WO2017200263A1 - Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis - Google Patents

Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis Download PDF

Info

Publication number
WO2017200263A1
WO2017200263A1 PCT/KR2017/005054 KR2017005054W WO2017200263A1 WO 2017200263 A1 WO2017200263 A1 WO 2017200263A1 KR 2017005054 W KR2017005054 W KR 2017005054W WO 2017200263 A1 WO2017200263 A1 WO 2017200263A1
Authority
WO
WIPO (PCT)
Prior art keywords
lrp
cancer
radiation
protein
expression level
Prior art date
Application number
PCT/KR2017/005054
Other languages
French (fr)
Korean (ko)
Inventor
최은경
정성윤
송시열
이경진
Original Assignee
울산대학교 산학협력단
재단법인 아산사회복지재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170060005A external-priority patent/KR101952649B1/en
Application filed by 울산대학교 산학협력단, 재단법인 아산사회복지재단 filed Critical 울산대학교 산학협력단
Priority to EP17799620.4A priority Critical patent/EP3460476B1/en
Priority to US16/302,092 priority patent/US20190203302A1/en
Publication of WO2017200263A1 publication Critical patent/WO2017200263A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a biomarker composition for diagnosing radiation-resistant cancer comprising low density lipoprotein receptor-related protein 1 (LRP-1) as an active ingredient, and a method for diagnosing radiation-resistant cancer using the same.
  • the present invention relates to a biomarker composition for predicting radiotherapy prognosis of a cancer patient including LRP-1 as an active ingredient and a method for predicting radiotherapy prognosis of a cancer patient using the same.
  • cancer The smallest unit of the human body, the cell, normally divides, grows and dies by intracellular control and maintains cell balance. If a cell is damaged for some reason, it is treated and recovered to act as a normal cell, but if it is not recovered, it dies on its own.
  • cancer is defined as a condition in which abnormal cells, which are not controlled for such proliferation and suppression, proliferate excessively, invade surrounding tissues and organs, and cause mass formation and destruction of normal tissues for various reasons. Cancer is the proliferation of non-suppressive cells, which destroys the structure and function of normal cells and organs, so the diagnosis and treatment are of great importance.
  • the present invention is a biomarker composition for diagnosing radiation resistance cancer comprising LRP-1 as an active ingredient, a composition for diagnosing radiation resistance cancer comprising an agent capable of measuring the expression level of LRP-1 as an active ingredient, and a radiation resistant cancer diagnosis using the same.
  • a method, a pharmaceutical composition for enhancing radiosensitivity to cancer cells comprising an LRP-1 protein expression or an activity inhibitor, and a method for screening a radiosensitizer for cancer cells by measuring the expression level of LRP-1 protein are provided.
  • the present invention also provides a biomarker composition for predicting radiotherapy prognosis of cancer patients comprising LRP-1 as an active ingredient, and a prognosis for cancer patients comprising an agent capable of measuring the expression level of LRP-1 as an active ingredient.
  • the present invention provides a composition for predicting and a method for predicting the prognosis of radiation therapy of cancer patients using the same.
  • the present invention provides a low-density lipoprotein receptor-related protein 1 (LRP-1) or a biomarker composition for diagnosing radiation-resistant cancer comprising a gene encoding the same as an active ingredient. to provide.
  • LRP-1 low-density lipoprotein receptor-related protein 1
  • biomarker composition for diagnosing radiation-resistant cancer comprising a gene encoding the same as an active ingredient.
  • the present invention also provides a composition for diagnosing radiation-resistant cancer comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
  • the present invention provides a method for measuring the expression level of LRP-1 to provide information necessary for the diagnosis of radiation resistant cancer.
  • the present invention also provides a pharmaceutical composition for enhancing radiation sensitivity to cancer cells comprising LRP-1 protein expression or activity inhibitor as an active ingredient.
  • the present invention also provides a method for screening a radiation sensitivity enhancer for cancer cells by measuring the expression level of LRP-1 protein.
  • the present invention also provides a biomarker composition for predicting the prognosis of radiation therapy in cancer patients comprising LRP-1 or a gene encoding the same as an active ingredient.
  • the present invention provides a composition for predicting the prognosis of the radiation therapy of cancer patients comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
  • the present invention provides a method of measuring the expression level of LRP-1 to provide information necessary for predicting the prognosis of radiation therapy in cancer patients.
  • the present invention relates to a biomarker composition for diagnosing radiation-resistant cancer or predicting prognosis for radiation-resistant cancer, comprising LRP-1 as an active ingredient, wherein the binding partner protein actually binds to a specific peptide sequence that specifically targets radiation-resistant colorectal cancer tissue.
  • Phosphorus LRP-1 was elucidated and based on this, the possibility of radiotherapy resistance-related factors for cancer or radiotherapy prognostic predictors of cancer patients was suggested.
  • Figure 2 is a result showing a schematic diagram for the construction of a mouse model transplanted with patient colorectal cancer tissue.
  • 3 shows the results of verifying seven candidate groups showing significant mRNA expression differences among the 14 binding partner protein candidate groups screened.
  • Figure 4 is a result of confirming the difference in expression at the protein level for the two candidate groups selected in the mRNA expression difference with or without irradiation. Only LRP-1 of the two candidate groups confirmed the difference in expression and indicated only the result. Radiation Resistance and Sensitivity Two cases each were checked for protein expression according to irradiation or not.
  • Figure 6 shows the results of the binding of LRP-1 and TPSFSKI peptide using immunoprecipitation method.
  • Lysate 0 Gy / 2 Gy Irradiated Colorectal Cancer Tissue Extract Protein
  • IP (B5 phage) 0 Gy / 2 Gy Irradiated Colorectal Cancer Tissue Extract Protein from Immune Sedimentation with Specific Peptide Phage
  • IP (wt phage) 0 Gy / Immune Sedimentation with Peptide-free Phage from 2 Gy Irradiated Colorectal Cancer Tissue Extracted Proteins
  • IP (w / o Ab) 0 Gy / 2 Gy Irradiated Immune Sedimented Without Antibodies from Colorectal Cancer Tissue Extracted Proteins
  • phage lysate radiation resistant colorectal cancer Peptide phage extract protein targeted at irradiation in tissue
  • Antibody LRP-1 antibody.
  • FIG. 7 shows the results of LRP-1 expression in 4 patients with colorectal cancer tissues (2 cases of radiation resistance and 2 cases of radiation sensitivity). It was confirmed that LRP-1 was overexpressed in the radiation-resistant case, but not in the sensitive case, while confirming that the cancer tissue was identical to that of the cancer tissue extracted from the patient's cancer-grafted mouse model.
  • FIG. 8 is a result of verifying the expression of LRP-1 by receiving cancer tissue from 20 patients with poor treatment prognosis as a patient who performed radiation therapy among colon cancer patients. It was confirmed that LRP-1 was overexpressed in cancer tissue of patients with poor prognosis.
  • the present invention provides a low-marker lipoprotein receptor-related protein 1 (LRP-1) or a biomarker composition for diagnosing radiation-resistant cancer comprising a gene encoding the same as an active ingredient.
  • LRP-1 low-marker lipoprotein receptor-related protein 1
  • biomarker composition for diagnosing radiation-resistant cancer comprising a gene encoding the same as an active ingredient.
  • LRP-1 Low density lipoprotein receptor-related protein 1
  • the biomarker composition may further include a conventionally known radiation resistant biomarker, and conventionally known radiation resistant biomarkers include, but are not limited to, CD133, CD144 and CD24.
  • the LRP-1 may bind to a peptide consisting of the amino acid sequence of SEQ ID NO: 1 (TPSFSKI), and the "TPSFSKI” peptide is a peptide targeting a radiation resistant colorectal cancer, and the applicant of Korea It is disclosed in detail in patent application 10-2015-0106580.
  • diagnosis refers to determining the susceptibility of an object to a particular disease or condition, determining whether an object currently has a particular disease or condition, or as long as a person has a particular disease or condition. Determining the prognosis of the object, or therametrics (eg, monitoring the condition of the object to provide information about treatment efficacy).
  • the present invention provides a composition for diagnosing radiation-resistant cancer comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
  • the agent capable of measuring the expression level of LRP-1 includes a primer or probe specifically binding to the LRP-1 gene, an antibody, peptide, aptamer specifically binding to the LRP-1 protein. Or a compound, but is not limited thereto.
  • the present invention also provides a kit for diagnosing radiation-resistant cancer comprising the composition.
  • primer refers to a nucleic acid sequence having a short free 3-terminal hydroxyl group, which is capable of forming base pairs with complementary templates and acting as a starting point for template strand copying. Refers to the sequence. Primers can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization (ie, DNA polymerase or reverse transcriptase) at appropriate buffers and temperatures. PCR conditions, sense and antisense primer lengths may be appropriately selected according to techniques known in the art.
  • probe refers to a nucleic acid fragment such as RNA or DNA, which is short to several bases to hundreds of bases capable of specifically binding other than mRNA, and is labeled so that the presence or absence of a specific mRNA is expressed. You can check the amount.
  • the probe may be manufactured in the form of an oligonucleotide probe, a single strand DNA probe, a double strand DNA probe, an RNA probe, or the like. Selection of appropriate probes and hybridization conditions may be appropriately selected according to techniques known in the art.
  • the term “antibody” refers to a specific immunoglobulin directed to an antigenic site as is known in the art.
  • the antibody in the present invention means an antibody that specifically binds to LRP-1 of the present invention, and the antibody can be prepared according to conventional methods in the art. Forms of such antibodies include polyclonal antibodies or monoclonal antibodies, including all immunoglobulin antibodies.
  • the antibody means a complete form having two full length light chains and two full length heavy chains.
  • the said antibody also contains special antibodies, such as a humanized antibody.
  • the kit of the present invention includes an antibody that specifically binds to a marker component, a secondary antibody conjugate conjugated with a label that is developed by reaction with a substrate, a color substrate solution to be color-reacted with the label, a wash solution, It may include an enzyme stopping solution and the like, and may be prepared in a number of separate packaging or compartments containing the reagent components used.
  • the term "peptide” has the advantage of high binding power to the target material, and no degeneration occurs even during thermal / chemical treatment.
  • the small size of the molecule can be used as a fusion protein by attaching to other proteins. Specifically, since it can be used by attaching to a polymer protein chain, it can be used as a diagnostic kit and drug delivery material.
  • aptamer refers to a particular kind of single-stranded nucleic acid (DNA, RNA or modified nucleic acid) that has a stable tertiary structure and which is capable of binding with high affinity and specificity to a target molecule. It means a kind of polynucleotide consisting of). As described above, aptamers are composed of polynucleotides that can bind specifically to antigenic substances like antibodies, but are more stable than proteins, simple in structure, and easy to synthesize. Can be.
  • the present invention comprises the steps of (1) measuring the mRNA expression level or LRP-1 protein expression level of LRP-1 gene from a sample isolated from cancer patients; (2) comparing the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein with a control sample; And (3) determining that the LRP-1 gene mRNA expression level or LRP-1 protein expression level is higher than that of the control sample, wherein the LRP-1 gene is determined to be radiation resistant cancer. do.
  • the method of measuring the mRNA expression level is RT-PCR, competitive RT-PCR (Real-time RT-PCR), RNase protection assay (RPA; RNase protection assay ), Northern blotting and DNA chips are used, but are not limited to these.
  • the method of measuring the protein expression level is Western blot, ELISA (enzyme linked immunosorbent asay), radioimmunoassay (RIA), radioimmunodiffusion, Ouchterlony immunodiffusion method, Rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS and protein chips are used, but are not limited thereto.
  • sample isolated from cancer patients refers to tissues, cells, whole blood, serum, plasma, which differ from the control group in the expression level of the LRP-1 gene or LRP-1 protein, which is a biomarker for radiation-resistant cancer diagnosis.
  • Samples such as saliva, sputum, cerebrospinal fluid, or urine include, but are not limited to.
  • radiation-resistant cancer diagnosis is intended to determine whether cancer cells are radiation-resistant or sensitive for the prediction of radiation treatment strategies and radiation treatment effects of cancer patients.
  • the present invention also provides a pharmaceutical composition for enhancing radiation sensitivity to cancer cells comprising LRP-1 protein expression or activity inhibitor as an active ingredient.
  • the LRP-1 protein expression inhibitor may be an antisense nucleotide, small interfering RNA (siRNA) or short hairpin RNA (shRNA) that complementarily binds to the mRNA of the LRP-1 gene.
  • the LRP-1 protein activity inhibitor may be, but is not limited to, a compound, a peptide, a peptide mimetics, an aptamer, an antibody, or a natural product that specifically binds to the LRP-1 protein.
  • the pharmaceutical composition of the present invention may include chemicals, nucleotides, antisenses, siRNA oligonucleotides, and natural extracts as active ingredients.
  • the pharmaceutical compositions or complex preparations of the present invention may be prepared using pharmaceutically acceptable and physiologically acceptable auxiliaries in addition to the active ingredients, which may include excipients, disintegrants, sweeteners, binders, coatings, swelling agents, lubricants. Solubilizers such as lubricants and flavoring agents can be used.
  • the pharmaceutical composition of the present invention may be preferably formulated into a pharmaceutical composition including one or more pharmaceutically acceptable carriers in addition to the active ingredient for administration.
  • Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and physiologically compatible, including saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
  • compositions of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions and sustained release formulations of the active compounds, and the like.
  • the pharmaceutical compositions of the present invention may be administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, sternum, transdermal, nasal, inhalation, topical, rectal, oral, intraocular or intradermal routes.
  • An effective amount of the active ingredient of the pharmaceutical composition of the present invention means an amount required to prevent or treat a disease.
  • the type of disease the severity of the disease, the type and amount of the active and other ingredients contained in the composition, the type of formulation and the age, body weight, general health, sex and diet of the patient, time of administration, route of administration and composition It can be adjusted according to various factors including the rate of secretion, the duration of treatment, and the drug used concurrently.
  • the composition of the present invention is administered once or several times a day, when the compound is 0.1ng / kg to 10g / kg, a polypeptide,
  • 0.1ng / kg ⁇ 10g / kg antisense nucleotides, siRNA, shRNAi, miRNA can be administered at a dose of 0.01ng / kg ⁇ 10g / kg.
  • the present invention (1) contacting the test substance to cancer cells; (2) measuring the level of expression or activity of LRP-1 protein in cancer cells in contact with the test substance; And (3) provides a method for screening a radiation sensitivity enhancer for cancer cells comprising the step of selecting a test substance with reduced expression or activity of the LRP-1 protein compared to the control sample.
  • test material refers to an unknown candidate used in screening to examine whether it affects the expression level of a gene or affects the expression or activity of a protein. do.
  • the sample includes, but is not limited to, chemicals, nucleotides, antisense-RNAs, small interference RNAs (siRNAs), and natural extracts.
  • the present invention also provides a biomarker composition for predicting the prognosis of radiation therapy in cancer patients comprising LRP-1 or a gene encoding the same as an active ingredient.
  • prognostic prediction refers to the act of predicting the progress and outcome of a disease in advance. More specifically, the prognosis prediction may vary according to the physiological or environmental condition of the patient, and is interpreted to mean all actions for predicting the progress of the disease after treatment in consideration of the condition of the patient. Can be.
  • the prognosis prediction may be interpreted as an act of predicting disease-free survival rate or survival rate of cancer patients by predicting the progress and cure of the disease in advance after radiation treatment of cancer patients. For example, predicting "good prognosis" indicates a high level of disease-free survival or survival after cancer treatment, meaning that cancer patients are more likely to be treated, and predicting "prognosis is poor.” The low disease-free survival rate or survival rate of cancer patients after radiation is indicated, which means that the cancer is more likely to recur or die from cancer.
  • the present invention provides a composition for predicting the prognosis of the radiation therapy of cancer patients comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
  • the agent capable of measuring the expression level of LRP-1 includes a primer or probe specifically binding to the LRP-1 gene, an antibody, peptide, aptamer specifically binding to the LRP-1 protein. Or a compound, but is not limited thereto.
  • the present invention provides a kit for predicting the prognosis of the radiation treatment of cancer patients comprising the composition.
  • the present invention comprises the steps of (1) measuring the mRNA expression level or LRP-1 protein expression level of LRP-1 gene from a sample isolated from cancer patients; (2) comparing the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein with a control sample; And (3) determining that the prognosis of radiation therapy is worse when the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein is higher than that of the control sample.
  • the method of measuring the mRNA expression level is RT-PCR, competitive RT-PCR (Real-time RT-PCR), RNase protection assay (RPA; RNase protection assay ), Northern blotting and DNA chips are used, but are not limited to these.
  • the method of measuring the protein expression level is Western blot, ELISA (enzyme linked immunosorbent asay), radioimmunoassay (RIA), radioimmunodiffusion, Ouchterlony immunodiffusion method, Rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS and protein chips are used, but are not limited thereto.
  • cancer refers to breast cancer, cervical cancer, glioma, brain cancer, melanoma, lung cancer, bladder cancer, prostate cancer, leukemia, kidney cancer, liver cancer, colon cancer, pancreatic cancer, gastric cancer, gallbladder cancer, ovarian cancer, It may be, but is not limited to, lymphoma, osteosarcoma, uterine cancer, oral cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, skin cancer, hematologic cancer, thyroid cancer, parathyroid cancer, or ureter cancer.
  • T7Select ® Human colon tumor cDNA Library specific peptide sequence that purchased the target radiation-resistant colon cancer (Novagen); screened a binding partner protein (TPSFSKI Korea Patent Application No. 10-2015-0106580 call). Specifically, three biopanning processes were repeated to design a binding partner protein candidate group, thereby selecting candidate groups to bind more specifically. After a total of three biopanning procedures, probable candidate information was obtained using sequencing and BLAST. The candidate group information is shown in FIG. 1.
  • Q-PCR quantitative PCR was used to identify significant differences in mRNA expression according to radiation-sensitive, resistant colorectal cancer cases and irradiation. Primers for 14 binding partner protein candidate genes obtained through screening were prepared. In addition, cancer tissue was extracted from the model constructed in Example 2 and cryopreserved, and then mRNA was purified and cDNA was synthesized, respectively. Quantitative PCR (Q-PCR) was performed and seven candidate groups with significant expression differences were selected among the 14 candidate groups depending on the irradiation. As a result of confirming the reproducibility of the candidate group, two candidate groups having the largest significant difference in expression were demonstrated, and the results are shown in FIG. 3.
  • LRP-1 is a binding partner protein of the TPSFSKI peptide. This is shown in FIG. 5.
  • or Example 6 is the cancer tissue extracted from the mouse colon cancer tissue transplantation mouse model.
  • the expression of LRP-1 and differences in case-specific expression were evaluated in the colorectal cancer tissues of the original owner of the cancer tissue.
  • the patient's actual cancer tissue paraffin slice slides were provided by Asan Medical Center's Pathology Department, and histological verification was performed by IHC staining technique.
  • the results related to Example 4 and FIG. 5 were obtained, and it was verified that LRP-1 could be applied to actual clinical practice. The results are shown in FIG.
  • Example 7 the expression of LRP-1 was verified in 20 cases of colorectal cancer tissues of patients with poor radiotherapy prognosis.
  • the verification method was verified by the IHC staining technique in the same manner as in Example 7, and as a result, it was confirmed that LRP-1 overexpressed in cancer tissues of colon cancer patients with poor prognosis.

Abstract

The present invention relates to a biomarker composition comprising LRP-1 as an active ingredient, for the diagnosis of radiation-resistant cancer, and a method for diagnosing a radiation-resistant cancer using the same. The present invention identifies LRP-1, a binding partner protein to which a specific peptide sequence that specifically targets radiation-resistant colon cancer tissues actually binds, and having such basis, has suggested the possibility of a radiation therapy resistance-related factor for cancer.

Description

LRP-1을 유효성분으로 포함하는 방사선 저항성 암 진단용 또는 방사선 치료 예후 예측용 바이오마커 조성물Biomarker composition for the diagnosis of radiation resistant cancer or for predicting the prognosis of radiation therapy comprising LRP-1 as an active ingredient
본 발명은 저밀도 지단백질 수용체-관련 단백질 1(Low density lipoprotein receptor-related protein 1; LRP-1)을 유효성분으로 포함하는 방사선 저항성 암 진단용 바이오마커 조성물 및 이를 이용한 방사선 저항성 암 진단 방법에 관한 것이다. 또한, LRP-1을 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 바이오마커 조성물 및 이를 이용한 암 환자의 방사선 치료 예후 예측 방법에 관한 것이다.The present invention relates to a biomarker composition for diagnosing radiation-resistant cancer comprising low density lipoprotein receptor-related protein 1 (LRP-1) as an active ingredient, and a method for diagnosing radiation-resistant cancer using the same. In addition, the present invention relates to a biomarker composition for predicting radiotherapy prognosis of a cancer patient including LRP-1 as an active ingredient and a method for predicting radiotherapy prognosis of a cancer patient using the same.
인간의 몸을 구성하고 있는 가장 작은 단위인 세포는 정상적일 때 세포 내 조절기능에 의해 분열하며 성장하고 죽어 없어지기도 하면서 세포 수 균형을 유지한다. 어떤 원인으로 세포가 손상을 받는 경우, 치료를 받아 회복하여 정상적인 세포로 역할을 하게 되지만, 회복이 안 된 경우는 스스로 죽게 된다. 그러나 여러 가지 이유로 인해 이러한 증식과 억제가 조절되지 않는 비정상적인 세포들이 과다하게 증식할 뿐만 아니라 주위 조직 및 장기에 침입하여 종괴 형성 및 정상 조직의 파괴를 초래하는 상태를 암(cancer)이라 정의한다. 암은 이렇듯 억제가 안 되는 세포의 증식으로, 정상적인 세포와 장기의 구조와 기능을 파괴하기에 그 진단과 치료의 중요성은 매우 크다.The smallest unit of the human body, the cell, normally divides, grows and dies by intracellular control and maintains cell balance. If a cell is damaged for some reason, it is treated and recovered to act as a normal cell, but if it is not recovered, it dies on its own. However, cancer is defined as a condition in which abnormal cells, which are not controlled for such proliferation and suppression, proliferate excessively, invade surrounding tissues and organs, and cause mass formation and destruction of normal tissues for various reasons. Cancer is the proliferation of non-suppressive cells, which destroys the structure and function of normal cells and organs, so the diagnosis and treatment are of great importance.
한편, 암 발병환자 개개인의 유전적 차이로 인해 치료 반응성이 달라 환자별 치료 사례가 달라짐에 따라 치료 시 문제점이 있다. 이에 암 환자의 효과적인 치료를 위해 방사선 반응성에 따라 달라지는 암 미세환경 및 그에 따른 바이오마커 개발이 요구되고 있으며, 이를 통하여 환자 개인별 맞춤형 진단 및 치료를 구현할 수 있다.On the other hand, there is a problem in the treatment according to the different treatment cases for each patient due to the difference in treatment responsiveness due to genetic differences of individual cancer patients. Accordingly, the development of cancer microenvironment and biomarkers according to radiation responsiveness is required for effective treatment of cancer patients, through which customized diagnosis and treatment for each patient can be realized.
본 발명은 LRP-1을 유효성분으로 포함하는 방사선 저항성 암 진단용 바이오마커 조성물, LRP-1의 발현 수준을 측정할 수 있는 제제를 유효성분으로 포함하는 방사선 저항성 암 진단용 조성물, 이를 이용한 방사선 저항성 암 진단 방법, LRP-1 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 암세포에 대한 방사선 민감성 증진용 약학조성물 및 LRP-1 단백질의 발현 수준 측정을 통한 암세포에 대한 방사선 민감성 증진제 스크리닝 방법을 제공하고자 한다. The present invention is a biomarker composition for diagnosing radiation resistance cancer comprising LRP-1 as an active ingredient, a composition for diagnosing radiation resistance cancer comprising an agent capable of measuring the expression level of LRP-1 as an active ingredient, and a radiation resistant cancer diagnosis using the same. A method, a pharmaceutical composition for enhancing radiosensitivity to cancer cells comprising an LRP-1 protein expression or an activity inhibitor, and a method for screening a radiosensitizer for cancer cells by measuring the expression level of LRP-1 protein are provided.
또한, 본 발명은 LRP-1을 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 바이오마커 조성물, LRP-1의 발현수준을 측정할 수 있는 제제를 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 조성물 및 이를 이용한 암 환자의 방사선 치료 예후 예측 방법을 제공하고자 한다.The present invention also provides a biomarker composition for predicting radiotherapy prognosis of cancer patients comprising LRP-1 as an active ingredient, and a prognosis for cancer patients comprising an agent capable of measuring the expression level of LRP-1 as an active ingredient. The present invention provides a composition for predicting and a method for predicting the prognosis of radiation therapy of cancer patients using the same.
상기 과제의 해결을 위해, 본 발명은 저밀도 지단백질 수용체-관련 단백질 1(Low density lipoprotein receptor-related protein 1; LRP-1) 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 방사선 저항성 암 진단용 바이오마커 조성물을 제공한다. In order to solve the above problems, the present invention provides a low-density lipoprotein receptor-related protein 1 (LRP-1) or a biomarker composition for diagnosing radiation-resistant cancer comprising a gene encoding the same as an active ingredient. to provide.
또한, 본 발명은 LRP-1의 발현 수준을 측정할 수 있는 제제를 유효성분으로 포함하는 방사선 저항성 암 진단용 조성물을 제공한다.The present invention also provides a composition for diagnosing radiation-resistant cancer comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
또한, 본 발명은 LRP-1의 발현 수준을 측정하여 방사선 저항성 암 진단에 필요한 정보를 제공하는 방법을 제공한다. In addition, the present invention provides a method for measuring the expression level of LRP-1 to provide information necessary for the diagnosis of radiation resistant cancer.
또한, 본 발명은 LRP-1 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 암세포에 대한 방사선 민감성 증진용 약학조성물을 제공한다.The present invention also provides a pharmaceutical composition for enhancing radiation sensitivity to cancer cells comprising LRP-1 protein expression or activity inhibitor as an active ingredient.
또한, 본 발명은 LRP-1 단백질의 발현 수준 측정을 통한 암세포에 대한 방사선 민감성 증진제 스크리닝 방법을 제공한다. The present invention also provides a method for screening a radiation sensitivity enhancer for cancer cells by measuring the expression level of LRP-1 protein.
또한, 본 발명은 LRP-1 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 바이오마커 조성물을 제공한다.The present invention also provides a biomarker composition for predicting the prognosis of radiation therapy in cancer patients comprising LRP-1 or a gene encoding the same as an active ingredient.
또한, 본 발명은 LRP-1의 발현수준을 측정할 수 있는 제제를 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 조성물을 제공한다.In another aspect, the present invention provides a composition for predicting the prognosis of the radiation therapy of cancer patients comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
또한, 본 발명은 LRP-1의 발현 수준을 측정하여 암 환자의 방사선 치료 예후 예측에 필요한 정보를 제공하는 방법을 제공한다. In addition, the present invention provides a method of measuring the expression level of LRP-1 to provide information necessary for predicting the prognosis of radiation therapy in cancer patients.
본 발명은 LRP-1을 유효성분으로 포함하는 방사선 저항성 암 진단용 또는 방사선 치료 예후 예측용 바이오마커 조성물에 관한 것으로서, 방사선 저항성 대장암 조직을 특이적으로 표적하는 특정 펩타이드 서열이 실제 결합하는 결합 상대 단백질인 LRP-1에 대해 규명하고, 이를 기반으로 암에 대한 방사선 치료 저항성 관련 인자 또는 암 환자의 방사선 치료 예후 예측 인자로서의 가능성을 제시하였다. The present invention relates to a biomarker composition for diagnosing radiation-resistant cancer or predicting prognosis for radiation-resistant cancer, comprising LRP-1 as an active ingredient, wherein the binding partner protein actually binds to a specific peptide sequence that specifically targets radiation-resistant colorectal cancer tissue. Phosphorus LRP-1 was elucidated and based on this, the possibility of radiotherapy resistance-related factors for cancer or radiotherapy prognostic predictors of cancer patients was suggested.
도 1은 인간 유래 대장암 cDNA 라이브러리에서 바이오패닝 진행을 나타낸 결과이다. 총 3회 바이오패닝 과정을 진행하였고, 횟수가 증가함에 따라 파아지 수가 특이적으로 증가함을 확인하였다.1 shows the results of biopanning in human-derived colorectal cancer cDNA library. A total of three biopanning processes were performed, and it was confirmed that the number of phages increased specifically as the number of times increased.
도 2는 환자 대장암 조직을 이식한 마우스 모델 구축에 대한 모식도를 나타낸 결과이다. Figure 2 is a result showing a schematic diagram for the construction of a mouse model transplanted with patient colorectal cancer tissue.
도 3은 스크리닝한 14개의 결합 상대 단백질 후보군 중 유의미한 mRNA 발현 차를 나타낸 7개의 후보군을 검증한 결과이다. 3 shows the results of verifying seven candidate groups showing significant mRNA expression differences among the 14 binding partner protein candidate groups screened.
도 4는 방사선 조사 여부에 따른 mRNA 발현 차 확인에서 선별된 2개의 후보군에 대해 단백질 수준에서의 발현 차이를 확인한 결과이다. 2개 후보군 중 오직 LRP-1 만이 발현차를 확인하여 해당 결과만을 표기하였다. 방사선 저항성 및 민감성 각각 2 케이스에 대해 방사선 조사 여부에 따른 단백질 발현 여부를 확인하였다. Figure 4 is a result of confirming the difference in expression at the protein level for the two candidate groups selected in the mRNA expression difference with or without irradiation. Only LRP-1 of the two candidate groups confirmed the difference in expression and indicated only the result. Radiation Resistance and Sensitivity Two cases each were checked for protein expression according to irradiation or not.
도 5는 방사선 저항성 및 민감성 대장암에서 LRP-1에 대한 조직학적 검증 결과이다.5 shows the histological results of LRP-1 in radiation-resistant and sensitive colorectal cancer.
도 6은 면역침강법을 이용해 LRP-1과 TPSFSKI 펩타이드의 결합을 규명한 결과이다. Lysate: 0 Gy/2 Gy 방사선 조사 대장암 조직 추출 단백질, IP(B5 phage): 0 Gy/2 Gy 방사선 조사 대장암 조직 추출 단백질에서 특정 펩타이드 파아지로 면역 침강, IP(wt phage): 0 Gy/2 Gy 방사선 조사 대장암 조직 추출 단백질에서 펩타이드 없는 파아지로 면역 침강, IP(w/o Ab): 0 Gy/2 Gy 방사선 조사 대장암 조직 추출 단백질에서 항체 없이 면역 침강, phage lysate: 방사선 저항성 대장암 조직에서 방사선 조사시 표적하는 펩타이드 파아지 추출 단백질, Antibody: LRP-1 항체.Figure 6 shows the results of the binding of LRP-1 and TPSFSKI peptide using immunoprecipitation method. Lysate: 0 Gy / 2 Gy Irradiated Colorectal Cancer Tissue Extract Protein, IP (B5 phage): 0 Gy / 2 Gy Irradiated Colorectal Cancer Tissue Extract Protein from Immune Sedimentation with Specific Peptide Phage, IP (wt phage): 0 Gy / Immune Sedimentation with Peptide-free Phage from 2 Gy Irradiated Colorectal Cancer Tissue Extracted Proteins, IP (w / o Ab): 0 Gy / 2 Gy Irradiated Immune Sedimented Without Antibodies from Colorectal Cancer Tissue Extracted Proteins, phage lysate: radiation resistant colorectal cancer Peptide phage extract protein targeted at irradiation in tissue, Antibody: LRP-1 antibody.
도 7은 실제 환자 대장암 조직 4케이스 (방사선 저항성 2케이스, 방사선 민감성 2케이스)에서 LRP-1의 발현을 확인한 결과이다. 환자 암조직 이식 마우스 모델에서 적출한 암조직과 동일한 암조직 형태임을 확인함과 동시에, 방사선 저항성 케이스에서는 LRP-1이 과발현됨을 확인한 반면, 민감성 케이스에서는 발현하지 않음을 확인하였다.FIG. 7 shows the results of LRP-1 expression in 4 patients with colorectal cancer tissues (2 cases of radiation resistance and 2 cases of radiation sensitivity). It was confirmed that LRP-1 was overexpressed in the radiation-resistant case, but not in the sensitive case, while confirming that the cancer tissue was identical to that of the cancer tissue extracted from the patient's cancer-grafted mouse model.
도 8은 대장암 환자 중 방사선치료를 수행한 환자로서 치료 예후가 나쁜 환자 20명의 암조직을 제공받아 LRP-1의 발현 여부를 검증한 결과이다. 방사선치료 예후가 좋지 못한 환자의 암조직에서 명확하게 LRP-1이 과발현되었음을 확인하였다.FIG. 8 is a result of verifying the expression of LRP-1 by receiving cancer tissue from 20 patients with poor treatment prognosis as a patient who performed radiation therapy among colon cancer patients. It was confirmed that LRP-1 was overexpressed in cancer tissue of patients with poor prognosis.
도 9는 in silico 분석을 통해 실제 대장암환자 중 방사선치료를 수행한 환자의 예후를 확인한 결과이다. LRP-1의 발현이 높을 경우, 방사선치료 예후가 좋지 않았음을 임상데이터를 통해 확인하였다.9 is a result of confirming the prognosis of the patient who performed radiation treatment in actual colon cancer patients through in silico analysis. When the expression of LRP-1 was high, it was confirmed through clinical data that the prognosis of radiotherapy was not good.
본 발명은 저밀도 지단백질 수용체-관련 단백질 1(Low density lipoprotein receptor-related protein 1; LRP-1) 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 방사선 저항성 암 진단용 바이오마커 조성물을 제공한다. The present invention provides a low-marker lipoprotein receptor-related protein 1 (LRP-1) or a biomarker composition for diagnosing radiation-resistant cancer comprising a gene encoding the same as an active ingredient.
본 발명의 "저밀도 지단백질 수용체-관련 단백질 1(Low density lipoprotein receptor-related protein 1; LRP-1)"은 NCBI accession no. NM_002332 일 수 있으나, 이에 한정되는 것은 아니다."Low density lipoprotein receptor-related protein 1" (LRP-1) of the present invention is described in NCBI accession no. NM_002332, but is not limited thereto.
바람직하게는, 상기 바이오마커 조성물은 기존에 알려진 방사선 저항성 바이오마커를 추가적으로 더 포함할 수 있으며, 기존에 알려진 방사선 저항성 바이오마커는 CD133, CD144 및 CD24 등이 있으나, 이에 한정되는 것은 아니다.Preferably, the biomarker composition may further include a conventionally known radiation resistant biomarker, and conventionally known radiation resistant biomarkers include, but are not limited to, CD133, CD144 and CD24.
바람직하게는, 상기 LRP-1은 서열번호 1의 아미노산 서열로 이루어진 펩타이드(TPSFSKI)와 결합할 수 있으며, 상기 "TPSFSKI" 펩타이드는 방사선 저항성 대장암을 표적으로 하는 펩타이드로서, 본 발명자들이 출원한 한국특허출원 제10-2015-0106580호에 자세히 개시되어 있다.Preferably, the LRP-1 may bind to a peptide consisting of the amino acid sequence of SEQ ID NO: 1 (TPSFSKI), and the "TPSFSKI" peptide is a peptide targeting a radiation resistant colorectal cancer, and the applicant of Korea It is disclosed in detail in patent application 10-2015-0106580.
본 명세서에서 용어 “진단”은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링하는 것)을 포함한다.As used herein, the term “diagnosis” refers to determining the susceptibility of an object to a particular disease or condition, determining whether an object currently has a particular disease or condition, or as long as a person has a particular disease or condition. Determining the prognosis of the object, or therametrics (eg, monitoring the condition of the object to provide information about treatment efficacy).
또한, 본 발명은 LRP-1의 발현수준을 측정할 수 있는 제제를 유효성분으로 포함하는 방사선 저항성 암 진단용 조성물을 제공한다. In addition, the present invention provides a composition for diagnosing radiation-resistant cancer comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
상세하게는, 상기 LRP-1의 발현수준을 측정할 수 있는 제제는 상기 LRP-1 유전자에 특이적으로 결합하는 프라이머 또는 프로브, 상기 LRP-1 단백질에 특이적으로 결합하는 항체, 펩타이드, 앱타머 또는 화합물일 수 있으나, 이에 한정되는 것은 아니다. In detail, the agent capable of measuring the expression level of LRP-1 includes a primer or probe specifically binding to the LRP-1 gene, an antibody, peptide, aptamer specifically binding to the LRP-1 protein. Or a compound, but is not limited thereto.
또한, 본 발명은 상기 조성물을 포함하는 방사선 저항성 암 진단용 키트를 제공한다.The present invention also provides a kit for diagnosing radiation-resistant cancer comprising the composition.
본 명세서에서 용어 "프라이머"는 짧은 자유 3-말단 수산화기(free 3' hydroxyl group)를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍을 형성할 수 있고 템플레이트 가닥 복사을 위한 시작 지점으로서 작용하는 짧은 핵산 서열을 말한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응을 위한 시약(즉, DNA 폴리머라제 또는 역전사효소) 및 상이한 4 가지의 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다. PCR 조건, 센스 및 안티센스 프라이머의 길이는 당업계에 공지된 기술에 따라 적절히 선택될 수 있다.As used herein, the term "primer" refers to a nucleic acid sequence having a short free 3-terminal hydroxyl group, which is capable of forming base pairs with complementary templates and acting as a starting point for template strand copying. Refers to the sequence. Primers can initiate DNA synthesis in the presence of four different nucleoside triphosphates and reagents for polymerization (ie, DNA polymerase or reverse transcriptase) at appropriate buffers and temperatures. PCR conditions, sense and antisense primer lengths may be appropriately selected according to techniques known in the art.
본 명세서에서 용어 "프로브"는 mRNA외 특이적으로 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며 라벨링되어 있어서 특정 mRNA의 존재 유무, 발현양을 확인할 수 있다. 프로브는 올리고뉴클레오타이드(oligonucleotide) 프로브, 단쇄 DNA(single strand DNA) 프로브, 이중쇄DNA(double strand DNA)프로브, RNA 프로브 등의 형태로 제작될 수 있다. 적절한 프로브의 선택 및 혼성화 조건은 당해 기술 분야에 공지된 기술에 따라 적절히 선택할 수 있다.As used herein, the term "probe" refers to a nucleic acid fragment such as RNA or DNA, which is short to several bases to hundreds of bases capable of specifically binding other than mRNA, and is labeled so that the presence or absence of a specific mRNA is expressed. You can check the amount. The probe may be manufactured in the form of an oligonucleotide probe, a single strand DNA probe, a double strand DNA probe, an RNA probe, or the like. Selection of appropriate probes and hybridization conditions may be appropriately selected according to techniques known in the art.
본 명세서에서 용어 "항체"는 당해 기술분야에 공지된 용어로서 항원성 부위에 대하여 지시되는 특이적인 면역 글로불린을 의미한다. 본 발명에서의 항체는 본 발명의 LRP-1에 대해 특이적으로 결합하는 항체를 의미하며, 당해 기술분야의 통상적인 방법에 따라 항체를 제조할 수 있다. 상기 항체의 형태는 폴리클로날 항체 또는 모노클로날 항체를 포함하며, 모든 면역글로불린 항체가 포함된다. 상기 항체는 2개의 전체 길이의 경쇄 및 2 개의 전체 길이의 중쇄를 갖는 완전한 형태를 의미한다. 또한, 상기 항체는 인간화 항체 등의 특수 항체도 포함된다.As used herein, the term “antibody” refers to a specific immunoglobulin directed to an antigenic site as is known in the art. The antibody in the present invention means an antibody that specifically binds to LRP-1 of the present invention, and the antibody can be prepared according to conventional methods in the art. Forms of such antibodies include polyclonal antibodies or monoclonal antibodies, including all immunoglobulin antibodies. The antibody means a complete form having two full length light chains and two full length heavy chains. In addition, the said antibody also contains special antibodies, such as a humanized antibody.
또한, 본 발명의 키트는 마커 성분에 특이적으로 결합하는 항체, 기질과의 반응에 의해서 발색하는 표지체가 접합된 2차 항체 접합체(conjugate), 상기 표지체와 발색 반응할 발색 기질 용액, 세척액 및 효소반응 정지용액 등을 포함할 수 있으며, 사용되는 시약 성분을 포함하는 다수의 별도 패키징 또는 컴파트먼트로 제작될 수 있다.In addition, the kit of the present invention includes an antibody that specifically binds to a marker component, a secondary antibody conjugate conjugated with a label that is developed by reaction with a substrate, a color substrate solution to be color-reacted with the label, a wash solution, It may include an enzyme stopping solution and the like, and may be prepared in a number of separate packaging or compartments containing the reagent components used.
본 명세서에서 용어 "펩타이드"는 표적 물질에 대한 결합력 높은 장점이 있으며, 열/화학 처리시에도 변성이 일어나지 않는다. 또한 분자 크기가 작기 때문에 다른 단백질에 붙여서 융합 단백질로의 이용이 가능하다. 구체적으로 고분자 단백질 체인에 붙여서 이용이 가능하므로 진단 키트 및 약물전달 물질로 이용될 수 있다. As used herein, the term "peptide" has the advantage of high binding power to the target material, and no degeneration occurs even during thermal / chemical treatment. In addition, the small size of the molecule can be used as a fusion protein by attaching to other proteins. Specifically, since it can be used by attaching to a polymer protein chain, it can be used as a diagnostic kit and drug delivery material.
본 명세서에서 용어 "앱타머(aptamer)"란, 그 자체로 안정된 삼차 구조를 가지면서 표적 분자에 높은 친화성과 특이성으로 결합할 수 있는 특징을 가진 특별한 종류의 단일가닥 핵산(DNA, RNA 또는 변형핵산)으로 구성된 폴리뉴클레오티드의 일종을 의미한다. 상술한 바와 같이, 앱타머는 항체와 동일하게 항원성 물질에 특이적으로 결합할 수 있으면서도, 단백질보다 안정성이 높고, 구조가 간단하며, 합성이 용이한 폴리뉴클레오티드로 구성되어 있으므로, 항체를 대체하여 사용될 수 있다.As used herein, the term "aptamer" refers to a particular kind of single-stranded nucleic acid (DNA, RNA or modified nucleic acid) that has a stable tertiary structure and which is capable of binding with high affinity and specificity to a target molecule. It means a kind of polynucleotide consisting of). As described above, aptamers are composed of polynucleotides that can bind specifically to antigenic substances like antibodies, but are more stable than proteins, simple in structure, and easy to synthesize. Can be.
또한, 본 발명은 (1) 암 환자에서 분리된 시료로부터 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 측정하는 단계; (2) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 대조군 시료와 비교하는 단계; 및 (3) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준이 대조군 시료보다 높을 경우 방사선 저항성 암이라고 판단하는 단계를 포함하는 방사선 저항성 암 진단에 필요한 정보를 제공하는 방법을 제공한다.In addition, the present invention comprises the steps of (1) measuring the mRNA expression level or LRP-1 protein expression level of LRP-1 gene from a sample isolated from cancer patients; (2) comparing the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein with a control sample; And (3) determining that the LRP-1 gene mRNA expression level or LRP-1 protein expression level is higher than that of the control sample, wherein the LRP-1 gene is determined to be radiation resistant cancer. do.
상세하게는, 상기 mRNA 발현 수준을 측정하는 방법은 RT-PCR, 경쟁적 RT-PCR(Competitive RT-PCR), 실시간 RT-PCR (Real-time RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅 (Northern blotting) 및 DNA 칩을 이용하지만, 이에 한정되는 것은 아니다.Specifically, the method of measuring the mRNA expression level is RT-PCR, competitive RT-PCR (Real-time RT-PCR), RNase protection assay (RPA; RNase protection assay ), Northern blotting and DNA chips are used, but are not limited to these.
상세하게는, 상기 단백질 발현 수준을 측정하는 방법은 웨스턴 블랏, ELISA(enzyme linked immunosorbent asay), 방사선면역분석(Radioimmunoassay; RIA), 방사면역확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역 확산법, 로케이트(rocket) 면역전기영동, 조직면역염색, 면역침전 분석법(Immunoprecipitation assay), 보체고정분석법 (Complement Fixation Assay), FACS 및 단백질 칩을 이용하지만, 이에 한정되는 것은 아니다.Specifically, the method of measuring the protein expression level is Western blot, ELISA (enzyme linked immunosorbent asay), radioimmunoassay (RIA), radioimmunodiffusion, Ouchterlony immunodiffusion method, Rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS and protein chips are used, but are not limited thereto.
본 명세서에서 용어 "암 환자에서 분리된 시료"란 방사선 저항성 암 진단용 바이오 마커인 상기 LRP-1 유전자 또는 LRP-1 단백질의 발현 수준에 있어서 대조군과 차이가 나는 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액, 또는 뇨와 같은 시료를 포함하지만, 이에 한정되는 것은 아니다. As used herein, the term "sample isolated from cancer patients" refers to tissues, cells, whole blood, serum, plasma, which differ from the control group in the expression level of the LRP-1 gene or LRP-1 protein, which is a biomarker for radiation-resistant cancer diagnosis. Samples such as saliva, sputum, cerebrospinal fluid, or urine include, but are not limited to.
본 명세서에서 “방사선 저항성 암 진단”은 암 환자의 방사선 치료 전략 및 방사선 치료 효과에 대한 예측을 위해 암세포가 방사선에 저항성인지 또는 민감성인지를 확인하기 위함이다.In the present specification, "radiation-resistant cancer diagnosis" is intended to determine whether cancer cells are radiation-resistant or sensitive for the prediction of radiation treatment strategies and radiation treatment effects of cancer patients.
또한, 본 발명은 LRP-1 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 암세포에 대한 방사선 민감성 증진용 약학조성물을 제공한다.The present invention also provides a pharmaceutical composition for enhancing radiation sensitivity to cancer cells comprising LRP-1 protein expression or activity inhibitor as an active ingredient.
상세하게는, 상기 LRP-1 단백질 발현 억제제는 LRP-1 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 작은 간섭 RNA(small interfering RNA; siRNA) 또는 짧은 헤어핀 RNA(short hairpin RNA; shRNA)일 수 있고, 상기 LRP-1 단백질 활성 억제제는 LRP-1 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 또는 천연물일 수 있으나, 이에 한정되는 것은 아니다.Specifically, the LRP-1 protein expression inhibitor may be an antisense nucleotide, small interfering RNA (siRNA) or short hairpin RNA (shRNA) that complementarily binds to the mRNA of the LRP-1 gene. The LRP-1 protein activity inhibitor may be, but is not limited to, a compound, a peptide, a peptide mimetics, an aptamer, an antibody, or a natural product that specifically binds to the LRP-1 protein.
본 발명의 약학 조성물은 화학물질, 뉴클레오타이드, 안티센스, siRNA 올리고뉴클레오타이드 및 천연물 추출물을 유효성분으로 포함할 수 있다. 본 발명의 약학 조성물 또는 복합 제제는 유효 성분 이외에 약제학적으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등의 가용화제를 사용할 수 있다. 본 발명의 약학 조성물은 투여를 위해서 유효 성분 이외에 추가로 약제학적으로 허용 가능한 담체를 1 종 이상 포함하여 약학 조성물로 바람직하게 제제화할 수 있다. 액상 용액으로 제제화되는 조성물에 있어서 허용 가능한 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. The pharmaceutical composition of the present invention may include chemicals, nucleotides, antisenses, siRNA oligonucleotides, and natural extracts as active ingredients. The pharmaceutical compositions or complex preparations of the present invention may be prepared using pharmaceutically acceptable and physiologically acceptable auxiliaries in addition to the active ingredients, which may include excipients, disintegrants, sweeteners, binders, coatings, swelling agents, lubricants. Solubilizers such as lubricants and flavoring agents can be used. The pharmaceutical composition of the present invention may be preferably formulated into a pharmaceutical composition including one or more pharmaceutically acceptable carriers in addition to the active ingredient for administration. Acceptable pharmaceutical carriers in compositions formulated in liquid solutions are sterile and physiologically compatible, including saline, sterile water, Ringer's solution, buffered saline, albumin injectable solutions, dextrose solution, maltodextrin solution, glycerol, ethanol and One or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers and bacteriostatic agents may be added as necessary. Diluents, dispersants, surfactants, binders and lubricants may also be added in addition to formulate into injectable formulations, pills, capsules, granules or tablets such as aqueous solutions, suspensions, emulsions and the like.
본 발명의 약학 조성물의 약제 제제 형태는 과립제, 산제, 피복정, 정제, 캡슐제, 좌제, 시럽, 즙, 현탁제, 유제, 점적제 또는 주사 가능한 액제 및 활성 화합물의 서방출형 제제 등이 될 수 있다. 본 발명의 약학 조성물은 정맥내, 동맥내, 복강내, 근육내, 동맥내, 복강내, 흉골내, 경피, 비측내, 흡입, 국소, 직장, 경구, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다. 본 발명의 약학 조성물의 유효성분의 유효량은 질환의 예방 또는 치료 요구되는 양을 의미한다. 따라서, 질환의 종류, 질환의 중증도, 조성물에 함유된 유효 성분 및 다른 성분의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료 기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 이에 제한되는 것은 아니나, 예컨대, 성인의 경우, 1일 1회 내지 수회 투여시, 본 발명의 조성물은 1일 1회 내지 수회 투여시, 화합물일 경우 0.1ng/kg~10g/kg, 폴리펩타이드, 단백질 또는 항체일 경우 0.1ng/kg~10g/kg, 안티센스 뉴클레오타이드, siRNA, shRNAi, miRNA일 경우 0.01ng/kg~10g/kg의 용량으로 투여할 수 있다. Pharmaceutical formulation forms of the pharmaceutical compositions of the present invention may be granules, powders, coated tablets, tablets, capsules, suppositories, syrups, juices, suspensions, emulsions, drops or injectable solutions and sustained release formulations of the active compounds, and the like. Can be. The pharmaceutical compositions of the present invention may be administered in a conventional manner via intravenous, intraarterial, intraperitoneal, intramuscular, intraarterial, intraperitoneal, sternum, transdermal, nasal, inhalation, topical, rectal, oral, intraocular or intradermal routes. Can be administered. An effective amount of the active ingredient of the pharmaceutical composition of the present invention means an amount required to prevent or treat a disease. Thus, the type of disease, the severity of the disease, the type and amount of the active and other ingredients contained in the composition, the type of formulation and the age, body weight, general health, sex and diet of the patient, time of administration, route of administration and composition It can be adjusted according to various factors including the rate of secretion, the duration of treatment, and the drug used concurrently. For example, in the case of an adult, when administered once or several times a day, the composition of the present invention is administered once or several times a day, when the compound is 0.1ng / kg to 10g / kg, a polypeptide, In the case of proteins or antibodies, 0.1ng / kg ~ 10g / kg, antisense nucleotides, siRNA, shRNAi, miRNA can be administered at a dose of 0.01ng / kg ~ 10g / kg.
또한, 본 발명은 (1) 암세포에 시험물질을 접촉시키는 단계; (2) 상기 시험물질을 접촉한 암세포에서 LRP-1 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 (3) 대조구 시료와 비교하여 상기 LRP-1 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 암세포에 대한 방사선 민감성 증진제 스크리닝 방법을 제공한다.In addition, the present invention (1) contacting the test substance to cancer cells; (2) measuring the level of expression or activity of LRP-1 protein in cancer cells in contact with the test substance; And (3) provides a method for screening a radiation sensitivity enhancer for cancer cells comprising the step of selecting a test substance with reduced expression or activity of the LRP-1 protein compared to the control sample.
본 발명의 스크리닝 방법을 언급하면서 사용되는 용어 "시험물질"은 유전자의 발현량에 영향을 미치거나, 단백질의 발현 또는 활성에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 후보 물질을 의미한다. 상기 시료는 화학물질, 뉴클레오타이드, 안티센스-RNA, siRNA(small interference RNA) 및 천연물 추출물을 포함하나, 이에 제한되는 것은 아니다. As used to refer to the screening method of the present invention, the term "test material" refers to an unknown candidate used in screening to examine whether it affects the expression level of a gene or affects the expression or activity of a protein. do. The sample includes, but is not limited to, chemicals, nucleotides, antisense-RNAs, small interference RNAs (siRNAs), and natural extracts.
또한, 본 발명은 LRP-1 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 바이오마커 조성물을 제공한다.The present invention also provides a biomarker composition for predicting the prognosis of radiation therapy in cancer patients comprising LRP-1 or a gene encoding the same as an active ingredient.
본 명세서에서 용어 “예후 예측”은 질환의 경과 및 결과를 미리 예측하는 행위를 의미한다. 보다 구체적으로, 예후 예측이란 질환의 치료 후 경과는 환자의 생리적 또는 환경적 상태에 따라 달라질 수 있으며, 이러한 환자의 상태를 종합적으로 고려하여 치료 후 병의 경과를 예측하는 모든 행위를 의미하는 것으로 해석될 수 있다.As used herein, the term “prognostic prediction” refers to the act of predicting the progress and outcome of a disease in advance. More specifically, the prognosis prediction may vary according to the physiological or environmental condition of the patient, and is interpreted to mean all actions for predicting the progress of the disease after treatment in consideration of the condition of the patient. Can be.
본 발명의 목적상 상기 예후 예측은 암 환자의 방사선 치료 후, 질환의 경과 및 완치여부를 미리 예상하여 암 환자의 무병생존율 또는 생존율을 예측하는 행위로 해석될 수 있다. 예를 들어, "예후가 좋다"라고 예측하는 것은 방사선 치료 후 암 환자의 무병생존율 또는 생존율이 높은 수준을 나타내어, 암 환자가 치료될 가능성이 높다는 것을 의미하고, "예후가 나쁘다"라고 예측하는 것은 방사선 치료 후 암 환자의 무병생존율 또는 생존율이 낮은 수준을 나타내어, 암 환자로부터 암이 재발하거나 또는 암으로 인하여 사망할 가능성이 높다는 것을 의미한다.For the purposes of the present invention, the prognosis prediction may be interpreted as an act of predicting disease-free survival rate or survival rate of cancer patients by predicting the progress and cure of the disease in advance after radiation treatment of cancer patients. For example, predicting "good prognosis" indicates a high level of disease-free survival or survival after cancer treatment, meaning that cancer patients are more likely to be treated, and predicting "prognosis is poor." The low disease-free survival rate or survival rate of cancer patients after radiation is indicated, which means that the cancer is more likely to recur or die from cancer.
또한, 본 발명은 LRP-1의 발현수준을 측정할 수 있는 제제를 유효성분으로 포함하는암 환자의 방사선 치료 예후 예측용 조성물을 제공한다. In another aspect, the present invention provides a composition for predicting the prognosis of the radiation therapy of cancer patients comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
상세하게는, 상기 LRP-1의 발현수준을 측정할 수 있는 제제는 상기 LRP-1 유전자에 특이적으로 결합하는 프라이머 또는 프로브, 상기 LRP-1 단백질에 특이적으로 결합하는 항체, 펩타이드, 앱타머 또는 화합물일 수 있으나, 이에 한정되는 것은 아니다. In detail, the agent capable of measuring the expression level of LRP-1 includes a primer or probe specifically binding to the LRP-1 gene, an antibody, peptide, aptamer specifically binding to the LRP-1 protein. Or a compound, but is not limited thereto.
또한, 본 발명은 상기 조성물을 포함하는 암 환자의 방사선 치료 예후 예측용 키트를 제공한다.In another aspect, the present invention provides a kit for predicting the prognosis of the radiation treatment of cancer patients comprising the composition.
또한, 본 발명은 (1) 암 환자에서 분리된 시료로부터 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 측정하는 단계; (2) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 대조군 시료와 비교하는 단계; 및 (3) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준이 대조군 시료보다 높을 경우 방사선 치료 예후가 나쁘다고 판단하는 단계를 포함하는 암 환자의 방사선 치료 예후 예측에 필요한 정보를 제공하는 방법을 제공한다.In addition, the present invention comprises the steps of (1) measuring the mRNA expression level or LRP-1 protein expression level of LRP-1 gene from a sample isolated from cancer patients; (2) comparing the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein with a control sample; And (3) determining that the prognosis of radiation therapy is worse when the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein is higher than that of the control sample. Provide a way to.
상세하게는, 상기 mRNA 발현 수준을 측정하는 방법은 RT-PCR, 경쟁적 RT-PCR(Competitive RT-PCR), 실시간 RT-PCR (Real-time RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅 (Northern blotting) 및 DNA 칩을 이용하지만, 이에 한정되는 것은 아니다.Specifically, the method of measuring the mRNA expression level is RT-PCR, competitive RT-PCR (Real-time RT-PCR), RNase protection assay (RPA; RNase protection assay ), Northern blotting and DNA chips are used, but are not limited to these.
상세하게는, 상기 단백질 발현 수준을 측정하는 방법은 웨스턴 블랏, ELISA(enzyme linked immunosorbent asay), 방사선면역분석(Radioimmunoassay; RIA), 방사면역확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역 확산법, 로케이트(rocket) 면역전기영동, 조직면역염색, 면역침전 분석법(Immunoprecipitation assay), 보체고정분석법 (Complement Fixation Assay), FACS 및 단백질 칩을 이용하지만, 이에 한정되는 것은 아니다.Specifically, the method of measuring the protein expression level is Western blot, ELISA (enzyme linked immunosorbent asay), radioimmunoassay (RIA), radioimmunodiffusion, Ouchterlony immunodiffusion method, Rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS and protein chips are used, but are not limited thereto.
본 명세서에서 "암" 또는 "암세포"는 유방암, 자궁경부암, 신경교종, 뇌암, 흑색종, 폐암, 방광암, 전립선암, 백혈병, 신장암, 간암, 대장암, 췌장암, 위암, 담낭암, 난소암, 임파종, 골육종, 자궁암, 구강암, 기관지암, 비인두암, 후두암, 피부암, 혈액암, 갑상선암, 부갑상선암 또는 요관암이거나, 이의 암세포일 수 있으나, 이에 제한되는 것은 아니다.As used herein, the term "cancer" or "cancer cell" refers to breast cancer, cervical cancer, glioma, brain cancer, melanoma, lung cancer, bladder cancer, prostate cancer, leukemia, kidney cancer, liver cancer, colon cancer, pancreatic cancer, gastric cancer, gallbladder cancer, ovarian cancer, It may be, but is not limited to, lymphoma, osteosarcoma, uterine cancer, oral cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, skin cancer, hematologic cancer, thyroid cancer, parathyroid cancer, or ureter cancer.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples will be described in detail to help understand the present invention. However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실시예 1> 인간 대장암 유래 cDNA 라이브러리 스크리닝 Example 1 cDNA Library Screening from Human Colon Cancer
T7Select® Human colon tumor cDNA Library(Novagen)를 구입하여 방사선 저항성 대장암을 표적하는 특정 펩타이드 서열(TPSFSKI; 한국특허출원 제10-2015-0106580호)의 결합 상대 단백질을 스크리닝하였다. 구체적으로 3번의 바이오패닝 과정을 반복하여 결합 상대 단백질 후보군을 선택하도록 디자인하여, 보다 특이적으로 결합하는 후보군을 선별하였다. 총 3회의 바이오패닝 과정 종료 후, 서열분석 및 BLAST를 이용하여 가능성 있는 후보군 정보를 획득하였다. 상기 후보군 정보를 도 1에 나타내었다.T7Select ® Human colon tumor cDNA Library specific peptide sequence that purchased the target radiation-resistant colon cancer (Novagen); screened a binding partner protein (TPSFSKI Korea Patent Application No. 10-2015-0106580 call). Specifically, three biopanning processes were repeated to design a binding partner protein candidate group, thereby selecting candidate groups to bind more specifically. After a total of three biopanning procedures, probable candidate information was obtained using sequencing and BLAST. The candidate group information is shown in FIG. 1.
<실시예 2> 환자 대장암 조직 이식 마우스 모델 구축Example 2 Construction of a Mouse Colon Tissue Transplant Mouse Model
환자 대장암 조직 중 방사선 저항성 케이스 조직을 누드마우스에 계대배양하였다. 암조직은 넙적다리 피하에 조직 1개씩 이식하였다. 약 1개월 (4주) 까지 암 조직의 성장을 관찰하며 암 조직의 크기가 약 100 mm3 정도 성장하였을 때, 암 조직에만 국소적으로 2 Gy의 방사선을 조사하고, 24 시간 회복시간을 가진 후에 실험에 사용하였다. 방사선 조사군의 대조군으로 동일 마우스 모델에서 방사선 조사만 하지 않은 마우스 모델 (0 Gy)도 준비하였다. 또한 방사선 저항성 대장암 케이스 뿐만 아니라 방사선 민감성 대장암 케이스도 같은 방법으로 이식 및 계대배양 하였으며, 방사선 조사 역시 동일 조건에서 실시하여 준비하였다. 마우스 모델 구축관련한 모식도를 도 2에 나타내었다. Radiation resistant case tissue among patient colorectal cancer tissues was passaged to nude mice. Cancer tissues were implanted one by one under the thigh. The growth of the cancer tissue was observed up to about 1 month (4 weeks), and when the size of the cancer tissue grew to about 100 mm 3 , the cancer tissue was irradiated locally with 2 Gy and after 24 hours recovery time. It was used for the experiment. As a control group of the irradiation group, a mouse model (0 Gy) which was not irradiated only in the same mouse model was also prepared. In addition, radiation-resistant colorectal cancer cases as well as radiation-sensitive colorectal cancer cases were transplanted and passaged in the same manner, and irradiation was performed under the same conditions. A schematic diagram relating to mouse model construction is shown in FIG. 2.
<실시예 3> 결합 상대 단백질 후보군의 유의적 mRNA 발현 차 확인<Example 3> Significant mRNA expression difference of binding partner protein candidate group confirmed
결합 상대 단백질 후보군의 선별 및 검증을 위해 방사선 민감성, 저항성 대장암 케이스 및 방사선 조사 여부에 따른 유의적 mRNA 발현차를 확인하고자 Q-PCR 기법을 이용하였다. 스크리닝을 통해 얻은 14개의 결합 상대 단백질 후보군 유전자에 대한 프라이머를 제작하였다. 또한, 실시예 2에서 구축한 모델에서 암조직을 적출하여 동결보관 후, 각각 mRNA를 정제하고 cDNA를 합성하였다. 이를 이용하여 Quantitative PCR (Q-PCR)를 실시하였고, 14개 후보군 중 방사선 조사 여부에 따라 유의한 발현 차를 보인 7개의 후보군을 선별하였다. 해당 후보군에 대한 재현성을 확인한 결과, 그중 유의적 발현 차가 가장 큰 2개의 후보군을 증명하였고, 상기 결과를 도 3에 나타내었다.Q-PCR was used to identify significant differences in mRNA expression according to radiation-sensitive, resistant colorectal cancer cases and irradiation. Primers for 14 binding partner protein candidate genes obtained through screening were prepared. In addition, cancer tissue was extracted from the model constructed in Example 2 and cryopreserved, and then mRNA was purified and cDNA was synthesized, respectively. Quantitative PCR (Q-PCR) was performed and seven candidate groups with significant expression differences were selected among the 14 candidate groups depending on the irradiation. As a result of confirming the reproducibility of the candidate group, two candidate groups having the largest significant difference in expression were demonstrated, and the results are shown in FIG. 3.
<< 실시예Example 4> 결합 상대 단백질 후보군의 방사선 조사 여부에 따른 단백질 발현 차 확인 4> Confirmation of protein expression difference according to the irradiation of binding partner protein candidate group
mRNA 유의적 발현 차에 따라 검증된 2개 후보군에 대해 단백질 수준에서도 유의미한 발현 차를 증명하기 위해 western boltting 기법을 실시하였다. 동결보관 조직에서 단백질을 추출하고, 각 후보군의 항체를 이용하여 방사선 조사에 따른 단백질 발현 차를 확인하였다. 2개 후보군 중, 오직 LRP-1 만이 방사선 조사 여부에 따른 유의적 단백질 발현 차를 검증할 수 있었으며, 다른 후보군 하나는 방사선 조사 여부에 상관 없이 단백질 레벨을 확인할 수 없어 후보군에서 제외하였다. 또한 스크리닝 및 계속 검증단계에서 사용한 방사선 저항성 대장암 케이스 뿐만 아니라 추가적으로 방사선 민감성 대장암 2 케이스 및 방사선 저항성 대장암 1 케이스를 추가하여 단백질 발현 차를 확인하였다. LRP-1의 경우, 방사선 민감성 케이스에서는 방사선 조사 여부에 따른 유의적 발현차를 확인할 수 없었으며, 다른 방사선 저항성 대장암 케이스에서는 방사선 조사 여부에 따라 유의미한 발현 차를 보임을 재차 검증하였다. 상기 결과를 도 4에 나타내었다.Western boltting was performed to demonstrate significant expression differences at the protein level for the two candidate groups verified according to mRNA expression differences. Proteins were extracted from cryopreserved tissues, and the difference in protein expression according to irradiation was confirmed using antibodies of each candidate group. Of the two candidate groups, only LRP-1 was able to verify the significant difference in protein expression according to irradiation, and one other candidate group was excluded from the candidate group because the protein level could not be confirmed regardless of the irradiation. In addition to the radiation-resistant colorectal cancer case used in the screening and continued verification step, the addition of two radiation-sensitive colorectal cancer cases and one radiation-resistant colorectal cancer case was added to confirm the difference in protein expression. In the case of LRP-1, no significant difference in expression was observed in the radiation-sensitive case, and in the other radiation-resistant colorectal cancer cases, the expression difference was significantly verified. The results are shown in FIG. 4.
<실시예 5> LRP-1의 조직학적 검증Example 5 Histological Validation of LRP-1
mRNA 및 단백질 레벨에서 유의적 발현 차를 확인한 LRP-1에 대한 조직학적 검증을 위해 IHC 염색 기법을 실시하였다. 방사선 저항성 및 민감성 대장암 각 2 케이스를 방사선 조사 여부에 차이를 두어 조직 절편을 제작하였고, 해당 조직 절편에서 LRP-1 항체를 이용하여 염색한 후 존재 여부를 검증하였다. 상기 실시예 4에서 단백질 발현 차 검증과 상동함을 규명함으로써 LRP-1이 TPSFSKI 펩타이드의 결합 상대 단백질임을 뒷받침하였다. 이를 도 5에 나타내었다.IHC staining was performed for histological validation of LRP-1, which identified significant expression differences in mRNA and protein levels. Tissue sections were prepared for each of the two cases of radiation-resistant and susceptible colorectal cancer with or without irradiation. The tissue sections were stained with LRP-1 antibody and then examined for their presence. By confirming homology with the protein expression difference verification in Example 4, it was supported that LRP-1 is a binding partner protein of the TPSFSKI peptide. This is shown in FIG. 5.
<실시예 6> TPSFSKI 펩타이드 파아지와 LRP-1의 실제 결합 여부 규명Example 6 Identification of Actual Binding of TPSFSKI Peptide Phage to LRP-1
상기 실시예 3 내지 실시예 5에서 LRP-1이 TPSFSKI 펩타이드 서열의 결합 상대 단백질임을 간접적으로 검증함을 토대로, 실제 TPSFSKI 서열과 LRP-1이 결합하는지 직접적인 규명을 위해 면역침강법 (immunoprecipitation assay)을 실시하였다. 방사선 조사 여부에 따른 각 케이스 별 대장암 조직에서 각각 단백질을 추출하고, LRP-1 및 M13 항체와 IgG bead를 이용하여 면역침강법을 실시하였다. 면역 침강의 확인은 western boltting을 통해 확인하였으며, 이를 통해 LRP-1이 TPSFSKI 펩타이드의 결합 상대 단백질임을 직접적으로 규명하였다. 상기 결과를 도 6에 나타내었다.Based on indirectly verifying that LRP-1 is a binding partner protein of the TPSFSKI peptide sequence in Examples 3 to 5, an immunoprecipitation assay was performed to directly determine whether LRP-1 binds to the actual TPSFSKI sequence. Was carried out. Proteins were extracted from the colorectal cancer tissues of each case according to irradiation and immunoprecipitation was performed using LRP-1 and M13 antibodies and IgG bead. Immune sedimentation was confirmed by western boltting, through which LRP-1 was directly identified as a binding partner protein of TPSFSKI peptide. The results are shown in FIG. 6.
<실시예 7> 실제 환자 대장암 조직에서 LRP-1의 발현 여부 확인Example 7 Confirmation of Expression of LRP-1 in Actual Colorectal Cancer Tissues
상기 실시예 4 내지 실시예 6에서 활용한 암조직은 환자 대장암 조직 이식 마우스 모델에서 적출한 암조직이다. 상기 암조직의 원래 주인인 환자 대장암 조직에서 LRP-1의 발현 여부 및 케이스 별 발현 차이를 검증하였다. 관련 기관의 승인을 받아, 서울아산병원 병리과로부터 해당 환자의 실제 암조직 파라핀 절편 슬라이드를 제공 받았으며, 이에 대한 조직학적 검증을 IHC 염색 기법을 통해 실시하였다. 이를 통해 상기 실시예 4 및 도 5와 연관성 있는 결과를 얻었으며, 실제 임상에서도 LRP-1의 적용이 가능함을 검증하였다. 상기 결과를 도 7에 나타내었다.The cancer tissue utilized in Example 4 thru | or Example 6 is the cancer tissue extracted from the mouse colon cancer tissue transplantation mouse model. The expression of LRP-1 and differences in case-specific expression were evaluated in the colorectal cancer tissues of the original owner of the cancer tissue. With the approval of the relevant institution, the patient's actual cancer tissue paraffin slice slides were provided by Asan Medical Center's Pathology Department, and histological verification was performed by IHC staining technique. As a result, the results related to Example 4 and FIG. 5 were obtained, and it was verified that LRP-1 could be applied to actual clinical practice. The results are shown in FIG.
<실시예 8> 방사선 저항성 대장암 환자 암조직에서 LRP-1의 발현 여부 검증 <Example 8> Verification of the expression of LRP-1 in cancer tissue of radiation-resistant colorectal cancer patients
실시예 7과 더불어 실제 방사선치료를 수행한 환자 중, 방사선치료 예후가 나쁜 환자 대장암 조직 20케이스에서 LRP-1의 발현 여부를 검증하였다. 검증 방법은 실시예 7과 동일하게 IHC 염색기법으로 검증하였으며, 그 결과 방사선치료 예후가 나쁜 대장암 환자 암조직에서 LRP-1이 과발현됨을 확인하였다. 뿐만 아니라 임상 데이터 분석을 통해 방사선치료를 수행한 대장암 환자에서 LRP-1 발현 여부에 따른 예후를 분석하였다. 그 결과, LRP-1의 발현이 높을 경우 예후가 매우 좋지 못함을 확인하였다. 상기 결과를 도 8과 도 9에 나타내었다.In addition to Example 7, the expression of LRP-1 was verified in 20 cases of colorectal cancer tissues of patients with poor radiotherapy prognosis. The verification method was verified by the IHC staining technique in the same manner as in Example 7, and as a result, it was confirmed that LRP-1 overexpressed in cancer tissues of colon cancer patients with poor prognosis. In addition, we analyzed the prognosis according to LRP-1 expression in colorectal cancer patients who received radiotherapy through clinical data analysis. As a result, it was confirmed that the prognosis was very poor when the expression of LRP-1 was high. The results are shown in FIGS. 8 and 9.
이상으로 본 발명을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, the present invention has been described in detail, and it should be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (20)

  1. 저밀도 지단백질 수용체-관련 단백질 1(Low density lipoprotein receptor-related protein 1; LRP-1) 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 방사선 저항성 암 진단용 바이오마커 조성물.Low density lipoprotein receptor-related protein 1 (LRP-1) or a biomarker composition for diagnosing radiation-resistant cancer comprising a gene encoding the same as an active ingredient.
  2. 제1항에 있어서, 상기 바이오마커 조성물은 CD133, CD144 및 CD24로 이루어진 군에서 선택된 어느 하나 이상의 단백질 또는 이를 코딩하는 유전자를 더 포함하는 것을 특징으로 하는 방사선 저항성 암 진단용 바이오마커 조성물.The biomarker composition of claim 1, wherein the biomarker composition further comprises at least one protein selected from the group consisting of CD133, CD144, and CD24, or a gene encoding the same.
  3. 제1항에 있어서, 상기 LRP-1은 서열번호 1의 아미노산 서열로 이루어진 펩타이드와 결합하는 것을 특징으로 하는 방사선 저항성 암 진단용 바이오마커 조성물.According to claim 1, The LRP-1 is a radiation resistant cancer diagnostic biomarker composition, characterized in that for binding to the peptide consisting of the amino acid sequence of SEQ ID NO: 1.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 암은 대장암인 것을 특징으로 하는 방사선 저항성 암 진단용 바이오마커 조성물.The biomarker composition for diagnosing radiation-resistant cancer according to any one of claims 1 to 3, wherein the cancer is colorectal cancer.
  5. LRP-1의 발현수준을 측정할 수 있는 제제를 유효성분으로 포함하는 방사선 저항성 암 진단용 조성물.Radiation-resistant cancer diagnostic composition comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
  6. 제5항에 있어서, 상기 LRP-1의 발현 수준을 측정할 수 있는 제제는 상기 LRP-1 유전자에 특이적으로 결합하는 프라이머 또는 프로브, 상기 LRP-1 단백질에 특이적으로 결합하는 항체, 펩타이드, 앱타머 또는 화합물인 것을 특징으로 하는 방사선 저항성 암 진단용 조성물.According to claim 5, The agent capable of measuring the expression level of LRP-1 is a primer or probe specifically binding to the LRP-1 gene, an antibody, peptide, specifically binding to the LRP-1 protein, Radiation-resistant cancer diagnostic composition, characterized in that the aptamer or compound.
  7. 제5항에 있어서, 상기 암은 대장암인 것을 특징으로 하는 방사선 저항성 암 진단용 조성물.According to claim 5, The cancer is radiation-resistant cancer diagnostic composition, characterized in that the colorectal cancer.
  8. 제5항 내지 제7항 중 어느 한 항의 조성물을 포함하는 방사선 저항성 암 진단용 키트.A radiation-resistant cancer diagnostic kit comprising the composition of any one of claims 5 to 7.
  9. (1) 암 환자에서 분리된 시료로부터 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 측정하는 단계; (1) measuring the mRNA expression level of LRP-1 gene or the expression level of LRP-1 protein from a sample isolated from cancer patients;
    (2) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 대조군 시료와 비교하는 단계; 및(2) comparing the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein with a control sample; And
    (3) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준이 대조군 시료보다 높을 경우 방사선 저항성 암이라고 판단하는 단계를 포함하는 방사선 저항성 암 진단에 필요한 정보를 제공하는 방법.(3) a method of providing information necessary for diagnosing radiation resistant cancer comprising determining that the LRP-1 gene mRNA expression level or LRP-1 protein expression level is higher than a control sample.
  10. 제9항에 있어서, 상기 암은 대장암인 것을 특징으로 하는 방사선 저항성 암 진단에 필요한 정보를 제공하는 방법.10. The method of claim 9, wherein said cancer is colorectal cancer.
  11. LRP-1 단백질 발현 또는 활성 억제제를 유효성분으로 포함하는 암세포에 대한 방사선 민감성 증진용 약학조성물.A pharmaceutical composition for enhancing radiosensitivity to cancer cells comprising LRP-1 protein expression or activity inhibitors as an active ingredient.
  12. 제11항에 있어서, 상기 LRP-1 단백질 발현 억제제는 LRP-1 유전자의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오타이드, 작은 간섭 RNA(small interfering RNA; siRNA) 및 짧은 헤어핀 RNA(short hairpin RNA; shRNA)로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 암세포에 대한 방사선 민감성 증진용 약학조성물.12. The method of claim 11, wherein the LRP-1 protein expression inhibitor comprises antisense nucleotides, small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) that complementarily bind to the mRNA of the LRP-1 gene. Pharmaceutical composition for enhancing radiation sensitivity to cancer cells, characterized in that any one selected from the group consisting of.
  13. 제11항에 있어서, 상기 LRP-1 단백질 활성 억제제는 LRP-1 단백질에 특이적으로 결합하는 화합물, 펩티드, 펩티드 미메틱스, 앱타머, 항체 및 천연물로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 암세포에 대한 방사선 민감성 증진용 약학조성물.The method of claim 11, wherein the LRP-1 protein activity inhibitor is any one selected from the group consisting of compounds, peptides, peptide mimetics, aptamers, antibodies and natural products that specifically bind to LRP-1 protein A pharmaceutical composition for enhancing radiation sensitivity to cancer cells.
  14. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 암세포는 대장암세포인 것을 특징으로 하는 암세포에 대한 방사선 민감성 증진용 약학조성물.The pharmaceutical composition of claim 11, wherein the cancer cells are colorectal cancer cells.
  15. (1) 암세포에 시험물질을 접촉시키는 단계;(1) contacting the test substance with cancer cells;
    (2) 상기 시험물질을 접촉한 암세포에서 LRP-1 단백질의 발현 또는 활성 정도를 측정하는 단계; 및 (2) measuring the level of expression or activity of LRP-1 protein in cancer cells in contact with the test substance; And
    (3) 대조구 시료와 비교하여 상기 LRP-1 단백질의 발현 또는 활성 정도가 감소한 시험물질을 선별하는 단계를 포함하는 암세포에 대한 방사선 민감성 증진제 스크리닝 방법.(3) A method for screening a radiation sensitivity enhancer for cancer cells, the method comprising selecting a test substance having a decreased expression or activity level of the LRP-1 protein compared to a control sample.
  16. 제15항에 있어서, 상기 암세포는 대장암세포인 것을 특징으로 하는 암세포에 대한 방사선 민감성 증진제 스크리닝 방법.The method of claim 15, wherein the cancer cells are colorectal cancer cells.
  17. LRP-1 또는 이를 코딩하는 유전자를 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 바이오마커 조성물.Biomarker composition for predicting radiotherapy prognosis of cancer patients comprising LRP-1 or a gene encoding the same as an active ingredient.
  18. LRP-1의 발현수준을 측정할 수 있는 제제를 유효성분으로 포함하는 암 환자의 방사선 치료 예후 예측용 조성물.A composition for predicting the prognosis of radiation therapy in cancer patients comprising a formulation capable of measuring the expression level of LRP-1 as an active ingredient.
  19. 제18항에 따른 조성물을 포함하는 암 환자의 방사선 치료 예후 예측용 키트.20. A kit for predicting the prognosis of radiation therapy in cancer patients comprising the composition of claim 18.
  20. (1) 암 환자에서 분리된 시료로부터 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 측정하는 단계; (1) measuring the mRNA expression level of LRP-1 gene or the expression level of LRP-1 protein from a sample isolated from cancer patients;
    (2) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준을 대조군 시료와 비교하는 단계; 및(2) comparing the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein with a control sample; And
    (3) 상기 LRP-1 유전자의 mRNA 발현 수준 또는 LRP-1 단백질의 발현 수준이 대조군 시료보다 높을 경우 방사선 치료 예후가 나쁘다고 판단하는 단계를 포함하는 암 환자의 방사선 치료 예후 예측에 필요한 정보를 제공하는 방법.(3) providing information necessary for predicting the prognosis of the radiation therapy of cancer patients, including determining that the prognosis of radiation therapy is poor when the mRNA expression level of the LRP-1 gene or the expression level of the LRP-1 protein is higher than that of the control sample. Way.
PCT/KR2017/005054 2016-05-17 2017-05-16 Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis WO2017200263A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17799620.4A EP3460476B1 (en) 2016-05-17 2017-05-16 Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis
US16/302,092 US20190203302A1 (en) 2016-05-17 2017-05-16 Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160060323 2016-05-17
KR10-2016-0060323 2016-05-17
KR1020170060005A KR101952649B1 (en) 2016-05-17 2017-05-15 Biomarker composition for diagnosing radiation resistant cancer or predicting prognosis of radiation therapy comprising LRP-1
KR10-2017-0060005 2017-05-15

Publications (1)

Publication Number Publication Date
WO2017200263A1 true WO2017200263A1 (en) 2017-11-23

Family

ID=60325334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005054 WO2017200263A1 (en) 2016-05-17 2017-05-16 Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis

Country Status (1)

Country Link
WO (1) WO2017200263A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054644A1 (en) * 2009-10-14 2011-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A low density lipoprotein-related protein 1 splice variant as cancer marker
US20150079078A1 (en) * 2012-04-13 2015-03-19 Erasmus University Medical Center Rotterdam Biomarkers for triple negative breast cancer
KR20150106580A (en) 2014-03-12 2015-09-22 국방과학연구소 Axial inlet type wet cyclone for bio aerosol collecting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011054644A1 (en) * 2009-10-14 2011-05-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A low density lipoprotein-related protein 1 splice variant as cancer marker
US20150079078A1 (en) * 2012-04-13 2015-03-19 Erasmus University Medical Center Rotterdam Biomarkers for triple negative breast cancer
KR20150106580A (en) 2014-03-12 2015-09-22 국방과학연구소 Axial inlet type wet cyclone for bio aerosol collecting

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KIM, MI-HYOUNG ET AL.: "Quantitative Proteomic Analysis of Single or Fractionated Radiation-induced Proteins in Human Breast Cancer MDA-MB-231 Cells", CELL & BIOSCIENCE, vol. 5, no. 2, 2015, pages 1 - 11, XP021217840 *
MUNAKATA, KOJI ET AL.: "SCGB2A1 Is a Novel Prognostic Marker for Colorectal Cancer Associated with Chemoresistance and Radioresistance", INTERNATIONAL JOURNAL OF ONCOLOGY, vol. 44, 2014, pages 1521 - 1528, XP055556187 *
S AHLBERG, SARA HAGGBLAD ET AL.: "Evaluation of Cancer Stem Cell Markers CD 133, CD 44, CD 24: Association with AKT Isoforms and Radiation Resistance in Colon Cancer Cells", PLOS ONE, vol. 9, no. 4, 2014, pages 1 - 12, XP055200303 *
See also references of EP3460476A4 *

Similar Documents

Publication Publication Date Title
Necela et al. Folate receptor-α (FOLR1) expression and function in triple negative tumors
US8753892B2 (en) Phosphodiesterase 4D7 as prostate cancer marker
Lan et al. Downregulation of SNRPG induces cell cycle arrest and sensitizes human glioblastoma cells to temozolomide by targeting Myc through a p53-dependent signaling pathway
EP2744917A2 (en) Methods and compositions for the treatment and diagnosis of breast cancer
WO2017026843A1 (en) Method for providing information on chronic myeloid leukemia
Lin et al. Targeting anthrax toxin receptor 2 ameliorates endometriosis progression
WO2017217807A9 (en) Biomarker comprising nckap1 as effective ingredient for diagnosing colorectal cancer or for predicting metastasis and prognosis of colorectal cancer
Von Roemeling et al. Functional genomics identifies novel genes essential for clear cell renal cell carcinoma tumor cell proliferation and migration
Sheng et al. The immunoglobulin superfamily member 3 (IGSF3) promotes hepatocellular carcinoma progression through activation of the NF-κB pathway
WO2021177691A1 (en) Composition for diagnosis or treatment of anticancer drug resistance
Liu et al. TUG1 long non‐coding RNA enlists the USF1 transcription factor to overexpress ROMO1 leading to hepatocellular carcinoma growth and metastasis
EP3460476B1 (en) Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis
WO2017200263A1 (en) Biomarker composition comprising lrp-1 as active ingredient, for diagnosis of radiation-resistant cancer or prediction of radiation therapy prognosis
WO2021080396A1 (en) Composition for preventing or treating valvular heart disease comprising rspo3 inhibitor
WO2023287079A1 (en) Biomarker composition for predicting triple negative breast cancer metastasis, containing csde1 as active ingredient
WO2019103456A2 (en) Biomarker composition for diagnosing radiation-resistant cancer or for predicting prognosis of radiation therapy containing pmvk as active ingredient
WO2023243749A1 (en) Marker for prognosis of diffuse type gastric cancer and treatment target
Zhang et al. Long noncoding RNA TFAP2A-AS1 exerts promotive effects in non-small cell lung cancer progression via controlling the microRNA-548a-3p/CDK4 axis as a competitive endogenous RNA
WO2023210908A1 (en) Method for predicting effectiveness of effect of treating glioblastoma by means of t cells
WO2022231102A1 (en) Biomarker for predicting responsiveness to anticancer agent and use thereof
KR102416607B1 (en) Radio-resistance biomarker and detecting method thereof
WO2023101359A1 (en) Composition comprising pip4k2c inhibitor as active ingredient for treatment of cancer
CN116200488B (en) Application of LncRNA RPAR in glioma diagnosis and treatment
WO2023177206A1 (en) Composition for diagnosis of pancreatic cancer
WO2022250465A1 (en) Novel biomarker for predicting enzalutamide resistance in prostate cancer and use thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017799620

Country of ref document: EP

Effective date: 20181217

NENP Non-entry into the national phase

Ref country code: JP