WO2017200136A1 - Device and method for analyzing concentration of chemical solution - Google Patents

Device and method for analyzing concentration of chemical solution Download PDF

Info

Publication number
WO2017200136A1
WO2017200136A1 PCT/KR2016/005886 KR2016005886W WO2017200136A1 WO 2017200136 A1 WO2017200136 A1 WO 2017200136A1 KR 2016005886 W KR2016005886 W KR 2016005886W WO 2017200136 A1 WO2017200136 A1 WO 2017200136A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
sample
color sensor
rgb color
unit
Prior art date
Application number
PCT/KR2016/005886
Other languages
French (fr)
Korean (ko)
Inventor
이상열
엄영환
유석영
한정민
Original Assignee
주식회사 화백엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 화백엔지니어링 filed Critical 주식회사 화백엔지니어링
Publication of WO2017200136A1 publication Critical patent/WO2017200136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J2003/503Densitometric colour measurements

Definitions

  • the present invention relates to an apparatus and method for analyzing a concentration of a chemical solution, and more particularly, a chemical that can quickly and accurately measure the concentration of a specific component in a corresponding solution composition in real time from a process apparatus in a process using a chemical solution.
  • a device and method for analyzing the concentration of a solution are particularly known in the art.
  • the etching liquid of the liquid crystal substrate manufacturing process must be strictly controlled in composition and concentration in accordance with the high precision of the pattern.
  • concentration of specific components of chemical solution such as etching solution
  • ascorbic acid reduction method for example, by diluting a sample pretreated in a laboratory, mixing the ascorbic acid with molybdate, and developing a spectrophotometer capable of absorbance measurement ( It is known to analyze the concentration of phosphoric acid by measuring the absorbance using an analytical device such as spectrophotometer.
  • the sample should be diluted, and a predetermined amount of ammonium ammonium chloride buffer, methanol, and pan indicator should be mixed and titrated with EDTA standard solution to calculate the copper concentration.
  • the method of wet analysis has a limitation in inaccuracy.
  • an ionized sample is taken in an appropriate amount of beaker, boiled with nitric acid to produce a precipitate, the precipitate is dissolved in hydrochloric acid of a predetermined concentration, and the solution is filtered through a filter paper,
  • the absorbance should be measured using an absorbance analyzer to analyze the iron concentration.
  • the present invention is to solve the above problems, one object of the present invention is a chemical solution that can quickly and accurately measure the concentration of a specific component in the chemical solution in real time in various processes using the chemical solution It is to provide an apparatus and method for analyzing the concentration of.
  • Another object of the present invention is to take a portion of the chemical solution as a sample, and to automatically and accurately control the process of transferring, supplying, and mixing the reagents required for pretreatment such as color development, and measuring from the sample using an RGB color sensor. It is to provide an apparatus and method for analyzing the concentration of a chemical solution that can analyze the concentration of a specific component in real time using the obtained RGB value.
  • a storage unit for storing the added solution; Transfer unit for transferring the sample to be analyzed to the mixing unit; Mixing unit for mixing the sample to be analyzed and the addition solution; A measuring unit for measuring the concentration of specific components from the mixed solution; A control unit which receives a measurement value of a specific component from the measuring unit and controls a transfer unit; And a user operation unit for displaying an operation signal input by the user and a concentration measurement value.
  • the measuring unit includes an RGB color sensor for measuring the concentration of the sample, and measures the RGB color sensor measured value of the deionized water and the RGB color sensor measured value of the known sample, converts it into a numerical value, and sends it to the controller.
  • the control unit controls the RGB color sensor measured values I (R0), I (G0), I (B0) and the RGB color sensor measured values I (Rx), I (Gx) and I ( After receiving Bx), calculate the R ', G', B 'value corrected for the deionized water color for the known concentration of the component whose concentration is to be measured by the following formula, and then linearize the data in linear form.
  • Another aspect of the present invention includes measuring RGB color sensor measurements I (R0), I (G0), I (B0) of deionized water;
  • Linear data is calculated by calculating the relationship between the color change according to the concentration change of the sample using the R ', G', and B 'values measured using an RGB color sensor for a sample of known concentration corrected for the deionized water color. Doing;
  • the present invention it is possible to analyze the concentration by measuring the RGB color sensor measurement value by using the RGB color sensor of the measuring unit in real time extracted the chemical solution, it is possible to configure a relatively low-cost device, Concentrations can be measured inline quickly and accurately in real time, making it easier to analyze and manage the concentrations of the necessary components of the process chemical.
  • the concentration can be measured for all process chemicals capable of expressing color by changing color or developing color according to a change in concentration.
  • each of the RGB color sensor measured values I (R0), I (G0), I (B0) measured by adding deionized water to the measuring unit, and I (Rx), By measuring both I (Gx) and I (Bx) values, the measurement of the light source such as the measurement value is changed by contamination of the light emitting part and the light receiving sensor part, change of light quantity, change of current and voltage, and deterioration thereof. Even if the change occurs due to the change of condition, the concentration can be measured and analyzed accurately without any error in the concentration measurement.
  • FIG. 1 is a schematic block diagram of a chemical solution concentration analysis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a detailed block diagram of the measuring unit of the chemical solution concentration analysis apparatus according to the present invention.
  • Example 3 is a calibration curve graph showing the change of R ', B', G 'value according to the change in phosphoric acid concentration calculated in Example 1 of the present invention.
  • Example 4 is a calibration curve graph showing the change of R ', B', G 'value according to the change in the concentration of copper in Example 2 of the present invention.
  • FIG. 5 is a calibration curve graph illustrating changes in R ', B', and G 'values according to iron ion concentration changes in Example 3 of the present invention.
  • ⁇ RGB color sensor measured value ⁇ means a value obtained by quantifying the energy spectral intensity of light received after passing through a sample in the analysis vessel.
  • FIG. 1 is a schematic block diagram of a chemical solution concentration analysis apparatus according to an embodiment of the present invention
  • Figure 2 is a detailed block diagram of a measuring unit of the chemical solution concentration analysis apparatus according to the present invention.
  • the chemical solution concentration analysis device of the present invention storage unit 500 for storing the added solution; Transfer unit 400 for transferring the sample to be analyzed to the mixing unit; Mixing unit 600 for mixing the sample to be analyzed and the addition solution; A measuring unit 700 for measuring the concentration of specific components from the mixed solution; A control unit 300 for receiving a measurement value of a specific component from the measuring unit and controlling a transfer unit; And a user manipulation unit 200 for displaying an operation signal input by the user and a concentration measurement value.
  • the measuring unit 700 includes an RGB color sensor 720 for measuring the concentration of the sample, and measures the RGB color sensor measurement value of the deionized water and the RGB color sensor measurement value of the sample having a known density. Converts and transmits the RGB color sensor measured values I (R0), I (G0), I (B0) of the deionized water and the RGB color sensor measured values I (Rx), I of the sample whose density is known.
  • the calibration curve can be selected as the calibration curve with the greatest slope among RGB.
  • the concentration analyzer according to the present invention can be operated alone, but may be used as a concentration analyzer that can be installed in addition to a process apparatus using a chemical solution.
  • the concentration distribution device of the present invention may further include a means for transferring the chemical solution directly from the processing device.
  • the light emitted from the light emitting part 730 passes through the mixed solution in the analysis container 740.
  • the light is received by the photodiodes 750 equipped with the respective red and green blue filters included in the RGB color sensor 720, and current is generated in the respective photodiodes 750.
  • the generated current varies depending on the amount of light received through the photodiode 750 through the analysis vessel, where the amount of light reaching the photodiode is changed by the absorbance amount of the sample in the analysis vessel. .
  • the absorbance depends on the concentration factor of the mixed solution in the analytical container, a difference occurs in the amount of light reaching the photodiode according to the concentration of the process solution.
  • the concentration of the component can be calculated. That is, I (R), I (G), and I (B) values of samples of known concentrations can be known by using the difference in absorbance according to the concentration of the solution. ), The concentration of the sample can be calculated by measuring the I (G) and I (B) values.
  • the light emitting unit 730, the analysis container 740, and the RGB color sensor 720 of the measuring unit 700 may be protected from interference of external light by the housing 710.
  • the measuring unit 700 includes a housing 710, a light emitting unit 730, an RGB color sensor 720, and an analysis container 740 in the housing.
  • the light of the light emitting unit 730 may be configured to be independently irradiated with the tricolor light of RGB mixed with white light, or may be composed of a halogen lamp, tungsten lamp, or irradiated in the form of white light using a yellow phosphor to the blue LED. have.
  • the front part of the light emitting part 730 and the front part of the RGB color sensor 720 for receiving light are composed of transparent glass 770 so that the light from the light emitting part 730 can reach the RGB color sensor 720. do.
  • the transparent glass 770 may be any material as long as the material has good light transmittance and chemical resistance other than glass. For example, quartz, sapphire, or the like may be used.
  • the RGB color sensor 720 and the light emitter 730 are preferably disposed at positions facing each other with respect to the analysis container 740, but are not limited thereto.
  • the RGB color sensor includes photodiodes 750 including respective red, green, and blue filters, and a converter 760 for converting a current signal generated from each photodiode into a form of computed spectral intensity. It is composed.
  • the intensity of the R wavelength band (hereinafter referred to as I (R)), the intensity of the G wavelength band (hereinafter referred to as I (G)), and the intensity of the B wavelength band (hereinafter referred to as I (B)) are controlled by the controller 300. Is sent.
  • the control unit 300 calculates the concentration of the process chemicals using the values of I (R), I (G), and I (B) transmitted from the RGB color sensor 720 of the measuring unit 700 to control the user operation unit 200. Mark on.
  • the color sensor 720 separates the light received through the analysis vessel into three wavelengths of R, G, and B, and converts the intensity of each wavelength band (by color) into an electrical signal by the converter 760.
  • Converter 760 may generally be configured as an analog to digital converter, and converts the intensity of received light into a digital electrical signal.
  • I (R), I (G), I (B) values measured by adding deionized water to the measuring unit hereinafter referred to as I (R0), I (G0), I (B0) respectively
  • I (Rx), I (Gx), and I (Bx) Measure the values of I (R), I (G), and I (B) (hereinafter referred to as I (Rx), I (Gx), and I (Bx), respectively) of the developed sample. It adopts the method to get ', B' value.
  • each of the I (R0), I (G0) and I (B0) values measured by adding deionized water to the measuring unit and the chemical solution to be measured By measuring the values of I (Rx), I (Gx) and I (Bx) together, a constant value of R ', B', and G 'can be obtained even if a change occurs due to a change in the condition of the light source. As a result, a concentration measurement error does not occur due to a change in the condition of the light source, and thus more accurate concentration measurement may be performed.
  • the chemical solution concentration analyzer of the present invention may include a washing function including washing chemicals for washing the mixing unit and the measuring unit.
  • the mixed solution of which the measurement is completed in the measuring unit 700 is drained, and a washing function of the mixing unit 600 and the measuring unit 700 may be added to measure the next concentration.
  • the process chemical is performed in a state accommodated in the solution storage tank 100 of the process apparatus, and circulated by the circulation pump 110.
  • the circulating pipe of the process chemical circulated by the circulation pump 110 and the transfer unit 400 are connected to each other, the process chemical is circulated from the process unit to the transfer unit 400 of the analysis apparatus of the present invention, and thus the transfer unit ( In 400, process chemicals requiring analysis can be collected in real time.
  • the transfer unit 400 receives a solution taking control signal from the control unit 300 and at the same time serves to quantify the process chemicals in the circulation pipe of the process chemicals to supply to the mixing unit 600.
  • the transfer unit 400 receives a chemical supply control signal for analyzing the process concentration from the control unit 300 and at the same time receives the corresponding solution from the storage unit 500 composed of a plurality of storage vessels. It consists of a plurality of drug quantitative supply device for supplying 600).
  • the transfer means applied to the transfer unit 400 including all devices having a quantitative pump, syringe pump, tubing pump, gear pump and other quantitative sampling and supply, transfer function, and supply accordingly Rhodo can also use chemically resistant tubing and tubes, including Teflon, silicone, and Viton.
  • the storage unit 500 may store various additives such as reagents required for pretreatment such as deionized water and color development, and may be configured to store a plurality of additive solutions according to a target sample.
  • additives such as reagents required for pretreatment such as deionized water and color development
  • the mixing unit 600 the collected process chemicals and the additive solution transferred from the storage unit 500 are mixed, and the mixed liquid causes a difference in RGB values according to the concentration of the component to be analyzed in the process solution.
  • the mixed liquid of the mixing unit 600 is moved to the measuring unit 700 through the valve.
  • the valve can be any valve operated by electric signals or air pressure, such as solenoid valve or electric valve.
  • the control of the valve may be configured to be operable at a user manipulation unit.
  • the control unit 300 is based on the I (R), I (G), I (B) value received from the measuring unit 700, the corresponding solution as an unknown sample in contrast to the calibration curve prepared based on the sample of the known concentration in advance Calculate the concentration of and display it on the user control panel.
  • Another aspect of the invention relates to a method for analyzing the concentration of a chemical solution.
  • the method of the present invention first, the RGB color sensor measured values I (R0), I (G0), and I (B0) of deionized water are measured, and then, an additional solution containing a color developing reagent in a plurality of samples having known concentrations. After mixing and coloring by adding, the RGB color sensor measured values I (Rx), I (Gx) and I (Bx) are measured. Subsequently, the RGB color sensor measured values R ', G', and B 'of the sample whose density is corrected for the deionized water color are calculated using the following formula.
  • Linear data is calculated by calculating the relationship between the color change according to the concentration change of the sample using the R ', G', and B 'values measured using an RGB color sensor for a sample of known concentration corrected for the deionized water color. do.
  • the concentration value corresponding to the reference data is calculated as the concentration of the measurement target substance by comparing the converted value with the reference data on the calibration curve.
  • the intensity of the substance to be measured in the chemical solution is measured by the color sensor, the measured value may be converted into numerical values to calculate the concentration in comparison with the reference data.
  • Data derived by chemical solutions with known deionized water and concentration can be generated as linear data in the form of linear functions.
  • the calibration curve may select a value having the largest slope among RGB as the calibration curve.
  • the deionized water is added to the measuring unit, and the measured value and the RGB color sensor measured value of the colored sample having known concentrations are measured and corrected by a formula, so as to change the condition of the light source such as deterioration of the component. Even if a change occurs, constant R ', G', and B 'values can be obtained. As a result, a concentration measurement error does not occur due to a change in the condition of the light source, so that the concentration can be measured more accurately.
  • the deionized water of the storage unit is transferred to the mixing unit from the transfer unit, and then transferred to the measuring unit again to measure and drain I (R0), I (G0), and I (B0) of the deionized water.
  • the measured deionized water I (R0), I (G0), and I (B0) are transmitted to the control unit.
  • the transfer unit transfers the process chemicals from the circulation pipe and the additive solution from the storage unit to the mixing unit, respectively.
  • the addition solution is deionized water, ascorbic acid and molybdate, and deionized water is transferred in an amount of 1500 times dilution of the process chemical, and ascorbic acid and molybdate are transferred at a ratio of 1: 5.
  • Drug delivery was performed using a syringe pump.
  • the process chemical and the added solution are mixed and developed for 10 minutes, and at this time, air is injected to generate bubbles to allow sufficient mixing.
  • the phosphoric acid-containing solution is colored in blue, and the mixed solution which has been colored is transferred to the measuring unit, and the values of I (Rx), I (Gx) and I (Bx) are measured and transmitted to the controller.
  • the control unit uses Equation 1 as the R ', B', and G 'values from the transmitted values of I (R0), I (G0), I (B0), and I (Rx), I (Gx), and I (Bx).
  • the R 'value having the largest slope was used for analysis of phosphoric acid concentration of an unknown sample.
  • Y ' may be defined as a standard conversion value
  • x' may be defined as a concentration value corresponding to the standard conversion value.
  • Pearson's momentum correlation coefficient of the above equation was 0.99982, indicating linearity.
  • the copper concentration of the micro etching solution containing copper ions was measured using the method and apparatus of the present invention.
  • the deionized water from the storage unit is transferred to the mixing unit, and then transferred to the measuring unit again to measure and drain the RGB color sensor measured values I (R0), I (G0), and I (B0) of the deionized water.
  • the measured values of R (0), I (G0), I (B0) and I (Rx), I (Gx) and I (Bx) are transmitted to the controller.
  • the transfer unit again transfers from the circulation pipe the transfer unit transfers 100 ml of the process chemical from the circulation pipe to the mixing unit. No dilution was done, and the transfer was done using a syringe pump.
  • the chemicals of the mixing unit are transferred to the measuring unit again, and the measuring unit measures I (Rx), I (Gx) and I (Bx) RGB values and transmits them to the control unit.
  • the control unit uses the transmitted I (R0), I (G0), I (B0) values, and I (Rx), I (Gx), and I (Bx) values according to Equation 1 to R ', B', and G '. Calculate the value.
  • Table 1 and Figure 3 shows the results of measuring the R ', B', G 'value according to the copper concentration.
  • the values of R ', B', and G ' all changed very linearly with the copper concentration.
  • the R' value with the highest slope was used to analyze the copper concentration of the unknown concentration solution. was used.
  • Iron ions (Fe + 3) iron ion concentration of the ferric chloride etching solution that contains a was measured by using the method and apparatus of the present invention.
  • the deionized water from the storage unit is transferred to the mixing unit, and then transferred to the measuring unit to measure and drain the RGB color sensor measured values I (R0), I (G0), and I (B0) of the deionized water.
  • the RGB color sensor measured values I (R0), I (G0) and I (B0) of the measured deionized water are transmitted to the control unit.
  • the transfer unit transfers the process chemicals from the circulation pipe and the additive solution from the storage unit to the mixing unit, respectively.
  • the addition solution here is deionized water and is transferred in an amount that dilutes the process chemical 1000 times.
  • the process chemical and deionized water are mixed and diluted in the mixing section, and the diluted solution is transferred to a measuring unit to measure the values and the values of I (Rx), I (Gx) and I (Bx).
  • the measured values and the values of I (Rx), I (Gx) and I (Bx) are transmitted to the controller.
  • the controller calculates R ', B', and G 'values using the transmitted values of I (R0), I (G0), I (B0), and I (Rx), I (Gx), and I (Bx). .
  • Table 1 and Figure 3 shows the results of calculating the R ', B', G 'value according to the iron ion concentration.
  • the values of R ', B', and G ' were all linear according to the iron ion concentration, and were used for analyzing the iron ion concentration of the unknown concentration using the G' value with the largest slope.
  • I (Bx) value By measuring the I (Bx) value together, the change according to the change of the condition of the light source whose measurement value is changed by contamination, light quantity change, current and voltage change, and deterioration of the light emitting part and the light receiving sensor part in the measuring unit. Can be measured and analyzed accurately without error in concentration measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The present invention relates to a device and a method for analyzing the concentration of a chemical solution, the device and the method collecting, in real time from a processing device, the concentration of a specific component within a corresponding solution composition during a process of using a chemical solution, thereby enabling the concentration to be quickly and accurately measured by using an RGB color sensor.

Description

[규칙 제26조에 의한 보정 21.07.2016] 케미컬 용액 농도분석장치 및 방법[Correction according to Rule 26. 21.07.2016] 장치 Chemical solution concentration analysis device and method
본 발명은 케미컬 용액의 농도 분석 장치 및 방법에 관한 것으로, 더욱 상세하게는 케미컬 용액을 사용하는 공정에서 해당 용액 조성 내의 특정 성분의 농도를 공정장치로부터 실시간으로 채취하여 신속 및 정확하게 측정할 수 있는 케미컬 용액의 농도 분석 장치 및 방법에 관한 것이다. The present invention relates to an apparatus and method for analyzing a concentration of a chemical solution, and more particularly, a chemical that can quickly and accurately measure the concentration of a specific component in a corresponding solution composition in real time from a process apparatus in a process using a chemical solution. A device and method for analyzing the concentration of a solution.
액정 기판 제조 공정의 에칭액은 패턴의 고정밀화에 따라서 그 조성 및 농도는 엄밀하게 관리되지 않으면 안 된다. 에칭액과 같은 케미컬 용액의 특정 성분의 농도 분석은 사용자가 직접 약품을 채취하여 분석실등에서 습식 분석이나, 분석 기기를 이용하여 분석하는 것이 일반적이었고, 케미컬 용액 중의 특정 성분의 농도를 인라인으로 실시간으로 정확하게 측정하는 것이 불가능했다.The etching liquid of the liquid crystal substrate manufacturing process must be strictly controlled in composition and concentration in accordance with the high precision of the pattern. In the analysis of concentration of specific components of chemical solution such as etching solution, it is common for a user to collect chemicals directly and analyze them by wet analysis in an analysis room or using an analytical instrument. It was impossible to do.
예를 들어, 인산 농도 분석을 하는 종래의 방법으로는 아스코르빈산 환원법을 예로 들면, 실험실에서 전처리된 시료를 희석하고, 아스코르빈산과 몰리브덴산을 혼합하여 발색시킨 후 흡광도 측정이 가능한 분광광도계 (spectrophotometer) 등의 분석 기기를 이용하여 흡광도를 측정하여 인산 농도를 분석하는 방법이 공지되어 있다. For example, as a conventional method of analyzing the phosphoric acid concentration, ascorbic acid reduction method is used, for example, by diluting a sample pretreated in a laboratory, mixing the ascorbic acid with molybdate, and developing a spectrophotometer capable of absorbance measurement ( It is known to analyze the concentration of phosphoric acid by measuring the absorbance using an analytical device such as spectrophotometer.
또한 구리 농도 분석을 하기 위한 방법으로, 킬레이트 적정법을 예로 들면, 시료를 희석하고, 정해진 양의 암모니아 염화 암모늄 완충액과 메탄올, pan 지시약을 혼합하여 EDTA 표준액으로 적정하여 구리의 농도를 계산하여야 하나, 이러한 습식분석의 방법은 정확성이 떨어지는 한계가 있다. In addition, as a method for analyzing the copper concentration, for example, chelate titration, the sample should be diluted, and a predetermined amount of ammonium ammonium chloride buffer, methanol, and pan indicator should be mixed and titrated with EDTA standard solution to calculate the copper concentration. The method of wet analysis has a limitation in inaccuracy.
그리고 철의 농도 분석을 위한 방법으로, 원자 흡광 광도법을 예로 들면 전리된 시료를 적당량 비커에 취하여 질산을 넣고 끓여서 침전을 생성시키고, 침전물을 정해진 농도의 염산에 녹여 용액을 여과지로 여과한 후, 원자 흡광 분석 장치를 이용하여 흡광도를 측정하여 철 농도를 분석하여야 한다.As a method for analyzing the concentration of iron, for example, by using atomic absorption spectrophotometry, an ionized sample is taken in an appropriate amount of beaker, boiled with nitric acid to produce a precipitate, the precipitate is dissolved in hydrochloric acid of a predetermined concentration, and the solution is filtered through a filter paper, The absorbance should be measured using an absorbance analyzer to analyze the iron concentration.
상기에서 설명한 바와 같이 케미컬 용액 중의 특정 성분의 농도를 정확하게 분석하기 위해서는 고가의 분석 기기가 반드시 필요하고, 분석 방법이 복잡하며, 분석에 상당한 시간이 소요되므로, 케미컬 용액을 사용하는 각종 공정에서 인라인으로 실시간으로 필요한 성분의 농도를 분석, 관리하기 어려운 단점이 있었다.As described above, in order to accurately analyze the concentration of a specific component in the chemical solution, an expensive analytical instrument is necessary, the analysis method is complicated, and the analysis takes a considerable time, so it is inline in various processes using the chemical solution. It was difficult to analyze and manage the concentration of necessary ingredients in real time.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 하나의 목적은 케미컬 용액을 사용하는 각종 공정에서 케미컬 용액 내의 특정 성분의 농도를 인라인으로 실시간으로 신속하고도 정확하게 측정할 수 있는 케미컬 용액의 농도 분석 장치 및 방법을 제공하는 것이다. The present invention is to solve the above problems, one object of the present invention is a chemical solution that can quickly and accurately measure the concentration of a specific component in the chemical solution in real time in various processes using the chemical solution It is to provide an apparatus and method for analyzing the concentration of.
본 발명의 다른 목적은 케미컬 용액의 일부를 시료로서 채취하고, 발색 등 전처리에 필요한 시약을 이송, 공급, 혼합하는 과정을 자동적으로 정확하게 제어할 수 있음과 동시에, RGB 칼라센서를 이용하여 시료로부터 측정된 RGB 값을 이용하여 특정 성분의 농도를 실시간으로 분석할 수 있는 케미컬 용액의 농도 분석 장치 및 방법을 제공하는 것이다.Another object of the present invention is to take a portion of the chemical solution as a sample, and to automatically and accurately control the process of transferring, supplying, and mixing the reagents required for pretreatment such as color development, and measuring from the sample using an RGB color sensor. It is to provide an apparatus and method for analyzing the concentration of a chemical solution that can analyze the concentration of a specific component in real time using the obtained RGB value.
상술한 목적을 달성하기 위한 본 발명의 하나의 양상은 One aspect of the present invention for achieving the above object is
첨가 용액을 보관하는 보관부; 분석 대상 시료를 혼합부로 이송하는 이송부; 분석 대상 시료와 첨가 용액을 혼합하는 혼합부; 혼합된 용액으로부터 특정 성분의 농도를 측정하는 측정유닛; 상기 측정유닛으로부터 특정 성분의 측정값을 입력 받고 이송부를 제어하는 제어부; 및 사용자에 의한 조작 신호 입력과 농도 측정값을 표시하는 사용자 조작부를 포함하고, A storage unit for storing the added solution; Transfer unit for transferring the sample to be analyzed to the mixing unit; Mixing unit for mixing the sample to be analyzed and the addition solution; A measuring unit for measuring the concentration of specific components from the mixed solution; A control unit which receives a measurement value of a specific component from the measuring unit and controls a transfer unit; And a user operation unit for displaying an operation signal input by the user and a concentration measurement value.
상기 측정유닛은 시료의 농도를 측정하기 위한 RGB 컬러센서를 포함하고, 탈이온수의 RGB 컬러센서 측정값과 농도를 알고 있는 시료의 RGB 컬러센서 측정값을 측정한 후 수치로 변환해서 제어부로 전송하고, 상기 제어부는 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)과 농도를 알고 있는 시료의 RGB 컬러센서 측정값I(Rx), I(Gx), I(Bx)을 수신하여 농도를 측정하고자 하는 성분의 기지의 농도에 대한 탈이온수 색상에 대해서 보정된 R’, G’, B’ 값을 아래의 수식에 의해서 산출한 후, 1차 함수 형태로 선형 데이터화하고, RGB 중 하나를 검량선으로 선택하여 기준데이터를 구성하고, 시료내의 미지의 측정 대상 물질의 RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 수치로 변환한 값을 상기 검량선상의 기준데이터와 대비하여, 기준데이터에 대응되는 농도값이 상기 측정 대상 물질의 농도로 산출되도록 구성되는 것을 특징으로 하는 케미컬 용액 농도분석장치에 관한 것이다. The measuring unit includes an RGB color sensor for measuring the concentration of the sample, and measures the RGB color sensor measured value of the deionized water and the RGB color sensor measured value of the known sample, converts it into a numerical value, and sends it to the controller. The control unit controls the RGB color sensor measured values I (R0), I (G0), I (B0) and the RGB color sensor measured values I (Rx), I (Gx) and I ( After receiving Bx), calculate the R ', G', B 'value corrected for the deionized water color for the known concentration of the component whose concentration is to be measured by the following formula, and then linearize the data in linear form. Select one of the RGB as the calibration curve to configure the reference data, and convert the measured values of RGB color sensor I (Rx), I (Gx) and I (Bx) into numerical values. The concentration value corresponding to the reference data is compared with the reference data on the calibration curve. It relates to a chemical solution of a concentration analysis device being configured to calculate a concentration of the substance.
[수식][Equation]
Figure PCTKR2016005886-appb-I000001
Figure PCTKR2016005886-appb-I000001
본 발명의 다른 양상은 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)을 측정하는 단계;Another aspect of the present invention includes measuring RGB color sensor measurements I (R0), I (G0), I (B0) of deionized water;
농도를 알고 있는 다수의 시료에 발색용 시약을 포함하는 첨가용액을 가하여 혼합 및 발색시킨 후, RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 측정하는 단계;Adding and adding an additive solution containing a coloring reagent to a plurality of samples having a known concentration, and measuring and measuring RGB color sensor measurements I (Rx), I (Gx) and I (Bx);
하기 수식을 이용하여 탈이온수 색상에 대해서 보정된, 농도를 알고 있는 시료의 RGB 컬러센서 측정값 R’, G’, B’을 산출하는 단계:Calculating RGB color sensor measurements R ', G', B 'of a sample of known concentration, corrected for deionized water color using the following formula:
[수식][Equation]
Figure PCTKR2016005886-appb-I000002
Figure PCTKR2016005886-appb-I000002
탈이온수 색상에 대해서 보정된, 기지의 농도의 시료에 대하여 RGB 컬러센서를 이용하여 측정한 R’, G’, B’ 값을 이용하여 시료의 농도 변화에 따른 색상 변화의 관계를 산출하여 선형 데이터화하는 단계;Linear data is calculated by calculating the relationship between the color change according to the concentration change of the sample using the R ', G', and B 'values measured using an RGB color sensor for a sample of known concentration corrected for the deionized water color. Doing;
R', G', B' 선형 데이터 가운데 하나를 선택하여 기준데이터를 구성하고, 시료내의 미지의 측정 대상 물질의 RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 수치로 변환한 값을 상기 검량선상의 기준데이터와 대비하여, 기준데이터에 대응되는 농도값을 상기 측정 대상 물질의 농도로 산출하는 단계를 포함하는 케미컬 용액의 농도 분석 방법에 관한 것이다.  Select one of R ', G', and B 'linear data to compose the reference data, and measure the RGB color sensor measured values I (Rx), I (Gx), and I (Bx) of the unknown target substance in the sample. And a step of calculating a concentration value corresponding to the reference data as a concentration of the measurement target material, by comparing the converted value with reference data on the calibration curve.
본 발명에 의하면 실시간으로 추출된 케미컬 용액을 측정유닛의 RGB 컬러센서에 의하여 RGB 컬러센서 측정값을 측정하여 농도를 분석할 수 있게 되므로, 비교적 저가의 장치 구성이 가능해지고, 공정 약품 중의 특정 성분의 농도를 인라인으로 실시간으로 신속정확하게 측정할 수 있어, 공정 약품의 필요한 성분의 농도를 분석, 관리하기 용이해질 수 있다.       According to the present invention, it is possible to analyze the concentration by measuring the RGB color sensor measurement value by using the RGB color sensor of the measuring unit in real time extracted the chemical solution, it is possible to configure a relatively low-cost device, Concentrations can be measured inline quickly and accurately in real time, making it easier to analyze and manage the concentrations of the necessary components of the process chemical.
또한 본 발명에 의하면 농도 변화에 따라 색상이 변화하거나 발색시켜 색상을 발현시킬 수 있는 모든 공정 약품에 대해서 농도를 측정할 수 있다. In addition, according to the present invention, the concentration can be measured for all process chemicals capable of expressing color by changing color or developing color according to a change in concentration.
본 발명의 방법에 의하면 탈이온수를 측정유닛에 투입하여 측정된 각각의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)과 측정 대상 물질인 케미컬 용액의 I(Rx), I(Gx), I(Bx) 값을 모두 측정함으로써, 측정유닛 내의 발광부 및 수광센서부의 오염, 광량변화, 전류 및 전압의 변화, 및 이들의 열화에 의해 측정값이 변화되는 것과 같은 광원의 조건 변화에 따른 변화가 발생하더라도 농도 측정에 오차 없이 정확하게 농도를 측정 및 분석할 수 있다. According to the method of the present invention, each of the RGB color sensor measured values I (R0), I (G0), I (B0) measured by adding deionized water to the measuring unit, and I (Rx), By measuring both I (Gx) and I (Bx) values, the measurement of the light source such as the measurement value is changed by contamination of the light emitting part and the light receiving sensor part, change of light quantity, change of current and voltage, and deterioration thereof. Even if the change occurs due to the change of condition, the concentration can be measured and analyzed accurately without any error in the concentration measurement.
도 1은 본 발명의 일 실시예에 의한 케미컬 용액 농도분석장치의 개략블록도이다. 1 is a schematic block diagram of a chemical solution concentration analysis apparatus according to an embodiment of the present invention.
도 2는 본 발명에 따른 케미컬 용액 농도분석장치의 측정유닛의 상세블록도이다. Figure 2 is a detailed block diagram of the measuring unit of the chemical solution concentration analysis apparatus according to the present invention.
도 3은 본 발명의 실시예 1에서 산출한 인산 농도 변화에 따른 R', B', G' 값의 변화를 도시한 검량선 그래프이다. 3 is a calibration curve graph showing the change of R ', B', G 'value according to the change in phosphoric acid concentration calculated in Example 1 of the present invention.
도 4는 본 발명의 실시예 2에서 구리의 농도 변화에 따른 R', B', G' 값의 변화를 도시한 검량선 그래프이다. 4 is a calibration curve graph showing the change of R ', B', G 'value according to the change in the concentration of copper in Example 2 of the present invention.
도 5는 본 발명의 실시예 3에서 철 이온의 농도 변화에 따른 R', B', G' 값의 변화를 도시한 검량선 그래프이다. FIG. 5 is a calibration curve graph illustrating changes in R ', B', and G 'values according to iron ion concentration changes in Example 3 of the present invention.
이하 첨부된 도면을 참조하여 본 발명의 구성을 상세히 설명하기로 한다.Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
본 발명에서 ”±RGB 컬러센서 측정값”±은 분석용기 내의 시료를 통과한 후 수광된 광의 에너지 스펙트럼 강도(intensity)를 수치화한 값을 의미한다. In the present invention, "± RGB color sensor measured value" ± means a value obtained by quantifying the energy spectral intensity of light received after passing through a sample in the analysis vessel.
“°탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)”±은 탈이온수의 색상을 RGB 컬러센서를 이용하여 측정한 R, G, B 파장대의 전기신호 값을 의미한다. “° Deionized RGB Color Sensor Measurement Values I (R 0 ), I (G 0 ), I (B 0 )” ± indicate the color of deionized water using the RGB color sensor. It means the electric signal value.
도 1은 본 발명의 일 실시예에 의한 케미컬 용액 농도분석장치의 개략블록도이고, 도 2는 본 발명에 따른 케미컬 용액 농도분석장치의 측정유닛의 상세블록도이다. 1 is a schematic block diagram of a chemical solution concentration analysis apparatus according to an embodiment of the present invention, Figure 2 is a detailed block diagram of a measuring unit of the chemical solution concentration analysis apparatus according to the present invention.
도 1 및 도 2를 참조하면, 본 발명의 케미컬 용액 농도분석장치는 첨가 용액을 보관하는 보관부(500); 분석 대상 시료를 혼합부로 이송하는 이송부(400); 분석 대상 시료와 첨가 용액을 혼합하는 혼합부(600); 혼합된 용액으로부터 특정 성분의 농도를 측정하는 측정유닛(700); 상기 측정유닛으로부터 특정 성분의 측정값을 입력 받고 이송부를 제어하는 제어부(300); 및 사용자에 의한 조작 신호 입력과 농도 측정값을 표시하는 사용자 조작부(200)를 포함하고, 1 and 2, the chemical solution concentration analysis device of the present invention storage unit 500 for storing the added solution; Transfer unit 400 for transferring the sample to be analyzed to the mixing unit; Mixing unit 600 for mixing the sample to be analyzed and the addition solution; A measuring unit 700 for measuring the concentration of specific components from the mixed solution; A control unit 300 for receiving a measurement value of a specific component from the measuring unit and controlling a transfer unit; And a user manipulation unit 200 for displaying an operation signal input by the user and a concentration measurement value.
상기 측정유닛(700)은 시료의 농도를 측정하기 위한 RGB 컬러센서(720)를 포함하고, 탈이온수의 RGB 컬러센서 측정값과 농도를 알고 있는 시료의 RGB 컬러센서 측정값을 측정한 후 수치로 변환해서 제어부로 전송하고, 상기 제어부는 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)과 농도를 알고 있는 시료의 RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 수신하여 농도를 측정하고자 하는 성분의 기지의 농도에 대한 탈이온수 색상에 대해서 보정된 R’, G’, B’ 값을 아래의 수식에 의해서 산출한 후, 1차 함수 형태로 선형 데이터화하고, RGB 중 하나를 검량선으로 선택하여 기준데이터를 구성하고, 시료내의 미지의 측정 대상 물질의 RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 수치로 변환한 값을 상기 검량선상의 기준데이터와 대비하여, 기준데이터에 대응되는 농도값이 상기 측정 대상 물질의 농도로 산출되도록 구성된다. The measuring unit 700 includes an RGB color sensor 720 for measuring the concentration of the sample, and measures the RGB color sensor measurement value of the deionized water and the RGB color sensor measurement value of the sample having a known density. Converts and transmits the RGB color sensor measured values I (R0), I (G0), I (B0) of the deionized water and the RGB color sensor measured values I (Rx), I of the sample whose density is known. After receiving (Gx), I (Bx) and calculating the corrected R ', G', and B 'values for the deionized water color for the known concentration of the component whose concentration is to be measured by the following formula, 1 Linear data is formed in the form of a difference function, and one of the RGB is selected as a calibration curve to configure the reference data, and the RGB color sensor measured values I (Rx), I (Gx), and I (Bx) of the unknown target substance in the sample are The concentration value corresponding to the reference data is compared with the reference data on the calibration curve. It is configured to calculate the concentration of the material to be measured.
[수식][Equation]
Figure PCTKR2016005886-appb-I000003
Figure PCTKR2016005886-appb-I000003
검량선은 RGB 중 기울기가 가장 큰 값을 검량선으로 선택할 수 있다. The calibration curve can be selected as the calibration curve with the greatest slope among RGB.
본 발명에 따른 농도 분석 장치는 단독 운전하는 것이 가능하나, 특히 케미컬 용액을 사용하는 공정 장치에 부가하여 설치할 수 있는 농도 분석 장치로서 사용할 수도 있다. 본 발명의 농도분장치는 케미컬 용액을 공정장치로부터 직접 이송하는 수단을 더 포함할 수 있다. The concentration analyzer according to the present invention can be operated alone, but may be used as a concentration analyzer that can be installed in addition to a process apparatus using a chemical solution. The concentration distribution device of the present invention may further include a means for transferring the chemical solution directly from the processing device.
도 2에서와 같이 측정유닛(700)은 혼합부(600)에서 혼합액이 분석 용기(740)로 이송되면, 발광부(730)에서 방출되고 있는 빛이 분석용기(740) 내의 혼합액을 투과하고, 그 빛은 RGB 컬러센서(720)에 포함된 각각의 Red, Green Blue 필터가 장착된 포토다이오드(750)들에 수광되고, 각각의 포토 다이오드(750)들에서는 전류가 발생하게 된다. 이때 발생하는 전류는 분석용기를 통과하여 포토다이오드(750)에 수광되는 빛의 양에 따라 달라지게 되는데, 여기서 포토다이오드에 도달하는 빛의 양은 분석용기 내 측정시료에 의한 흡광량에 의해 달라지게 된다. 또한 흡광량은 분석용기 내의 혼합용액의 농도인자에 의해 좌우되는 것이므로, 결국, 공정 용액의 농도에 따라 포토다이오드에 도달하는 빛의 양에 있어 차이가 발생하게 되고, 이 차이를 이용하여 분석하고자 하는 성분의 농도를 계산할 수 있다. 즉, 용액의 농도에 따른 흡광량의 차이를 이용하여 기지 농도의 시료들의 I(R), I(G), I(B) 값을 알 수 있으며, 이를 바탕으로 미지 농도의 시료의 I(R), I(G), I(B) 값을 측정함으로써 시료의 농도를 계산할 수 있다. As shown in FIG. 2, when the mixed solution is transferred from the mixing unit 600 to the analysis container 740, the light emitted from the light emitting part 730 passes through the mixed solution in the analysis container 740. The light is received by the photodiodes 750 equipped with the respective red and green blue filters included in the RGB color sensor 720, and current is generated in the respective photodiodes 750. At this time, the generated current varies depending on the amount of light received through the photodiode 750 through the analysis vessel, where the amount of light reaching the photodiode is changed by the absorbance amount of the sample in the analysis vessel. . In addition, since the absorbance depends on the concentration factor of the mixed solution in the analytical container, a difference occurs in the amount of light reaching the photodiode according to the concentration of the process solution. The concentration of the component can be calculated. That is, I (R), I (G), and I (B) values of samples of known concentrations can be known by using the difference in absorbance according to the concentration of the solution. ), The concentration of the sample can be calculated by measuring the I (G) and I (B) values.
도 2에 도시된 바와 같이, 측정유닛(700)의 발광부(730), 분석 용기(740), RGB 컬러센서(720)는 하우징(710)에 의해 외부 빛의 간섭으로부터 보호되는 것이 바람직하다.As shown in FIG. 2, the light emitting unit 730, the analysis container 740, and the RGB color sensor 720 of the measuring unit 700 may be protected from interference of external light by the housing 710.
상기 측정유닛(700)은 하우징(710)과 하우징 내의 발광부(730)와 RGB 컬러센서(720), 분석 용기(740)로 구성된다. 발광부(730)의 광은 RGB의 3색 광이 독립적으로 조사되어 백색광으로 혼합되도록 구성되거나, 할로겐 램프, 텅스텐 램프로 구성되거나, 청색 LED에 황색 형광체를 사용하여 백색광 형태로 조사되도록 구성될 수 있다. The measuring unit 700 includes a housing 710, a light emitting unit 730, an RGB color sensor 720, and an analysis container 740 in the housing. The light of the light emitting unit 730 may be configured to be independently irradiated with the tricolor light of RGB mixed with white light, or may be composed of a halogen lamp, tungsten lamp, or irradiated in the form of white light using a yellow phosphor to the blue LED. have.
발광부(730)의 앞 부분과 빛을 수광하는 RGB 컬러센서(720)의 앞부분에는 투명한 유리(770)로 구성되어 발광부(730)에서의 빛이 RGB 컬러센서(720)까지 도달할 수 있게 한다. 상기 투명유리(770)는 유리 이외에 광투과율이 좋고 내화학성이 있는 재질이면 어느 것이나 사용할 수 있는데, 예를 들어, 수정, 사파이어 등을 사용할 수도 있다. The front part of the light emitting part 730 and the front part of the RGB color sensor 720 for receiving light are composed of transparent glass 770 so that the light from the light emitting part 730 can reach the RGB color sensor 720. do. The transparent glass 770 may be any material as long as the material has good light transmittance and chemical resistance other than glass. For example, quartz, sapphire, or the like may be used.
RGB 컬러센서(720)와 발광부(730)는 분석 용기(740)에 대해 상호 대면되는 위치에 배치되는 것이 바람직하나 이에 국한되지는 않는다. RGB 컬러센서는 각각의 Red, Green, Blue 필터가 포함된 포토다이오드들(750)과, 각각의 포토다이오드에서 발생하는 전류 신호를 연산가능한 스펙트럼 강도 수치 (intencity) 형태로 변환시키는 변환기(760)로 구성된다. R 파장대의 인텐시티(이하 I(R) 로 표기한다), G 파장대의 인텐시티(이하 I(G) 로 표기한다), B 파장대의 인텐시티 (이하 I(B) 로 표기한다)는 제어부(300)로 송신된다. 제어부(300)는 측정유닛(700)의 RGB 컬러센서(720)에서 송신된 I(R), I(G), I(B) 값을 이용하여 공정 약품의 농도를 계산하여 사용자 조작부(200)에 표시한다. The RGB color sensor 720 and the light emitter 730 are preferably disposed at positions facing each other with respect to the analysis container 740, but are not limited thereto. The RGB color sensor includes photodiodes 750 including respective red, green, and blue filters, and a converter 760 for converting a current signal generated from each photodiode into a form of computed spectral intensity. It is composed. The intensity of the R wavelength band (hereinafter referred to as I (R)), the intensity of the G wavelength band (hereinafter referred to as I (G)), and the intensity of the B wavelength band (hereinafter referred to as I (B)) are controlled by the controller 300. Is sent. The control unit 300 calculates the concentration of the process chemicals using the values of I (R), I (G), and I (B) transmitted from the RGB color sensor 720 of the measuring unit 700 to control the user operation unit 200. Mark on.
컬러센서(720)는 분석용기를 통과하여 수광된 광을 R, G, B의 세 파장대로 분리하고, 변환기(760)에 의해서 이러한 각 파장대별로(색상별로) 농도를 수치화하여 전기신호로 변환한다. 변환기(760)는 일반적으로 아날로그 디지털 컨버터로 구성될 수 있고, 수광된 광의 인텐시티를 디지털 전기 신호로 변환한다. The color sensor 720 separates the light received through the analysis vessel into three wavelengths of R, G, and B, and converts the intensity of each wavelength band (by color) into an electrical signal by the converter 760. . Converter 760 may generally be configured as an analog to digital converter, and converts the intensity of received light into a digital electrical signal.
RGB 컬러센서 측정값 I(R), I(G), I(B) 값을 이용하여 시료 중의 측정 대상 성분의 농도를 계산하되, 광원 기타 부품의 열화 등에 의한 변화에 따른 값변화에 대응하기 위하여 본 발명에서는 탈이온수를 측정유닛에 투입하여 측정된 I(R), I(G), I(B) 값 (이하 각각 I(R0), I(G0), I(B0) 라고 표기한다)과 발색된 시료의 I(R), I(G), I(B) 값(이하 각각I(Rx), I(Gx), I(Bx)라 표기한다) 값을 측정하여 아래와 같이 R', G', B' 값을 구하는 방식을 채택한다. Calculate the concentration of the component to be measured in the sample using the RGB color sensor measured values I (R), I (G) and I (B), but respond to changes in values due to deterioration of light sources and other components. In the present invention, I (R), I (G), I (B) values measured by adding deionized water to the measuring unit (hereinafter referred to as I (R0), I (G0), I (B0) respectively) and Measure the values of I (R), I (G), and I (B) (hereinafter referred to as I (Rx), I (Gx), and I (Bx), respectively) of the developed sample. It adopts the method to get ', B' value.
[수식][Equation]
Figure PCTKR2016005886-appb-I000004
Figure PCTKR2016005886-appb-I000004
이와 같은 방법을 사용하여 측정 대상 물질의 흡광도 값을 측정하면, 탈이온수를 측정유닛에 투입하여 측정된 각각의I(R0), I(G0), I(B0) 값과 측정 대상 물질인 케미컬 용액의 I(Rx), I(Gx), I(Bx) 값을 함께 측정함으로써 광원의 조건 변화에 따른 변화가 발생하더라도 일정한 R', B', G' 값을 얻을 수 있다. 이를 통하여 광원의 조건 변화에 의한 농도 측정 오차가 발생하지 않아, 더 정확한 농도 측정을 수행할 수 있다.When the absorbance value of the substance to be measured is measured using this method, each of the I (R0), I (G0) and I (B0) values measured by adding deionized water to the measuring unit and the chemical solution to be measured By measuring the values of I (Rx), I (Gx) and I (Bx) together, a constant value of R ', B', and G 'can be obtained even if a change occurs due to a change in the condition of the light source. As a result, a concentration measurement error does not occur due to a change in the condition of the light source, and thus more accurate concentration measurement may be performed.
본 발명의 케미컬 용액 농도분석장치는 혼합부 및 측정유닛의 세척을 위해 세척 약품을 포함한 세척 기능을 포함할 수 있다. 측정유닛(700)에서 측정이 완료된 혼합액은 드레인되고, 다음 농도 측정을 위하여 혼합부(600)및 측정유닛(700)의 세척 기능을 추가할 수 있다.The chemical solution concentration analyzer of the present invention may include a washing function including washing chemicals for washing the mixing unit and the measuring unit. The mixed solution of which the measurement is completed in the measuring unit 700 is drained, and a washing function of the mixing unit 600 and the measuring unit 700 may be added to measure the next concentration.
도 1에서와 같이 공정 약품은 공정 장치의 용액저장탱크(100)내에 수용된 상태에서 공정을 수행하게 되며, 순환 펌프(110)에 의해 순환된다. 상기 순환 펌프(110)에 의해 순환되는 공정 약품의 순환 배관과 이송부(400)는 서로 배관이 연결되어 공정 장치로부터 본 발명의 분석 장치의 이송부(400)로 공정 약품이 순환되고, 그에 따라 이송부(400)에서는 분석이 필요한 공정 약품을 실시간으로 채취할 수 있다.As shown in FIG. 1, the process chemical is performed in a state accommodated in the solution storage tank 100 of the process apparatus, and circulated by the circulation pump 110. The circulating pipe of the process chemical circulated by the circulation pump 110 and the transfer unit 400 are connected to each other, the process chemical is circulated from the process unit to the transfer unit 400 of the analysis apparatus of the present invention, and thus the transfer unit ( In 400, process chemicals requiring analysis can be collected in real time.
또한 이송부(400)는 제어부(300)로부터 용액채취 제어 신호를 입력 받음과 동시에 공정 약품의 순환 배관에서 공정 약품을 정량 채취하여 혼합부(600)로 공급하는 역할을 한다.In addition, the transfer unit 400 receives a solution taking control signal from the control unit 300 and at the same time serves to quantify the process chemicals in the circulation pipe of the process chemicals to supply to the mixing unit 600.
여기서 이송부(400)는, 제어부(300)로부터 공정 농도 분석을 위한 약품 공급 제어 신호를 입력 받음과 동시에 그에 해당하는 첨가 용액을 다수의 저장 용기들로 구성된 보관부(500)로부터 공급받아 혼합부(600)에 공급하는 다수의 약품 정량 공급 장치로 이루어진다. Here, the transfer unit 400 receives a chemical supply control signal for analyzing the process concentration from the control unit 300 and at the same time receives the corresponding solution from the storage unit 500 composed of a plurality of storage vessels. It consists of a plurality of drug quantitative supply device for supplying 600).
한편, 이송부(400)에 적용하는 정량채취 수단 및 공급, 이송 수단으로, 정량 펌프, 시린지 펌프, 튜빙 펌프, 기어 펌프를 비롯한 정량 채취 및 공급, 이송 기능을 가진 모든 장치를 포함하고, 그에 따른 공급로도 테프론, 실리콘, 바이톤을 비롯한 내화학성 배관 및 튜브를 사용할 수 있다.On the other hand, as a quantitative means and supply, the transfer means applied to the transfer unit 400, including all devices having a quantitative pump, syringe pump, tubing pump, gear pump and other quantitative sampling and supply, transfer function, and supply accordingly Rhodo can also use chemically resistant tubing and tubes, including Teflon, silicone, and Viton.
보관부(500)는 탈이온수, 발색 등 전처리에 필요한 시약 등 다양한 첨가 약품이 보관되고, 대상 시료에 따라서 다수의첨가 용액을 보관하도록 구성될 수도 있다. The storage unit 500 may store various additives such as reagents required for pretreatment such as deionized water and color development, and may be configured to store a plurality of additive solutions according to a target sample.
혼합부(600)에서는 채취된 공정 약품과 보관부(500)에서 이송된 첨가 용액이 혼합되고, 혼합액은 공정 용액중의 분석할 성분의 농도에 따라 RGB값의 차이가 발생하게 된다.In the mixing unit 600, the collected process chemicals and the additive solution transferred from the storage unit 500 are mixed, and the mixed liquid causes a difference in RGB values according to the concentration of the component to be analyzed in the process solution.
혼합부(600)의 혼합액은 밸브를 통하여 측정유닛(700)으로 이동된다.The mixed liquid of the mixing unit 600 is moved to the measuring unit 700 through the valve.
밸브는 솔레노이드 밸브, 전동 밸브 등 전기 신호나 공기압에 의해 동작하는 모든 밸브를 사용할 수 있다. 밸브의 제어는 사용자 조작부에서 조작할 수 있도록 구성될 수 있다. The valve can be any valve operated by electric signals or air pressure, such as solenoid valve or electric valve. The control of the valve may be configured to be operable at a user manipulation unit.
제어부(300)는 측정유닛(700)에서 수신된 I(R), I(G), I(B) 값을 바탕으로, 미리 기지 농도의 시료를 바탕으로 작성된 검량선과 대조하여 미지시료인 해당용액의 농도를 계산하고 사용자 조작부에 표시한다.The control unit 300 is based on the I (R), I (G), I (B) value received from the measuring unit 700, the corresponding solution as an unknown sample in contrast to the calibration curve prepared based on the sample of the known concentration in advance Calculate the concentration of and display it on the user control panel.
본 발명의 다른 양상은 케미컬 용액의 농도 분석 방법에 관한 것이다. 본 발명의 방법에 의하면 먼저 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)을 측정하고, 이어서 농도를 알고 있는 다수의 시료에 발색용 시약을 포함하는 첨가용액을 가하여 혼합 및 발색시킨 후, RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 측정한다. 이어서 하기 수식을 이용하여 탈이온수 색상에 대해서 보정된, 농도를 알고 있는 시료의 RGB 컬러센서 측정값 R’, G’, B’을 산출한다. Another aspect of the invention relates to a method for analyzing the concentration of a chemical solution. According to the method of the present invention, first, the RGB color sensor measured values I (R0), I (G0), and I (B0) of deionized water are measured, and then, an additional solution containing a color developing reagent in a plurality of samples having known concentrations. After mixing and coloring by adding, the RGB color sensor measured values I (Rx), I (Gx) and I (Bx) are measured. Subsequently, the RGB color sensor measured values R ', G', and B 'of the sample whose density is corrected for the deionized water color are calculated using the following formula.
[수식][Equation]
Figure PCTKR2016005886-appb-I000005
Figure PCTKR2016005886-appb-I000005
탈이온수 색상에 대해서 보정된, 기지의 농도의 시료에 대하여 RGB 컬러센서를 이용하여 측정한 R’, G’, B’ 값을 이용하여 시료의 농도 변화에 따른 색상 변화의 관계를 산출하여 선형 데이터화한다. R', G', B' 선형 데이터 가운데 하나를 선택하여 기준데이터를 구성하고, 시료 내의 미지의 측정 대상 물질의 RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 수치로 변환한 값을 상기 검량선상의 기준데이터와 대비하여, 기준데이터에 대응되는 농도값을 상기 측정 대상 물질의 농도로 산출한다. 컬러센서에 의해서 케미컬 용액 내의 측정 대상 물질의 인텐시티를 측정하면, 이러한 측정값은 수치로 변환되어 기준 데이터와 대비하여 농도를 산출할 수 있다. 탈이온수 및 농도를 알고 있는 케미컬 용액에 의해 도출되는 데이터를 1차 함수 형태의 선형적인 데이터로 만들어질 수 있다. 여기서 검량선은 RGB 중 기울기가 가장 큰 값을 검량선으로 선택할 수 있다. Linear data is calculated by calculating the relationship between the color change according to the concentration change of the sample using the R ', G', and B 'values measured using an RGB color sensor for a sample of known concentration corrected for the deionized water color. do. Select one of R ', G', and B 'linear data to configure the reference data, and measure the RGB color sensor measured values I (Rx), I (Gx), and I (Bx) of the unknown target substance in the sample. The concentration value corresponding to the reference data is calculated as the concentration of the measurement target substance by comparing the converted value with the reference data on the calibration curve. When the intensity of the substance to be measured in the chemical solution is measured by the color sensor, the measured value may be converted into numerical values to calculate the concentration in comparison with the reference data. Data derived by chemical solutions with known deionized water and concentration can be generated as linear data in the form of linear functions. Here, the calibration curve may select a value having the largest slope among RGB as the calibration curve.
본 발명의 방법에서는 탈이온수를 측정유닛에 투입하여 측정한 값과 농도를 알고 있는 발색된 시료의 RGB 컬러센서 측정값을 측정한 후 수식에 의해 보정함으로써, 부품의 열화와 같은 광원의 조건 변화에 따른 변화가 발생하더라도 일정한 R’, G’, B’ 값을 구할 수 있다. 이를 통하여 광원의 조건 변화에 의한 농도 측정 오차가 발생하지 않아 더욱 더 정확하게 농도를 측정할 수 있다. In the method of the present invention, the deionized water is added to the measuring unit, and the measured value and the RGB color sensor measured value of the colored sample having known concentrations are measured and corrected by a formula, so as to change the condition of the light source such as deterioration of the component. Even if a change occurs, constant R ', G', and B 'values can be obtained. As a result, a concentration measurement error does not occur due to a change in the condition of the light source, so that the concentration can be measured more accurately.
이하에서는 실시예를 들어 본 발명에 대하여 더욱 상세히 설명한다. 그러나 이러한 실시예는 단지 예시를 위한 것으로, 본 발명이 하기 실시예로 국한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only, and the present invention is not limited to the following examples.
실시예 1. 인산 농도 측정Example 1 Measurement of Phosphoric Acid Concentration
인산을 포함하는 공정 약품 중의 인산 농도를 본 발명의 방법 및 장치를 사용하여 측정하였다. 먼저 이송부에서 보관부의 탈이온수를 혼합부로 이송하고, 다시 측정유닛으로 이송하여 탈이온수의 I(R0), I(G0), I(B0)을 측정하고 드레인한다. 측정된 탈이온수의 I(R0), I(G0), I(B0)은 제어부로 송신한다. 다시 이송부는 순환 배관에서 공정 약품을, 보관부에서 첨가 용액을 혼합부로 각각 이송한다. 여기서 첨가 용액은 탈이온수, 아스코르빈산, 몰리브덴산이며, 탈이온수는 공정 약품을 1500배 희석시키는 양이 이송되고, 아스코르빈산과 몰리브덴산은 1:5의 비율로 이송된다. 약품의 이송은 시린지 펌프를 사용하였다. 혼합부에서는 공정 약품 및 첨가 용액이 10분간 혼합 및 발색이 이루어지고, 이때 공기를 주입하여 버블을 발생시켜 충분한 혼합이 이루어지게 한다. 이 과정을 거쳐 인산 포함 용액은 청색으로 발색시키고, 발색이 완료된 혼합액은 측정유닛으로 이송하여 I(Rx), I(Gx), I(Bx) 값을 측정하여 제어부로 송신된다. 제어부에서는 송신된 I(R0), I(G0), I(B0) 값과 I(Rx), I(Gx), I(Bx) 값으로부터 R', B', G' 값을 수식 1을 이용하여 계산한다. Phosphoric acid concentrations in process chemicals containing phosphoric acid were measured using the methods and apparatus of the present invention. First, the deionized water of the storage unit is transferred to the mixing unit from the transfer unit, and then transferred to the measuring unit again to measure and drain I (R0), I (G0), and I (B0) of the deionized water. The measured deionized water I (R0), I (G0), and I (B0) are transmitted to the control unit. The transfer unit transfers the process chemicals from the circulation pipe and the additive solution from the storage unit to the mixing unit, respectively. Here, the addition solution is deionized water, ascorbic acid and molybdate, and deionized water is transferred in an amount of 1500 times dilution of the process chemical, and ascorbic acid and molybdate are transferred at a ratio of 1: 5. Drug delivery was performed using a syringe pump. In the mixing part, the process chemical and the added solution are mixed and developed for 10 minutes, and at this time, air is injected to generate bubbles to allow sufficient mixing. After this process, the phosphoric acid-containing solution is colored in blue, and the mixed solution which has been colored is transferred to the measuring unit, and the values of I (Rx), I (Gx) and I (Bx) are measured and transmitted to the controller. The control unit uses Equation 1 as the R ', B', and G 'values from the transmitted values of I (R0), I (G0), I (B0), and I (Rx), I (Gx), and I (Bx). Calculate
[수식 1][Equation 1]
Figure PCTKR2016005886-appb-I000006
Figure PCTKR2016005886-appb-I000006
하기 표 1 및 도 3에 인산 농도에 따른 R', G'. B' 값을 계산한 결과를 나타내었다. 도 3에 도시된 바와 같이, R', G'. B' 값 모두 인산 농도에 따라 선형적으로 증가하여, 1차원 함수 형태의 선형적인 데이터가 수득되었다. R ', G' according to the phosphoric acid concentration in Table 1 and FIG. The result of calculating B 'value is shown. As shown in Figure 3, R ', G'. Both B ′ values increased linearly with phosphoric acid concentrations, yielding linear data in the form of one-dimensional functions.
인산농도(g/L)Phosphoric Acid Concentration (g / L) R'R ' B'B ' G'G '
00 0.0000.000 0.0000.000 0.0000.000
3030 0.2000.200 0.1660.166 0.1150.115
6060 0.3900.390 0.3200.320 0.2220.222
9090 0.5740.574 0.4720.472 0.3230.323
본 실시예에서는 기울기가 가장 큰 R' 값을 미지 시료의 인산 농도 분석에 이용하였다. 농도를 알고 있는 시료에 대한 분석으로부터 검량선은 인산농도(g/L)=156.84816*R'-0.06428과 같이 표현됨으로써 1차 함수 형태의 선형적인 데이터로 구성되었다. 상기 식에서 Y'는 표준변환값을, x'는 상기 표준변환값에 대응되는 농도값으로 정의될 수 있다. 이렇게수득된 기본데이터로부터 미지의 농도 시료의 R' 값을 측정하여 인산 농도 계산 결과를 얻을 수 있었다. 위 식의 피어슨 적률 상관계수는 0.99982로 직선성을 나타내었다. In this example, the R 'value having the largest slope was used for analysis of phosphoric acid concentration of an unknown sample. From the analysis of samples with known concentrations, the calibration curve was composed of linear data in the form of linear functions by expressing phosphate concentration (g / L) = 156.84816 * R'-0.06428. In the formula, Y 'may be defined as a standard conversion value, and x' may be defined as a concentration value corresponding to the standard conversion value. From the basic data thus obtained, the R 'value of the unknown concentration sample was measured to obtain a phosphoric acid concentration calculation result. Pearson's momentum correlation coefficient of the above equation was 0.99982, indicating linearity.
실시 예 2. 구리 포함 수용액의 구리 농도 측정Example 2 Measurement of Copper Concentration in Copper-Containing Aqueous Solution
구리 이온이 포함되어 있는 마이크로 에칭액의 구리 농도를 본 발명의 방법 및 장치를 사용하여 측정하였다. 먼저 이송부에서 보관부의 탈이온수를 혼합부로 이송하고, 다시 측정유닛으로 이송되어 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)을 측정하고 드레인한다. 측정된 R(0), I(G0), I(B0) 값과I(Rx), I(Gx), I(Bx) 값은 제어부로 송신된다. 다시 이송부는 순환 배관에서 다시 이송부는 순환 배관에서 공정 약품 100ml를 혼합부로 이송한다. 희석은 하지 않았으며, 이송은 실린지 펌프를 사용하였다. 혼합부의 공정 약품은 다시 측정유닛으로 이송되고, 측정유닛은 I(Rx), I(Gx), I(Bx) RGB값을 측정하여 제어부로 송신한다. 제어부에서는 송신된 I(R0), I(G0), I(B0) 값과 I(Rx), I(Gx), I(Bx) 값을 이용하여 수식 1에 의해 R’, B’, G’ 값을 계산한다. The copper concentration of the micro etching solution containing copper ions was measured using the method and apparatus of the present invention. First, the deionized water from the storage unit is transferred to the mixing unit, and then transferred to the measuring unit again to measure and drain the RGB color sensor measured values I (R0), I (G0), and I (B0) of the deionized water. The measured values of R (0), I (G0), I (B0) and I (Rx), I (Gx) and I (Bx) are transmitted to the controller. The transfer unit again transfers from the circulation pipe the transfer unit transfers 100 ml of the process chemical from the circulation pipe to the mixing unit. No dilution was done, and the transfer was done using a syringe pump. The chemicals of the mixing unit are transferred to the measuring unit again, and the measuring unit measures I (Rx), I (Gx) and I (Bx) RGB values and transmits them to the control unit. The control unit uses the transmitted I (R0), I (G0), I (B0) values, and I (Rx), I (Gx), and I (Bx) values according to Equation 1 to R ', B', and G '. Calculate the value.
하기 표 1 및 도 3에 구리 농도에 따른 R’, B’, G’ 값을 측정한 결과를 나타내었다. R’, B’, G’ 값은 모두 구리 농도에 따라 매우 선형적으로 변화하는 것을 확인할 수 있었으며, 미지 농도의 시료의 측정을 위해서는 기울기가 가장 큰 R' 값을 미지농도 용액의 구리 농도 분석에 이용하였다.Table 1 and Figure 3 shows the results of measuring the R ', B', G 'value according to the copper concentration. The values of R ', B', and G 'all changed very linearly with the copper concentration. For the measurement of the samples with unknown concentration, the R' value with the highest slope was used to analyze the copper concentration of the unknown concentration solution. Was used.
구리농도 (g/L)Copper concentration (g / L) R'R ' B'B ' G'G '
00 0.0000.000 0.0000.000 0.0000.000
1One 0.0550.055 0.020.02 0.0070.007
33 0.1480.148 0.0430.043 0.0150.015
55 0.2270.227 0.0580.058 0.0250.025
77 0.3000.300 0.0720.072 0.0320.032
99 0.3690.369 0.0870.087 0.0400.040
1212 0.4550.455 0.1030.103 0.0470.047
실시 예 3. 철 농도 측정Example 3. Iron Concentration Measurement
철 이온(Fe3 +)이 포함되어 있는 염화철 에칭 용액의 철 이온 농도를 본 발명의 방법 및 장치를 이용하여 측정하였다. 먼저 이송부에서 보관부의 탈이온수를 혼합부로 이송하고, 다시 측정유닛으로 이송되어 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)을 측정하고 드레인 한다. 측정된 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)은 제어부로 송신된다. 다시 이송부는 순환 배관에서 공정 약품을, 보관부에서 첨가 용액을 혼합부로 각각 이송한다. 여기서 첨가 용액은 탈이온수이며 공정 약품을 1000배 희석시키는 양이 이송된다. 공정 약품과 탈이온수가 혼합부에서 혼합되어 희석되고, 희석된 용액은 측정유닛으로 이송되어 값과 I(Rx), I(Gx), I(Bx) 값을 측정한다. 측정된 값과 I(Rx), I(Gx), I(Bx) 값은 제어부로 송신된다. 제어부에서는 송신된 I(R0), I(G0), I(B0) 값과 I(Rx), I(Gx), I(Bx) 값을 이용하여 R’, B’, G’ 값을 계산된다. Iron ions (Fe + 3) iron ion concentration of the ferric chloride etching solution that contains a was measured by using the method and apparatus of the present invention. First, the deionized water from the storage unit is transferred to the mixing unit, and then transferred to the measuring unit to measure and drain the RGB color sensor measured values I (R0), I (G0), and I (B0) of the deionized water. The RGB color sensor measured values I (R0), I (G0) and I (B0) of the measured deionized water are transmitted to the control unit. The transfer unit transfers the process chemicals from the circulation pipe and the additive solution from the storage unit to the mixing unit, respectively. The addition solution here is deionized water and is transferred in an amount that dilutes the process chemical 1000 times. The process chemical and deionized water are mixed and diluted in the mixing section, and the diluted solution is transferred to a measuring unit to measure the values and the values of I (Rx), I (Gx) and I (Bx). The measured values and the values of I (Rx), I (Gx) and I (Bx) are transmitted to the controller. The controller calculates R ', B', and G 'values using the transmitted values of I (R0), I (G0), I (B0), and I (Rx), I (Gx), and I (Bx). .
하기 표 1 및 도 3에 철 이온 농도에 따른 R’, B’, G’ 값을 계산한 결과를 나타내었다. R’, B’, G’ 값 모두 철 이온 농도에 따라 선형적인 값을 얻었으며, 기울기가 가장 큰 G' 값을 이용하여 미지 농도의 용액의 철 이온 농도 분석에 이용하였다.Table 1 and Figure 3 shows the results of calculating the R ', B', G 'value according to the iron ion concentration. The values of R ', B', and G 'were all linear according to the iron ion concentration, and were used for analyzing the iron ion concentration of the unknown concentration using the G' value with the largest slope.
철 이온 농도 (g/L)Iron Ion Concentration (g / L) R'R ' B'B ' G'G '
1010 0.0190.019 0.0470.047 0.0980.098
1515 0.0340.034 0.070.07 0.1860.186
2020 0.0500.050 0.0880.088 0.2650.265
2525 0.0720.072 0.1090.109 0.3400.340
3030 0.0900.090 0.1300.130 0.4100.410
본 발명의 방법 및 장치에 의하면 탈이온수를 측정유닛에 투입하여 측정된 각각 I(R0), I(G0), I(B0) 값과 측정 대상 물질인 케미컬 용액의 I(Rx), I(Gx), I(Bx) 값을 함께 측정함으로써, 측정유닛 내의 발광부 및 수광센서부의 오염, 광량변화, 전류 및 전압의 변화, 및 이들의 열화에 의해 측정값이 변화되는 광원의 조건 변화에 따른 변화가 발생하더라도 농도 측정에 오차 없이 정확하게 농도를 측정 및 분석할 수 있다. According to the method and apparatus of the present invention, I (R0), I (G0), and I (B0) values measured by adding deionized water to the measuring unit, and I (Rx) and I (Gx) of the chemical solution to be measured, respectively. ), By measuring the I (Bx) value together, the change according to the change of the condition of the light source whose measurement value is changed by contamination, light quantity change, current and voltage change, and deterioration of the light emitting part and the light receiving sensor part in the measuring unit. Can be measured and analyzed accurately without error in concentration measurement.
이상에서 설명된 본 발명의 실시예들은 본 발명의 기술 사상을 예시적으로 보여준 것에 불과하며, 본 발명의 보호 범위는 이하 특허청구범위에 의하여 해석되어야 마땅할 것이다. 또한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것인 바, 본 발명과 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments of the present invention described above are merely illustrative of the technical idea of the present invention, and the protection scope of the present invention should be interpreted by the following claims. In addition, one of ordinary skill in the art to which the present invention pertains will be capable of various modifications and variations without departing from the essential characteristics of the present invention, all technical ideas within the scope equivalent to the present invention of the present invention It should be interpreted as being included in the scope of rights.

Claims (12)

  1. 첨가 용액을 보관하는 보관부; 분석 대상 시료를 혼합부로 이송하는 이송부; 분석 대상 시료와 첨가 용액을 혼합하는 혼합부; 혼합된 용액으로부터 특정 성분의 농도를 측정하는 측정유닛; 상기 측정유닛으로부터 특정 성분의 측정값을 입력 받고 이송부를 제어하는 제어부; 및 사용자에 의한 조작 신호 입력과 농도 측정값을 표시하는 사용자 조작부를 포함하고, A storage unit for storing the added solution; Transfer unit for transferring the sample to be analyzed to the mixing unit; Mixing unit for mixing the sample to be analyzed and the addition solution; A measuring unit for measuring the concentration of specific components from the mixed solution; A control unit which receives a measurement value of a specific component from the measuring unit and controls a transfer unit; And a user operation unit for displaying an operation signal input by the user and a concentration measurement value.
    상기 측정유닛은 시료의 농도를 측정하기 위한 RGB 컬러센서를 포함하고, 탈이온수의 RGB 컬러센서 측정값과 농도를 알고 있는 시료의 RGB 컬러센서 측정값을 측정한 후 수치로 변환해서 제어부로 전송하고, 상기 제어부는 탈이온수의 RGB 컬러센서 측정값 I(R0), I(G0), I(B0)과 농도를 알고 있는 시료의 RGB 컬러센서 측정값I(Rx), I(Gx), I(Bx)을 수신하여 농도를 측정하고자 하는 성분의 기지의 농도에 대한 탈이온수 색상에 대해서 보정된 R’, G’, B’ 값을 아래의 수식에 의해서 산출한 후, 1차 함수 형태로 선형 데이터화하고, RGB 중 하나를 검량선으로 선택하여 기준데이터를 구성하고, 시료내의 미지의 측정 대상 물질의 RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 수치로 변환한 값을 상기 검량선상의 기준데이터와 대비하여, 기준데이터에 대응되는 농도값이 상기 측정 대상 물질의 농도로 산출되도록 구성되는 것을 특징으로 하는 케미컬 용액 농도분석장치.The measuring unit includes an RGB color sensor for measuring the concentration of the sample, and measures the RGB color sensor measured value of the deionized water and the RGB color sensor measured value of the known sample, converts it into a numerical value, and sends it to the controller. The control unit controls the RGB color sensor measured values I (R0), I (G0), I (B0) and the RGB color sensor measured values I (Rx), I (Gx) and I ( After receiving Bx), calculate the R ', G', B 'value corrected for the deionized water color for the known concentration of the component whose concentration is to be measured by the following formula, and then linearize the data in linear form. Select one of the RGB as the calibration curve to configure the reference data, and convert the measured values of RGB color sensor I (Rx), I (Gx) and I (Bx) into numerical values. The concentration value corresponding to the reference data is compared with the reference data on the calibration curve. Chemical solution concentration analysis device being configured to calculate a concentration of the substance.
    [수식][Equation]
    Figure PCTKR2016005886-appb-I000007
    Figure PCTKR2016005886-appb-I000007
  2. 제1항에서, 상기 제어부는 RGB 중 기울기가 가장 큰 값을 검량선으로 선택하도록 구성되는 것을 특징으로 하는 케미컬 용액 농도분석장치. The chemical solution concentration analysis apparatus of claim 1, wherein the controller is configured to select a value having the largest slope among RGB as the calibration curve.
  3. 제1항에 있어서, 상기 측정유닛은 하우징, 분석 대상 시료를 수용하는 분석용기, 상기 시료에 빛을 조사하는 광원으로 구성되는 발광부; 상기 시료부에 조사된 광을 수광하여 RGB 요소별로 분리하는 발광다이오드와 수광된 광을 전기 신호로 변환하는 변환기로 구성되는 RGB 컬러센서를 포함하는 것을 특징으로 하는 케미컬 용액 농도분석장치.According to claim 1, wherein the measuring unit is a housing, an analysis vessel for receiving a sample to be analyzed, the light emitting unit consisting of a light source for irradiating light to the sample; And an RGB color sensor comprising a light emitting diode which receives light irradiated to the sample part and separates the light into RGB elements, and a converter which converts the received light into an electric signal.
  4. 제3항에 있어서, 상기 광원은 적색 광원, 청색 광원, 및 녹색 광원을 포함하는 것을 특징으로 하는 케미컬 용액 농도분석장치.The chemical solution concentration analysis apparatus of claim 3, wherein the light source comprises a red light source, a blue light source, and a green light source.
  5. 제3항에 있어서, 상기 광원은 할로겐 램프 또는 텅스텐 램프인 것을 특징으로 하는 케미컬 용액 농도분석장치.4. The chemical solution concentration analyzer of claim 3, wherein the light source is a halogen lamp or a tungsten lamp.
  6. 제3항에 있어서, 상기 광원은 청색 LED에 형광체를 이용하여 백색광을 구현하는 광원인 것을 특징으로 하는 케미컬 용액 농도분석장치.The method of claim 3, wherein the light source is a chemical solution concentration analysis device, characterized in that the light source to implement the white light using a phosphor on the blue LED.
  7. 제1항에 있어서, 상기 장치가 혼합부 및 측정유닛을 세척하는 수단을 추가로 포함하는 것을 특징으로 하는 케미컬 용액 농도분석장치 The apparatus of claim 1, wherein the apparatus further comprises means for washing the mixing section and the measuring unit.
  8. 제1항에 있어서, 상기 이송부는 정량 이송을 위해 정량 펌프, 시린지 펌프, 튜빙 펌프, 또는 기어 펌프를 포함하는 것을 특징으로 하는 케미컬 용액 농도분석장치.The apparatus of claim 1, wherein the transfer unit comprises a metering pump, a syringe pump, a tubing pump, or a gear pump for metering.
  9. 제1항에 있어서, 상기 보관부는 측정 대상 시료에 따라서 다수의 첨가 용액을 보관하도록 구성되는 것을 특징으로 하는 케미컬 용액 농도분석장치. The chemical solution concentration analysis apparatus of claim 1, wherein the storage unit is configured to store a plurality of additive solutions according to a sample to be measured.
  10. 제1항에 있어서, 상기 장치는 케미컬 용액을 공정장치로부터 직접 이송하는 수단을 더 구비하는 것을 특징으로 하는 케미컬 용액 농도분석장치. The apparatus of claim 1, wherein the apparatus further comprises means for transferring the chemical solution directly from the process apparatus.
  11. 탈이온수의 RGB 컬러센서 측정값I(R0), I(G0), I(B0)을 측정하는 단계;Measuring RGB color sensor measurements I (R0), I (G0), I (B0) of deionized water;
    농도를 알고 있는 다수의 시료에 발색용 시약을 포함하는 첨가용액을 가하여 혼합 및 발색시킨 후,RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 측정하는 단계;Adding and adding an additive solution containing a coloring reagent to a plurality of samples having known concentrations, and mixing and developing the RGB color sensor measurement values I (Rx), I (Gx), and I (Bx);
    하기 수식을 이용하여 탈이온수 색상에 대해서 보정된, 농도를 알고 있는 시료의 RGB 컬러센서 측정값 R’, G’, B’을 산출하는 단계:Calculating RGB color sensor measurements R ', G', B 'of a sample of known concentration, corrected for deionized water color using the following formula:
    [수식][Equation]
    Figure PCTKR2016005886-appb-I000008
    Figure PCTKR2016005886-appb-I000008
    탈이온수 색상에 대해서 보정된, 기지의 농도의 시료에 대하여 RGB 컬러센서를 이용하여 측정한 R’, G’, B’ 값을 이용하여 시료의 농도 변화에 따른 색상 변화의 관계를 산출하여 선형 데이터화하는 단계;Linear data is calculated by calculating the relationship between the color change according to the concentration change of the sample using the R ', G', and B 'values measured using an RGB color sensor for a sample of known concentration corrected for the deionized water color. Doing;
    R', G', B' 선형 데이터 가운데 기울기가 가장 큰 값을 검량선으로 선택하는 단계; 및  Selecting a calibration curve having a largest slope among R ', G', and B 'linear data; And
    시료내의 미지의 측정 대상 물질의 RGB 컬러센서 측정값 I(Rx), I(Gx), I(Bx)을 수치로 변환한 값을 상기 검량선상의 기준데이터와 대비하여, 기준데이터에 대응되는 농도값을 상기 측정 대상 물질의 농도로 산출하는 단계를 포함하는 케미컬 용액의 농도 분석 방법.The concentration value corresponding to the reference data by comparing the RGB color sensor measured values I (Rx), I (Gx), and I (Bx) of the unknown substance to be measured in the sample with the reference data on the calibration curve. Method of analyzing the concentration of the chemical solution comprising the step of calculating the concentration of the measurement target material.
  12. 제11항에서, 검량선은 RGB 중 기울기가 가장 큰 값을 검량선으로 선택하는 것을 특징으로 하는 케미컬 용액의 농도 분석 방법. The method of claim 11, wherein the calibration curve selects a value having the largest slope among RGB as the calibration curve.
PCT/KR2016/005886 2016-05-17 2016-06-03 Device and method for analyzing concentration of chemical solution WO2017200136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160060239A KR101903013B1 (en) 2016-05-17 2016-05-17 Apparatus and method for measuring concentration of chemical solutions
KR10-2016-0060239 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017200136A1 true WO2017200136A1 (en) 2017-11-23

Family

ID=60326069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005886 WO2017200136A1 (en) 2016-05-17 2016-06-03 Device and method for analyzing concentration of chemical solution

Country Status (2)

Country Link
KR (1) KR101903013B1 (en)
WO (1) WO2017200136A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109900686A (en) * 2019-02-27 2019-06-18 山东大学齐鲁医院 A kind of method, system and terminal improving sxemiquantitative poisonous substance detection accuracy
CN111610156A (en) * 2020-06-05 2020-09-01 舟山欧莱克新材料科技有限公司 Red-based KD synthesis decoloration reaction concentration monitoring device and operation method thereof
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102343187B1 (en) * 2020-09-08 2021-12-27 주식회사농심 system of measuring oil acid value using artificial intelligence and the method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258048A (en) * 1998-03-09 1999-09-24 Shinko Electric Co Ltd Coloring degree measuring method for solution
KR20040095012A (en) * 2003-05-06 2004-11-12 (주)화백엔지니어링 Device and method for regenerating measurement of plating solution and oxidating solution using rgb color sensor
KR100875963B1 (en) * 2008-04-11 2008-12-26 (주) 테크로스 Content measuring apparatus and measuring method
JP2013134246A (en) * 2011-12-22 2013-07-08 X Denshi Sekkei:Kk Pigmentation degree measuring apparatus of liquid
JP2014186027A (en) * 2013-02-22 2014-10-02 Kurita Water Ind Ltd Measuring method of concentration of dissolved substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258048A (en) * 1998-03-09 1999-09-24 Shinko Electric Co Ltd Coloring degree measuring method for solution
KR20040095012A (en) * 2003-05-06 2004-11-12 (주)화백엔지니어링 Device and method for regenerating measurement of plating solution and oxidating solution using rgb color sensor
KR100875963B1 (en) * 2008-04-11 2008-12-26 (주) 테크로스 Content measuring apparatus and measuring method
JP2013134246A (en) * 2011-12-22 2013-07-08 X Denshi Sekkei:Kk Pigmentation degree measuring apparatus of liquid
JP2014186027A (en) * 2013-02-22 2014-10-02 Kurita Water Ind Ltd Measuring method of concentration of dissolved substance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109900686A (en) * 2019-02-27 2019-06-18 山东大学齐鲁医院 A kind of method, system and terminal improving sxemiquantitative poisonous substance detection accuracy
CN111610156A (en) * 2020-06-05 2020-09-01 舟山欧莱克新材料科技有限公司 Red-based KD synthesis decoloration reaction concentration monitoring device and operation method thereof
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy
US12100285B2 (en) 2020-10-08 2024-09-24 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Also Published As

Publication number Publication date
KR20170129998A (en) 2017-11-28
KR101903013B1 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2017200136A1 (en) Device and method for analyzing concentration of chemical solution
CN102680469B (en) Multi-parameter rapid detection method and equipment for water quality of household drinking water
CN105738357B (en) The CIE1976L that chemical analysis is prepared with sodium hydroxide solution*a*b*Colour space method
CN202693478U (en) Quick detecting equipment for quality parameters of domestic drinking water
JP7272970B2 (en) SPECTRAL POTENTIAL TEMPERATURE MULTI-DIMENSIONAL TITRATION ANALYZER AND ITS USAGE
CN204128953U (en) Auto injection gas phase molecular absorption spectrometer
WO2012158000A2 (en) Method for measuring the concentration of an atmospheric or water pollutant
WO2017113545A1 (en) Suck-and-test liquid tester
CN107167434B (en) Method for measuring KHP content by using turbidity compensation ultraviolet-visible spectrophotometry
WO2015137694A1 (en) Microfluidic chip having flow cell, and using standard addition method, and absorbance detection apparatus comprising same
CN204116364U (en) A kind of Urine Analyzer
CN116840219B (en) Method for detecting total nitrogen concentration of water quality
JP2013134246A (en) Pigmentation degree measuring apparatus of liquid
JP2003075426A (en) Wet oxidation type element analysis apparatus
CN1458529A (en) Colorimetric component analysis method and its device based on image technology
CN105527280A (en) Method for detecting chlorine dioxide and chlorite concentration in water through LGB-HRP quantitative injection
CN201130154Y (en) Hydroxy-group ethylidene 2-phosphonic acid active component analyzer
CN108007893A (en) A kind of photoelectric method and device of quick measurement crude oil water content
CN112730385A (en) Detection method for determining contents of silicon and phosphorus elements in ferrochrome by utilizing ICP (inductively coupled plasma)
Welleweerd et al. An open-source automated magnetic optical density meter for analysis of suspensions of magnetic cells and particles
KR102553384B1 (en) Method and apparatus for automatic measurement of total nitrogen, total phosphorus and phosphoric acid in water using multiple differential gain selection opitcal signal control processing algorithm technique
TW201915470A (en) A method for determining chemical oxygen demand of a water sample
CN104281079B (en) Light transmittance electrical control detecting system and there is its device
CN207717631U (en) A kind of portable determination of manganous ion instrument
Zhao et al. The research about detection of dissolved oxygen in water based on C8051F040

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902503

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 04/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16902503

Country of ref document: EP

Kind code of ref document: A1