WO2017199939A1 - Excavator - Google Patents

Excavator Download PDF

Info

Publication number
WO2017199939A1
WO2017199939A1 PCT/JP2017/018321 JP2017018321W WO2017199939A1 WO 2017199939 A1 WO2017199939 A1 WO 2017199939A1 JP 2017018321 W JP2017018321 W JP 2017018321W WO 2017199939 A1 WO2017199939 A1 WO 2017199939A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
attachment
predetermined
boom
height
Prior art date
Application number
PCT/JP2017/018321
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 森田
塚根 浩一郎
匠 伊藤
英祐 松嵜
圭二 本田
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2018518299A priority Critical patent/JP6911018B2/en
Publication of WO2017199939A1 publication Critical patent/WO2017199939A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the present invention relates to an excavator provided with an attachment.
  • An excavator is known that tells an operator that an attachment composed of a boom, an arm, and a bucket is in a traveling posture (see, for example, Patent Document 1).
  • the traveling posture of the attachment means a posture that the attachment should take when the excavator travels.
  • This excavator lights the boom indicator when the boom is in the running position, lights the arm indicator when the arm is in the running position, and lights the bucket indicator when the bucket is in the running position.
  • the excavator of Patent Document 1 only includes an indicator that lights up when the attachment is in a traveling posture by manual operation of the operation lever by the operator. Therefore, the operator of the shovel has to perform troublesome operations such as manually operating the boom, arm, and bucket while visually checking the state of the display when the attachment is in the traveling posture.
  • An excavator includes a lower traveling body, an upper revolving body that is turnably mounted on the lower traveling body, an attachment attached to the upper revolving body, and a predetermined condition is satisfied. And a control device for changing the posture of the attachment to a predetermined posture.
  • the above-mentioned means can provide an excavator that allows the attachment posture to be shifted to a desired posture more easily.
  • FIG. 1 is a side view of an excavator (excavator) according to an embodiment of the present invention.
  • the excavator in FIG. 1 performs work on the work target TR such as industrial waste mainly at the indoor work place ID while going back and forth between the outdoor work place OD and the indoor work place ID.
  • An upper swing body 3 is mounted on the lower traveling body 1 of the excavator via a swing mechanism 2 so as to be capable of swinging.
  • the upper swing body 3 is provided with a cabin 10 and is mounted with a power source such as an engine 11.
  • a boom 4 as a working body is attached to the upper swing body 3.
  • An arm 5 as a working body is attached to the tip of the boom 4, and a working body and a bucket 6 as an end attachment are attached to the tip of the arm 5.
  • a grapple, a lifting magnet, a breaker, or the like may be attached.
  • the boom 4, the arm 5, and the bucket 6 constitute an excavation attachment that is an example of an attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9, respectively.
  • the outdoor workshop OD and the indoor workshop ID are separated by a shutter SH.
  • the height H1 of the entrance / exit when the shutter SH is fully opened is lower than the height H2 of the excavation attachment when the excavation attachment is lifted to some extent. Therefore, when the excavator moves between the outdoor work place OD and the indoor work place ID, it is necessary to change the posture of the excavation attachment so that the height of the excavation attachment is lower than the height H1.
  • An inclination sensor S0 is attached to the upper swing body 3.
  • a boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6.
  • the tilt sensor S0, the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are collectively referred to as “attitude sensors”.
  • the inclination sensor S0 acquires the inclination angle of the upper swing body 3 with respect to the horizontal plane as the vehicle body inclination angle.
  • the vehicle body inclination angle includes an inclination angle around an axis extending in the vehicle width direction and an inclination angle around the axis extending in the vehicle longitudinal direction.
  • the boom angle sensor S1 acquires the rotation angle of the boom 4 with respect to the upper swing body 3 as the boom angle.
  • the arm angle sensor S2 acquires the rotation angle of the arm 5 with respect to the boom 4 as the arm angle.
  • Bucket angle sensor S3 acquires the rotation angle of bucket 6 with respect to arm 5 as the bucket angle.
  • the tilt sensor S0, the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are all acceleration sensors.
  • each sensor may be a combination of an acceleration sensor and a gyro sensor.
  • desired angles such as a vehicle body tilt angle, a boom angle, an arm angle, and a bucket angle are calculated from the outputs of the acceleration sensor and the gyro sensor.
  • the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are a potentiometer that uses a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotary that detects the rotation angle around the connecting pin. An encoder or the like may be used.
  • FIG. 2 is a block diagram of the control system.
  • the controller 30 functions as a main control unit that performs drive control of the excavator.
  • the controller 30 is composed of an arithmetic processing unit including a CPU and an internal memory. Various functions of the controller 30 are realized by the CPU executing programs stored in the internal memory.
  • the controller 30 is connected to an input device, an audio output device, a storage device, and the like.
  • the input device is a device for an excavator operator to input various information to the controller 30.
  • the input device is a hardware switch installed in the cabin 10.
  • the input device may be a touch panel.
  • the audio output device outputs various audio information according to the audio output command from the controller 30.
  • the audio output device is an in-vehicle speaker provided in the cabin 10.
  • the sound output device may be an alarm device such as a buzzer.
  • the controller 30 may be connected to a microphone as a voice input device.
  • the microphone is installed in the cabin 10, for example.
  • the controller 30 may convert the voice of the operator input through the microphone into a control signal associated in advance with a voice identification function.
  • the shovel may be controlled using the control signal.
  • the voice input device may be a multifunctional portable information terminal such as a smartphone.
  • the multifunctional portable information terminal may activate a voice identification function by receiving a signal generated when a switch provided on the operation lever is pressed, wirelessly or by wire.
  • the voice of the operator may be converted into a control signal associated in advance with the voice identification function, and the control signal may be transmitted to the controller 30.
  • the operator can execute a predetermined function of the excavator without releasing the hand from the operation lever.
  • the storage device is a device for storing various information.
  • the storage device is a non-volatile storage medium such as a semiconductor memory.
  • the storage device stores various information output by the controller 30 and the like.
  • the display device 40 outputs various image information in accordance with instructions from the controller 30.
  • the display device 40 is a liquid crystal display provided in the cabin 10.
  • the display device 40 includes a conversion processing unit 40 a that generates an image to be displayed on the image display unit 41.
  • the conversion processing unit 40 a generates a camera image to be displayed on the image display unit 41 based on the output of the imaging device 80. Therefore, the imaging device 80 is connected to the display device 40 through a dedicated line, for example.
  • the display device 40 is connected to the controller 30 via a communication network such as CAN or LIN.
  • the display device 40 may be connected to the controller 30 via a dedicated line.
  • the conversion processing unit 40a converts, for example, data to be displayed on the image display unit 41 among data input to the display device 40 into an image signal.
  • Data input to the display device 40 includes image data from the imaging device 80.
  • the imaging device 80 may include, for example, a left side monitoring camera, a rear side monitoring camera, and a right side monitoring camera. In this case, image data output from each of the left side monitoring camera, the rear side monitoring camera, and the right side monitoring camera is input to the display device 40.
  • the imaging device 80 may include a front monitoring camera that images the excavation attachment.
  • the front monitoring camera is, for example, a stereo camera, and is used for grasping the posture of the excavation attachment using image recognition technology.
  • the conversion processing unit 40 a generates an image to be displayed on the image display unit 41 based on the output of the controller 30.
  • the conversion processing unit 40a converts data to be displayed on the image display unit 41 among data input to the controller 30 into an image signal.
  • the data input to the controller 30 includes, for example, data indicating the temperature of engine cooling water, data indicating the temperature of hydraulic oil, data indicating the remaining amount of urea water, data indicating the remaining amount of fuel, and the like.
  • the conversion processing unit 40 a outputs the converted image signal to the image display unit 41 and causes the image display unit 41 to display a corresponding image.
  • the conversion processing unit 40a may be realized not as a function of the display device 40 but as a function of the controller 30. In this case, the imaging device 80 is connected to the controller 30 instead of the display device 40.
  • the display device 40 includes a switch panel 42 as an input unit.
  • the switch panel 42 is a panel including various hardware switches.
  • the switch panel 42 includes a light switch 42a as a hardware button, a wiper switch 42b, and a window washer switch 42c.
  • the light switch 42 a is a switch for switching on / off of a light attached to the outside of the cabin 10.
  • the wiper switch 42b is a switch for switching operation / stop of the wiper.
  • the window washer switch 42c is a switch for injecting window washer fluid.
  • the display device 40 operates by receiving power from the storage battery 70.
  • the storage battery 70 is charged with the electric power generated by the alternator 11a.
  • the electric power of the storage battery 70 is also supplied to the electric equipment 72 of the excavator.
  • the starter 11b is driven by the electric power from the storage battery 70 to start the engine 11.
  • the engine 11 is controlled by an engine control unit (ECU) 74.
  • the ECU 74 transmits various data indicating the state of the engine 11 to the controller 30.
  • the various data includes, for example, data indicating the cooling water temperature detected by the water temperature sensor 11c.
  • the controller 30 can store this data in the internal temporary storage unit 30a and transmit it to the display device 40 when necessary.
  • the controller 30 receives various data and stores them in the temporary storage unit 30a.
  • data indicating the swash plate angle is received from the regulator 14a of the main pump 14 which is a variable displacement hydraulic pump.
  • data indicating the discharge pressure of the main pump 14 is received from the discharge pressure sensor 14b.
  • data indicating the temperature of the working oil flowing through the pipe line is received from an oil temperature sensor 14c provided in the pipe line between the main pump 14 and the tank in which the working oil sucked by the main pump 14 is stored.
  • the operation device 26 is a device for operating various actuators, and includes an operation lever, an operation pedal, an operation switch, and the like.
  • the pilot pressure sent to the control valve 17 when the operating device 26 is operated is detected by the pilot pressure sensors 15L and 15R.
  • the controller 30 receives data indicating the pilot pressure from the pilot pressure sensors 15L and 15R.
  • a switch button 27 is provided on the operation lever as the operation device 26. The operator can send a command signal to the controller 30 by operating the switch button 27 while operating the operation lever.
  • the controller 30 executes various functions based on a command signal from the switch button 27.
  • the engine speed adjustment dial 75 is a dial for adjusting the engine speed.
  • the engine speed adjustment dial 75 enables the engine speed to be switched in four stages: SP mode, H mode, A mode, and idling mode.
  • FIG. 5 shows a state in which the H mode is selected with the engine speed adjustment dial 75.
  • the SP mode is a rotation speed mode that is selected when priority is given to the amount of work, and uses the highest engine speed.
  • the H mode is a rotation speed mode that is selected when both the work amount and the fuel consumption are desired, and uses the second highest engine speed.
  • the A mode is a rotation speed mode that is selected when it is desired to operate the shovel with low noise while giving priority to fuel consumption, and uses the third highest engine speed.
  • the idling mode is a rotation speed mode that is selected when the engine is desired to be in an idling state, and uses the lowest engine speed.
  • the engine 11 is controlled at a constant speed at the engine speed in the speed mode set by the engine speed adjustment dial 75.
  • the pressure sensor S7B detects the pressure of hydraulic oil in the bottom side oil chamber of the boom cylinder 7, and the pressure sensor S7R detects the pressure of hydraulic oil in the rod side oil chamber of the boom cylinder 7.
  • the pressure sensor S8B detects the pressure of the working oil in the bottom side oil chamber of the arm cylinder 8, and the pressure sensor S8R detects the pressure of the working oil in the rod side oil chamber of the arm cylinder 8.
  • the pressure sensor S9B detects the pressure of the hydraulic oil in the bottom side oil chamber of the bucket cylinder 9, and the pressure sensor S9R detects the pressure of the hydraulic oil in the rod side oil chamber of the bucket cylinder 9.
  • the outputs of these pressure sensors may be used to derive the attitude of the drilling attachment.
  • the posing switch SW is a switch for starting the posing function.
  • the posing function is a function for shifting the posture of the excavation attachment to a predetermined posture.
  • the posing switch SW may be a software switch displayed on the screen of the image display unit 41 of the display device 40, a hardware switch installed inside the cabin 10, or installed outside the cabin 10. It may be a hardware switch.
  • the posing switch SW may be a switch button 27 provided at the tip of the operation lever. However, the posing function may be started not in response to a switch input such as the posing switch SW but in response to a voice input via a voice input device such as a smartphone.
  • the predetermined posture is a target posture determined by using, for example, a boom angle, an arm angle, and a bucket angle, and includes a posture suitable for traveling (hereinafter referred to as a “traveling posture”).
  • the predetermined posture is a posture determined by using the boom angle, the arm angle, and the bucket angle and stored in advance in the storage device.
  • the upper end of the boom 4 has a predetermined first height. It is the attitude
  • the predetermined posture may be determined by the boom angle and the arm angle, or may be determined only by the boom angle.
  • the boom angle, the arm angle, and the bucket angle that define the predetermined posture may be represented by specific angle values or may be represented by an angle range.
  • the predetermined posture may be specified using the stroke amounts of the boom cylinder 7 and the arm cylinder 8, and specified using the stroke amounts of the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9. It may be.
  • the operator of the excavator can also memorize a desired posture related to the excavation attachment as a target posture.
  • the operator can store the desired posture as the target posture by operating the operation device 26 and pressing the posture memory switch in a state where the excavation attachment is in the desired posture.
  • the posture memory switch is a switch for storing the current posture of the excavation attachment as a target posture.
  • the attitude memory switch may be a software switch displayed on the image display unit 41 of the display device 40 or a hardware switch installed in the cabin 10.
  • a hardware switch installed outside the cabin 10 or a switch button 27 provided at the tip of the operation lever may be used.
  • the target posture may be stored using a voice input device.
  • the controller 30 may store the current posture of the excavation attachment as the target posture when a predetermined sound such as “posture memory” is input.
  • the control valve 50 is a valve for controlling the pilot pressure acting on the pilot port of the flow control valve.
  • the control valve 50 is an electromagnetic valve that operates according to a command from the controller 30.
  • the flow rate control valve is a spool valve included in the control valve 17 and includes a left pilot port and a right pilot port.
  • the flow rate control valve is a boom flow rate control valve that controls the flow of hydraulic fluid in the boom cylinder 7, an arm flow rate control valve that controls the flow of hydraulic fluid in the arm cylinder 8, and a bucket flow rate that controls the flow of hydraulic fluid in the bucket cylinder 9. Includes control valve.
  • the control valve 50L which is an example of the control valve 50, is a pilot line that connects the left side (raising operation side) port of the boom operation lever, which is an example of the operating device 26, and the left side (raising operation side) pilot port of the boom flow control valve. is set up.
  • the control valve 50R which is another example of the control valve 50, is installed in a pilot line that connects the right side (down operation side) port of the boom operation lever and the right side (down operation side) pilot port of the boom flow control valve.
  • the control valve 50L communicates the left port of the boom operation lever with the left pilot port of the boom flow control valve, and is generated when the boom operation lever is operated in the upward direction. Pilot pressure is applied to the left pilot port.
  • the control valve 50R communicates the right port of the boom operation lever with the right pilot port of the boom flow control valve, and applies the pilot pressure generated when the boom operation lever is operated in the downward direction to the left pilot port.
  • the control valve 50L blocks communication between the left port of the boom operation lever and the left pilot port of the boom flow control valve, and communicates with the pilot pump 15 and the left pilot port of the boom flow control valve. Let Then, using the hydraulic oil discharged from the pilot pump 15, a pilot pressure having a magnitude corresponding to a command from the controller 30 is generated, and the pilot pressure is applied to the left pilot port of the boom flow control valve. Similarly, the control valve 50R blocks communication between the right port of the boom operation lever and the right pilot port of the boom flow control valve, and connects the pilot pump 15 and the right pilot port of the boom flow control valve. Then, using the hydraulic oil discharged from the pilot pump 15, a pilot pressure having a magnitude corresponding to a command from the controller 30 is generated, and the pilot pressure is applied to the right pilot port of the boom flow control valve.
  • control valve installed in the pilot line connecting the arm operation lever and the arm flow control valve
  • control valve installed in the pilot line connecting the bucket operation lever and the bucket flow control valve
  • FIG. 3 is a side view of the excavator working in the indoor work place ID, and corresponds to FIG.
  • the controller 30 determines that a predetermined condition is satisfied, and reads information related to the traveling posture of the excavation attachment stored in the storage device.
  • the information on the running posture includes, for example, a boom angle, an arm angle, and a bucket angle when the posture of the excavation attachment is set to the running posture (hereinafter, the running posture boom angle, the running posture arm angle, and the running posture bucket, respectively). Called an angle).
  • the controller 30 outputs a command to the control valve 50 in order to set the excavation attachment posture to the traveling posture.
  • the controller 30 first closes the bucket operation lever closing side port and the bucket flow control valve so as to automatically close the bucket 6.
  • a command is output to the control valve 50 provided in the pilot line connecting the pilot port of the closing operation side.
  • it is provided in a pilot line connecting the closing operation side port of the arm operation lever and the closing operation side pilot port of the arm flow control valve so that the arm 5 is automatically closed.
  • a command is output to the received control valve 50.
  • the boom 4 is automatically lowered, and is provided in a pilot line connecting the lower operation side port of the boom operation lever and the lower operation side pilot port of the boom flow control valve. A command is output to the received control valve 50.
  • the controller 30 moves the bucket 6, the arm 5, and the boom 4 in order to change the posture of the excavation attachment to the traveling posture shown in FIG. 3.
  • the traveling posture shown in FIG. 3 is a posture in which the uppermost portion of the excavation attachment has a minimum height when the excavator can travel.
  • the lowermost bucket link portion of the excavation attachment is separated from the ground by a predetermined height.
  • the bucket angle is, for example, an angle when the bucket 6 is closed to the close limit or near the close limit
  • the arm angle is, for example, an angle when the arm 5 is closed to the close limit or near the close limit.
  • “Closed limit” means the most closed state.
  • the boom angle is, for example, a predetermined angle that satisfies the traveling condition. It is preferable that the height of the lowermost bucket link portion of the excavation attachment from the ground is 30 cm or more. More desirably, it is 40 cm or more.
  • the excavation attachment height H3 which is the height of the excavator, is lower than the entrance height H1 when the shutter SH is fully opened. Therefore, the excavator can move from the indoor work place ID to the outdoor work place OD without bringing the excavation attachment into contact with the shutter SH.
  • the controller 30 sets the attitude of the excavation attachment to the traveling attitude on condition that the posing switch SW is pressed.
  • the present invention is not limited to this configuration.
  • the controller 30 may change the posture of the excavation attachment to the traveling posture when a predetermined lever operation is performed.
  • the predetermined lever operation includes, for example, continuously inclining both the left and right operation levers provided in the cabin 10 in a predetermined direction over a predetermined time within a dead zone.
  • FIG. 4 is a side view of an excavator that travels in the outdoor workplace OD and corresponds to FIGS. 1 and 3.
  • first traveling posture is a traveling posture suitable for passing through the shutter SH, but is optimal for traveling in an outdoor workplace OD having no height restriction. It is not a good driving posture. This is because the boom 4 is greatly lowered and it is difficult to achieve a balance.
  • the excavation attachment may be set to the second running posture by pressing a second posing switch different from the posing switch SW.
  • the operator of the excavator may change the posture of the excavation attachment to the second traveling posture by voice input via a voice input device such as a smartphone instead of switch input such as the second posing switch.
  • the second traveling posture is a posture in which the turning radius of the excavation attachment is minimized when the excavator can travel.
  • the lowermost bucket link portion of the excavation attachment is separated from the ground by a predetermined height.
  • the bucket angle is, for example, an angle when the bucket 6 is closed to the close limit or near the close limit
  • the arm angle is, for example, an angle when the arm 5 is closed to the close limit or near the close limit.
  • the boom angle is, for example, an angle when the boom 4 is raised to the upper limit or near the upper limit. “When the boom 4 is raised to the upper limit” means, for example, when the cylinder stroke amount of the boom cylinder 7 is maximized.
  • the height of the bottom bucket link portion of the excavation attachment from the ground is preferably 30 cm or more. More desirably, it is 40 cm or more.
  • the second posing switch may be a posing switch SW.
  • the posing switch SW starts a posing function for shifting the posture of the excavation attachment from the first traveling posture to the second traveling posture.
  • a posing function for shifting the posture of the excavation attachment from the current posture to the first traveling posture is started.
  • FIG. 4 shows a state in which the boom 4, the arm 5, and the bucket 6 are moved in order and the attitude of the excavation attachment is in the second traveling attitude.
  • the second traveling posture has, for example, the same traveling posture bucket angle and traveling posture arm angle as the first traveling posture, and has a traveling posture boom angle larger than the traveling posture boom angle of the first traveling posture.
  • the controller 30 determines that the predetermined condition is satisfied, and reads information on the second traveling posture of the excavation attachment stored in the storage device.
  • the controller 30 outputs a command to the control valve 50 in order to change the posture of the excavation attachment to the second traveling posture.
  • the controller 30 is a control provided in a pilot line that connects a boom operation lever raising operation side port and a boom flow control valve raising operation side pilot port so as to automatically raise the boom 4.
  • a command is output to the valve 50. In this manner, the controller 30 can raise the boom 4 to shift the excavation attachment posture from the first traveling posture to the second traveling posture.
  • the controller 30 can automatically switch the attitude of the excavation attachment to a predetermined attitude. Therefore, the excavator operator does not need to manually operate the operation lever to move the excavation attachment posture to the first traveling posture when the excavator is moved from the indoor work place ID to the outdoor work place OD, for example. Further, the excavator is caused to travel without the arm 5 being closed and the boom 4 being lowered sufficiently, and the excavation attachment is not brought into contact with the shutter SH.
  • the hydraulic operating device 26 is employed, but the present invention is not limited to this configuration.
  • an electric operation device may be employed instead of the hydraulic operation device 26.
  • the flow control valve included in the control valve 17 may be configured by an electromagnetic valve instead of a hydraulic spool valve.
  • the controller 30 moves the bucket 6, the arm 5, and the boom 4 in order to change the excavation attachment posture to the traveling posture.
  • the controller 30 may change the operation order and the operation direction of the work body according to the posture of the excavation attachment when the posing switch SW is operated. For example, when the posing switch SW is operated when the arm 5 is widely opened and the boom 4 is greatly lowered, if the work body is moved in the order of the bucket 6, the arm 5, and the boom 4, the bucket 6 It touches the ground. Therefore, the controller 30 first raises the boom 4, then closes the bucket 6, closes the arm 5, and further lowers the boom 4.
  • the controller 30 may move a plurality of work bodies simultaneously. For example, at least one of the bucket 6 and the arm 5 may be closed while the boom 4 is raised, and at least one of the bucket 6 and the arm 5 may be closed while the boom 4 is lowered.
  • the controller 30 may shift the posture of the excavation attachment to a predetermined posture while maintaining the height of the lowermost end of the excavation attachment at a predetermined height or more.
  • the predetermined height is, for example, a height relative to a plane including the ground contact surface of the lower traveling body 1, and is typically a height relative to a horizontal ground.
  • the controller 30 may prohibit the posture of the excavation attachment from being automatically switched when the height of the lowermost end of the excavation attachment is lower than a predetermined height. That is, when the height of the lowermost end of the excavation attachment is lower than a predetermined height, the posture of the excavation attachment may not be changed even when the posing switch SW is pressed. This is because changing the attitude of the excavation attachment may cause the excavation attachment to come into contact with surrounding features.
  • the height of the lowermost end of the excavation attachment may be derived based on the output of the attitude sensor or may be derived based on the output of the camera. This is particularly effective when the ground shape has a large undulation and the ground contact surface of the lower traveling body 1 and the surface below the excavation attachment are not coplanar (not parallel).
  • the controller 30 may notify the operator that the posing function cannot be started. Specifically, a voice message may be output from the voice output device, or a text message may be displayed on the image display unit 41 of the display device 40.
  • the traveling posture is adopted as the target posture regarding the excavation attachment.
  • a posture suitable for parking a posture suitable for turning, and the like may be adopted.
  • the posture suitable for parking is, for example, a posture in which the excavation attachment is brought into contact with the ground in substantially the same posture as the first traveling posture in FIG.
  • Wiper switch 42c ... Window washer switch 70 ... Storage battery 72 ... Electrical equipment 74 ... Engine control device 75 ... Engine speed adjustment dial 80 ⁇ ⁇ Imaging device S0 ... Inclination sensor S1 ... Boom angle sensor S2 ... Arm angle sensor S3 ... Bucket angle sensor S7B, S7R, S8B, S8R, S9B, S9R ... Pressure sensor SW ... ⁇ Posing switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

An excavator according to an embodiment of the present invention comprises a lower traveling body (1), an upper turning body (3) that is mounted on the lower traveling body (1) so as to be able to turn, an excavating attachment that is mounted on the upper turning body (3), and a controller (30) that orients the position of the excavating attachment to be suitable for traveling when a prescribed condition is satisfied. The excavating attachment comprises a boom (4), an arm (5), and a bucket (6).

Description

ショベルExcavator
 本発明は、アタッチメントを備えるショベルに関する。 The present invention relates to an excavator provided with an attachment.
 ブーム、アーム、及びバケットで構成されるアタッチメントが走行姿勢にあることを操作者に伝えるショベルが知られている(例えば、特許文献1参照)。アタッチメントの走行姿勢は、ショベルが走行する際にアタッチメントが取るべき姿勢を意味する。このショベルは、ブームが走行姿勢にある場合にブーム用表示器を点灯させ、アームが走行姿勢にある場合にアーム用表示器を点灯させ、バケットが走行姿勢にある場合にバケット用表示器を点灯させる。 An excavator is known that tells an operator that an attachment composed of a boom, an arm, and a bucket is in a traveling posture (see, for example, Patent Document 1). The traveling posture of the attachment means a posture that the attachment should take when the excavator travels. This excavator lights the boom indicator when the boom is in the running position, lights the arm indicator when the arm is in the running position, and lights the bucket indicator when the bucket is in the running position. Let
特開2009-97303号公報JP 2009-97303 A
 しかしながら、特許文献1のショベルは、操作者による操作レバーの手動操作によってアタッチメントが走行姿勢になったときに点灯する表示器を備えるのみである。そのため、ショベルの操作者は、アタッチメントを走行姿勢にする際に表示器の状態を視認しながらブーム、アーム、及びバケットを手動操作するといった煩わしい作業を行わなければならない。 However, the excavator of Patent Document 1 only includes an indicator that lights up when the attachment is in a traveling posture by manual operation of the operation lever by the operator. Therefore, the operator of the shovel has to perform troublesome operations such as manually operating the boom, arm, and bucket while visually checking the state of the display when the attachment is in the traveling posture.
 上述の点に鑑み、より簡単にアタッチメントの姿勢を所望の姿勢に移行できるようにしたショベルを提供することが望ましい。 In view of the above points, it is desirable to provide an excavator that can more easily shift the posture of the attachment to a desired posture.
 本発明の実施例に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載された上部旋回体と、前記上部旋回体に取り付けられたアタッチメントと、所定条件が満たされた場合に前記アタッチメントの姿勢を所定の姿勢にする制御装置と、を備える。 An excavator according to an embodiment of the present invention includes a lower traveling body, an upper revolving body that is turnably mounted on the lower traveling body, an attachment attached to the upper revolving body, and a predetermined condition is satisfied. And a control device for changing the posture of the attachment to a predetermined posture.
 上述の手段により、より簡単にアタッチメントの姿勢を所望の姿勢に移行できるようにしたショベルを提供できる。 The above-mentioned means can provide an excavator that allows the attachment posture to be shifted to a desired posture more easily.
本発明の実施例に係るショベルの側面図である。It is a side view of the shovel which concerns on the Example of this invention. 図1のショベルに搭載される制御システムのブロック図である。It is a block diagram of the control system mounted in the shovel of FIG. 屋内作業場で作業するショベルの側面図である。It is a side view of an excavator working in an indoor work place. 屋外作業場を走行するショベルの側面図である。It is a side view of the shovel which drive | works an outdoor workplace.
 図1は本発明の実施例に係るショベル(掘削機)の側面図である。図1のショベルは、屋外作業場ODと屋内作業場IDとを行き来しながら、主に屋内作業場IDで産業廃棄物等の作業対象物TRに対する作業を行う。ショベルの下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。上部旋回体3にはキャビン10が設けられ且つエンジン11等の動力源が搭載されている。上部旋回体3には作業体としてのブーム4が取り付けられている。ブーム4の先端には作業体としてのアーム5が取り付けられ、アーム5の先端には作業体及びエンドアタッチメントとしてのバケット6が取り付けられている。エンドアタッチメントとして、グラップル、リフティングマグネット、ブレーカ等が取り付けられてもよい。 FIG. 1 is a side view of an excavator (excavator) according to an embodiment of the present invention. The excavator in FIG. 1 performs work on the work target TR such as industrial waste mainly at the indoor work place ID while going back and forth between the outdoor work place OD and the indoor work place ID. An upper swing body 3 is mounted on the lower traveling body 1 of the excavator via a swing mechanism 2 so as to be capable of swinging. The upper swing body 3 is provided with a cabin 10 and is mounted with a power source such as an engine 11. A boom 4 as a working body is attached to the upper swing body 3. An arm 5 as a working body is attached to the tip of the boom 4, and a working body and a bucket 6 as an end attachment are attached to the tip of the arm 5. As an end attachment, a grapple, a lifting magnet, a breaker, or the like may be attached.
 ブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成し、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。 The boom 4, the arm 5, and the bucket 6 constitute an excavation attachment that is an example of an attachment, and are hydraulically driven by the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9, respectively.
 図1の例では、屋外作業場ODと屋内作業場IDとの間はシャッターSHで隔てられている。シャッターSHを全開したときの出入口の高さH1は、掘削アタッチメントをある程度持ち上げたときの掘削アタッチメントの高さH2よりも低い。そのため、ショベルは、屋外作業場ODと屋内作業場IDとの間を移動する場合、掘削アタッチメントの姿勢を変えて掘削アタッチメントの高さを高さH1より低くする必要がある。 In the example of FIG. 1, the outdoor workshop OD and the indoor workshop ID are separated by a shutter SH. The height H1 of the entrance / exit when the shutter SH is fully opened is lower than the height H2 of the excavation attachment when the excavation attachment is lifted to some extent. Therefore, when the excavator moves between the outdoor work place OD and the indoor work place ID, it is necessary to change the posture of the excavation attachment so that the height of the excavation attachment is lower than the height H1.
 上部旋回体3には傾斜センサS0が取り付けられている。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。傾斜センサS0、ブーム角度センサS1、アーム角度センサS2、及び、バケット角度センサS3は集合的に「姿勢センサ」と称される。 An inclination sensor S0 is attached to the upper swing body 3. A boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6. The tilt sensor S0, the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are collectively referred to as “attitude sensors”.
 傾斜センサS0は上部旋回体3の水平面に対する傾斜角度を車体傾斜角として取得する。車体傾斜角は、車幅方向に延びる軸回りの傾斜角と車体前後方向に延びる軸回り傾斜角とを含む。ブーム角度センサS1は上部旋回体3に対するブーム4の回動角度をブーム角度として取得する。アーム角度センサS2はブーム4に対するアーム5の回動角度をアーム角度として取得する。バケット角度センサS3はアーム5に対するバケット6の回動角度をバケット角度として取得する。本実施例では、傾斜センサS0、ブーム角度センサS1、アーム角度センサS2、及び、バケット角度センサS3は何れも加速度センサである。但し、各センサは加速度センサとジャイロセンサの組み合わせであってもよい。この場合、加速度センサ及びジャイロセンサのそれぞれの出力から車体傾斜角、ブーム角度、アーム角度、バケット角度といった所望の角度が算出される。ブーム角度センサS1、アーム角度センサS2、及び、バケット角度センサS3は、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ等であってもよい。 The inclination sensor S0 acquires the inclination angle of the upper swing body 3 with respect to the horizontal plane as the vehicle body inclination angle. The vehicle body inclination angle includes an inclination angle around an axis extending in the vehicle width direction and an inclination angle around the axis extending in the vehicle longitudinal direction. The boom angle sensor S1 acquires the rotation angle of the boom 4 with respect to the upper swing body 3 as the boom angle. The arm angle sensor S2 acquires the rotation angle of the arm 5 with respect to the boom 4 as the arm angle. Bucket angle sensor S3 acquires the rotation angle of bucket 6 with respect to arm 5 as the bucket angle. In the present embodiment, the tilt sensor S0, the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are all acceleration sensors. However, each sensor may be a combination of an acceleration sensor and a gyro sensor. In this case, desired angles such as a vehicle body tilt angle, a boom angle, an arm angle, and a bucket angle are calculated from the outputs of the acceleration sensor and the gyro sensor. The boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are a potentiometer that uses a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotary that detects the rotation angle around the connecting pin. An encoder or the like may be used.
 次に図2を参照し、図1のショベルに搭載される制御システムについて説明する。図2は、制御システムのブロック図である。 Next, the control system mounted on the excavator of FIG. 1 will be described with reference to FIG. FIG. 2 is a block diagram of the control system.
 コントローラ30は、ショベルの駆動制御を行う主制御部として機能する。本実施例では、コントローラ30は、CPU及び内部メモリを含む演算処理装置で構成される。コントローラ30の各種機能は、CPUが内部メモリに格納されたプログラムを実行することで実現される。コントローラ30は、入力装置、音声出力装置、記憶装置等に接続されている。 The controller 30 functions as a main control unit that performs drive control of the excavator. In this embodiment, the controller 30 is composed of an arithmetic processing unit including a CPU and an internal memory. Various functions of the controller 30 are realized by the CPU executing programs stored in the internal memory. The controller 30 is connected to an input device, an audio output device, a storage device, and the like.
 入力装置は、ショベルの操作者がコントローラ30に各種情報を入力するための装置である。本実施例では、入力装置はキャビン10内に設置されるハードウェアスイッチである。入力装置はタッチパネルであってもよい。 The input device is a device for an excavator operator to input various information to the controller 30. In this embodiment, the input device is a hardware switch installed in the cabin 10. The input device may be a touch panel.
 音声出力装置は、コントローラ30からの音声出力指令に応じて各種音声情報を出力する。本実施例では、音声出力装置はキャビン10内に設けられた車載スピーカである。音声出力装置はブザー等の警報器であってもよい。 The audio output device outputs various audio information according to the audio output command from the controller 30. In the present embodiment, the audio output device is an in-vehicle speaker provided in the cabin 10. The sound output device may be an alarm device such as a buzzer.
 コントローラ30は、音声入力装置としてのマイクロフォンに接続されていてもよい。マイクロフォンは、例えば、キャビン10内に設置されている。この場合、コントローラ30は、音声識別機能により、マイクロフォンを通じて入力された操作者の音声を、予め対応付けられた制御信号へ変換してもよい。そして、その制御信号を用いてショベルを制御してもよい。音声入力装置は、スマートフォン等の多機能型携帯情報端末であってもよい。この場合、多機能型携帯情報端末は、例えば、操作レバーに備えられたスイッチが押されたときに発せられる信号を無線又は有線で受信して音声識別機能を起動してもよい。そして、音声識別機能により、操作者の音声を、予め対応づけられた制御信号へ変換し、その制御信号をコントローラ30に送信してもよい。このような構成により、操作者は操作レバーから手を離すことなく、ショベルの所定の機能を実行できる。 The controller 30 may be connected to a microphone as a voice input device. The microphone is installed in the cabin 10, for example. In this case, the controller 30 may convert the voice of the operator input through the microphone into a control signal associated in advance with a voice identification function. Then, the shovel may be controlled using the control signal. The voice input device may be a multifunctional portable information terminal such as a smartphone. In this case, for example, the multifunctional portable information terminal may activate a voice identification function by receiving a signal generated when a switch provided on the operation lever is pressed, wirelessly or by wire. Then, the voice of the operator may be converted into a control signal associated in advance with the voice identification function, and the control signal may be transmitted to the controller 30. With such a configuration, the operator can execute a predetermined function of the excavator without releasing the hand from the operation lever.
 記憶装置は、各種情報を記憶するための装置である。本実施例では、記憶装置は半導体メモリ等の不揮発性記憶媒体である。記憶装置は、コントローラ30等が出力する各種情報を記憶する。 The storage device is a device for storing various information. In this embodiment, the storage device is a non-volatile storage medium such as a semiconductor memory. The storage device stores various information output by the controller 30 and the like.
 表示装置40は、コントローラ30からの指令に応じて各種画像情報を出力する。本実施例では、表示装置40はキャビン10内に設けられた液晶ディスプレイである。表示装置40は、画像表示部41上に表示する画像を生成する変換処理部40aを含む。変換処理部40aは、撮像装置80の出力に基づいて画像表示部41に表示するカメラ画像を生成する。そのため、撮像装置80は、例えば専用線を介して表示装置40に接続されている。表示装置40は、CAN、LIN等の通信ネットワークを介してコントローラ30に接続されている。表示装置40は、専用線を介してコントローラ30に接続されていてもよい。 The display device 40 outputs various image information in accordance with instructions from the controller 30. In the present embodiment, the display device 40 is a liquid crystal display provided in the cabin 10. The display device 40 includes a conversion processing unit 40 a that generates an image to be displayed on the image display unit 41. The conversion processing unit 40 a generates a camera image to be displayed on the image display unit 41 based on the output of the imaging device 80. Therefore, the imaging device 80 is connected to the display device 40 through a dedicated line, for example. The display device 40 is connected to the controller 30 via a communication network such as CAN or LIN. The display device 40 may be connected to the controller 30 via a dedicated line.
 変換処理部40aは、例えば、表示装置40に対して入力されるデータのうち画像表示部41に表示させるデータを画像信号に変換する。表示装置40に対して入力されるデータは、撮像装置80からの画像データを含む。撮像装置80は、例えば、左側方監視カメラ、後方監視カメラ、及び、右側方監視カメラを含んでいてもよい。その場合、左側方監視カメラ、後方監視カメラ、及び、右側方監視カメラのそれぞれが出力する画像データが表示装置40に入力される。撮像装置80は、掘削アタッチメントを撮像する前方監視カメラを含んでいてもよい。前方監視カメラは、例えばステレオカメラであり、画像認識技術を利用して掘削アタッチメントの姿勢を把握するために用いられる。 The conversion processing unit 40a converts, for example, data to be displayed on the image display unit 41 among data input to the display device 40 into an image signal. Data input to the display device 40 includes image data from the imaging device 80. The imaging device 80 may include, for example, a left side monitoring camera, a rear side monitoring camera, and a right side monitoring camera. In this case, image data output from each of the left side monitoring camera, the rear side monitoring camera, and the right side monitoring camera is input to the display device 40. The imaging device 80 may include a front monitoring camera that images the excavation attachment. The front monitoring camera is, for example, a stereo camera, and is used for grasping the posture of the excavation attachment using image recognition technology.
 また、変換処理部40aは、コントローラ30の出力に基づいて画像表示部41に表示する画像を生成する。本実施例では、変換処理部40aは、コントローラ30に対して入力されるデータのうち画像表示部41に表示させるデータを画像信号に変換する。コントローラ30に対して入力されるデータは、例えば、エンジン冷却水の温度を示すデータ、作動油の温度を示すデータ、尿素水の残量を示すデータ、燃料の残量を示すデータ等を含む。変換処理部40aは、変換した画像信号を画像表示部41に対して出力し、対応する画像を画像表示部41に表示させる。 Further, the conversion processing unit 40 a generates an image to be displayed on the image display unit 41 based on the output of the controller 30. In the present embodiment, the conversion processing unit 40a converts data to be displayed on the image display unit 41 among data input to the controller 30 into an image signal. The data input to the controller 30 includes, for example, data indicating the temperature of engine cooling water, data indicating the temperature of hydraulic oil, data indicating the remaining amount of urea water, data indicating the remaining amount of fuel, and the like. The conversion processing unit 40 a outputs the converted image signal to the image display unit 41 and causes the image display unit 41 to display a corresponding image.
 変換処理部40aは、表示装置40が有する機能としてではなく、コントローラ30が有する機能として実現されてもよい。この場合、撮像装置80は、表示装置40ではなく、コントローラ30に接続される。 The conversion processing unit 40a may be realized not as a function of the display device 40 but as a function of the controller 30. In this case, the imaging device 80 is connected to the controller 30 instead of the display device 40.
 表示装置40は、入力部としてのスイッチパネル42を含む。スイッチパネル42は、各種ハードウェアスイッチを含むパネルである。本実施例では、スイッチパネル42は、ハードウェアボタンとしてのライトスイッチ42a、ワイパースイッチ42b、及びウインドウォッシャスイッチ42cを含む。ライトスイッチ42aは、キャビン10の外部に取り付けられるライトの点灯・消灯を切り換えるためのスイッチである。ワイパースイッチ42bは、ワイパーの作動・停止を切り換えるためのスイッチである。また、ウインドウォッシャスイッチ42cは、ウインドウォッシャ液を噴射するためのスイッチである。 The display device 40 includes a switch panel 42 as an input unit. The switch panel 42 is a panel including various hardware switches. In this embodiment, the switch panel 42 includes a light switch 42a as a hardware button, a wiper switch 42b, and a window washer switch 42c. The light switch 42 a is a switch for switching on / off of a light attached to the outside of the cabin 10. The wiper switch 42b is a switch for switching operation / stop of the wiper. Further, the window washer switch 42c is a switch for injecting window washer fluid.
 表示装置40は、蓄電池70から電力の供給を受けて動作する。蓄電池70はオルタネータ11aで発電した電力で充電される。蓄電池70の電力はショベルの電装品72等にも供給される。スタータ11bは、蓄電池70からの電力で駆動されてエンジン11を始動させる。 The display device 40 operates by receiving power from the storage battery 70. The storage battery 70 is charged with the electric power generated by the alternator 11a. The electric power of the storage battery 70 is also supplied to the electric equipment 72 of the excavator. The starter 11b is driven by the electric power from the storage battery 70 to start the engine 11.
 エンジン11はエンジン制御装置(ECU)74により制御される。ECU74は、エンジン11の状態を示す各種データをコントローラ30に送信する。各種データは、例えば、水温センサ11cで検出される冷却水温を示すデータを含む。コントローラ30は内部の一時記憶部30aにこのデータを蓄積しておき、必要なときに表示装置40に送信できる。 The engine 11 is controlled by an engine control unit (ECU) 74. The ECU 74 transmits various data indicating the state of the engine 11 to the controller 30. The various data includes, for example, data indicating the cooling water temperature detected by the water temperature sensor 11c. The controller 30 can store this data in the internal temporary storage unit 30a and transmit it to the display device 40 when necessary.
 コントローラ30は各種データを受けて一時記憶部30aに格納する。例えば、可変容量式油圧ポンプであるメインポンプ14のレギュレータ14aから斜板角度を示すデータを受ける。また、吐出圧力センサ14bからメインポンプ14の吐出圧力を示すデータを受ける。また、メインポンプ14が吸入する作動油が貯蔵されたタンクとメインポンプ14との間の管路に設けられた油温センサ14cから、その管路を流れる作動油の温度を示すデータを受ける。 The controller 30 receives various data and stores them in the temporary storage unit 30a. For example, data indicating the swash plate angle is received from the regulator 14a of the main pump 14 which is a variable displacement hydraulic pump. In addition, data indicating the discharge pressure of the main pump 14 is received from the discharge pressure sensor 14b. Further, data indicating the temperature of the working oil flowing through the pipe line is received from an oil temperature sensor 14c provided in the pipe line between the main pump 14 and the tank in which the working oil sucked by the main pump 14 is stored.
 操作装置26は、各種アクチュエータを操作するための装置であり、操作レバー、操作ペダル、操作スイッチ等を含む。操作装置26が操作されたときにコントロールバルブ17に送られるパイロット圧はパイロット圧センサ15L、15Rで検出される。コントローラ30は、パイロット圧センサ15L、15Rからパイロット圧を示すデータを受ける。操作装置26としての操作レバーにはスイッチボタン27が設けられている。操作者は、操作レバーを操作しながらスイッチボタン27を操作することで、コントローラ30に指令信号を送ることができる。コントローラ30はスイッチボタン27からの指令信号に基づき各種機能を実行する。 The operation device 26 is a device for operating various actuators, and includes an operation lever, an operation pedal, an operation switch, and the like. The pilot pressure sent to the control valve 17 when the operating device 26 is operated is detected by the pilot pressure sensors 15L and 15R. The controller 30 receives data indicating the pilot pressure from the pilot pressure sensors 15L and 15R. A switch button 27 is provided on the operation lever as the operation device 26. The operator can send a command signal to the controller 30 by operating the switch button 27 while operating the operation lever. The controller 30 executes various functions based on a command signal from the switch button 27.
 エンジン回転数調整ダイヤル75は、エンジンの回転数を調整するためのダイヤルである。本実施例では、エンジン回転数調整ダイヤル75は、SPモード、Hモード、Aモード、及び、アイドリングモードの4段階でエンジン回転数を切り換えできるようにする。図5は、エンジン回転数調整ダイヤル75でHモードが選択された状態を示す。 The engine speed adjustment dial 75 is a dial for adjusting the engine speed. In the present embodiment, the engine speed adjustment dial 75 enables the engine speed to be switched in four stages: SP mode, H mode, A mode, and idling mode. FIG. 5 shows a state in which the H mode is selected with the engine speed adjustment dial 75.
 SPモードは、作業量を優先したい場合に選択される回転数モードであり、最も高いエンジン回転数を利用する。Hモードは、作業量と燃費を両立させたい場合に選択される回転数モードであり、二番目に高いエンジン回転数を利用する。Aモードは、燃費を優先させながら低騒音でショベルを稼働させたい場合に選択される回転数モードであり、三番目に高いエンジン回転数を利用する。アイドリングモードは、エンジンをアイドリング状態にしたい場合に選択される回転数モードであり、最も低いエンジン回転数を利用する。エンジン11は、エンジン回転数調整ダイヤル75で設定された回転数モードのエンジン回転数で一定に回転数制御される。 The SP mode is a rotation speed mode that is selected when priority is given to the amount of work, and uses the highest engine speed. The H mode is a rotation speed mode that is selected when both the work amount and the fuel consumption are desired, and uses the second highest engine speed. The A mode is a rotation speed mode that is selected when it is desired to operate the shovel with low noise while giving priority to fuel consumption, and uses the third highest engine speed. The idling mode is a rotation speed mode that is selected when the engine is desired to be in an idling state, and uses the lowest engine speed. The engine 11 is controlled at a constant speed at the engine speed in the speed mode set by the engine speed adjustment dial 75.
 圧力センサS7Bはブームシリンダ7のボトム側油室における作動油の圧力を検出し、圧力センサS7Rはブームシリンダ7のロッド側油室における作動油の圧力を検出する。圧力センサS8Bはアームシリンダ8のボトム側油室における作動油の圧力を検出し、圧力センサS8Rはアームシリンダ8のロッド側油室における作動油の圧力を検出する。圧力センサS9Bはバケットシリンダ9のボトム側油室における作動油の圧力を検出し、圧力センサS9Rはバケットシリンダ9のロッド側油室における作動油の圧力を検出する。これらの圧力センサの出力は、掘削アタッチメントの姿勢を導き出すために利用されてもよい。 The pressure sensor S7B detects the pressure of hydraulic oil in the bottom side oil chamber of the boom cylinder 7, and the pressure sensor S7R detects the pressure of hydraulic oil in the rod side oil chamber of the boom cylinder 7. The pressure sensor S8B detects the pressure of the working oil in the bottom side oil chamber of the arm cylinder 8, and the pressure sensor S8R detects the pressure of the working oil in the rod side oil chamber of the arm cylinder 8. The pressure sensor S9B detects the pressure of the hydraulic oil in the bottom side oil chamber of the bucket cylinder 9, and the pressure sensor S9R detects the pressure of the hydraulic oil in the rod side oil chamber of the bucket cylinder 9. The outputs of these pressure sensors may be used to derive the attitude of the drilling attachment.
 ポージングスイッチSWはポージング機能を開始させるためのスイッチである。ポージング機能は、掘削アタッチメントの姿勢を所定の姿勢に移行させる機能である。ポージングスイッチSWは、表示装置40の画像表示部41の画面に表示されるソフトウェアスイッチであってもよく、キャビン10の内部に設置されたハードウェアスイッチであってもよく、キャビン10の外部に設置されたハードウェアスイッチであってもよい。また、ポージングスイッチSWは、操作レバーの先端に設けられたスイッチボタン27であってもよい。但し、ポージング機能は、ポージングスイッチSW等のスイッチ入力に応じてではなく、スマートフォン等の音声入力装置を介した音声入力に応じて開始されてもよい。 The posing switch SW is a switch for starting the posing function. The posing function is a function for shifting the posture of the excavation attachment to a predetermined posture. The posing switch SW may be a software switch displayed on the screen of the image display unit 41 of the display device 40, a hardware switch installed inside the cabin 10, or installed outside the cabin 10. It may be a hardware switch. The posing switch SW may be a switch button 27 provided at the tip of the operation lever. However, the posing function may be started not in response to a switch input such as the posing switch SW but in response to a voice input via a voice input device such as a smartphone.
 所定の姿勢は、例えば、ブーム角度、アーム角度、及び、バケット角度を用いて定められる目標姿勢であり、走行に適した姿勢(以下、「走行姿勢」とする。)を含む。本実施例では、所定の姿勢は、ブーム角度、アーム角度、及び、バケット角度を用いて定められ且つ記憶装置に事前に記憶された姿勢であり、例えば、ブーム4の上端が所定の第1高さよりも低く、エンドアタッチメントとしてのバケット6の下端が所定の第2高さよりも高いという条件を満たす姿勢である。所定の姿勢は、ブーム角度とアーム角度で定められていてもよく、ブーム角度のみで定められていてもよい。所定の姿勢を定めるブーム角度、アーム角度、及び、バケット角度は、特定の角度値で表されていてもよく、角度範囲で表されていてもよい。所定の姿勢は、ブームシリンダ7及びアームシリンダ8のそれぞれのストローク量を用いて特定されていてもよく、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9のそれぞれのストローク量を用いて特定されていてもよい。 The predetermined posture is a target posture determined by using, for example, a boom angle, an arm angle, and a bucket angle, and includes a posture suitable for traveling (hereinafter referred to as a “traveling posture”). In the present embodiment, the predetermined posture is a posture determined by using the boom angle, the arm angle, and the bucket angle and stored in advance in the storage device. For example, the upper end of the boom 4 has a predetermined first height. It is the attitude | position which satisfy | fills the conditions that the lower end of the bucket 6 as an end attachment is higher than predetermined | prescribed 2nd height. The predetermined posture may be determined by the boom angle and the arm angle, or may be determined only by the boom angle. The boom angle, the arm angle, and the bucket angle that define the predetermined posture may be represented by specific angle values or may be represented by an angle range. The predetermined posture may be specified using the stroke amounts of the boom cylinder 7 and the arm cylinder 8, and specified using the stroke amounts of the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9. It may be.
 ショベルの操作者は、掘削アタッチメントに関する所望の姿勢を目標姿勢として記憶することもできる。例えば、操作者は、操作装置26を操作して掘削アタッチメントを所望の姿勢にした状態で姿勢記憶スイッチを押下することで、所望の姿勢を目標姿勢として記憶できる。 The operator of the excavator can also memorize a desired posture related to the excavation attachment as a target posture. For example, the operator can store the desired posture as the target posture by operating the operation device 26 and pressing the posture memory switch in a state where the excavation attachment is in the desired posture.
 姿勢記憶スイッチは、掘削アタッチメントの現在の姿勢を目標姿勢として記憶するためのスイッチである。姿勢記憶スイッチは、ポージングスイッチSWと同様、表示装置40の画像表示部41に表示されるソフトウェアスイッチであってもよく、キャビン10の内部に設置されたハードウェアスイッチであってもよい。或いは、キャビン10の外部に設置されたハードウェアスイッチであってもよく、操作レバーの先端に設けられたスイッチボタン27であってもよい。或いは、目標姿勢は、音声入力装置を用いて記憶されてもよい。例えば、コントローラ30は、「姿勢記憶」等の所定の音声が入力されたときに、掘削アタッチメントの現在の姿勢を目標姿勢として記憶してもよい。 The posture memory switch is a switch for storing the current posture of the excavation attachment as a target posture. As with the posing switch SW, the attitude memory switch may be a software switch displayed on the image display unit 41 of the display device 40 or a hardware switch installed in the cabin 10. Alternatively, a hardware switch installed outside the cabin 10 or a switch button 27 provided at the tip of the operation lever may be used. Alternatively, the target posture may be stored using a voice input device. For example, the controller 30 may store the current posture of the excavation attachment as the target posture when a predetermined sound such as “posture memory” is input.
 制御弁50は、流量制御弁のパイロットポートに作用するパイロット圧を制御するための弁である。本実施例では、制御弁50は、コントローラ30からの指令に応じて動作する電磁弁である。流量制御弁は、コントロールバルブ17内に含まれるスプール弁であり、左側パイロットポートと右側パイロットポートを備える。流量制御弁は、ブームシリンダ7における作動油の流れを制御するブーム流量制御弁、アームシリンダ8における作動油の流れを制御するアーム流量制御弁、バケットシリンダ9における作動油の流れを制御するバケット流量制御弁を含む。 The control valve 50 is a valve for controlling the pilot pressure acting on the pilot port of the flow control valve. In the present embodiment, the control valve 50 is an electromagnetic valve that operates according to a command from the controller 30. The flow rate control valve is a spool valve included in the control valve 17 and includes a left pilot port and a right pilot port. The flow rate control valve is a boom flow rate control valve that controls the flow of hydraulic fluid in the boom cylinder 7, an arm flow rate control valve that controls the flow of hydraulic fluid in the arm cylinder 8, and a bucket flow rate that controls the flow of hydraulic fluid in the bucket cylinder 9. Includes control valve.
 制御弁50の一例である制御弁50Lは、操作装置26の一例であるブーム操作レバーの左側(上げ操作側)ポートとブーム流量制御弁の左側(上げ操作側)パイロットポートとを繋ぐパイロットラインに設置されている。制御弁50の別の一例である制御弁50Rは、ブーム操作レバーの右側(下げ操作側)ポートとブーム流量制御弁の右側(下げ操作側)パイロットポートとを繋ぐパイロットラインに設置されている。 The control valve 50L, which is an example of the control valve 50, is a pilot line that connects the left side (raising operation side) port of the boom operation lever, which is an example of the operating device 26, and the left side (raising operation side) pilot port of the boom flow control valve. is set up. The control valve 50R, which is another example of the control valve 50, is installed in a pilot line that connects the right side (down operation side) port of the boom operation lever and the right side (down operation side) pilot port of the boom flow control valve.
 コントローラ30からの指令を受けていない場合、制御弁50Lは、ブーム操作レバーの左側ポートとブーム流量制御弁の左側パイロットポートとを連通させ、ブーム操作レバーが上げ方向に操作されたときに生成するパイロット圧を左側パイロットポートに作用させる。同様に、制御弁50Rは、ブーム操作レバーの右側ポートとブーム流量制御弁の右側パイロットポートとを連通させ、ブーム操作レバーが下げ方向に操作されたときに生成するパイロット圧を左側パイロットポートに作用させる。 When the command from the controller 30 is not received, the control valve 50L communicates the left port of the boom operation lever with the left pilot port of the boom flow control valve, and is generated when the boom operation lever is operated in the upward direction. Pilot pressure is applied to the left pilot port. Similarly, the control valve 50R communicates the right port of the boom operation lever with the right pilot port of the boom flow control valve, and applies the pilot pressure generated when the boom operation lever is operated in the downward direction to the left pilot port. Let
 コントローラ30からの指令を受けると、制御弁50Lは、ブーム操作レバーの左側ポートとブーム流量制御弁の左側パイロットポートとの連通を遮断し、パイロットポンプ15とブーム流量制御弁の左側パイロットポートと連通させる。そして、パイロットポンプ15が吐出する作動油を利用し、コントローラ30からの指令に応じた大きさのパイロット圧を生成し、そのパイロット圧をブーム流量制御弁の左側パイロットポートに作用させる。同様に、制御弁50Rは、ブーム操作レバーの右側ポートとブーム流量制御弁の右側パイロットポートとの連通を遮断し、パイロットポンプ15とブーム流量制御弁の右側パイロットポートと連通させる。そして、パイロットポンプ15が吐出する作動油を利用し、コントローラ30からの指令に応じた大きさのパイロット圧を生成し、そのパイロット圧をブーム流量制御弁の右側パイロットポートに作用させる。 Upon receiving a command from the controller 30, the control valve 50L blocks communication between the left port of the boom operation lever and the left pilot port of the boom flow control valve, and communicates with the pilot pump 15 and the left pilot port of the boom flow control valve. Let Then, using the hydraulic oil discharged from the pilot pump 15, a pilot pressure having a magnitude corresponding to a command from the controller 30 is generated, and the pilot pressure is applied to the left pilot port of the boom flow control valve. Similarly, the control valve 50R blocks communication between the right port of the boom operation lever and the right pilot port of the boom flow control valve, and connects the pilot pump 15 and the right pilot port of the boom flow control valve. Then, using the hydraulic oil discharged from the pilot pump 15, a pilot pressure having a magnitude corresponding to a command from the controller 30 is generated, and the pilot pressure is applied to the right pilot port of the boom flow control valve.
 アーム操作レバーとアーム流量制御弁とを繋ぐパイロットラインに設置される制御弁、バケット操作レバーとバケット流量制御弁とを繋ぐパイロットラインに設置される制御弁についても同様である。 The same applies to the control valve installed in the pilot line connecting the arm operation lever and the arm flow control valve, and the control valve installed in the pilot line connecting the bucket operation lever and the bucket flow control valve.
 次に図3を参照し、ポージングスイッチSWが操作されたときのショベルの動きについて説明する。図3は屋内作業場IDで作業するショベルの側面図であり、図1に対応する。 Next, the movement of the excavator when the posing switch SW is operated will be described with reference to FIG. FIG. 3 is a side view of the excavator working in the indoor work place ID, and corresponds to FIG.
 図1に示す状態でポージングスイッチSWが押下されると、コントローラ30は、所定条件が満たされたと判定し、記憶装置に記憶された掘削アタッチメントの走行姿勢に関する情報を読み出す。走行姿勢に関する情報は、例えば、掘削アタッチメントの姿勢を走行姿勢にしたときのブーム角度、アーム角度、及び、バケット角度(以下では、それぞれ、走行姿勢ブーム角度、走行姿勢アーム角度、及び、走行姿勢バケット角度と称する。)を含む。 When the posing switch SW is pressed in the state shown in FIG. 1, the controller 30 determines that a predetermined condition is satisfied, and reads information related to the traveling posture of the excavation attachment stored in the storage device. The information on the running posture includes, for example, a boom angle, an arm angle, and a bucket angle when the posture of the excavation attachment is set to the running posture (hereinafter, the running posture boom angle, the running posture arm angle, and the running posture bucket, respectively). Called an angle).
 コントローラ30は、掘削アタッチメントの姿勢を走行姿勢にするために、制御弁50に対して指令を出力する。図1に示す状態から図3に示す状態への姿勢の変化の例では、コントローラ30は、最初に、バケット6を自動的に閉じるように、バケット操作レバーの閉じ操作側ポートとバケット流量制御弁の閉じ操作側パイロットポートとを繋ぐパイロットラインに設けられた制御弁50に対して指令を出力する。そして、走行姿勢バケット角度までバケット6を閉じた後、アーム5を自動的に閉じるように、アーム操作レバーの閉じ操作側ポートとアーム流量制御弁の閉じ操作側パイロットポートとを繋ぐパイロットラインに設けられた制御弁50に対して指令を出力する。そして、走行姿勢アーム角度までアーム5を閉じた後、ブーム4を自動的に下げるように、ブーム操作レバーの下げ操作側ポートとブーム流量制御弁の下げ操作側パイロットポートとを繋ぐパイロットラインに設けられた制御弁50に対して指令を出力する。このように、コントローラ30は、バケット6、アーム5、及び、ブーム4を順番に動かして掘削アタッチメントの姿勢を図3に示す走行姿勢にする。 The controller 30 outputs a command to the control valve 50 in order to set the excavation attachment posture to the traveling posture. In the example of the posture change from the state shown in FIG. 1 to the state shown in FIG. 3, the controller 30 first closes the bucket operation lever closing side port and the bucket flow control valve so as to automatically close the bucket 6. A command is output to the control valve 50 provided in the pilot line connecting the pilot port of the closing operation side. Then, after closing the bucket 6 to the running posture bucket angle, it is provided in a pilot line connecting the closing operation side port of the arm operation lever and the closing operation side pilot port of the arm flow control valve so that the arm 5 is automatically closed. A command is output to the received control valve 50. Then, after the arm 5 is closed to the traveling posture arm angle, the boom 4 is automatically lowered, and is provided in a pilot line connecting the lower operation side port of the boom operation lever and the lower operation side pilot port of the boom flow control valve. A command is output to the received control valve 50. Thus, the controller 30 moves the bucket 6, the arm 5, and the boom 4 in order to change the posture of the excavation attachment to the traveling posture shown in FIG. 3.
 図3に示す走行姿勢は、ショベルが走行可能な状態において掘削アタッチメントの最上部が最小高さとなる姿勢である。図3に示す走行姿勢では、掘削アタッチメントの最下部のバケットリンク部が地面から所定の高さだけ離れている。バケット角度は、例えば、バケット6を閉限又は閉限近傍まで閉じたときの角度であり、アーム角度は、例えば、アーム5を閉限又は閉限近傍まで閉じたときの角度である。「閉限」は、最も閉じた状態を意味する。そして、「バケット6を閉限まで閉じたとき」は、例えば、バケットシリンダ9のシリンダストローク量が最大になったときを意味し、「アーム5を閉限まで閉じたとき」は、例えば、アームシリンダ8のシリンダストローク量が最大になったときを意味する。また、ブーム角度は、例えば、走行の条件を満たす所定の角度である。掘削アタッチメントの最下部のバケットリンク部の地面からの高さは30cm以上であることが好ましい。更に望ましくは、40cm以上である。 The traveling posture shown in FIG. 3 is a posture in which the uppermost portion of the excavation attachment has a minimum height when the excavator can travel. In the traveling posture shown in FIG. 3, the lowermost bucket link portion of the excavation attachment is separated from the ground by a predetermined height. The bucket angle is, for example, an angle when the bucket 6 is closed to the close limit or near the close limit, and the arm angle is, for example, an angle when the arm 5 is closed to the close limit or near the close limit. “Closed limit” means the most closed state. “When the bucket 6 is closed to the closing limit” means, for example, when the cylinder stroke amount of the bucket cylinder 9 is maximized, and “when the arm 5 is closed to the closing limit” means, for example, the arm It means when the cylinder stroke amount of the cylinder 8 is maximized. The boom angle is, for example, a predetermined angle that satisfies the traveling condition. It is preferable that the height of the lowermost bucket link portion of the excavation attachment from the ground is 30 cm or more. More desirably, it is 40 cm or more.
 その結果、ショベルの高さである掘削アタッチメントの高さH3は、シャッターSHを全開したときの出入口の高さH1よりも低くなる。そのため、ショベルは、掘削アタッチメントをシャッターSHに接触させることなく、屋内作業場IDから屋外作業場ODに移動できる。 As a result, the excavation attachment height H3, which is the height of the excavator, is lower than the entrance height H1 when the shutter SH is fully opened. Therefore, the excavator can move from the indoor work place ID to the outdoor work place OD without bringing the excavation attachment into contact with the shutter SH.
 図3の例では、コントローラ30は、ポージングスイッチSWが押下されたことを条件として掘削アタッチメントの姿勢を走行姿勢にする。しかしながら、本発明はこの構成に限定されるものではない。例えば、コントローラ30は、所定のレバー操作が行われた場合に掘削アタッチメントの姿勢を走行姿勢にしてもよい。所定のレバー操作は、例えば、キャビン10内に設けられた左右の操作レバーの双方を不感帯の範囲内で所定時間にわたって所定方向に継続的に傾斜させることを含む。 In the example of FIG. 3, the controller 30 sets the attitude of the excavation attachment to the traveling attitude on condition that the posing switch SW is pressed. However, the present invention is not limited to this configuration. For example, the controller 30 may change the posture of the excavation attachment to the traveling posture when a predetermined lever operation is performed. The predetermined lever operation includes, for example, continuously inclining both the left and right operation levers provided in the cabin 10 in a predetermined direction over a predetermined time within a dead zone.
 次に図4を参照し、走行姿勢の別の例について説明する。図4は、屋外作業場ODを走行するショベルの側面図であり、図1及び図3に対応する。 Next, another example of the running posture will be described with reference to FIG. FIG. 4 is a side view of an excavator that travels in the outdoor workplace OD and corresponds to FIGS. 1 and 3.
 図3に示す走行姿勢(以下、「第1走行姿勢」とする。)は、シャッターSHを潜り抜けるのに適した走行姿勢ではあるが、高さ制限のない屋外作業場ODを走行するのに最適な走行姿勢ではない。ブーム4を大きく下げた姿勢であり、バランスを取り難いためである。 The traveling posture shown in FIG. 3 (hereinafter referred to as “first traveling posture”) is a traveling posture suitable for passing through the shutter SH, but is optimal for traveling in an outdoor workplace OD having no height restriction. It is not a good driving posture. This is because the boom 4 is greatly lowered and it is difficult to achieve a balance.
 そこで、ショベルの操作者は、屋外作業場ODでショベルを走行させる場合、ポージングスイッチSWとは別の第2ポージングスイッチを押下することで、掘削アタッチメントの姿勢を第2走行姿勢にしてもよい。或いは、ショベルの操作者は、第2ポージングスイッチ等のスイッチ入力ではなく、スマートフォン等の音声入力装置を介した音声入力により、掘削アタッチメントの姿勢を第2走行姿勢にしてもよい。 Therefore, when the excavator operator runs the excavator in the outdoor work place OD, the excavation attachment may be set to the second running posture by pressing a second posing switch different from the posing switch SW. Or the operator of the excavator may change the posture of the excavation attachment to the second traveling posture by voice input via a voice input device such as a smartphone instead of switch input such as the second posing switch.
 第2走行姿勢は、ショベルが走行可能な状態において掘削アタッチメントの旋回半径が最小となる姿勢である。第2走行姿勢では、掘削アタッチメントの最下部のバケットリンク部が地面から所定の高さだけ離れている。バケット角度は、例えば、バケット6を閉限又は閉限近傍まで閉じたときの角度であり、アーム角度は、例えば、アーム5を閉限又は閉限近傍まで閉じたときの角度である。また、ブーム角度は、例えば、ブーム4を上限又は上限近傍まで上昇させたときの角度である。「ブーム4を上限まで上昇させたとき」は、例えば、ブームシリンダ7のシリンダストローク量が最大になったときを意味する。第2走行姿勢では、掘削アタッチメントの最下部のバケットリンク部の地面からの高さは30cm以上であることが好ましい。更に望ましくは、40cm以上である。 The second traveling posture is a posture in which the turning radius of the excavation attachment is minimized when the excavator can travel. In the second traveling posture, the lowermost bucket link portion of the excavation attachment is separated from the ground by a predetermined height. The bucket angle is, for example, an angle when the bucket 6 is closed to the close limit or near the close limit, and the arm angle is, for example, an angle when the arm 5 is closed to the close limit or near the close limit. The boom angle is, for example, an angle when the boom 4 is raised to the upper limit or near the upper limit. “When the boom 4 is raised to the upper limit” means, for example, when the cylinder stroke amount of the boom cylinder 7 is maximized. In the second traveling posture, the height of the bottom bucket link portion of the excavation attachment from the ground is preferably 30 cm or more. More desirably, it is 40 cm or more.
 第2ポージングスイッチは、ポージングスイッチSWであってもよい。この場合、ポージングスイッチSWは、例えば、ショベルが第1走行姿勢のときに操作されると、掘削アタッチメントの姿勢を第1走行姿勢から第2走行姿勢に移行させるポージング機能を開始させる。一方で、ショベルが第1走行姿勢以外の姿勢のときに操作されると、掘削アタッチメントの姿勢を現在の姿勢から第1走行姿勢に移行させるポージング機能を開始させる。 The second posing switch may be a posing switch SW. In this case, for example, when the excavator is operated when the excavator is in the first traveling posture, the posing switch SW starts a posing function for shifting the posture of the excavation attachment from the first traveling posture to the second traveling posture. On the other hand, when operated when the excavator is in a posture other than the first traveling posture, a posing function for shifting the posture of the excavation attachment from the current posture to the first traveling posture is started.
 図4は、ブーム4、アーム5、及び、バケット6が順番に動かされて掘削アタッチメントの姿勢が第2走行姿勢になった状態を示す。第2走行姿勢は、例えば、第1走行姿勢と同じ走行姿勢バケット角度及び走行姿勢アーム角度を有し、且つ、第1走行姿勢の走行姿勢ブーム角度より大きい走行姿勢ブーム角度を有する。 FIG. 4 shows a state in which the boom 4, the arm 5, and the bucket 6 are moved in order and the attitude of the excavation attachment is in the second traveling attitude. The second traveling posture has, for example, the same traveling posture bucket angle and traveling posture arm angle as the first traveling posture, and has a traveling posture boom angle larger than the traveling posture boom angle of the first traveling posture.
 第1走行姿勢の状態で第2ポージングスイッチが押下されると、コントローラ30は、所定条件が満たされたと判定し、記憶装置に記憶された掘削アタッチメントの第2走行姿勢に関する情報を読み出す。 When the second posing switch is pressed in the state of the first traveling posture, the controller 30 determines that the predetermined condition is satisfied, and reads information on the second traveling posture of the excavation attachment stored in the storage device.
 そして、コントローラ30は、掘削アタッチメントの姿勢を第2走行姿勢にするために、制御弁50に対して指令を出力する。図4の例では、コントローラ30は、ブーム4を自動的に上昇させるように、ブーム操作レバーの上げ操作側ポートとブーム流量制御弁の上げ操作側パイロットポートとを繋ぐパイロットラインに設けられた制御弁50に対して指令を出力する。このようにして、コントローラ30は、ブーム4を上昇させて掘削アタッチメントの姿勢を第1走行姿勢から第2走行姿勢に移行させることができる。 Then, the controller 30 outputs a command to the control valve 50 in order to change the posture of the excavation attachment to the second traveling posture. In the example of FIG. 4, the controller 30 is a control provided in a pilot line that connects a boom operation lever raising operation side port and a boom flow control valve raising operation side pilot port so as to automatically raise the boom 4. A command is output to the valve 50. In this manner, the controller 30 can raise the boom 4 to shift the excavation attachment posture from the first traveling posture to the second traveling posture.
 上述の構成により、コントローラ30は、掘削アタッチメントの姿勢を所定の姿勢に自動的に切り替えることができる。そのため、ショベルの操作者は、例えば屋内作業場IDから屋外作業場ODにショベルを移動させる際に操作レバーを手動操作して掘削アタッチメントの姿勢を第1走行姿勢にする必要がない。また、アーム5の閉じ度合い、ブーム4の下げ度合い等が十分でないままショベルを走行させてしまい、掘削アタッチメントをシャッターSHに接触させてしまうこともない。 With the above-described configuration, the controller 30 can automatically switch the attitude of the excavation attachment to a predetermined attitude. Therefore, the excavator operator does not need to manually operate the operation lever to move the excavation attachment posture to the first traveling posture when the excavator is moved from the indoor work place ID to the outdoor work place OD, for example. Further, the excavator is caused to travel without the arm 5 being closed and the boom 4 being lowered sufficiently, and the excavation attachment is not brought into contact with the shutter SH.
 以上、本発明を実施するための形態について詳述したが、本発明は上述のような特定の実施例に限定されるものではない。上述の実施例には、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が適用され得る。 As mentioned above, although the form for implementing this invention was explained in full detail, this invention is not limited to the above specific Examples. Various modifications and changes can be applied to the above-described embodiments within the scope of the gist of the present invention described in the claims.
 例えば、上述の実施例では、油圧式の操作装置26が採用されているが、本発明はこの構成に限定されるものではない。例えば、油圧式の操作装置26の代わりに電気式の操作装置が採用されてもよい。この場合、コントロールバルブ17に含まれる流量制御弁は油圧スプール弁ではなく電磁弁で構成されてもよい。 For example, in the above-described embodiment, the hydraulic operating device 26 is employed, but the present invention is not limited to this configuration. For example, instead of the hydraulic operation device 26, an electric operation device may be employed. In this case, the flow control valve included in the control valve 17 may be configured by an electromagnetic valve instead of a hydraulic spool valve.
 また、上述の実施例では、コントローラ30は、バケット6、アーム5、及び、ブーム4を順番に動かして掘削アタッチメントの姿勢を走行姿勢にする。しかしながら、コントローラ30は、ポージングスイッチSWが操作されたときの掘削アタッチメントの姿勢に応じて作業体の動作順及び動作方向を変更してもよい。例えば、アーム5が大きく開かれ且つブーム4が大きく下げられた姿勢のときにポージングスイッチSWが操作された場合、バケット6、アーム5、及び、ブーム4の順に作業体を動かすと、バケット6を地面に接触させてしまう。そのため、コントローラ30は、最初にブーム4を上昇させた後でバケット6を閉じ、アーム5を閉じ、さらにブーム4を下げるようにする。また、コントローラ30は、複数の作業体を同時に動かしてもよい。例えば、ブーム4を上昇させながらバケット6及びアーム5の少なくとも一方を閉じるようにしてもよく、ブーム4を下降させながらバケット6及びアーム5の少なくとも一方を閉じるようにしてもよい。 In the above-described embodiment, the controller 30 moves the bucket 6, the arm 5, and the boom 4 in order to change the excavation attachment posture to the traveling posture. However, the controller 30 may change the operation order and the operation direction of the work body according to the posture of the excavation attachment when the posing switch SW is operated. For example, when the posing switch SW is operated when the arm 5 is widely opened and the boom 4 is greatly lowered, if the work body is moved in the order of the bucket 6, the arm 5, and the boom 4, the bucket 6 It touches the ground. Therefore, the controller 30 first raises the boom 4, then closes the bucket 6, closes the arm 5, and further lowers the boom 4. The controller 30 may move a plurality of work bodies simultaneously. For example, at least one of the bucket 6 and the arm 5 may be closed while the boom 4 is raised, and at least one of the bucket 6 and the arm 5 may be closed while the boom 4 is lowered.
 また、コントローラ30は、掘削アタッチメントの最下端の高さを所定高さ以上で維持しながら掘削アタッチメントの姿勢を所定の姿勢に移行させてもよい。所定高さは、例えば、下部走行体1の接地面を含む平面に対する高さであり、典型的には、水平な地面に対する高さである。 Further, the controller 30 may shift the posture of the excavation attachment to a predetermined posture while maintaining the height of the lowermost end of the excavation attachment at a predetermined height or more. The predetermined height is, for example, a height relative to a plane including the ground contact surface of the lower traveling body 1, and is typically a height relative to a horizontal ground.
 また、コントローラ30は、掘削アタッチメントの最下端の高さが所定高さより低い場合には掘削アタッチメントの姿勢が自動的に切り替わるのを禁止してもよい。すなわち、掘削アタッチメントの最下端の高さが所定高さより低い場合には、ポージングスイッチSWが押下された場合であっても掘削アタッチメントの姿勢を変化させないようにしてもよい。掘削アタッチメントの姿勢を変化させると、掘削アタッチメントを周囲の地物に接触させてしまうおそれがあるためである。掘削アタッチメントの最下端の高さは、姿勢センサの出力に基づいて導き出されてもよく、カメラの出力に基づいて導き出されてもよい。特に、地面形状の起伏が大きい場合、下部走行体1の接地面と掘削アタッチメントの下方にある面とが同一平面でない(平行でない)場合等に有効である。この場合、コントローラ30は、ポージング機能を開始できない旨を操作者に通知してもよい。具体的には、音声出力装置から音声メッセージを出力させてもよく、表示装置40の画像表示部41にテキストメッセージを表示させてもよい。 Further, the controller 30 may prohibit the posture of the excavation attachment from being automatically switched when the height of the lowermost end of the excavation attachment is lower than a predetermined height. That is, when the height of the lowermost end of the excavation attachment is lower than a predetermined height, the posture of the excavation attachment may not be changed even when the posing switch SW is pressed. This is because changing the attitude of the excavation attachment may cause the excavation attachment to come into contact with surrounding features. The height of the lowermost end of the excavation attachment may be derived based on the output of the attitude sensor or may be derived based on the output of the camera. This is particularly effective when the ground shape has a large undulation and the ground contact surface of the lower traveling body 1 and the surface below the excavation attachment are not coplanar (not parallel). In this case, the controller 30 may notify the operator that the posing function cannot be started. Specifically, a voice message may be output from the voice output device, or a text message may be displayed on the image display unit 41 of the display device 40.
 また、上述の実施例では、掘削アタッチメントに関する目標姿勢として走行姿勢が採用されたが、駐機に適した姿勢、旋回に適した姿勢等が採用されてもよい。駐機に適した姿勢は、例えば、図3の第1走行姿勢とほぼ同じ姿勢で掘削アタッチメントを地面に接触させた姿勢である。 In the above-described embodiment, the traveling posture is adopted as the target posture regarding the excavation attachment. However, a posture suitable for parking, a posture suitable for turning, and the like may be adopted. The posture suitable for parking is, for example, a posture in which the excavation attachment is brought into contact with the ground in substantially the same posture as the first traveling posture in FIG.
 本願は、2016年5月17日に出願した日本国特許出願2016-098880号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2016-098880 filed on May 17, 2016, the entire contents of which are incorporated herein by reference.
 1・・・下部走行体 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 11a・・・オルタネータ 11b・・・スタータ 11c・・・水温センサ 14・・・メインポンプ 14a・・・レギュレータ 14b・・・吐出圧力センサ 14c・・・油温センサ 15・・・パイロットポンプ 15L、15R・・・パイロット圧センサ 17・・・コントロールバルブ 26・・・操作装置 27・・・スイッチボタン 30・・・コントローラ 30a・・・一時記憶部 40・・・表示装置 40a・・・変換処理部 41・・・画像表示部 42・・・スイッチパネル 42a・・・ライトスイッチ 42b・・・ワイパースイッチ 42c・・・ウインドウォッシャスイッチ 70・・・蓄電池 72・・・電装品 74・・・エンジン制御装置 75・・・エンジン回転数調整ダイヤル 80・・・撮像装置 S0・・・傾斜センサ S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S7B、S7R、S8B、S8R、S9B、S9R・・・圧力センサ SW・・・ポージングスイッチ  DESCRIPTION OF SYMBOLS 1 ... Lower traveling body 2 ... Turning mechanism 3 ... Upper turning body 4 ... Boom 5 ... Arm 6 ... Bucket 7 ... Boom cylinder 8 ... Arm cylinder 9 ... Bucket cylinder 10 ... cabin 11 ... engine 11a ... alternator 11b ... starter 11c ... water temperature sensor 14 ... main pump 14a ... regulator 14b ... discharge pressure sensor 14c ... Oil temperature sensor 15 ... Pilot pump 15L, 15R ... Pilot pressure sensor 17 ... Control valve 26 ... Operating device 27 ... Switch button 30 ... Controller 30a ... Temporary storage unit 40 ... Display device 40a ... Conversion processing part 41 ... Image display part 42 ... Switch panel 42a ... Light switch 42b ... Wiper switch 42c ... Window washer switch 70 ... Storage battery 72 ... Electrical equipment 74 ... Engine control device 75 ... Engine speed adjustment dial 80・ ・ Imaging device S0 ... Inclination sensor S1 ... Boom angle sensor S2 ... Arm angle sensor S3 ... Bucket angle sensor S7B, S7R, S8B, S8R, S9B, S9R ... Pressure sensor SW ...・ Posing switch

Claims (12)

  1.  下部走行体と、
     前記下部走行体に旋回可能に搭載された上部旋回体と、
     前記上部旋回体に取り付けられたアタッチメントと、
     所定条件が満たされた場合に前記アタッチメントの姿勢を所定の姿勢にする制御装置と、を備える、
     ショベル。
    A lower traveling body,
    An upper revolving unit mounted on the lower traveling unit so as to be able to swivel;
    An attachment attached to the upper swing body;
    A control device that changes the posture of the attachment to a predetermined posture when a predetermined condition is satisfied,
    Excavator.
  2.  前記所定の姿勢は、走行に適した姿勢である、
     請求項1記載のショベル。
    The predetermined posture is a posture suitable for traveling,
    The excavator according to claim 1.
  3.  前記走行に適した姿勢は、表示装置の画面に表示されたソフトウェアスイッチ、又は、キャビンの内部若しくは外部に設置されたハードウェアスイッチを用いて設定される、
     請求項2に記載のショベル。
    The posture suitable for traveling is set by using a software switch displayed on the screen of the display device or a hardware switch installed inside or outside the cabin.
    The shovel according to claim 2.
  4.  前記所定条件は、所定のレバー操作が行われたこと、表示装置の画面に表示された所定のソフトウェアスイッチが操作されたこと、又は、所定のハードウェアスイッチが操作されたことを含む、
     請求項1に記載のショベル。
    The predetermined condition includes that a predetermined lever operation has been performed, a predetermined software switch displayed on the screen of the display device has been operated, or a predetermined hardware switch has been operated,
    The excavator according to claim 1.
  5.  前記アタッチメントは、エンドアタッチメント、アーム、及びブームで構成され、
     前記制御装置は、前記エンドアタッチメント、前記アーム、及び前記ブームを順番に動かして前記アタッチメントの姿勢を所定の姿勢にする、
     請求項1に記載のショベル。
    The attachment is composed of an end attachment, an arm, and a boom,
    The control device moves the end attachment, the arm, and the boom in order to change the posture of the attachment to a predetermined posture.
    The excavator according to claim 1.
  6.  前記制御装置は、前記アタッチメントの最下端の高さを所定高さ以上で維持しながら前記アタッチメントの姿勢を所定の姿勢にし、
     前記所定高さは、前記下部走行体の接地面を含む平面に対する高さである、
     請求項1に記載のショベル。
    The control device makes the posture of the attachment a predetermined posture while maintaining the height of the lowermost end of the attachment at a predetermined height or more,
    The predetermined height is a height relative to a plane including a ground contact surface of the lower traveling body,
    The excavator according to claim 1.
  7.  前記制御装置は、前記アタッチメントの最下端の高さが前記所定高さより低い場合、前記アタッチメントの姿勢を変化させない、
     請求項6に記載のショベル。
    The control device does not change the posture of the attachment when the height of the lowermost end of the attachment is lower than the predetermined height.
    The excavator according to claim 6.
  8.  前記アタッチメントの最下端の高さは、姿勢センサ又はカメラの出力に基づいて導き出される、
     請求項1に記載のショベル。
    The height of the lowermost end of the attachment is derived based on the output of the attitude sensor or camera.
    The excavator according to claim 1.
  9.  前記所定の姿勢は、ブームの上端が第1高さよりも低く、エンドアタッチメントの下端が第2高さよりも高いという条件を満たす前記アタッチメントの姿勢である、
     請求項1に記載のショベル。
    The predetermined posture is a posture of the attachment that satisfies a condition that the upper end of the boom is lower than the first height and the lower end of the end attachment is higher than the second height.
    The excavator according to claim 1.
  10.  前記所定の姿勢は、ブームを上限又は上限近傍まで上昇させ、且つ、アームを閉限又は閉限近傍まで閉じたときの前記アタッチメントの姿勢である、
     請求項1に記載のショベル。
    The predetermined posture is the posture of the attachment when the boom is raised to the upper limit or near the upper limit and the arm is closed to the close limit or close to the close limit.
    The excavator according to claim 1.
  11.  前記走行に適した姿勢は、音声入力装置を用いて設定される、
     請求項2に記載のショベル。
    The posture suitable for the running is set using a voice input device.
    The shovel according to claim 2.
  12.  前記音声入力装置は携帯情報端末であり、
     前記制御装置は、前記携帯情報端末の音声識別機能により生成された制御信号を受信する、
     請求項11に記載のショベル。
    The voice input device is a portable information terminal;
    The control device receives a control signal generated by a voice identification function of the portable information terminal;
    The excavator according to claim 11.
PCT/JP2017/018321 2016-05-17 2017-05-16 Excavator WO2017199939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018518299A JP6911018B2 (en) 2016-05-17 2017-05-16 Excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098880 2016-05-17
JP2016-098880 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199939A1 true WO2017199939A1 (en) 2017-11-23

Family

ID=60325222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018321 WO2017199939A1 (en) 2016-05-17 2017-05-16 Excavator

Country Status (2)

Country Link
JP (1) JP6911018B2 (en)
WO (1) WO2017199939A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060162A (en) * 2017-09-27 2019-04-18 日立建機株式会社 Hydraulic shovel
JP2020037767A (en) * 2018-08-31 2020-03-12 株式会社小松製作所 Bucket height notification device and bucket height notification method
US20210002850A1 (en) * 2018-03-23 2021-01-07 Sumitomo Heavy Industries, Ltd. Shovel
CN112888824A (en) * 2018-10-17 2021-06-01 住友重机械工业株式会社 Display device of excavator
CN113056591A (en) * 2018-11-14 2021-06-29 住友建机株式会社 Shovel, shovel control device, and shovel support device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143330A (en) * 1990-10-03 1992-05-18 Kubota Corp Drive control device for back hoe device
JP2002030701A (en) * 2000-07-18 2002-01-31 Shin Caterpillar Mitsubishi Ltd Speech-attachment controller in construction machinery and method of controlling speech attachment
KR20090065633A (en) * 2007-12-18 2009-06-23 두산인프라코어 주식회사 Automatic travel pose setting system for excavator
WO2014013911A1 (en) * 2012-07-19 2014-01-23 住友建機株式会社 Management device and management method for shovel
JP2016211256A (en) * 2015-05-11 2016-12-15 キャタピラー エス エー アール エル Automatic vibration device of work machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808940B2 (en) * 2004-07-13 2011-11-02 株式会社日立プラントテクノロジー Automatic crane control device for waste disposal plant
JP2007224511A (en) * 2006-02-21 2007-09-06 Komatsu Ltd Bucket attitude control unit of loader-type working machine
JP5227139B2 (en) * 2008-11-12 2013-07-03 株式会社トプコン Construction machinery
JP5570332B2 (en) * 2010-07-13 2014-08-13 住友重機械工業株式会社 Turning work machine and control method of turning work machine
JP6017782B2 (en) * 2011-12-09 2016-11-02 株式会社タダノ Information system for height information of objects around suspended loads
JP5442815B2 (en) * 2012-08-06 2014-03-12 株式会社小松製作所 Work machine and automatic control method of blade of work machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143330A (en) * 1990-10-03 1992-05-18 Kubota Corp Drive control device for back hoe device
JP2002030701A (en) * 2000-07-18 2002-01-31 Shin Caterpillar Mitsubishi Ltd Speech-attachment controller in construction machinery and method of controlling speech attachment
KR20090065633A (en) * 2007-12-18 2009-06-23 두산인프라코어 주식회사 Automatic travel pose setting system for excavator
WO2014013911A1 (en) * 2012-07-19 2014-01-23 住友建機株式会社 Management device and management method for shovel
JP2016211256A (en) * 2015-05-11 2016-12-15 キャタピラー エス エー アール エル Automatic vibration device of work machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060162A (en) * 2017-09-27 2019-04-18 日立建機株式会社 Hydraulic shovel
US20210002850A1 (en) * 2018-03-23 2021-01-07 Sumitomo Heavy Industries, Ltd. Shovel
JP2020037767A (en) * 2018-08-31 2020-03-12 株式会社小松製作所 Bucket height notification device and bucket height notification method
US11746505B2 (en) 2018-08-31 2023-09-05 Komatsu Ltd. Bucket height notification device and bucket height notification method
CN112888824A (en) * 2018-10-17 2021-06-01 住友重机械工业株式会社 Display device of excavator
CN113056591A (en) * 2018-11-14 2021-06-29 住友建机株式会社 Shovel, shovel control device, and shovel support device

Also Published As

Publication number Publication date
JPWO2017199939A1 (en) 2019-03-14
JP6911018B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2017199939A1 (en) Excavator
JP6776343B2 (en) Excavator display
KR102547626B1 (en) shovel
JP2023016952A (en) Program for shovel
JP6808377B2 (en) Excavator display
JP6965160B2 (en) Excavator
US11873620B2 (en) Turning control apparatus for turning-type working machine
KR102493019B1 (en) Shovel, shovel display device and shovel display method
WO2017170900A1 (en) Shovel
WO2017170382A1 (en) Shovel
WO2021010489A1 (en) Work machine and assistance device that assists work using work machine
WO2019181865A1 (en) Excavator
KR102488447B1 (en) Shovel, shovel control method and portable information terminal
JP2017210729A (en) Shovel
JP2011157751A (en) Hydraulic work machine
JP2002023791A (en) Speech recognition system on construction equipment
JP6943798B2 (en) Excavator
JP6605290B2 (en) Construction machine control equipment
WO2022210989A1 (en) Shovel
JP2018145623A (en) Shovel
JP7455632B2 (en) Excavators and shovel management devices
JP2021042602A (en) Shovel
JP2022152970A (en) Shovel, and shovel management system
JP2021155997A (en) Work machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018518299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799363

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799363

Country of ref document: EP

Kind code of ref document: A1