WO2017201632A1 - Metodo para producir grafeno a escala industrial a partir de negro de humo y su utilizacion como materia prima para la obtencion de nanotubos con propiedad de autoensamblaje - Google Patents

Metodo para producir grafeno a escala industrial a partir de negro de humo y su utilizacion como materia prima para la obtencion de nanotubos con propiedad de autoensamblaje Download PDF

Info

Publication number
WO2017201632A1
WO2017201632A1 PCT/CL2016/000026 CL2016000026W WO2017201632A1 WO 2017201632 A1 WO2017201632 A1 WO 2017201632A1 CL 2016000026 W CL2016000026 W CL 2016000026W WO 2017201632 A1 WO2017201632 A1 WO 2017201632A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
carbon black
nanotubes
industrial scale
cycles
Prior art date
Application number
PCT/CL2016/000026
Other languages
English (en)
French (fr)
Inventor
Mario Celedonio REYES SALINAS
Jacobo KRAVETZ MIRANDA
Carlos Ricardo CRUZAT IRARAZAVAL
Original Assignee
Reyes Salinas Mario Celedonio
Kravetz Miranda Jacobo
Cruzat Irarazaval Carlos Ricardo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reyes Salinas Mario Celedonio, Kravetz Miranda Jacobo, Cruzat Irarazaval Carlos Ricardo filed Critical Reyes Salinas Mario Celedonio
Priority to PCT/CL2016/000026 priority Critical patent/WO2017201632A1/es
Publication of WO2017201632A1 publication Critical patent/WO2017201632A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/52Channel black ; Preparation thereof

Definitions

  • the present patent application is directed to a method for producing graphene and graphene nanotubes on an industrial scale that have the particularity that they are capable of self-assembly, useful as raw material in batteries, traditional electrical circuits and / or compressible electromagnetic systems and non-compressible effects of Maxwell's equations as well as in the chemical industry.
  • the method contemplates obtaining graphene nanotubes from carbon black and / or other carbon donor in solid and pure state.
  • Graphene by definition corresponds to a carbon crystal in which the atoms are arranged in a hexagonal plane, similar to graphite, but on a sheet of an atom thick.
  • Graphene is carbon allotrope, with a flat hexagonal tessellated configuration formed by carbon atoms and covalent bonds that are formed from the superposition of sp (2) hybrids of bonded carbons. Among the most outstanding properties are that it is transparent, flexible, extraordinarily resistant, waterproof, abundant, economical and conducts electricity better than any other known metal. Graphene has many properties that had not been found before in any other material.
  • Nanotechnology has dabbled in various fields of technology as has the study of materials such as graphene and carbon nanotubes, since they have concentrated great research interest due to the remarkable mechanical, thermal and electrical properties that can be achieved using Low concentrations of these materials.
  • graphene is obtained through different methods (mechanical, physical, photochemical, ultrasonic and thermal) 4 and the nanotubes of carbon can be synthesized using different techniques (electric arc discharge, laser ablation, laser decomposition, catalytic decomposition of hydrocarbons) as follows: 5
  • the graphene obtained can only be used by a mechanical transfer to the surface to be used as a support.
  • the carbon nanotubes extend between the graphene sheets and at least a part of the carbon nanotubes are aligned approximately in the same direction, at a defined angle with respect to the axis of composite material. At least a portion of the flake is embedded within a porous carbon matrix (for example, an activated carbon, a polymer derived from carbon graphite, etc.).
  • a porous carbon matrix for example, an activated carbon, a polymer derived from carbon graphite, etc.
  • Graphene is inserted into a network of carbon nanotubes but is not an isolated element as such and shows a Grephene nanotube itself.
  • the method of obtaining the product containing Graphene is made from a plastic derived adhesive, unlike the present invention, which is made from carbon black.
  • invention patent publication US2013295374 describes a Graphene sheet film as a set similar to a film of two or more Graphene sheets.
  • the graphene sheet film uses a set of graphene sheets that includes: first carbon nanotubes that join the graphene sheets together and form graphene sheet laminates in which the graphene sheets are laminated with the sheets of the sheets that They are parallel to each other.
  • this patent publication is directed to obtain multiple graphene sheets and not to a singular structure or nanotube Graphene
  • its method of production contemplates the steps of adding carbon nanotubes to an aqueous solution of chemically reduced graphene sheets uniformly dispersed therein and producing a mixed solution of graphene sheets and carbon nanotubes, and filtering. of the mixed solution. It is not described that Graphene is obtained from carbon black.
  • the present invention describes a method of producing graphene nanotubes from a weft of guide wires whose main component is Carbon (4, 5, 6, 7 carbons) annular and / or linear, the final product being able to be used directly on a surface to build nanocircuits with or without doping of copper and / or lithium nanoparticles with the ultimate goal of establishing polarity.
  • the conductive activity without resistance of Graphene is widely described in the literature, as well as its multiple possibilities of use, given its laminar structure.
  • a method of doping is also described in different proportions with Lithium, Copper or other elements capable of transferring electrons in a continuous redox process, to constitute self-recharge batteries.
  • the self-recharge can be carried out in extreme cold or heat depending on the thickness of the layers and the doping performed.
  • Figure 1 represents a reactor scheme where part of the steps of the method of the invention is carried out.
  • Figure 2 corresponds to a diagram illustrating the heating and cooling cycles contemplated by the method of the invention.
  • Figure 3 corresponds to an illustration of the effect of Lichtenberg, which indicates that the energy will travel in the direction that places the least resistance to its passage.
  • Figure 4 corresponds to an illustration that shows when a sector of a CD is painted with a graphene paste a sector of the CD and energy waves are applied to visualize the effect of Lichtenberg.
  • the method for producing graphene nanotubes that have the capacity of self-assembly (self-heating), contemplates that it is obtained from carbon black or any carbon source and / or combination of two or more solid state carbon sources.
  • the present innovation describes a method of producing nanotubes from a weft of guide wires whose main component is Carbon (4, 5, 6, 7 carbons) annular and / or linear, and the final product can be used
  • the method consists of subjecting carbon black (amorphous carbon) (C) to manual pressure (1) inside a properly supported high temperature reactor (2) (3) (Fig. 1). A heating cycle is then carried out and violent cooling to complete a minimum of one cycle and a maximum of 50 cycles.
  • carbon black amorphous carbon
  • the quality of the Graphene obtained is verified, for which the high temperature reactor is opened in a controlled environment (under hood for example) and a sample is taken. This can be examined by traditional methods such as:
  • graphene nanotubes are obtained. For this, depending on the amount of nanotubes that are intended to be obtained, it is deposited in the high temperature reactor between 1 millimeter and 5 centimeters of graphene.
  • Graphene is distributed longitudinally in front of an imaginary and / or random axis, in one or multiple layers, so as to form a bed, of liquid, semi-solid, water-based solids, anions (4, 5, 6, 7 carbons) and / or long-chain hydrocarbons solubilized in alcohol (chain variable), and may contain salts and / or metals.
  • a second layer of Graphene is deposited on the "bed" of Graphene, which may contain salts and / or metals. Once the graphene beds have been deposited, the reaction described above is obtained, obtaining multiple layers of graphene nanotubes.
  • the metal is subjected to the same cycle destined to obtain Graphene described above, and the pressure can vary or not between each cycle.
  • a violent heating and cooling cycle is performed until a minimum of one cycle and a maximum of 50 cycles are completed.
  • the pot is opened in a controlled environment (under hood for example) and a sample is taken. Which is examined by light microscopy.
  • graphene nanotubes were produced by depositing in the kettle between 1 centimeter of graphene obtained from 10 grams of carbon black. Graphene was distributed longitudinally parallel to the bottom of the kettle, in 3 layers of liquid, semi-solid, water-based solids, anions (4, 5, 6, 7 carbons) and / or long chain hydrocarbons solubilized in alcohol (variable chain). A second layer of Graphene was deposited on the graphene layer. After which a heating cycle was carried out until the formation of nanotubes begins to be observed, after which it was subjected to a cooling click forming definitively the graphene nanotubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Método para producir grafeno y nanotubos de Grafeno a escala industrial que tienen la particularidad que son capaces de autoensamblarse, útiles como materia prima en baterías, circuitos eléctricos tradicionales y/o en sistemas electromagnéticos compresibles y no compresibles afectos a las ecuaciones de Maxwell así como en la industria química. Específicamente, el método contempla la obtención de los nanotubos de grafeno a partir de negro de humo y/u otro dador de carbono en estado solido y puro.

Description

MÉTODO PARA PRODUCIR GRAFENO A ESCALA INDUSTRIAL A PARTIR DE NEGRO DE HUMO Y SU UTILIZACIÓN COMO MATERIA PRIMA PARA LA OBTENCIÓN DE NANOTUBOS CON PROPIEDAD DE AUTOENSAMBLAJE
La presente solicitud de patente de invención se dirige a un método para producir grafeno y nanotubos de Grafeno a escala industrial que tienen la particularidad que son capaces de autoensamblarse, útiles como materia prima en baterías, circuitos eléctricos tradicionales y/o en sistemas electromagnéticos compresibles y no compresibles afectos a las ecuaciones de Maxwell así como en la industria química. Específicamente, el método contempla la obtención de los nanotubos de grafeno a partir de negro de humo y/u otro dador de carbono en estado sólido y puro.
ARTE PREVIO
El Grafeno por definición corresponde a un cristal de carbono en el que los átomos están dispuestos en un plano de forma hexagonal, similar al grafito, pero en una hoja de un átomo de espesor.
El grafeno es alótropo del carbono, de configuración teselada hexagonal plana formado por átomos de carbono y enlaces covalentes que se forman a partir de la superposición de los híbridos sp (2) de los carbonos enlazados. Entre las propiedades mas sobresalientes se encuentran que es transparente, flexible, extraordinariamente resistente, impermeable, abundante, económico y conduce la electricidad mejor que ningún otro metal conocido. El grafeno tiene muchas propiedades que no se habían encontrado antes en ningún otro material.
El grafeno se conocía desde la década de 1930 y en 1889 ya se mencionaba la posibilidad de formar filamentos de carbono por descomposición térmica de hidrocarburos gaseosos. Además, la palabra grafeno fue oficialmente adoptada en 1994 después de haber sido usada como mono capa de grafito en las ciencias superficiales. Pero no ha sido hasta hace unos años cuando se ha descubierto su verdadera utilidad.1
La nanotecnología ha incursionado en varios ámbitos de la tecnología como lo ha hecho el estudio de materiales como el grafeno y los nanotubos de carbono, ya que han concentrado gran interés de investigación debido a las notables propiedades mecánicas, térmicas y eléctricas que es posible conseguir empleando bajas concentraciones de estos materiales.2
Los nanotubos de pared múltiple fueron descubiertos en 1991 por el japonés lijima. Desde el principio mostraron importantes efectos cuánticos debido a su estructura casi unidimensional, lo que incentivó a numerosos científicos a trabajar con ellos. Los nanotubos de carbono de pared simple se descubrieron dos años después por el grupo de lijima en NEC y por otro grupo en el IBM Almadén Laboratory.3
Actualmente la obtención del grafeno se realiza a través de diferentes métodos (mecánicos, físicos, fotoquímicos, ultrasónicos y térmicos)4 y los nanotubos de carbono pueden sintetizarse usando diferentes técnicas (descarga de arco eléctrico, ablación láser, descomposición láser, descomposición catalítica de hidrocarburos) como las siguientes:5
Método de reducción química de óxido de grafito.
Método de exfoliación mecánica, a través de exfoliación de cinta adhesiva o sometimiento de hojuelas de grafito a ultrasonido, con bajas probabilidades de encontrar hojas de grafeno grandes y aisladas.
s Método de descomposición química por vapor de láminas de monocapas de grafeno, que requiere de alto vacío o sistemas especializados.
Método de descompresión longitudinal de nanotubos de carbono que permite la obtención de listones de nanotubos de carbono dependientes del diámetro de los nanotubos, técnica desarrollada recientemente. • Método de reducción de los derivados del grafito y el fluoruro de grafeno.7
El gran problema que existe en la actualidad para la obtención de estos materiales en cantidades industriales y poder comercializarlos es que los métodos anteriormente mencionados de obtención producen un elevado coste de fabricación, gran porcentaje de mermas en la producción y pérdida de sus propiedades.
Esto ha inviabilizado la comercialización en grandes cantidades de grafeno y nanotubos de carbono siendo hasta ahora solo un material de estudio de laboratorio. Las preparaciones que actualmente están disponibles no logran satisfacer la demanda debido a que:
S La obtención de nanotubos está sujeta a la producción de grafeno de alta calidad.
La disposición de nanotubos en el grafeno es al azar, no homogénea y no puede ser predecible en una escala mayor.
Del 100% de la materia prima que ingresa al ciclo productivo, solo se obtiene entre un 30 y un 40% de grafeno y, de este grafeno obtenido, solo un 15% presenta nanotubos con interés comercial.
Debido a los métodos de obtención, el grafeno obtenido solo puede ser utilizado mediante una transferencia mecánica a la superficie que se va a utilizar a modo de soporte.
Hasta antes de la presente invención el Grafeno siempre fue concebido como una estructura laminar y a escala de laboratorio, nunca como estructuras particulares o singulares que tuvieran la forma de un nanotubo o similar. Lo más cercano si se quiere hablar de una forma en particular, podemos citar a la publicación de la solicitud de patente de invención WO 2016/02532 que describe materiales compuestos que contienen carbono, que son adecuados para su uso como electrodos en sistemas electroquímicos. Los materiales compuestos se forman a partir de una estructura de grafeno y nanotubos de carbono Se describe copos de grafeno que forman una pluralidad de láminas generalmente planas (por ejemplo, que se extiende en un plano x-y) separados en la dirección de un eje de material compuesto (por ejemplo, a lo largo de un eje z) y aproximadamente paralelos entre sí. Los nanotubos de carbono se extienden entre las láminas de grafeno y al menos una parte de los nanotubos de carbono están alineados aproximadamente en la misma dirección, en un ángulo definido con respecto al eje de material compuesto. Al menos una parte del copo está incrustado dentro de una matriz de carbono poroso (por ejemplo, un carbón activado, un polímero derivado de grafito de carbono, etc.). A diferencia de la presente invención en esta publicación de patente se menciona que el Grafeno está inserto dentro de una red de nanotubos de carbono pero no es un elemento aislado como tal y mneos un nanotubo de Grefeno en sí mismo. Además, el método de obtención del producto que contiene Grafeno se realiza a partir de un adhesivo derivado de plástico a diferencia de la presente invención que lo hace a partir de negro de humo.
Por otra parte, la publicación de patente de invención US2013295374 describe una película de hoja de Grafeno como un conjunto similar a una película de dos o más láminas de Grafeno. La película hoja de grafeno utiliza un conjunto de hojas de grafeno que incluye: primeros nanotubos de carbono que unen las láminas de grafeno entre sí y formar laminados de hoja de grafeno en el que las láminas de grafeno se laminan con los planos de las hojas que se están en paralelo el uno al otro. Nuevamente, esta publicación de patente se dirige a obtener múltiples láminas de Grafeno y no a una estructura singular o nanotubo de Grafeno. Además su método de obtención contempla las etapas de añadir los nanotubos de carbono a una solución acuosa de hojas de grafeno reducido químicamente uniformemente dispersadas en el mismo y la producción de una solución mixta de las láminas de grafeno y los nanotubos de carbono , y el filtrado de la solución mixta. No se describe que el Grafeno sea obtenido a partir de negro de humo.
La presente invención describe un método de producción de nanotubos de grafeno a partir de una trama de hilos guías cuyo principal componente es Carbón (4, 5, 6, 7 carbones) de forma anular y/o lineal, pudiendo el producto final ser utilizado directamente sobre una superficie para construir nanocircuitos con o sin dopaje de nanopartículas de Cobre y/o Litio con el fin último de establecer polaridad.
No obstante lo anterior también puede ser aplicado sobre un film de Plomo (Pb) para otorgar al Grafeno la propiedad electromagnética de la cual carece.
La actividad conductora sin resistencia del Grafeno, se encuentra descrita ampliamente en la literatura, como asimismo sus múltiples posibilidades de uso, dada su estructura laminar. También se describe un método de dopaje a distintas proporciones con Litio, Cobre u otros elementos con capacidad de ceder electrones en un proceso de Redox en forma continua, para constituir baterías de autorrecarga. La autorrecarga puede efectuarse en frío o calor extremo dependiendo del espesor de las capas y del dopaje realizado. BREVE DESCRIPCION DE LAS FIGURAS
Figura 1: representa un esquema del reactor donde se lleva a cabo parta de las etapas del método de la invención.
Figura 2: corresponde a un diagrama que ilustra los ciclos de calentamiento y enfriamiento que contempla el método de la invención.
Figura 3: corresponde a una ilustración del efecto de Lichtenberg, el cual señala que la energía viajará en la dirección que le oponga menor resistencia a su paso.
Figura 4: corresponde a una ilustración que muestra cuando un sector de un CD es pintado con una pasta de grafeno un sector del CD y se le aplican ondas energéticas para visualizar el efecto de Lichtenberg.
DESCRIPCION DETALLADA DE LA INVENCION:
El método para producir nanotubos de grafeno que tienen la capacidad de autoensamblaje (autocalce), contempla que se obtenga a partir de negro de humo o cualquier fuente de carbono y/o combinación de dos o más fuentes de carbono en estado sólido. La presente innovación describe un método de producción de nanotubos a partir de una trama de hilos guías cuyo principal componente es Carbón (4, 5, 6, 7 carbones) de forma anular y/o lineal, pudiendo el producto final ser utilizado
Específicamente, se dirige a un método de producción de grafeno a partir de negro de humo sometido a presión y temperaturas que permiten la combinación y el reordenamiento de átomos de carbono en forma dimensional, y que permite que el producto final esté formado por nanotubos de carbono de estructura unilaminar con características de superconductor.
Se describe, asimismo, un método que permite obtener nanotubos de carbono de autoensamblaje (autocalce) a partir de grafeno obtenido bajo cualquier metodología.
También se describe como parte intrínseca a la obtención de nanotubos un método que permite el dopaje de éstos en distintas proporciones con Litio, Cobre u otros elementos con capacidad de ceder electrones en un proceso Redox en forma continua para constituir baterías de autorecarga. Esta autorrecarga se inicia en temperaturas de frío o calor extremo dependiendo del dopaje y espesor de capas.
El método consiste en someter negro de humo (Carbón amorfo) (C) a presión manual (1) dentro de un reactor de alta temperatura (2) debidamente apoyado (3) (Fig.1). A continuación se lleva a cabo un ciclo de calentamiento y enfriamiento violento hasta completar un mínimo de un ciclo y un máximo de 50 ciclos.
Finalizado el total de ciclos se deja enfriar a temperatura ambiente (*) por un tiempo mínimo de 1 minuto y un máximo de 74 minutos hasta que adquiera un rango cercano a la temperatura ambiente. Luego se invierte el ciclo partiendo por el congelamiento y luego el calentamiento bajo las condiciones descritas anteriormente. (Fig.2)
Finalizado el ciclo, se deja reposar a temperatura ambiente (*) por espacio de
24 Hrs. mínimo y 72 Hrs. máximo.
(*) temperatura ambiente: 18,5°C mínima y 29°C máxima.
Una vez finalizados los ciclos se procede a verificar la calidad del Grafeno obtenido, para lo cual se abre el reactor de alta temperatura en un ambiente controlado (bajo campana por ej.) y se toma una muestra. Esta puede ser examinada por métodos tradicionales como:
Microscopía de luz
Microscopía de Epifluorescencia
s Microscopía de barrido.
No obstante lo anterior, también puede verificarse su actividad sometiendo la muestra al Efecto de Lichtenberg (arborizaciones).
El efecto de Lichtenberg señala que la energía viajará en la dirección que le oponga menor resistencia a su paso. Frente a cada partícula que se le frene, esta energía cambiará de dirección tantas veces como resistencia se genere.(Fig.3) En términos coloquiales, si se somete por ejemplo un CD a la radiación de máxima potencia por 4 segundos en un microondas, se verán claramente las arborizaciones producto del paso de energía.
Una forma sencilla de evaluar la calidad del Grafeno obtenido es pintar con una pasta de éste un sector del CD y aplicar las ondas energéticas. Se observará como estas arborizaciones no se presentan en la zona cubierta (4) con Grafeno. (Fig.4)
Una vez constatada la calidad del grafeno mediante los métodos señalados, se procede a obtener los nanotubos de grafeno. Para ello, según sea la cantidad de nanotubos que se pretende obtener, se deposita en el reactor de alta temperatura entre 1 milímetro y 5 centímetros de grafeno.. Se distribuye el grafeno en forma longitudinal frente a un eje imaginario y/o al azar, en una o múltiples capas, de modo de formar una cama, de preparados líquidos, semisólidos, sólidos en base a agua, aniones (de 4, 5, 6, 7 carbones) y/o hidrocarburos de cadena larga solubilizadas en alcohol (de cadena variable), pudiendo contener sales y/o metales.
Sobre la "cama" de Grafeno se deposita una segunda capa de Grafeno pudiendo contener ésta sales y/o metales. Una vez depositadas las camas de grafeno se somete a la reacción antes descrita obteniendo múltiples capas de nanotubos de grafeno.
Dependiendo de las características de los nanotubos a obtener, se puede repetir la operación. Con todo, se obtienen una producción de nanotubos sin pérdida de materia prima por el uso de azúcares (1 , 2, 3, 4, 5, 6, 7 C ) y/o estructuras anulares.
Terminada la operación se somete al metal al mismo ciclo destinado a obtener Grafeno descrito anteriormente, pudiendo variar o no la presión entre cada ciclo.
Para conferir la característica de autoensamblaje de los nanotubos de grafeno, éstos son semetidos a una adición de compuestos iónicos (NaCI, KCL, BrCI, LiCI) con lo que se dopan el azúcar, alcohol y/o hidrocarburos que permiten redireccionar al final del proceso, el polvo de Grafeno por compensación de cargas de los iones formando nanotubos rectos.
Ejemplo
Se someten 10 grs. de negro de humo (Carbón amorfo) a presión manual dentro de una marmita metálica (Fig.1)
Se realiza un ciclo de calentamiento y enfriamiento violento hasta completar un mínimo de un ciclo y un máximo de 50 ciclos.
Finalizado el total de ciclos se deja enfriar a temperatura ambiente (23 °C) por un tiempo mínimo de 1 minuto y un máximo de 74 minutos hasta que adquiera un rango cercano a la temperatura ambiente. Luego se invierte el ciclo partiendo por el congelamiento y luego el calentamiento bajo las condiciones descritas anteriormente. (Fig.2) Finalizado el ciclo, se deja reposar a temperatura ambiente, alrededor de 23° C por espacio de 48 horas.
Para verificar la calidad del grafeno obtenido, se procede a la apertura de la marmita en un ambiente controlado (bajo campana por ej.) y se coge una muestra. La cual es examinada por microscopía de luz.
Comprobada la calidad del grafeno se procedió a producir nanotubos de grafeno despositando en la marmita entre 1 centímetro de grafeno obtenido a partir de los 10 gramos de negro de humo. Se distribuyó el grafeno en forma longitudinal paralelo al fondo de la marmita, en 3 capas de preparados líquidos, semisólidos, sólidos en base a agua, aniones (de 4, 5, 6, 7 carbones) y/o hidrocarburos de cadena larga solubilizadas en alcohol (de cadena variable). Sobre la capa de grefeno se depositó una segunda capa de Grafeno. Luego de lo cual se llevó a cabo un ciclo de calentamiento hasta que se empieza a observar la formación de nanotubos, luego de lo cual se sometió a un cliclo de enfriamiento formando definitivamente los nanotubos de grafeno.

Claims

REIVINDICACIONES
1. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) y su utilización como materia prima para la obtención de nanotubos con propiedad de autoensamblaje CARACTERIZADO porque consiste en someter negro de humo (Carbón amorfo) (C) a presión manual dentro de un reactor de alta temperatura, luego de lo cual se lleva a cabo un ciclo de calentamiento y enfriamiento violento hasta completar un mínimo de un ciclo y un máximo de 50 ciclos; en que una vez el total de ciclos se deja enfriar a temperatura ambiente por un tiempo mínimo de 1 minuto y un máximo de 74 minutos hasta que adquiera un rango cercano a la temperatura ambiente; en que una vez enfriado se lleva a cabo un ciclo inverso, es decir, se procede con el congelamiento y luego el calentamiento del material dentro de dicho reactor bajo las mismas condiciones de los primeros ciclos; y una vez finalizado dicho ciclo inverso se deja reposar a temperatura ambiente, por espacio de 24 Hrs. mínimo y 72 Hrs. máximo.
2. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 1 CARACTERIZADO porque dicha temperatura ambiente fluctúa en un rango entre 18,5°C mínima y 29°C máxima.
3. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 1 CARACTERIZADO porque una vez finalizados dichos ciclos se procede a verificar la calidad del Grafeno obtenido, para lo cual se abre el reactor de alta temperatura en un ambiente controlado se toma una muestra.
4. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 3 CARACTERIZADO porque dicha muestra es analizada por Microscopía de luz.
5. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 3 CARACTERIZADO porque dicha muestra es analizada por Microscopía de Epifluorescencia.
6. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 3 CARACTERIZADO porque dicha muestra es analizada por Microscopía de barrido.
7. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 3 CARACTERIZADO porque dicha muestra es analizada verificando su actividad sometiéndola al Efecto de Lichtenberg (arborizaciones).
8. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 1 CARACTERIZADO porque dichos nanotubos de grafeno se obtienen sometiendo en dicho reactor de alta temperatura entre 1 milímetro y 5 centímetros de grafeno obtenido en dichos ciclos; luego se distribuye dicho grafeno obtenido en forma longitudinal frente a un eje imaginario y/o al azar, en una o múltiples capas, de modo de formar una cama, de preparados líquidos, semisólidos, sólidos en base a agua, aniones (de 4, 5, 6, 7 carbones) y/o hidrocarburos de cadena larga solubilizadas en alcohol (de cadena variable), pudiendo contener sales y/o metales, obteniéndose una producción de nanotubos sin pérdida de materia prima por el uso de azúcares (1 , 2, 3, 4, 5, 6, 7 C ) y/o estructuras anulares.
9. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicación 8 CARACTERIZADO porque sobre dicha cama de Grafeno se deposita una segunda capa de Grafeno pudiendo contener ésta sales y/o metales.
10. Método para producir Grafeno a escala industrial a partir de negro de humo (C ) de acuerdo a la reivindicaciones 8 y 9 CARACTERIZADO porque dixhos nanotubos de grafeno, son semetidos a una adición de compuestos iónicos (NaCI, KCL, BrCI, LiCI) con lo que se dopan el azúcar, alcohol y/o hidrocarburos que permiten redireccionar al final del proceso, el polvo de Grafeno por compensación de cargas de los iones formando nanotubos rectos.
PCT/CL2016/000026 2016-05-26 2016-05-26 Metodo para producir grafeno a escala industrial a partir de negro de humo y su utilizacion como materia prima para la obtencion de nanotubos con propiedad de autoensamblaje WO2017201632A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2016/000026 WO2017201632A1 (es) 2016-05-26 2016-05-26 Metodo para producir grafeno a escala industrial a partir de negro de humo y su utilizacion como materia prima para la obtencion de nanotubos con propiedad de autoensamblaje

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2016/000026 WO2017201632A1 (es) 2016-05-26 2016-05-26 Metodo para producir grafeno a escala industrial a partir de negro de humo y su utilizacion como materia prima para la obtencion de nanotubos con propiedad de autoensamblaje

Publications (1)

Publication Number Publication Date
WO2017201632A1 true WO2017201632A1 (es) 2017-11-30

Family

ID=60410998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/000026 WO2017201632A1 (es) 2016-05-26 2016-05-26 Metodo para producir grafeno a escala industrial a partir de negro de humo y su utilizacion como materia prima para la obtencion de nanotubos con propiedad de autoensamblaje

Country Status (1)

Country Link
WO (1) WO2017201632A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759335A (zh) * 2019-12-10 2020-02-07 齐鲁工业大学 一种多孔石墨烯电极及制备方法
EP4253505A1 (en) 2022-03-30 2023-10-04 Graphene Synthetic Feedstock SL Method for transforming solid plastic waste into hydrocarbons

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913598A (zh) * 2010-08-06 2010-12-15 浙江大学 一种石墨烯薄膜制备方法
WO2012040303A1 (en) * 2010-09-21 2012-03-29 High Temperature Physics, Llc Process for the production of carbon graphenes and other nanomaterials
US20120258587A1 (en) * 2011-04-07 2012-10-11 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method of Forming Graphene on a Surface
US20130272951A1 (en) * 2010-12-21 2013-10-17 Nec Corporation Method of manufacturing graphene substrate, and graphene substrate
KR20140015097A (ko) * 2012-07-29 2014-02-06 이장훈 카본블랙을 이용한 그래핀 구조체 제조방법
US20140120270A1 (en) * 2011-04-25 2014-05-01 James M. Tour Direct growth of graphene films on non-catalyst surfaces
ES2507415A1 (es) * 2013-03-12 2014-10-14 Consejo Superior De Investigaciones Científicas (Csic) Método de obtención de óxido de material pregrafítico, óxido de grafeno o grafeno a partir de materiales pregrafíticos y productos obtenidos por dicho método
US20150175427A1 (en) * 2010-06-24 2015-06-25 Hamid-Reza Jahangiri-Famenini Method and apparatus for forming graphene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150175427A1 (en) * 2010-06-24 2015-06-25 Hamid-Reza Jahangiri-Famenini Method and apparatus for forming graphene
CN101913598A (zh) * 2010-08-06 2010-12-15 浙江大学 一种石墨烯薄膜制备方法
WO2012040303A1 (en) * 2010-09-21 2012-03-29 High Temperature Physics, Llc Process for the production of carbon graphenes and other nanomaterials
US20130272951A1 (en) * 2010-12-21 2013-10-17 Nec Corporation Method of manufacturing graphene substrate, and graphene substrate
US20120258587A1 (en) * 2011-04-07 2012-10-11 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method of Forming Graphene on a Surface
US20140120270A1 (en) * 2011-04-25 2014-05-01 James M. Tour Direct growth of graphene films on non-catalyst surfaces
KR20140015097A (ko) * 2012-07-29 2014-02-06 이장훈 카본블랙을 이용한 그래핀 구조체 제조방법
ES2507415A1 (es) * 2013-03-12 2014-10-14 Consejo Superior De Investigaciones Científicas (Csic) Método de obtención de óxido de material pregrafítico, óxido de grafeno o grafeno a partir de materiales pregrafíticos y productos obtenidos por dicho método

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, YU-ZE ET AL.: "Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices", NANOSCALE, vol. 7, no. 5, 7 February 2015 (2015-02-07), pages 1678 - 1687, XP055447209 *
DANIEL BOSCH COCH: "Estudio, aplicaciones y obtencion del grafeno", 2014, Escola Vedruna Girona, pages 1 - 45, XP055447217, Retrieved from the Internet <URL:http://www.nanomadrid.es/wp-content/uploads/2014/10/Trabajo-del-Grafeno.pdf> [retrieved on 20160725] *
MATHIAS, M-F: "Synthesis and functionalization of graphene for power electronic applications", PROJECTE DE FI DE CARRERA ENGINYER DE MATERIALS, July 2012 (2012-07-01), XP055447211, Retrieved from the Internet <URL:http://hdl.handle.net/2099.1/17073> [retrieved on 20160725] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759335A (zh) * 2019-12-10 2020-02-07 齐鲁工业大学 一种多孔石墨烯电极及制备方法
EP4253505A1 (en) 2022-03-30 2023-10-04 Graphene Synthetic Feedstock SL Method for transforming solid plastic waste into hydrocarbons
WO2023187128A1 (en) 2022-03-30 2023-10-05 Graphene Synthetic Feedstock S.L. Method for transforming solid plastic waste into hydrocarbons

Similar Documents

Publication Publication Date Title
Wang et al. MXene materials for advanced thermal management and thermal energy utilization
Chen et al. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects
Li et al. Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film
Du et al. MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries
Liu et al. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons
Zhang et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems
He et al. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting
Zhang et al. Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials
Shi et al. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances
Tao et al. Plasmonic Cu9S5 nanonets for microwave absorption
Sun et al. Atomic layer deposition of TiO2 on graphene for supercapacitors
Srivastava et al. Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries
Yan et al. Vanadium based materials as electrode materials for high performance supercapacitors
Lin et al. High-performance graphene-based flexible heater for wearable applications
Bhargava et al. Effect of reduced graphene oxide (rGO) on structural, optical, and dielectric properties of Mg (OH) 2/rGO nanocomposites
Lee et al. Influence of the nickel oxide nanostructure morphology on the effectiveness of reduced graphene oxide coating in supercapacitor electrodes
Li et al. Designed construction of a graphene and iron oxide freestanding electrode with enhanced flexible energy-storage performance
Xiao et al. Ni (OH) 2 nanosheets grown on graphene-coated nickel foam for high-performance pseudocapacitors
Tang et al. Metal-organic framework derived magnetic phase change nanocage for fast-charging solar-thermal energy conversion
Moussa et al. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge
Bhoyate et al. Recent development on nanocomposites of graphene for supercapacitor applications
Chiu et al. One-step hydrothermal synthesis of three-dimensional porous Ni–Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors
Lu et al. Single-crystal inorganic helical architectures induced by asymmetrical defects in sub-nanometric Wires
US20180034055A1 (en) Composite including porous graphene and carbon nanotube material
Yan et al. Salt powder assisted synthesis of nanostructured materials and their electrochemical applications in energy storage devices

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16902623

Country of ref document: EP

Kind code of ref document: A1