在不同的邻区具有相同PCI的情况,即,发生PCI的混淆。这样,当服务基站接收到UE上报的目标小区的PCI时,假使上报的PCI对应多个邻区,那么,服务基站将无法根据PCI给UE选择正确的目标小区。即,服务基站无法从PCI相同的多个邻区中正确地选择出UE需要切换的目标小区。
现有技术中,为了解决UE在切换过程中出现的PCI混淆的问题,基站会在出现PCI混淆以后,给UE重新配置目标小区的全球小区标识(Cell Global Identifier,CGI)的读取。由于CGI可以唯一地标识一个小区。因此,基站通过获取目标小区的CGI,可以从具有相同PCI的小区中,正确地选择出UE需要切换的目标小区。
但是,CGI的读取需要基站在UE上报测量报告后重新给UE配置,由于增加了信令的交互,因此,使得小区切换的时延增加。
发明内容
本申请提供了一种用于小区切换的方法、基站和控制节点,在PCI发生混淆时,能够在不增加时延的情况下确定目标小区,完成小区的切换。
第一方面,本申请提供一种用于小区切换的方法,应用于包括第一基站、至少两个第二基站和用户设备UE的通信系统中,该第一基站与第一小区对应,该第一小区为该UE的服务小区,该至少两个第二基站与至少两个第二 小区对应,该至少两个第二小区为该第一小区的邻区,该至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在该通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,该配置信息用于指示该UE向该第一基站发送探测参考信号SRS时使用的时频资源,该方法包括:该第一基站接收该UE发送的切换请求,该切换请求用于指示该UE请求切换至该至少两个第二小区中的目标第二小区,该切换请求中携带该目标第二小区的物理小区标识PCI;该第一基站确定该PCI对应多个第二小区;该第一基站接收该至少两个第二基站中与该目标第二小区对应的目标第二基站发送的该UE的位置信息,该位置信息是该目标第二基站根据该配置信息获取的;该第一基站根据该位置信息,从该多个第二小区中确定该目标第二小区。
在现有技术中,UE向源基站(或者说,当前的服务基站)上报了目标小区的PCI以后,如果发生PCI混淆。源基站会给UE重新配置读取目标小区的CGI。由于CGI可以在全球唯一地标识一个小区,因此,获取到目标小区的CGI之后,就可以唯一地确定目标小区,而不会引起混淆。但是,服务基站配置CGI读取的过程,需要增加信令的交互,从而使得切换的时延增大。
在本发明实施例中,服务基站通过将UE向服务基站发送上行探测参考信号SRS时使用的时频资源的配置信息发送给目标基站(即,UE需要切换到的基站),使得目标基站可以在配置信息中指示的时频资源上检测UE给服务基站发送的SRS信号。如果UE能够检测到信号,就获取到UE位置信息,即,“UE正在靠近”,并将该UE的信息上报给服务基站,使基站参与到用户设备UE位置的判断。从而,服务基站可以获知UE当前正在靠近的目标小区。这样,服务基站不再需要通过向UE配置目标小区CGI的读取的方式,才能确定UE需要切换到的目标小区。与现有技术相比,减少了信令的交互。从而能够减小时延。
可选地,在第一方面的第一种实现方式中,该位置信息中携带该目标第二小区的CGI,以及,该第一基站根据该位置信息,从该多个第二小区中确定该目标第二小区,包括:该第一基站根据该CGI,从该多个第二小区中确定该目标第二小区。
可选地,在第一方面的第二种实现方式中,该第一基站接收该至少两个第二基站中与该目标第二小区对应的目标第二基站发送的该UE的位置信息 之前,该方法还包括:该第一基站向该目标第二基站发送配置信息,以便于该目标第二基站根据该配置信息,获取该UE的位置信息,并将该位置信息发送给该第一基站。
第二方面,本申请提供一种用于小区切换的方法,应用于包括第一基站、至少两个第二基站和用户设备UE的通信系统中,该第一基站与第一小区对应,该第一小区为该UE的服务小区,该至少两个第二基站与至少两个第二小区对应,该至少两个第二小区为该第一小区的邻区,该至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在该通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,该配置信息用于指示该UE向该第一基站发送探测参考信号SRS时使用的时频资源,该方法包括:该至少两个第二基站中的目标第二基站根据该配置信息,获取该UE的位置信息;该目标第二基站向该第一基站发送该位置信息,以便于该第一基站在接收到该UE发送的切换请求时,根据该位置信息,从该切换请求中携带的目标第二小区的物理小区标识PCI所对应的多个第二小区中,确定该UE需要切换至的目标第二小区,其中,该目标第二小区是该至少两个第二基站中与该目标第二小区对应的基站。
可选地,在第二方面的第一种实现方式中,该位置信息中携带该目标第二小区的CGI,以便于该第一基站根据该CGI,从该PCI对应的多个第二小区中确定该目标第二小区。
可选地,在第二方面的第二种实现方式中,该至少两个第二基站中的目标第二基站获取该UE的位置信息之前,该方法还包括:该目标第二基站接收该第一基站发送的配置信息;以及,该目标第二基站根据该配置信息,获取该UE的位置信息,包括:该目标第二基站在该配置信息所指示的时频资源上进行SRS信号检测;当该目标第二基站在该时频资源上检测到该SRS信号时,该目标第二基站获取该UE的位置信息。
第三方面,提供一种用于小区切换的方法,应用于包括控制节点、第一基站、至少两个第二基站和用户设备UE的通信系统中,该第一基站与第一小区对应,该第一小区为该UE的服务小区,该至少两个第二基站与至少两个第二小区对应,该至少两个第二小区为该第一小区的邻区,该至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在该通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,该配置信 息用于指示该UE向该第一基站发送探测参考信号SRS时使用的时频资源,该方法包括:该控制节点获取切换请求,该切换请求用于指示该UE请求切换至该至少两个第二小区中的目标第二小区,该切换请求中携带该目标第二小区的物理小区标识PCI;该控制节点确定该PCI对应多个第二小区;该控制节点获取该UE的位置信息;该控制节点根据该位置信息,从该多个第二小区中确定该目标第二小区。
可选地,在第三方面的第一种实现方式中,该位置信息中携带该目标第二小区的CGI,以及,该控制节点根据该位置信息,从该多个第二小区中确定该目标第二小区,包括:该控制节点根据该CGI,从该多个第二小区中确定该目标第二小区。
可选地,在第三方面的第二种实现方式中,该控制节点为接入网关(Access Gateway,AG)。
第四方面,本申请提供一种基站,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该基站包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第五方面,本申请提供一种基站,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该基站包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第六方面,本申请提供一种控制节点,用于执行第三方面或第三方面的任意可能的实现方式中的方法。具体地,该控制节点包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的单元。
第七方面,本申请提供一种基站,该基站包括接收器、发送器、处理器、存储器和总线系统。其中,接收器、发送器、处理器和存储器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制接收器接收信号和控制发送器发送信号。并且当处理器执行存储器存储的指令时,执行使得处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,本申请提供了一种基站,该基站包括接收器、发送器、处理器、存储器和总线系统。其中,接收器、发送器、处理器和存储器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制接收器接收信号和控制发送器发送信号。并且当处理器执行存储器存储的 指令时,执行使得处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,本申请提供了一种控制节点,该控制节点包括接收器、发送器、处理器、存储器和总线系统。其中,接收器、发送器、处理器和存储器通过总线系统相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制接收器接收信号和控制发送器发送信号。并且当处理器执行存储器存储的指令时,执行使得处理器执行第三方面或第三方面的任意可能的实现方式中的方法。
第十方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十一方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十二方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
本申请提供的技术方案,通过使基站参与到用户设备的位置的判断,在目标小区的PCI发生混淆时,基站可以根据用户设备的位置信息,在不增加时延的情况下,从具有相同PCI的多个小区中确定目标小区,完成切换。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了适用于本发明实施例的用于小区切换的方法的一种应用场景的示意图。
图2示出了PCI混淆的示意图。
图3示出了根据本发明一实施例的用于小区切换的方法的示意性交互图。
图4示出了根据本发明另一实施例的用于小区切换的方法的示意性交互图。
图5示出了根据本发明一实施例的基站的示意性框图。
图6示出了根据本发明另一实施例的基站的示意性框图。
图7示出了根据本发明又一实施例的控制节点的示意性框图。
图8示出了根据本发明一实施例的基站的示意性结构图。
图9示出了根据本发明另一实施例的基站的示意性结构图。
图10示出了根据本发明又一实施例的控制节点的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)可称之为终端(Terminal)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还 可以是LTE中的演进型基站(Evolutional Node B,eNB或e-NodeB),本发明并不限定。
还应理解,本发明实施例的用于切换的方法,可以适用于UE在宏基站之间的切换、UE在微基站之间的切换和UE在宏基站与微基站之间切换的各种情况。为了便于理解和说明,本发明实施例中,仅以UE从宏基站切换至微基站为例,对本发明实施例的用于小区切换的方法进行说明。
在本发明实施例中,第一基站可以为宏基站,相对应地,第一小区可以为宏小区(macro cell)。第二基站可以为微基站、微微基站和毫微微基站等。相对应地,第二小区可以分别为微小区(micro cell)、微微小区(pico cell)和毫微微小区(femto cell)。本发明实施例对此不作任何限定。
需要说明的是,在本发明实施例中,编号“第一”、“第二”仅仅为了区分不同的对象,例如,为了区分不同的基站或小区,不应对本发明实施例的保护范围构成任何限定。
图1示出了适用于本发明实施例的用于小区切换的方法的一种应用场景。如图1所示,场景中包括一个宏基站A、多个(图1中为6个)微基站。宏基站对应一个小区(为了便于区分和描述,以下记作宏小区)。每个微基站对应一个小区,并处于宏小区的覆盖范围内。其中,微基站B和微基站C的物理小区标识(Physical Cell Identifier,PCI),即,微基站B和为微基站C的物理小区标识均为PCI=100。
需要说明的是,PCI由主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)组成。在LTE中,终端根据不同的PCI来区分不同的无线信号。PCI现有的LTE中共提供504个PCI,取值范围为0~503。
通常,PCI需要在一片区域统一规划后对基站进行配置。当规划合理时,可以确保一片区域内的小区各自使用不同的PCI。但若PCI规划不合理,将可能发生PCI的混淆。
应理解,PCI的混淆是指某个小区的邻区中有两个以上的同频小区中使用了相同的PCI,使得服务小区无法识别出这些邻区(即,相邻小区)。
图2示出了PCI混淆的示意图。如图2所示,假设用户设备UE当前的服务小区为小区A,小区A具有三个邻区,分别为小区B、小区C和小区D。其中,小区A的PCI的取值为PCI=101,小区B和小区C的PCI的取值均 为PCI==102,小区D的PCI的取值为PCI=103。在LTE协议中,在切换过程中,UE首先可以对服务小区的多个邻区进行测量,从而从该多个邻区中选择一个目标小区,并将该目标小区的PCI上报给基站。服务基站根据UE发送的目标小区的PCI,从多个邻区中确定目标小区,并完成UE从服务小区至目标小区的切换。如图2中,假设UE选择的目标小区为小区B。那么,UE向服务基站上报目标小区的PCI为PCI=102。但是,服务基站仅仅根据PCI,无法区分出UE需要切换的目标小区为小区B,还是小区C。此种情况即为PCI混淆。
现有技术中,在PCI出现混淆的情况下,为了使服务基站能够正确地分别出UE需要切换至的目标小区,采用了两种方式。一种方式是,eNB在邻区管理的过程中,若发现自己有两个具有相同PCI的邻区,则触发告警。通过告警来指示管理人员对PCI进行人工修改或者重新分配PCI。显然,采用这种方式,人工成本很高。同时,修改PCI可能会影响已有的网络规划。另一种方式是,在切换过程中,若出现了PCI混淆场景。服务基站会给UE重新配置CGI读取,由于CGI为小区的全球小区标识,可以唯一地标识一个小区。因此,通过读取CGI,可以获得目标小区的小区标识ID、eNB标识ID,从而找到目标小区。但是,重新读取CGI,需要服务基站在接收到UE发送的测量报告后,重新给UE进行配置,增加了时延,存在掉话风险,影响用户体验。并且,读取CGI需要给UE重新配置非连续接收(Discontinuous Reception,DRX)。而DRX可以被打断,即可能存在读取失败的风险,导致切换失败。由此可见,在现有的解决PCI混淆的技术方案中,都增加了信令交互的过程,增加了切换时延。
在本发明实施例中,用于小区切换的方法,可应用于多种场景。例如,无控制节点,仅宏基站和微基站同频覆盖场景,一个宏基站和多个微基站,邻区个数较多(即,场景一)。又例如,有控制节点,仅宏基站和微基站同频覆盖场景,一个宏基站和多个微基站,邻区个数较多(即,场景二)。
以下,结合图3和图4,详细说明根据本发明实施例的用于小区切换的方法在上述场景一和场景二中的应用。
场景一
图3示出了根据本发明一实施例的用于小区切换的方法的示意性交互图。如图3所示,该方法包括:
201、宏基站接收UE发送的切换请求,该切换请求中携带目标第二小区的PCI。
UE在完成小区测量后,确定要切换到的目标小区的PCI。然后,UE向服务基站发送切换请求,对测量结果进行上报。UE进行小区测量和上报测量结果的过程可以与现有技术相同,为了简洁,此处不作赘述。
宏基站(即,第一基站的一例)接收UE发送的切换请求,该切换请求用于指示该UE请求从服务小区切换到目标小区。其中,该切换请求中携带了目标小区的PCI。
202、宏基站确定该PCI对应多个第二小区。
参见上述图1中所示的应用场景,如果切换请求中携带的目标小区的PCI为PCI=100。那么,PCI=100的小区有两个,即,微基站B和微基站C。此时,对于宏基站而言,无法根据PCI=100确定UE需要切换的目标小区是微基站对应的小区,还是微基站C对应的小区。
203、宏基站接收目标微基站发送的UE的位置信息。
应理解,此处的目标微基站是指宏基站覆盖范围下的多个邻小区中与目标小区对应的微基站。
UE的位置信息是该目标微基站(即,目标第二基站的一例)根据配置信息获取的。该配置信息用于指示该UE在向该宏基站发送探测参考信号(Sounding Reference Signal,SRS)时使用的时频资源。
可选地,在本发明实施例中,每个微基站都存储有该配置信息。根据该配置信息中指示的时频资源(为了便于区分和理解,以下记作时频资源#A),所有的微基站都会在该时频资源#A上进行SRS信号检测。
如果微基站C在时频资源#A上检测不到SRS信号,表示“该UE已经离开”,或者“该UE还未靠近”。由此可见,该UE需要切换的小区并不是微基站C对应的小区。
如果微基站B在时频资源#A上接收到SRS信号,表示“该UE正在靠近”,或者“该UE已经处于微基站B对应的小区”。此时,微基站B获取到该UE的位置信息。
可选地,宏基站在接收微基站发送的位置信息之前,宏基站也可以向所有的微基站发送该配置信息。
在本发明实施例中,配置信息可以是微基站预先存储的,也可以是宏基 站在接收到UE的切换请求之后,发送给各个微基站的。这样,每个微基站都可以基于该配置信息中指示的时频资源,进行信号检测,以确认该UE是否正在靠近自己。
需要说明的是,在图3所示的交互示意图中,为了简洁,仅示出了目标微基站。实际上,在本发明实施例中,宏基站会将配置信息发送给宏小区覆盖范围内的所有微基站。例如,在图2中,小区A对应的基站会将配置信息发送给所有邻区(即,小区B、小区C和小区D)对应的基站。也或者说,小区B、小区C和小区D各自对应的基站都会接收到配置信息。并在配置信息中指示的时频资源上进行SRS信号的检测。
还需要说明的是,本发明实施例中,仅以宏基站发送一个UE的配置信息为例进行说明。可以理解的是,当宏基站对应的宏小区的覆盖区域内有多个UE时,宏基站生成的配置信息中包括该多个UE向宏基站发送SRS信息时使用的时频资源。
在本发明实施例中,配置信息是由宏基站生成(或者说,配置)的。并且,宏基站生成配置信息的过程与现有技术相同。此处不再赘述。
需要说明的是,在本发明实施例中,UE的位置信息为“UE的位置正在靠近”的信息。
应理解,微基站在时频资源上接收到UE发送给宏基站的SRS信号,微基站通过对该SRS信号进行解码,可以获得发送该SRS信号的UE。或者说,在本发明实施例中,宏基站可以为不同的UE配置不同的时频资源,使得每个UE使用不同于其它UE的时频资源。并把配置信息发送给各个微基站。微基站根据配置信息中指示的时频资源进行SRS信号检测。当一个微基站在一个时频资源上接收到SRS信号时,通过UE与时频资源之间的对应关系,可以获知在该时频资源上发送SRS信号的UE。进而,将该UE的位置信息发送给宏基站。或者,宏基站也可以为不同的UE配置相同的时频资源,并通过码分的方式来区分不同的UE。这样,微基站通过对接收到的SRS信号进行解码,可以确定发送该SRS信号的UE。并将该UE的位置信息发送给宏基站。
204、宏基站根据该位置信息,从UE上报的PCI所对应的多个小区中,确定目标小区。
宏基站接收到微基站B发送的UE的位置信息,可以获取UE当前正在 靠近的微基站为微基站B。因此,UE需要切换到的目标小区即为微基站B对应的小区。这样,宏基站就可以从微基站B和微基站C中确定出,目标微基站为微基站B,而不是微基站C。换句话说,确定了微基站B,也就确定的微基站B对应的小区为目标小区。
应理解,在本发明实施例中,如果有多个微基站同时检测到该UE发送给宏基站的SRS信号,并向宏基站发送的该UE的位置信息。宏基站可以根据各个微基站接收到的该SRS信号的强弱或质量等,从多个小区中选择出UE需要切换至的目标小区。
例如,继续以图1为例,假使,微基站B与微基站C都检测到UE发送给宏基站的SRS信号,并将“该UE正在靠近”的位置信息发送给宏基站。此种情况下,微基站B和微基站C在发送给宏基站的位置信息中携带接收到的SRS信号的大小或质量等。可以理解的是,由于UE在持续靠近微基站B,因此,微基站B与微基站C相比,微基站B接收到的SRS信号强度应强于微基站C。此时,宏基站也可以结合微基站接收到的SRS信号的强弱以及质量等,从微基站B与微基站C中,将接收到SRS信号的强度较大的微基站B确定为目标微基站。从而,确定出目标小区。
可选地,作为一个实施例,该位置信息中携带目标小区的CGI。
在本发明实施例中,目标基站在向宏基站发送UE的位置信息时,可以在该位置信息中携带目标小区的CGI。这样,宏基站接收到目标基站发送的目标小区的CGI,可以根据目标小区的CGI,从多个具有相同PCI的小区中,确定目标小区。
需要说明的是,CGI是全球小区标识,可以唯一地标识一个小区。宏基站接收到目标小区的CGI,可以唯一地从多个小区中确定出目标小区。
根据本发明实施例的用于小区切换的方法,通过使基站参与到用户设备的位置的判断,在目标小区的PCI发生混淆的情况下,基站可以根据用户设备的位置信息,从具有相同PCI的多个小区中确定目标小区,完成切换。与现有技术相比,在不增加时延的情况下,可以完成小区切换。
另一方面,现有技术中,基站在发生PCI混淆的情况下,重新给UE配置CGI的读取,可能会存在读取失败的风险,导致切换失败。而在本发明实施例中,通过邻基站在检测到UE的位置信息后向服务基站上报(此时,邻基站为目标基站),避免了CGI可能读取失败而导致的切换失败。因此,能 够提升切换成功率。
场景二
图4示出了根据本发明另一实施例的用于小区切换的方法的示意性交互图。如图4所示,该方法包括:
301、宏基站向控制节点发送配置信息。
应理解,在本发明实施例中,控制节点可以为接入网关(Access Gateway,AC),或虚拟e-NB。本发明实施例对此不作限定。
与上述场景一中的说明类似,配置信息可以是控制节点预先存储的。也可以是宏基站在接收到UE发送的切换请求后,发送给控制节点的。也或者,控制节点预先存储该配置信息。当宏基站配置的该配置信息发生改变时,宏基站向控制节点发送重新配置的配置信息。本发明实施例对此不作限定。
302、控制节点将配置信息发送给各个微基站。
其中,配置信息用于指示UE向宏基站发送SRS信号时使用的时频资源。配置信息的说明可以参见前文中的描述,此处不作赘述。
应理解,此处的“各个微基站”是指处于该宏基站对应的宏小区的覆盖范围内的所有微基站。或者说,“各个微基站”是宏小区的所有邻小区各自对应的基站。
303、微基站在配置信息中指示的时频资源上进行SRS信号检测。
具体地说,微基站(包括目标微基站)在宏基站的SRS时隙上去检测SRS信号。若能够接收到SRS信号,表示“UE正在靠近”。若接收不到,则表示“UE已经离开”,或者“UE还未靠近”。
304、控制节点接收目标微基站发送的UE的位置信息。
可选地,目标微基站也可以将UE的位置信息发送给宏基站,由宏基站转发给控制节点。在图4中,仅以目标微基站将UE的位置信息直接发送给控制节点为例进行说明,本发明实施例对此不作任何限定。
305、宏基站接收UE发送的测量报告,该测量报告中携带目标小区的PCI。
应理解,在步骤305,宏基站在接收UE发送的测量报告之前,宏基站需要向UE发送切换测量指示,指示UE对邻区进行测量。UE完成对邻区的测量以后,向宏基站发送测量报告,该测量报告中携带目标小区的PCI。
需要说明的是,UE向宏基站发送测量报告可以基于周期上报,也可以 基于事件上报。上报的过程与现有技术类似,此处不作赘述。
306、宏基站向控制节点发送目标小区的PCI。
与上述步骤304类似,在图4中,仅以宏基站接收到UE上报的目标小区的PCI之后,将该PCI发送给控制节点为例进行说明。显然,UE也可以直接将目标小区的PCI发送给控制节点。
307、控制节点根据目标微基站发送的UE的位置信息和目标小区的PCI确定目标小区。
控制节点首先确定该PCI所对应的多个小区(包括目标小区在内),再结合UE的位置信息,从该多个小区中确定出UE当前正在靠近的小区为目标小区。
控制节点在确定目标小区之后,向目标小区发送切换指示,完成小区切换。
应理解,上述图3和图4中所述的宏基站是根据本发明实施例中第一基站的一例。目标微基站是根据本发明实施例中目标第二基站的一例。相对应地,宏小区为第一小区的一例,多个微基站对应的多个小区为本发明实施例的多个第二小区的一例。
需要说明的是,以上仅以场景一和场景二为例,对本发明实施例的用于小区切换的方法进行说明。不应对本发明实施例的保护范围构成任何限定。本发明实施例的用于小区切换的方法在其他应用场景下的应用,也应落入本发明实施例的保护范围。
根据本发明实施例的用于小区切换的方法,基站通过判断用户设备的位置,从而能够从具有相同PCI的多个小区中,正确地确定出目标小区。不需要增加信令的交互。从而在出现PCI混淆时,能够在不增加时延的情况下,完成小区切换。
上文中结合图1至图4,详细说明了根据本发明实施例的用于小区切换的方法,下面将结合图5至图7,对根据本发明实施例的用于小区切换的基站和控制节点进行说明。
图5示出了根据本发明实施例的基站400的示意图。如图5所示,该基站400包括:
接收单元410,用于接收UE发送的切换请求,该切换请求用于指示该UE请求切换至该至少两个第二小区中的目标第二小区,该切换请求中携带 该目标第二小区的物理小区标识PCI;
处理单元420,用于确定该PCI对应多个第二小区;
该接收单元410还用于,接收该至少两个第二基站中与该目标第二小区对应的目标第二基站发送的该UE的位置信息,该位置信息是该目标第二基站根据该配置信息获取的;
该处理单元420还用于根据该位置信息,从该多个第二小区中确定该目标第二小区。
根据本发明实施例的基站400中的各单元和上述其它操作或功能分别为了实现本发明实施例的用于小区切换的方法中由第一基站执行的相应流程。为了简洁,此处不再赘述。
因此,根据本发明实施例的用于小区切换的方法,在出现PCI混淆时,目标第二基站通过判断用户设备的位置,并将用户设备的位置信息发送给第一基站,使得第一基站能够正确地确定出目标小区。由于不需要增加信令的交互,因而能够在不增加时延的情况下,完成小区切换。
图6示出了根据本发明实施例的基站500的示意图。如图6所示,该基站500包括:
获取单元510,用于根据该配置信息,获取UE的位置信息;
发送单元520,用于向第一基站发送该位置信息,以便于该第一基站在接收到该UE发送的切换请求时,根据该位置信息,从该切换请求中携带的目标第二小区的物理小区标识PCI所对应的多个第二小区中,确定该UE需要切换至的目标第二小区,其中,该基站是该至少两个基站中与该目标第二小区对应的基站。
根据本发明实施例的基站500中的各单元和上述其它操作或功能分别为了实现本发明实施例中由目标第二基站执行的相应流程。为了简洁,此处不再赘述。
因此,根据本发明实施例的用于小区切换的方法,在出现PCI混淆时,目标第二基站通过判断用户设备的位置,并将用户设备的位置信息发送给第一基站,使得第一基站能够正确地确定出目标小区。由于不需要增加信令的交互,因而能够在不增加时延的情况下,完成小区切换。
图7示出了根据本发明实施例的控制节点600的示意图。如图7所示,该控制节点600包括:
获取单元610,用于获取切换请求,该切换请求用于指示该UE请求切换至该至少两个第二小区中的目标第二小区,该切换请求中携带该目标第二小区的物理小区标识PCI;
处理单元620,用于确定该PCI对应多个第二小区;
该获取单元610,还用于获取该UE的位置信息;
该处理单元620,还用于根据该位置信息,从该多个第二小区中确定该目标第二小区。
根据本发明实施例的控制节点600中的各单元和上述其它操作或功能分别为了实现本发明实施例中由控制节点执行的相应流程。为了简洁,此处不再赘述。
因此,根据本发明实施例的用于小区切换的方法,在出现PCI混淆时,目标第二基站通过判断用户设备的位置,并将用户设备的位置信息发送给控制节点,使得控制节点能够正确地确定出目标小区。由于不需要增加信令的交互,因而能够在不增加时延的情况下,完成小区切换。
以上结合图5至图7,对根据本发明实施例的用于小区切换的方法进行了详细说明。以下,结合图8至图10,对根据本发明实施例的基站和控制节点进行说明。
图8示出了根据本发明实施例的基站700的示意性结构图。该基站700配置在包括至少两个第二基站和用户设备UE的通信系统中,该基站与第一小区对应,该第一小区为该UE的服务小区,该至少两个第二基站与至少两个第二小区对应,该至少两个第二小区为该第一小区的邻区,该至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在该通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,该配置信息用于指示该UE向该基站发送探测参考信号SRS时使用的时频资源。如图8所示,该基站700包括:接收器710、发送器720、处理器730、存储器740和总线系统750。其中,接收器710、发送器720、处理器730和存储器740通过总线系统750相连,该存储器740用于存储指令,该处理器730用于执行该存储器740存储的指令,以控制接收器710接收信号,并控制发送器720发送信号,其中,
接收器710,用于接收UE发送的切换请求,该切换请求用于指示该UE请求切换至该至少两个第二小区中的目标第二小区,该切换请求中携带该目 标第二小区的物理小区标识PCI;
处理器730,用于确定该PCI对应多个第二小区;
该接收器710还用于,接收该至少两个第二基站中与该目标第二小区对应的目标第二基站发送的该UE的位置信息,该位置信息是该目标第二基站根据该配置信息获取的;
该处理器730还用于,根据该位置信息,从该多个第二小区中确定该目标第二小区。
应理解,在本发明实施例中,该处理器730可以是中央处理单元(central processing unit,简称为“CPU”),该处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器740可以包括只读存储器和随机存取存储器,并向处理器830提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
该总线系统750除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统750。
在实现过程中,上述方法的各步骤可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的用于小区切换的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的基站700中的各单元和上述其它操作或功能分别为了执行本发明实施例中由第一基站执行的相应流程。为了简洁,此处不再赘述。
因此,根据本发明实施例的基站,在出现PCI混淆时,通过接收目标第二基站发送的用户设备的位置信息,能够正确地确定出目标小区。由于不需要增加信令的交互,因而能够在不增加时延的情况下,完成小区切换。
图9示出了根据本发明实施例的基站800的示意性结构图。该基站800配置在包括第一基站、至少两个基站和用户设备UE的通信系统中,该第一基站与第一小区对应,该第一小区为该UE的服务小区,该至少两个基站与至少两个第二小区对应,该至少两个第二小区为该第一小区的邻区,该至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在该通信系统中唯一地标识对应的第二小区,每个该基站存储有配置信息,该配置信息用于指示该UE向该第一基站发送探测参考信号SRS信号时使用的时频资源。如图9所示,该基站800包括:接收器810、发送器820、处理器830、存储器840和总线系统850。其中,接收器810、发送器820、处理器830和存储器840通过总线系统850相连,该存储器840用于存储指令,该处理器830用于执行该存储器840存储的指令,以控制接收器810接收信号,并控制发送器820发送信号,其中,
该处理器830,用于根据配置信息,获取该UE的位置信息;
该发送器820,用于向该第一基站发送该位置信息,以便于该第一基站在接收到该UE发送的切换请求时,根据该位置信息,从该切换请求中携带的目标第二小区的物理小区标识PCI所对应的多个第二小区中,确定该UE需要切换至的目标第二小区,其中,该目标第二小区是该至少两个第二基站中与该目标第二小区对应的基站。
应理解,在本发明实施例中,该处理器830可以是中央处理单元(central processing unit,简称为“CPU”),该处理器830还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器840可以包括只读存储器和随机存取存储器,并向处理器830提供指令和数据。存储器840的一部分还可以包括非易失性随机存取存储器。例如,存储器840还可以存储设备类型的信息。
该总线系统850除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统850。
在实现过程中,上述方法的各步骤可以通过处理器830中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的用于小区切 换的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器840,处理器830读取存储器840中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的基站800中的各单元和上述其它操作或功能分别为了实现本发明实施例中由目标第二基站执行的相应流程。为了简洁,此处不再赘述。
因此,根据本发明实施例的基站,在出现PCI混淆时,通过判断用户设备的位置,并将用户设备的位置信息发送给第一基站,使得第一基站能够正确地确定出目标小区。由于不需要增加信令的交互,因而能够在不增加时延的情况下,完成小区切换。
图10示出了根据本发明实施例的控制节点900的示意性结构图。该控制节点900配置在包括第一基站、至少两个第二基站和用户设备UE的通信系统中,所述第一基站与第一小区对应,所述第一小区为所述UE的服务小区,所述至少两个第二基站与至少两个第二小区对应,所述至少两个第二小区为所述第一小区的邻区,所述至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在所述通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,所述配置信息用于指示所述UE向所述第一基站发送探测参考信号SRS时使用的时频资源。如图10所示,该控制节点900包括:接收器910、发送器920、处理器930、存储器940和总线系统950。其中,接收器910、发送器920、处理器930和存储器940通过总线系统950相连,该存储器940用于存储指令,该处理器930用于执行该存储器940存储的指令,以控制接收器910接收信号,并控制发送器920发送信号,其中,
该接收器910,用于接收切换请求,该切换请求用于指示该UE请求切换至该至少两个第二小区中的目标第二小区,该切换请求中携带该目标第二小区的物理小区标识PCI;
该处理器930,用于确定该PCI对应多个第二小区;
该接收器910,还用于接收该UE的位置信息;
该处理器930,还用于根据该位置信息,从该多个第二小区中确定该目 标第二小区。
应理解,在本发明实施例中,该处理器930可以是中央处理单元(central processing unit,简称为“CPU”),该处理器930还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器940可以包括只读存储器和随机存取存储器,并向处理器930提供指令和数据。存储器940的一部分还可以包括非易失性随机存取存储器。例如,存储器940还可以存储设备类型的信息。
该总线系统950除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统950。
在实现过程中,上述方法的各步骤可以通过处理器930中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的用于小区切换的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器940,处理器930读取存储器940中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本发明实施例的控制节点900中的各单元和上述其它操作或功能分别为了本发明实施例的用于小区切换的方法中由控制节点执行的相应流程。为了简洁,此处不再赘述。
因此,根据本发明实施例的控制节点,在出现PCI混淆时,控制节点通过获取UE的位置信息,能够正确地确定出目标小区。由于不需要增加信令的交互,因而能够在不增加时延的情况下,完成小区切换。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种用于小区切换的方法,其特征在于,应用于包括第一基站、至少两个第二基站和用户设备UE的通信系统中,所述第一基站与第一小区对应,所述第一小区为所述UE的服务小区,所述至少两个第二基站与至少两个第二小区对应,所述至少两个第二小区为所述第一小区的邻区,所述至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在所述通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,所述配置信息用于指示所述UE向所述第一基站发送探测参考信号SRS时使用的时频资源,所述方法包括:
    所述第一基站接收所述UE发送的切换请求,所述切换请求用于指示所述UE请求切换至所述至少两个第二小区中的目标第二小区,所述切换请求中携带所述目标第二小区的物理小区标识PCI;
    所述第一基站确定所述PCI对应多个第二小区;
    所述第一基站接收所述至少两个第二基站中与所述目标第二小区对应的目标第二基站发送的所述UE的位置信息,所述位置信息是所述目标第二基站根据所述配置信息获取的;
    所述第一基站根据所述位置信息,从所述多个第二小区中确定所述目标第二小区。
  2. 根据权利要求1所述的方法,其特征在于,所述位置信息中携带所述目标第二小区的CGI,以及
    所述第一基站根据所述位置信息,从所述多个第二小区中确定所述目标第二小区,包括:
    所述第一基站根据所述CGI,从所述多个第二小区中确定所述目标第二小区。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一基站接收所述至少两个第二基站中与所述目标第二小区对应的目标第二基站发送的所述UE的位置信息之前,所述方法还包括:
    所述第一基站向所述目标第二基站发送配置信息,以便于所述目标第二基站根据所述配置信息,获取所述UE的位置信息,并将所述位置信息发送给所述第一基站。
  4. 一种用于小区切换的方法,其特征在于,应用于包括第一基站、至 少两个第二基站和用户设备UE的通信系统中,所述第一基站与第一小区对应,所述第一小区为所述UE的服务小区,所述至少两个第二基站与至少两个第二小区对应,所述至少两个第二小区为所述第一小区的邻区,所述至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在所述通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,所述配置信息用于指示所述UE向所述第一基站发送探测参考信号SRS时使用的时频资源,所述方法包括:
    所述至少两个第二基站中的目标第二基站根据所述配置信息,获取所述UE的位置信息;
    所述目标第二基站向所述第一基站发送所述位置信息,以便于所述第一基站在接收到所述UE发送的切换请求时,根据所述位置信息,从所述切换请求中携带的目标第二小区的物理小区标识PCI所对应的多个第二小区中,确定所述UE需要切换至的目标第二小区,
    其中,所述目标第二小区是所述至少两个第二基站中与所述目标第二小区对应的基站。
  5. 根据权利要求4所述的方法,其特征在于,所述位置信息中携带所述目标第二小区的CGI,以便于所述第一基站根据所述CGI,从所述PCI对应的多个第二小区中确定所述目标第二小区。
  6. 根据权利要求4或5所述的方法,其特征在于,所述至少两个第二基站中的目标第二基站获取所述UE的位置信息之前,所述方法还包括:
    所述目标第二基站接收所述第一基站发送的配置信息;以及
    所述目标第二基站根据所述配置信息,获取所述UE的位置信息,包括:
    所述目标第二基站在所述配置信息所指示的时频资源上进行SRS信号检测;
    当所述目标第二基站在所述时频资源上检测到所述SRS信号时,所述目标第二基站获取所述UE的位置信息。
  7. 一种用于小区切换的方法,其特征在于,应用于包括控制节点、第一基站、至少两个第二基站和用户设备UE的通信系统中,所述第一基站与第一小区对应,所述第一小区为所述UE的服务小区,所述至少两个第二基站与至少两个第二小区对应,所述至少两个第二小区为所述第一小区的邻区,所述至少两个第二小区与至少两个全球小区标识CGI一一对应,每个 CGI用于在所述通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,所述配置信息用于指示所述UE向所述第一基站发送探测参考信号SRS时使用的时频资源,所述方法包括:
    所述控制节点获取切换请求,所述切换请求用于指示所述UE请求切换至所述至少两个第二小区中的目标第二小区,所述切换请求中携带所述目标第二小区的物理小区标识PCI;
    所述控制节点确定所述PCI对应多个第二小区;
    所述控制节点获取所述UE的位置信息;
    所述控制节点根据所述位置信息,从所述多个第二小区中确定所述目标第二小区。
  8. 根据权利要求7所述的方法,其特征在于,所述位置信息中携带所述目标第二小区的CGI,以及
    所述控制节点根据所述位置信息,从所述多个第二小区中确定所述目标第二小区,包括:
    所述控制节点根据所述CGI,从所述多个第二小区中确定所述目标第二小区。
  9. 一种基站,其特征在于,配置在包括至少两个第二基站和用户设备UE的通信系统中,所述基站与第一小区对应,所述第一小区为所述UE的服务小区,所述至少两个第二基站与至少两个第二小区对应,所述至少两个第二小区为所述第一小区的邻区,所述至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在所述通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,所述配置信息用于指示所述UE向所述基站发送探测参考信号SRS时使用的时频资源,所述基站包括:
    接收单元,用于接收所述UE发送的切换请求,所述切换请求用于指示所述UE请求切换至所述至少两个第二小区中的目标第二小区,所述切换请求中携带所述目标第二小区的物理小区标识PCI;
    处理单元,用于确定所述PCI对应多个第二小区;
    所述接收单元,还用于接收所述至少两个第二基站中与所述目标第二小区对应的目标第二基站发送的所述UE的位置信息,所述位置信息是所述目标第二基站根据所述配置信息获取的;
    所述处理单元,还用于根据所述位置信息,从所述多个第二小区中确定 所述目标第二小区。
  10. 根据权利要求9所述的基站,其特征在于,所述位置信息中携带所述目标第二小区的CGI,以及
    所述处理单元具体用于根据所述目标第二小区的CGI,从所述多个第二小区中确定所述目标第二小区。
  11. 根据权利要求9或10所述的基站,其特征在于,所述基站还包括:
    发送单元,用于在所述接收单元接收所述至少两个第二基站中与所述目标第二小区对应的目标第二基站发送的所述UE的位置信息之前,向所述目标第二基站发送配置信息,以便于所述目标第二基站根据所述配置信息,获取所述UE的位置信息,并将所述位置信息发送给所述基站。
  12. 一种基站,其特征在于,配置在包括第一基站、至少两个第二基站和用户设备UE的通信系统中,所述第一基站与第一小区对应,所述第一小区为所述UE的服务小区,所述至少两个第二基站与至少两个第二小区对应,所述至少两个第二小区为所述第一小区的邻区,所述至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在所述通信系统中唯一地标识对应的第二小区,每个所述基站存储有配置信息,所述配置信息用于指示所述UE向所述第一基站发送探测参考信号SRS信号时使用的时频资源,所述基站包括:
    获取单元,用于根据所述配置信息,获取所述UE的位置信息;
    发送单元,用于向所述第一基站发送所述位置信息,以便于所述第一基站在接收到所述UE发送的切换请求时,根据所述位置信息,从所述切换请求中携带的目标第二小区的物理小区标识PCI所对应的多个第二小区中,确定所述UE需要切换至的目标第二小区,
    其中,所述基站是所述至少两个第二基站中与所述目标第二小区对应的基站。
  13. 根据权利要求12所述的基站,其特征在于,所述位置信息中携带所述目标第二小区的CGI,以便于所述第一基站根据所述CGI,从所述PCI对应的多个第二小区中确定所述目标第二小区。
  14. 根据权利要求12或13所述的基站,其特征在于,所述基站还包括:
    接收单元,用于在所述获取单元获取所述位置信息之前,接收所述第一基站发送的配置信息;
    所述获取单元,具体用于在所述配置信息指示的时频资源上进行SRS信号检测;以及
    所述获取单元还用于在所述时频资源上检测到所述SRS信号时,获取所述UE的位置信息。
  15. 一种控制节点,其特征在于,配置在包括第一基站、至少两个第二基站和用户设备UE的通信系统中,所述第一基站与第一小区对应,所述第一小区为所述UE的服务小区,所述至少两个第二基站与至少两个第二小区对应,所述至少两个第二小区为所述第一小区的邻区,所述至少两个第二小区与至少两个全球小区标识CGI一一对应,每个CGI用于在所述通信系统中唯一地标识对应的第二小区,每个第二基站存储有配置信息,所述配置信息用于指示所述UE向所述第一基站发送探测参考信号SRS时使用的时频资源,所述控制节点包括:
    获取单元,用于获取切换请求,所述切换请求用于指示所述UE请求切换至所述至少两个第二小区中的目标第二小区,所述切换请求中携带所述目标第二小区的物理小区标识PCI;
    处理单元,用于确定所述PCI对应多个第二小区;
    所述获取单元,还用于获取所述UE的位置信息;
    所述处理单元,还用于根据所述位置信息,从所述多个第二小区中确定所述目标第二小区。
  16. 根据权利要求15所述的控制节点,其特征在于,所述位置信息中携带所述目标第二小区的CGI,以及
    所述处理单元具体用于根据所述CGI,从所述多个第二小区中确定所述目标第二小区。
PCT/CN2016/083285 2016-05-25 2016-05-25 用于小区切换的方法、基站和控制节点 WO2017201687A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16902677.0A EP3448086B1 (en) 2016-05-25 2016-05-25 Cell switching method, base station, and control node
JP2018561505A JP6817336B2 (ja) 2016-05-25 2016-05-25 セル・ハンドオーバー方法、基地局および制御ノード
CA3025568A CA3025568C (en) 2016-05-25 2016-05-25 Cell handover method, base station, and control node
CN201680085943.6A CN109155947B (zh) 2016-05-25 2016-05-25 用于小区切换的方法、基站和控制节点
PCT/CN2016/083285 WO2017201687A1 (zh) 2016-05-25 2016-05-25 用于小区切换的方法、基站和控制节点
US16/198,146 US10368276B2 (en) 2016-05-25 2018-11-21 Cell handover method, base station, and control node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083285 WO2017201687A1 (zh) 2016-05-25 2016-05-25 用于小区切换的方法、基站和控制节点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/198,146 Continuation US10368276B2 (en) 2016-05-25 2018-11-21 Cell handover method, base station, and control node

Publications (1)

Publication Number Publication Date
WO2017201687A1 true WO2017201687A1 (zh) 2017-11-30

Family

ID=60412060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083285 WO2017201687A1 (zh) 2016-05-25 2016-05-25 用于小区切换的方法、基站和控制节点

Country Status (6)

Country Link
US (1) US10368276B2 (zh)
EP (1) EP3448086B1 (zh)
JP (1) JP6817336B2 (zh)
CN (1) CN109155947B (zh)
CA (1) CA3025568C (zh)
WO (1) WO2017201687A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159529A1 (en) * 2019-05-02 2022-05-19 Apple Inc. Enhancing inter-node handover signaling for conditional handover
US11716775B2 (en) * 2019-08-09 2023-08-01 Qualcomm Incorporated Soft physical cell identifier (PCI) change
KR20230042067A (ko) * 2020-07-31 2023-03-27 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법, 장치 및 시스템
CN114339874B (zh) * 2020-09-29 2023-03-17 上海华为技术有限公司 一种资源分配的方法及其相关设备
CN112822706B (zh) * 2020-12-31 2023-03-21 联想未来通信科技(重庆)有限公司 一种信息处理方法、装置及计算机可读存储介质
CN113068205B (zh) * 2021-03-16 2023-09-01 海能达通信股份有限公司 异常修复方法、装置、基站和计算机存储介质
US11515980B1 (en) * 2021-12-14 2022-11-29 BlueWave Technology (Shanghai) Co., Ltd Positioning method, mobile terminal and positioning system
CN115297499B (zh) * 2022-09-26 2022-12-16 智慧足迹数据科技有限公司 基于信令数据的基站工参确定方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120287800A1 (en) * 2011-05-11 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Radio Network Node, a Node and Methods Therein for Enabling Enhanced Cell ID Timing Measurement for Positioning of a User Equipment
CN103037434A (zh) * 2011-09-29 2013-04-10 重庆重邮信科通信技术有限公司 一种小区全局标识号上报方法及装置
CN104170462A (zh) * 2014-01-13 2014-11-26 华为技术有限公司 一种添加邻小区的方法、装置及系统
CN104301947A (zh) * 2013-07-17 2015-01-21 中兴通讯股份有限公司 一种移动性处理方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966903A4 (en) * 2013-03-22 2016-04-20 Huawei Tech Co Ltd METHOD AND APPARATUS FOR CELL IDENTIFICATION
US9699696B2 (en) * 2014-06-09 2017-07-04 Cisco Technology, Inc. System and method for providing handover to an ambiguous small cell access point in a network environment
US9781640B2 (en) * 2014-11-20 2017-10-03 Nokia Solutions And Networks Oy Method to optimize PCI confusion detection and resolution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120287800A1 (en) * 2011-05-11 2012-11-15 Telefonaktiebolaget L M Ericsson (Publ) Radio Network Node, a Node and Methods Therein for Enabling Enhanced Cell ID Timing Measurement for Positioning of a User Equipment
CN103037434A (zh) * 2011-09-29 2013-04-10 重庆重邮信科通信技术有限公司 一种小区全局标识号上报方法及装置
CN104301947A (zh) * 2013-07-17 2015-01-21 中兴通讯股份有限公司 一种移动性处理方法及装置
CN104170462A (zh) * 2014-01-13 2014-11-26 华为技术有限公司 一种添加邻小区的方法、装置及系统

Also Published As

Publication number Publication date
CN109155947B (zh) 2020-10-09
EP3448086B1 (en) 2020-07-08
JP2019519985A (ja) 2019-07-11
EP3448086A1 (en) 2019-02-27
US10368276B2 (en) 2019-07-30
CA3025568A1 (en) 2017-11-30
EP3448086A4 (en) 2019-02-27
US20190098541A1 (en) 2019-03-28
CN109155947A (zh) 2019-01-04
JP6817336B2 (ja) 2021-01-20
CA3025568C (en) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2017201687A1 (zh) 用于小区切换的方法、基站和控制节点
US20210051560A1 (en) Communication method and communications device
US11070998B2 (en) Apparatus and method for a mobile telecommunications system
US20160021632A1 (en) Method for transmitting common signal and apparatus thereof
WO2019029422A1 (zh) 一种定位、测量上报方法及装置
WO2019140620A1 (zh) 一种配置辅小区的方法、设备及计算机存储介质
CN106937345B (zh) 回到长期演进网络的方法、移动交换中心及系统
US11792700B2 (en) Method and device for cell change
CN113411847A (zh) 通信方法及装置
EP4142423A1 (en) Information transmission method, terminal and network device
CN105491625A (zh) 无线通信中切换接入点的方法、网络控制节点和用户设备
WO2022237812A1 (zh) 条件重配方法、设备、装置及存储介质
WO2014012385A1 (zh) 移动性管理的方法和设备
TW201815194A (zh) 通訊方法、終端裝置和網路裝置
CN112399418B (zh) 用于通信的方法和装置
WO2017214921A1 (zh) 无线通信的方法、装置、终端和基站
EP4002939B1 (en) Data exchange method
WO2017088461A1 (zh) 一种网络覆盖空洞掉话的处理方法、微基站及相关设备
CN112399459A (zh) 一种带宽部分的测量配置方法、终端及网络设备
WO2023125186A1 (zh) 通信方法、装置、设备、存储介质及程序
TW201815184A (zh) 用於切換的方法和裝置
CN112312492B (zh) 切换方法、用于切换的系统和终端设备
CN116266919A (zh) 一种配置动态小区集的方法和通信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016902677

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018561505

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3025568

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016902677

Country of ref document: EP

Effective date: 20181121

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902677

Country of ref document: EP

Kind code of ref document: A1