WO2017199969A1 - Plasmon resonance laminate, binder-part-forming composition, method for manufacturing plasmon resonance laminate, and information recording medium - Google Patents

Plasmon resonance laminate, binder-part-forming composition, method for manufacturing plasmon resonance laminate, and information recording medium Download PDF

Info

Publication number
WO2017199969A1
WO2017199969A1 PCT/JP2017/018397 JP2017018397W WO2017199969A1 WO 2017199969 A1 WO2017199969 A1 WO 2017199969A1 JP 2017018397 W JP2017018397 W JP 2017018397W WO 2017199969 A1 WO2017199969 A1 WO 2017199969A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
binder
plasmon resonance
laminate
fine particles
Prior art date
Application number
PCT/JP2017/018397
Other languages
French (fr)
Japanese (ja)
Inventor
翔吾 久保田
陽介 上羽
知枝 佐藤
衛藤 浩司
山本 学
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017096671A external-priority patent/JP2017217903A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2017199969A1 publication Critical patent/WO2017199969A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present disclosure relates to a plasmon resonance laminate that can be easily provided with designability, anti-counterfeiting properties, and the like and has excellent durability.
  • Some fine particles have a function of changing parameters such as electromagnetic wave responsiveness to electromagnetic waves, for example, phase and traveling direction of electromagnetic waves, polarization, and wavelength dependency of intensity.
  • fine particles for example, fine particles that cause only plasmon resonance and scatter only electromagnetic waves of a specific wavelength are known depending on the shape such as the particle size, the constituent material, and the like.
  • Non-Patent Document 1 discloses a laminate in which silver nanocube particles are fixed on a transparent substrate surface as fine particles capable of scattering visible light by plasmon resonance.
  • Non-Patent Document 1 discloses that the wavelength of visible light that causes plasmon resonance differs between the surface of the fine particle on the substrate side and the surface opposite to the fine particle substrate. And it is shown that the said laminated body can display an image of a different color according to whether the light irradiation surface is the base material side surface of microparticles
  • Non-Patent Document 1 since the fine particles dispersed on the surface of the base material are exposed to the atmosphere and fixed, for example, when the user's hand touches the fine particles, the fine particles fall off and have a desired function. May not develop.
  • an overcoat layer covering the fine particles in order to prevent the fine particles from falling off.
  • the refractive index difference reffractive between fine particles and overcoat layer
  • the difference between the refractive index difference on the substrate side surface of the fine particles becomes smaller, and the opposite of the substrate side surface of the fine particles and the substrate of the fine particles.
  • the wavelength of the plasmon-resonant light on the side surface is close.
  • the present disclosure has been made in view of the above problems, and has as its main object to provide a plasmon resonance laminate that is easy to impart designability, anti-counterfeiting properties, etc., and is excellent in durability. .
  • the present disclosure provides a first layer having a refractive index higher than that of the base material on one surface of a transparent base material (hereinafter sometimes referred to as a transparent base material). (Hereinafter sometimes referred to as a high refractive index layer), and a second layer (hereinafter referred to as a binder portion) containing a binder layer and particles on the surface of the first layer opposite to the base material. And the particles include a negative dielectric material, plasmon resonate with visible light, and the second layer is positioned above the substrate.
  • a plasmon resonance laminate in which at least a part of a surface of the two layers opposite to the substrate is lower than a portion of the particle farthest from the substrate.
  • the present disclosure has a high refractive index layer having a higher refractive index than the transparent substrate on one surface of the transparent substrate, and the surface of the high refractive index layer opposite to the transparent substrate.
  • the plasmon resonance laminated body in which at least one part of the surface on the opposite side to the said transparent base material of the said binder part is lower than the part farthest from the said transparent base material of the said particle
  • the present disclosure includes a transparent base, a high refractive index layer having a higher refractive index than the transparent base disposed on one surface of the transparent base, and the transparent base of the high refractive index layer.
  • a binder portion disposed on the opposite surface, and the binder portion includes a binder layer containing a binder agent and particles dispersed in the binder layer, and the particles are negative.
  • a plasmon resonance laminate including a dielectric material and plasmon resonance with respect to visible light, wherein the minimum thickness of the binder layer is smaller than the maximum height of the particles.
  • the transparent substrate may be referred to as a transparent substrate, the first layer as a high refractive index layer, the second layer as a binder portion, and the particles as fine particles.
  • the present disclosure includes particles, a binder agent, and a dispersion medium.
  • the particles include a negative dielectric material, plasmon-resonates with visible light, and the concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium).
  • the composition for binder part formation which is in the range of 0.1 / 100 or more and 10/100 or less is provided.
  • concentration with respect to the dispersion medium of a binder agent means the volume ratio with respect to the dispersion medium of a binder agent.
  • the present disclosure provides a laminate having a first layer having a higher refractive index than that of the substrate on one surface of a substrate having transparency, and particles on the surface of the first layer of the laminate.
  • the particles contain a negative dielectric material and plasmon-resonate with visible light, and the binder part forming composition has a concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium).
  • a method for producing a plasmon resonance laminate that is within a range of 0.1 / 100 or more and 10/100 or less. That is, the present disclosure provides a laminate in which a high refractive index layer having a higher refractive index than that of the transparent substrate is formed on one surface of the transparent substrate, and the surface of the high refractive index layer of the laminate. On top of this, a coating step of applying a binder part forming composition containing particles, a binder agent and a dispersion medium, and drying to remove the dispersion medium from the coating film of the binder part forming composition to form a binder part.
  • the particles include a negative dielectric material, and plasmon resonate with visible light, and the binder part forming composition has a concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion).
  • the medium is provided within the range of 0.1 / 100 or more and 10/100 or less.
  • the present disclosure has a first layer having a refractive index higher than that of the base material on one surface of the base material having transparency, and a binder on a surface of the first layer opposite to the base material.
  • a second layer including a layer and a particle, wherein the particle includes a negative dielectric material, plasmon-resonates with visible light, and the second layer is positioned above the substrate.
  • An information recording medium is provided, wherein at least a part of the surface of the second layer opposite to the substrate includes a plasmon resonance laminate that is lower than a portion of the particle farthest from the substrate. That is, this indication provides an information recording medium provided with the above-mentioned plasmon resonance layered product.
  • This disclosure has an effect of providing a plasmon resonance laminate that can be easily provided with designability, anti-counterfeiting properties, and the like, and has excellent durability.
  • the present disclosure relates to a plasmon resonance laminated body, a binder part forming composition capable of forming a binder part included in the plasmon resonance laminated body, a method for producing a plasmon resonance laminated body capable of producing the plasmon resonance laminated body, and the plasmon resonance laminated body.
  • the present invention relates to an information recording medium provided.
  • the plasmon resonance laminate, the binder portion forming composition, the method for producing the plasmon resonance laminate, and the information recording medium of the present disclosure will be described in detail.
  • the plasmon resonance laminate of the present disclosure has a high refractive index layer having a higher refractive index than that of the transparent substrate on one surface of the transparent substrate, and the transparent base of the high refractive index layer.
  • the plasmon resonance laminate of the present disclosure includes a transparent base, a high refractive index layer having a higher refractive index than the transparent base disposed on one surface of the transparent base, and the high refractive index layer.
  • the fine particles include a negative dielectric material, plasmon resonate with visible light, and the minimum thickness of the binder layer is smaller than the maximum height of the fine particles.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of a plasmon resonance stacked body according to the present disclosure.
  • FIG. 2 is a schematic cross-sectional view illustrating another example of the plasmon resonance multilayer body of the present disclosure.
  • the plasmon resonance laminate 10 of the present disclosure has a refractive index higher than that of the transparent substrate 1 and the transparent substrate 1 arranged on one surface of the transparent substrate 1.
  • the fine particles 4 contain a negative dielectric material, plasmon-resonate with visible light, and are in contact with the high refractive index layer 2. Further, the minimum thickness a of the binder layer 3 is smaller than the maximum height b of the fine particles 4. Furthermore, when the plasmon resonance laminated body 10 is disposed so that the binder portion 7 is positioned above the transparent base material 1, at least a part of the surface 7 ⁇ / b> S on the side opposite to the transparent base material 1 of the binder portion 7 has the fine particles 4. Lower than the farthest part from the transparent substrate 1 (in the example shown in FIGS. 1 and 2, the surface S of the fine particles 4 opposite to the transparent substrate 1). FIG.
  • FIG. 1 shows an example in which the surface of the fine particle opposite to the transparent substrate is not covered with the binder layer
  • FIG. 2 shows an example in which the surface of the fine particle opposite to the transparent substrate is covered with the binder layer. Is shown.
  • the plasmon resonance laminate of the present disclosure can prevent the fine particles from dropping off during use, and has excellent durability.
  • the state of the fine particles dispersed in the binder layer is a state in which the minimum thickness of the binder layer is smaller than the maximum height of the fine particles, for example, the surface of the fine particles on the side opposite to the transparent substrate is the binder. It is exposed from the layer and is in contact with the atmosphere, and can further be in contact with the high refractive index layer on the transparent substrate side.
  • the plasmon resonance laminated body of the present disclosure can easily display images of different colors when irradiated with visible light from the front side and when irradiated with visible light from the back side. It becomes easy to give prevention properties and the like. For these reasons, the plasmon resonance laminate of the present disclosure can be easily imparted with designability, anti-counterfeiting properties, etc., and has excellent durability.
  • the state where the surface opposite to the transparent base material of the fine particles is exposed from the binder layer is not limited to a fully exposed state where the binder layer does not exist on the surface opposite to the transparent base material of fine particles, To the extent that the plasmon resonance laminated body of the present disclosure can be observed by irradiating visible light from the fine particle side and when observing by irradiating visible light from the transparent substrate side, can be visually recognized.
  • the state in which the fine particles are in contact with the high refractive index layer is not limited to the state in which the fine particles are in direct contact with the high refractive index layer, and the plasmon resonance laminate of the present disclosure was observed by irradiating visible light from the fine particle side.
  • the binder layer is disposed between the fine particles and the high refractive index layer in such a thin thickness that the visible color development of the different colors is visible in the case of observing with visible light from the transparent substrate side. Is also included.
  • the plasmon resonance laminate of the present disclosure has a transparent substrate, a high refractive index layer, and a binder part including a binder layer and fine particles.
  • a transparent substrate a transparent substrate
  • a high refractive index layer a binder part including a binder layer and fine particles.
  • Binder Part The binder part in the present disclosure includes a binder layer and fine particles, and specifically includes a binder layer containing a binder agent and fine particles dispersed in the binder layer.
  • the positional relationship between the binder layer and the fine particles in the present disclosure that is, the state of the fine particles in the binder layer is a state where the minimum thickness of the binder layer is smaller than the maximum height of the fine particles.
  • the positional relationship between the fine particles and the binder layer as described above when the plasmon resonance laminate is disposed so that the binder portion is located above the transparent substrate, the surface of the binder portion on the side opposite to the transparent substrate is disposed. It can also be said that at least a part is lower than the part of the fine particles farthest from the transparent substrate.
  • the minimum thickness of the binder layer is the minimum of the distance from the surface opposite to the high refractive index layer of the binder layer to the high refractive index layer, in a portion that does not overlap with the fine particles of the binder layer in plan view.
  • it means the distance from the portion closest to the transparent substrate on the surface opposite to the high refractive index layer of the binder layer to the high refractive index layer.
  • the minimum thickness is a distance indicated by a in FIGS. 1 and 2 described above.
  • the maximum height of the fine particles refers to the maximum distance among the distances from the surface opposite to the high refractive index layer of the fine particles in the binder layer to the high refractive index layer. This is the distance from the portion farthest from the high refractive index layer.
  • the portion of the fine particles farthest from the transparent substrate is, for example, in the case of FIG. 1 or FIG. 2, the surface S of the fine particles 4 in the binder layer 3 opposite to the high refractive index layer 2.
  • I mean.
  • the fine particles 4 are spherical, triangular pyramid or the like, it means a portion P farthest from the transparent substrate 1 of the fine particles 4 as shown in FIG.
  • the cubic-shaped top part P is the fine particles 4. This is the portion farthest from the transparent substrate 1.
  • the maximum height is a distance indicated by b in FIGS. 1 to 3 already described.
  • the number of fine particles whose maximum height is higher than the minimum thickness of the binder layer that is, among the total fine particles in the binder portion, the side opposite to the transparent base material of the binder portion
  • the number of fine particles in which at least part of the surface of the fine particles is lower than the portion of the fine particles farthest from the transparent substrate may be at least one, preferably 50% or more of the total fine particles, All fine particles are preferred. This is because the binder layer can stably increase the refractive index difference between the front and back surfaces of the fine particles when the proportion of the fine particles exhibiting the above state is in the above range.
  • the difference between the minimum thickness of the binder layer and the maximum height of the fine particles may be larger than 0 nm. From the viewpoint of stably increasing the difference in refractive index between the two, the larger the difference, the better.
  • the difference is preferably 2 nm or more, more preferably 10 nm or more and 200 nm or less, and particularly preferably 30 nm or more and 150 nm or less. Since the difference is within the above-described range, the binder layer can stably increase the refractive index difference between the front and back of the fine particles, and can further prevent the fine particles from falling off. is there.
  • the relationship between the average thickness of the binder layer and the average primary particle size of the fine particles may be any as long as the minimum thickness of the binder layer can be smaller than the maximum height of the fine particles.
  • the average thickness of the fine particles may be larger than the average primary particle size of the fine particles, but is preferably smaller than the average primary particle size of the fine particles, and the average thickness of the binder layer is the average primary particle size of the fine particles.
  • the particle size is preferably 95% or less of the particle size, more preferably 10% or more and 90% or less, and particularly preferably 25% or more and 50% or less.
  • the binder layer can be easily in a state where the minimum thickness of the binder layer is smaller than the maximum height of the fine particles. It is. Further, the binder layer can stably increase the refractive index difference between the front and back of the fine particles, and can stably prevent the fine particles from falling off.
  • the average thickness of the binder layer refers to the average value of the thickness at any 10 points in the binder layer that do not overlap with the fine particles in plan view.
  • the average primary particle size can be obtained by a method of directly measuring the size of primary particles from an electron micrograph. Specifically, a particle image was measured with a transmission electron micrograph (TEM) (for example, H-7650 manufactured by Hitachi High-Tech), and an average value of equivalent area circle equivalent diameters of 100 randomly selected primary particles was calculated. The average primary particle size can be obtained.
  • the electron microscope may be either a transmission type (TEM) or a scanning type (SEM).
  • the equivalent area equivalent circle diameter can be calculated from the area and circumference of the obtained particle image by 4 ⁇ area / circumference.
  • the average thickness of the binder portion refers to the average thickness of the portion not including the fine particles in the binder portion, and specifically, can be the same as the average thickness of the binder layer.
  • the relationship between the average thickness of the binder portion and the average primary particle size of the fine particles can be the same as the relationship between the average thickness of the binder layer and the average primary particle size of the fine particles.
  • the average thickness of the binder portion is smaller than the average primary particle size of the fine particles, that is, the average thickness of the portion not including the fine particles of the binder portion is smaller than the average primary particle size of the fine particles. This is because the difference in refractive index between the front and back of the fine particles is stably increased.
  • the surface of the fine particle opposite to the transparent substrate is usually in an exposed state that is not covered with the binder layer.
  • the exposure state is not limited to a state in which the fine particles are completely exposed in which no binder layer is present on the surface, and the plasmon resonance laminate of the present disclosure is irradiated with visible light from the fine particle side.
  • the surface is covered with a binder layer with such a thin thickness that it is possible to visually recognize different colors.
  • the thickness on the surface of the binder layer opposite to the transparent substrate when the surface opposite to the transparent substrate of the fine particles is exposed can be, for example, 10 nm or less.
  • the thickness is preferably 5 nm or less, particularly preferably 2 nm or less, and preferably 0 nm, that is, the surface opposite to the transparent substrate of the fine particles is preferably completely exposed.
  • the plasmon resonance laminate of the present disclosure has different colors when irradiated with visible light from the fine particle side and when irradiated with visible light from the transparent substrate side. This is because it can be stably displayed, and it is easy to provide designability, anti-counterfeiting properties, and the like.
  • the thickness on the surface on the opposite side to the transparent base material of the fine particle of the said binder layer is specifically shown by d in already demonstrated FIG.
  • the fine particles are usually in contact with the high refractive index layer.
  • being in contact with the high refractive index layer is not limited to the state in which the fine particles are in direct contact with the high refractive index layer, and when the plasmon resonance laminate of the present disclosure is observed by irradiating visible light from the fine particle side.
  • it includes a case where a binder layer is disposed between the fine particles and the high refractive index layer with such a thin thickness that it is possible to visually recognize the development of different colors, when observed by irradiating visible light from the transparent substrate side. .
  • the distance between the fine particles and the high refractive index layer can be, for example, 10 nm or less, preferably 5 nm or less, particularly 2 nm.
  • the following is preferable, and it is preferably 0 nm, that is, it is preferable that the surface of the fine particle on the transparent substrate side is in direct contact with the high refractive index layer. It is because the said binder layer can enlarge the refractive index difference between fine particle front and back stably because the said space
  • the plasmon resonance laminated body of the present disclosure can stably display different colors when irradiated with visible light from the fine particle side and when irradiated with visible light from the transparent substrate side. This is because it becomes easy to impart design properties, anti-counterfeiting properties, and the like.
  • the distance between the fine particles and the high refractive index layer is specifically shown by c in FIG.
  • the density of the fine particles to be dispersed in the binder layer may be any light of a specific wavelength of irradiated light as it can be scattered on a desired strength, 10 10 10 5 / cm 2 or more / Cm 2 or less.
  • the interval between the fine particles dispersed in the binder layer may be one type of interval, that is, one that is arranged at equal intervals, but is randomly arranged and the interval becomes two or more types. It may be.
  • Binder Layer The binder layer in the present disclosure is disposed on the surface of the high refractive index layer opposite to the transparent substrate and includes a binder agent.
  • the binder layer is a part other than the particles in the binder part.
  • Binder Agent Any binder agent may be used as long as the fine particles can be dispersed and held in the above-described state.
  • a binder agent a non-volatile material having a low surface tension can be used.
  • nonvolatile means any material that is normal temperature and normal pressure (25 ° C., atmospheric pressure) and does not volatilize. More specifically, the boiling point is 100 ° C. or higher. Among them, those having a temperature of 150 ° C. or higher are preferable.
  • Surface tension refers to the energy (unit is mN / m or mJ / m 2 ) required to create a surface with a unit area and is an index of the force attracted by the surface molecules. is there. This is the energy per unit area of the system that increases when a part of a mass of material forms a new surface.
  • the surface tension of the binder agent can be, for example, 80 mN / m or less, and is preferably in the range of 6 mN / m to 73 mN / m, and more preferably 15 mN / m to 50 mN / m. It is preferable to be within the range. Because the surface tension is within the above range, a thin thin film can be stably formed with respect to the high refractive index layer, and a binder layer capable of dispersing fine particles in the above state can be stably formed. is there.
  • a surface free energy measuring method described in JP-A-2016-41790 can be used as a surface tension measuring method.
  • the surface tension is measured, for example, by measuring the contact angle of pure water, methylene iodide or ⁇ -bromonaphthalene as a reagent to the surface of the binder agent.
  • a method obtained by the extended Forkes theory can be used.
  • the surface free energy measuring method described in JP-A-2014-98910 can be used.
  • the measurement target of the surface tension of the binder agent is measured in the state of the binder agent contained in the binder layer.
  • the measurement object is a mixture, and when the binder agent is contained in the binder layer in a polymerized state, measurement is performed.
  • the object is a polymer of a binder agent. More specifically, when a mixture of a resin material and a silicone compound is contained in the binder layer as the binder agent, the measurement object is a mixture of the resin material and the silicone compound, and the silicone agent is used as the binder agent.
  • the measurement object is a polymer of the silicone compound.
  • a composition not containing fine particles for example, a binder component containing a monomer component and other binder agent as required, and a polymerization initiator are used.
  • a method of forming a measurement binder layer by forming a coating film of the composition containing the composition and then polymerizing the monomer components in the coating film can be used.
  • the non-volatile material having a low surface tension that can be used as the binder agent include silicone compounds and fluorine compounds.
  • the binder agent preferably contains at least one of a silicone compound and a fluorine compound. This is because by using the binder agent, a binder layer in which the fine particles are in the above-described state can be easily formed.
  • the binder agent may be a silicone compound and a fluorine compound, respectively, or a mixture of both.
  • silicone compound a compound having a siloxane bond (—Si—O—) n and a polysiloxane structure in which n is 1 or more as a skeleton can be used.
  • the silicone compound may be one in which at least one of a methyl group, a phenyl group and hydrogen is bonded to the side chain or terminal of silicon constituting the polysiloxane structure.
  • the silicone compound includes dimethyl silicone in which all of the side chains and terminals of the polysiloxane structure are methyl groups, methyl phenyl silicone in which part of the side chains are phenyl, and part of the side chains are hydrogen.
  • the methyl hydrogen silicone etc. which are can be used.
  • a modified silicone having an organic group introduced into the side chain or terminal of silicon constituting the polysiloxane structure can also be used.
  • the modified silicone include reactive modified silicone having a reactive functional group as an organic group, and non-reactive modified silicone having a non-reactive functional group as an organic group.
  • the reactive functional group is not particularly limited as long as the desired reactivity can be imparted to the silicone compound.
  • the functional group capable of crosslinking the modified silicones with each other through a covalent bond includes a vinyl group, a styryl group, and a methacrylic group.
  • a polymerizable group such as a group and an acrylic group, an amino group, an epoxy group, a carbinol group, and a carboxyl group.
  • the non-reactive functional group can be, for example, a functional group capable of exhibiting an interaction due to hydrogen bonding between modified silicones, for example, a polyether group, an aralkyl group, a long-chain alkyl group, a higher chain.
  • modified silicones for example, a polyether group, an aralkyl group, a long-chain alkyl group, a higher chain.
  • examples include fatty acid ester groups and phenol groups.
  • silicone compound a linear silicone having a structure in which siloxane bonds are linearly bonded, or a network silicone in which a siloxane bond has a three-dimensional network structure can be used.
  • the network silicone when the silicone compound has a reactive function such as a polymerizable group, a crosslinked product having a three-dimensional network structure formed by bonding of the reactive functional groups to each other is also included. Can be used.
  • the silicone compound is preferably a network silicone. This is because the silicone-based compound as the binder agent can stably hold the fine particles.
  • silicone compounds can be used depending on their properties.
  • silicone surfactants, silicone oils, silicone oligomers, silicone resins, and reactive functional groups possessed by these are bonded to each other. Can be mentioned.
  • the above silicone compounds may be used alone or as a mixture of two or more.
  • the silicone-based surfactant is not particularly limited as long as it has a surface-active ability.
  • a linear silicone can be used as a hydrophilic group on the side chain or terminal of silicon constituting the polysiloxane structure.
  • Specific examples include those having a polyether group or amino group bonded thereto, specifically, polyether-modified silicone oil, amino-modified silicone oil, and the like.
  • polyether-modified silicone oil is preferable. This is because the silicone-based surfactant can stably hold the fine particles.
  • silicone oil for example, linear silicone can be used, and specifically, dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, reactive modified silicone oil, non-reactive modified silicone.
  • An oil etc. can be mentioned, Especially, it is preferable that it is a reactive modified silicone oil etc. This is because the reactive modified silicone oil can be contained in the binder layer as a cross-linked product cross-linked with reactive functional groups, for example, and the fine particles can be stably retained.
  • silicone resin for example, a siloxane bond having a three-dimensional network structure can be used.
  • dimethyl silicone resin, methylphenyl silicone resin, alkyd resin-modified silicone, and the like can be used.
  • An organic resin-modified silicone resin such as a resin, a polyether-modified silicone resin, and the like can be given.
  • a methyl silicone resin, a methylphenyl silicone resin, and the like are preferable. This is because the silicone resin can stably hold fine particles.
  • the organic resin-modified silicone is obtained by bonding an organic resin as an organic group, and examples of the organic resin include a polyester resin, an alkyd resin, and an epoxy resin.
  • silicone oligomer examples include non-reactive alkoxysilicone oligomers, reactive functional group-containing alkoxysilicone oligomers, reactive functional group-containing silicone oligomers, etc. Among them, reactive functional group-containing alkoxy Silicone oligomers and reactive functional group-containing silicone oligomers are preferred.
  • the reactive modified silicone oligomer containing the reactive functional group can be contained, for example, in the binder layer as a cross-linked product obtained by cross-linking reactive functional groups, and can stably hold fine particles. Because.
  • the silicone oligomer refers to a dimer or trimer of a silicone monomer having a molecular weight of about 1000.
  • a relatively low molecular silicone resin having a three-dimensional network structure can be used.
  • the non-reactive alkoxysilicone oligomer does not contain a reactive functional group, and further has an alkoxy group bonded to the side chain or terminal of silicon constituting the polysiloxane structure.
  • a reactive functional group and an alkoxy group may be bonded using a side chain or a terminal.
  • the fluorine compound may be any compound having fluorine.
  • a perfluoroalkyl group (—CF 3) in which all or part of the hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms.
  • Those having a fluorine-containing group such as n can be used.
  • the carbon number n of the perfluoroalkyl group may be 1 or more, and can be appropriately set within a range in which the fine particles can be dispersed in the above-described state, and is adjusted according to the molecular weight of the fluorine-based compound. Is.
  • the perfluoroalkyl group for example, those having a carbon number n of 30 or less can be used.
  • the fluorine compound may have other functional groups in addition to the fluorine-containing group.
  • UV ultraviolet-ray
  • the lipophilic group is not particularly limited as long as it can improve the lipophilicity of the fluorine-based compound, and examples thereof include an alkyl group, a phenyl group, and a siloxane group.
  • the hydrophilic group is not particularly limited as long as it can improve the hydrophilicity of the fluorine-based compound.
  • examples thereof include an ethylene oxide group, an amide group, a ketone group, a carboxyl group, a sulfone group, an alkoxy group, and a phosphoric acid group. be able to.
  • the UV-reactive group is not particularly limited as long as it can be polymerized by ultraviolet rays.
  • the UV-reactive group can be the same as the polymerizable group described in the section “(a) Silicone compound”.
  • the acid group is not particularly limited as long as it can exhibit acidity in water, and examples thereof include a carboxyl group, a sulfone group, and phosphoric acid.
  • examples of the salt include sodium salt and potassium salt. be able to.
  • fluorine-based compound perfluoroether in which perfluoroalkyl groups are bonded by an ether bond can also be used.
  • fluorine-based compound may be a cross-linked product having a three-dimensional network structure in which the UV reactive groups are bonded to each other.
  • fluorine-based compound various compounds can be used depending on the properties thereof, and examples thereof include a fluorine-based surfactant, a fluorine-based coating agent, etc., and others include a fluorine-based liquid, etc. Can be mentioned.
  • the said fluorine-type compound may be used individually by 1 type, two or more types of mixtures may be sufficient as it.
  • the fluorine compound is preferably a fluorine surfactant. This is because the fluorosurfactant can stably hold fine particles.
  • fluorine-based surfactant examples include PFOS (perfluoroalkyl sulfonic acid), PFOA (perfluoroalkyl carboxylic acid), fluorine telomer alcohol (F (CF 2 ) n CH 2 CH 2 OH, n is 1 or more integers), hexafluoropropene (HFP) trimer derivative, perfluorobutane sulfonate (Megafac F-114 manufactured by DIC), fluorine-containing / lipophilic group-containing oligomer (Megafac F-251 manufactured by DIC) F-253, F-281, F-551, F-552, F-554, F-558, F-560, F-561, F-563, R-41, R-43), perfluoroalkyl groups Containing carboxylate (Megafac F-410 made by DIC), fluorinated group / hydrophilic group-containing oligomer (Megafac made by DIC made by
  • fluorine-based coating agent examples include modified perfluoroether.
  • the fluorinated liquid include hydrofluoroether.
  • hydrofluoroether for example, a separated hydrofluoroether or a non-separable hydrofluoroether described in JP-A-2015-129249 can be used.
  • the binder agent may contain at least one of a silicone compound and a fluorine compound, and may contain only at least one of a silicone compound and a fluorine compound.
  • a resin material other than the silicone compound and the fluorine compound may be included. That is, the binder agent may be a mixture of at least one of a silicone compound and a fluorine compound and a resin material.
  • the resin material may be any resin other than a silicone compound and a fluorine compound, that is, any resin that does not contain a siloxane bond and does not contain a fluorine-containing group such as a perfluoroalkyl group. Can be used.
  • the resin material is not particularly limited as long as it can form a binder layer capable of dispersing fine particles in the above-described state, and examples thereof include acrylic resins, urethane acrylic resins, and epoxy resins.
  • the content of the resin material in the binder agent can be appropriately set within a range in which a binder layer capable of dispersing fine particles in the above-described state can be formed.
  • the content of the binder agent in the binder layer is not particularly limited as long as the fine particles can be stably dispersed in the above-described state, and can be, for example, 90% by mass or more, and 95% by mass or more. Is preferable, and it is preferable that it is 100 mass%.
  • the upper limit of the content of the binder agent in the binder layer is usually preferably as large as possible, but can be 99% by mass or less from the viewpoint of easy adjustment of the function of the binder layer by using an additive or the like. .
  • content in a binder layer means content in the location which does not contain microparticles
  • Binder layer Although the said binder layer contains a binder agent, it may contain another component as needed. Such other components include polymerization initiators, polymerization inhibitors, sensitizers, crosslinking agents, plasticizers, flame retardants, charge control agents, thermal stabilizers, light stabilizers, conductive agents, preservatives, antifoaming agents. Agents, rust inhibitors, antioxidants, fluorescent agents, fluorescent brighteners, near infrared absorbers, ultraviolet absorbers, emulsifiers and the like.
  • the binder agent is a polymer of monomer components
  • the coating film In the case where the binder layer is formed by polymerizing the monomer components, the polymerization initiator used for the polymerization of the monomer component and the residue thereof are included as the other components. Also good.
  • the planar view shape of the binder layer may be a shape covering the entire surface of the high refractive index layer, but is preferably a pattern shape such as a pattern or a character from the viewpoint of providing designability and anti-counterfeiting properties. This is because the shape in plan view makes it easy to impart designability and the like to the plasmon resonance laminate by the fine particles dispersed in the binder layer.
  • the pattern shape may be a dot shape, a line shape, or the like.
  • the dot shape may be any shape such as a circular shape or a square shape.
  • the planar view shape may represent a symbol, a character, or the like.
  • the shape in plan view may represent a character or the like using a line-shaped binder layer, or may represent a character or the like using a dot-shaped binder layer.
  • 1 and 2 which have already been described show an example in which the planar view shape of the binder layer 3 covers the entire surface of the high refractive index layer 2, and FIG. The example which shows a character using the binder layer 3 of a line shape in planar view is shown.
  • FIG. 4 is a schematic plan view showing another example of the plasmon resonance laminated body of the present disclosure, and the description of fine particles dispersed in the binder layer 3 is omitted for easy explanation.
  • FIG. 4 shows an example in which the planar view shape represents the number “123”.
  • the thickness of the binder layer is not particularly limited as long as the fine particles can be dispersed in the above-described state, and varies depending on the size of the fine particles to be dispersed.
  • the thickness may be in the range of 1 nm to 200 nm. it can.
  • Fine particles are contained in the binder portion and are dispersed in the binder layer.
  • the fine particles include a negative dielectric material and plasmon resonate with visible light.
  • plasmon resonance with respect to visible light means that when visible light is irradiated to the fine particles, visible light having a specific wavelength can be scattered by the localized surface plasmon resonance of the fine particles (also referred to as localized surface plasmon polaritons). It means that.
  • the wavelength of visible light that resonates with plasmon (hereinafter sometimes simply referred to as light) is affected by the shape of the fine particles, the constituent material, and the like. For this reason, the fine particles can adjust the wavelength of the plasmon-resonant visible light by adjusting the shape and constituent materials. For example, red, blue, yellow can be used as specific colors when irradiated with white light. Etc. can be scattered.
  • the wavelength of light that causes plasmon resonance can be in the range of 360 nm or more and 830 nm or less, and preferably in the range of 400 nm or more and 760 nm or less. This is because light having a wavelength within this range is easily perceived in consideration of human visibility.
  • the average primary particle size of the fine particles may be any as long as it has plasmon resonance with respect to light, and is preferably in the range of 2 nm to 200 nm, for example, in particular, in the range of 5 nm to 150 nm. In particular, it is preferably in the range of 10 nm to 100 nm. This is because, when the average primary particle size is within the above range, the fine particles easily cause plasmon resonance to light having a wavelength within the above range.
  • the type of the average primary particle size is not limited to one using only one type, and two or more types may be used.
  • average primary particle size When there are two or more types of average primary particle sizes, for example, fine particles having an average primary particle size in the range of 100 nm and fine particles having an average primary particle size of 200 nm can be mixed and used.
  • the average primary particle size has a particle size including a coating layer when the fine particles have negative dielectric material particles and a coating layer covering the surface thereof.
  • the particle size distribution of the fine particles may be a particle size distribution that enables plasmon resonance with respect to light in a specific wavelength band within the above range.
  • the particle size distribution Is preferably narrow.
  • the narrow particle size distribution can be evaluated by the value of the ratio of D90 to D50 (D90 / D50) when the particle size of 50% cumulative and 90% cumulative is D50 and D90 from the fine particle side of the cumulative particle size distribution, for example.
  • D90 / D50 is preferably 2 or less, and particularly preferably 1.5 or less.
  • the shape of the fine particles is not particularly limited as long as it has plasmon resonance with respect to light.
  • a spherical shape or a cylindrical shape may be used.
  • a shape having a disk shape or other plate-like corners is preferable. This is because the fine particles tend to cause plasmon resonance because the shape is a shape having corners.
  • the shape is a cubic shape or a rectangular parallelepiped shape. This is because the fine particles tend to cause plasmon resonance and are easy to manufacture because of the shape.
  • the type of the shape is not limited to one using only one type, and two or more types may be used. When there are two or more types of shapes, for example, spherical fine particles and cubic fine particles can be mixed and used.
  • the negative dielectric material contained in the fine particles is a material having a negative real part of dielectric constant in a specific wavelength region where plasmon resonance is desired.
  • the negative dielectric material specifically, for visible light, a metal, a metal oxide, or an impurity semiconductor can be used.
  • the negative dielectric material is preferably a metal. This is because the above-described constituent material is easy to perform plasmon resonance with respect to visible light.
  • the metal for example, silver, gold, copper, aluminum, platinum, palladium, aluminum and the like are preferable, and silver is particularly preferable. This is because the metal can easily perform plasmon resonance in the visible light region.
  • the metal oxide is not particularly limited as long as the real part of the dielectric constant is negative.
  • ITO indium tin oxide
  • An inorganic conductive material can be mentioned.
  • the impurity semiconductor for example, those described in JP-A-2015-232713 can be used.
  • the type of the negative dielectric material is not limited to one using only one type, and two or more types may be used. When there are two or more types of negative dielectric materials, for example, fine particles containing silver as the negative dielectric material and fine particles containing gold as the negative dielectric material can be mixed and used.
  • the fine particles contain a negative dielectric material as a main component.
  • being contained as the main component means that the fine particles can be contained to such an extent that plasmon resonance can be performed with respect to visible light.
  • the fine particles are contained in an amount of 80% by mass or more. it can.
  • the negative dielectric material is preferably contained in the fine particles in an amount of 90% by mass or more, and particularly preferably 95% by mass or more.
  • the content of the negative dielectric material in the fine particles may be 100% by mass, that is, the fine particles may be composed of only the negative dielectric material, but may be less than 100% by mass. That is, the fine particles include a negative dielectric material, but may include other materials as necessary.
  • the fine particles may be those in which the surface of the negative dielectric material particles is covered with a coating layer, that is, the fine particles include a material that covers the surface of the negative dielectric material particles. This is because the fine particles can be prevented from being aggregated by being covered with the coating layer.
  • a resin material capable of binding to the surface of fine particles made of a negative dielectric material can be used.
  • PEG polyethylene glycol
  • PEG derivative polyvinyl pyrrolidone
  • citric acid examples thereof include ions, carbonate ions, ⁇ -lipoic acid, branched polyethyleneimine (BPEI), silica, silica derivatives, and alkylthiols.
  • the thickness of the coating layer may be any thickness as long as it does not significantly interfere with the plasmon resonance of the fine particles, but from the viewpoint that the plasmon resonance laminate of the present disclosure can easily observe images of different colors on the front side and the back side. Can be, for example, 2 nm or less.
  • the high refractive index layer is a layer having a higher refractive index than the transparent substrate disposed on one surface of the transparent substrate.
  • the high refractive index layer is usually in direct contact with the binder layer.
  • the refractive index is higher than that of the transparent substrate in the visible light region.
  • the wavelength range of the visible light region can be the same as the wavelength of visible light described in the above section “1. Binder part (3) Fine particles”.
  • the high refractive index layer only needs to have a refractive index higher than that of the transparent substrate, and the higher the refractive index, the better.
  • the refractive index n D at a wavelength of 589 nm (sodium D line) is 1.5. It is preferable that it is above, and it is particularly preferable that it is 2 or more.
  • the upper limit of the said refractive index is suitably set according to the color development observed by the front and back of the plasmon resonance laminated body of this indication, it is 4 or less normally.
  • the refractive index can be measured by a thin film measuring apparatus using reflectance spectroscopy or a spectroscopic ellipsometer.
  • the high refractive index layer usually has a light transmission property capable of transmitting the light.
  • having light transmittance means that the transmittance of light having a wavelength scattered by plasmon resonance can be 70% or more, and preferably 90% or more.
  • the high refractive index layer may be any layer that transmits at least light having a wavelength scattered by plasmon resonance, but preferably has a visible light transmission property that transmits the entire visible light.
  • having the visible light transmittance means that the total light transmittance of the high refractive index layer can be 70% or more, and preferably 90% or more. This is because, when the total light transmittance is within the above-described range, the plasmon resonance laminated body of the present disclosure can easily observe the effect of plasmon resonance of fine particles from the transparent substrate side.
  • the upper limit of the light transmittance and the total light transmittance of the high refractive index layer is preferably higher, but from the viewpoint of imparting a desired strength to the high refractive index layer, the degree of freedom of material selection, etc. 95% or less.
  • the total light transmittance can be measured according to JIS K7361-1 (Testing method for total light transmittance of plastic-transparent material).
  • the constituent material of the high refractive index layer may be any material as long as the refractive index difference with the transparent base material can be within a desired range, and the constituent material of the transparent base material is an organic material such as an acrylic resin described later,
  • the constituent material of the transparent base material is an organic material such as an acrylic resin described later,
  • glass as an inorganic material, titanium oxide (IV), chromium oxide (III), zinc sulfide, aluminum oxide, barium sulfate, barium titanate, antimony trioxide, iron (III) oxide, cadmium sulfide, Inorganic compounds such as cerium (IV) oxide, lead (II) chloride, cadmium oxide, tungsten (VI) oxide, indium (III) oxide, lead (II) oxide, tantalum oxide (V), zirconium oxide (IV), Examples thereof include inorganic substances such as silicon.
  • the thickness of the high refractive index layer can be appropriately set according to the light transmittance required for the high refractive index layer.
  • it can be in the range of 10 nm or more and 1000 nm or less, for example, It is preferable that it is in the range of 20 nm or more and 100 nm or less especially. This is because, when the thickness is equal to or greater than the lower limit, the plasmon resonance laminate of the present disclosure can easily display images of different colors on the front and back sides. Moreover, it is because it becomes easy to visually recognize the scattered light generated by plasmon resonance because the thickness is within the above-mentioned range.
  • the formation method of the high refractive index layer can be appropriately set according to the constituent material of the high refractive index layer.
  • the constituent material is an inorganic compound
  • a general film formation method such as a sputtering method or a sol-gel method can be used as the formation method.
  • the transparent base material supports the high refractive index layer and the binder layer.
  • the above-mentioned transparent base material usually has light transmissivity that can transmit the above light, that is, has transparency. Moreover, the transparent base material only needs to transmit at least light having a wavelength scattered by plasmon resonance, but preferably has visible light permeability that transmits the entire visible light.
  • the light transmittance and the total light transmittance of such a transparent base material can be the same as the contents described in the above section “2. High refractive index layer”.
  • the constituent material of the transparent substrate may be any material as long as it has a desired transparency and does not break when the user uses the plasmon resonance laminate.
  • the constituent material that can be used for the transparent substrate include polyethylene terephthalate (PET), acrylic resin (PMMA), polycarbonate, triacetyl cellulose (TAC), cycloolefin polymer (COP), polyethylene (PE), and polypropylene.
  • PET polyethylene terephthalate
  • PMMA acrylic resin
  • PET polycarbonate
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • PE polyethylene
  • polypropylene polypropylene.
  • An organic material such as (PP), silicone rubber, or polyethylene naphthalate (PEN), an inorganic material such as glass, a hybrid material of an organic material and an inorganic material, or the like can be used.
  • the structure of the transparent substrate may be a plate-like structure, a porous structure having a large number of pores, a nonwoven fabric structure such as paper, and the like.
  • the transparent substrate may have a single layer structure or a laminated structure in which two or more layers are laminated.
  • the rigidity of the transparent substrate may be flexible so that it can be bent or may not be bent.
  • the surface of the transparent substrate on which the fine particles are arranged may be an uneven surface, but is preferably a flat surface. This is because the transparent substrate has less influence on the plasmon resonance of the fine particles because it is a flat surface.
  • the arithmetic average roughness Ra of the transparent substrate surface can be 200 nm or less, and preferably 100 nm or less. This is because, when the arithmetic average roughness Ra is within the above range, the transparent base material has less influence on the plasmon resonance of the fine particles.
  • the arithmetic average roughness Ra refers to the arithmetic average roughness Ra defined in JIS B 0601: 2001.
  • the thickness of the transparent substrate is not particularly limited as long as it can stably support fine particles, and varies depending on the constituent material, required light transmittance, and the like.
  • the thickness is in the range of 10 ⁇ m to 2000 ⁇ m. It is preferable that it is in the range of 15 ⁇ m or more and 250 ⁇ m or less, and in particular, it is preferably in the range of 20 ⁇ m or more and 100 ⁇ m or less. This is because the transparent substrate can stably support the fine particles when the thickness is within the above range.
  • the said thickness says the whole thickness, when a transparent base material is a laminated structure.
  • the plasmon resonance laminate of the present disclosure includes a transparent substrate, a high refractive index layer, a binder layer, and fine particles, but may have other configurations as necessary.
  • the high refractive index layer 2 is disposed on the surface opposite to the transparent base material 1 and is higher than the fine particles 4.
  • the thick film member 5 include a cover layer 6 supported by the thick film member 5 as illustrated in FIG.
  • Thick film member The thick film member is higher in height than the fine particles.
  • “higher than the fine particles” means larger than the average primary particle size of the fine particles.
  • the thick film member for example, as shown in FIG. 5A, the height and interval at which the user's finger does not touch the fine particles when the user touches the plasmon resonance laminate is described. And can be used to protect fine particles only with a thick film member (first embodiment), and used as a spacer for supporting the cover layer as shown in FIG. 5B (second embodiment). ) Etc.
  • the first embodiment of the thick film member has a height and a distance at which the user's finger does not touch the fine particles when the user touches the plasmon resonance laminate. Fine particles can be protected only by the membrane member.
  • the height of the thick film member is higher than that of the fine particles, and the finger does not touch the fine particles when the user touches the plasmon resonance laminate. Such height is appropriately set according to the size of the fine particles and the like. As described above, the average primary particle size of the plasmon-resonant fine particles is as small as about 0.2 ⁇ m or less. In the case of fine particles, the thickness of the thick film member can be in the range of 0.3 ⁇ m to 1 mm. This is because, when the height is within the above-described range, it is possible to stably protect the user's finger from contact with the fine particles when the plasmon resonance laminate is used. Specifically, the height is indicated by e in FIG.
  • the distance between the thick film members is such that when the user touches the plasmon resonance laminate, the finger does not touch the fine particles.
  • Such an interval can be wider than the average primary particle size of the fine particles.
  • the interval is, for example, in the range of 10 ⁇ m to 2 mm. be able to.
  • interval of the said thick film member means the distance between adjacent thick film members used as the shortest about each thick film member.
  • the planar view shape of a thick film member is a shape which has the opening part mentioned later, it means the shortest thing among the distances between the thick film members separated by the opening part. Specifically, the interval is indicated by f in FIG.
  • the shape of the thick film member in plan view is not particularly limited as long as it exhibits a strength that does not cause damage when the user uses the plasmon resonance laminate, and can be a dot shape, a line shape, or the like.
  • the shape in plan view may be a shape having openings such as a honeycomb shape or a lattice shape, or a shape having random openings.
  • 6A and 6B are a schematic plan view and a cross-sectional view showing another example of the plasmon resonance multilayer body of the present disclosure, and FIG. 6B is a cross-sectional view taken along the line AA in FIG. ) Is a cross-sectional view taken along the line BB of FIG. 6C, and FIG.
  • FIG. 6F is a cross-sectional view taken along the line CC of FIG. 6E. 6A and 6B, FIG. 6C and FIG. 6D, and FIG. 6E and FIG. 6F, the shape in plan view is a dot shape, a line shape, and an opening portion, respectively. An example is given.
  • planar view shape of the thick film member in the case of a dot shape may be a circular shape, a polygonal shape such as a triangular shape or a quadrangular shape.
  • FIG. 6A already described shows an example in which the dot-like thick film member has a square shape in plan view.
  • the size of the thick film member in plan view may be any size as long as it exhibits strength that does not break when the user uses the plasmon resonance laminate, and can be in the range of 0.1 ⁇ m to 100 ⁇ m.
  • the size in plan view refers to the maximum diameter in the case of dots, the width in the short direction in the case of lines, and the shortest distance between adjacent openings in the case of having a shape with openings. .
  • the size in plan view is indicated by g in FIGS. 5 and 6.
  • the type of the thick film member can be appropriately selected according to the shape in plan view.
  • a columnar thick film member obtained by forming the constituent material of the thick film member into a pattern can be used.
  • a bead-shaped thick film member that is dispersed and disposed on the surface of the base material can be used when the shape in plan view is a dot shape. 5 and 6 which have already been described show an example in which the type of the thick film member is a columnar thick film member.
  • a resin material such as a cured product of a photosensitive resin
  • a photosensitive resin for example, an ultraviolet curable resin used for forming a thick film member of a liquid crystal display device such as Japanese Patent No. 2953594 can be used.
  • any method can be used as long as it is obtained by forming the constituent material of the thick film member into a pattern.
  • the method for forming the thick film member described in Japanese Patent No. 2953594 is used. Can do.
  • the above-described forming method forms a coating film of the photosensitive resin on the surface on which the fine particles of the high refractive index layer are arranged.
  • a method of exposing the coating film through a photomask and removing the uncured photosensitive resin by development processing can be mentioned.
  • the forming method includes preparing a transfer substrate having a columnar thick film member disposed on the surface of the support substrate, and bringing the transfer substrate into contact with the high refractive index layer, thereby causing the columnar thick film member to have the high refractive index. You may form using the transfer method which transfers to a rate layer.
  • the columnar thick film member is preferably bonded and fixed to the surface of the high refractive index layer.
  • the constituent material of the bead-like thick film member is not particularly limited as long as it has a desired strength. It can be. Specifically, an inorganic material such as glass or a resin material such as an acrylic resin can be used as the constituent material.
  • the method for forming the beaded thick film member may be any method as long as it is disposed on the surface of the high refractive index layer by spraying the beaded thick film member.
  • the dispersion containing the beaded thick film member is highly refracted.
  • coating on a rate layer and drying and removing a dispersion medium can be used.
  • the dispersion liquid one containing the fine particles and a binder agent can be used, and the forming method may be a method in which the thick film member and the binder layer in which the fine particles are dispersed are simultaneously arranged.
  • the bead-like thick film member may be movably arranged on the surface of the high refractive index layer, or may be bonded and fixed to the surface of the high refractive index layer.
  • (B) Second Embodiment The second embodiment of the thick film member is used as a spacer for supporting the cover layer.
  • the height and spacing of the thick film member may be any material that supports the cover layer so that the finger does not touch the fine particles when the user touches the plasmon resonance laminate.
  • the distance is preferably one that can be supported without bending the cover layer, and is appropriately selected in consideration of the thickness of the cover layer and the Young's modulus of the material. More specifically, the interval can be set within a range of 10 ⁇ m to 5000 ⁇ m, for example.
  • the content of the planar view shape of a spacer, planar view size, a kind, a constituent material, a formation method, etc. it can be set as the content similar to the content as described in the said "(a) 1st embodiment.” .
  • Cover layer The cover layer is supported by a thick film member and covers fine particles.
  • the cover layer is usually light transmissive so that the light can be transmitted.
  • the light-transmitting material may be any material that transmits at least light having a wavelength scattered by plasmon resonance, but preferably has visible-light transmittance that transmits the entire visible light. . This is because the degree of freedom in selecting the material constituting the cover layer is increased.
  • the light transmittance and the total light transmittance of such a cover layer can be the same as those described in the above section “3. Transparent substrate”.
  • any material may be used as long as it exhibits a strength that does not break when a user touches the plasmon resonance laminate. It can be the same as the constituent material described in the item.
  • the cover layer only needs to be supported by the thick film member, and may be bonded to the thick film member or may not be bonded. Moreover, when not adhering to a thick film member, a cover layer is normally fixed with respect to a transparent base material by arbitrary fixing means. Examples of the fixing means include a resin sealing member disposed so as to cover the outer periphery of the cover layer and the transparent substrate.
  • the cover layer may be formed by any method as long as the cover layer is supported by the thick film member and can be disposed so as to cover the fine particles.
  • a method of disposing a cover layer on the surface of the thick film member opposite to the high refractive index layer can be used.
  • a method of arranging the laminate on the high refractive index layer so that the surface of the high refractive index layer and the thick film member are in contact after the thick film member is bonded to the surface of the cover layer may be used. it can.
  • a method for adhering the thick film member to the cover layer surface a method of forming a columnar thick film member directly on the cover layer surface or a method of adhering the thick film member via an adhesive layer can be used.
  • the adhesive layer for bonding the respective components such as a transparent substrate and a high refractive index layer, a transparent substrate and a thick film member, a thick film member and a cover layer. Also good.
  • the adhesive layer include a pressure-sensitive adhesive layer formed using a known pressure-sensitive adhesive such as an acrylic resin, a two-component curable adhesive layer, an ultraviolet curable adhesive layer, a thermosetting adhesive layer, and heat melting.
  • a known adhesive layer such as a mold adhesive layer can be used.
  • Plasmon Resonance Laminate Applications of the plasmon resonance laminate of the present disclosure include applications that require designability and anti-counterfeiting properties, such as banknotes and other vouchers; identification cards such as driver's licenses and passports. A card such as a credit card.
  • the plasmon resonance laminate of the present disclosure can be incorporated into an information recording medium. The information recording medium will be described later.
  • a method for preventing forgery using the plasmon resonance laminate a method using a device capable of detecting visible light, such as a charge coupled device (CCD), may be used in addition to a method for visually confirming. it can.
  • a charge coupled device CCD
  • any method can be used as long as the above-described configurations can be arranged with high accuracy.
  • the method described in “C. Method for producing plasmon resonance laminate” described later is used. Can be used.
  • the composition for forming a binder part of the present disclosure includes fine particles, a binder agent, and a dispersion medium.
  • the fine particles include a negative dielectric material, plasmon-resonates with visible light, and the concentration of the binder agent with respect to the dispersion medium ( The binder agent / dispersion medium) is in the range of 0.1 / 100 or more and 10/100 or less.
  • the binder layer in which the state of the fine particles is in the state described in the above section “A. Plasmon Resonance Laminate” is easily obtained. Can be formed. Therefore, the composition for forming a binder part of the present disclosure is applied, for example, on the surface of a high refractive index layer of a laminate in which a transparent base material and a high refractive index layer are laminated in this order to form a binder part. By doing so, it is easy to provide designability, anti-counterfeiting properties, etc., and it is possible to easily manufacture a plasmon resonance laminate that is excellent in durability.
  • the binder part forming composition can easily form a binder layer in which fine particles are dispersed with good dispersibility.
  • the binder part forming composition of the present disclosure includes fine particles, a binder agent, and a dispersion medium.
  • fine particles are the same as those described in the above section “A. Plasmon Resonance Laminate 1. Binder Part (3) Fine Particles”, and the description thereof is omitted here.
  • the fine particles and the binder agent in the present disclosure are dispersed or dissolved in a dispersion medium.
  • the concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium)
  • concentration being in the above-mentioned range.
  • concentration (binder agent / dispersion medium) with respect to the dispersion medium of a binder agent means the volume ratio (binder agent / dispersion medium) with respect to the dispersion medium of a binder agent.
  • concentration of the binder agent relative to the dispersion medium refers to the volume ratio of the binder agent to the dispersion medium at 25 ° C. and atmospheric pressure before mixing. The same may be said of the density
  • the volume of the binder agent and the dispersion medium is a method of separating the binder agent and the dispersion medium from the binder part forming composition and measuring the volume ratio at 25 ° C. and atmospheric pressure, respectively. Can be used.
  • the method for separating the binder agent and the dispersion medium from the binder part forming composition is not particularly limited as long as the binder agent and the dispersion medium can be separated with high accuracy.
  • a method for separating the dispersion medium from the binder part forming composition for example, GC-MS (Gas Chromatography Mass Spectrometer) can be used.
  • GC-MS or HPLC high performance liquid chromatography
  • HPLC high-density liquid crystal LC
  • a normal phase mode for example, a silica gel column is used for the stationary phase and an organic solvent is used for the mobile phase.
  • the separation can be performed in the reverse phase mode (for example, a column of ODS-modified silica gel is used for the stationary phase and water / methanol is used for the mobile phase).
  • a detector used for detecting a dispersion medium and a binder agent for example, an ultraviolet-visible spectrophotometer can be used.
  • the method for measuring the volume of each of the binder agent and the dispersion medium is not particularly limited as long as it can accurately measure the volume of the separated binder agent and dispersion medium.
  • a method of directly measuring at 25 ° C. and atmospheric pressure a method of directly measuring at 25 ° C. and atmospheric pressure
  • measuring each mass a method of measuring each mass
  • calculating from the density a method for measuring the volume of the binder agent and the dispersion medium
  • the components of the binder agent and the dispersion medium are known, but for example, when it is difficult to separate both of them so that the volume can be measured, etc.
  • a mixed solution of a binder agent and a dispersion medium is prepared in a plurality of levels by changing the volume ratio, a calibration curve is prepared by HPLC or the like, and the calibration curve and measurement of the binder portion forming composition by HPLC or the like are prepared. You may use the method of calculating
  • the concentration of the fine particles with respect to the dispersion medium (fine particles / dispersion medium), that is, the volume ratio of the fine particles to the dispersion medium (fine particles / dispersion medium), the binder part forming composition of the present disclosure is applied, and the coating film
  • the dispersion medium can be appropriately set according to the density of fine particles dispersed in the binder layer.
  • the concentration (fine particles / dispersion medium), that is, the volume ratio (fine particles / dispersion medium) can be in the range of 0.000001 / 100 or more and 10/100 or less.
  • Dispersion medium used in the present disclosure disperses or dissolves each component such as fine particles and a binder agent.
  • a dispersion medium for example, water, an organic solvent, and a mixture thereof can be used.
  • organic solvent examples include methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerol and other alcohols, toluene, xylene and other aromatic hydrocarbons, acetone, Ketones such as methyl ethyl ketone and methyl isobutyl ketone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, esters such as propylene glycol monomethyl ether acetate (PGMEA), tetrahydrofuran, dioxane, ethylene glycol monomethyl ether (methyl cellosolve) , Ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cello Ethers such as cellosolve),
  • Binder Agent Regarding the binder agent, it is possible to easily form a binder layer in which the state of fine particles is the above-described state when the binder portion is formed using the binder portion forming composition of the present disclosure. That's fine.
  • a binder agent can be the same as that described in the above section “A. Plasmon Resonance Laminate 1. Binder Part (2) Binder Layer”.
  • the binder agent when the binder agent is a polymer in which the monomer component is polymerized, the binder agent may be included as a polymer, or a binder agent capable of constituting a polymer as a binder agent. It may be included as a monomer component.
  • a siloxane having a three-dimensional network structure such as a silicone monomer or silicone oligomer when the binder agent is a silicone resin, or a silicone monomer when the binder agent is a silicone oligomer.
  • examples thereof include those having a silanol group or an alkoxysilyl group for constituting a bond.
  • the binder agent when the binder agent is a cross-linked product of a silicone compound having a reactive function such as a polymerizable group or a fluorine-based compound having a UV reactive group, the reactive function before the cross-linked product is formed.
  • a silicone compound having UV and a fluorine compound having a UV reactive group examples thereof include a silicone compound having UV and a fluorine compound having a UV reactive group.
  • examples of the monomer component include monomer components capable of constituting the resin material by polymerization when the binder agent includes the resin material.
  • the monomer component of the resin material for example, when the resin material is an acrylic resin, a urethane acrylic resin, an epoxy acrylate resin, or the like, a monofunctional acrylate monomer, a urethane acrylate monomer, an epoxy acrylate monomer, or a polyfunctional monomer, respectively.
  • Monomer components having a methacrylic group and an acrylic group such as acrylate monomers, urethane acrylate monomers, and epoxy acrylate monomers.
  • the monomer component may form a polymer by any curing method such as UV curing type, EB curing type, and thermosetting type.
  • the monomer component may be a monofunctional monomer component having one polymerizable group, reactive group, or the like, or a polyfunctional monomer component having two or more reactive groups. Good.
  • composition for binder part formation of this indication contains fine particles, a binder agent, and a dispersion medium, it may contain other components as needed.
  • examples of the other components include other components described in the section “A. Plasmon Resonance Laminate 1. Binder Part (2) Binder Layer”.
  • a polymerization initiator or the like for use in polymerization may be included as the other components.
  • a polymerization initiator well-known polymerization initiators, such as a photoinitiator and a thermal-polymerization initiator, can be used according to the kind etc. of monomer component.
  • a polymerization initiator of the monomer component having a silanol group or an alkoxysilyl group for example, a curing catalyst in which polymerization proceeds at room temperature may be used.
  • Binder part forming composition The manufacturing method of the binder part forming composition of the present disclosure may be any method that can mix the above-described components so as to obtain a desired blending amount. These components can be added to the dispersion medium sequentially or simultaneously and mixed.
  • the binder part forming composition may be a curable binder part forming composition containing a monomer component of the binder agent as the binder agent.
  • the curable binder part forming composition include, for example, a photocurable binder part forming composition capable of forming a polymer by polymerizing the monomer component of the binder agent by light irradiation, and heating the binder. It can be set as the thermosetting binder part formation composition etc. which the monomer component of an agent can superpose
  • the manufacturing method of the plasmon resonance laminate of the present disclosure provides a laminate in which a high refractive index layer having a refractive index higher than that of the transparent substrate is formed on one surface of the transparent substrate, On the surface of the high refractive index layer, a coating step of applying a binder part forming composition containing fine particles, a binder agent and a dispersion medium, and drying and removing the dispersion medium from the coating film of the binder part forming composition, A drying step of forming a binder part, wherein the fine particles include a negative dielectric material and plasmon-resonate with respect to visible light, and the binder part forming composition is based on the dispersion medium of the binder agent.
  • the concentration (binder agent / dispersion medium) is in the range of 0.1 / 100 to 10/100.
  • FIG. 7 is a process diagram illustrating an example of a method for producing a plasmon resonance laminate according to the present disclosure.
  • a high refractive index layer 2 having a higher refractive index than that of the transparent substrate 1 is formed on one surface of the transparent substrate 1.
  • a laminate is prepared, and a binder part forming composition 20a containing fine particles, a binder agent and a dispersion medium is applied onto the surface of the high refractive index layer 2 of the laminate (FIG.
  • the binder part forming composition has a concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium). Is within the above-mentioned range. 7A and 7B show the coating process, and FIGS. 7B and 7C show the drying process.
  • the binder by performing the coating step and the drying step using the binder part forming composition, the binder is in the state described in the section “A. Plasmon Resonance Laminate”. Layers can be easily formed. Therefore, the manufacturing method of the present disclosure can easily provide a plasmon resonance laminate that is easily imparted with designability, anti-counterfeiting properties, and the like and excellent in durability.
  • the manufacturing method of the plasmon resonance laminated body of this indication has a coating process and a drying process.
  • each process of the manufacturing method of the plasmon resonance laminated body of this indication is demonstrated in detail.
  • Coating process prepares the layered product by which the high refractive index layer whose refractive index is higher than the above-mentioned transparent substrate was formed in one side of a transparent substrate, and the above-mentioned high of the above-mentioned layered product In this step, a binder part forming composition containing fine particles, a binder agent and a dispersion medium is applied onto the surface of the refractive index layer.
  • any method can be used as long as it can be applied to a place where a binder layer in which fine particles are dispersed is formed.
  • various printing methods such as ink jet method, micro contact printing method, screen printing, gravure printing, offset printing, flexographic printing, and coating methods such as die coating method, spray coating method, spin coating method, dip coating method, etc.
  • the application method is preferably a method of applying the binder part forming composition to the pattern shape, more specifically. Is preferably the printing method described above.
  • the laminated body used for this process has a transparent base material and a high refractive index layer.
  • a transparent base material and a high refractive index layer can be the same as the contents described in the above-mentioned section “A. Plasmon Resonance Laminate”, and thus description thereof is omitted here.
  • the binder part forming composition used in this step can be the same as that described in the above section “B. Binder part forming composition”, and thus the description thereof is omitted here.
  • the drying step in the present disclosure is a step of forming the binder part by drying and removing the dispersion medium from the coating film of the binder part forming composition.
  • a general drying method can be used as a method of drying and removing the dispersion medium from the coating film. Examples thereof include a method of heating the coating film, a method of blowing hot air, and a method of reducing the pressure. it can. Moreover, the said drying method may use only one type of method, and may use 2 or more types of methods together.
  • the binder component monomer component is included as the binder agent contained in the binder part forming composition, that is, when the binder part forming composition is a curable binder part forming composition
  • a polymerization treatment that polymerizes monomer components to form a binder agent as a polymer.
  • a method for the polymerization treatment when the curable binder part forming composition is a photocurable binder part forming composition, a method of performing light irradiation can be exemplified.
  • the composition is a composition for forming a thermosetting binder part, a heating method can be mentioned.
  • a light irradiation method and a heating method it can be made to be the same as that of the hardening method of a general photocurable resin and a thermosetting resin.
  • a method of leaving it at room temperature for a predetermined time may be used as the polymerization treatment.
  • the binder portion formed by this process includes a binder layer and fine particles.
  • the binder layer includes a binder agent and fine particles are dispersed.
  • Such a binder layer and fine particles, and the state of the fine particles dispersed in the binder layer can be the same as the contents described in the above section “A. Plasmon Resonance Laminate”. Is omitted.
  • the method for producing a plasmon resonance laminate of the present disclosure includes a coating step and a drying step, but may include other steps as necessary.
  • a columnar thick film member forming step for forming a columnar thick film member, a cover layer forming step for forming a cover layer, and the like can be given.
  • the information recording medium of the present disclosure has a high refractive index layer having a higher refractive index than the transparent substrate on one surface of the transparent substrate, and the opposite side of the high refractive index layer from the transparent substrate. And a binder part including a binder layer and particles, the particles contain a negative dielectric material, and plasmon resonate with visible light, and the binder part is located above the transparent substrate.
  • a binder part including a binder layer and particles, the particles contain a negative dielectric material, and plasmon resonate with visible light
  • the binder part is located above the transparent substrate.
  • at least one part of the surface on the opposite side to the said transparent base material of the said binder part is equipped with the plasmon resonance laminated body lower than the part most distant from the said transparent base material of the said particle
  • the information recording medium of the present disclosure can improve anti-counterfeiting by including the above-described plasmon resonance laminate.
  • the plasmon resonance laminate can display images of different colors when irradiated with visible light from the front side of the information recording medium and when irradiated with visible light from the back side.
  • the plasmon resonance laminate can display images including information such as characters, symbols, and patterns, and can display images including predetermined information in different colors on the front and back of the information recording medium. Therefore, it is possible to determine the authenticity of the information recording medium by irradiating the information recording medium with visible light from both sides and checking the images displayed by the plasmon resonance laminate on the front and back of the information recording medium.
  • the plasmon resonance laminate can display an image including information on characters, symbols, and patterns, for example. Specifically, the plasmon resonance laminate can display images including predetermined information in different colors on the front and back of the information recording medium.
  • the plasmon resonance laminated body may be disposed on the outermost surface of the information recording medium, may be disposed between the members constituting the information recording medium, and is fitted into the opening of the member constituting the information recording medium. It may be.
  • the information recording medium usually includes a support on at least one surface side of the plasmon resonance laminate.
  • the information recording medium includes a support, for example, as shown in FIGS. 8, 9A, 9B, 10, and 11A
  • the information recording media 30A and 30B have one support 31.
  • the plasmon resonance laminate 10 may be disposed on one surface side of the support 31 as shown in FIGS. 8, 9 (c), 9 (d), 10, and 11 (b).
  • the information recording media 30A and 30B include two supports, that is, the first support 31a and the second support 31b, and the plasmon resonance laminate 10 is disposed between the first support 31a and the second support 31b.
  • the support 31 constituting the information recording medium 30A has an opening 32, and a plasmon resonance lamination is formed in the opening 32.
  • the body 10 may be fitted.
  • 9A to 9F are sectional views taken along the line DD of FIG. 8
  • FIGS. 11A to 11B are sectional views taken along the line EE of FIG. 8 to 11 will be described later.
  • the information recording medium includes one support, and the plasmon resonance laminated body is arranged on one surface side of the support.
  • the plasmon resonance laminate may be separately disposed on one surface side of the support, and the transparent substrate of the plasmon resonance laminate may be integrated with the support.
  • the transparent base material of a plasmon resonance laminated body is integral with a support means that the transparent base material of a plasmon resonance laminated body also functions as a support body.
  • the information recording media 30A and 30B are used.
  • the plasmon resonance laminate 10 is disposed on one surface side of the support 31, and the plasmon resonance laminate 10 is a thick film as shown in FIG. 5B, for example.
  • the arrangement of the plasmon resonance laminate is not particularly limited, and the transparent substrate side of the plasmon resonance laminate may be arranged on the support side of the information recording medium.
  • the cover layer side of the plasmon resonance laminate may be disposed on the support side of the information recording medium.
  • the transparent substrate side of the plasmon resonance laminate is disposed on the support side of the information recording medium.
  • the plasmon resonance laminated body is disposed between the members constituting the information recording medium, specifically, as shown in FIGS. 9 (c), 9 (d), and 11 (b), information is provided.
  • the recording media 30A and 30B include two supports, that is, the first support 31a and the second support 31b, and the plasmon resonance laminate 10 is disposed between the first support 31a and the second support 31b.
  • the plasmon resonance laminated body 10 has the thick film member 5 and the cover layer 6 as shown, for example in FIG.5 (b), as arrangement
  • the plasmon resonance laminate does not have a cover layer, so that there is a space between the surface of the plasmon resonance laminate opposite to the transparent substrate and the support, A plasmon resonance laminate is disposed.
  • the fine particles of the plasmon resonance laminate can be prevented from coming into contact with the support, and in the plasmon resonance laminate, the refractive index difference on the surface opposite to the transparent substrate of the fine particles is increased. Can do.
  • the information recording medium when the information recording medium includes a support having an opening as described later, a part of the plasmon resonance laminate overlaps with the opening of the support in a plan view, and the transparent substrate of the plasmon resonance laminate
  • the plasmon resonance laminate can be arranged so as to have a space between the opposite surface and the opening of the support.
  • a space 40 is formed between the surface of the plasmon resonance laminate 10 opposite to the transparent substrate and the opening 32 of the first support 31a.
  • the plasmon resonance laminated body 10 is arrange
  • the plasmon resonance laminated body is fitted in the opening of a member constituting the information recording medium, specifically, as shown in FIGS. 9 (e) and 9 (f), the information recording medium 30A is provided.
  • the support 31 to be configured has an opening 32, and the plasmon resonance laminated body 10 is fitted into the opening 32, and the plasmon resonance laminated body 10 has a thickness as shown in FIG. 5B, for example.
  • the membrane member 5 and the cover layer 6 are provided, the arrangement of the plasmon resonance laminate is not particularly limited.
  • the plasmon resonance laminate is arranged so that the surface of the plasmon resonance laminate opposite to the transparent substrate is in contact with the air layer.
  • the transparent substrate of the plasmon resonance laminate By arranging the plasmon resonance laminate so that the surface opposite to the transparent substrate of the plasmon resonance laminate fitted in the opening of the support faces the outside, the transparent substrate of the plasmon resonance laminate The surface on the opposite side can be in contact with the air layer.
  • the surface of the plasmon resonance laminate that is fitted in the opening of the support is the side that is opposite to the transparent substrate, and the layer that constitutes the support, and does not have an opening.
  • the information recording medium further includes a support having an opening
  • the entire plasmon resonance stack may overlap with the opening of the support in plan view.
  • a part of the opening may overlap the opening of the support in plan view.
  • the plasmon resonance laminated body may be arrange
  • the plasmon resonance laminate As a method of arranging the plasmon resonance laminate on one surface side of the support, for example, a method of adhering the support and the plasmon resonance laminate via an adhesive layer, the plasmon resonance laminate is arranged on the support Thereafter, there is a method of fusing the support and the plasmon resonance laminate by applying heat or pressure.
  • a method of disposing a plasmon resonance laminate between two supports for example, a method of adhering at least one support and a plasmon resonance laminate via an adhesive layer
  • between the two supports A method of arranging a plasmon resonance laminate and bonding two supports via an adhesive layer. After arranging a plasmon resonance laminate between two supports, two supports by applying heat or pressure And a method of fusing.
  • the adhesive layer can be the same as the adhesive layer used in the plasmon resonance laminate described above. Moreover, in the case of the method of fitting a plasmon resonance laminated body in the opening part of a support body, the plasmon resonance laminated body of the same shape as an opening part is used.
  • the information recording medium usually has a support on at least one surface side of the plasmon resonance laminate.
  • the information recording medium includes one support body 31 as shown in FIGS. 9A, 9B, and 11A
  • the plasmon resonance laminate 10 is one of the support bodies 31.
  • the information recording media 30A and 30B include two supports, and a plasmon resonance laminated body 10 may be disposed between the two supports, that is, between the first support 31a and the second support 31b, and includes the support 31 as shown in FIGS. 9 (e) and 9 (f).
  • the plasmon resonance laminate 10 may be fitted into the opening 32 of the support 31.
  • the transparent substrate of the plasmon resonance laminate may be integral with the support.
  • the support may or may not have transparency.
  • the support When the support has transparency, it usually has the same light transmittance as that of the transparent substrate of the plasmon resonance laminate, and can have the same visible light transmittance as that of the transparent substrate. .
  • the support may have an opening.
  • a support body does not have transparency, it is preferable to have an opening.
  • the opening is provided for observing an image displayed by the plasmon resonance laminate from both sides of the information recording medium. At least a part of the plasmon resonance laminated body is disposed so as to overlap the opening of the support in plan view.
  • the support only needs to have a support layer, for example, may have only a support layer, or may have a functional layer on at least one surface side of the support layer.
  • the support may have one support layer and one functional layer, or may have a plurality of at least one of the support layer and the functional layer.
  • the material for the support layer and the functional layer examples include paper, resin, metal, and synthetic fiber.
  • the support layer the transparent substrate of the plasmon resonance laminate described above can also be used.
  • a functional layer an opaque layer, a printing layer, an image receiving layer, a hologram layer etc. are mentioned, for example.
  • the support layer may have an opening
  • the functional layer may have an opening
  • the support layer and the functional layer may have an opening.
  • the opening of the functional layer may be a hole, and a transparent layer having the same shape as the opening may be fitted into the opening of the functional layer.
  • the transparent layer usually has the same light transmittance as that of the transparent substrate of the plasmon resonance laminate described above, and can further have the same visible light transmittance as that of the transparent substrate.
  • the size of the opening is not limited as long as at least a part of the plasmon resonance laminate can be arranged so as to overlap the opening in plan view, and depends on the size of the plasmon resonance laminate, the size of the information recording medium, and the like. Are adjusted accordingly.
  • the thickness of the support is appropriately selected according to the use and type of the information recording medium, and can be, for example, in the range of 10 ⁇ m to 2000 ⁇ m, and more preferably in the range of 50 ⁇ m to 1000 ⁇ m.
  • Examples of the method of arranging the functional layer on at least one side of the support layer include, for example, a method of bonding the support layer and the functional layer through an adhesive layer, and fusing the support layer and the functional layer by applying heat or pressure. And a method of forming a functional layer on the support layer.
  • the method of laminating the plurality of support layers is, for example, a method of bonding a plurality of support layers via an adhesive layer, a plurality of support layers by applying heat or pressure, etc. And the like.
  • a functional layer may be disposed between the support layers.
  • the adhesive layer can be the same as the adhesive layer used in the plasmon resonance laminate described above.
  • FIGS. 11A to 11B are sectional views taken along the line EE of FIG. Each example will be described below.
  • the information recording medium 30A shown in FIG. 8 and FIG. 9A includes a single support 31, and the plasmon resonance laminate 10 is disposed on one surface side of the support 31.
  • the first support layer 33, the opaque layer 34, and the second support layer 35 are sequentially stacked.
  • the opaque layer 34 has an opening 32, and the plasmon resonance laminated body 10 is disposed so as to overlap the opening 32 in plan view.
  • the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the second support layer 35 side, but the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the first support layer 33 side. It may be arranged.
  • the information recording medium 30A shown in FIG. 8 and FIG. 9B includes a single support 31, and the plasmon resonance laminate 10 is disposed on one surface side of the support 31.
  • the first support layer 33, the first print layer 36, the second support layer 35, the second print layer 37, and the third support layer 38 are laminated in order.
  • the first print layer 36 and the second print layer 37 each have an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view.
  • the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the third support layer 38 side, but the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the first support layer 33 side. It may be arranged.
  • the information recording medium 30A shown in FIGS. 8 and 9C includes two supports, that is, a first support 31a and a second support 31b, and is provided between the first support 31a and the second support 31b.
  • Plasmon resonance laminate 10 is arranged.
  • the first support 31a the first support layer 33 and the opaque layer 34 are sequentially laminated.
  • the second support 31 b has a second support layer 35.
  • the opaque layer 34 has an opening 32, and the plasmon resonance laminated body 10 is disposed so as to overlap the opening 32 in plan view.
  • the information recording medium 30A shown in FIGS. 8 and 9D includes two supports, that is, a first support 31a and a second support 31b, and is provided between the first support 31a and the second support 31b.
  • Plasmon resonance laminate 10 is arranged.
  • the first support 31a the first support layer 33 and the opaque layer 34 are sequentially laminated.
  • the second support 31b the second support layer 35 and the print layer 39 are sequentially stacked.
  • the opaque layer 34 and the printed layer 39 each have an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view.
  • the printed layer 39 is disposed on the plasmon resonance laminate 10 side of the second support layer 35, but is disposed on the opposite side of the plasmon resonance laminate 10 of the second support layer 35. Also good.
  • the information recording medium 30A shown in FIG. 8 and FIG. 9 (e) includes one support 31, and the plasmon resonance laminate 10 is fitted in the opening 32 of the support 31.
  • the first support layer 33, the opaque layer 34, and the second support layer 35 are sequentially stacked.
  • Each of the second support layer 35 and the opaque layer 34 has an opening 32, and the plasmon resonance laminate 10 is fitted into the opening 32 of the second support layer 35.
  • the information recording medium 30A shown in FIG. 8 and FIG. 9 (f) includes a single support 31, and the plasmon resonance laminate 10 is fitted into the opening 32 of the support 31.
  • the first support layer 33, the first print layer 36, the second support layer 35, the second print layer 37, and the third support layer 38 are laminated in order.
  • the third support layer 38, the first print layer 36, and the second print layer 37 each have an opening 32, and the plasmon resonance laminate 10 is fitted into the opening 32 of the third support layer 38.
  • FIGS. 10 and 11 are examples in which the information recording medium is a banknote.
  • An information recording medium 30 ⁇ / b> B shown in FIGS. 10 and 11A includes a single support 31, and the plasmon resonance laminate 10 is disposed on one surface side of the support 31.
  • the first print layer 42 and the second print layer 43 are disposed on both sides of the support layer 41, respectively.
  • Each of the first printed layer 42 and the second printed layer 43 has an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view.
  • the information recording medium 30B shown in FIGS. 10 and 11B includes two supports, that is, a first support 31a and a second support 31b, and is provided between the first support 31a and the second support 31b.
  • Plasmon resonance laminate 10 is arranged.
  • the first print layer 42 is disposed on one side of the first support layer 44.
  • the second print layer 43 is disposed on one side of the second support layer 45.
  • Each of the first printed layer 42 and the second printed layer 43 has an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view.
  • Information recording medium In the present disclosure, it is possible to determine the authenticity by irradiating the information recording medium with visible light from both sides and confirming the images displayed by the plasmon resonance laminate on the front and back of the information recording medium. It is.
  • the visible light applied to the information recording medium may be any light that includes the wavelength of visible light that causes plasmon resonance, as described in the section “A. Plasmon Resonance Laminate” above.
  • the information recording medium can be irradiated with white light.
  • the method for confirming the image displayed by the plasmon resonance laminate can be the same as the method for preventing forgery using the plasmon resonance laminate.
  • Examples of the information recording medium include a medium having a monetary value and a medium on which various information such as personal information and confidential information is recorded. Specifically, a bill, a cash voucher, a ticket, an ID card, a passport , Magnetic cards, IC cards, official documents and the like. Examples of the ID card include a national ID card, a driver's license, a membership card, an employee card, and a student card.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • Example 1 Silver nanoparticles were redispersed in ethanol, and silicone resin LPS-5558 (Shin-Etsu Chemical Co., Ltd.) was added as a binder agent at a concentration of 1/99 (binder agent / dispersion medium) with respect to ethanol as the dispersion medium. Furthermore, using a silver nanoparticle ethanol dispersion prepared by adding a thermosetting agent C-5558 (Shin-Etsu Chemical Co., Ltd.) as a curing catalyst capable of curing the silicone resin, the binder layer was thermally cured by heating the substrate. Except for the above, a plasmon resonance laminate was obtained in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

The present disclosure provides a plasmon resonance laminate having, on one surface of a transparent substrate, a first layer having a refractive index higher than that of the substrate, and on the surface of the first layer on the opposite side from the substrate, a second layer including a binder agent and particles. The particles include a negative dielectric material and plasmon-resonate to visible light. When the second layer is positioned above the substrate, at least a part of the surface of the second layer on the opposite side from the substrate is lower than the portion of the particles most distant from the substrate.

Description

プラズモン共鳴積層体、バインダ部形成用組成物、プラズモン共鳴積層体の製造方法および情報記録媒体Plasmon resonance laminate, composition for forming binder part, method for producing plasmon resonance laminate, and information recording medium
 本開示は、意匠性、偽造防止性等の付与が容易であり、かつ、耐久性に優れたプラズモン共鳴積層体に関するものである。 The present disclosure relates to a plasmon resonance laminate that can be easily provided with designability, anti-counterfeiting properties, and the like and has excellent durability.
 微粒子には、電磁波に対して応答する電磁波応答性、例えば、電磁波が有する位相や進行方向、偏光、強度の波長依存性といったパラメータを変化させる機能を有するものがある。このような微粒子としては、その粒径等の形状、構成材料等により、例えば、プラズモン共鳴を起こして特定波長の電磁波のみを散乱する微粒子等が知られている。 Some fine particles have a function of changing parameters such as electromagnetic wave responsiveness to electromagnetic waves, for example, phase and traveling direction of electromagnetic waves, polarization, and wavelength dependency of intensity. As such fine particles, for example, fine particles that cause only plasmon resonance and scatter only electromagnetic waves of a specific wavelength are known depending on the shape such as the particle size, the constituent material, and the like.
 また、非特許文献1には、プラズモン共鳴により可視光を散乱可能な微粒子として銀ナノキューブ粒子が透明基材表面に固定された積層体が開示されている。また、非特許文献1では、微粒子の基材側表面と微粒子の基材とは反対側表面とでプラズモン共鳴する可視光の波長が異なることが開示されている。そして、上記積層体は、光の照射面が微粒子の基材側表面か微粒子の基材とは反対側表面かによって、異なる色の画像を表示可能であることが示されている。 Further, Non-Patent Document 1 discloses a laminate in which silver nanocube particles are fixed on a transparent substrate surface as fine particles capable of scattering visible light by plasmon resonance. Non-Patent Document 1 discloses that the wavelength of visible light that causes plasmon resonance differs between the surface of the fine particle on the substrate side and the surface opposite to the fine particle substrate. And it is shown that the said laminated body can display an image of a different color according to whether the light irradiation surface is the base material side surface of microparticles | fine-particles or the surface on the opposite side to the base material of microparticles | fine-particles.
 しかしながら、非特許文献1では、基材表面に散布された微粒子が大気に露出して固定されているため、例えば、使用者の手が微粒子に触れた際に微粒子が脱落し、所望の機能を発現しなくなる可能性がある。 However, in Non-Patent Document 1, since the fine particles dispersed on the surface of the base material are exposed to the atmosphere and fixed, for example, when the user's hand touches the fine particles, the fine particles fall off and have a desired function. May not develop.
 ここで、微粒子の脱落を防止するために、微粒子を覆うオーバーコート層を形成することも考えられる。しかしながら、非特許文献1に開示される積層体では、微粒子を覆うオーバーコート層を形成した場合には、微粒子の基材とは反対側表面での屈折率差(微粒子とオーバーコート層との屈折率差)と、微粒子の基材側表面での屈折率差(微粒子と基材との屈折率差)との差が小さくなることにより、微粒子の基材側表面および微粒子の基材とは反対側表面でのプラズモン共鳴する光の波長が近いものとなる。これにより、非特許文献1に開示される積層体では、積層体の表裏で異なる色の画像の表示が困難となる可能性がある。 Here, it is conceivable to form an overcoat layer covering the fine particles in order to prevent the fine particles from falling off. However, in the laminate disclosed in Non-Patent Document 1, when an overcoat layer covering fine particles is formed, the refractive index difference (refractive between fine particles and overcoat layer) on the surface opposite to the substrate of the fine particles is formed. The difference between the refractive index difference on the substrate side surface of the fine particles (the difference in refractive index between the fine particles and the substrate) becomes smaller, and the opposite of the substrate side surface of the fine particles and the substrate of the fine particles. The wavelength of the plasmon-resonant light on the side surface is close. Thereby, in the laminated body disclosed in Non-Patent Document 1, it may be difficult to display images of different colors on the front and back of the laminated body.
 本開示は、上記問題点に鑑みてなされたものであり、意匠性、偽造防止性等の付与が容易であり、かつ、耐久性に優れたプラズモン共鳴積層体を提供することを主目的とする。 The present disclosure has been made in view of the above problems, and has as its main object to provide a plasmon resonance laminate that is easy to impart designability, anti-counterfeiting properties, etc., and is excellent in durability. .
 上記目的を達成するために、本開示は、透明性を有する基材(以下、透明基材と称する場合がある。)の一方の面に、上記基材よりも高い屈折率を有する第1層(以下、高屈折率層と称する場合がある。)を有し、上記第1層の上記基材とは反対側の面に、バインダ層と粒子とを含む第2層(以下、バインダ部と称する場合がある。)を有し、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記第2層が上記基材より上に位置するようにしたとき、上記第2層の上記基材とは反対側の面の少なくとも一部が、上記粒子の上記基材からの最も離れた部分よりも低い、プラズモン共鳴積層体を提供する。すなわち、本開示は、透明基材の一方の面に、上記透明基材よりも高い屈折率を有する高屈折率層を有し、上記高屈折率層の上記透明基材とは反対側の面に、バインダ層と粒子とを含むバインダ部を有し、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ部が上記透明基材より上に位置するようにしたとき、上記バインダ部の上記透明基材とは反対側の面の少なくとも一部が、上記粒子の上記透明基材からの最も離れた部分よりも低い、プラズモン共鳴積層体を提供する。つまり、本開示は、透明基材と、上記透明基材の一方の面に配置された上記透明基材よりも屈折率の高い高屈折率層と、上記高屈折率層の上記透明基材とは反対側の面に配置されたバインダ部と、を有し、上記バインダ部は、バインダ剤を含むバインダ層と、上記バインダ層内に分散された粒子と、を有し、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ層の最低厚みが上記粒子の最大高さより小さい、プラズモン共鳴積層体を提供する。 In order to achieve the above object, the present disclosure provides a first layer having a refractive index higher than that of the base material on one surface of a transparent base material (hereinafter sometimes referred to as a transparent base material). (Hereinafter sometimes referred to as a high refractive index layer), and a second layer (hereinafter referred to as a binder portion) containing a binder layer and particles on the surface of the first layer opposite to the base material. And the particles include a negative dielectric material, plasmon resonate with visible light, and the second layer is positioned above the substrate. Provided is a plasmon resonance laminate in which at least a part of a surface of the two layers opposite to the substrate is lower than a portion of the particle farthest from the substrate. That is, the present disclosure has a high refractive index layer having a higher refractive index than the transparent substrate on one surface of the transparent substrate, and the surface of the high refractive index layer opposite to the transparent substrate. A binder portion including a binder layer and particles, and the particles include a negative dielectric material, plasmon-resonate with respect to visible light, and the binder portion is positioned above the transparent substrate. When it does, the plasmon resonance laminated body in which at least one part of the surface on the opposite side to the said transparent base material of the said binder part is lower than the part farthest from the said transparent base material of the said particle | grain is provided. That is, the present disclosure includes a transparent base, a high refractive index layer having a higher refractive index than the transparent base disposed on one surface of the transparent base, and the transparent base of the high refractive index layer. A binder portion disposed on the opposite surface, and the binder portion includes a binder layer containing a binder agent and particles dispersed in the binder layer, and the particles are negative. A plasmon resonance laminate including a dielectric material and plasmon resonance with respect to visible light, wherein the minimum thickness of the binder layer is smaller than the maximum height of the particles.
 なお、本明細書内において、透明性を有する基材を透明基材、第1層を高屈折率層、第2層をバインダ部、粒子を微粒子と称する場合がある。 In the present specification, the transparent substrate may be referred to as a transparent substrate, the first layer as a high refractive index layer, the second layer as a binder portion, and the particles as fine particles.
 本開示は、粒子、バインダ剤および分散媒を含み、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ剤の上記分散媒に対する濃度(バインダ剤/分散媒)が、0.1/100以上10/100以下の範囲内である、バインダ部形成用組成物を提供する。なお、バインダ剤の分散媒に対する濃度は、バインダ剤の分散媒に対する体積比をいう。 The present disclosure includes particles, a binder agent, and a dispersion medium. The particles include a negative dielectric material, plasmon-resonates with visible light, and the concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium). However, the composition for binder part formation which is in the range of 0.1 / 100 or more and 10/100 or less is provided. In addition, the density | concentration with respect to the dispersion medium of a binder agent means the volume ratio with respect to the dispersion medium of a binder agent.
 本開示は、透明性を有する基材の一方の面に、上記基材よりも屈折率の高い第1層を有する積層体を準備し、上記積層体の上記第1層の表面上に、粒子、バインダ剤および分散媒を含むバインダ部形成用組成物を塗布する塗布工程と、上記バインダ部形成用組成物の塗膜から上記分散媒を乾燥除去し、第2層を形成する乾燥工程と、を有し、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ部形成用組成物は、上記バインダ剤の上記分散媒に対する濃度(バインダ剤/分散媒)が、0.1/100以上10/100以下の範囲内である、プラズモン共鳴積層体の製造方法を提供する。つまり、本開示は、透明基材の一方の面に、上記透明基材よりも屈折率の高い高屈折率層が形成された積層体を準備し、上記積層体の上記高屈折率層の表面上に、粒子、バインダ剤および分散媒を含むバインダ部形成用組成物を塗布する塗布工程と、上記バインダ部形成用組成物の塗膜から上記分散媒を乾燥除去し、バインダ部を形成する乾燥工程と、を有し、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ部形成用組成物は、上記バインダ剤の上記分散媒に対する濃度(バインダ剤/分散媒)が、0.1/100以上10/100以下の範囲内である、プラズモン共鳴積層体の製造方法を提供する。 The present disclosure provides a laminate having a first layer having a higher refractive index than that of the substrate on one surface of a substrate having transparency, and particles on the surface of the first layer of the laminate. A coating step of applying a binder part-forming composition containing a binder agent and a dispersion medium; and a drying step of drying and removing the dispersion medium from the coating film of the binder part forming composition to form a second layer; The particles contain a negative dielectric material and plasmon-resonate with visible light, and the binder part forming composition has a concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium). A method for producing a plasmon resonance laminate that is within a range of 0.1 / 100 or more and 10/100 or less. That is, the present disclosure provides a laminate in which a high refractive index layer having a higher refractive index than that of the transparent substrate is formed on one surface of the transparent substrate, and the surface of the high refractive index layer of the laminate. On top of this, a coating step of applying a binder part forming composition containing particles, a binder agent and a dispersion medium, and drying to remove the dispersion medium from the coating film of the binder part forming composition to form a binder part. The particles include a negative dielectric material, and plasmon resonate with visible light, and the binder part forming composition has a concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion). The medium is provided within the range of 0.1 / 100 or more and 10/100 or less.
 本開示は、透明性を有する基材の一方の面に、上記基材よりも高い屈折率を有する第1層を有し、上記第1層の上記基材とは反対側の面に、バインダ層と粒子とを含む第2層を有し、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記第2層が上記基材より上に位置するようにしたとき、上記第2層の上記基材とは反対側の面の少なくとも一部が、上記粒子の上記基材からの最も離れた部分よりも低いプラズモン共鳴積層体を備える、情報記録媒体を提供する。すなわち、本開示は、上述のプラズモン共鳴積層体を備える、情報記録媒体を提供する。 The present disclosure has a first layer having a refractive index higher than that of the base material on one surface of the base material having transparency, and a binder on a surface of the first layer opposite to the base material. A second layer including a layer and a particle, wherein the particle includes a negative dielectric material, plasmon-resonates with visible light, and the second layer is positioned above the substrate. An information recording medium is provided, wherein at least a part of the surface of the second layer opposite to the substrate includes a plasmon resonance laminate that is lower than a portion of the particle farthest from the substrate. That is, this indication provides an information recording medium provided with the above-mentioned plasmon resonance layered product.
 本開示は、意匠性、偽造防止性等の付与が容易であり、かつ、耐久性に優れたプラズモン共鳴積層体を提供できるという効果を奏する。 This disclosure has an effect of providing a plasmon resonance laminate that can be easily provided with designability, anti-counterfeiting properties, and the like, and has excellent durability.
本開示のプラズモン共鳴積層体の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the plasmon resonance laminated body of this indication. 本開示のプラズモン共鳴積層体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the plasmon resonance laminated body of this indication. 本開示のプラズモン共鳴積層体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the plasmon resonance laminated body of this indication. 本開示のプラズモン共鳴積層体の他の例を示す概略平面図である。It is a schematic plan view which shows the other example of the plasmon resonance laminated body of this indication. 本開示のプラズモン共鳴積層体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the plasmon resonance laminated body of this indication. 本開示のプラズモン共鳴積層体の他の例を示す概略平面図および断面図である。It is the schematic plan view and sectional drawing which show the other example of the plasmon resonance laminated body of this indication. 本開示のプラズモン共鳴積層体の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the plasmon resonance laminated body of this indication. 本開示の情報記録媒体の一例を示す概略平面図である。It is a schematic plan view which shows an example of the information recording medium of this indication. 本開示の情報記録媒体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the information recording medium of this indication. 本開示の情報記録媒体の他の例を示す概略平面図である。It is a schematic plan view which shows the other example of the information recording medium of this indication. 本開示の情報記録媒体の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the information recording medium of this indication.
 本開示は、プラズモン共鳴積層体、これに含まれるバインダ部を形成可能なバインダ部形成用組成物、上記プラズモン共鳴積層体を製造可能なプラズモン共鳴積層体の製造方法、および上記プラズモン共鳴積層体を備える情報記録媒体に関するものである。 The present disclosure relates to a plasmon resonance laminated body, a binder part forming composition capable of forming a binder part included in the plasmon resonance laminated body, a method for producing a plasmon resonance laminated body capable of producing the plasmon resonance laminated body, and the plasmon resonance laminated body. The present invention relates to an information recording medium provided.
 以下、本開示のプラズモン共鳴積層体、バインダ部形成用組成物、プラズモン共鳴積層体の製造方法、および情報記録媒体について詳細に説明する。 Hereinafter, the plasmon resonance laminate, the binder portion forming composition, the method for producing the plasmon resonance laminate, and the information recording medium of the present disclosure will be described in detail.
A.プラズモン共鳴積層体
 本開示のプラズモン共鳴積層体は、透明基材の一方の面に、上記透明基材よりも高い屈折率を有する高屈折率層を有し、上記高屈折率層の上記透明基材とは反対側の面に、バインダ層と微粒子とを含むバインダ部を有し、上記微粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ部が上記透明基材より上に位置するようにしたとき、上記バインダ部の上記透明基材とは反対側の面の少なくとも一部が、上記微粒子の上記透明基材からの最も離れた部分よりも低い。すなわち、本開示のプラズモン共鳴積層体は、透明基材と、上記透明基材の一方の面に配置された上記透明基材よりも屈折率の高い高屈折率層と、上記高屈折率層の上記透明基材とは反対側の面に配置されたバインダ部と、を有し、上記バインダ部は、バインダ剤を含むバインダ層と、上記バインダ層内に分散された微粒子と、を有し、上記微粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ層の最低厚みが上記微粒子の最大高さより小さい。
A. Plasmon Resonance Laminate The plasmon resonance laminate of the present disclosure has a high refractive index layer having a higher refractive index than that of the transparent substrate on one surface of the transparent substrate, and the transparent base of the high refractive index layer. A binder portion including a binder layer and fine particles on a surface opposite to the material, the fine particles include a negative dielectric material, and plasmon resonate with visible light, and the binder portion is the transparent substrate. When positioned higher, at least a part of the surface of the binder portion on the side opposite to the transparent substrate is lower than the most distant portion of the fine particles from the transparent substrate. That is, the plasmon resonance laminate of the present disclosure includes a transparent base, a high refractive index layer having a higher refractive index than the transparent base disposed on one surface of the transparent base, and the high refractive index layer. A binder portion disposed on a surface opposite to the transparent substrate, and the binder portion includes a binder layer containing a binder agent and fine particles dispersed in the binder layer, The fine particles include a negative dielectric material, plasmon resonate with visible light, and the minimum thickness of the binder layer is smaller than the maximum height of the fine particles.
 このような本開示のプラズモン共鳴積層体について図面を参照して説明する。図1は、本開示のプラズモン共鳴積層体の一例を示す概略断面図である。また、図2は、本開示のプラズモン共鳴積層体の他の例を示す概略断面図である。図1および図2に示すように、本開示のプラズモン共鳴積層体10は、透明基材1と、上記透明基材1の一方の面に配置された上記透明基材1よりも屈折率の高い高屈折率層2と、上記高屈折率層2の上記透明基材1とは反対側の面に配置されたバインダ部7と、を有し、上記バインダ部7は、バインダ剤を含むバインダ層3と、上記バインダ層3内に分散された微粒子4と、を有する。上記微粒子4は、負誘電体材料を含み、可視光に対してプラズモン共鳴するものであり、かつ、上記高屈折率層2と接するものである。また、上記バインダ層3の最低厚みaが上記微粒子4の最大高さbより小さい。さらに、バインダ部7が透明基材1より上に位置するようにプラズモン共鳴積層体10を配置したとき、バインダ部7の透明基材1とは反対側の面7Sの少なくとも一部が、微粒子4の透明基材1からの最も離れた部分(図1および図2に示す例では、微粒子4の透明基材1とは反対側の面S)よりも低い。なお、図2は、微粒子が高屈折率層と直接接していないものを含む例を示すものである。また、図1は、微粒子の透明基材とは反対側の表面がバインダ層により被覆されない例を示し、図2は、微粒子の透明基材とは反対側の表面がバインダ層により被覆される例を示すものである。 Such a plasmon resonance laminate of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating an example of a plasmon resonance stacked body according to the present disclosure. FIG. 2 is a schematic cross-sectional view illustrating another example of the plasmon resonance multilayer body of the present disclosure. As shown in FIGS. 1 and 2, the plasmon resonance laminate 10 of the present disclosure has a refractive index higher than that of the transparent substrate 1 and the transparent substrate 1 arranged on one surface of the transparent substrate 1. A high refractive index layer 2 and a binder portion 7 disposed on a surface of the high refractive index layer 2 opposite to the transparent substrate 1, wherein the binder portion 7 includes a binder agent. 3 and fine particles 4 dispersed in the binder layer 3. The fine particles 4 contain a negative dielectric material, plasmon-resonate with visible light, and are in contact with the high refractive index layer 2. Further, the minimum thickness a of the binder layer 3 is smaller than the maximum height b of the fine particles 4. Furthermore, when the plasmon resonance laminated body 10 is disposed so that the binder portion 7 is positioned above the transparent base material 1, at least a part of the surface 7 </ b> S on the side opposite to the transparent base material 1 of the binder portion 7 has the fine particles 4. Lower than the farthest part from the transparent substrate 1 (in the example shown in FIGS. 1 and 2, the surface S of the fine particles 4 opposite to the transparent substrate 1). FIG. 2 shows an example in which the fine particles include those that are not in direct contact with the high refractive index layer. FIG. 1 shows an example in which the surface of the fine particle opposite to the transparent substrate is not covered with the binder layer, and FIG. 2 shows an example in which the surface of the fine particle opposite to the transparent substrate is covered with the binder layer. Is shown.
 本開示によれば、微粒子がバインダ層内に分散されていることにより、本開示のプラズモン共鳴積層体は、その使用時に微粒子が脱落することを防止することができ、耐久性に優れたものとなる。また、バインダ層内に分散される微粒子の状態が、上記バインダ層の最低厚みが上記微粒子の最大高さより小さい状態であることにより、例えば、微粒子は、透明基材とは反対側の表面がバインダ層から露出し、大気と接した状態となり、さらに、透明基材側で高屈折率層に接した状態とすることができる。その結果、微粒子の透明基材側表面および微粒子の透明基材とは反対側表面での屈折率差(以下、微粒子表裏間の屈折率差と称する場合がある。)を大きくすることが容易となる。このため、本開示のプラズモン共鳴積層体は、表側から可視光を照射した場合と、裏側から可視光を照射した場合とで、異なる色の画像を容易に表示可能なものとなり、意匠性、偽造防止性等の付与が容易なものとなる。このようなことから、本開示のプラズモン共鳴積層体は、意匠性、偽造防止性等の付与が容易であり、かつ、耐久性に優れたものとなる。 According to the present disclosure, since the fine particles are dispersed in the binder layer, the plasmon resonance laminate of the present disclosure can prevent the fine particles from dropping off during use, and has excellent durability. Become. Further, since the state of the fine particles dispersed in the binder layer is a state in which the minimum thickness of the binder layer is smaller than the maximum height of the fine particles, for example, the surface of the fine particles on the side opposite to the transparent substrate is the binder. It is exposed from the layer and is in contact with the atmosphere, and can further be in contact with the high refractive index layer on the transparent substrate side. As a result, it is easy to increase the refractive index difference between the surface of the fine particle on the transparent substrate side and the surface opposite to the transparent substrate of the fine particle (hereinafter sometimes referred to as the refractive index difference between the fine particle front and back). Become. For this reason, the plasmon resonance laminated body of the present disclosure can easily display images of different colors when irradiated with visible light from the front side and when irradiated with visible light from the back side. It becomes easy to give prevention properties and the like. For these reasons, the plasmon resonance laminate of the present disclosure can be easily imparted with designability, anti-counterfeiting properties, etc., and has excellent durability.
 ここで、微粒子の透明基材とは反対側の表面がバインダ層から露出した状態とは、微粒子の透明基材の反対側の表面上にバインダ層が存在しない完全露出の状態に限定されず、本開示のプラズモン共鳴積層体に対して微粒子側から可視光を照射して観察した場合と、透明基材側から可視光を照射して観察した場合とで、異なる色の発色を視認可能な程度の薄さで、微粒子の透明基材とは反対側の表面がバインダ層に被覆される状態も含むものである。 Here, the state where the surface opposite to the transparent base material of the fine particles is exposed from the binder layer is not limited to a fully exposed state where the binder layer does not exist on the surface opposite to the transparent base material of fine particles, To the extent that the plasmon resonance laminated body of the present disclosure can be observed by irradiating visible light from the fine particle side and when observing by irradiating visible light from the transparent substrate side, can be visually recognized. This includes a state in which the surface of the fine particle opposite to the transparent substrate is covered with a binder layer.
 また、微粒子が高屈折率層に接する状態とは、微粒子が高屈折率層と直接接する状態に限定されず、本開示のプラズモン共鳴積層体に対して微粒子側から可視光を照射して観察した場合と、透明基材側から可視光を照射して観察した場合とで、異なる色の発色を視認可能な程度の薄さで、微粒子および高屈折率層の間にバインダ層が配置される状態も含むものである。 The state in which the fine particles are in contact with the high refractive index layer is not limited to the state in which the fine particles are in direct contact with the high refractive index layer, and the plasmon resonance laminate of the present disclosure was observed by irradiating visible light from the fine particle side. In a case where the binder layer is disposed between the fine particles and the high refractive index layer in such a thin thickness that the visible color development of the different colors is visible in the case of observing with visible light from the transparent substrate side. Is also included.
 本開示のプラズモン共鳴積層体は、透明基材、高屈折率層、ならびに、バインダ層および微粒子を含むバインダ部を有するものである。以下、本開示のプラズモン共鳴積層体の各構成について説明する。 The plasmon resonance laminate of the present disclosure has a transparent substrate, a high refractive index layer, and a binder part including a binder layer and fine particles. Hereinafter, each structure of the plasmon resonance laminated body of this indication is demonstrated.
1.バインダ部
 本開示におけるバインダ部は、バインダ層および微粒子を含み、具体的には、バインダ剤を含むバインダ層と、バインダ層内に分散された微粒子とを有する。
1. Binder Part The binder part in the present disclosure includes a binder layer and fine particles, and specifically includes a binder layer containing a binder agent and fine particles dispersed in the binder layer.
(1)バインダ層内の微粒子の状態
 本開示における微粒子は、バインダ層内に分散されるものである。
(1) State of fine particles in binder layer The fine particles in the present disclosure are dispersed in the binder layer.
 本開示におけるバインダ層および微粒子の位置関係、すなわち、バインダ層内の微粒子の状態は、上記バインダ層の最低厚みが上記微粒子の最大高さより小さい状態である。なお、上記のような微粒子とバインダ層の位置関係について、バインダ部が透明基材よりも上に位置するようプラズモン共鳴積層体を配置したとき、バインダ部の透明基材とは反対側の面の少なくとも一部が、微粒子の透明基材から最も離れた部分よりも低い状態ともいうことができる。 The positional relationship between the binder layer and the fine particles in the present disclosure, that is, the state of the fine particles in the binder layer is a state where the minimum thickness of the binder layer is smaller than the maximum height of the fine particles. As for the positional relationship between the fine particles and the binder layer as described above, when the plasmon resonance laminate is disposed so that the binder portion is located above the transparent substrate, the surface of the binder portion on the side opposite to the transparent substrate is disposed. It can also be said that at least a part is lower than the part of the fine particles farthest from the transparent substrate.
 ここで、上記バインダ層の最低厚みとは、バインダ層の微粒子と平面視上重ならない箇所のうち、バインダ層の高屈折率層とは反対側の表面から高屈折率層までの距離のうち最小の距離をいうものであり、通常、バインダ層の高屈折率層とは反対側の表面の透明基材から最も近い部分から高屈折率層までの距離をいうものである。上記最低厚みは、具体的には、既に説明した図1および図2中のaで示される距離である。 Here, the minimum thickness of the binder layer is the minimum of the distance from the surface opposite to the high refractive index layer of the binder layer to the high refractive index layer, in a portion that does not overlap with the fine particles of the binder layer in plan view. Usually, it means the distance from the portion closest to the transparent substrate on the surface opposite to the high refractive index layer of the binder layer to the high refractive index layer. Specifically, the minimum thickness is a distance indicated by a in FIGS. 1 and 2 described above.
 また、上記微粒子の最大高さとは、バインダ層内の微粒子の高屈折率層とは反対側の表面から高屈折率層までの距離のうち最大の距離をいうものであり、微粒子の透明基材から最も離れた部分から高屈折率層までの距離をいうものである。 The maximum height of the fine particles refers to the maximum distance among the distances from the surface opposite to the high refractive index layer of the fine particles in the binder layer to the high refractive index layer. This is the distance from the portion farthest from the high refractive index layer.
 ここで、上述の微粒子の透明基材から最も離れた部分とは、例えば、図1や図2のような場合、バインダ層3中の微粒子4の高屈折率層2とは反対側の面Sのことをいう。また、微粒子4が球状や三角錐状等である場合は、図3(a)のように、微粒子4の透明基材1から最も離れた部分Pのことをいう。また、微粒子が立方体形状の場合であっても、図3(b)のように、立方体形状の微粒子4がバインダ層3中で傾いて保持されている場合は、立方体形状の頂部Pが微粒子4の透明基材1から最も離れた部分となる。 Here, the portion of the fine particles farthest from the transparent substrate is, for example, in the case of FIG. 1 or FIG. 2, the surface S of the fine particles 4 in the binder layer 3 opposite to the high refractive index layer 2. I mean. Further, when the fine particles 4 are spherical, triangular pyramid or the like, it means a portion P farthest from the transparent substrate 1 of the fine particles 4 as shown in FIG. Further, even when the fine particles have a cubic shape, as shown in FIG. 3B, when the cubic-shaped fine particles 4 are held inclined in the binder layer 3, the cubic-shaped top part P is the fine particles 4. This is the portion farthest from the transparent substrate 1.
 したがって、上記最大高さは、具体的には、既に説明した図1~図3中のbで示される距離である。 Therefore, specifically, the maximum height is a distance indicated by b in FIGS. 1 to 3 already described.
 本開示におけるバインダ層内に分散される全微粒子のうち、バインダ層の最低厚みより最大高さが高い微粒子の数、つまり、バインダ部内の全微粒子のうち、バインダ部の透明基材とは反対側の面の少なくとも一部が、微粒子の透明基材から最も離れた部分よりも低い微粒子の数としては、少なくとも1つ以上であればよく、全微粒子の50%以上であることが好ましく、なかでも全微粒子であることが好ましい。上述の状態を示す微粒子の割合が上述の範囲であることにより、上記バインダ層は、微粒子表裏間の屈折率差を安定的に大きくすることができるからである。 Of all the fine particles dispersed in the binder layer in the present disclosure, the number of fine particles whose maximum height is higher than the minimum thickness of the binder layer, that is, among the total fine particles in the binder portion, the side opposite to the transparent base material of the binder portion The number of fine particles in which at least part of the surface of the fine particles is lower than the portion of the fine particles farthest from the transparent substrate may be at least one, preferably 50% or more of the total fine particles, All fine particles are preferred. This is because the binder layer can stably increase the refractive index difference between the front and back surfaces of the fine particles when the proportion of the fine particles exhibiting the above state is in the above range.
 上記バインダ層の最低厚みと上記微粒子の最大高さとの差、すなわち、上記微粒子の最大高さからバインダ層の最低厚みを差し引いて得られる差としては、0nmより大きいものであればよく、微粒子表裏間の屈折率差を安定的に大きくする観点からはその差が大きければ大きいほど好ましい。上記差としては、例えば、2nm以上であることが好ましく、なかでも、10nm以上200nm以下の範囲内であることが好ましく、特に、30nm以上150nm以下の範囲内であることが好ましい。上記差が、上述の範囲内であることにより、上記バインダ層は、微粒子表裏間の屈折率差を安定的に大きくすることができ、さらに微粒子の脱落を安定的に防止することができるからである。 The difference between the minimum thickness of the binder layer and the maximum height of the fine particles, that is, the difference obtained by subtracting the minimum thickness of the binder layer from the maximum height of the fine particles may be larger than 0 nm. From the viewpoint of stably increasing the difference in refractive index between the two, the larger the difference, the better. For example, the difference is preferably 2 nm or more, more preferably 10 nm or more and 200 nm or less, and particularly preferably 30 nm or more and 150 nm or less. Since the difference is within the above-described range, the binder layer can stably increase the refractive index difference between the front and back of the fine particles, and can further prevent the fine particles from falling off. is there.
 上記バインダ層の平均厚みと、上記微粒子の平均一次粒径との関係としては、上記バインダ層の最低厚みが上記微粒子の最大高さより小さい状態とすることができるものであればよく、上記バインダ層の平均厚みが、上記微粒子の平均一次粒径よりも大きいものであってもよいが、上記微粒子の平均一次粒径よりも小さいことが好ましく、上記バインダ層の平均厚みが、上記微粒子の平均一次粒径の95%以下であることが好ましく、なかでも10%以上90%以下の範囲内であることが好ましく、特に、25%以上50%以下の範囲内であることが好ましい。上記平均厚みが、上記微粒子の平均一次粒径に対して上述の範囲内であることにより、上記バインダ層は、上記バインダ層の最低厚みが上記微粒子の最大高さより小さい状態とすることが容易だからである。また、上記バインダ層は、微粒子表裏間の屈折率差を安定的に大きくすることができ、さらに微粒子の脱落を安定的に防止することができるからである。 The relationship between the average thickness of the binder layer and the average primary particle size of the fine particles may be any as long as the minimum thickness of the binder layer can be smaller than the maximum height of the fine particles. The average thickness of the fine particles may be larger than the average primary particle size of the fine particles, but is preferably smaller than the average primary particle size of the fine particles, and the average thickness of the binder layer is the average primary particle size of the fine particles. The particle size is preferably 95% or less of the particle size, more preferably 10% or more and 90% or less, and particularly preferably 25% or more and 50% or less. Since the average thickness is within the above-mentioned range with respect to the average primary particle size of the fine particles, the binder layer can be easily in a state where the minimum thickness of the binder layer is smaller than the maximum height of the fine particles. It is. Further, the binder layer can stably increase the refractive index difference between the front and back of the fine particles, and can stably prevent the fine particles from falling off.
 なお、バインダ層の平均厚みは、バインダ層のうち平面視上微粒子と重ならない箇所の任意の10点での厚みの平均値をいうものである。 Note that the average thickness of the binder layer refers to the average value of the thickness at any 10 points in the binder layer that do not overlap with the fine particles in plan view.
 また、上記平均一次粒径は、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で求めることができる。具体的には、透過型電子顕微鏡写真(TEM)(例えば、日立ハイテク製 H-7650)にて粒子像を測定し、ランダムに選択した100個の一次粒子の等面積円相当直径の平均値を平均一次粒径とすることができる。なお、電子顕微鏡は透過型(TEM)または走査型(SEM)のいずれを用いてもよい。なお、等面積円相当直径については、得られた粒子像の面積および周長から、4×面積÷周長により計算することができる。 Further, the average primary particle size can be obtained by a method of directly measuring the size of primary particles from an electron micrograph. Specifically, a particle image was measured with a transmission electron micrograph (TEM) (for example, H-7650 manufactured by Hitachi High-Tech), and an average value of equivalent area circle equivalent diameters of 100 randomly selected primary particles was calculated. The average primary particle size can be obtained. The electron microscope may be either a transmission type (TEM) or a scanning type (SEM). The equivalent area equivalent circle diameter can be calculated from the area and circumference of the obtained particle image by 4 × area / circumference.
 また、バインダ部の平均厚みは、バインダ部の微粒子を含まない箇所の平均厚みをいうものであり、具体的には、バインダ層の平均厚みと同様とすることができる。また、バインダ部の平均厚みと、微粒子の平均一次粒径との関係は、上記のバインダ層の平均厚みと、微粒子の平均一次粒径との関係と同様とすることができる。具体的には、バインダ部の平均厚みは、微粒子の平均一次粒径よりも小さい、すなわち、バインダ部の微粒子を含まない箇所の平均厚みは、微粒子の平均一次粒径よりも小さいことが好ましい。微粒子表裏間の屈折率差が安定的に大きくなるからである。 In addition, the average thickness of the binder portion refers to the average thickness of the portion not including the fine particles in the binder portion, and specifically, can be the same as the average thickness of the binder layer. The relationship between the average thickness of the binder portion and the average primary particle size of the fine particles can be the same as the relationship between the average thickness of the binder layer and the average primary particle size of the fine particles. Specifically, it is preferable that the average thickness of the binder portion is smaller than the average primary particle size of the fine particles, that is, the average thickness of the portion not including the fine particles of the binder portion is smaller than the average primary particle size of the fine particles. This is because the difference in refractive index between the front and back of the fine particles is stably increased.
 上記微粒子の透明基材とは反対側の表面は、通常、バインダ層に被覆されていない露出状態である。ここで、露出状態であるとは、微粒子が、上記表面上にバインダ層が存在しない完全露出の状態に限定されず、本開示のプラズモン共鳴積層体に対して微粒子側から可視光を照射して観察した場合と、透明基材側から可視光を照射して観察した場合とで、異なる色の発色を視認可能な程度の薄さで上記表面がバインダ層に被覆されるものも含むものである。 The surface of the fine particle opposite to the transparent substrate is usually in an exposed state that is not covered with the binder layer. Here, the exposure state is not limited to a state in which the fine particles are completely exposed in which no binder layer is present on the surface, and the plasmon resonance laminate of the present disclosure is irradiated with visible light from the fine particle side. In the case of observation and the case of observation by irradiating visible light from the transparent substrate side, the surface is covered with a binder layer with such a thin thickness that it is possible to visually recognize different colors.
 上記微粒子の透明基材とは反対側の表面が露出状態である場合の、上記バインダ層の微粒子の透明基材とは反対側の表面上の厚みとしては、例えば、10nm以下とすることができ、なかでも、5nm以下であることが好ましく、特に、2nm以下であることが好ましく、0nmであること、すなわち、微粒子の透明基材とは反対側の表面が完全露出の状態であることが好ましい。上記厚みが、上述の範囲であることにより、本開示のプラズモン共鳴積層体は、微粒子側から可視光を照射した場合と、透明基材側から可視光を照射した場合とで、異なる色の発色を安定的に表示可能なものとなり、意匠性、偽造防止性等の付与が容易なものとなるからである。なお、上記バインダ層の微粒子の透明基材とは反対側の表面上の厚みは、具体的には、既に説明した図2中のdで示されるものである。 The thickness on the surface of the binder layer opposite to the transparent substrate when the surface opposite to the transparent substrate of the fine particles is exposed can be, for example, 10 nm or less. In particular, the thickness is preferably 5 nm or less, particularly preferably 2 nm or less, and preferably 0 nm, that is, the surface opposite to the transparent substrate of the fine particles is preferably completely exposed. . When the thickness is in the above-described range, the plasmon resonance laminate of the present disclosure has different colors when irradiated with visible light from the fine particle side and when irradiated with visible light from the transparent substrate side. This is because it can be stably displayed, and it is easy to provide designability, anti-counterfeiting properties, and the like. In addition, the thickness on the surface on the opposite side to the transparent base material of the fine particle of the said binder layer is specifically shown by d in already demonstrated FIG.
 上記微粒子は、通常、高屈折率層に接するものである。ここで、高屈折率層と接するとは、微粒子が高屈折率層と直接接する状態に限定されず、本開示のプラズモン共鳴積層体に対して微粒子側から可視光を照射して観察した場合と、透明基材側から可視光を照射して観察した場合とで、異なる色の発色を視認可能な程度の薄さで微粒子および高屈折率層の間にバインダ層が配置されるものも含むものである。 The fine particles are usually in contact with the high refractive index layer. Here, being in contact with the high refractive index layer is not limited to the state in which the fine particles are in direct contact with the high refractive index layer, and when the plasmon resonance laminate of the present disclosure is observed by irradiating visible light from the fine particle side. In addition, it includes a case where a binder layer is disposed between the fine particles and the high refractive index layer with such a thin thickness that it is possible to visually recognize the development of different colors, when observed by irradiating visible light from the transparent substrate side. .
 上記微粒子が高屈折率層と接する状態である場合の、微粒子および高屈折率層の間隔としては、例えば、10nm以下とすることができ、なかでも、5nm以下であることが好ましく、特に、2nm以下であることが好ましく、0nmであること、すなわち、微粒子の透明基材側の表面が高屈折率層と直接接していることが好ましい。上記間隔が、上述の範囲であることにより、上記バインダ層は、微粒子表裏間の屈折率差を安定的に大きくすることができるからである。また、その結果、本開示のプラズモン共鳴積層体は、微粒子側から可視光を照射した場合と、透明基材側から可視光を照射した場合とで、異なる色の発色を安定的に表示可能なものとなり、意匠性、偽造防止性等の付与が容易なものとなるからである。なお、微粒子および高屈折率層の間隔は、具体的には、既に説明した図2中のcで示されるものである。 When the fine particles are in contact with the high refractive index layer, the distance between the fine particles and the high refractive index layer can be, for example, 10 nm or less, preferably 5 nm or less, particularly 2 nm. The following is preferable, and it is preferably 0 nm, that is, it is preferable that the surface of the fine particle on the transparent substrate side is in direct contact with the high refractive index layer. It is because the said binder layer can enlarge the refractive index difference between fine particle front and back stably because the said space | interval is the above-mentioned range. As a result, the plasmon resonance laminated body of the present disclosure can stably display different colors when irradiated with visible light from the fine particle side and when irradiated with visible light from the transparent substrate side. This is because it becomes easy to impart design properties, anti-counterfeiting properties, and the like. The distance between the fine particles and the high refractive index layer is specifically shown by c in FIG.
 上記バインダ層内に分散される微粒子の密度としては、例えば、照射された光のうち特定波長の光を所望の強度で散乱可能なものであればよく、10個/cm以上1010個/cm以下の範囲内とすることができる。 The density of the fine particles to be dispersed in the binder layer, for example, may be any light of a specific wavelength of irradiated light as it can be scattered on a desired strength, 10 10 10 5 / cm 2 or more / Cm 2 or less.
 上記バインダ層内に分散される微粒子同士の間隔としては、1種類の間隔、すなわち、等間隔で配置されるものであってもよいが、ランダムに配置され、上記間隔が2種類以上となるものであってもよい。 The interval between the fine particles dispersed in the binder layer may be one type of interval, that is, one that is arranged at equal intervals, but is randomly arranged and the interval becomes two or more types. It may be.
(2)バインダ層
 本開示におけるバインダ層は、上記高屈折率層の上記透明基材とは反対側の面に配置され、バインダ剤を含むものである。また、バインダ層は、バインダ部の粒子以外の部位である。
(2) Binder Layer The binder layer in the present disclosure is disposed on the surface of the high refractive index layer opposite to the transparent substrate and includes a binder agent. The binder layer is a part other than the particles in the binder part.
(a)バインダ剤
 バインダ剤としては、上述の状態で微粒子を分散して保持可能なものであればよい。このようなバインダ剤としては、非揮発性であり、表面張力の低い材料を用いることができる。
(A) Binder Agent Any binder agent may be used as long as the fine particles can be dispersed and held in the above-described state. As such a binder agent, a non-volatile material having a low surface tension can be used.
 ここで、非揮発性であるとは、常温常圧(25℃、大気圧)で、揮発しないものであればよく、より具体的には、沸点が、100℃以上であるものとすることができ、なかでも150℃以上であるものが好ましい。 Here, the term “nonvolatile” means any material that is normal temperature and normal pressure (25 ° C., atmospheric pressure) and does not volatilize. More specifically, the boiling point is 100 ° C. or higher. Among them, those having a temperature of 150 ° C. or higher are preferable.
 また、表面張力とは、単位面積の表面を作り出すのに必要なエネルギー(単位はmN/m、もしくはmJ/m)をいい、表面分子が受ける内方に引かれる力の指標となるものである。ひとかたまりの物質の内部にある一部が新たな表面を形成した場合に増加する系の単位面積当たりのエネルギーをいうものである。 Surface tension refers to the energy (unit is mN / m or mJ / m 2 ) required to create a surface with a unit area and is an index of the force attracted by the surface molecules. is there. This is the energy per unit area of the system that increases when a part of a mass of material forms a new surface.
 上記バインダ剤の表面張力としては、例えば、80mN/m以下とすることができ、6mN/m以上73mN/m以下の範囲内であることが好ましく、なかでも、15mN/m以上50mN/m以下の範囲内であることが好ましい。上記表面張力が上述の範囲内であることにより、高屈折率層に対して厚みの薄い薄膜を安定的に形成でき、上述の状態で微粒子を分散可能なバインダ層を安定的に形成できるからである。 The surface tension of the binder agent can be, for example, 80 mN / m or less, and is preferably in the range of 6 mN / m to 73 mN / m, and more preferably 15 mN / m to 50 mN / m. It is preferable to be within the range. Because the surface tension is within the above range, a thin thin film can be stably formed with respect to the high refractive index layer, and a binder layer capable of dispersing fine particles in the above state can be stably formed. is there.
 なお、バインダ剤が液体状態である場合には、表面張力の測定方法としては、たとえば、特開2016-41790号公報に記載の表面自由エネルギーの測定方法を用いることができる。 When the binder agent is in a liquid state, for example, a surface free energy measuring method described in JP-A-2016-41790 can be used as a surface tension measuring method.
 また、バインダ剤が固体状態である場合には、表面張力(表面自由エネルギー)の測定方法は、例えば、試薬に純水、ヨウ化メチレン、α-ブロモナフタレンのバインダ剤表面への接触角を測定し、拡張Forkes理論により求める方法を用いることができる。具体的には、特開2014-98910号公報に記載の表面自由エネルギーの測定方法を用いることができる。 When the binder agent is in a solid state, the surface tension (surface free energy) is measured, for example, by measuring the contact angle of pure water, methylene iodide or α-bromonaphthalene as a reagent to the surface of the binder agent. However, a method obtained by the extended Forkes theory can be used. Specifically, the surface free energy measuring method described in JP-A-2014-98910 can be used.
 さらに、バインダ剤の表面張力の測定対象は、バインダ層に含まれるバインダ剤の状態で測定されるものである。例えば、バインダ剤が2種類以上のバインダ剤の混合物としてバインダ層中に含有される場合には、測定対象は混合物であり、バインダ剤がバインダ層中に重合状態で含有される場合には、測定対象はバインダ剤の重合物である。より具体的には、バインダ剤として樹脂材料およびシリコーン系化合物の混合物がバインダ層中に含有される場合には、上記測定対象は上記樹脂材料およびシリコーン系化合物の混合物であり、バインダ剤としてシリコーン系化合物の重合物がバインダ層中に含有される場合には、上記測定対象は上記シリコーン系化合物の重合物である。なお、測定対象が重合物である場合の表面張力の測定方法としては、微粒子を含まない組成物、例えば、モノマー成分および必要に応じて他のバインダ剤を含むバインダ成分と、重合開始剤とを含む組成物の塗膜を形成し、次いで、塗膜中のモノマー成分を重合して測定用バインダ層を形成する方法を用いることができる。 Furthermore, the measurement target of the surface tension of the binder agent is measured in the state of the binder agent contained in the binder layer. For example, when the binder agent is contained in the binder layer as a mixture of two or more binder agents, the measurement object is a mixture, and when the binder agent is contained in the binder layer in a polymerized state, measurement is performed. The object is a polymer of a binder agent. More specifically, when a mixture of a resin material and a silicone compound is contained in the binder layer as the binder agent, the measurement object is a mixture of the resin material and the silicone compound, and the silicone agent is used as the binder agent. When the polymer of the compound is contained in the binder layer, the measurement object is a polymer of the silicone compound. In addition, as a measuring method of the surface tension when the measurement object is a polymer, a composition not containing fine particles, for example, a binder component containing a monomer component and other binder agent as required, and a polymerization initiator are used. A method of forming a measurement binder layer by forming a coating film of the composition containing the composition and then polymerizing the monomer components in the coating film can be used.
 上記バインダ剤として使用可能な、非揮発性であり、表面張力の低い材料としては、具体的には、シリコーン系化合物、フッ素系化合物等を挙げることができる。本開示においては、上記バインダ剤が、シリコーン系化合物およびフッ素系化合物の少なくとも一方を含むことが好ましい。上記バインダ剤を用いることで、微粒子の状態が上述の状態であるバインダ層を容易に形成することができるからである。また、上記バインダ剤は、シリコーン系化合物およびフッ素系化合物をそれぞれ単独で用いるものであってもよいが、両者の混合物であってもよい。 Specific examples of the non-volatile material having a low surface tension that can be used as the binder agent include silicone compounds and fluorine compounds. In the present disclosure, the binder agent preferably contains at least one of a silicone compound and a fluorine compound. This is because by using the binder agent, a binder layer in which the fine particles are in the above-described state can be easily formed. The binder agent may be a silicone compound and a fluorine compound, respectively, or a mixture of both.
 以下、本開示において用いられるシリコーン系化合物およびフッ素系化合物について説明する。 Hereinafter, the silicone compound and the fluorine compound used in the present disclosure will be described.
(i)シリコーン系化合物
 シリコーン系化合物としては、シロキサン結合(-Si-O-)を有し、nが1以上であるポリシロキサン構造を骨格として有する化合物を用いることができる。上記シリコーン系化合物は、ポリシロキサン構造を構成するケイ素の側鎖または末端にメチル基、フェニル基および水素の少なくとも1種が結合したものとすることができる。具体的には、上記シリコーン系化合物としては、ポリシロキサン構造の側鎖および末端の全てがメチル基であるジメチルシリコーン、側鎖の一部がフェニルであるメチルフェニルシリコーン、側鎖の一部が水素であるメチルハイドロジェンシリコーン等を用いることができる。
(I) Silicone Compound As the silicone compound, a compound having a siloxane bond (—Si—O—) n and a polysiloxane structure in which n is 1 or more as a skeleton can be used. The silicone compound may be one in which at least one of a methyl group, a phenyl group and hydrogen is bonded to the side chain or terminal of silicon constituting the polysiloxane structure. Specifically, the silicone compound includes dimethyl silicone in which all of the side chains and terminals of the polysiloxane structure are methyl groups, methyl phenyl silicone in which part of the side chains are phenyl, and part of the side chains are hydrogen. The methyl hydrogen silicone etc. which are can be used.
 上記シリコーン系化合物は、ポリシロキサン構造を構成するケイ素の側鎖または末端に有機基を導入した変性シリコーンも用いることができる。上記変性シリコーンとしては、有機基として反応性官能基を有する反応性変性シリコーンや、有機基として非反応性官能基を有する非反応性変性シリコーン等を挙げることができる。 As the silicone compound, a modified silicone having an organic group introduced into the side chain or terminal of silicon constituting the polysiloxane structure can also be used. Examples of the modified silicone include reactive modified silicone having a reactive functional group as an organic group, and non-reactive modified silicone having a non-reactive functional group as an organic group.
 上記反応性官能基としては、所望の反応性をシリコーン系化合物に付与可能なものであればよく、例えば、変性シリコーン同士を共有結合により架橋可能な官能基としては、ビニル基、スチリル基、メタクリル基およびアクリル基等の重合性基や、アミノ基、エポキシ基、カルビノール基及びカルボキシル基等を挙げることができる。 The reactive functional group is not particularly limited as long as the desired reactivity can be imparted to the silicone compound. For example, the functional group capable of crosslinking the modified silicones with each other through a covalent bond includes a vinyl group, a styryl group, and a methacrylic group. And a polymerizable group such as a group and an acrylic group, an amino group, an epoxy group, a carbinol group, and a carboxyl group.
 また、上記非反応性官能基としては、例えば、変性シリコーン同士の水素結合等による相互作用を発揮可能な官能基とすることができ、例えば、ポリエーテル基、アラルキル基、長鎖アルキル基、高級脂肪酸エステル基及びフェノール基等を挙げることができる。 The non-reactive functional group can be, for example, a functional group capable of exhibiting an interaction due to hydrogen bonding between modified silicones, for example, a polyether group, an aralkyl group, a long-chain alkyl group, a higher chain. Examples include fatty acid ester groups and phenol groups.
 さらに、シリコーン系化合物は、シロキサン結合が直鎖状に結合した構造を有する直鎖状シリコーンや、シロキサン結合が三次元網目構造を有する網目状シリコーンを使用することができる。 Furthermore, as the silicone compound, a linear silicone having a structure in which siloxane bonds are linearly bonded, or a network silicone in which a siloxane bond has a three-dimensional network structure can be used.
 さらにまた、網目状シリコーンとしては、シリコーン系化合物が重合性基等の反応性官能を有するものである場合、反応性官能基同士が結合することで形成された三次元網目構造を有する架橋物も用いることができる。 Furthermore, as the network silicone, when the silicone compound has a reactive function such as a polymerizable group, a crosslinked product having a three-dimensional network structure formed by bonding of the reactive functional groups to each other is also included. Can be used.
 なかでも、本開示においては、上記シリコーン系化合物が、網目状シリコーンであることが好ましい。バインダ剤としてのシリコーン系化合物は、微粒子を安定的に保持可能となるからである。 Among these, in the present disclosure, the silicone compound is preferably a network silicone. This is because the silicone-based compound as the binder agent can stably hold the fine particles.
 このようなシリコーン系化合物としては、その性状によって様々なものを使用することができるが、例えば、シリコーン系界面活性剤、シリコーンオイル、シリコーンオリゴマー、シリコーンレジンおよびこれらが有する反応性官能基同士が結合した架橋物等を挙げることができる。 Various types of silicone compounds can be used depending on their properties. For example, silicone surfactants, silicone oils, silicone oligomers, silicone resins, and reactive functional groups possessed by these are bonded to each other. Can be mentioned.
 上記シリコーン系化合物は、1種類を単独で用いるものであってもよいが、2種類以上の混合物であってもよい。 The above silicone compounds may be used alone or as a mixture of two or more.
 上記シリコーン系界面活性剤としては、界面活性能を有するものであればよく、例えば、直鎖状シリコーン等を用いることができ、ポリシロキサン構造を構成するケイ素の側鎖または末端に親水性基としてポリエーテル基やアミノ基等が結合したもの、具体的には、ポリエーテル変性シリコーンオイル、アミノ変性シリコーンオイル等を挙げることができ、なかでも、ポリエーテル変性シリコーンオイル等であることが好ましい。上記シリコーン系界面活性剤は、微粒子を安定的に保持可能となるからである。 The silicone-based surfactant is not particularly limited as long as it has a surface-active ability. For example, a linear silicone can be used as a hydrophilic group on the side chain or terminal of silicon constituting the polysiloxane structure. Specific examples include those having a polyether group or amino group bonded thereto, specifically, polyether-modified silicone oil, amino-modified silicone oil, and the like. Among these, polyether-modified silicone oil is preferable. This is because the silicone-based surfactant can stably hold the fine particles.
 上記シリコーンオイルとしては、例えば、直鎖状シリコーン等を用いることができ、具体的には、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、反応性変性シリコーンオイル、非反応性変性シリコーンオイル等を挙げることができ、なかでも、反応性変性シリコーンオイル等であることが好ましい。上記反応性変性シリコーンオイルは、例えば、反応性官能基同士で架橋した架橋物としてバインダ層中に含有されることが可能であり、微粒子を安定的に保持可能となるからである。 As the silicone oil, for example, linear silicone can be used, and specifically, dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, reactive modified silicone oil, non-reactive modified silicone. An oil etc. can be mentioned, Especially, it is preferable that it is a reactive modified silicone oil etc. This is because the reactive modified silicone oil can be contained in the binder layer as a cross-linked product cross-linked with reactive functional groups, for example, and the fine particles can be stably retained.
 上記シリコーンレジン(シリコーンモノマーの重合体)としては、例えば、シロキサン結合が三次元網目構造を有するものを用いることができ、具体的には、ジメチルシリコーンレジン、メチルフェニルシリコーンレジンや、アルキッド樹脂変性シリコーンレジン等の有機樹脂変性シリコーンレジン、ポリエーテル変性シリコーンレジン等を挙げることができ、なかでも、メチルシリコーンレジン、メチルフェニルシリコーンレジン等であることが好ましい。上記シリコーン系レジンは、微粒子を安定的に保持可能となるからである。 As the silicone resin (silicone monomer polymer), for example, a siloxane bond having a three-dimensional network structure can be used. Specifically, dimethyl silicone resin, methylphenyl silicone resin, alkyd resin-modified silicone, and the like can be used. An organic resin-modified silicone resin such as a resin, a polyether-modified silicone resin, and the like can be given. Among them, a methyl silicone resin, a methylphenyl silicone resin, and the like are preferable. This is because the silicone resin can stably hold fine particles.
 なお、有機樹脂変性シリコーンは、有機基として、有機樹脂が結合したものであり、有機樹脂としては、例えば、ポリエステル樹脂、アルキッド樹脂、エポキシ樹脂等を挙げることができる。 The organic resin-modified silicone is obtained by bonding an organic resin as an organic group, and examples of the organic resin include a polyester resin, an alkyd resin, and an epoxy resin.
 上記シリコーンオリゴマーとしては、具体的には、非反応性アルコキシシリコーンオリゴマー、反応性官能基含有アルコキシシリコーンオリゴマー、反応性官能基含有シリコーンオリゴマー等を挙げることができ、なかでも、反応性官能基含有アルコキシシリコーンオリゴマー、反応性官能基含有シリコーンオリゴマーであることが好ましい。上記反応性官能基を含有する反応性変性シリコーンオリゴマーは、例えば、反応性官能基同士で架橋した架橋物としてバインダ層中に含有されることが可能であり、微粒子を安定的に保持可能となるからである。 Specific examples of the silicone oligomer include non-reactive alkoxysilicone oligomers, reactive functional group-containing alkoxysilicone oligomers, reactive functional group-containing silicone oligomers, etc. Among them, reactive functional group-containing alkoxy Silicone oligomers and reactive functional group-containing silicone oligomers are preferred. The reactive modified silicone oligomer containing the reactive functional group can be contained, for example, in the binder layer as a cross-linked product obtained by cross-linking reactive functional groups, and can stably hold fine particles. Because.
 なお、シリコーンオリゴマーは、シリコーンモノマーの2量体、3量体から分子量1000程度のものを指すものであり、例えば、三次元網目構造を有する比較的低分子のシリコーンレジン等を用いることができる。 The silicone oligomer refers to a dimer or trimer of a silicone monomer having a molecular weight of about 1000. For example, a relatively low molecular silicone resin having a three-dimensional network structure can be used.
 また、非反応性アルコキシシリコーンオリゴマーは、反応性官能基を含有せず、さらに、ポリシロキサン構造を構成するケイ素の側鎖または末端にアルコキシ基が結合したものであり、反応性官能基含有アルコキシシリコーンオリゴマーでは、側鎖または末端を用い反応性官能基およびアルコキシ基が結合したものとすることができる。 The non-reactive alkoxysilicone oligomer does not contain a reactive functional group, and further has an alkoxy group bonded to the side chain or terminal of silicon constituting the polysiloxane structure. In the oligomer, a reactive functional group and an alkoxy group may be bonded using a side chain or a terminal.
(ii)フッ素系化合物
 上記フッ素系化合物としては、フッ素を有する化合物であればよいが、例えば、炭化水素基中の水素原子の全て或いは一部をフッ素原子に置換したパーフルオロアルキル基(-CF-)等の含フッ素基を有するものを用いることができる。なお、パーフルオロアルキル基の炭素数nについては、1以上であればよく、微粒子を上述の状態で分散可能な範囲内で適宜設定することができ、フッ素系化合物の分子量等に応じて調整されるものである。パーフルオロアルキル基については、例えば、炭素数nが、30以下のものを使用することができる。
(Ii) Fluorine compound The fluorine compound may be any compound having fluorine. For example, a perfluoroalkyl group (—CF 3) in which all or part of the hydrogen atoms in the hydrocarbon group are substituted with fluorine atoms. 2- ) Those having a fluorine-containing group such as n can be used. The carbon number n of the perfluoroalkyl group may be 1 or more, and can be appropriately set within a range in which the fine particles can be dispersed in the above-described state, and is adjusted according to the molecular weight of the fluorine-based compound. Is. As the perfluoroalkyl group, for example, those having a carbon number n of 30 or less can be used.
 上記フッ素系化合物は、含フッ素基以外にその他の官能基を有するものであってもよい。上記その他の官能基としては、親油性基、親水性基、紫外線(UV)反応性基や、酸性基の塩を有するものであってもよい。 The fluorine compound may have other functional groups in addition to the fluorine-containing group. As said other functional group, you may have a lipophilic group, a hydrophilic group, an ultraviolet-ray (UV) reactive group, and the salt of an acidic group.
 上記親油性基としては、フッ素系化合物の親油性を向上可能なものであればよく、例えば、アルキル基、フェニル基、シロキサン基等を挙げることができる。 The lipophilic group is not particularly limited as long as it can improve the lipophilicity of the fluorine-based compound, and examples thereof include an alkyl group, a phenyl group, and a siloxane group.
 上記親水性基としては、フッ素系化合物の親水性を向上可能なものであればよく、例えば、エチレンオキサイド基、アミド基、ケトン基、カルボキシル基、スルホン基、アルコキシ基、リン酸基等を挙げることができる。 The hydrophilic group is not particularly limited as long as it can improve the hydrophilicity of the fluorine-based compound. Examples thereof include an ethylene oxide group, an amide group, a ketone group, a carboxyl group, a sulfone group, an alkoxy group, and a phosphoric acid group. be able to.
 上記UV反応性基については、紫外線により重合可能なものであればよく、例えば、上記「(a)シリコーン系化合物」の項に記載の重合性基と同様とすることができる。 The UV-reactive group is not particularly limited as long as it can be polymerized by ultraviolet rays. For example, the UV-reactive group can be the same as the polymerizable group described in the section “(a) Silicone compound”.
 上記酸性基としては、水中で酸性を示すことができるものであればよく、例えば、カルボキシル基、スルホン基、リン酸等を挙げることができ、その塩としては、ナトリウム塩、カリウム塩等を挙げることができる。 The acid group is not particularly limited as long as it can exhibit acidity in water, and examples thereof include a carboxyl group, a sulfone group, and phosphoric acid. Examples of the salt include sodium salt and potassium salt. be able to.
 また、上記フッ素系化合物としては、パーフルオロアルキル基がエーテル結合により結合されたパーフルオロエーテルも用いることができる。上記フッ素系化合物は、UV反応性基を有する場合には、UV反応性基同士が結合した三次元網目構造を有する架橋物であってもよい。 Further, as the fluorine-based compound, perfluoroether in which perfluoroalkyl groups are bonded by an ether bond can also be used. When the fluorine-based compound has a UV reactive group, it may be a cross-linked product having a three-dimensional network structure in which the UV reactive groups are bonded to each other.
 このようなフッ素系化合物としては、その性状によって様々なものを使用することができるが、例えば、フッ素系界面活性剤、フッ素系コーティング剤等を挙げることができ、その他のものとしてフッ素系液体等を挙げることができる。上記フッ素系化合物は、1種類を単独で用いるものであってもよいが、2種類以上の混合物であってもよい。なかでも、本開示においては、上記フッ素系化合物が、フッ素系界面活性剤であることが好ましい。上記フッ素系界面活性剤は、微粒子を安定的に保持可能となるからである。 As such a fluorine-based compound, various compounds can be used depending on the properties thereof, and examples thereof include a fluorine-based surfactant, a fluorine-based coating agent, etc., and others include a fluorine-based liquid, etc. Can be mentioned. Although the said fluorine-type compound may be used individually by 1 type, two or more types of mixtures may be sufficient as it. In particular, in the present disclosure, the fluorine compound is preferably a fluorine surfactant. This is because the fluorosurfactant can stably hold fine particles.
 上記フッ素系界面活性剤としては、具体的には、PFOS(パーフルオロアルキルスルホン酸)、PFOA(パーフルオロアルキルカルボン酸)、フッ素テロマーアルコール(F(CFCHCHOH、nは1以上の整数)、ヘキサフルオロプロペン(HFP)トリマー誘導体、パーフルオロブタンスルホン酸塩(DIC社製メガファックF-114)、含フッ素基・親油性基含有オリゴマー(DIC社製メガファックF-251、F-253、F-281、F-551、F-552、F-554、F-558、F-560、F-561、F-563、R-41、R-43)、パーフルオロアルキル基含有カルボン酸塩(DIC社製メガファックF-410)、含フッ素基・親水性基含有オリゴマー(DIC社製メガファックF-430、F-569、EXP・TF-1540)、パーフルオロアルキルエチレンオキシド付加物(DIC社製メガファックF-444、EXP・TF-2066)、含フッ素基・親水性・親油性基含有オリゴマー(DIC社製メガファックF-477、F-553、F-555、F-556、F-557、F-559、F-562、F-565、F-568、F-571、R-40、R-40-LM、EXP・TF-1760)、パーフルオロアルキル基含有リン酸エステル型アミン中和物(DIC社製メガファックF-511、EXP・TF-2149)、含フッ素基・親水性基・親油性基・カルボキシル基含有オリゴマー、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー(DIC社製メガファックRS-55、RS-56、RS-72-K、RS-75、RS-76-E、RS-76-NS、RS-77、RS-78、RS-90)等を挙げることができ、なかでも、含フッ素基・親水性基・親油性基・UV反応性基含有オリゴマー等であることが好ましい。上記フッ素系界面活性剤は、例えば、反応性官能基同士で架橋した架橋物としてバインダ層中に含有されることが可能であり、微粒子を安定的に保持可能となるからである。 Specific examples of the fluorine-based surfactant include PFOS (perfluoroalkyl sulfonic acid), PFOA (perfluoroalkyl carboxylic acid), fluorine telomer alcohol (F (CF 2 ) n CH 2 CH 2 OH, n is 1 or more integers), hexafluoropropene (HFP) trimer derivative, perfluorobutane sulfonate (Megafac F-114 manufactured by DIC), fluorine-containing / lipophilic group-containing oligomer (Megafac F-251 manufactured by DIC) F-253, F-281, F-551, F-552, F-554, F-558, F-560, F-561, F-563, R-41, R-43), perfluoroalkyl groups Containing carboxylate (Megafac F-410 made by DIC), fluorinated group / hydrophilic group-containing oligomer (Megafac made by DIC) -430, F-569, EXP.TF-1540), perfluoroalkylethylene oxide adduct (Megafac F-444, EXP.TF-2066, manufactured by DIC), fluorine-containing group / hydrophilic / lipophilic group-containing oligomer ( DIC MegaFuck F-477, F-553, F-555, F-556, F-557, F-559, F-562, F-565, F-568, F-571, R-40, R -40-LM, EXP.TF-1760), perfluoroalkyl group-containing phosphoric acid ester type amine neutralized product (Megafac F-511, EXP.TF-2149, manufactured by DIC), fluorine-containing group, hydrophilic group, Lipophilic group / carboxyl group-containing oligomer, fluorine-containing group / hydrophilic group / lipophilic group / UV-reactive group-containing oligomer (Megafac RS-55, RS manufactured by DIC) -56, RS-72-K, RS-75, RS-76-E, RS-76-NS, RS-77, RS-78, RS-90), among others, fluorine-containing groups -It is preferably a hydrophilic group, lipophilic group, UV-reactive group-containing oligomer or the like. This is because the fluorosurfactant can be contained in the binder layer as a cross-linked product cross-linked with reactive functional groups, for example, and the fine particles can be stably retained.
 上記フッ素系コーティング剤としては、具体的には、変性パーフルオロエーテル等を挙げることができる。 Specific examples of the fluorine-based coating agent include modified perfluoroether.
 上記フッ素系液体としては、具体的には、ハイドロフルオロエーテル等を挙げることができる。ハイドロフルオロエーテルについては、例えば、特開2015-129249号公報に記載の分離型ハイドロフルオロエーテル、非分離型ハイドロフルオロエーテル等を用いることができる。 Specific examples of the fluorinated liquid include hydrofluoroether. As the hydrofluoroether, for example, a separated hydrofluoroether or a non-separable hydrofluoroether described in JP-A-2015-129249 can be used.
(iii)その他
 上記バインダ剤は、シリコーン系化合物およびフッ素系化合物の少なくとも一方を含むものとすることができ、シリコーン系化合物およびフッ素系化合物の少なくとも一方のみを含むものであってもよいが、必要に応じて、シリコーン系化合物およびフッ素系化合物以外の樹脂材料を含むものであってもよい。すなわち、バインダ剤は、シリコーン系化合物およびフッ素系化合物の少なくとも一方と、樹脂材料との混合物であってもよい。
(Iii) Others The binder agent may contain at least one of a silicone compound and a fluorine compound, and may contain only at least one of a silicone compound and a fluorine compound. In addition, a resin material other than the silicone compound and the fluorine compound may be included. That is, the binder agent may be a mixture of at least one of a silicone compound and a fluorine compound and a resin material.
 上記樹脂材料としては、シリコーン系化合物およびフッ素系化合物以外の樹脂、すなわち、シロキサン結合を含まず、さらに、パーフルオロアルキル基等のフッ素含有基を含まないものであればよく、公知の樹脂材料を用いることができる。具体的には、上記樹脂材料としては、上述の状態で微粒子を分散可能なバインダ層を形成可能なものであればよく、アクリル樹脂、ウレタンアクリル樹脂、エポキシ樹脂等を挙げることができる。 The resin material may be any resin other than a silicone compound and a fluorine compound, that is, any resin that does not contain a siloxane bond and does not contain a fluorine-containing group such as a perfluoroalkyl group. Can be used. Specifically, the resin material is not particularly limited as long as it can form a binder layer capable of dispersing fine particles in the above-described state, and examples thereof include acrylic resins, urethane acrylic resins, and epoxy resins.
 上記樹脂材料のバインダ剤中の含有量としては、上述の状態で微粒子を分散可能なバインダ層を形成可能な範囲内で適宜設定することができる。 The content of the resin material in the binder agent can be appropriately set within a range in which a binder layer capable of dispersing fine particles in the above-described state can be formed.
 上記バインダ剤のバインダ層中の含有量としては、微粒子を上述の状態で安定的に分散可能なものであればよく、例えば、90質量%以上とすることができ、95質量%以上であることが好ましく、100質量%であることが好ましい。また、上記バインダ剤のバインダ層中の含有量の上限としては、通常、多いほど好ましいが、添加剤等によりバインダ層の機能の調整等の容易の観点から、99質量%以下とすることができる。なお、バインダ層中の含有量とは、バインダ層のうち微粒子を含まない箇所における含有量をいうものである。 The content of the binder agent in the binder layer is not particularly limited as long as the fine particles can be stably dispersed in the above-described state, and can be, for example, 90% by mass or more, and 95% by mass or more. Is preferable, and it is preferable that it is 100 mass%. In addition, the upper limit of the content of the binder agent in the binder layer is usually preferably as large as possible, but can be 99% by mass or less from the viewpoint of easy adjustment of the function of the binder layer by using an additive or the like. . In addition, content in a binder layer means content in the location which does not contain microparticles | fine-particles among binder layers.
(b)バインダ層
 上記バインダ層は、バインダ剤を含むものであるが、必要に応じてその他の成分を含むものであってもよい。このようなその他の成分としては、重合開始剤、重合禁止剤、増感剤、架橋剤、可塑剤、難燃剤、帯電制御剤、熱安定剤、光安定剤、導電剤、防腐剤、消泡剤、防錆剤、酸化防止剤、蛍光剤、蛍光増白剤、近赤外吸収剤、紫外吸収剤、乳化剤等を挙げることができる。
(B) Binder layer Although the said binder layer contains a binder agent, it may contain another component as needed. Such other components include polymerization initiators, polymerization inhibitors, sensitizers, crosslinking agents, plasticizers, flame retardants, charge control agents, thermal stabilizers, light stabilizers, conductive agents, preservatives, antifoaming agents. Agents, rust inhibitors, antioxidants, fluorescent agents, fluorescent brighteners, near infrared absorbers, ultraviolet absorbers, emulsifiers and the like.
 また、バインダ剤が、モノマー成分の重合体である場合、例えば、バインダ剤としてのモノマー成分、微粒子および分散媒を含むバインダ部形成用組成物を高屈折率層表面に塗布した後、その塗膜内のモノマー成分同士を重合することで上記バインダ層が形成されたものである場合には、上記その他の成分として、モノマー成分の重合に用いた重合開始剤やその残渣等を含むものであってもよい。 In the case where the binder agent is a polymer of monomer components, for example, after coating the binder part forming composition containing the monomer component, fine particles and dispersion medium as the binder agent on the surface of the high refractive index layer, the coating film In the case where the binder layer is formed by polymerizing the monomer components, the polymerization initiator used for the polymerization of the monomer component and the residue thereof are included as the other components. Also good.
 バインダ層の平面視形状は、高屈折率層の全面を覆う形状であってもよいが、意匠性、偽造防止性を付与するとの観点から、絵柄や文字等のパターン形状であることが好ましい。上記平面視形状であることで、バインダ層内に分散された微粒子により、プラズモン共鳴積層体への意匠性等の付与が容易だからである。パターン形状としては、ドット状、ライン状等とすることができる。また、ドット状としては、円形状、四角形状等の任意の形状とすることができる。また、上記平面視形状は、記号、文字等を表わすものとすることができる。上記平面視形状は、例えば、ライン状のバインダ層を用いて文字等を表わすものとしたり、ドット状のバインダ層を用いて文字等を表わすものであってもよい。また、既に説明した図1および図2は、上記バインダ層3の平面視形状が、高屈折率層2の全面を覆う形状である例を示すものであり、図4は、上記バインダ層3の平面視形状がライン状のバインダ層3を用いて文字を表すものである例を示すものである。なお、図4は、本開示のプラズモン共鳴積層体の他の例を示す概略平面図であり、説明の容易のため、バインダ層3内に分散される微粒子の記載を省略するものである。また、図4は、上記平面視形状が、数字の「123」を表わす形状である例を示すものである。 The planar view shape of the binder layer may be a shape covering the entire surface of the high refractive index layer, but is preferably a pattern shape such as a pattern or a character from the viewpoint of providing designability and anti-counterfeiting properties. This is because the shape in plan view makes it easy to impart designability and the like to the plasmon resonance laminate by the fine particles dispersed in the binder layer. The pattern shape may be a dot shape, a line shape, or the like. The dot shape may be any shape such as a circular shape or a square shape. The planar view shape may represent a symbol, a character, or the like. For example, the shape in plan view may represent a character or the like using a line-shaped binder layer, or may represent a character or the like using a dot-shaped binder layer. 1 and 2 which have already been described show an example in which the planar view shape of the binder layer 3 covers the entire surface of the high refractive index layer 2, and FIG. The example which shows a character using the binder layer 3 of a line shape in planar view is shown. FIG. 4 is a schematic plan view showing another example of the plasmon resonance laminated body of the present disclosure, and the description of fine particles dispersed in the binder layer 3 is omitted for easy explanation. FIG. 4 shows an example in which the planar view shape represents the number “123”.
 上記バインダ層の厚みとしては、上述の状態で微粒子を分散可能なものであればよく、分散する微粒子のサイズ等に応じて異なるものであり、例えば、1nm以上200nm以下の範囲内とすることができる。 The thickness of the binder layer is not particularly limited as long as the fine particles can be dispersed in the above-described state, and varies depending on the size of the fine particles to be dispersed. For example, the thickness may be in the range of 1 nm to 200 nm. it can.
(3)微粒子
 上記微粒子は、バインダ部に含まれるものであり、上記バインダ層内に分散されるものである。上記微粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴するものである。
(3) Fine particles The fine particles are contained in the binder portion and are dispersed in the binder layer. The fine particles include a negative dielectric material and plasmon resonate with visible light.
 ここで、可視光に対してプラズモン共鳴するとは、微粒子に可視光が照射された際に、微粒子の局在表面プラズモン共鳴(局在表面プラズモンポラリトンともいう。)により特定波長の可視光を散乱可能であることをいうものである。 Here, plasmon resonance with respect to visible light means that when visible light is irradiated to the fine particles, visible light having a specific wavelength can be scattered by the localized surface plasmon resonance of the fine particles (also referred to as localized surface plasmon polaritons). It means that.
 また、プラズモン共鳴する可視光(以下、単に光と称する場合がある。)の波長は、微粒子の形状、構成材料等により影響を受けるものである。このため、微粒子は、その形状、構成材料を調整することで、プラズモン共鳴する可視光の波長を調整することができ、白色光が照射された際に特定色として、例えば、赤色、青色、黄色等の光を散乱可能となる。 Also, the wavelength of visible light that resonates with plasmon (hereinafter sometimes simply referred to as light) is affected by the shape of the fine particles, the constituent material, and the like. For this reason, the fine particles can adjust the wavelength of the plasmon-resonant visible light by adjusting the shape and constituent materials. For example, red, blue, yellow can be used as specific colors when irradiated with white light. Etc. can be scattered.
 プラズモン共鳴する光の波長としては、360nm以上830nm以下の範囲内とすることができ、なかでも、400nm以上760nm以下の範囲内であることが好ましい。ヒトの視感度を考慮すると、この範囲内の波長の光が容易に知覚されるからである。 The wavelength of light that causes plasmon resonance can be in the range of 360 nm or more and 830 nm or less, and preferably in the range of 400 nm or more and 760 nm or less. This is because light having a wavelength within this range is easily perceived in consideration of human visibility.
 上記微粒子の平均一次粒径としては、光に対してプラズモン共鳴するものであればよく、例えば、2nm以上200nm以下の範囲内であることが好ましく、なかでも、5nm以上150nm以下の範囲内であることが好ましく、特に、10nm以上100nm以下の範囲内であることが好ましい。上記平均一次粒径が上述の範囲内であることで、上記微粒子は、上記範囲内の波長の光に対してプラズモン共鳴を生じさせやすいからである。上記平均一次粒径の種類は、1種類のみを用いるものに限定されず、2種類以上を用いるものであってもよい。平均一次粒径の種類が2種類以上である場合、例えば、平均一次粒径が100nmの範囲内の微粒子と、平均一次粒径が200nmの微粒子と、を混合して用いることができる。なお、上記平均一次粒径は、微粒子が、負誘電体材料粒子と、その表面を覆う被覆層とを有する場合には、被覆層を含む粒径を有するものである。 The average primary particle size of the fine particles may be any as long as it has plasmon resonance with respect to light, and is preferably in the range of 2 nm to 200 nm, for example, in particular, in the range of 5 nm to 150 nm. In particular, it is preferably in the range of 10 nm to 100 nm. This is because, when the average primary particle size is within the above range, the fine particles easily cause plasmon resonance to light having a wavelength within the above range. The type of the average primary particle size is not limited to one using only one type, and two or more types may be used. When there are two or more types of average primary particle sizes, for example, fine particles having an average primary particle size in the range of 100 nm and fine particles having an average primary particle size of 200 nm can be mixed and used. In addition, the average primary particle size has a particle size including a coating layer when the fine particles have negative dielectric material particles and a coating layer covering the surface thereof.
 上記微粒子の粒度分布としては、上記範囲内の特定の波長帯の光に対してプラズモン共鳴可能となる粒度分布であればよく、例えば、特定色の画像を表示可能とする観点からは、粒度分布が狭いことが好ましい。粒度分布が狭いということは、例えば、累積粒度分布の微粒側から累積50%、累積90%の粒径をD50、D90としたとき、D50に対するD90の比率(D90/D50)という値で評価できる。例えば、D90/D50が2以下であることが好ましく、なかでも1.5以下であることが好ましい。 The particle size distribution of the fine particles may be a particle size distribution that enables plasmon resonance with respect to light in a specific wavelength band within the above range. For example, from the viewpoint of displaying an image of a specific color, the particle size distribution Is preferably narrow. The narrow particle size distribution can be evaluated by the value of the ratio of D90 to D50 (D90 / D50) when the particle size of 50% cumulative and 90% cumulative is D50 and D90 from the fine particle side of the cumulative particle size distribution, for example. . For example, D90 / D50 is preferably 2 or less, and particularly preferably 1.5 or less.
 上記微粒子の形状としては、光に対してプラズモン共鳴するものであればよく、例えば、球形状や円柱形状であってもよいが、三角錐形状、三角柱形状、立方体形状、直方体形状、金平糖形状、円盤形状、その他プレート状の角を有する形状であることが好ましい。上記形状が角を有する形状であることで、上記微粒子は、プラズモン共鳴を生じさせやすいからである。本開示においては、なかでも、上記形状が、立方体形状または直方体形状であることが好ましい。上記形状であることにより、上記微粒子は、プラズモン共鳴を生じやすく、かつ、製造が容易だからである。上記形状の種類は、1種類のみを用いるものに限定されず、2種類以上を用いるものであってもよい。形状の種類が2種類以上である場合、例えば、形状が球形状の微粒子と、形状が立方体形状の微粒子と、を混合して用いることができる。 The shape of the fine particles is not particularly limited as long as it has plasmon resonance with respect to light.For example, a spherical shape or a cylindrical shape may be used. A shape having a disk shape or other plate-like corners is preferable. This is because the fine particles tend to cause plasmon resonance because the shape is a shape having corners. In the present disclosure, it is particularly preferable that the shape is a cubic shape or a rectangular parallelepiped shape. This is because the fine particles tend to cause plasmon resonance and are easy to manufacture because of the shape. The type of the shape is not limited to one using only one type, and two or more types may be used. When there are two or more types of shapes, for example, spherical fine particles and cubic fine particles can be mixed and used.
 上記微粒子に含まれる負誘電体材料は、プラズモン共鳴を得たい特定の波長領域において、誘電率の実部が負である材料である。上記負誘電体材料としては、具体的には、可視光に対しては、金属、金属酸化物や不純物半導体を用いることができる。本開示においては、上記負誘電体材料が金属であることが好ましい。上記構成材料は、可視光に対してプラズモン共鳴が容易だからである。 The negative dielectric material contained in the fine particles is a material having a negative real part of dielectric constant in a specific wavelength region where plasmon resonance is desired. As the negative dielectric material, specifically, for visible light, a metal, a metal oxide, or an impurity semiconductor can be used. In the present disclosure, the negative dielectric material is preferably a metal. This is because the above-described constituent material is easy to perform plasmon resonance with respect to visible light.
 上記金属としては、例えば、銀、金、銅、アルミニウム、プラチナ、パラジウム、アルミニウム等であることが好ましく、なかでも、銀であることが好ましい。上記金属は、可視光領域においてプラズモン共鳴が容易だからである。上記金属酸化物としては、誘電率の実部が負であるものであればよく、例えば、特開2015-194799号公報の透明電極層の形成に用いられる、インジウム錫酸化物(ITO)等の無機導電性材料を挙げることができる。上記不純物半導体としては、例えば、特開2015-232713号公報に記載のものを使用できる。上記負誘電体材料の種類は、1種類のみを用いるものに限定されず、2種類以上を用いるものであってもよい。負誘電体材料の種類が2種類以上である場合、例えば、負誘電体材料として銀を含む微粒子と、負誘電体材料として金を含む微粒子とを混合して用いることができる。 As the metal, for example, silver, gold, copper, aluminum, platinum, palladium, aluminum and the like are preferable, and silver is particularly preferable. This is because the metal can easily perform plasmon resonance in the visible light region. The metal oxide is not particularly limited as long as the real part of the dielectric constant is negative. For example, indium tin oxide (ITO) used for forming the transparent electrode layer of JP-A-2015-194799 is used. An inorganic conductive material can be mentioned. As the impurity semiconductor, for example, those described in JP-A-2015-232713 can be used. The type of the negative dielectric material is not limited to one using only one type, and two or more types may be used. When there are two or more types of negative dielectric materials, for example, fine particles containing silver as the negative dielectric material and fine particles containing gold as the negative dielectric material can be mixed and used.
 上記微粒子は、負誘電体材料を主成分として含まれるものである。ここで、主成分として含まれるとは、微粒子が、可視光に対してプラズモン共鳴可能な程度に含まれるものとすることができ、例えば、微粒子中に80質量%以上含まれるものとすることができる。本開示においては、なかでも、負誘電体材料が、微粒子中に90質量%以上含まれることが好ましく、特に、95質量%以上含まれることが好ましい。また、上記負誘電体材料の微粒子中の含有量については、100質量%、すなわち、微粒子が負誘電体材料のみからなるものであってもよいが、100質量%未満であってもよい。すなわち、上記微粒子は、負誘電体材料を含むものであるが、必要に応じてその他の材料を含むものであってもよい。例えば、微粒子は、負誘電体材料粒子の表面が被覆層により覆われるもの、すなわち、微粒子が、負誘電体材料粒子の表面を覆う材料を含むものであってもよい。上記微粒子が被覆層により覆われるものであることにより、微粒子は、凝集の抑制等を図ることができるからである。 The fine particles contain a negative dielectric material as a main component. Here, being contained as the main component means that the fine particles can be contained to such an extent that plasmon resonance can be performed with respect to visible light. For example, the fine particles are contained in an amount of 80% by mass or more. it can. In the present disclosure, among them, the negative dielectric material is preferably contained in the fine particles in an amount of 90% by mass or more, and particularly preferably 95% by mass or more. Further, the content of the negative dielectric material in the fine particles may be 100% by mass, that is, the fine particles may be composed of only the negative dielectric material, but may be less than 100% by mass. That is, the fine particles include a negative dielectric material, but may include other materials as necessary. For example, the fine particles may be those in which the surface of the negative dielectric material particles is covered with a coating layer, that is, the fine particles include a material that covers the surface of the negative dielectric material particles. This is because the fine particles can be prevented from being aggregated by being covered with the coating layer.
 上記被覆層を構成する材料としては、負誘電体材料からなる微粒子の表面に結合可能な樹脂材料を用いることができ、例えば、ポリエチレングリコール(PEG)、PEG誘導体、ポリビニルピロリドン(PVP)、クエン酸イオン、炭酸イオン、α-リポ酸、分岐ポリエチレンイミン(BPEI)、シリカ、シリカ誘導体、アルキルチオール等を挙げることができる。 As the material constituting the coating layer, a resin material capable of binding to the surface of fine particles made of a negative dielectric material can be used. For example, polyethylene glycol (PEG), PEG derivative, polyvinyl pyrrolidone (PVP), citric acid Examples thereof include ions, carbonate ions, α-lipoic acid, branched polyethyleneimine (BPEI), silica, silica derivatives, and alkylthiols.
 上記被覆層の厚みとしては、上記微粒子のプラズモン共鳴を大きく妨げることがないものであればよいが、本開示のプラズモン共鳴積層体が表側と裏側とで異なる色の画像を観察容易となる観点からは、例えば、2nm以下とすることができる。 The thickness of the coating layer may be any thickness as long as it does not significantly interfere with the plasmon resonance of the fine particles, but from the viewpoint that the plasmon resonance laminate of the present disclosure can easily observe images of different colors on the front side and the back side. Can be, for example, 2 nm or less.
2.高屈折率層
 上記高屈折率層は、上記透明基材の一方の面に配置された上記透明基材よりも屈折率の高い層である。上記高屈折率層は、通常、バインダ層と直接接するものである。
2. High refractive index layer The high refractive index layer is a layer having a higher refractive index than the transparent substrate disposed on one surface of the transparent substrate. The high refractive index layer is usually in direct contact with the binder layer.
 なお、透明基材よりも屈折率が高いとは、具体的には、可視光域において透明基材よりも屈折率が高いものとすることができる。また、可視光域の波長範囲としては、上記「1.バインダ部 (3)微粒子」の項に記載の可視光の波長と同様とすることができる。 In addition, it can be assumed that the refractive index is higher than that of the transparent substrate in the visible light region. The wavelength range of the visible light region can be the same as the wavelength of visible light described in the above section “1. Binder part (3) Fine particles”.
 上記高屈折率層としては、透明基材より屈折率が高いものであればよく、その屈折率は高いほど好ましいが、例えば、波長589nm(ナトリウムのD線)における屈折率nが1.5以上であることが好ましく、なかでも、2以上であることが好ましい。なお、上記屈折率の上限は、本開示のプラズモン共鳴積層体の表裏で観察される発色に応じて適宜設定されるものであるが、通常、4以下である。また、上記屈折率は、反射率分光法による薄膜測定装置や、分光エリプソメーターにより測定することができる。 The high refractive index layer only needs to have a refractive index higher than that of the transparent substrate, and the higher the refractive index, the better. For example, the refractive index n D at a wavelength of 589 nm (sodium D line) is 1.5. It is preferable that it is above, and it is particularly preferable that it is 2 or more. In addition, although the upper limit of the said refractive index is suitably set according to the color development observed by the front and back of the plasmon resonance laminated body of this indication, it is 4 or less normally. The refractive index can be measured by a thin film measuring apparatus using reflectance spectroscopy or a spectroscopic ellipsometer.
 上記高屈折率層は、通常、上記光の透過が可能な光透過性を有するものである。ここで、光透過性を有するとは、プラズモン共鳴により散乱される波長の光の透過率が、70%以上であるものとすることができ、なかでも90%以上であることが好ましい。 The high refractive index layer usually has a light transmission property capable of transmitting the light. Here, having light transmittance means that the transmittance of light having a wavelength scattered by plasmon resonance can be 70% or more, and preferably 90% or more.
 また、上記高屈折率層は、プラズモン共鳴により散乱される波長の光のみを少なくとも透過するものであればよいが、可視光全体を透過する可視光透過性を有するものであることが好ましい。ここで、可視光透過性を有するとは、上記高屈折率層の全光線透過率が、70%以上であるものとすることができ、なかでも90%以上であることが好ましい。上記全光線透過率が上述の範囲内であることにより、本開示のプラズモン共鳴積層体は、透明基材側から微粒子のプラズモン共鳴の効果を容易観察可能となるからである。 The high refractive index layer may be any layer that transmits at least light having a wavelength scattered by plasmon resonance, but preferably has a visible light transmission property that transmits the entire visible light. Here, having the visible light transmittance means that the total light transmittance of the high refractive index layer can be 70% or more, and preferably 90% or more. This is because, when the total light transmittance is within the above-described range, the plasmon resonance laminated body of the present disclosure can easily observe the effect of plasmon resonance of fine particles from the transparent substrate side.
 なお、高屈折率層の光の透過率および全光線透過率の上限は高いほど好ましいが、高屈折率層に所望の強度を付与するとの観点、材料選択の自由度の観点等から、通常、95%以下である。 In addition, the upper limit of the light transmittance and the total light transmittance of the high refractive index layer is preferably higher, but from the viewpoint of imparting a desired strength to the high refractive index layer, the degree of freedom of material selection, etc. 95% or less.
 また、全光線透過率については、JIS K7361-1(プラスチック-透明材料の全光線透過率の試験方法)により測定することができる。 Further, the total light transmittance can be measured according to JIS K7361-1 (Testing method for total light transmittance of plastic-transparent material).
 上記高屈折率層の構成材料は、透明基材との屈折率差を所望の範囲とすることができるものであればよく、透明基材の構成材料が後述のアクリル樹脂等の有機材料や、無機材料としてのガラス等である場合には、酸化チタン(IV)、酸化クロム(III)、硫化亜鉛、酸化アルミニウム、硫酸バリウム、チタン酸バリウム、三酸化アンチモン、酸化鉄(III)、硫化カドミウム、酸化セリウム(IV)、塩化鉛(II)、酸化カドミウム、酸化タングステン(VI)、酸化インジウム(III)、酸化鉛(II)、酸化タンタル(V)、酸化ジルコニウム(IV)等の無機化合物や、シリコン等の無機物等を挙げることができる。 The constituent material of the high refractive index layer may be any material as long as the refractive index difference with the transparent base material can be within a desired range, and the constituent material of the transparent base material is an organic material such as an acrylic resin described later, In the case of glass as an inorganic material, titanium oxide (IV), chromium oxide (III), zinc sulfide, aluminum oxide, barium sulfate, barium titanate, antimony trioxide, iron (III) oxide, cadmium sulfide, Inorganic compounds such as cerium (IV) oxide, lead (II) chloride, cadmium oxide, tungsten (VI) oxide, indium (III) oxide, lead (II) oxide, tantalum oxide (V), zirconium oxide (IV), Examples thereof include inorganic substances such as silicon.
 上記高屈折率層の厚みとしては、高屈折率層に求められる光透過性等に応じて適宜設定できる。上記厚みとしては、例えば、10nm以上1000nm以下の範囲内とすることができ、なかでも20nm以上100nm以下の範囲内であることが好ましい。上記厚みが上述の下限以上であることで、本開示のプラズモン共鳴積層体は、表裏で異なる色の画像を容易に表示可能となるからである。また、上記厚みが上述の範囲内であることで、プラズモン共鳴により発生した散乱光を視認容易となるからである。 The thickness of the high refractive index layer can be appropriately set according to the light transmittance required for the high refractive index layer. As said thickness, it can be in the range of 10 nm or more and 1000 nm or less, for example, It is preferable that it is in the range of 20 nm or more and 100 nm or less especially. This is because, when the thickness is equal to or greater than the lower limit, the plasmon resonance laminate of the present disclosure can easily display images of different colors on the front and back sides. Moreover, it is because it becomes easy to visually recognize the scattered light generated by plasmon resonance because the thickness is within the above-mentioned range.
 上記高屈折率層の形成方法としては、高屈折率層の構成材料に応じて適宜設定することができる。上記構成材料が無機化合物である場合には、上記形成方法は、スパッタ法、ゾルゲル法等の一般的な成膜方法を用いることができる。 The formation method of the high refractive index layer can be appropriately set according to the constituent material of the high refractive index layer. When the constituent material is an inorganic compound, a general film formation method such as a sputtering method or a sol-gel method can be used as the formation method.
3.透明基材
 上記透明基材は、高屈折率層およびバインダ層を支持するものである。
3. Transparent base material The transparent base material supports the high refractive index layer and the binder layer.
 上記透明基材は、通常、上記光の透過が可能な光透過性、すなわち透明性を有するものである。また、上記透明基材は、プラズモン共鳴により散乱される波長の光のみを少なくとも透過するものであればよいが、可視光全体を透過する可視光透過性を有するものであることが好ましい。このような透明基材の光の透過率および全光線透過率については、上記「2.高屈折率層」の項に記載の内容と同様とすることができる。 The above-mentioned transparent base material usually has light transmissivity that can transmit the above light, that is, has transparency. Moreover, the transparent base material only needs to transmit at least light having a wavelength scattered by plasmon resonance, but preferably has visible light permeability that transmits the entire visible light. The light transmittance and the total light transmittance of such a transparent base material can be the same as the contents described in the above section “2. High refractive index layer”.
 上記透明基材の構成材料としては、所望の透明性を有し、上記プラズモン共鳴積層体を使用者が使用した際に破損しない強度を示すものであればよい。上記透明基材に用いることができる構成材料としては、例えば、ポリエチレンテレフタレート(PET)、アクリル樹脂(PMMA)、ポリカーボネート、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)、ポリエチレン(PE)、ポリプロピレン(PP)、シリコーンゴム、ポリエチレンナフタレート(PEN)等の有機材料、ガラス等の無機材料、有機材料と無機材料とのハイブリッド材料等を用いることができる。 The constituent material of the transparent substrate may be any material as long as it has a desired transparency and does not break when the user uses the plasmon resonance laminate. Examples of the constituent material that can be used for the transparent substrate include polyethylene terephthalate (PET), acrylic resin (PMMA), polycarbonate, triacetyl cellulose (TAC), cycloolefin polymer (COP), polyethylene (PE), and polypropylene. An organic material such as (PP), silicone rubber, or polyethylene naphthalate (PEN), an inorganic material such as glass, a hybrid material of an organic material and an inorganic material, or the like can be used.
 上記透明基材の構造としては、板状構造、多数の空孔を有する多孔質構造、紙のような不織布構造等とすることができる。また、上記透明基材は、単層構造であってもよく、2層以上が積層した積層構造であってもよい。 The structure of the transparent substrate may be a plate-like structure, a porous structure having a large number of pores, a nonwoven fabric structure such as paper, and the like. The transparent substrate may have a single layer structure or a laminated structure in which two or more layers are laminated.
 上記透明基材の剛性は、屈曲可能なフレキシブル性を有するものであってもよく、屈曲しないものであってもよい。 The rigidity of the transparent substrate may be flexible so that it can be bent or may not be bent.
 上記透明基材の微粒子が配置される側の表面は、凹凸表面であってもよいが、平坦面であることが好ましい。平坦面であることで、透明基材は、微粒子のプラズモン共鳴への影響の少ないものとなるからである。 The surface of the transparent substrate on which the fine particles are arranged may be an uneven surface, but is preferably a flat surface. This is because the transparent substrate has less influence on the plasmon resonance of the fine particles because it is a flat surface.
 上記透明基材表面の算術平均粗さRaとしては、200nm以下とすることができ、100nm以下であることが好ましい。上記算術平均粗さRaが上述の範囲内であることにより、透明基材は、微粒子のプラズモン共鳴への影響の少ないものとなるからである。なお、上記算術平均粗さRaは、JIS B 0601:2001に規定された算術平均粗さRaをいう。 The arithmetic average roughness Ra of the transparent substrate surface can be 200 nm or less, and preferably 100 nm or less. This is because, when the arithmetic average roughness Ra is within the above range, the transparent base material has less influence on the plasmon resonance of the fine particles. The arithmetic average roughness Ra refers to the arithmetic average roughness Ra defined in JIS B 0601: 2001.
 上記透明基材の厚みとしては、微粒子を安定的に支持できるものであればよく、構成材料や要求される光透過性等により異なるものであるが、例えば、10μm以上2000μm以下の範囲内とすることができ、15μm以上250μm以下の範囲内であることが好ましく、なかでも、20μm以上100μm以下の範囲内であることが好ましい。上記厚みが上述の範囲内であることにより、透明基材は、微粒子を安定的に支持可能となるからである。なお、上記厚みは、透明基材が積層構造である場合には全体の厚みをいうものである。 The thickness of the transparent substrate is not particularly limited as long as it can stably support fine particles, and varies depending on the constituent material, required light transmittance, and the like. For example, the thickness is in the range of 10 μm to 2000 μm. It is preferable that it is in the range of 15 μm or more and 250 μm or less, and in particular, it is preferably in the range of 20 μm or more and 100 μm or less. This is because the transparent substrate can stably support the fine particles when the thickness is within the above range. In addition, the said thickness says the whole thickness, when a transparent base material is a laminated structure.
4.その他の構成
 本開示のプラズモン共鳴積層体は、透明基材、高屈折率層、バインダ層および微粒子を有するものであるが、必要に応じてその他の構成を有するものであってもよい。
4). Other Configurations The plasmon resonance laminate of the present disclosure includes a transparent substrate, a high refractive index layer, a binder layer, and fine particles, but may have other configurations as necessary.
 このようなその他の構成としては、例えば、図5(a)に例示するような、高屈折率層2の透明基材1とは反対側の表面に配置され、上記微粒子4より高さが高い厚膜部材5、図5(b)に例示するような、上記厚膜部材5により支持されるカバー層6等を挙げることができる。上記厚膜部材やカバー層を有すことにより、本開示のプラズモン共鳴積層体に使用者が触れた際に使用者の指が上記微粒子に接触すること等から保護することが可能となるからである。 As such other configuration, for example, as illustrated in FIG. 5A, the high refractive index layer 2 is disposed on the surface opposite to the transparent base material 1 and is higher than the fine particles 4. Examples of the thick film member 5 include a cover layer 6 supported by the thick film member 5 as illustrated in FIG. By having the thick film member or the cover layer, it is possible to protect the user's finger from coming into contact with the fine particles when the user touches the plasmon resonance laminate of the present disclosure. is there.
(1)厚膜部材
 上記厚膜部材は、上記微粒子より高さが高いものである。ここで、上記微粒子より高いとは、上記微粒子の平均一次粒径より大きいことをいうものである。
(1) Thick film member The thick film member is higher in height than the fine particles. Here, “higher than the fine particles” means larger than the average primary particle size of the fine particles.
 上記厚膜部材については、例えば、既に説明した図5(a)に示すように、上記プラズモン共鳴積層体に使用者が触れた際に使用者の指が上記微粒子に触れない高さおよび間隔を有し、厚膜部材のみで微粒子を保護可能なもの(第1実施態様)、既に説明した図5(b)に示すように、カバー層を支持するスペーサとして使用されるもの(第2実施態様)等とすることができる。 With respect to the thick film member, for example, as shown in FIG. 5A, the height and interval at which the user's finger does not touch the fine particles when the user touches the plasmon resonance laminate is described. And can be used to protect fine particles only with a thick film member (first embodiment), and used as a spacer for supporting the cover layer as shown in FIG. 5B (second embodiment). ) Etc.
(a)第1実施態様
 上記厚膜部材の第1実施態様は、上記プラズモン共鳴積層体に使用者が触れた際に使用者の指が上記微粒子に触れない高さおよび間隔を有し、厚膜部材のみで微粒子を保護可能なものである。
(A) First Embodiment The first embodiment of the thick film member has a height and a distance at which the user's finger does not touch the fine particles when the user touches the plasmon resonance laminate. Fine particles can be protected only by the membrane member.
 上記厚膜部材の高さは、上記微粒子より高く、上記プラズモン共鳴積層体に使用者が触れた際に指が上記微粒子に触れないものである。このような高さについては、上記微粒子のサイズ等に応じて適宜設定されるものであり、上述のようにプラズモン共鳴する微粒子の平均一次粒径が概ね0.2μm以下のような粒径の小さい微粒子である場合、上記厚膜部材の高さは、0.3μm以上1mm以下の範囲内とすることができる。上記高さが上述の範囲内であることにより、プラズモン共鳴積層体の使用時に使用者の指が微粒子に接触することから安定的に保護可能となるからである。上記高さは、具体的には、図5中のeで示されるものである。 The height of the thick film member is higher than that of the fine particles, and the finger does not touch the fine particles when the user touches the plasmon resonance laminate. Such height is appropriately set according to the size of the fine particles and the like. As described above, the average primary particle size of the plasmon-resonant fine particles is as small as about 0.2 μm or less. In the case of fine particles, the thickness of the thick film member can be in the range of 0.3 μm to 1 mm. This is because, when the height is within the above-described range, it is possible to stably protect the user's finger from contact with the fine particles when the plasmon resonance laminate is used. Specifically, the height is indicated by e in FIG.
 上記厚膜部材の間隔は、上記プラズモン共鳴積層体に使用者が触れた際に指が上記微粒子に触れないものである。このような間隔としては、微粒子の平均一次粒径より広いものとすることができる。ここで、上述のようにプラズモン共鳴する微粒子の平均一次粒径が概ね0.2μm以下のような粒径の小さい微粒子である場合、上記間隔としては、例えば、10μm以上2mm以下の範囲内とすることができる。なお、上記厚膜部材の間隔は、それぞれの厚膜部材についての最短となる隣接する厚膜部材間の距離をいうものである。また、厚膜部材の平面視形状が後述する開口部を有する形状である場合には、開口部により隔てられた厚膜部材間の距離のうち、最短のものをいうものである。上記間隔は、具体的には、図5中のfで示されるものである。 The distance between the thick film members is such that when the user touches the plasmon resonance laminate, the finger does not touch the fine particles. Such an interval can be wider than the average primary particle size of the fine particles. Here, in the case where the average primary particle size of the fine particles that resonate with plasmon is as small as about 0.2 μm or less as described above, the interval is, for example, in the range of 10 μm to 2 mm. be able to. In addition, the space | interval of the said thick film member means the distance between adjacent thick film members used as the shortest about each thick film member. Moreover, when the planar view shape of a thick film member is a shape which has the opening part mentioned later, it means the shortest thing among the distances between the thick film members separated by the opening part. Specifically, the interval is indicated by f in FIG.
 上記厚膜部材の平面視形状としては、上記プラズモン共鳴積層体を使用者が使用した際に破損しない強度を示すものであればよく、ドット状、ライン状等とすることができる。上記平面視形状は、ハニカム状、格子状等の開口部を有する形状、もしくはランダムな開口部を有する形状であってもよい。なお、図6は本開示のプラズモン共鳴積層体の他の例を示す概略平面図および断面図であり、図6(b)は図6(a)のA-A線断面図、図6(d)は図6(c)のB-B線断面図、図6(f)は、図6(e)のC-C線断面図である。また、図6(a)および(b)、(c)および(d)、ならびに(e)および(f)は、それぞれ、上記平面視形状がドット状、ライン状、開口部を有する形状である例を示すものである。 The shape of the thick film member in plan view is not particularly limited as long as it exhibits a strength that does not cause damage when the user uses the plasmon resonance laminate, and can be a dot shape, a line shape, or the like. The shape in plan view may be a shape having openings such as a honeycomb shape or a lattice shape, or a shape having random openings. 6A and 6B are a schematic plan view and a cross-sectional view showing another example of the plasmon resonance multilayer body of the present disclosure, and FIG. 6B is a cross-sectional view taken along the line AA in FIG. ) Is a cross-sectional view taken along the line BB of FIG. 6C, and FIG. 6F is a cross-sectional view taken along the line CC of FIG. 6E. 6A and 6B, FIG. 6C and FIG. 6D, and FIG. 6E and FIG. 6F, the shape in plan view is a dot shape, a line shape, and an opening portion, respectively. An example is given.
 また、ドット状である場合の厚膜部材の平面視形状としては、円形状や、三角形状、四角形状等の多角形状等とすることができる。なお、既に説明した図6(a)は、ドット状の厚膜部材の平面視形状が四角形状である例を示すものである。 Further, the planar view shape of the thick film member in the case of a dot shape may be a circular shape, a polygonal shape such as a triangular shape or a quadrangular shape. Note that FIG. 6A already described shows an example in which the dot-like thick film member has a square shape in plan view.
 上記厚膜部材の平面視サイズとしては、上記プラズモン共鳴積層体を使用者が使用した際に破損しない強度を示すものであればよく、0.1μm以上100μm以下の範囲内とすることができる。なお、上記平面視サイズは、ドット状である場合の最大径、ライン状である場合の短尺方向の幅、開口部を有する形状である場合の隣接する開口部間の最短距離をいうものである。上記平面視サイズは、具体的には、図5および図6中のgで示されるものである。 The size of the thick film member in plan view may be any size as long as it exhibits strength that does not break when the user uses the plasmon resonance laminate, and can be in the range of 0.1 μm to 100 μm. The size in plan view refers to the maximum diameter in the case of dots, the width in the short direction in the case of lines, and the shortest distance between adjacent openings in the case of having a shape with openings. . Specifically, the size in plan view is indicated by g in FIGS. 5 and 6.
 上記厚膜部材の種類としては、上記平面視形状等に応じて適宜選択することができ、例えば、厚膜部材の構成材料をパターン状に成形して得られる柱状厚膜部材を用いることができる。上記厚膜部材の種類は、上記平面視形状がドット状である場合には、散布して基材表面に配置されるビーズ状厚膜部材を用いることができる。なお、既に説明した図5および図6は、上記厚膜部材の種類が柱状厚膜部材である例を示すものである。 The type of the thick film member can be appropriately selected according to the shape in plan view. For example, a columnar thick film member obtained by forming the constituent material of the thick film member into a pattern can be used. . As the type of the thick film member, a bead-shaped thick film member that is dispersed and disposed on the surface of the base material can be used when the shape in plan view is a dot shape. 5 and 6 which have already been described show an example in which the type of the thick film member is a columnar thick film member.
 上記柱状厚膜部材の構成材料としては、感光性樹脂の硬化物等の樹脂材料を用いることができる。このような感光性樹脂としては、例えば、特許第2953594号公報等の液晶表示装置の厚膜部材の形成に用いられる紫外線硬化性樹脂を用いることができる。 As the constituent material of the columnar thick film member, a resin material such as a cured product of a photosensitive resin can be used. As such a photosensitive resin, for example, an ultraviolet curable resin used for forming a thick film member of a liquid crystal display device such as Japanese Patent No. 2953594 can be used.
 上記柱状厚膜部材の形成方法としては、厚膜部材の構成材料をパターン状に成形して得る方法であればよく、例えば、特許第2953594号公報に記載の厚膜部材の形成方法を用いることができる。上記形成方法は、より具体的には、上記構成材料が感光性樹脂の硬化物である場合には、高屈折率層の微粒子が配置される側の表面に感光性樹脂の塗膜を形成し、フォトマスクを介して塗膜を露光処理し、未硬化の感光性樹脂を現像処理により除去する方法を挙げることができる。また、上記形成方法は、支持基板表面に配置された柱状厚膜部材を有する転写用基板を準備し、転写用基板を上記高屈折率層に接触させることで、柱状厚膜部材を上記高屈折率層に転写する転写法を用いて形成してもよい。 As the method for forming the columnar thick film member, any method can be used as long as it is obtained by forming the constituent material of the thick film member into a pattern. For example, the method for forming the thick film member described in Japanese Patent No. 2953594 is used. Can do. More specifically, when the constituent material is a cured product of a photosensitive resin, the above-described forming method forms a coating film of the photosensitive resin on the surface on which the fine particles of the high refractive index layer are arranged. A method of exposing the coating film through a photomask and removing the uncured photosensitive resin by development processing can be mentioned. In addition, the forming method includes preparing a transfer substrate having a columnar thick film member disposed on the surface of the support substrate, and bringing the transfer substrate into contact with the high refractive index layer, thereby causing the columnar thick film member to have the high refractive index. You may form using the transfer method which transfers to a rate layer.
 上記柱状厚膜部材は、高屈折率層表面に接着し固定されていることが好ましい。 The columnar thick film member is preferably bonded and fixed to the surface of the high refractive index layer.
 上記ビーズ状厚膜部材の構成材料としては、所望の強度を有するものであればよく、例えば、特開2007-94185号公報等の液晶表示装置に厚膜部材として用いられるビーズの構成材料と同様とすることができる。上記構成材料としては、具体的には、ガラス等の無機材料や、アクリル樹脂等の樹脂材料を用いることができる。 The constituent material of the bead-like thick film member is not particularly limited as long as it has a desired strength. It can be. Specifically, an inorganic material such as glass or a resin material such as an acrylic resin can be used as the constituent material.
 上記ビーズ状厚膜部材の形成方法としては、ビーズ状厚膜部材を散布することで高屈折率層表面に配置する方法であればよく、例えば、ビーズ状厚膜部材を含む分散液を高屈折率層上に塗布し、分散媒を乾燥除去する方法を用いることができる。上記分散液は、上記微粒子およびバインダ剤を含むものを用いることができ、上記形成方法が、厚膜部材と、微粒子が分散されたバインダ層と、を同時に配置する方法であってもよい。 The method for forming the beaded thick film member may be any method as long as it is disposed on the surface of the high refractive index layer by spraying the beaded thick film member. For example, the dispersion containing the beaded thick film member is highly refracted. The method of apply | coating on a rate layer and drying and removing a dispersion medium can be used. As the dispersion liquid, one containing the fine particles and a binder agent can be used, and the forming method may be a method in which the thick film member and the binder layer in which the fine particles are dispersed are simultaneously arranged.
 上記ビーズ状厚膜部材は、高屈折率層表面に移動可能に配置されるものであってもよく、高屈折率層表面に接着し固定されているものであってもよい。 The bead-like thick film member may be movably arranged on the surface of the high refractive index layer, or may be bonded and fixed to the surface of the high refractive index layer.
(b)第2実施態様
 上記厚膜部材の第2実施態様は、カバー層を支持するスペーサとして使用されるものである。
(B) Second Embodiment The second embodiment of the thick film member is used as a spacer for supporting the cover layer.
 上記厚膜部材の高さおよび間隔としては、上記カバー層を支持することで、上記プラズモン共鳴積層体に使用者が触れた際に指が上記微粒子に触れないものであればよい。 The height and spacing of the thick film member may be any material that supports the cover layer so that the finger does not touch the fine particles when the user touches the plasmon resonance laminate.
 上記高さとしては、例えば、微粒子の近接場光が十分に減衰する距離以上であればよく、例えば、微粒子の平均一次粒径の2倍以上高い位置に支持するものとすることができる。より具体的には、平均一次粒径h=0.08μmの微粒子を、人の指先の皮膚に対して保護することを目的とした場合、上記高さは、0.16μm以上300μm以下の範囲内とすることができる。 The height may be, for example, at least a distance at which the near-field light of the fine particles is sufficiently attenuated, and can be supported at a position that is at least twice as high as the average primary particle size of the fine particles. More specifically, when it is intended to protect fine particles having an average primary particle size h = 0.08 μm against the skin of a human fingertip, the height is within a range of 0.16 μm to 300 μm. It can be.
 上記間隔としては、カバー層を撓ませることなく支持できるものであることが好ましく、カバー層の厚みと材質のヤング率を考慮して適宜選択される。より具体的には、上記間隔は、例えば、10μm以上5000μm以下の範囲内とすることができる。 The distance is preferably one that can be supported without bending the cover layer, and is appropriately selected in consideration of the thickness of the cover layer and the Young's modulus of the material. More specifically, the interval can be set within a range of 10 μm to 5000 μm, for example.
 上記高さおよび間隔は、具体的には、それぞれ図5中のeおよびfで示されるものである。 The above height and interval are specifically indicated by e and f in FIG.
 なお、スペーサの平面視形状、平面視サイズ、種類、構成材料および形成方法等の内容については、上記「(a)第1実施態様」の項に記載の内容と同様の内容とすることができる。 In addition, about the content of the planar view shape of a spacer, planar view size, a kind, a constituent material, a formation method, etc., it can be set as the content similar to the content as described in the said "(a) 1st embodiment." .
(2)カバー層
 上記カバー層は、厚膜部材により支持され、かつ、微粒子を覆うものである。
(2) Cover layer The cover layer is supported by a thick film member and covers fine particles.
 上記カバー層は、通常、上記光の透過が可能な光透過性を有するものである。また、光透過性を有するものとしては、プラズモン共鳴により散乱される波長の光のみを少なくとも透過するものであればよいが、可視光全体を透過する可視光透過性を有するものであることが好ましい。カバー層を構成する材料について選択の自由度が高くなるからである。このようなカバー層の光の透過率および全光線透過率については、上記「3.透明基材」の項に記載の内容と同様とすることができる。 The cover layer is usually light transmissive so that the light can be transmitted. Further, the light-transmitting material may be any material that transmits at least light having a wavelength scattered by plasmon resonance, but preferably has visible-light transmittance that transmits the entire visible light. . This is because the degree of freedom in selecting the material constituting the cover layer is increased. The light transmittance and the total light transmittance of such a cover layer can be the same as those described in the above section “3. Transparent substrate”.
 上記カバー層の構成材料、構造、剛性および厚みとしては、上記プラズモン共鳴積層体に使用者が触れた際に破損しない強度を示すものであればよく、例えば、上記「3.透明基材」の項に記載の構成材料と同様とすることができる。 As the constituent material, structure, rigidity, and thickness of the cover layer, any material may be used as long as it exhibits a strength that does not break when a user touches the plasmon resonance laminate. It can be the same as the constituent material described in the item.
 上記カバー層は、厚膜部材により支持されるものであればよく、厚膜部材と接着していてもよく、接着していないものであってもよい。また、厚膜部材と接着していない場合、カバー層は、通常、任意の固定手段により透明基材に対して固定されるものである。固定手段としては、カバー層および透明基材の外周を覆うように配置される樹脂製の封止部材等を挙げることができる。 The cover layer only needs to be supported by the thick film member, and may be bonded to the thick film member or may not be bonded. Moreover, when not adhering to a thick film member, a cover layer is normally fixed with respect to a transparent base material by arbitrary fixing means. Examples of the fixing means include a resin sealing member disposed so as to cover the outer periphery of the cover layer and the transparent substrate.
 上記カバー層の形成方法としては、カバー層が厚膜部材により支持され、かつ、微粒子を覆うように配置できる方法であればよく、例えば、高屈折率層表面に厚膜部材を配置した後に、厚膜部材の高屈折率層とは反対側の表面にカバー層を配置する方法を用いることができる。また、カバー層表面に厚膜部材を接着して積層体を形成した後、高屈折率層表面および厚膜部材が接するように高屈折率層に上記積層体を配置する方法等を用いることができる。なお、カバー層表面に厚膜部材を接着する方法としては、カバー層表面に直接柱状厚膜部材を形成する方法や、接着層を介して厚膜部材を接着する方法を用いることができる。 The cover layer may be formed by any method as long as the cover layer is supported by the thick film member and can be disposed so as to cover the fine particles. For example, after the thick film member is disposed on the surface of the high refractive index layer, A method of disposing a cover layer on the surface of the thick film member opposite to the high refractive index layer can be used. Alternatively, a method of arranging the laminate on the high refractive index layer so that the surface of the high refractive index layer and the thick film member are in contact after the thick film member is bonded to the surface of the cover layer may be used. it can. As a method for adhering the thick film member to the cover layer surface, a method of forming a columnar thick film member directly on the cover layer surface or a method of adhering the thick film member via an adhesive layer can be used.
(3)その他
 上記その他の構成としては、透明基材および高屈折率層、透明基材および厚膜部材、厚膜部材およびカバー層等の各構成間を接着する接着層を有するものであってもよい。上記接着層としては、アクリル系樹脂等の公知の粘着剤を用いて形成された粘着剤層や、2液硬化型接着剤層、紫外線硬化型接着剤層、熱硬化型接着剤層、熱溶融型接着剤層等の公知の接着剤層を用いることができる。
(3) Others As the above-mentioned other configurations, there are adhesive layers for bonding the respective components such as a transparent substrate and a high refractive index layer, a transparent substrate and a thick film member, a thick film member and a cover layer. Also good. Examples of the adhesive layer include a pressure-sensitive adhesive layer formed using a known pressure-sensitive adhesive such as an acrylic resin, a two-component curable adhesive layer, an ultraviolet curable adhesive layer, a thermosetting adhesive layer, and heat melting. A known adhesive layer such as a mold adhesive layer can be used.
5.プラズモン共鳴積層体
 本開示のプラズモン共鳴積層体の用途としては、意匠性、偽造防止性が要求される用途を挙げることができ、例えば、紙幣等の金券;運転免許証、パスポート等の身分証明書;クレジットカード等のカード等を挙げることができる。具体的には、本開示のプラズモン共鳴積層体は、情報記録媒体に組み込むことができる。情報記録媒体については、後述する。なお、上記プラズモン共鳴積層体を用いた偽造防止の方法としては、目視による確認する方法以外に、電荷結合素子(CCD)等の可視光を検出可能な装置等を用いて行う方法も用いることができる。
5). Plasmon Resonance Laminate Applications of the plasmon resonance laminate of the present disclosure include applications that require designability and anti-counterfeiting properties, such as banknotes and other vouchers; identification cards such as driver's licenses and passports. A card such as a credit card. Specifically, the plasmon resonance laminate of the present disclosure can be incorporated into an information recording medium. The information recording medium will be described later. As a method for preventing forgery using the plasmon resonance laminate, a method using a device capable of detecting visible light, such as a charge coupled device (CCD), may be used in addition to a method for visually confirming. it can.
 本開示のプラズモン共鳴積層体の製造方法としては、上記各構成を精度よく配置することができる方法であればよく、好ましくは、後述する「C.プラズモン共鳴積層体の製造方法」に記載の方法を用いることができる。 As a method for producing the plasmon resonance laminate of the present disclosure, any method can be used as long as the above-described configurations can be arranged with high accuracy. Preferably, the method described in “C. Method for producing plasmon resonance laminate” described later is used. Can be used.
B.バインダ部形成用組成物
 次に、本開示のバインダ部形成用組成物について説明する。本開示のバインダ部形成用組成物は、微粒子、バインダ剤および分散媒を含み、上記微粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ剤の分散媒に対する濃度(バインダ剤/分散媒)が、0.1/100以上10/100以下の範囲内である。
B. Next, the binder part forming composition of the present disclosure will be described. The composition for forming a binder part of the present disclosure includes fine particles, a binder agent, and a dispersion medium. The fine particles include a negative dielectric material, plasmon-resonates with visible light, and the concentration of the binder agent with respect to the dispersion medium ( The binder agent / dispersion medium) is in the range of 0.1 / 100 or more and 10/100 or less.
 本開示によれば、上記バインダ剤の分散媒に対する濃度が上述の範囲内であることにより、微粒子の状態が上記「A.プラズモン共鳴積層体」の項で説明した状態であるバインダ層を容易に形成することができる。したがって、本開示のバインダ部形成用組成物は、例えば、透明基材および高屈折率層がこの順で積層された積層体の高屈折率層表面上に、塗布し硬化してバインダ部を形成することで、意匠性、偽造防止性等の付与が容易であり、かつ、耐久性に優れたプラズモン共鳴積層体を容易に製造できる。また、バインダ剤を含むことにより、例えば、上記バインダ部形成用組成物の塗膜から分散媒を乾燥除去する際に、微粒子同士が凝集することを抑制できる。したがって、上記バインダ部形成用組成物は、微粒子が分散性良く分散されたバインダ層を容易に形成できる。 According to the present disclosure, since the concentration of the binder agent with respect to the dispersion medium is within the above-described range, the binder layer in which the state of the fine particles is in the state described in the above section “A. Plasmon Resonance Laminate” is easily obtained. Can be formed. Therefore, the composition for forming a binder part of the present disclosure is applied, for example, on the surface of a high refractive index layer of a laminate in which a transparent base material and a high refractive index layer are laminated in this order to form a binder part. By doing so, it is easy to provide designability, anti-counterfeiting properties, etc., and it is possible to easily manufacture a plasmon resonance laminate that is excellent in durability. Moreover, by including a binder agent, when removing a dispersion medium from the coating film of the said binder part formation composition by drying, it can suppress that microparticles | fine-particles aggregate. Therefore, the binder part forming composition can easily form a binder layer in which fine particles are dispersed with good dispersibility.
 本開示のバインダ部形成用組成物は、微粒子、バインダ剤および分散媒を含むものである。以下、本開示のバインダ部形成用組成物の各成分について詳細に説明する。なお、微粒子については、上記「A.プラズモン共鳴積層体 1.バインダ部 (3)微粒子」の項に記載の内容と同様であるため、ここでの説明は省略する。 The binder part forming composition of the present disclosure includes fine particles, a binder agent, and a dispersion medium. Hereinafter, each component of the composition for forming a binder part of the present disclosure will be described in detail. The fine particles are the same as those described in the above section “A. Plasmon Resonance Laminate 1. Binder Part (3) Fine Particles”, and the description thereof is omitted here.
1.配合割合
 本開示における微粒子およびバインダ剤は、分散媒中に分散または溶解されるものである。
1. Mixing ratio The fine particles and the binder agent in the present disclosure are dispersed or dissolved in a dispersion medium.
 上記バインダ剤の上記分散媒に対する濃度(バインダ剤/分散媒)としては、本開示のバインダ部形成用組成物を塗工し、その塗膜から分散媒を乾燥除去しバインダ部を形成した際に、バインダ層および微粒子の状態を上述の状態とすることができるものであればよく、例えば、0.1/100以上10/100以下の範囲内とすることができ、なかでも、0.2/100以上5/100以下の範囲内であることが好ましく、特に、0.5/100以上2/100以下の範囲内であることが好ましい。上記濃度が上述の範囲内であることにより、バインダ層および微粒子の状態を上述の状態とすることが容易だからである。 As the concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium), when the binder part forming composition of the present disclosure is applied, the dispersion medium is dried and removed from the coating film, and the binder part is formed. Any binder layer and fine particles can be used as long as they can be in the above-described state. For example, the binder layer and the fine particles can be in a range of 0.1 / 100 or more and 10/100 or less. It is preferably within the range of 100 or more and 5/100 or less, and particularly preferably within the range of 0.5 / 100 or more and 2/100 or less. It is because it is easy to make the state of a binder layer and fine particles into the above-mentioned state by the said density | concentration being in the above-mentioned range.
 なお、バインダ剤の分散媒に対する濃度(バインダ剤/分散媒)は、バインダ剤の分散媒に対する体積比(バインダ剤/分散媒)をいう。具体的には、バインダ剤の分散媒に対する濃度は、混合前の25℃、大気圧下でのバインダ剤の分散媒に対する体積比をいうものである。後述の微粒子の分散媒に対する濃度についても、同様とすることができる。 In addition, the density | concentration (binder agent / dispersion medium) with respect to the dispersion medium of a binder agent means the volume ratio (binder agent / dispersion medium) with respect to the dispersion medium of a binder agent. Specifically, the concentration of the binder agent relative to the dispersion medium refers to the volume ratio of the binder agent to the dispersion medium at 25 ° C. and atmospheric pressure before mixing. The same may be said of the density | concentration with respect to the dispersion medium of the below-mentioned fine particle.
 また、上記バインダ剤および分散媒の体積の測定方法は、バインダ部形成用組成物からバインダ剤と、分散媒と、を分離し、それぞれ25℃、大気圧下での体積比を測定する方法を用いることができる。 The volume of the binder agent and the dispersion medium is a method of separating the binder agent and the dispersion medium from the binder part forming composition and measuring the volume ratio at 25 ° C. and atmospheric pressure, respectively. Can be used.
 ここで、バインダ部形成用組成物からバインダ剤と分散媒とを分離する方法としては、バインダ剤および分散媒を精度良く分離可能な方法であれば特に限定されるものではない。バインダ部形成用組成物から分散媒を分離する方法としては、例えば、GC-MS(ガスクロマトグラフィー質量分析器)を用いることができる。また、バインダ部形成用組成物からバインダ剤を分離する方法としては、GC-MSまたはHPLC(高速液体クロマトグラフィー)を用いることができる。HPLCの場合、より具体的には、分散媒が有機溶剤の場合、順相モードで分離を行い(例えば、固定相にシリカゲルのカラム、移動相に有機溶媒を使用する。)、分散媒が水系の場合は逆相モードで分離を行う(例えば、固定相にODS修飾シリカゲルのカラム、移動相に水/メタノールを使用する。)方法を挙げることができる。HPLCにおいて、分散媒およびバインダ剤の検出に用いる検出器としては、例えば、紫外-可視分光光度計を用いることができる。 Here, the method for separating the binder agent and the dispersion medium from the binder part forming composition is not particularly limited as long as the binder agent and the dispersion medium can be separated with high accuracy. As a method for separating the dispersion medium from the binder part forming composition, for example, GC-MS (Gas Chromatography Mass Spectrometer) can be used. In addition, as a method for separating the binder agent from the binder part forming composition, GC-MS or HPLC (high performance liquid chromatography) can be used. In the case of HPLC, more specifically, when the dispersion medium is an organic solvent, separation is performed in a normal phase mode (for example, a silica gel column is used for the stationary phase and an organic solvent is used for the mobile phase). In the case of (2), the separation can be performed in the reverse phase mode (for example, a column of ODS-modified silica gel is used for the stationary phase and water / methanol is used for the mobile phase). In HPLC, as a detector used for detecting a dispersion medium and a binder agent, for example, an ultraviolet-visible spectrophotometer can be used.
 バインダ剤および分散媒のそれぞれの体積の測定方法としては、分離したバインダ剤および分散媒の体積を精度よく測定できる方法であれば特に限定されるものではない。例えば、(a)分離したバインダ剤および分散媒について、それぞれ25℃大気圧下で直接測定する方法、(b)それぞれの質量を測定し、密度(文献値やバルクの測定値)から計算で求める方法を用いることができる。なお、上記バインダ剤および分散媒の体積の測定方法としては、バインダ剤および分散媒の成分が判明しているが、例えば、両者を体積測定を実施可能な量分取することが困難な場合等には、例えば、バインダ剤および分散媒の混合液を、体積割合を変えて複数水準用意し、HPLCなどで検量線を作成し、その検量線と、バインダ部形成用組成物のHPLC等の測定結果とを、比較することで求める方法を用いるものであってもよい。 The method for measuring the volume of each of the binder agent and the dispersion medium is not particularly limited as long as it can accurately measure the volume of the separated binder agent and dispersion medium. For example, (a) About the separated binder agent and dispersion medium, respectively, a method of directly measuring at 25 ° C. and atmospheric pressure, (b) measuring each mass, and calculating from the density (document values and measured values of bulk). The method can be used. In addition, as a method for measuring the volume of the binder agent and the dispersion medium, the components of the binder agent and the dispersion medium are known, but for example, when it is difficult to separate both of them so that the volume can be measured, etc. For example, a mixed solution of a binder agent and a dispersion medium is prepared in a plurality of levels by changing the volume ratio, a calibration curve is prepared by HPLC or the like, and the calibration curve and measurement of the binder portion forming composition by HPLC or the like are prepared. You may use the method of calculating | requiring a result by comparing.
 上記微粒子の上記分散媒に対する濃度(微粒子/分散媒)、すなわち、微粒子の分散媒に対する体積比(微粒子/分散媒)としては、本開示のバインダ部形成用組成物を塗工し、その塗膜から分散媒を乾燥除去しバインダ部を形成した際に、バインダ層内に分散される微粒子密度に応じて適宜設定することができる。具体的には、上記濃度(微粒子/分散媒)、すなわち上記体積比(微粒子/分散媒)としては、0.000001/100以上10/100以下の範囲内とすることができる。 As the concentration of the fine particles with respect to the dispersion medium (fine particles / dispersion medium), that is, the volume ratio of the fine particles to the dispersion medium (fine particles / dispersion medium), the binder part forming composition of the present disclosure is applied, and the coating film When the dispersion medium is removed by drying to form a binder part, the dispersion medium can be appropriately set according to the density of fine particles dispersed in the binder layer. Specifically, the concentration (fine particles / dispersion medium), that is, the volume ratio (fine particles / dispersion medium) can be in the range of 0.000001 / 100 or more and 10/100 or less.
2.分散媒
 本開示に用いられる分散媒は、微粒子およびバインダ剤等の各成分を分散または溶解するものである。このような分散媒としては、例えば、水、有機溶剤およびこれらの混合物を用いることができる。
2. Dispersion medium The dispersion medium used in the present disclosure disperses or dissolves each component such as fine particles and a binder agent. As such a dispersion medium, for example, water, an organic solvent, and a mixture thereof can be used.
 上記有機溶剤としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリンなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)などのエステル類、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)などのエーテル類、ヘキサン、デカン、ドデカン、テトラデカン等の脂肪族炭化水素、シクロヘキサン等の脂環式炭化水素などが挙げられる。本開示においては、なかでも、上記有機溶剤が、アルコール類、芳香族炭化水素であることが好ましい。上記有機溶剤を用いることにより、上記バインダ剤を分散または溶解することが容易だからである。 Examples of the organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerol and other alcohols, toluene, xylene and other aromatic hydrocarbons, acetone, Ketones such as methyl ethyl ketone and methyl isobutyl ketone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate, esters such as propylene glycol monomethyl ether acetate (PGMEA), tetrahydrofuran, dioxane, ethylene glycol monomethyl ether (methyl cellosolve) , Ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cello Ethers such as cellosolve), hexane, decane, dodecane, aliphatic hydrocarbons tetradecane, alicyclic hydrocarbons such as cyclohexane and the like. In the present disclosure, it is particularly preferable that the organic solvent is an alcohol or an aromatic hydrocarbon. This is because it is easy to disperse or dissolve the binder agent by using the organic solvent.
3.バインダ剤
 上記バインダ剤については、本開示のバインダ部形成用組成物を用いてバインダ部を形成した際に、微粒子の状態が上述の状態であるバインダ層を容易に形成することができるものであればよい。このようなバインダ剤としては、上記「A.プラズモン共鳴積層体 1.バインダ部 (2)バインダ層」の項に記載のものと同様とすることができる。
3. Binder Agent Regarding the binder agent, it is possible to easily form a binder layer in which the state of fine particles is the above-described state when the binder portion is formed using the binder portion forming composition of the present disclosure. That's fine. Such a binder agent can be the same as that described in the above section “A. Plasmon Resonance Laminate 1. Binder Part (2) Binder Layer”.
 また、上記バインダ剤としては、バインダ剤が、モノマー成分が重合した重合体である場合には、重合体として含まれるものであってもよく、バインダ剤としての重合体を構成可能なバインダ剤のモノマー成分として含まれるものであってもよい。 Further, as the binder agent, when the binder agent is a polymer in which the monomer component is polymerized, the binder agent may be included as a polymer, or a binder agent capable of constituting a polymer as a binder agent. It may be included as a monomer component.
 具体的には、バインダ剤のモノマー成分としては、例えば、バインダ剤がシリコーンレジンである場合のシリコーンモノマー、シリコーンオリゴマーや、バインダ剤がシリコーンオリゴマーである場合のシリコーンモノマー等の三次元網目構造のシロキサン結合を構成するためのシラノール基やアルコキシシリル基を有するものを挙げることができる。 Specifically, as the monomer component of the binder agent, for example, a siloxane having a three-dimensional network structure such as a silicone monomer or silicone oligomer when the binder agent is a silicone resin, or a silicone monomer when the binder agent is a silicone oligomer. Examples thereof include those having a silanol group or an alkoxysilyl group for constituting a bond.
 上記モノマー成分としては、バインダ剤が重合性基等の反応性官能を有するシリコーン系化合物や、UV反応性基を有するフッ素系化合物の架橋物である場合、それぞれ架橋物形成前の反応性官能を有するシリコーン系化合物およびUV反応性基を有するフッ素系化合物等を挙げることができる。 As the monomer component, when the binder agent is a cross-linked product of a silicone compound having a reactive function such as a polymerizable group or a fluorine-based compound having a UV reactive group, the reactive function before the cross-linked product is formed. Examples thereof include a silicone compound having UV and a fluorine compound having a UV reactive group.
 また、上記モノマー成分は、バインダ剤が樹脂材料を含む場合の、樹脂材料を重合により構成可能なモノマー成分を挙げることができる。なお、樹脂材料のモノマー成分としては、例えば、樹脂材料がアクリル樹脂、ウレタンアクリル樹脂およびエポキシアクリレート樹脂等である場合には、それぞれ、単官能のアクリレートモノマー、ウレタンアクリレートモノマー、エポキシアクリレートモノマー、多官能のアクリレートモノマー、ウレタンアクリレートモノマー、エポキシアクリレートモノマー等のメタクリル基およびアクリル基を有するモノマー成分等を挙げることができる。 In addition, examples of the monomer component include monomer components capable of constituting the resin material by polymerization when the binder agent includes the resin material. As the monomer component of the resin material, for example, when the resin material is an acrylic resin, a urethane acrylic resin, an epoxy acrylate resin, or the like, a monofunctional acrylate monomer, a urethane acrylate monomer, an epoxy acrylate monomer, or a polyfunctional monomer, respectively. Monomer components having a methacrylic group and an acrylic group, such as acrylate monomers, urethane acrylate monomers, and epoxy acrylate monomers.
 また、上記モノマー成分は、UV硬化型、EB硬化型、熱硬化型等のいずれの硬化方式により重合体を形成するものであってもよい。さらに、上記モノマー成分は、重合性基、反応性基等の数が1つである単官能モノマー成分であってもよく、反応性基の数が2以上である多官能モノマー成分であってもよい。 Further, the monomer component may form a polymer by any curing method such as UV curing type, EB curing type, and thermosetting type. Furthermore, the monomer component may be a monofunctional monomer component having one polymerizable group, reactive group, or the like, or a polyfunctional monomer component having two or more reactive groups. Good.
4.その他の成分
 本開示のバインダ部形成用組成物は、微粒子、バインダ剤および分散媒を含むものであるが、必要に応じてその他の成分を含むものであってもよい。その他の成分としては、例えば、上記「A.プラズモン共鳴積層体 1.バインダ部 (2)バインダ層」の項に記載のその他の成分、等を挙げることができる。
4). Other components Although the composition for binder part formation of this indication contains fine particles, a binder agent, and a dispersion medium, it may contain other components as needed. Examples of the other components include other components described in the section “A. Plasmon Resonance Laminate 1. Binder Part (2) Binder Layer”.
 また、バインダ剤が、バインダ剤のモノマー成分として含まれる場合には、上記その他の成分として、重合に用いるための重合開始剤等を含むものであってもよい。なお、重合開始剤については、モノマー成分の種類等に応じて光重合開始剤、熱重合開始剤等の公知の重合開始剤を用いることができる。また、シラノール基やアルコキシシリル基を有するモノマー成分の重合開始剤としては、例えば、室温で重合が進行する硬化触媒を用いるものであってもよい。 In addition, when the binder agent is included as a monomer component of the binder agent, a polymerization initiator or the like for use in polymerization may be included as the other components. In addition, about a polymerization initiator, well-known polymerization initiators, such as a photoinitiator and a thermal-polymerization initiator, can be used according to the kind etc. of monomer component. Moreover, as a polymerization initiator of the monomer component having a silanol group or an alkoxysilyl group, for example, a curing catalyst in which polymerization proceeds at room temperature may be used.
5.バインダ部形成用組成物
 本開示のバインダ部形成用組成物の製造方法としては、上記各成分を所望の配合量となるように混合できる方法であればよく、分散媒を準備し、次いで、他の成分を順次または同時に分散媒に添加し混合する方法を用いることができる。
5). Binder part forming composition The manufacturing method of the binder part forming composition of the present disclosure may be any method that can mix the above-described components so as to obtain a desired blending amount. These components can be added to the dispersion medium sequentially or simultaneously and mixed.
 上記バインダ部形成用組成物は、バインダ剤として、バインダ剤のモノマー成分を含む硬化性バインダ部形成用組成物であってもよい。また、硬化性バインダ部形成用組成物としては、例えば、光照射することでバインダ剤のモノマー成分が重合して重合体を形成可能な光硬化性バインダ部形成用組成物、加熱することでバインダ剤のモノマー成分が重合して重合体を形成可能な熱硬化性バインダ部形成用組成物等とすることができる。また、硬化性バインダ部形成用組成物は、室温で硬化するものであってもよい。 The binder part forming composition may be a curable binder part forming composition containing a monomer component of the binder agent as the binder agent. Examples of the curable binder part forming composition include, for example, a photocurable binder part forming composition capable of forming a polymer by polymerizing the monomer component of the binder agent by light irradiation, and heating the binder. It can be set as the thermosetting binder part formation composition etc. which the monomer component of an agent can superpose | polymerize and can form a polymer. Further, the curable binder part forming composition may be cured at room temperature.
C.プラズモン共鳴積層体の製造方法
 次に、本開示のプラズモン共鳴積層体の製造方法について説明する。本開示のプラズモン共鳴積層体の製造方法は、透明基材の一方の面に、上記透明基材よりも屈折率の高い高屈折率層が形成された積層体を準備し、上記積層体の上記高屈折率層の表面上に、微粒子、バインダ剤および分散媒を含むバインダ部形成用組成物を塗布する塗布工程と、上記バインダ部形成用組成物の塗膜から上記分散媒を乾燥除去し、バインダ部を形成する乾燥工程と、を有し、上記微粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ部形成用組成物は、上記バインダ剤の上記分散媒に対する濃度(バインダ剤/分散媒)が、0.1/100以上10/100以下の範囲内である。
C. Method for Manufacturing Plasmon Resonance Laminate Next, a method for manufacturing a plasmon resonance laminate of the present disclosure will be described. The manufacturing method of the plasmon resonance laminate of the present disclosure provides a laminate in which a high refractive index layer having a refractive index higher than that of the transparent substrate is formed on one surface of the transparent substrate, On the surface of the high refractive index layer, a coating step of applying a binder part forming composition containing fine particles, a binder agent and a dispersion medium, and drying and removing the dispersion medium from the coating film of the binder part forming composition, A drying step of forming a binder part, wherein the fine particles include a negative dielectric material and plasmon-resonate with respect to visible light, and the binder part forming composition is based on the dispersion medium of the binder agent. The concentration (binder agent / dispersion medium) is in the range of 0.1 / 100 to 10/100.
 このような本開示のプラズモン共鳴積層体の製造方法について図を参照して説明する。図7は、本開示のプラズモン共鳴積層体の製造方法の一例を示す工程図である。図7に例示するように、本開示のプラズモン共鳴積層体の製造方法は、透明基材1の一方の面に、上記透明基材1よりも屈折率の高い高屈折率層2が形成された積層体を準備し、上記積層体の上記高屈折率層2の表面上に、微粒子、バインダ剤および分散媒を含むバインダ部形成用組成物20aを塗布し(図7(a))、上記バインダ部形成用組成物の塗膜20bを加熱hすることで、上記塗膜20bから分散媒を乾燥除去し(図7(b))、バインダ層3および微粒子4を含むバインダ部7、すなわち微粒子4が分散されたバインダ層3を形成することで、プラズモン共鳴積層体10を得る方法である(図7(c))。また、上記微粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴するものであり、上記バインダ部形成用組成物は、上記バインダ剤の上記分散媒に対する濃度(バインダ剤/分散媒)が、上述の範囲内であるものである。なお、図7(a)および(b)が、塗布工程であり、図7(b)および(c)が乾燥工程である。 Such a plasmon resonance laminate manufacturing method of the present disclosure will be described with reference to the drawings. FIG. 7 is a process diagram illustrating an example of a method for producing a plasmon resonance laminate according to the present disclosure. As illustrated in FIG. 7, in the method for manufacturing a plasmon resonance laminate according to the present disclosure, a high refractive index layer 2 having a higher refractive index than that of the transparent substrate 1 is formed on one surface of the transparent substrate 1. A laminate is prepared, and a binder part forming composition 20a containing fine particles, a binder agent and a dispersion medium is applied onto the surface of the high refractive index layer 2 of the laminate (FIG. 7 (a)), and the binder By heating the coating film 20b of the part forming composition, the dispersion medium is dried and removed from the coating film 20b (FIG. 7B), and the binder part 7 including the binder layer 3 and the fine particles 4, that is, the fine particles 4 This is a method of obtaining the plasmon resonance laminated body 10 by forming the binder layer 3 in which is dispersed (FIG. 7C). The fine particles contain a negative dielectric material and plasmon-resonate with visible light. The binder part forming composition has a concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium). Is within the above-mentioned range. 7A and 7B show the coating process, and FIGS. 7B and 7C show the drying process.
 本開示によれば、上記バインダ部形成用組成物を用いて上記塗布工程および乾燥工程を実施することで、微粒子の状態が上記「A.プラズモン共鳴積層体」の項で説明した状態であるバインダ層を容易に形成することができる。したがって、本開示の製造方法は、意匠性、偽造防止性等の付与が容易であり、かつ、耐久性に優れたプラズモン共鳴積層体を容易に製造できる。 According to the present disclosure, by performing the coating step and the drying step using the binder part forming composition, the binder is in the state described in the section “A. Plasmon Resonance Laminate”. Layers can be easily formed. Therefore, the manufacturing method of the present disclosure can easily provide a plasmon resonance laminate that is easily imparted with designability, anti-counterfeiting properties, and the like and excellent in durability.
 本開示のプラズモン共鳴積層体の製造方法は、塗工工程および乾燥工程を有するものである。以下、本開示のプラズモン共鳴積層体の製造方法の各工程について詳細に説明する。 The manufacturing method of the plasmon resonance laminated body of this indication has a coating process and a drying process. Hereinafter, each process of the manufacturing method of the plasmon resonance laminated body of this indication is demonstrated in detail.
1.塗工工程
 本開示における塗工工程は、透明基材の一方の面に、上記透明基材よりも屈折率の高い高屈折率層が形成された積層体を準備し、上記積層体の上記高屈折率層の表面上に、微粒子、バインダ剤および分散媒を含むバインダ部形成用組成物を塗布する工程である。
1. Coating process The coating process in this indication prepares the layered product by which the high refractive index layer whose refractive index is higher than the above-mentioned transparent substrate was formed in one side of a transparent substrate, and the above-mentioned high of the above-mentioned layered product In this step, a binder part forming composition containing fine particles, a binder agent and a dispersion medium is applied onto the surface of the refractive index layer.
 本工程における上記積層体の上記高屈折率層の表面上に、バインダ部形成用組成物を塗布する方法としては、微粒子が分散されたバインダ層を形成したい箇所に塗布可能な方法であればよく、例えば、インクジェット法、マイクロコンタクトプリンティング法、スクリーン印刷、グラビア印刷、オフセット印刷、フレキソ印刷等の各種印刷方式や、ダイコーティング法、スプレーコーティング法、スピンコーティング法、ディップコーティング法の塗工方法等を挙げることができる。本工程においては、バインダ層の平面視形状がパターン形状である場合には、上記塗布方法が、上記バインダ部形成用組成物を上記パターン形状に塗布する方法であることが好ましく、より具体的には、上述の印刷方法であることが好ましい。 As a method of applying the binder part forming composition on the surface of the high refractive index layer of the laminate in this step, any method can be used as long as it can be applied to a place where a binder layer in which fine particles are dispersed is formed. For example, various printing methods such as ink jet method, micro contact printing method, screen printing, gravure printing, offset printing, flexographic printing, and coating methods such as die coating method, spray coating method, spin coating method, dip coating method, etc. Can be mentioned. In this step, when the plan view shape of the binder layer is a pattern shape, the application method is preferably a method of applying the binder part forming composition to the pattern shape, more specifically. Is preferably the printing method described above.
 なお、本工程に用いられる積層体は、透明基材および高屈折率層を有するものである。このような透明基材および高屈折率層については、上記「A.プラズモン共鳴積層体」の項に記載の内容と同様とすることができるので、ここでの説明は省略する。また、本工程に用いられるバインダ部形成用組成物については、上記「B.バインダ部形成用組成物」の項に記載の内容と同様とすることができるので、ここでの説明は省略する。 In addition, the laminated body used for this process has a transparent base material and a high refractive index layer. Such a transparent base material and a high refractive index layer can be the same as the contents described in the above-mentioned section “A. Plasmon Resonance Laminate”, and thus description thereof is omitted here. Further, the binder part forming composition used in this step can be the same as that described in the above section “B. Binder part forming composition”, and thus the description thereof is omitted here.
2.乾燥工程
 本開示における乾燥工程は、上記バインダ部形成用組成物の塗膜から上記分散媒を乾燥除去し、バインダ部を形成する工程である。
2. Drying Step The drying step in the present disclosure is a step of forming the binder part by drying and removing the dispersion medium from the coating film of the binder part forming composition.
 ここで、上記塗膜から分散媒を乾燥除去する方法としては、一般的な乾燥方法を用いることができ、例えば、塗膜を加熱する方法、熱風を吹き付ける方法、減圧する方法等を挙げることができる。また、上記乾燥方法は、1種類の方法のみを使用するものであってもよく、2種類以上の方法を併用するものであってもよい。 Here, as a method of drying and removing the dispersion medium from the coating film, a general drying method can be used. Examples thereof include a method of heating the coating film, a method of blowing hot air, and a method of reducing the pressure. it can. Moreover, the said drying method may use only one type of method, and may use 2 or more types of methods together.
 本工程は、バインダ部形成用組成物に含まれるバインダ剤として、バインダ剤のモノマー成分が含まれる場合、すなわち、バインダ部形成用組成物が硬化性バインダ部形成用組成物である場合には、モノマー成分を重合し重合体としてのバインダ剤を形成する重合処理を行うものであることが好ましい。ここで、重合処理の方法としては、硬化性バインダ部形成用組成物が光硬化性バインダ部形成用組成物である場合には光照射を行う方法を挙げることができ、硬化性バインダ部形成用組成物が熱硬化性バインダ部形成用組成物である場合には、加熱する方法を挙げることができる。なお、光照射方法および加熱方法については、一般的な光硬化性樹脂および熱硬化性樹脂の硬化方法と同様とすることができる。また、バインダ剤のモノマー成分が、触媒の存在下で室温で硬化する場合には、重合処理として、室温中で所定時間放置する方法を用いてもよい。 In this step, when the binder component monomer component is included as the binder agent contained in the binder part forming composition, that is, when the binder part forming composition is a curable binder part forming composition, It is preferable to perform a polymerization treatment that polymerizes monomer components to form a binder agent as a polymer. Here, as a method for the polymerization treatment, when the curable binder part forming composition is a photocurable binder part forming composition, a method of performing light irradiation can be exemplified. When the composition is a composition for forming a thermosetting binder part, a heating method can be mentioned. In addition, about a light irradiation method and a heating method, it can be made to be the same as that of the hardening method of a general photocurable resin and a thermosetting resin. In addition, when the monomer component of the binder agent is cured at room temperature in the presence of a catalyst, a method of leaving it at room temperature for a predetermined time may be used as the polymerization treatment.
 本工程により形成されるバインダ部は、バインダ層および微粒子を含むものである。また、バインダ層は、バインダ剤を含み、微粒子が分散されたものである。このようなバインダ層および微粒子、ならびにバインダ層内に分散される微粒子の状態については、上記「A.プラズモン共鳴積層体」の項に記載の内容と同様とすることができるので、ここでの説明は省略する。 The binder portion formed by this process includes a binder layer and fine particles. The binder layer includes a binder agent and fine particles are dispersed. Such a binder layer and fine particles, and the state of the fine particles dispersed in the binder layer can be the same as the contents described in the above section “A. Plasmon Resonance Laminate”. Is omitted.
3.その他の工程
 本開示のプラズモン共鳴積層体の製造方法は、塗布工程および乾燥工程を有するものであるが、必要に応じてその他の工程を有するものであってもよい。例えば、柱状厚膜部材を形成する柱状厚膜部材形成工程や、カバー層を形成するカバー層形成工程等を挙げることができる。
3. Other Steps The method for producing a plasmon resonance laminate of the present disclosure includes a coating step and a drying step, but may include other steps as necessary. For example, a columnar thick film member forming step for forming a columnar thick film member, a cover layer forming step for forming a cover layer, and the like can be given.
D.情報記録媒体
 次に、本開示の情報記録媒体について説明する。本開示の情報記録媒体は、透明基材の一方の面に、上記透明基材よりも高い屈折率を有する高屈折率層を有し、上記高屈折率層の上記透明基材とは反対側の面に、バインダ層と粒子とを含むバインダ部を有し、上記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、上記バインダ部が上記透明基材より上に位置するようにしたとき、上記バインダ部の上記透明基材とは反対側の面の少なくとも一部が、上記粒子の上記透明基材からの最も離れた部分よりも低いプラズモン共鳴積層体を備える。すなわち、本開示の情報記録媒体は、上述のプラズモン共鳴積層体を備える。
D. Information Recording Medium Next, the information recording medium of the present disclosure will be described. The information recording medium of the present disclosure has a high refractive index layer having a higher refractive index than the transparent substrate on one surface of the transparent substrate, and the opposite side of the high refractive index layer from the transparent substrate. And a binder part including a binder layer and particles, the particles contain a negative dielectric material, and plasmon resonate with visible light, and the binder part is located above the transparent substrate. When it does, at least one part of the surface on the opposite side to the said transparent base material of the said binder part is equipped with the plasmon resonance laminated body lower than the part most distant from the said transparent base material of the said particle | grain. That is, the information recording medium of the present disclosure includes the above-described plasmon resonance laminated body.
 本開示の情報記録媒体は、上述のプラズモン共鳴積層体を備えることにより、偽造防止性を高めることが可能である。プラズモン共鳴積層体は、情報記録媒体の表側から可視光を照射した場合と、裏側から可視光を照射した場合とで、異なる色の画像を表示可能である。また、プラズモン共鳴積層体は、例えば文字、記号、絵柄等の情報を含む画像を表示することができ、情報記録媒体の表裏で、所定の情報を含む画像を異なる色で表示可能である。そのため、情報記録媒体に両面側からそれぞれ可視光を照射し、情報記録媒体の表裏で、プラズモン共鳴積層体が表示する画像を確認することにより、情報記録媒体の真贋判定を行うことができる。 The information recording medium of the present disclosure can improve anti-counterfeiting by including the above-described plasmon resonance laminate. The plasmon resonance laminate can display images of different colors when irradiated with visible light from the front side of the information recording medium and when irradiated with visible light from the back side. In addition, the plasmon resonance laminate can display images including information such as characters, symbols, and patterns, and can display images including predetermined information in different colors on the front and back of the information recording medium. Therefore, it is possible to determine the authenticity of the information recording medium by irradiating the information recording medium with visible light from both sides and checking the images displayed by the plasmon resonance laminate on the front and back of the information recording medium.
 以下、本開示の情報記録媒体の各構成について説明する。 Hereinafter, each configuration of the information recording medium of the present disclosure will be described.
1.プラズモン共鳴積層体
 プラズモン共鳴積層体は、例えば文字、記号、絵柄との情報を含む画像を表示することができる。具体的には、プラズモン共鳴積層体は、情報記録媒体の表裏で、所定の情報を含む画像を異なる色で表示可能である。
1. Plasmon Resonance Laminate The plasmon resonance laminate can display an image including information on characters, symbols, and patterns, for example. Specifically, the plasmon resonance laminate can display images including predetermined information in different colors on the front and back of the information recording medium.
 プラズモン共鳴積層体は、情報記録媒体の最表面に配置されていてもよく、情報記録媒体を構成する部材の間に配置されていてもよく、情報記録媒体を構成する部材の開口部に嵌め込まれていてもよい。情報記録媒体は、通常、プラズモン共鳴積層体の少なくとも一方の面側に、支持体を備える。情報記録媒体が支持体を備える場合、例えば図8、図9(a)、図9(b)、図10、図11(a)に示すように情報記録媒体30A、30Bが1つの支持体31を備え、プラズモン共鳴積層体10が支持体31の一方の面側に配置されていてもよく、図8、図9(c)、図9(d)、図10、図11(b)に示すように情報記録媒体30A、30Bが2つの支持体、すなわち第1支持体31aおよび第2支持体31bを備え、プラズモン共鳴積層体10が第1支持体31aおよび第2支持体31bの間に配置されていてもよく、図8、図9(e)、図9(f)に示すように情報記録媒体30Aを構成する支持体31が開口部32を有し、その開口部32にプラズモン共鳴積層体10が嵌め込まれていてもよい。なお、図9(a)~(f)は図8のD-D線断面図であり、図11(a)~(b)は図10のE-E線断面図である。図8~図11については後述する。 The plasmon resonance laminated body may be disposed on the outermost surface of the information recording medium, may be disposed between the members constituting the information recording medium, and is fitted into the opening of the member constituting the information recording medium. It may be. The information recording medium usually includes a support on at least one surface side of the plasmon resonance laminate. When the information recording medium includes a support, for example, as shown in FIGS. 8, 9A, 9B, 10, and 11A, the information recording media 30A and 30B have one support 31. And the plasmon resonance laminate 10 may be disposed on one surface side of the support 31 as shown in FIGS. 8, 9 (c), 9 (d), 10, and 11 (b). As described above, the information recording media 30A and 30B include two supports, that is, the first support 31a and the second support 31b, and the plasmon resonance laminate 10 is disposed between the first support 31a and the second support 31b. As shown in FIG. 8, FIG. 9 (e), and FIG. 9 (f), the support 31 constituting the information recording medium 30A has an opening 32, and a plasmon resonance lamination is formed in the opening 32. The body 10 may be fitted. 9A to 9F are sectional views taken along the line DD of FIG. 8, and FIGS. 11A to 11B are sectional views taken along the line EE of FIG. 8 to 11 will be described later.
 プラズモン共鳴積層体が、情報記録媒体の最表面に配置される場合、具体的には、情報記録媒体が1つの支持体を備え、プラズモン共鳴積層体が支持体の一方の面側に配置される場合、支持体の一方の面側にプラズモン共鳴積層体が別途配置されていてもよく、またプラズモン共鳴積層体の透明基材が支持体と一体であってもよい。なお、プラズモン共鳴積層体の透明基材が支持体と一体であるとは、プラズモン共鳴積層体の透明基材が支持体としても機能することをいう。 When the plasmon resonance laminated body is arranged on the outermost surface of the information recording medium, specifically, the information recording medium includes one support, and the plasmon resonance laminated body is arranged on one surface side of the support. In this case, the plasmon resonance laminate may be separately disposed on one surface side of the support, and the transparent substrate of the plasmon resonance laminate may be integrated with the support. In addition, that the transparent base material of a plasmon resonance laminated body is integral with a support means that the transparent base material of a plasmon resonance laminated body also functions as a support body.
 プラズモン共鳴積層体が、情報記録媒体の最表面に配置される場合、具体的には、図9(a)、図9(b)、図11(a)に示すように情報記録媒体30A、30Bが1つの支持体31を備え、プラズモン共鳴積層体10が支持体31の一方の面側に配置される場合であって、プラズモン共鳴積層体10が例えば図5(b)に示すように厚膜部材5およびカバー層6を有する場合、プラズモン共鳴積層体の配置としては、特に限定されるものではなく、プラズモン共鳴積層体の透明基材側を、情報記録媒体の支持体側に配置してもよく、プラズモン共鳴積層体のカバー層側を、情報記録媒体の支持体側に配置してもよい。一方、上記の場合であって、プラズモン共鳴積層体がカバー層を有さない場合、プラズモン共鳴積層体の透明基材側が、情報記録媒体の支持体側に配置される。このような配置により、プラズモン共鳴積層体の微粒子が支持体に接しないようにすることができ、プラズモン共鳴積層体において、微粒子の透明基材とは反対側表面での屈折率差を大きくすることができる。 When the plasmon resonance laminate is disposed on the outermost surface of the information recording medium, specifically, as shown in FIGS. 9A, 9B, and 11A, the information recording media 30A and 30B are used. Is provided with one support 31, and the plasmon resonance laminate 10 is disposed on one surface side of the support 31, and the plasmon resonance laminate 10 is a thick film as shown in FIG. 5B, for example. When the member 5 and the cover layer 6 are provided, the arrangement of the plasmon resonance laminate is not particularly limited, and the transparent substrate side of the plasmon resonance laminate may be arranged on the support side of the information recording medium. The cover layer side of the plasmon resonance laminate may be disposed on the support side of the information recording medium. On the other hand, in the above case, when the plasmon resonance laminate does not have a cover layer, the transparent substrate side of the plasmon resonance laminate is disposed on the support side of the information recording medium. With such an arrangement, the fine particles of the plasmon resonance laminate can be prevented from coming into contact with the support, and in the plasmon resonance laminate, the refractive index difference on the surface opposite to the transparent substrate of the fine particles is increased. Can do.
 また、プラズモン共鳴積層体が、情報記録媒体を構成する部材の間に配置される場合、具体的には、図9(c)、図9(d)、図11(b)に示すように情報記録媒体30A、30Bが2つの支持体、すなわち第1支持体31aおよび第2支持体31bを備え、プラズモン共鳴積層体10が第1支持体31aおよび第2支持体31bの間に配置される場合であって、プラズモン共鳴積層体10が例えば図5(b)に示すように厚膜部材5およびカバー層6を有する場合、プラズモン共鳴積層体の配置としては、特に限定されるものではない。一方、上記の場合であって、プラズモン共鳴積層体がカバー層を有さない場合、プラズモン共鳴積層体の透明基材とは反対側の面と、支持体との間に空間を有するように、プラズモン共鳴積層体が配置される。このような配置により、プラズモン共鳴積層体の微粒子が支持体に接しないようにすることができ、プラズモン共鳴積層体において、微粒子の透明基材とは反対側表面での屈折率差を大きくすることができる。例えば、後述するように情報記録媒体が開口部を有する支持体を備える場合、プラズモン共鳴積層体の一部が、支持体の開口部と平面視上重なり、さらにプラズモン共鳴積層体の透明基材とは反対側の面と支持体の開口部との間に空間を有するように、プラズモン共鳴積層体を配置することができる。例えば図9(d)に示す情報記録媒体30Aでは、プラズモン共鳴積層体10の透明基材とは反対側の面と、第1支持体31aの開口部32との間に空間40が形成されるように、プラズモン共鳴積層体10が配置されている。 Further, when the plasmon resonance laminated body is disposed between the members constituting the information recording medium, specifically, as shown in FIGS. 9 (c), 9 (d), and 11 (b), information is provided. When the recording media 30A and 30B include two supports, that is, the first support 31a and the second support 31b, and the plasmon resonance laminate 10 is disposed between the first support 31a and the second support 31b. And when the plasmon resonance laminated body 10 has the thick film member 5 and the cover layer 6 as shown, for example in FIG.5 (b), as arrangement | positioning of a plasmon resonance laminated body, it does not specifically limit. On the other hand, in the above case, when the plasmon resonance laminate does not have a cover layer, so that there is a space between the surface of the plasmon resonance laminate opposite to the transparent substrate and the support, A plasmon resonance laminate is disposed. With such an arrangement, the fine particles of the plasmon resonance laminate can be prevented from coming into contact with the support, and in the plasmon resonance laminate, the refractive index difference on the surface opposite to the transparent substrate of the fine particles is increased. Can do. For example, when the information recording medium includes a support having an opening as described later, a part of the plasmon resonance laminate overlaps with the opening of the support in a plan view, and the transparent substrate of the plasmon resonance laminate The plasmon resonance laminate can be arranged so as to have a space between the opposite surface and the opening of the support. For example, in the information recording medium 30A shown in FIG. 9D, a space 40 is formed between the surface of the plasmon resonance laminate 10 opposite to the transparent substrate and the opening 32 of the first support 31a. Thus, the plasmon resonance laminated body 10 is arrange | positioned.
 また、プラズモン共鳴積層体が、情報記録媒体を構成する部材の開口部に嵌め込まれている場合、具体的には、図9(e)、図9(f)に示すように情報記録媒体30Aを構成する支持体31が開口部32を有し、その開口部32にプラズモン共鳴積層体10が嵌め込まれている場合であって、プラズモン共鳴積層体10が例えば図5(b)に示すように厚膜部材5およびカバー層6を有する場合、プラズモン共鳴積層体の配置としては、特に限定されるものではない。一方、上記の場合であって、プラズモン共鳴積層体がカバー層を有さない場合、プラズモン共鳴積層体の透明基材とは反対側の面が空気層と接するように、プラズモン共鳴積層体が配置される。例えば、支持体の開口部に嵌め込まれたプラズモン共鳴積層体の透明基材とは反対側の面が外側を向くように、プラズモン共鳴積層体を配置することにより、プラズモン共鳴積層体の透明基材とは反対側の面を空気層と接するようにすることができる。また、支持体の開口部内において、支持体の開口部に嵌め込まれたプラズモン共鳴積層体の透明基材とは反対側の面と、支持体を構成する層であって、開口部を有さない層との間に空間を有するように、プラズモン共鳴積層体を配置することにより、プラズモン共鳴積層体の透明基材とは反対側の面を空気層と接するようにすることができる。このような配置により、プラズモン共鳴積層体の微粒子が支持体に接しないようにすることができ、プラズモン共鳴積層体において、微粒子の透明基材とは反対側表面での屈折率差を大きくすることができる。 Further, when the plasmon resonance laminated body is fitted in the opening of a member constituting the information recording medium, specifically, as shown in FIGS. 9 (e) and 9 (f), the information recording medium 30A is provided. The support 31 to be configured has an opening 32, and the plasmon resonance laminated body 10 is fitted into the opening 32, and the plasmon resonance laminated body 10 has a thickness as shown in FIG. 5B, for example. When the membrane member 5 and the cover layer 6 are provided, the arrangement of the plasmon resonance laminate is not particularly limited. On the other hand, in the above case, when the plasmon resonance laminate does not have a cover layer, the plasmon resonance laminate is arranged so that the surface of the plasmon resonance laminate opposite to the transparent substrate is in contact with the air layer. Is done. For example, by arranging the plasmon resonance laminate so that the surface opposite to the transparent substrate of the plasmon resonance laminate fitted in the opening of the support faces the outside, the transparent substrate of the plasmon resonance laminate The surface on the opposite side can be in contact with the air layer. In addition, in the opening of the support, the surface of the plasmon resonance laminate that is fitted in the opening of the support is the side that is opposite to the transparent substrate, and the layer that constitutes the support, and does not have an opening. By disposing the plasmon resonance laminate so that there is a space between the layers, the surface of the plasmon resonance laminate opposite to the transparent substrate can be in contact with the air layer. With such an arrangement, the fine particles of the plasmon resonance laminate can be prevented from coming into contact with the support, and in the plasmon resonance laminate, the refractive index difference on the surface opposite to the transparent substrate of the fine particles is increased. Can do.
 後述するように、情報記録媒体が、開口部を有する支持体をさらに備える場合、プラズモン共鳴積層体の少なくとも一部が、上記開口部と平面視上重なることが好ましい。開口部から、プラズモン共鳴積層体が表示する画像を観察しやすくなるからである。また、プラズモン共鳴積層体を、種々の情報記録媒体に適用することができるからである。 As will be described later, when the information recording medium further includes a support having an opening, it is preferable that at least a part of the plasmon resonance laminate overlaps the opening in plan view. This is because it becomes easier to observe the image displayed by the plasmon resonance laminate from the opening. Moreover, it is because a plasmon resonance laminated body can be applied to various information recording media.
 プラズモン共鳴積層体の少なくとも一部が、支持体の開口部と平面視上重なる場合、プラズモン共鳴積層体の全部が、支持体の開口部と平面視上重なっていてもよく、プラズモン共鳴積層体の一部が、支持体の開口部と平面視上重なっていてもよい。また、プラズモン共鳴積層体は、支持体の開口部の全域に配置されてもよく、支持体の開口部の一部に配置されてもよい。 When at least a part of the plasmon resonance laminate overlaps with the opening of the support in plan view, the entire plasmon resonance stack may overlap with the opening of the support in plan view. A part of the opening may overlap the opening of the support in plan view. Moreover, the plasmon resonance laminated body may be arrange | positioned in the whole region of the opening part of a support body, and may be arrange | positioned in a part of opening part of a support body.
 支持体の一方の面側にプラズモン共鳴積層体を配置する方法としては、例えば、接着層を介して支持体およびプラズモン共鳴積層体を接着する方法、支持体の上にプラズモン共鳴積層体を配置した後、熱や圧力を加えることにより支持体およびプラズモン共鳴積層体を融着させる方法が挙げられる。また、2つの支持体の間にプラズモン共鳴積層体を配置する方法としては、例えば、接着層を介して少なくとも一方の支持体とプラズモン共鳴積層体とを接着する方法、2つの支持体の間にプラズモン共鳴積層体を配置するとともに、接着層を介して2つの支持体を接着する方法、2つの支持体の間にプラズモン共鳴積層体を配置した後、熱や圧力を加えることにより2つの支持体を融着させる方法が挙げられる。接着層については、上述のプラズモン共鳴積層体に使用される接着層と同様とすることができる。また、支持体の開口部にプラズモン共鳴積層体を嵌め込む方法の場合、開口部と同一形状のプラズモン共鳴積層体が用いられる。 As a method of arranging the plasmon resonance laminate on one surface side of the support, for example, a method of adhering the support and the plasmon resonance laminate via an adhesive layer, the plasmon resonance laminate is arranged on the support Thereafter, there is a method of fusing the support and the plasmon resonance laminate by applying heat or pressure. Moreover, as a method of disposing a plasmon resonance laminate between two supports, for example, a method of adhering at least one support and a plasmon resonance laminate via an adhesive layer, between the two supports A method of arranging a plasmon resonance laminate and bonding two supports via an adhesive layer. After arranging a plasmon resonance laminate between two supports, two supports by applying heat or pressure And a method of fusing. The adhesive layer can be the same as the adhesive layer used in the plasmon resonance laminate described above. Moreover, in the case of the method of fitting a plasmon resonance laminated body in the opening part of a support body, the plasmon resonance laminated body of the same shape as an opening part is used.
 プラズモン共鳴積層体については、上述の「A.プラズモン共鳴積層体」の項で詳細に記載したため、ここでの説明は省略する。 Since the plasmon resonance laminated body is described in detail in the above-mentioned section “A. Plasmon Resonant Laminate”, description thereof is omitted here.
2.支持体
 情報記録媒体は、通常、プラズモン共鳴積層体の少なくとも一方の面側に支持体を有する。
2. Support The information recording medium usually has a support on at least one surface side of the plasmon resonance laminate.
 情報記録媒体は、上述したように、図9(a)、図9(b)、図11(a)に示すように1つの支持体31を備え、プラズモン共鳴積層体10が支持体31の一方の面側に配置されていてもよく、図9(c)、図9(d)、図11(b)に示すように情報記録媒体30A、30Bが2つの支持体を備え、プラズモン共鳴積層体10が2つの支持体の間、すなわち第1支持体31aおよび第2支持体31bの間に配置されていてもよく、図9(e)、(f)に示すように支持体31を備え、支持体31の開口部32にプラズモン共鳴積層体10が嵌め込まれていてもよい。また、上述したように、プラズモン共鳴積層体の透明基材が支持体と一体であってもよい。 As described above, the information recording medium includes one support body 31 as shown in FIGS. 9A, 9B, and 11A, and the plasmon resonance laminate 10 is one of the support bodies 31. As shown in FIGS. 9C, 9D, and 11B, the information recording media 30A and 30B include two supports, and a plasmon resonance laminated body 10 may be disposed between the two supports, that is, between the first support 31a and the second support 31b, and includes the support 31 as shown in FIGS. 9 (e) and 9 (f). The plasmon resonance laminate 10 may be fitted into the opening 32 of the support 31. Further, as described above, the transparent substrate of the plasmon resonance laminate may be integral with the support.
 支持体は、透明性を有していてもよく有さなくてもよい。支持体が透明性を有する場合、通常、上述のプラズモン共鳴積層体の透明基材と同様の光透過性を有しており、さらに上記透明基材と同様の可視光透過性を有することができる。 The support may or may not have transparency. When the support has transparency, it usually has the same light transmittance as that of the transparent substrate of the plasmon resonance laminate, and can have the same visible light transmittance as that of the transparent substrate. .
 また、支持体は開口部を有していてもよい。支持体が透明性を有さない場合には、開口部を有することが好ましい。開口部は、プラズモン共鳴積層体が表示する画像を、情報記録媒体の両面側から観察するために設けられる。プラズモン共鳴積層体の少なくとも一部は、支持体の開口部と平面視上重なるように配置される。 Further, the support may have an opening. When a support body does not have transparency, it is preferable to have an opening. The opening is provided for observing an image displayed by the plasmon resonance laminate from both sides of the information recording medium. At least a part of the plasmon resonance laminated body is disposed so as to overlap the opening of the support in plan view.
 支持体は、支持層を有していればよく、例えば支持層のみを有していてもよく、支持層の少なくとも一方の面側に機能層を有していてもよい。また、支持体が支持層および機能層を有する場合、支持層および機能層を1つずつ有していてもよく、支持層および機能層の少なくとも一方を複数有していてもよい。 The support only needs to have a support layer, for example, may have only a support layer, or may have a functional layer on at least one surface side of the support layer. When the support has a support layer and a functional layer, the support may have one support layer and one functional layer, or may have a plurality of at least one of the support layer and the functional layer.
 支持層および機能層の材質としては、例えば紙、樹脂、金属、合成繊維等が挙げられる。支持層としては、上述のプラズモン共鳴積層体の透明基材を用いることもできる。また、機能層としては、例えば不透明層、印刷層、受像層、ホログラム層等が挙げられる。 Examples of the material for the support layer and the functional layer include paper, resin, metal, and synthetic fiber. As the support layer, the transparent substrate of the plasmon resonance laminate described above can also be used. Moreover, as a functional layer, an opaque layer, a printing layer, an image receiving layer, a hologram layer etc. are mentioned, for example.
 支持体が開口部を有する場合、支持層が開口部を有していてもよく、機能層が開口部を有していてもよく、支持層および機能層が開口部を有していてもよい。 When the support has an opening, the support layer may have an opening, the functional layer may have an opening, and the support layer and the functional layer may have an opening. .
 また、機能層が開口部を有する場合、機能層の開口部は孔であってもよく、機能層の開口部に、その開口部と同一形状の透明層が嵌め込まれていてもよい。透明層は、通常、上述のプラズモン共鳴積層体の透明基材と同様の光透過性を有しており、さらに上記透明基材と同様の可視光透過性を有することができる。 When the functional layer has an opening, the opening of the functional layer may be a hole, and a transparent layer having the same shape as the opening may be fitted into the opening of the functional layer. The transparent layer usually has the same light transmittance as that of the transparent substrate of the plasmon resonance laminate described above, and can further have the same visible light transmittance as that of the transparent substrate.
 開口部の大きさは、プラズモン共鳴積層体の少なくとも一部を、開口部と平面視上重なるように配置することができればよく、プラズモン共鳴積層体の大きさや、情報記録媒体の大きさ等に応じて適宜調整される。 The size of the opening is not limited as long as at least a part of the plasmon resonance laminate can be arranged so as to overlap the opening in plan view, and depends on the size of the plasmon resonance laminate, the size of the information recording medium, and the like. Are adjusted accordingly.
 支持体の厚みとしては、情報記録媒体の用途や種類等に応じて適宜選択され、例えば10μm以上2000μm以下の範囲内とすることができ、さらに50μm以上1000μm以下の範囲内とすることができる。 The thickness of the support is appropriately selected according to the use and type of the information recording medium, and can be, for example, in the range of 10 μm to 2000 μm, and more preferably in the range of 50 μm to 1000 μm.
 支持層の少なくとも一方の面側に機能層を配置する方法としては、例えば、接着層を介して支持層および機能層を接着する方法、熱や圧力を加えることにより支持層および機能層を融着させる方法、支持層上に機能層を形成する方法等が挙げられる。また、支持体が複数の支持層を有する場合、複数の支持層を積層する方法としては、例えば接着層を介して複数の支持層を接着する方法、熱や圧力を加えることにより複数の支持層を融着させる方法等が挙げられる。この場合、各支持層の間には機能層が配置されていてもよい。接着層については、上述のプラズモン共鳴積層体に使用される接着層と同様とすることができる。 Examples of the method of arranging the functional layer on at least one side of the support layer include, for example, a method of bonding the support layer and the functional layer through an adhesive layer, and fusing the support layer and the functional layer by applying heat or pressure. And a method of forming a functional layer on the support layer. Further, when the support has a plurality of support layers, the method of laminating the plurality of support layers is, for example, a method of bonding a plurality of support layers via an adhesive layer, a plurality of support layers by applying heat or pressure, etc. And the like. In this case, a functional layer may be disposed between the support layers. The adhesive layer can be the same as the adhesive layer used in the plasmon resonance laminate described above.
 支持体が支持層および機能層を有する場合について、例を挙げて説明する。図8~図11は、支持体が支持層および機能層を有する例である。なお、図9(a)~(f)は図8のD-D線断面図、図11(a)~(b)は図10のE-E線断面図である。以下、各例について説明する。 An example is given and demonstrated about the case where a support body has a support layer and a functional layer. 8 to 11 are examples in which the support has a support layer and a functional layer. 9A to 9F are sectional views taken along the line DD of FIG. 8, and FIGS. 11A to 11B are sectional views taken along the line EE of FIG. Each example will be described below.
 図8および図9(a)に示す情報記録媒体30Aは、1つの支持体31を備え、支持体31の一方の面側にプラズモン共鳴積層体10が配置されている。支持体31では、第1支持層33と不透明層34と第2支持層35とが順に積層されている。不透明層34は開口部32を有し、この開口部32と平面視上重なるようにプラズモン共鳴積層体10が配置されている。なお、この例では、支持体31の第2支持層35側の面にプラズモン共鳴積層体10が配置されているが、支持体31の第1支持層33側の面にプラズモン共鳴積層体10が配置されていてもよい。 The information recording medium 30A shown in FIG. 8 and FIG. 9A includes a single support 31, and the plasmon resonance laminate 10 is disposed on one surface side of the support 31. In the support 31, the first support layer 33, the opaque layer 34, and the second support layer 35 are sequentially stacked. The opaque layer 34 has an opening 32, and the plasmon resonance laminated body 10 is disposed so as to overlap the opening 32 in plan view. In this example, the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the second support layer 35 side, but the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the first support layer 33 side. It may be arranged.
 図8および図9(b)に示す情報記録媒体30Aは、1つの支持体31を備え、支持体31の一方の面側にプラズモン共鳴積層体10が配置されている。支持体31では、第1支持層33と第1印刷層36と第2支持層35と第2印刷層37と第3支持層38とが順に積層されている。第1印刷層36および第2印刷層37はそれぞれ開口部32を有し、この開口部32と平面視上重なるようにプラズモン共鳴積層体10が配置されている。なお、この例では、支持体31の第3支持層38側の面にプラズモン共鳴積層体10が配置されているが、支持体31の第1支持層33側の面にプラズモン共鳴積層体10が配置されていてもよい。 The information recording medium 30A shown in FIG. 8 and FIG. 9B includes a single support 31, and the plasmon resonance laminate 10 is disposed on one surface side of the support 31. In the support 31, the first support layer 33, the first print layer 36, the second support layer 35, the second print layer 37, and the third support layer 38 are laminated in order. The first print layer 36 and the second print layer 37 each have an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view. In this example, the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the third support layer 38 side, but the plasmon resonance laminate 10 is disposed on the surface of the support 31 on the first support layer 33 side. It may be arranged.
 図8および図9(c)に示す情報記録媒体30Aは、2つの支持体、すなわち第1支持体31aおよび第2支持体31bを備え、第1支持体31aおよび第2支持体31bの間にプラズモン共鳴積層体10が配置されている。第1支持体31aでは、第1支持層33と不透明層34とが順に積層されている。また、第2支持体31bは、第2支持層35を有する。不透明層34は開口部32を有し、この開口部32と平面視上重なるようにプラズモン共鳴積層体10が配置されている。 The information recording medium 30A shown in FIGS. 8 and 9C includes two supports, that is, a first support 31a and a second support 31b, and is provided between the first support 31a and the second support 31b. Plasmon resonance laminate 10 is arranged. In the first support 31a, the first support layer 33 and the opaque layer 34 are sequentially laminated. Further, the second support 31 b has a second support layer 35. The opaque layer 34 has an opening 32, and the plasmon resonance laminated body 10 is disposed so as to overlap the opening 32 in plan view.
 図8および図9(d)に示す情報記録媒体30Aは、2つの支持体、すなわち第1支持体31aおよび第2支持体31bを備え、第1支持体31aおよび第2支持体31bの間にプラズモン共鳴積層体10が配置されている。第1支持体31aでは、第1支持層33と不透明層34とが順に積層されている。また、第2支持体31bでは、第2支持層35と印刷層39とが順に積層されている。不透明層34および印刷層39はそれぞれ開口部32を有し、この開口部32と平面視上重なるようにプラズモン共鳴積層体10が配置されている。なお、この例では、印刷層39が、第2支持層35のプラズモン共鳴積層体10側に配置されているが、第2支持層35のプラズモン共鳴積層体10とは反対側に配置されていてもよい。 The information recording medium 30A shown in FIGS. 8 and 9D includes two supports, that is, a first support 31a and a second support 31b, and is provided between the first support 31a and the second support 31b. Plasmon resonance laminate 10 is arranged. In the first support 31a, the first support layer 33 and the opaque layer 34 are sequentially laminated. In the second support 31b, the second support layer 35 and the print layer 39 are sequentially stacked. The opaque layer 34 and the printed layer 39 each have an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view. In this example, the printed layer 39 is disposed on the plasmon resonance laminate 10 side of the second support layer 35, but is disposed on the opposite side of the plasmon resonance laminate 10 of the second support layer 35. Also good.
 図8および図9(e)に示す情報記録媒体30Aは、1つの支持体31を備え、支持体31の開口部32にプラズモン共鳴積層体10が嵌め込まれている。支持体31では、第1支持層33と不透明層34と第2支持層35とが順に積層されている。第2支持層35および不透明層34はそれぞれ開口部32を有し、第2支持層35の開口部32にプラズモン共鳴積層体10が嵌め込まれている。 The information recording medium 30A shown in FIG. 8 and FIG. 9 (e) includes one support 31, and the plasmon resonance laminate 10 is fitted in the opening 32 of the support 31. In the support 31, the first support layer 33, the opaque layer 34, and the second support layer 35 are sequentially stacked. Each of the second support layer 35 and the opaque layer 34 has an opening 32, and the plasmon resonance laminate 10 is fitted into the opening 32 of the second support layer 35.
 図8および図9(f)に示す情報記録媒体30Aは、1つの支持体31を備え、支持体31の開口部32にプラズモン共鳴積層体10が嵌め込まれている。支持体31では、第1支持層33と第1印刷層36と第2支持層35と第2印刷層37と第3支持層38とが順に積層されている。第3支持層38、第1印刷層36および第2印刷層37はそれぞれ開口部32を有し、第3支持層38の開口部32にプラズモン共鳴積層体10が嵌め込まれている。 The information recording medium 30A shown in FIG. 8 and FIG. 9 (f) includes a single support 31, and the plasmon resonance laminate 10 is fitted into the opening 32 of the support 31. In the support 31, the first support layer 33, the first print layer 36, the second support layer 35, the second print layer 37, and the third support layer 38 are laminated in order. The third support layer 38, the first print layer 36, and the second print layer 37 each have an opening 32, and the plasmon resonance laminate 10 is fitted into the opening 32 of the third support layer 38.
 図10および図11は、情報記録媒体が紙幣である例である。図10および図11(a)に示す情報記録媒体30Bは、1つの支持体31を備え、支持体31の一方の面側にプラズモン共鳴積層体10が配置されている。支持体31では、支持層41の両面側にそれぞれ第1印刷層42および第2印刷層43が配置されている。第1印刷層42および第2印刷層43はそれぞれ開口部32を有し、この開口部32と平面視上重なるようにプラズモン共鳴積層体10が配置されている。 10 and 11 are examples in which the information recording medium is a banknote. An information recording medium 30 </ b> B shown in FIGS. 10 and 11A includes a single support 31, and the plasmon resonance laminate 10 is disposed on one surface side of the support 31. In the support 31, the first print layer 42 and the second print layer 43 are disposed on both sides of the support layer 41, respectively. Each of the first printed layer 42 and the second printed layer 43 has an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view.
 図10および図11(b)に示す情報記録媒体30Bは、2つの支持体、すなわち第1支持体31aおよび第2支持体31bを備え、第1支持体31aおよび第2支持体31bの間にプラズモン共鳴積層体10が配置されている。第1支持体31aでは、第1支持層44の片面側に第1印刷層42が配置されている。また、第2支持体31bでは、第2支持層45の片面側に第2印刷層43が配置されている。第1印刷層42および第2印刷層43はそれぞれ開口部32を有し、この開口部32と平面視上重なるようにプラズモン共鳴積層体10が配置されている。 The information recording medium 30B shown in FIGS. 10 and 11B includes two supports, that is, a first support 31a and a second support 31b, and is provided between the first support 31a and the second support 31b. Plasmon resonance laminate 10 is arranged. In the first support 31 a, the first print layer 42 is disposed on one side of the first support layer 44. In the second support 31b, the second print layer 43 is disposed on one side of the second support layer 45. Each of the first printed layer 42 and the second printed layer 43 has an opening 32, and the plasmon resonance laminate 10 is disposed so as to overlap the opening 32 in plan view.
3.情報記録媒体
 本開示においては、情報記録媒体に両面側からそれぞれ可視光を照射し、情報記録媒体の表裏で、プラズモン共鳴積層体が表示する画像を確認することで、真贋判定を行うことが可能である。情報記録媒体に照射する可視光としては、上述の「A.プラズモン共鳴積層体」の項に記載した、プラズモン共鳴する可視光の波長を含むものであればよい。例えば、情報記録媒体には白色光を照射することができる。プラズモン共鳴積層体が表示する画像の確認方法は、上述のプラズモン共鳴積層体を用いた偽造防止の方法と同様とすることができる。
3. Information recording medium In the present disclosure, it is possible to determine the authenticity by irradiating the information recording medium with visible light from both sides and confirming the images displayed by the plasmon resonance laminate on the front and back of the information recording medium. It is. The visible light applied to the information recording medium may be any light that includes the wavelength of visible light that causes plasmon resonance, as described in the section “A. Plasmon Resonance Laminate” above. For example, the information recording medium can be irradiated with white light. The method for confirming the image displayed by the plasmon resonance laminate can be the same as the method for preventing forgery using the plasmon resonance laminate.
 情報記録媒体としては、例えば、金銭的価値を有する媒体、個人情報や機密情報等の各種の情報を記録した媒体を挙げることができ、具体的には、紙幣、金券、チケット、ID証、パスポート、磁気カード、ICカード、公的文書等が挙げられる。ID証としては、例えば、国民ID証、運転免許証、会員証、社員証、学生証等が挙げられる。 Examples of the information recording medium include a medium having a monetary value and a medium on which various information such as personal information and confidential information is recorded. Specifically, a bill, a cash voucher, a ticket, an ID card, a passport , Magnetic cards, IC cards, official documents and the like. Examples of the ID card include a national ID card, a driver's license, a membership card, an employee card, and a student card.
 本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
 以下に実施例を示し、本開示をさらに詳細に説明する。 Hereinafter, the present disclosure will be described in more detail with reference to examples.
[比較例1]
 エチレングリコールで表面修飾された、直径100nmの銀ナノ粒子の水系分散液(シグマアルドリッチ)を遠沈管に分取した。過剰量のアセトンを加えて、遠心分離機を用いて2000Gの遠心力で、銀ナノ粒子を沈殿させ、上澄み液を除去した。これを数回繰り返し、エタノールに再分散させて銀ナノ粒子エタノール分散液を得た。次いで、PETフィルム(ルミラー、東レ)に酸化チタンをスパッタ法で成膜し、高屈折率層として酸化チタン膜を有する基板を形成した。触針式段差計で高屈折率層の膜厚を測定したところ40nmであった。基板の酸化チタン面に銀ナノ粒子エタノール分散液をディスポーザブルピペットで約1mL散布し、乾燥させてプラズモン共鳴積層体を得た。
[Comparative Example 1]
An aqueous dispersion (Sigma Aldrich) of 100 nm diameter silver nanoparticles surface-modified with ethylene glycol was fractionated into a centrifuge tube. An excess amount of acetone was added, silver nanoparticles were precipitated with a centrifugal force of 2000 G using a centrifuge, and the supernatant was removed. This was repeated several times and re-dispersed in ethanol to obtain a silver nanoparticle ethanol dispersion. Next, titanium oxide was deposited on a PET film (Lumirror, Toray) by sputtering to form a substrate having a titanium oxide film as a high refractive index layer. It was 40 nm when the film thickness of the high refractive index layer was measured with the stylus type level difference meter. About 1 mL of the silver nanoparticle ethanol dispersion was sprayed on the titanium oxide surface of the substrate with a disposable pipette and dried to obtain a plasmon resonance laminate.
 このプラズモン共鳴積層体を白色ハロゲンランプで照明し、目視で観察したところ裏表で異なる色が観察された。なお、プラズモン共鳴積層体の銀ナノ粒子散布面をワイプで拭き取ったところ、ワイプに銀ナノ粒子起因と推定される色移りが確認された。 When this plasmon resonance laminate was illuminated with a white halogen lamp and visually observed, different colors were observed on the front and back sides. In addition, when the silver nanoparticle spreading | diffusion surface of the plasmon resonance laminated body was wiped off with the wipe, the color transfer estimated to be attributed to the silver nanoparticle in the wipe was confirmed.
[実施例1]
 エタノールに銀ナノ粒子を再分散させ、さらに、バインダ剤として、シリコーンレジンLPS-5558(信越化学工業)を、分散媒であるエタノールに対する濃度(バインダ剤/分散媒)が、1/99で添加し、さらに、シリコーンレジンを硬化可能な硬化触媒として、熱硬化剤C-5558(信越化学工業)を加えて調製した銀ナノ粒子エタノール分散液を用い、基板を加熱してバインダ層を熱硬化させた以外は、実施例1と同様にして、プラズモン共鳴積層体を得た。
[Example 1]
Silver nanoparticles were redispersed in ethanol, and silicone resin LPS-5558 (Shin-Etsu Chemical Co., Ltd.) was added as a binder agent at a concentration of 1/99 (binder agent / dispersion medium) with respect to ethanol as the dispersion medium. Furthermore, using a silver nanoparticle ethanol dispersion prepared by adding a thermosetting agent C-5558 (Shin-Etsu Chemical Co., Ltd.) as a curing catalyst capable of curing the silicone resin, the binder layer was thermally cured by heating the substrate. Except for the above, a plasmon resonance laminate was obtained in the same manner as in Example 1.
 このプラズモン共鳴積層体を白色ハロゲンランプで照明し、目視で観察したところ比較例1と同様に裏表で異なる色が観察された。また、バインダ層内の銀ナノ粒子の状態をSEMの断面観察によって確認したところ、バインダ層内に分散される微粒子の状態が、上記バインダ層の最低厚みが上記微粒子の最大高さより薄く、さらに、上記微粒子が上記高屈折率層と接する状態であること、さらに、上記バインダ層の平均厚みが、上記微粒子の平均一次粒径よりも小さいことが確認できた。また、プラズモン共鳴積層体の銀ナノ粒子散布面をワイプで拭き取ったところ、比較例1と比較して色移りの程度は著しく減少した。 When this plasmon resonance laminate was illuminated with a white halogen lamp and visually observed, different colors were observed on the front and back sides as in Comparative Example 1. Further, when the state of the silver nanoparticles in the binder layer was confirmed by SEM cross-sectional observation, the state of the fine particles dispersed in the binder layer was such that the minimum thickness of the binder layer was thinner than the maximum height of the fine particles, It was confirmed that the fine particles were in contact with the high refractive index layer, and that the average thickness of the binder layer was smaller than the average primary particle size of the fine particles. Further, when the silver nanoparticle-spreading surface of the plasmon resonance laminate was wiped with a wipe, the degree of color transfer was significantly reduced as compared with Comparative Example 1.
 1 … 透明基材
 2 … 高屈折率層
 3 … バインダ層
 4 … 微粒子
 5 … 厚膜部材
 6 … カバー層
 7 … バインダ部
 10 … プラズモン共鳴積層体
 30A、30B … 情報記録媒体
 31 … 支持体
 31a … 第1支持体
 31b … 第2支持体
 32 … 開口部
DESCRIPTION OF SYMBOLS 1 ... Transparent base material 2 ... High refractive index layer 3 ... Binder layer 4 ... Fine particle 5 ... Thick film member 6 ... Cover layer 7 ... Binder part 10 ... Plasmon resonance laminated body 30A, 30B ... Information recording medium 31 ... Support 31a ... 1st support 31b ... 2nd support 32 ... Opening part

Claims (8)

  1.  透明性を有する基材の一方の面に、前記基材よりも高い屈折率を有する第1層を有し、
     前記第1層の前記基材とは反対側の面に、バインダ層と粒子とを含む第2層を有し、
     前記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、
     前記第2層が前記基材より上に位置するようにしたとき、前記第2層の前記基材とは反対側の面の少なくとも一部が、前記粒子の前記基材からの最も離れた部分よりも低いプラズモン共鳴積層体。
    On one side of the substrate having transparency, the first layer having a higher refractive index than the substrate,
    A second layer including a binder layer and particles on the surface of the first layer opposite to the substrate;
    The particles include a negative dielectric material and plasmon resonate with visible light,
    When the second layer is positioned above the base material, at least a part of the surface of the second layer opposite to the base material is a part of the particle farthest from the base material. Lower plasmon resonance laminate.
  2.  前記第2層の平均厚みが、前記粒子の平均一次粒径よりも小さい請求項1に記載のプラズモン共鳴積層体。 The plasmon resonance laminate according to claim 1, wherein an average thickness of the second layer is smaller than an average primary particle size of the particles.
  3.  前記バインダ剤が、フッ素系化合物およびシリコーン系化合物の少なくとも一方を含むものである請求項1または請求項2に記載のプラズモン共鳴積層体。 The plasmon resonance laminate according to claim 1 or 2, wherein the binder agent contains at least one of a fluorine compound and a silicone compound.
  4.  粒子、バインダ剤および分散媒を含み、
     前記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、
     前記バインダ剤の前記分散媒に対する濃度(バインダ剤/分散媒)が、0.1/100以上10/100以下の範囲内であるバインダ部形成用組成物。
    Including particles, binder agent and dispersion medium,
    The particles include a negative dielectric material and plasmon resonate with visible light,
    The composition for binder part formation whose density | concentration (binder agent / dispersion medium) with respect to the said dispersion medium of the said binder agent exists in the range of 0.1 / 100 or more and 10/100 or less.
  5.  透明性を有する基材の一方の面に、前記基材よりも屈折率の高い第1層を有する積層体を準備し、前記積層体の前記第1層の表面上に、粒子、バインダ剤および分散媒を含むバインダ部形成用組成物を塗布する塗布工程と、
     前記バインダ部形成用組成物の塗膜から前記分散媒を乾燥除去し、第2層を形成する乾燥工程と、
     を有し、
     前記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、
     前記バインダ部形成用組成物は、前記バインダ剤の前記分散媒に対する濃度(バインダ剤/分散媒)が、0.1/100以上10/100以下の範囲内であるプラズモン共鳴積層体の製造方法。
    A laminate having a first layer having a refractive index higher than that of the substrate is prepared on one surface of the substrate having transparency, and particles, a binder agent, and a binder are formed on the surface of the first layer of the laminate. An application step of applying a binder part-forming composition containing a dispersion medium;
    A drying step of drying and removing the dispersion medium from the coating film of the binder part forming composition to form a second layer;
    Have
    The particles include a negative dielectric material and plasmon resonate with visible light,
    The binder part forming composition is a method for producing a plasmon resonance laminate, wherein a concentration of the binder agent with respect to the dispersion medium (binder agent / dispersion medium) is in a range of 0.1 / 100 or more and 10/100 or less.
  6.  透明性を有する基材の一方の面に、前記基材よりも高い屈折率を有する第1層を有し、
     前記第1層の前記基材とは反対側の面に、バインダ層と粒子とを含む第2層を有し、
     前記粒子は、負誘電体材料を含み、可視光に対してプラズモン共鳴し、
     前記第2層が前記基材より上に位置するようにしたとき、前記第2層の前記基材とは反対側の面の少なくとも一部が、前記粒子の前記基材からの最も離れた部分よりも低いプラズモン共鳴積層体を備える、情報記録媒体。
    On one side of the substrate having transparency, the first layer having a higher refractive index than the substrate,
    A second layer including a binder layer and particles on the surface of the first layer opposite to the substrate;
    The particles include a negative dielectric material and plasmon resonate with visible light,
    When the second layer is positioned above the base material, at least a part of the surface of the second layer opposite to the base material is a part of the particle farthest from the base material. An information recording medium comprising a lower plasmon resonance laminate.
  7.  前記プラズモン共鳴積層体は、情報を含む画像を表示する、請求項6に記載の情報記録媒体。 The information recording medium according to claim 6, wherein the plasmon resonance laminate displays an image including information.
  8.  開口部を有する支持体をさらに備え、
     前記プラズモン共鳴積層体の少なくとも一部が、前記支持体の前記開口部に平面視上重なる、請求項6または請求項7に記載の情報記録媒体。
    Further comprising a support having an opening,
    The information recording medium according to claim 6 or 7, wherein at least a part of the plasmon resonance laminate overlaps the opening of the support in a plan view.
PCT/JP2017/018397 2016-05-17 2017-05-16 Plasmon resonance laminate, binder-part-forming composition, method for manufacturing plasmon resonance laminate, and information recording medium WO2017199969A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016098375 2016-05-17
JP2016-098375 2016-05-17
JP2017096671A JP2017217903A (en) 2016-05-17 2017-05-15 Plasmon resonance laminate, binder part formation composition, manufacturing method of plasmon resonance laminate and information recording medium
JP2017-096671 2017-05-15

Publications (1)

Publication Number Publication Date
WO2017199969A1 true WO2017199969A1 (en) 2017-11-23

Family

ID=60325195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018397 WO2017199969A1 (en) 2016-05-17 2017-05-16 Plasmon resonance laminate, binder-part-forming composition, method for manufacturing plasmon resonance laminate, and information recording medium

Country Status (1)

Country Link
WO (1) WO2017199969A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175829A (en) * 2002-11-25 2004-06-24 Sumitomo Metal Mining Co Ltd Colored dispersion for transparent coating layer and transparent two-layered film
JP2005314712A (en) * 2004-04-27 2005-11-10 Osaka Gas Co Ltd Composition for forming metal particulate and metal particulate
JP2006213939A (en) * 2005-02-01 2006-08-17 Ricoh Co Ltd Organic and inorganic compound thin film, method of manufacturing the same, and optical recording medium using the same
WO2008072688A1 (en) * 2006-12-14 2008-06-19 Nec Corporation Photodiode
JP2009283783A (en) * 2008-05-23 2009-12-03 Katsuhiro Maekawa Formation method of high adhesiveness metal nanoparticle sintered compact film
JP2012528310A (en) * 2009-05-25 2012-11-12 インスプリオン エービー Sensor using localized surface plasmon resonance (LSPR)
JP2017024214A (en) * 2015-07-17 2017-02-02 西松建設株式会社 Functional light transmission material and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175829A (en) * 2002-11-25 2004-06-24 Sumitomo Metal Mining Co Ltd Colored dispersion for transparent coating layer and transparent two-layered film
JP2005314712A (en) * 2004-04-27 2005-11-10 Osaka Gas Co Ltd Composition for forming metal particulate and metal particulate
JP2006213939A (en) * 2005-02-01 2006-08-17 Ricoh Co Ltd Organic and inorganic compound thin film, method of manufacturing the same, and optical recording medium using the same
WO2008072688A1 (en) * 2006-12-14 2008-06-19 Nec Corporation Photodiode
JP2009283783A (en) * 2008-05-23 2009-12-03 Katsuhiro Maekawa Formation method of high adhesiveness metal nanoparticle sintered compact film
JP2012528310A (en) * 2009-05-25 2012-11-12 インスプリオン エービー Sensor using localized surface plasmon resonance (LSPR)
JP2017024214A (en) * 2015-07-17 2017-02-02 西松建設株式会社 Functional light transmission material and method for producing the same

Similar Documents

Publication Publication Date Title
US10281626B2 (en) Color image display devices comprising structural color pixels that are selectively activated and/or deactivated by material deposition
CN102822703B (en) High refractive index coating and the purposes in protection surface convex-concave type structure thereof
TWI583276B (en) Patterned substrates with darkened conductor traces
US7995256B2 (en) Transparent card with hologram, and apparatus for recognizing transparent card with hologram
KR20180097787A (en) Counterfeit preventing structure and counterfeit preventing article
TWI735472B (en) Forgery prevention structure
EP3317701B1 (en) Fingerprint sensing device comprising three-dimensional pattern
EP2650141A1 (en) Taggant particle group, anti-counterfeit ink comprising same, anti-counterfeit toner, anti-counterfeit sheet, and anti-counterfeit medium
EP2710520B1 (en) Laser-personalizable security articles
KR102535492B1 (en) Display object and method of observing the display object
US20150185387A1 (en) Polarization film, visible latent image article, and manufacturing method thereof
JPWO2009038197A1 (en) Optical elements, laminates and labeled articles
WO2016174798A1 (en) Composition for hologram recording use, hologram recording medium, image display device, and method for producing hologram recording medium
JP6743465B2 (en) Hologram structure
JP2017217903A (en) Plasmon resonance laminate, binder part formation composition, manufacturing method of plasmon resonance laminate and information recording medium
US20220400553A1 (en) Manufacturing method for substrate having conductive pattern, manufacturing method for electronic device, substrate having conductive pattern, and protective film for metal nanobody
JP6686323B2 (en) Hologram structure
Lee et al. Metallic nanodimple arrays for wide-angle coloration via plasmonic and structural resonances
TW202042018A (en) Writing sheet for touch panel pen, touch panel, touch panel system, display device, and sorting method for writing sheet for touch panel pen
WO2017199969A1 (en) Plasmon resonance laminate, binder-part-forming composition, method for manufacturing plasmon resonance laminate, and information recording medium
JP6183700B2 (en) Intermediate substrate film for touch panel, laminated film for touch panel, and touch panel sensor
JP6705448B2 (en) Stress emission sheet
WO2017204071A1 (en) Display body, printed material, and information recording medium
JP6402838B2 (en) Electromagnetic wave responsive laminate
Suzuki et al. Micropatterning of multiple photonic colloidal crystal gels for flexible structural color films

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799393

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799393

Country of ref document: EP

Kind code of ref document: A1