WO2017199816A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2017199816A1
WO2017199816A1 PCT/JP2017/017717 JP2017017717W WO2017199816A1 WO 2017199816 A1 WO2017199816 A1 WO 2017199816A1 JP 2017017717 W JP2017017717 W JP 2017017717W WO 2017199816 A1 WO2017199816 A1 WO 2017199816A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
film
rubber
thermoplastic resin
inner liner
Prior art date
Application number
PCT/JP2017/017717
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 三田
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2017199816A1 publication Critical patent/WO2017199816A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/20Building tyres by the flat-tyre method, i.e. building on cylindrical drums
    • B29D30/30Applying the layers; Guiding or stretching the layers during application

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire in which a hole portion is provided in a film constituting an inner liner to suppress a tire failure caused by a splice portion of the inner liner.
  • an inner liner member including a film mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer is formed on the inner surface of the tire, and an end portion in the tire circumferential direction is provided.
  • the present invention relates to a pneumatic tire having a structure in which the tires are overlapped and spliced to each other, and the occurrence of a tire failure during vulcanization molding or running is suppressed.
  • an inner liner composed of at least a three-layer structure of a film mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and a rubber sheet laminated on both sides thereof.
  • a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and a rubber sheet laminated on both sides thereof.
  • the inner liner member is wound around a tire molding drum and its end is wrapped.
  • a manufacturing method is employed in which the material is spliced and used for a tire vulcanization process (see, for example, Patent Documents 4 and 5).
  • the inner liner member having such a laminated structure is wound around a tire molding drum so as to have a cylindrical shape, and at that time, both end portions in the circumferential direction are lap-spliced and used for a tire vulcanization molding process.
  • a method of manufacturing a pneumatic tire is taken.
  • using an inner liner member composed of at least a three-layer structure of a film and rubber sheets laminated on both sides of the film means that the rubber sheets are overlapped and lap spliced. This is preferable because the splice can be reliably performed.
  • a film 2 mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and both sides thereof.
  • the inner liner member 1 composed of at least a three-layer structure of rubber sheets 3A and 3B laminated on each other is formed in a required size (length) determined according to the tire size, and is shown by a two-dot chain line as a model.
  • lap splice portions 4 are provided at both ends thereof, and the lap splices are overlapped so as to form an annular shape as a whole.
  • the rubber sheet 3 ⁇ / b> B has a function as a tie rubber having a function of joining with other tire constituent members such as a carcass layer.
  • an arrow Tc is the tire circumferential direction
  • the arrow Tr out indicates the tire radial direction.
  • the lap splice portion 4 of the inner liner member 1 is a process from green tire molding to vulcanization molding, as shown in FIG. 5B, particularly at the interface between the film 2 and the rubber sheet 3A, particularly near the end portion.
  • the peeling state 7 may occur at the interface.
  • the rubber sheet 3A constituting the inner liner member 1 has high adhesion (tack) with the surface of the molding drum 5, when the green tire is molded and removed from the molding drum 5, the end of the rubber sheet 3A The vicinity is pulled to the molding drum 5 side, and a peeling state 7 may occur at the interface between the film 2 and the rubber sheet 3A.
  • the inner liner member after vulcanization molding forms the inner liner layer 10 as a whole, as shown in FIG.
  • the end portions of the film 2 overlap with each other through a member made of a rubber sheet.
  • tire failure such as peeling of the film 2 and the rubber member occurs during molding and running of the pneumatic tire. This is where it should be.
  • An object of the present invention is to provide a pneumatic tire that suppresses a tire failure caused by a splice portion of an inner liner by providing a hole in a film constituting the inner liner.
  • a pneumatic tire according to the present invention comprises a film composed mainly of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and laminated on both sides thereof.
  • a pneumatic tire having an inner liner member composed of at least a three-layer structure of a rubber sheet formed on the inner peripheral surface of the tire, and a lap splice portion in which tire circumferential ends of the film overlap with each other via the rubber sheet In the lap splice portion, at least an end portion of the film located on the inner side in the tire radial direction is provided with a plurality of hole portions.
  • the rubber sheet penetrates the film during vulcanization molding so that the rubber sheets are in direct contact with each other by providing a plurality of holes at the end of the film located at the inner side in the tire radial direction in the lap splice portion. For this reason, the lap splice can be firmly joined. As a result, it is possible to prevent the lap splice part from peeling off and opening (opening) at the time of vulcanization molding of the tire, and to suppress the occurrence of a tire failure such as a crack occurring near the lap splice part during running. It becomes possible.
  • the hole is arranged closer to the front end of the film as it is closer to the tire center line.
  • the closer to the tire center line the more easily the film and rubber sheet peel off at the lap splice. Therefore, by arranging the hole closer to the tip of the film in the region closer to the tire center line, the effect of suppressing the peeling phenomenon between the film and the rubber sheet can be evenly exhibited in the width direction of the film, and the tire It is possible to effectively suppress a tire failure such as peeling of a film and a rubber sheet at the time of sulfur molding and traveling.
  • the total area of the holes arranged in the film is preferably in the range of 10% or more and less than 50% of the area of the lap splice part.
  • the length S in the tire circumferential direction of the lap splice portion is preferably 5 mm or more and less than 30 mm.
  • the size of the lap splice portion it is possible to effectively suppress a tire failure such as peeling of the film and the rubber sheet during vulcanization molding and running of the tire. More preferably, it is 7 mm or more and 15 mm or less.
  • FIG. 1 is a partially broken perspective view showing an example of an embodiment of a pneumatic tire according to the present invention, illustrating the positional relationship of a lap splice portion of an inner liner member in the tire.
  • FIG. 2 shows an example of an embodiment of a lap splice portion in the inner liner member of the pneumatic tire of the present invention, and is a cross-sectional view showing an enlarged part of a cross section in the tire equator direction.
  • FIG. 3 is a plan view showing a circumferential end of the film constituting the inner liner member of FIG.
  • FIG. 4 is a plan view showing a circumferential end of a modification of the film constituting the inner liner member of FIG.
  • FIG. 5 (a), (b), and (c) schematically illustrate a section in the tire equator direction of a lap splice portion of an inner liner member in a conventional pneumatic tire.
  • FIG. 5 (a) FIG. 5B shows a state in which the inner liner member is formed in an annular shape on a spliced tire molding drum with both circumferential ends overlapped, and FIG. 5B shows a state where the tire is molded in the state shown in FIG.
  • FIG. 5C is a cross-sectional view illustrating the structure of the spliced portion after vulcanization, schematically showing a state where peeling occurs between the film and the rubber sheet.
  • FIG. 1 is a partially broken perspective view showing an example of an embodiment of a pneumatic tire of the present invention.
  • the arrow Tc indicates the tire circumferential direction
  • the arrow Tw indicates the tire width direction.
  • the pneumatic tire T is provided so that the sidewall portion 12 and the bead portion 13 are connected to the left and right of the tread portion 11.
  • a carcass layer 14 which is a skeleton of the tire is provided so as to straddle between the left and right bead portions 13 and 13 in the tire width direction, and the tire is arranged around the bead core 16 disposed in each bead portion 13. Folded from inside to outside.
  • Two belt layers 15 made of steel cord are provided on the outer peripheral side of the carcass layer 14 corresponding to the tread portion 11.
  • An inner liner layer 10 is disposed inside the carcass layer 14 and a lap splice portion 4 extends in the tire width direction.
  • the pneumatic tire of the present invention has an inner liner member 1 on its inner peripheral surface, and has a lap splice structure in which ends on both sides in the tire circumferential direction overlap and are spliced.
  • the inner liner member 1 is composed of at least a three-layer structure of a film 2 and rubber sheets 3A and 3B laminated on both sides thereof.
  • the film 2 is a film mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer.
  • the cross section of the main body of the film 2 and rubber sheet 3A, 3B is drawn in linear form for easy understanding. Actually, the film 2 and the rubber sheets 3A and 3B extend with an appropriate curvature according to the size of the pneumatic tire.
  • both end portions in the circumferential direction of the film 2 are lap spliced via the rubber sheets 3A and 3B to form an annular shape.
  • the circumferential ends of the films 2 are lap spliced via the rubber sheets 3A and 3B so that the films 2 are connected to form a single ring as a whole.
  • the bonding between both ends of the inner liner member 1 (film 2) is a structure in which the films 2 overlap each other via the rubber sheets 3A and 3B, and the rubber-rubber is vulcanized and bonded, so that the adhesive force is large.
  • the film 2 constituting the inner liner member 1 has an end portion 2A located on the inner side in the tire radial direction and an end portion 2B located on the outer side in the tire radial direction in the lap splice portion 4.
  • a plurality of holes 6 are formed in the end portion 2A of the film 2 located at least on the inner side in the tire radial direction in the lap splice portion 4. As shown in FIG. 3, these hole portions 6 are all provided in the region of the lap splice portion 4, and are arranged at equal intervals along the width direction of the film 2.
  • the hole 6 having a circular shape in a plan view is depicted, but the shape of the hole 6 is not particularly limited.
  • the slit shape including a straight cut, an ellipse, a triangle, A quadrangle, rhombus, polygon or the like can be adopted.
  • 2 illustrates the case where the hole 6 is formed only at the end 2A of the film 2, but the hole 6 is formed at both ends 2A and 2B of the film 2. You can also. That is, it is sufficient that the film 2 is formed at least at the end 2A among the both ends 2A and 2B.
  • the rubber sheets 3A and 3B penetrate the film 2 at the time of vulcanization molding by providing a plurality of holes 6 at the end 2A of the film 2 located at least inside the tire radial direction in the lap splice portion 4. And since rubber sheet 3A, 3B contacts directly, the joining of the lap
  • the hole 6 is preferably disposed closer to the tip of the film 2 as it is closer to the tire center line CL. That is, when comparing the plurality of hole portions 61 located closer to the tire center line CL and the plurality of hole portions 62 located on the outer side in the tire width direction than the hole portions 61, the hole portions 61 are close to the front end of the film 2.
  • the hole 62 is disposed at a position farther from the tip of the film 2 than the hole 61.
  • the position of the hole 6 may be gradually displaced from the tire center line CL toward the outside in the tire width direction, or may be gradually changed. In any case, the distance from the center position of the hole 6 closest to the tire center line CL to the tip of the film 2 is desirably 1 mm to 3 mm.
  • the hole 6 is arranged closer to the tip of the film 2 in a region closer to the tire center line CL, thereby suppressing the peeling phenomenon between the film 2 and the rubber sheets 3A, 3B in the width direction of the film 2 evenly. Can be demonstrated. As a result, it is possible to effectively suppress tire failures such as peeling of the film 2 and the rubber sheets 3A and 3B during vulcanization molding and running of the tire T.
  • the hole 6 is arranged closer to the tip of the film 2 as it is closer to the tire center line CL, or instead of being arranged closer to the tip of the film 2 as it is closer to the tire center line CL. Further, the closer to the tire center line CL, the smaller the interval between the holes 6 can be made. Also in this case, the effect of suppressing the peeling phenomenon between the film 2 and the rubber sheets 3A and 3B can be evenly exhibited in the width direction of the film 2.
  • the area of each hole 6 arranged at the end 2A of the film 2 is defined as an area Z.
  • the area Z is preferably 0.25 to 80.0 mm 2 , more preferably 3.0 to 30.0 mm 2 .
  • the total area Z1 is defined as the total area Z1 of all the holes 6 arranged at the end 2A of the film 2, and the length S of the lap splice portion 4 in the tire circumferential direction and the width W of the film 2 are Let the area calculated
  • the total area Z1 of the hole 6 is preferably in the range of 10% to less than 50%, more preferably 25% to 35% with respect to the area Z2 of the lap splice part 4, respectively.
  • the total area Z1 of the hole 6 is smaller than 10% with respect to the area Z2 of the lap splice part 4, the effect of suppressing the peeling phenomenon is reduced, and on the other hand, when the total area Z1 is 50% or more, the leading edge of the film 2 is reduced.
  • the rigidity of the tire may be excessively lowered, and the work efficiency may be significantly deteriorated in the tire molding process.
  • the length S in the tire circumferential direction of the lap splice portion 4 in which both ends 2A and 2B in the tire circumferential direction of the film 2 overlap each other is preferably 5 mm or more and less than 30 mm, more preferably 7 mm or more and 15 mm or less. good.
  • the length S in the tire circumferential direction of the lap splice portion 4 is smaller than 5 mm, a sufficient amount of splice cannot be ensured, and an opening is likely to occur.
  • the rigidity of the lap splice portion 4 becomes excessive with respect to the peripheral region, and the uniformity of the tire may be reduced. is there.
  • the film 2 is a film mainly composed of a thermoplastic resin or a film mainly composed of a thermoplastic elastomer composition comprising a blend of a thermoplastic resin and an elastomer.
  • thermoplastic resin As the resin that can be used for the film 2, a thermoplastic resin or a thermosetting resin can be used, but a resin containing a thermoplastic resin as a main component is preferable from the viewpoint of easy handling. Details of the thermoplastic resin will be described later.
  • thermosetting resin an epoxy resin, a phenol resin, a urea resin, a melamine resin, an unsaturated polyester, a silicon resin, a polyurethane resin, or the like is preferable.
  • thermoplastic resin examples include polyamide resins [for example, nylon 6 (N6), nylon 66 (N66), nylon 46 (N46), nylon 11 (N11), nylon 12 (N12). , Nylon 610 (N610), nylon 612 (N612), nylon 6/66 copolymer (N6 / 66), nylon 6/66/610 copolymer (N6 / 66/610), nylon MXD6 (MXD6), nylon 6T, nylon 9T, nylon 6 / 6T copolymer, nylon 66 / PP copolymer, nylon 66 / PPS copolymer] and their N-alkoxyalkylated products (for example, methoxymethylated products of nylon 6, nylon 6 / 610 copolymer methoxymethylated, nylon 612 methoxymethylated, poly Stell resin (for example, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene isophthalate (PEI), PET
  • PBT polybutylene ter
  • polyester resins and polyamide resins are preferable in terms of physical properties, processability, and handleability.
  • thermoplastic resin-elastomer blend that can constitute the film 2 has a structure in which the elastomer is dispersed as a discontinuous phase in the thermoplastic resin matrix.
  • thermoplastic resins and elastomers constituting the thermoplastic elastomer composition those described above can be used for the thermoplastic resin.
  • elastomer constituting the thermoplastic elastomer composition examples include diene rubbers and hydrogenated products thereof [eg, natural rubber (NR), isoprene rubber (IR), epoxidized natural rubber, styrene butadiene rubber (SBR), butadiene] Rubber (BR, high cis BR and low cis BR), nitrile rubber (NBR), hydrogenated NBR, hydrogenated SBR], olefin rubber [for example, ethylene propylene rubber (EPDM, EPM), maleic acid modified ethylene propylene rubber ( M-EPM), butyl rubber (IIR), isobutylene and aromatic vinyl or diene monomer copolymer, acrylic rubber (ACM), ionomer], halogen-containing rubber [eg, Br-IIR, CI-IIR, brominated isobutylene- p-methylstyrene copolymer (BIMS), chloroprene (CR), hydrin rubber (CHR), chloro
  • a halogenated butyl rubber 50% by weight or more of them is a halogenated butyl rubber, a brominated isobutylene paramethylstyrene copolymer rubber or a maleic anhydride modified ethylene ⁇ -olefin copolymer rubber. It is preferable in that it can be increased in flexibility and durability from low to high temperatures.
  • thermoplastic resin in the thermoplastic elastomer composition is nylon 11, nylon 12, nylon 6, nylon 66, nylon 6/66 copolymer, nylon 6/12 copolymer, nylon 6 / 10 copolymer, nylon 4/6 copolymer, nylon 6/66/12 copolymer, aromatic nylon, and ethylene / vinyl alcohol copolymer can provide excellent durability It is possible and preferable.
  • thermoplastic elastomer composition when preparing a thermoplastic elastomer composition by combining the above-mentioned specific thermoplastic resin and elastomer, if the compatibility between the two is insufficient, it is made compatible by using an appropriate compatibilizing agent as the third component. be able to.
  • a compatibilizer with a blend of a thermoplastic resin and an elastomer reduces the interfacial tension between the thermoplastic resin and the elastomer, resulting in a finer particle size for the elastomer forming the dispersed phase. Therefore, the characteristics of both components are expressed more effectively.
  • Such a compatibilizing agent generally includes a copolymer having a structure of both or one of a thermoplastic resin and an elastomer, or an epoxy group, a carbonyl group, a halogen group, and an amino group that can react with the thermoplastic resin or elastomer.
  • a copolymer having a oxazoline group, a hydroxyl group and the like can be taken.
  • thermoplastic resin and elastomer may be selected depending on the type of thermoplastic resin and elastomer to be blended, but those commonly used include styrene / ethylene butylene block copolymer (SEBS) and its maleic acid modification, EPDM, EPM, EPDM / styrene or EPDM / acrylonitrile graft copolymer and its modified maleic acid, styrene / maleic acid copolymer, reactive phenoxin and the like can be mentioned.
  • SEBS styrene / ethylene butylene block copolymer
  • the amount of the compatibilizing agent is not particularly limited, but is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymer component (the total of the thermoplastic resin and the elastomer).
  • the composition ratio between the thermoplastic resin and the elastomer is not particularly limited.
  • the composition ratio may be appropriately determined so as to have a structure in which an elastomer is dispersed as a discontinuous phase in a thermoplastic resin matrix.
  • the composition ratio between the thermoplastic resin and the elastomer is preferably a thermoplastic resin / elastomer weight ratio of 90/10 to 20/80, more preferably 80/20 to 30/70.
  • thermoplastic elastomer or the thermoplastic elastomer composition obtained by blending a thermoplastic resin and an elastomer is, for example, within the range not impairing the characteristics necessary for constituting the film 2, other than the compatibilizers described above.
  • other polymers can be mixed.
  • the purpose of mixing other polymers is to improve the molding processability of the material, to improve heat resistance, to reduce costs, etc. Examples of materials used for this include polyethylene (PE), polypropylene ( PP), polystyrene (PS), ABS, SBS, polycarbonate (PC) and the like can be exemplified.
  • fillers (calcium carbonate, titanium oxide, alumina, etc.) generally incorporated into polymer blends, reinforcing agents such as carbon black and white carbon, softeners, plasticizers, processing aids, pigments, dyes, and aging An inhibitor or the like can be arbitrarily blended as long as the necessary properties as the film 2 are not impaired.
  • the elastomer blended with the thermoplastic resin can be dynamically vulcanized upon mixing with the thermoplastic resin.
  • the vulcanizing agent, vulcanization aid, vulcanization conditions (temperature, time), and the like in the case of dynamic vulcanization may be appropriately determined according to the composition of the elastomer to be added, and are not particularly limited.
  • thermoplastic resin composition Since the elastomer in the thermoplastic resin composition is dynamically vulcanized in this way, the resulting thermoplastic elastomer composition contains the vulcanized elastomer, and thus resists deformation from the outside. There is force (elasticity), and the effect of the present invention can be increased, which is preferable.
  • a general rubber vulcanizing agent (crosslinking agent) can be used as the vulcanizing agent.
  • sulfur vulcanizing agents include powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, insoluble sulfur, dimorpholine disulfide, alkylphenol disulfide, and the like.
  • about 4 phr in the present specification, “phr” refers to parts by weight per 100 parts by weight of the elastomer component; the same applies hereinafter).
  • Organic peroxide vulcanizing agents include benzoyl peroxide, t-butyl hydroperoxide, 2,4-dichlorobenzoyl peroxide, 2,5-dimethyl-2,5-di (t-butyl peroxide). Examples thereof include oxy) hexane, 2,5-dimethylhexane-2,5-di (peroxylbenzoate), and about 1 to 20 phr can be used.
  • examples of the phenol resin vulcanizing agent include bromides of alkyl phenol resins, mixed crosslinking systems containing halogen donors such as tin chloride and chloroprene, and alkyl phenol resins. For example, about 1 to 20 phr is used. Can do.
  • zinc white about 5 phr
  • magnesium oxide about 4 phr
  • risurge about 10 to 20 phr
  • p-quinonedioxime p-dibenzoylquinonedioxime
  • tetrachloro-p-benzoquinone poly-p- Examples include dinitrosobenzene (about 2 to 10 phr) and methylenedianiline (about 0.2 to 10 phr).
  • a vulcanization accelerator may be added as necessary.
  • the vulcanization accelerator include general vulcanization accelerators such as aldehyde / ammonia, guanidine, thiazole, sulfenamide, thiuram, dithioate, and thiourea, such as 0.5 to About 2 phr can be used.
  • the rubber materials constituting the rubber sheets 3A and 3B include diene rubbers such as natural rubber, isoprene rubber, epoxidized natural rubber, styrene butadiene rubber, hydrogenated styrene butadiene rubber, ethylene propylene rubber, and maleic acid modified ethylene.
  • Diene rubbers such as natural rubber, isoprene rubber, epoxidized natural rubber, styrene butadiene rubber, hydrogenated styrene butadiene rubber, ethylene propylene rubber, and maleic acid modified ethylene.
  • Olefin rubbers such as propylene rubber can be preferably used.
  • the film 2 is preferably laminated with an adhesive layer interposed in order to improve the adhesion with the adjacent rubber sheets 3A and 3B.
  • an adhesive layer acrylate copolymers such as ultrahigh molecular weight polyethylene having a molecular weight of 1 million or more, preferably 3 million or more, ethylene ethyl acrylate copolymer, ethylene methyl acrylate resin, ethylene acrylic acid copolymer, etc.
  • maleic anhydride adduct polypropylene and its maleic acid modification, ethylene propylene copolymer and its maleic acid modification, polybutadiene resin and its maleic anhydride modification, styrene-butadiene-styrene copolymer, styrene An ethylene-butadiene-styrene copolymer, a fluorine-based thermoplastic resin, a polyester-based thermoplastic resin, or the like is preferably used.
  • the thickness of the film 2 is not particularly limited, but it is usually preferable to use a film having a thickness of about 0.002 to 0.3 mm.
  • the thickness of each of the rubber sheets 3A and 3B is not particularly limited, but it is practical to use one having a thickness of 0.1 to 1.8 mm, preferably 0.2 to 1.0 mm. is there.
  • the thickness of the rubber sheets 3A and 3B is less than 0.1 mm, the laminating work on the film 2 is worsened, and the deterioration of the film 2 due to heat from the bladder during vulcanization is suppressed. It will be difficult to do. Moreover, since it will cause the weight increase of a tire when exceeding 1.8 mm, it is not desirable.
  • the film is a thermoplastic containing nylon 6/66 copolymer (N6 / 66) and brominated isobutylene-p-methylstyrene copolymer (BIMS) at a weight ratio of 50/50.
  • the elastomer composition is the main component, and the thickness is set to 100 ⁇ m (0.1 mm), and the rubber sheet has a thickness of 0.5 mm in common.
  • peel resistance peel resistance
  • peeling resistance (peeling resistance) in a green tire The inner peripheral surface of the completed green tire was visually observed, and the number of green tires where peeling occurred at the splice portion of the inner liner was counted. The obtained results are shown in the column of “Peeling resistance in green tires” in Table 1 as an index using the reciprocal of the number of green tires in which peeling occurred, with the conventional example being 100. A larger index means less peeling of the inner liner and better moldability.
  • the resulting green tires were vulcanized to produce 100 pneumatic tires each.
  • the peel resistance (peel resistance) after the durability test of this pneumatic tire was evaluated by the method described below.
  • SYMBOLS 1 Inner liner member 2 Film 2A End part located inside tire radial direction 2B End part located outside tire radial direction 3A, 3B Rubber sheet 4 Lap splice part 5 Tire molding drum 6 Hole part 7 Peeling state 8 Near the front end of the film DESCRIPTION OF SYMBOLS 10 Inner liner layer 11 Tread part 12 Side wall part 13 Bead part 14 Carcass layer 15 Belt layer 16 Bead core T Pneumatic tire S The length of the lap splice part in the tire circumferential direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)
  • Tires In General (AREA)

Abstract

Provided is a pneumatic tire wherein holes are provided in the film forming an inner liner, thereby suppressing tire failure caused by the splice portion of the inner liner. This pneumatic tire has a tire inner peripheral surface with an inner liner member 1 which is configured from an at least three-layer structure comprising: a film 2 that contains, as a main component, a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer; and rubber sheets 3A, 3B that are laminated on either side of the film 2. This pneumatic tire also has a lap-spliced portion where the ends of the film 2 in the tire circumferential direction overlap each other with the rubber sheets 3A, 3B interposed therebetween. The lap-spliced portion comprises a plurality of holes 6 in at least an end of the film 2 on the inside in the radial direction of the tire.

Description

空気入りタイヤPneumatic tire
 本発明は、空気入りタイヤに関し、更に詳しくは、インナーライナーを構成するフィルムに孔部を設けることにより、インナーライナーのスプライス部に起因するタイヤ故障を抑制するようにした空気入りタイヤに関する。 The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire in which a hole portion is provided in a film constituting an inner liner to suppress a tire failure caused by a splice portion of the inner liner.
 更に詳しくは、熱可塑性樹脂又は熱可塑性樹脂とエラストマーのブレンド物を含んでなる熱可塑性エラストマー組成物を主成分とするフィルムを含むインナーライナー部材をタイヤ内面に有し、そのタイヤ周方向端部を互いに重ねあわせスプライスした構造の空気入りタイヤにおいて、加硫成形時や走行時のタイヤ故障の発生を抑制させた空気入りタイヤに関する。 More specifically, an inner liner member including a film mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer is formed on the inner surface of the tire, and an end portion in the tire circumferential direction is provided. The present invention relates to a pneumatic tire having a structure in which the tires are overlapped and spliced to each other, and the occurrence of a tire failure during vulcanization molding or running is suppressed.
 近年、熱可塑性樹脂又は熱可塑性樹脂とエラストマーのブレンド物を含んでなる熱可塑性エラストマー組成物を主成分とするフィルムをインナーライナー部材として使用することが、タイヤの全体重量の軽減化と高い空気透過防止性能の高性能化を両立するため、種々の検討がされている(例えば、特許文献1~3参照)。 In recent years, the use of a film mainly composed of a thermoplastic resin or a thermoplastic elastomer composition comprising a blend of a thermoplastic resin and an elastomer as an inner liner member has reduced the overall weight of the tire and increased air permeability. Various studies have been made to achieve both high prevention performance (see, for example, Patent Documents 1 to 3).
 例えば、熱可塑性樹脂又は熱可塑性樹脂とエラストマーのブレンド物を含んでなる熱可塑性エラストマー組成物を主成分とするフィルムとその両サイドに積層されたゴムシートの少なくとも3層構造から構成されたインナーライナー部材をタイヤ内周面に内貼りして使用することが検討され、このようなインナーライナー部材をタイヤ構造部材として用いるためには、タイヤ成形ドラムにインナーライナー部材を巻き付けて、その端部をラップスプライスしてタイヤの加硫工程に供するという製造手法が採用される(例えば、特許文献4,5参照)。 For example, an inner liner composed of at least a three-layer structure of a film mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and a rubber sheet laminated on both sides thereof. In order to use such an inner liner member as a tire structural member, the inner liner member is wound around a tire molding drum and its end is wrapped. A manufacturing method is employed in which the material is spliced and used for a tire vulcanization process (see, for example, Patent Documents 4 and 5).
 具体的には、そうした積層構造を持つインナーライナー部材をタイヤ成形ドラムに円筒状を呈するように巻き付け、その際に、両方の周方向端部同士をラップスプライスしてタイヤの加硫成形工程に供して、空気入りタイヤを製造するという手法がとられる。 Specifically, the inner liner member having such a laminated structure is wound around a tire molding drum so as to have a cylindrical shape, and at that time, both end portions in the circumferential direction are lap-spliced and used for a tire vulcanization molding process. Thus, a method of manufacturing a pneumatic tire is taken.
 そうした手法を用いるに際して、フィルムとその両サイドに積層されたゴムシートの少なくとも3層構造から構成されたインナーライナー部材を使用することは、ゴムシート同士が重ね合わせられてラップスプライスされることになり、スプライスを確実に行うことができるので好ましいものである。 When using such a method, using an inner liner member composed of at least a three-layer structure of a film and rubber sheets laminated on both sides of the film means that the rubber sheets are overlapped and lap spliced. This is preferable because the splice can be reliably performed.
 しかし、加硫成形中~成形直後までの工程間で、フィルムとゴムシートとの界面で剥離を起こしたり、接合部(スプライス部)が開口(目開き)してしまうという現象を生ずることがあった。 However, during the process from vulcanization molding to immediately after molding, phenomena such as peeling at the interface between the film and the rubber sheet and opening (openings) of the joint (splice part) may occur. It was.
 これを図で説明すると、図5(a)に示したように、熱可塑性樹脂又は熱可塑性樹脂とエラストマーのブレンド物を含んでなる熱可塑性エラストマー組成物を主成分とするフィルム2とその両サイドに積層されたゴムシート3A、3Bの少なくとも3層構造から構成されたインナーライナー部材1が、タイヤサイズに応じて定まる所要サイズ(長さ)に形成されて、二点鎖線でモデル的に示したタイヤ成形ドラム5上にて、その両端部にラップスプライス部4を設けて、全体が環状を成すようにして重ね合わされてラップスプライスされる。ゴムシート3Bは、カーカス層などの他のタイヤ構成部材と接合させる機能を有するタイゴムとしての機能を有するものである。なお、図5(a)~(c)では、矢印Tcはタイヤ周方向、矢印Trinはタイヤ径方向内側、矢印Troutはタイヤ径方向外側を示している。 This will be described with reference to FIG. 5A. As shown in FIG. 5A, a film 2 mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and both sides thereof. The inner liner member 1 composed of at least a three-layer structure of rubber sheets 3A and 3B laminated on each other is formed in a required size (length) determined according to the tire size, and is shown by a two-dot chain line as a model. On the tire forming drum 5, lap splice portions 4 are provided at both ends thereof, and the lap splices are overlapped so as to form an annular shape as a whole. The rubber sheet 3 </ b> B has a function as a tie rubber having a function of joining with other tire constituent members such as a carcass layer. In FIG. 5 (a) ~ (c) , an arrow Tc is the tire circumferential direction, arrow Tr in the tire radial direction inner side, the arrow Tr out indicates the tire radial direction.
 インナーライナー部材1のラップスプライス部4は、グリーンタイヤの成形から加硫成形までの工程で、図5(b)に示したように、フィルム2とゴムシート3Aとの界面、特に端部付近の界面で剥離状態7を起こすことがある。例えば、インナーライナー部材1を構成するゴムシート3Aは、成形ドラム5の表面との間の密着力(タック)が高いため、グリーンタイヤを成形し成形ドラム5から取り外すとき、ゴムシート3Aの端部付近が成形ドラム5側に引っ張られ、フィルム2とゴムシート3Aとの界面に剥離状態7を起こすことがある。 The lap splice portion 4 of the inner liner member 1 is a process from green tire molding to vulcanization molding, as shown in FIG. 5B, particularly at the interface between the film 2 and the rubber sheet 3A, particularly near the end portion. The peeling state 7 may occur at the interface. For example, since the rubber sheet 3A constituting the inner liner member 1 has high adhesion (tack) with the surface of the molding drum 5, when the green tire is molded and removed from the molding drum 5, the end of the rubber sheet 3A The vicinity is pulled to the molding drum 5 side, and a peeling state 7 may occur at the interface between the film 2 and the rubber sheet 3A.
 加硫成形後のインナーライナー部材は、図5(c)に示したように、その全体がインナーライナー層10を形成する。ラップスプライス部4付近では、フィルム2の端部同士が、ゴムシートからなる部材を介して重なっている。図5(c)に示すフィルム2の先端付近8の一点鎖線で囲んだ領域は、空気入りタイヤの成形加工時及び走行時においてもフィルム2とゴム部材の剥離等のタイヤ故障の発生が注意されるべき箇所となる。 The inner liner member after vulcanization molding forms the inner liner layer 10 as a whole, as shown in FIG. In the vicinity of the lap splice portion 4, the end portions of the film 2 overlap with each other through a member made of a rubber sheet. In the region surrounded by the alternate long and short dash line 8 in the vicinity of the tip 8 of the film 2 shown in FIG. 5 (c), it is noted that tire failure such as peeling of the film 2 and the rubber member occurs during molding and running of the pneumatic tire. This is where it should be.
日本国特開平8-217923号公報Japanese Laid-Open Patent Publication No. 8-217923 国際公開第2008/53747号International Publication No. 2008/53747 国際公開第2012/086276号International Publication No. 2012/086276 日本国特開2006-198848号公報Japanese Unexamined Patent Publication No. 2006-198848 日本国特開2012-6499号公報Japanese Unexamined Patent Publication No. 2012-6499
 本発明の目的は、インナーライナーを構成するフィルムに孔部を設けることにより、インナーライナーのスプライス部に起因するタイヤ故障を抑制するようにした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire that suppresses a tire failure caused by a splice portion of an inner liner by providing a hole in a film constituting the inner liner.
 上記目的を達成するための本発明の空気入りタイヤは、熱可塑性樹脂又は熱可塑性樹脂とエラストマーのブレンド物を含んで構成された熱可塑性エラストマー組成物を主成分とするフィルムとその両サイドに積層されたゴムシートの少なくとも3層構造から構成されたインナーライナー部材をタイヤ内周面に有し、前記フィルムのタイヤ周方向端部同士が前記ゴムシートを介して重なるラップスプライス部を有する空気入りタイヤであって、前記ラップスプライス部において少なくともタイヤ径方向内側に位置する前記フィルムの端部に複数の孔部を備えることを特徴とするものである。 In order to achieve the above object, a pneumatic tire according to the present invention comprises a film composed mainly of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and laminated on both sides thereof. A pneumatic tire having an inner liner member composed of at least a three-layer structure of a rubber sheet formed on the inner peripheral surface of the tire, and a lap splice portion in which tire circumferential ends of the film overlap with each other via the rubber sheet In the lap splice portion, at least an end portion of the film located on the inner side in the tire radial direction is provided with a plurality of hole portions.
 本発明では、ラップスプライス部において少なくともタイヤ径方向内側に位置するフィルムの端部に複数の孔部を備えることで、加硫成形時にゴムシートがフィルムを貫通してゴムシート同士が直接的に接触するため、ラップスプライス部の接合を強固にすることができる。その結果、タイヤの加硫成形時におけるラップスプライス部の剥がれや開口(目開き)が生じることを抑制すると共に、走行時におけるラップスプライス部付近でクラックが発生する等のタイヤ故障の発生を抑制することが可能となる。 In the present invention, the rubber sheet penetrates the film during vulcanization molding so that the rubber sheets are in direct contact with each other by providing a plurality of holes at the end of the film located at the inner side in the tire radial direction in the lap splice portion. For this reason, the lap splice can be firmly joined. As a result, it is possible to prevent the lap splice part from peeling off and opening (opening) at the time of vulcanization molding of the tire, and to suppress the occurrence of a tire failure such as a crack occurring near the lap splice part during running. It becomes possible.
 本発明では、孔部はタイヤ中心線に近いほどフィルムの先端寄りに配置されていることが好ましい。一般に、タイヤ中心線に近い領域ほど、ラップスプライス部におけるフィルムとゴムシートの剥離現象が生じ易い。そのため、タイヤ中心線に近い領域ほど孔部をフィルムの先端寄りに配置することで、フィルムとゴムシートの剥離現象を抑制する効果をフィルムの幅方向において均等に発揮することができ、タイヤの加硫成形時及び走行時におけるフィルムとゴムシートの剥離といったタイヤ故障を効果的に抑制することが可能となる。 In the present invention, it is preferable that the hole is arranged closer to the front end of the film as it is closer to the tire center line. In general, the closer to the tire center line, the more easily the film and rubber sheet peel off at the lap splice. Therefore, by arranging the hole closer to the tip of the film in the region closer to the tire center line, the effect of suppressing the peeling phenomenon between the film and the rubber sheet can be evenly exhibited in the width direction of the film, and the tire It is possible to effectively suppress a tire failure such as peeling of a film and a rubber sheet at the time of sulfur molding and traveling.
 本発明では、フィルムに配置された孔部の総面積はラップスプライス部の面積の10%以上50%未満の範囲にあることが好ましい。このように孔部を付設することで、タイヤの加硫成形時及び走行時におけるフィルムとゴムシートの剥離といったタイヤ故障を効果的に抑制することが可能となる。より好ましくは、25%以上35%以下であることが良い。 In the present invention, the total area of the holes arranged in the film is preferably in the range of 10% or more and less than 50% of the area of the lap splice part. By attaching the hole in this manner, it is possible to effectively suppress a tire failure such as peeling of the film and the rubber sheet at the time of vulcanization molding and running of the tire. More preferably, it is 25% or more and 35% or less.
 本発明では、ラップスプライス部のタイヤ周方向の長さSは5mm以上30mm未満であることが好ましい。このようにラップスプライス部の寸法を適度に設定することで、タイヤの加硫成形時及び走行時におけるフィルムとゴムシートの剥離といったタイヤ故障を効果的に抑制することが可能となる。より好ましくは、7mm以上15mm以下であることが良い。 In the present invention, the length S in the tire circumferential direction of the lap splice portion is preferably 5 mm or more and less than 30 mm. Thus, by appropriately setting the size of the lap splice portion, it is possible to effectively suppress a tire failure such as peeling of the film and the rubber sheet during vulcanization molding and running of the tire. More preferably, it is 7 mm or more and 15 mm or less.
図1は本発明の空気入りタイヤの実施形態の一例を示した一部破砕斜視図であり、インナーライナー部材のラップスプライス部のタイヤ内における位置関係を説明するものである。FIG. 1 is a partially broken perspective view showing an example of an embodiment of a pneumatic tire according to the present invention, illustrating the positional relationship of a lap splice portion of an inner liner member in the tire. 図2は本発明の空気入りタイヤのインナーライナー部材におけるラップスプライス部の実施形態の一例を示し、タイヤ赤道方向断面の一部を拡大して示す断面図である。FIG. 2 shows an example of an embodiment of a lap splice portion in the inner liner member of the pneumatic tire of the present invention, and is a cross-sectional view showing an enlarged part of a cross section in the tire equator direction. 図3は図2のインナーライナー部材を構成するフィルムの周方向端部を示す平面図である。FIG. 3 is a plan view showing a circumferential end of the film constituting the inner liner member of FIG. 図4は図2のインナーライナー部材を構成するフィルムの変形例の周方向端部を示す平面図である。FIG. 4 is a plan view showing a circumferential end of a modification of the film constituting the inner liner member of FIG. 図5(a)、(b)、(c)は、従来の空気入りタイヤにおけるインナーライナー部材のラップスプライス部のタイヤ赤道方向の断面を模式的に説明するものであり、図5(a)はインナーライナー部材を、周方向の両端部を重ね合わせてスプライスしたタイヤ成形ドラム上で環状にした状態を示し、図5(b)は図5(a)に示した状態でタイヤを成形する際にフィルムとゴムシートの間に剥離が生じた状態を模式的に示し、図5(c)は加硫後のスプライス部の構造を例示する断面図である。5 (a), (b), and (c) schematically illustrate a section in the tire equator direction of a lap splice portion of an inner liner member in a conventional pneumatic tire. FIG. 5 (a) FIG. 5B shows a state in which the inner liner member is formed in an annular shape on a spliced tire molding drum with both circumferential ends overlapped, and FIG. 5B shows a state where the tire is molded in the state shown in FIG. FIG. 5C is a cross-sectional view illustrating the structure of the spliced portion after vulcanization, schematically showing a state where peeling occurs between the film and the rubber sheet.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は、本発明の空気入りタイヤの実施形態の一例を示した一部破砕斜視図である。なお、図1において、矢印Tcはタイヤ周方向、矢印Twはタイヤ幅方向を示している。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a partially broken perspective view showing an example of an embodiment of a pneumatic tire of the present invention. In FIG. 1, the arrow Tc indicates the tire circumferential direction, and the arrow Tw indicates the tire width direction.
 図1に示すように、空気入りタイヤTは、トレッド部11の左右にサイドウォール部12とビード部13を連接するように設けている。そのタイヤ内側には、タイヤの骨格たるカーカス層14が、タイヤ幅方向に左右のビード部13、13間に跨るように設けられており、各ビード部13に配置されたビードコア16の廻りにタイヤ内側から外側へ折り返されている。トレッド部11に対応するカーカス層14の外周側にはスチールコードからなる2層のベルト層15が設けられている。カーカス層14の内側には、インナーライナー層10が配され、そのラップスプライス部4がタイヤ幅方向に延びて存在している。 As shown in FIG. 1, the pneumatic tire T is provided so that the sidewall portion 12 and the bead portion 13 are connected to the left and right of the tread portion 11. On the inside of the tire, a carcass layer 14 which is a skeleton of the tire is provided so as to straddle between the left and right bead portions 13 and 13 in the tire width direction, and the tire is arranged around the bead core 16 disposed in each bead portion 13. Folded from inside to outside. Two belt layers 15 made of steel cord are provided on the outer peripheral side of the carcass layer 14 corresponding to the tread portion 11. An inner liner layer 10 is disposed inside the carcass layer 14 and a lap splice portion 4 extends in the tire width direction.
 図2に示すように、本発明の空気入りタイヤは、その内周面にインナーライナー部材1を有し、そのタイヤ周方向両側の端部が互いに重なりスプライスされたラップスプライス構造を有する。インナーライナー部材1は、フィルム2とその両サイドに積層されたゴムシート3A,3Bの少なくとも3層構造で構成される。フィルム2は、熱可塑性樹脂又は熱可塑性樹脂とエラストマーのブレンド物を含んでなる熱可塑性エラストマー組成物を主成分とするフィルムである。なお、図2において、フィルム2及びゴムシート3A,3Bの本体の断面は、理解を容易にするため直線状に描かれている。実際は、空気入りタイヤの大きさに応じ、フィルム2及びゴムシート3A,3Bは、適当な曲率で延在する。 As shown in FIG. 2, the pneumatic tire of the present invention has an inner liner member 1 on its inner peripheral surface, and has a lap splice structure in which ends on both sides in the tire circumferential direction overlap and are spliced. The inner liner member 1 is composed of at least a three-layer structure of a film 2 and rubber sheets 3A and 3B laminated on both sides thereof. The film 2 is a film mainly composed of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer. In addition, in FIG. 2, the cross section of the main body of the film 2 and rubber sheet 3A, 3B is drawn in linear form for easy understanding. Actually, the film 2 and the rubber sheets 3A and 3B extend with an appropriate curvature according to the size of the pneumatic tire.
 インナーライナー部材1をラップスプライスする際、フィルム2を1枚使用する場合は、フィルム2の周方向両端部同士がゴムシート3A,3Bを介してラップスプライスされて環状を成すように形成される。或いは、フィルム2を複数枚使用する場合は、各フィルム2の周方向端部同士がゴムシート3A,3Bを介してラップスプライスされることで、各フィルム2が繋ぎ合わされ全体で一つの環状を成すように形成される。また、インナーライナー部材1(フィルム2)の両端同士の接合は、ゴムシート3A及び3Bを介してフィルム2が互いに重なる構造であり、ゴム-ゴム同士が加硫接合するため、接着力が大きい。 When the inner liner member 1 is lap spliced, when one film 2 is used, both end portions in the circumferential direction of the film 2 are lap spliced via the rubber sheets 3A and 3B to form an annular shape. Alternatively, when a plurality of films 2 are used, the circumferential ends of the films 2 are lap spliced via the rubber sheets 3A and 3B so that the films 2 are connected to form a single ring as a whole. Formed as follows. In addition, the bonding between both ends of the inner liner member 1 (film 2) is a structure in which the films 2 overlap each other via the rubber sheets 3A and 3B, and the rubber-rubber is vulcanized and bonded, so that the adhesive force is large.
 インナーライナー部材1を構成するフィルム2は、ラップスプライス部4においてタイヤ径方向内側に位置する端部2Aとタイヤ径方向外側に位置する端部2Bとを有している。そして、ラップスプライス部4において少なくともタイヤ径方向内側に位置するフィルム2の端部2Aには複数の孔部6が形成されている。これら孔部6は、図3に示すように、全てラップスプライス部4の領域内に設けられており、フィルム2の幅方向に沿って等間隔で配置されている。図3においては平面視で円形をなす孔部6が描写されているが、孔部6の形状は特に限定されるものではなく、例えば、直線状の切れ目からなるスリット形状、楕円形、三角形、四角形、菱形又は多角形等を採用することができる。また、図2に示す態様では、フィルム2の端部2Aにのみ孔部6が形成された場合を例示しているが、孔部6をフィルム2の両方の端部2A,2Bに形成することもできる。即ち、フィルム2の両端部2A,2Bのうち、少なくとも端部2Aに形成されていれば良い。 The film 2 constituting the inner liner member 1 has an end portion 2A located on the inner side in the tire radial direction and an end portion 2B located on the outer side in the tire radial direction in the lap splice portion 4. A plurality of holes 6 are formed in the end portion 2A of the film 2 located at least on the inner side in the tire radial direction in the lap splice portion 4. As shown in FIG. 3, these hole portions 6 are all provided in the region of the lap splice portion 4, and are arranged at equal intervals along the width direction of the film 2. In FIG. 3, the hole 6 having a circular shape in a plan view is depicted, but the shape of the hole 6 is not particularly limited. For example, the slit shape including a straight cut, an ellipse, a triangle, A quadrangle, rhombus, polygon or the like can be adopted. 2 illustrates the case where the hole 6 is formed only at the end 2A of the film 2, but the hole 6 is formed at both ends 2A and 2B of the film 2. You can also. That is, it is sufficient that the film 2 is formed at least at the end 2A among the both ends 2A and 2B.
 上記空気入りタイヤにおいて、ラップスプライス部4において少なくともタイヤ径方向内側に位置するフィルム2の端部2Aに複数の孔部6を備えることで、加硫成形時にゴムシート3A,3Bがフィルム2を貫通してゴムシート3A,3B同士が直接的に接触するため、ラップスプライス部4の接合を強固にすることができる。その結果、タイヤTの加硫成形時におけるラップスプライス部4の剥がれや開口(目開き)が生じることを抑制すると共に、走行時におけるラップスプライス部4付近でクラックが発生する等のタイヤ故障の発生を抑制することが可能となる。 In the pneumatic tire described above, the rubber sheets 3A and 3B penetrate the film 2 at the time of vulcanization molding by providing a plurality of holes 6 at the end 2A of the film 2 located at least inside the tire radial direction in the lap splice portion 4. And since rubber sheet 3A, 3B contacts directly, the joining of the lap | splice part 4 can be strengthened. As a result, it is possible to prevent the lap splice portion 4 from peeling off or opening (opening) at the time of vulcanization molding of the tire T, and to generate a tire failure such as a crack occurring near the lap splice portion 4 during traveling. Can be suppressed.
 孔部6は、図4に示すように、タイヤ中心線CLに近いほどフィルム2の先端寄りに配置されていると良い。即ち、タイヤ中心線CL寄りに位置する複数の孔部61と孔部61よりもタイヤ幅方向外側に位置する複数の孔部62とを対比したとき、孔部61はフィルム2の先端に近接した位置に配置され、孔部62は孔部61よりもフィルム2の先端から離れた位置に配置されている。孔部6の位置はタイヤ中心線CLからタイヤ幅方向外側に向かって段階的に変位させても良く、或いは、徐々に変化させても良い。いずれにしても、タイヤ中心線CLに最も近い孔部6の中心位置からフィルム2の先端までの距離は1mm~3mmとすることが望ましい。 As shown in FIG. 4, the hole 6 is preferably disposed closer to the tip of the film 2 as it is closer to the tire center line CL. That is, when comparing the plurality of hole portions 61 located closer to the tire center line CL and the plurality of hole portions 62 located on the outer side in the tire width direction than the hole portions 61, the hole portions 61 are close to the front end of the film 2. The hole 62 is disposed at a position farther from the tip of the film 2 than the hole 61. The position of the hole 6 may be gradually displaced from the tire center line CL toward the outside in the tire width direction, or may be gradually changed. In any case, the distance from the center position of the hole 6 closest to the tire center line CL to the tip of the film 2 is desirably 1 mm to 3 mm.
 本発明において、タイヤ中心線CLに近い領域ほど孔部6をフィルム2の先端寄りに配置することで、フィルム2とゴムシート3A,3Bの剥離現象を抑制する効果をフィルム2の幅方向において均等に発揮することができる。その結果、タイヤTの加硫成形時及び走行時におけるフィルム2とゴムシート3A,3Bの剥離といったタイヤ故障を効果的に抑制することが可能となる。 In the present invention, the hole 6 is arranged closer to the tip of the film 2 in a region closer to the tire center line CL, thereby suppressing the peeling phenomenon between the film 2 and the rubber sheets 3A, 3B in the width direction of the film 2 evenly. Can be demonstrated. As a result, it is possible to effectively suppress tire failures such as peeling of the film 2 and the rubber sheets 3A and 3B during vulcanization molding and running of the tire T.
 なお、上述のようにタイヤ中心線CLに近いほど孔部6をフィルム2の先端寄りに配置すると同時に、或いは、タイヤ中心線CLに近いほど孔部6をフィルム2の先端寄りに配置する替りに、タイヤ中心線CLに近いほど孔部6の相互間隔を小さくすることも可能である。この場合も、フィルム2とゴムシート3A,3Bの剥離現象を抑制する効果をフィルム2の幅方向において均等に発揮することが可能となる。 As described above, the hole 6 is arranged closer to the tip of the film 2 as it is closer to the tire center line CL, or instead of being arranged closer to the tip of the film 2 as it is closer to the tire center line CL. Further, the closer to the tire center line CL, the smaller the interval between the holes 6 can be made. Also in this case, the effect of suppressing the peeling phenomenon between the film 2 and the rubber sheets 3A and 3B can be evenly exhibited in the width direction of the film 2.
 フィルム2の端部2Aに配置された各孔部6の面積を面積Zとする。この面積Zは、好ましくは0.25~80.0mm2、より好ましくは3.0~30.0mm2であると良い。また、フィルム2の端部2Aに配置された全ての孔部6の面積Zを合計した面積を総面積Z1とし、ラップスプライス部4のタイヤ周方向の長さSとフィルム2の幅Wとの積から求められる面積をラップスプライス部4の面積Z2とする。このとき、孔部6の総面積Z1は、それぞれラップスプライス部4の面積Z2に対して、好ましくは10%以上50%未満、より好ましくは25%以上35%以下の範囲であると良い。このように総面積Z1を面積Z2に対して適度に設定することで、タイヤの加硫成形時及び走行時におけるフィルム2とゴムシート3A,3Bの剥離といったタイヤ故障を効果的に抑制することが可能となる。ここで、孔部6の総面積Z1がラップスプライス部4の面積Z2に対して10%より小さいと、剥離現象の抑制効果が低下し、その一方で、50%以上となると、フィルム2の先端の剛性が過度に低下し、タイヤ成形工程において著しく作業の効率が悪化する虞がある。 The area of each hole 6 arranged at the end 2A of the film 2 is defined as an area Z. The area Z is preferably 0.25 to 80.0 mm 2 , more preferably 3.0 to 30.0 mm 2 . Further, the total area Z1 is defined as the total area Z1 of all the holes 6 arranged at the end 2A of the film 2, and the length S of the lap splice portion 4 in the tire circumferential direction and the width W of the film 2 are Let the area calculated | required from a product be the area Z2 of the lap splice part 4. FIG. At this time, the total area Z1 of the hole 6 is preferably in the range of 10% to less than 50%, more preferably 25% to 35% with respect to the area Z2 of the lap splice part 4, respectively. Thus, by appropriately setting the total area Z1 with respect to the area Z2, it is possible to effectively suppress tire failures such as peeling of the film 2 and the rubber sheets 3A and 3B during vulcanization molding and running of the tire. It becomes possible. Here, when the total area Z1 of the hole 6 is smaller than 10% with respect to the area Z2 of the lap splice part 4, the effect of suppressing the peeling phenomenon is reduced, and on the other hand, when the total area Z1 is 50% or more, the leading edge of the film 2 is reduced. The rigidity of the tire may be excessively lowered, and the work efficiency may be significantly deteriorated in the tire molding process.
 本発明において、フィルム2のタイヤ周方向の両端部2A,2Bが互いに重なり合うラップスプライス部4のタイヤ周方向の長さSは、好ましくは5mm以上30mm未満、より好ましくは7mm以上15mm以下であると良い。このようにラップスプライス部4の寸法を適度に設定することで、タイヤTの加硫成形時及び走行時におけるフィルム2とゴムシート3A,3Bの剥離といったタイヤ故障を効果的に抑制することが可能となる。ここで、ラップスプライス部4のタイヤ周方向の長さSが5mmより小さいと、十分なスプライス量を確保することができず、目開きを起こしやすくなる。その一方で、ラップスプライス部4のタイヤ周方向の長さSが30mm以上となると、ラップスプライス部4の剛性がその周辺領域に対して過大となり、タイヤの均一性(ユニフォミティ)が低下する虞がある。 In the present invention, the length S in the tire circumferential direction of the lap splice portion 4 in which both ends 2A and 2B in the tire circumferential direction of the film 2 overlap each other is preferably 5 mm or more and less than 30 mm, more preferably 7 mm or more and 15 mm or less. good. By appropriately setting the dimensions of the lap splice portion 4 in this way, it is possible to effectively suppress tire failures such as peeling of the film 2 and the rubber sheets 3A and 3B during vulcanization molding and running of the tire T. It becomes. Here, if the length S in the tire circumferential direction of the lap splice portion 4 is smaller than 5 mm, a sufficient amount of splice cannot be ensured, and an opening is likely to occur. On the other hand, when the length S in the tire circumferential direction of the lap splice portion 4 is 30 mm or more, the rigidity of the lap splice portion 4 becomes excessive with respect to the peripheral region, and the uniformity of the tire may be reduced. is there.
 本発明において、フィルム2は、熱可塑性樹脂を主成分とするフィルムか、又は熱可塑性樹脂とエラストマーのブレンド物を含んでなる熱可塑性エラストマー組成物を主成分とするフィルムである。 In the present invention, the film 2 is a film mainly composed of a thermoplastic resin or a film mainly composed of a thermoplastic elastomer composition comprising a blend of a thermoplastic resin and an elastomer.
 フィルム2に用いることのできる樹脂としては、熱可塑性樹脂あるいは熱硬化性樹脂を使用できるが、取扱い性の良さから熱可塑性樹脂を主成分とするものが好ましい。熱可塑性樹脂については、詳細を後述する。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、シリコン樹脂、ポリウレタン樹脂などが好ましい。 As the resin that can be used for the film 2, a thermoplastic resin or a thermosetting resin can be used, but a resin containing a thermoplastic resin as a main component is preferable from the viewpoint of easy handling. Details of the thermoplastic resin will be described later. As the thermosetting resin, an epoxy resin, a phenol resin, a urea resin, a melamine resin, an unsaturated polyester, a silicon resin, a polyurethane resin, or the like is preferable.
 フィルム2に用いることのできる熱可塑性樹脂としては、例えば、ポリアミド系樹脂〔例えば、ナイロン6(N6)、ナイロン66(N66)、ナイロン46(N46)、ナイロン11(N11)、ナイロン12(N12)、ナイロン610(N610)、ナイロン612(N612)、ナイロン6/66共重合体(N6/66)、ナイロン6/66/610共重合体(N6/66/610)、ナイロンMXD6(MXD6)、ナイロン6T、ナイロン9T、ナイロン6/6T共重合体、ナイロン66/PP共重合体、ナイロン66/PPS共重合体〕及びそれらのN-アルコキシアルキル化物〔例えば、ナイロン6のメトキシメチル化物、ナイロン6/610共重合体のメトキシメチル化物、ナイロン612のメトキシメチル化物、ポリエステル系樹脂〔例えば、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、PET/PEI共重合体、ポリアリレート(PAR)、ポリブチレンナフタレート(PBN)、液晶ポリエステル、ポリオキシアルキレンジイミドジ酸/ポリブチレンテレフタレート共重合体などの芳香族ポリエステル〕、ポリニトリル系樹脂〔例えば、ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、(メタ)アクリロニトリル/スチレン共重合体、(メタ)アクリロニトリル/スチレン/ブタジエン共重合体〕、ポリメタクリレート系樹脂〔例えば、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル〕、ポリビニル系樹脂〔例えば、ポリ酢酸ビニル、ポリビニルアルコール(PVA)、ビニルアルコール/エチレン共重合体(EVOH)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/メチルアクリレート共重合体、塩化ビニリデン/アクリロニトリル共重合体(ETFE)〕、セルロース系樹脂〔例えば、酢酸セルロース、酢酸酪酸セルロース〕、フッ素系樹脂〔例えば、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリクロルフルオロエチレン(PCTFE)、テトラフロロエチレン/エチレン共重合体〕、イミド系樹脂〔例えば、芳香族ポリイミド(PI)〕等を用いることができる。 Examples of the thermoplastic resin that can be used for the film 2 include polyamide resins [for example, nylon 6 (N6), nylon 66 (N66), nylon 46 (N46), nylon 11 (N11), nylon 12 (N12). , Nylon 610 (N610), nylon 612 (N612), nylon 6/66 copolymer (N6 / 66), nylon 6/66/610 copolymer (N6 / 66/610), nylon MXD6 (MXD6), nylon 6T, nylon 9T, nylon 6 / 6T copolymer, nylon 66 / PP copolymer, nylon 66 / PPS copolymer] and their N-alkoxyalkylated products (for example, methoxymethylated products of nylon 6, nylon 6 / 610 copolymer methoxymethylated, nylon 612 methoxymethylated, poly Stell resin (for example, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene isophthalate (PEI), PET / PEI copolymer, polyarylate (PAR), polybutylene naphthalate (PBN), liquid crystal polyester, Aromatic polyester such as polyoxyalkylene diimide diacid / polybutylene terephthalate copolymer], polynitrile resin [for example, polyacrylonitrile (PAN), polymethacrylonitrile, acrylonitrile / styrene copolymer (AS), (meth) Acrylonitrile / styrene copolymer, (meth) acrylonitrile / styrene / butadiene copolymer], polymethacrylate resin [for example, polymethyl methacrylate (PMMA), polyethyl methacrylate], poly Vinyl resins [for example, polyvinyl acetate, polyvinyl alcohol (PVA), vinyl alcohol / ethylene copolymer (EVOH), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), vinyl chloride / vinylidene chloride copolymer, Vinylidene chloride / methyl acrylate copolymer, vinylidene chloride / acrylonitrile copolymer (ETFE)], cellulose resin [for example, cellulose acetate, cellulose acetate butyrate], fluorine resin [for example, polyvinylidene fluoride (PVDF), polyfluoride Vinyl (PVF), polychlorofluoroethylene (PCTFE), tetrafluoroethylene / ethylene copolymer], imide resin [for example, aromatic polyimide (PI)], or the like can be used.
 なかでも、ポリエステル系樹脂、ポリアミド系樹脂が、物性面や加工性、取扱い性などの点で好ましい。 Of these, polyester resins and polyamide resins are preferable in terms of physical properties, processability, and handleability.
 また、フィルム2を構成することができる熱可塑性樹脂とエラストマーのブレンド物(熱可塑性エラストマー組成物)は、熱可塑性樹脂のマトリクス中にエラストマーが不連続相として分散した構造をとる。かかる構造をとることにより、熱可塑性樹脂と同等の成形加工性を得ることができる。熱可塑性エラストマー組成物を構成する熱可塑性樹脂とエラストマーのうち、熱可塑性樹脂については上述のものを使用できる。熱可塑性エラストマー組成物を構成するエラストマーとしては、例えば、ジエン系ゴム及びその水添物〔例えば、天然ゴム(NR)、イソプレンゴム(IR)、エポキシ化天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR、高シスBR及び低シスBR)、ニトリルゴム(NBR)、水素化NBR、水素化SBR〕、オレフィン系ゴム〔例えば、エチレンプロピレンゴム(EPDM、EPM)、マレイン酸変性エチレンプロピレンゴム(M-EPM)、ブチルゴム(IIR)、イソブチレンと芳香族ビニル又はジエン系モノマー共重合体、アクリルゴム(ACM)、アイオノマー〕、含ハロゲンゴム〔例えば、Br-IIR、CI-IIR、臭素化イソブチレン-p-メチルスチレン共重合体(BIMS)、クロロプレンゴム(CR)、ヒドリンゴム(CHR)、クロロスルホン化ポリエチレンゴム(CSM)、塩素化ポリエチレンゴム(CM)、マレイン酸変性塩素化ポリエチレンゴム(M-CM)〕、シリコンゴム〔例えば、メチルビニルシリコンゴム、ジメチルシリコンゴム、メチルフェニルビニルシリコンゴム〕、含イオウゴム〔例えば、ポリスルフィドゴム〕、フッ素ゴム〔例えば、ビニリデンフルオライド系ゴム、含フッ素ビニルエーテル系ゴム、テトラフルオロエチレン-プロピレン系ゴム、含フッ素シリコン系ゴム、含フッ素ホスファゼン系ゴム〕、熱可塑性エラストマー〔例えば、スチレン系エラストマー、オレフィン系エラストマー、エステル系エラストマー、ウレタン系エラストマー、ボリアミド系エラストマー〕等を好ましく使用することができる。 Also, the thermoplastic resin-elastomer blend (thermoplastic elastomer composition) that can constitute the film 2 has a structure in which the elastomer is dispersed as a discontinuous phase in the thermoplastic resin matrix. By taking such a structure, it is possible to obtain molding processability equivalent to that of a thermoplastic resin. Among the thermoplastic resins and elastomers constituting the thermoplastic elastomer composition, those described above can be used for the thermoplastic resin. Examples of the elastomer constituting the thermoplastic elastomer composition include diene rubbers and hydrogenated products thereof [eg, natural rubber (NR), isoprene rubber (IR), epoxidized natural rubber, styrene butadiene rubber (SBR), butadiene] Rubber (BR, high cis BR and low cis BR), nitrile rubber (NBR), hydrogenated NBR, hydrogenated SBR], olefin rubber [for example, ethylene propylene rubber (EPDM, EPM), maleic acid modified ethylene propylene rubber ( M-EPM), butyl rubber (IIR), isobutylene and aromatic vinyl or diene monomer copolymer, acrylic rubber (ACM), ionomer], halogen-containing rubber [eg, Br-IIR, CI-IIR, brominated isobutylene- p-methylstyrene copolymer (BIMS), chloroprene (CR), hydrin rubber (CHR), chlorosulfonated polyethylene rubber (CSM), chlorinated polyethylene rubber (CM), maleic acid modified chlorinated polyethylene rubber (M-CM)], silicone rubber [eg methyl vinyl silicone rubber Dimethylsilicone rubber, methylphenylvinylsilicone rubber], sulfur-containing rubber (for example, polysulfide rubber), fluorine rubber (for example, vinylidene fluoride rubber, fluorine-containing vinyl ether rubber, tetrafluoroethylene-propylene rubber, fluorine-containing silicon) Rubber, fluorine-containing phosphazene rubbers], thermoplastic elastomers (for example, styrene elastomers, olefin elastomers, ester elastomers, urethane elastomers, polyamide elastomers) and the like are preferably used. Door can be.
 特に、複数のエラストマーをブレンドするとき、そのうち50重量%以上が、ハロゲン化ブチルゴム又は臭素化イソブチレンパラメチルスチレン共重合ゴム又は無水マレイン酸変性エチレンαオレフィン共重合ゴムであることが、ゴム体積率を増やして低温から高温に至るまで柔軟、高耐久化できる点で好ましい。 In particular, when blending a plurality of elastomers, 50% by weight or more of them is a halogenated butyl rubber, a brominated isobutylene paramethylstyrene copolymer rubber or a maleic anhydride modified ethylene α-olefin copolymer rubber. It is preferable in that it can be increased in flexibility and durability from low to high temperatures.
 また、熱可塑性エラストマー組成物中の熱可塑性樹脂の50重量%以上が、ナイロン11、ナイロン12、ナイロン6、ナイロン66、ナイロン6/66共重合体、ナイロン6/12共重合体、ナイロン6/10共重合体、ナイロン4/6共重合体、ナイロン6/66/12共重合体、芳香族ナイロン、及びエチレン/ビニルアルコール共重合体のいずれかであることが優れた耐久性を得ることができるものであり、好ましい。 Further, 50% by weight or more of the thermoplastic resin in the thermoplastic elastomer composition is nylon 11, nylon 12, nylon 6, nylon 66, nylon 6/66 copolymer, nylon 6/12 copolymer, nylon 6 / 10 copolymer, nylon 4/6 copolymer, nylon 6/66/12 copolymer, aromatic nylon, and ethylene / vinyl alcohol copolymer can provide excellent durability It is possible and preferable.
 また、上述した特定の熱可塑性樹脂及びエラストマーを組合せて熱可塑性エラストマー組成物を調製する際に、両者の相溶性が不足する場合は、第3成分として適当な相溶化剤を用いて相溶化させることができる。熱可塑性樹脂及びエラストマーのブレンド系に相溶化剤を混合することにより、熱可塑性樹脂とエラストマーとの界面張力が低下し、その結果、分散相を形成しているエラストマーの粒子径が微細になることから両成分の特性はより有効に発現されることになる。そのような相溶化剤としては、一般的に熱可塑性樹脂及びエラストマーの両方又は片方の構造を有する共重合体、あるいは熱可塑性樹脂又はエラストマーと反応可能なエポキシ基、カルボニル基、ハロゲン基、アミノ基、オキサゾリン基、水酸基等を有した共重合体の構造をとるものとすることができる。これらはブレンドされる熱可塑性樹脂とエラストマーの種類によって選定すればよいが、通常使用されるものには、スチレン/エチレン・ブチレンブロック共重合体(SEBS)及びそのマレイン酸変性物、EPDM、EPM、EPDM/スチレン又はEPDM/アクリロニトリルグラフト共重合体及びそのマレイン酸変性物、スチレン/マレイン酸共重合体、反応性フェノキシン等を挙げることができる。かかる相溶化剤の配合量には特に限定されないが、好ましくは、ポリマー成分(熱可塑性樹脂とエラストマーとの合計)100重量部に対して、0.5~10重量部が良い。 In addition, when preparing a thermoplastic elastomer composition by combining the above-mentioned specific thermoplastic resin and elastomer, if the compatibility between the two is insufficient, it is made compatible by using an appropriate compatibilizing agent as the third component. be able to. Mixing a compatibilizer with a blend of a thermoplastic resin and an elastomer reduces the interfacial tension between the thermoplastic resin and the elastomer, resulting in a finer particle size for the elastomer forming the dispersed phase. Therefore, the characteristics of both components are expressed more effectively. Such a compatibilizing agent generally includes a copolymer having a structure of both or one of a thermoplastic resin and an elastomer, or an epoxy group, a carbonyl group, a halogen group, and an amino group that can react with the thermoplastic resin or elastomer. In addition, a copolymer having a oxazoline group, a hydroxyl group and the like can be taken. These may be selected depending on the type of thermoplastic resin and elastomer to be blended, but those commonly used include styrene / ethylene butylene block copolymer (SEBS) and its maleic acid modification, EPDM, EPM, EPDM / styrene or EPDM / acrylonitrile graft copolymer and its modified maleic acid, styrene / maleic acid copolymer, reactive phenoxin and the like can be mentioned. The amount of the compatibilizing agent is not particularly limited, but is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymer component (the total of the thermoplastic resin and the elastomer).
 熱可塑性エラストマー組成物において、熱可塑性樹脂とエラストマーとの組成比は、特に限定されるものではない。例えば、熱可塑性樹脂のマトリクス中にエラストマーが不連続相として分散した構造をとるように、組成比を適宜決めればよい。熱可塑性樹脂とエラストマーとの組成比は、熱可塑性樹脂/エラストマーの重量比で、好ましくは90/10~20/80、より好ましくは80/20~30/70であると良い。 In the thermoplastic elastomer composition, the composition ratio between the thermoplastic resin and the elastomer is not particularly limited. For example, the composition ratio may be appropriately determined so as to have a structure in which an elastomer is dispersed as a discontinuous phase in a thermoplastic resin matrix. The composition ratio between the thermoplastic resin and the elastomer is preferably a thermoplastic resin / elastomer weight ratio of 90/10 to 20/80, more preferably 80/20 to 30/70.
 本発明において、熱可塑性樹脂、又は熱可塑性樹脂とエラストマーをブレンドした熱可塑性エラストマー組成物には、例えば、フィルム2を構成することに必要な特性を損なわない範囲内で、上述した相溶化剤以外にも、他のポリマーを混合することができる。他のポリマーを混合する目的は、材料の成型加工性を良くするため、耐熱性向上のため、コストダウンのため等があり、これに用いられる材料としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS、SBS、ポリカーボネート(PC)等を例示することができる。 In the present invention, the thermoplastic elastomer or the thermoplastic elastomer composition obtained by blending a thermoplastic resin and an elastomer is, for example, within the range not impairing the characteristics necessary for constituting the film 2, other than the compatibilizers described above. In addition, other polymers can be mixed. The purpose of mixing other polymers is to improve the molding processability of the material, to improve heat resistance, to reduce costs, etc. Examples of materials used for this include polyethylene (PE), polypropylene ( PP), polystyrene (PS), ABS, SBS, polycarbonate (PC) and the like can be exemplified.
 また、一般的にポリマー配合物に配合される充填剤(炭酸カルシウム、酸化チタン、アルミナ等)、カーボンブラック、ホワイトカーボン等の補強剤、軟化剤、可塑剤、加工助剤、顔料、染料、老化防止剤等をフィルム2としての必要特性を損なわない限り、任意に配合することもできる。 In addition, fillers (calcium carbonate, titanium oxide, alumina, etc.) generally incorporated into polymer blends, reinforcing agents such as carbon black and white carbon, softeners, plasticizers, processing aids, pigments, dyes, and aging An inhibitor or the like can be arbitrarily blended as long as the necessary properties as the film 2 are not impaired.
 また、熱可塑性樹脂とブレンドされるエラストマーは、熱可塑性樹脂との混合の際に、動的に加硫することもできる。動的に加硫する場合の加硫剤、加硫助剤、加硫条件(温度、時間)等は、添加するエラストマーの組成に応じて適宜決定すればよく、特に限定されるものではない。 Also, the elastomer blended with the thermoplastic resin can be dynamically vulcanized upon mixing with the thermoplastic resin. The vulcanizing agent, vulcanization aid, vulcanization conditions (temperature, time), and the like in the case of dynamic vulcanization may be appropriately determined according to the composition of the elastomer to be added, and are not particularly limited.
 このように熱可塑性樹脂組成物中のエラストマーが動的加硫をされていることは、得られる熱可塑性エラストマー組成物が加硫エラストマーを含んだものとなるので、外部からの変形に対して抵抗力(弾性)があり、本発明の効果を大きくできることになり好ましい。 Since the elastomer in the thermoplastic resin composition is dynamically vulcanized in this way, the resulting thermoplastic elastomer composition contains the vulcanized elastomer, and thus resists deformation from the outside. There is force (elasticity), and the effect of the present invention can be increased, which is preferable.
 加硫剤としては、一般的なゴム加硫剤(架橋剤)を用いることができる。具体的には、イオウ系加硫剤としては粉末イオウ、沈降性イオウ、高分散性イオウ、表面処理イオウ、不溶性イオウ、ジモルフォリンジサルファイド、アルキルフェノールジサルファイド等を例示でき、例えば、0.5~4phr(本明細書において、「phr」は、エラストマー成分100重量部あたりの重量部をいう。以下、同じ。)程度用いることができる。 A general rubber vulcanizing agent (crosslinking agent) can be used as the vulcanizing agent. Specific examples of sulfur vulcanizing agents include powdered sulfur, precipitated sulfur, highly dispersible sulfur, surface-treated sulfur, insoluble sulfur, dimorpholine disulfide, alkylphenol disulfide, and the like. About 4 phr (in the present specification, “phr” refers to parts by weight per 100 parts by weight of the elastomer component; the same applies hereinafter).
 また、有機過酸化物系の加硫剤としては、ベンゾイルパーオキサイド、t-ブチルヒドロパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチルヘキサン-2,5-ジ(パーオキシルベンゾエート)等が例示され、例えば、1~20phr程度用いることができる。 Organic peroxide vulcanizing agents include benzoyl peroxide, t-butyl hydroperoxide, 2,4-dichlorobenzoyl peroxide, 2,5-dimethyl-2,5-di (t-butyl peroxide). Examples thereof include oxy) hexane, 2,5-dimethylhexane-2,5-di (peroxylbenzoate), and about 1 to 20 phr can be used.
 更に、フェノール樹脂系の加硫剤としては、アルキルフェノール樹脂の臭素化物や、塩化スズ、クロロプレン等のハロゲンドナーとアルキルフェノール樹脂とを含有する混合架橋系等が例示でき、例えば、1~20phr程度用いることができる。 Further, examples of the phenol resin vulcanizing agent include bromides of alkyl phenol resins, mixed crosslinking systems containing halogen donors such as tin chloride and chloroprene, and alkyl phenol resins. For example, about 1 to 20 phr is used. Can do.
 その他として、亜鉛華(5phr程度)、酸化マグネシウム(4phr程度)、リサージ(10~20phr程度)、p-キノンジオキシム、p-ジベンゾイルキノンジオキシム、テトラクロロ-p-ベンゾキノン、ポリ-p-ジニトロソベンゼン(2~10phr程度)、メチレンジアニリン(0.2~10phr程度)が例示できる。 In addition, zinc white (about 5 phr), magnesium oxide (about 4 phr), risurge (about 10 to 20 phr), p-quinonedioxime, p-dibenzoylquinonedioxime, tetrachloro-p-benzoquinone, poly-p- Examples include dinitrosobenzene (about 2 to 10 phr) and methylenedianiline (about 0.2 to 10 phr).
 また、必要に応じて、加硫促進剤を添加しても良い。加硫促進剤としては、アルデヒド・アンモニア系、グアニジン系、チアゾール系、スルフェンアミド系、チウラム系、ジチオ酸塩系、チオウレア系等の一般的な加硫促進剤を、例えば、0.5~2phr程度用いることができる。 Further, a vulcanization accelerator may be added as necessary. Examples of the vulcanization accelerator include general vulcanization accelerators such as aldehyde / ammonia, guanidine, thiazole, sulfenamide, thiuram, dithioate, and thiourea, such as 0.5 to About 2 phr can be used.
 また、ゴムシート3A,3Bを構成するゴム材料には、天然ゴム、イソプレンゴム、エポキシ化天然ゴム、スチレンブタジエンゴム、水素化スチレンブタジエンゴム等のジエン系ゴムや、エチレンプロピレンゴム、マレイン酸変性エチレンプロピレンゴムなどのオレフィン系ゴム等を好ましく使用できる。 The rubber materials constituting the rubber sheets 3A and 3B include diene rubbers such as natural rubber, isoprene rubber, epoxidized natural rubber, styrene butadiene rubber, hydrogenated styrene butadiene rubber, ethylene propylene rubber, and maleic acid modified ethylene. Olefin rubbers such as propylene rubber can be preferably used.
 そして、上記フィルム2は、隣接するゴムシート3A,3Bとの接着性を高めるために接着層を介在させて積層するとよい。接着層を構成するポリマーとしては、分子量100万以上、好ましくは300万以上の超高分子量ポリエチレン、エチレンエチルアクリレート共重合体、エチレンメチルアクリレート樹脂、エチレンアクリル酸共重合体等のアクリレート共重合体類及びそれらの無水マレイン酸付加物、ポリプロピレン及びそのマレイン酸変性物、エチレンプロピレン共重合体及びそのマレイン酸変性物、ポリブタジエン系樹脂及びその無水マレイン酸変性物、スチレン-ブタジエン-スチレン共重合体、スチレン-エチレン-ブタジエン-スチレン共重合体、フッ素系熱可塑性樹脂、ポリエステル系熱可塑性樹脂などが好ましく使用される。 The film 2 is preferably laminated with an adhesive layer interposed in order to improve the adhesion with the adjacent rubber sheets 3A and 3B. As the polymer constituting the adhesive layer, acrylate copolymers such as ultrahigh molecular weight polyethylene having a molecular weight of 1 million or more, preferably 3 million or more, ethylene ethyl acrylate copolymer, ethylene methyl acrylate resin, ethylene acrylic acid copolymer, etc. And their maleic anhydride adduct, polypropylene and its maleic acid modification, ethylene propylene copolymer and its maleic acid modification, polybutadiene resin and its maleic anhydride modification, styrene-butadiene-styrene copolymer, styrene An ethylene-butadiene-styrene copolymer, a fluorine-based thermoplastic resin, a polyester-based thermoplastic resin, or the like is preferably used.
 本発明において、フィルム2の厚さは、特に限定はされないが、通常、0.002~0.3mm程度のものを使用することが好ましい。また、ゴムシート3A、3Bの各厚さについても、特に限定されるものではないが、0.1~1.8mm、好ましくは0.2~1.0mmのものを使用することが実際的である。ここで、ゴムシート3A、3Bの厚さが0.1mm未満であると、フィルム2への積層作業が悪くなる方向であり、また、加硫時のブラダーからの熱によるフィルム2の劣化を抑制することが難しくなる方向である。また、1.8mmを超える場合はタイヤの重量増加を招くことになるので望ましくない。 In the present invention, the thickness of the film 2 is not particularly limited, but it is usually preferable to use a film having a thickness of about 0.002 to 0.3 mm. Further, the thickness of each of the rubber sheets 3A and 3B is not particularly limited, but it is practical to use one having a thickness of 0.1 to 1.8 mm, preferably 0.2 to 1.0 mm. is there. Here, when the thickness of the rubber sheets 3A and 3B is less than 0.1 mm, the laminating work on the film 2 is worsened, and the deterioration of the film 2 due to heat from the bladder during vulcanization is suppressed. It will be difficult to do. Moreover, since it will cause the weight increase of a tire when exceeding 1.8 mm, it is not desirable.
 以下、実施例によって本発明をさらに説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples, but the scope of the present invention is not limited to these examples.
 インナーライナー部材を構成するフィルムの孔部の形態及びラップスプライス部のタイヤ周方向の長さSを表1のように異ならせたインナーライナー層を有する9種類(従来例、実施例1~8)のグリーンタイヤ(タイヤサイズが195/65R15H)を100本ずつ成形した。 Nine types having inner liner layers in which the shape of the hole portion of the film constituting the inner liner member and the length S in the tire circumferential direction of the lap splice portion are different as shown in Table 1 (conventional example, examples 1 to 8) 100 green tires (tire size 195 / 65R15H) were molded.
 なお、各試験タイヤにおいて、フィルムは、ナイロン6/66共重合体(N6/66)と、臭素化イソブチレン-p-メチルスチレン共重合体(BIMS)とを、重量比50/50で含む熱可塑性エラストマー組成物を主成分とし、その厚さを100μm(0.1mm)とする共に、ゴムシートはその厚さ0.5mmのものとすることを共通にした。 In each test tire, the film is a thermoplastic containing nylon 6/66 copolymer (N6 / 66) and brominated isobutylene-p-methylstyrene copolymer (BIMS) at a weight ratio of 50/50. The elastomer composition is the main component, and the thickness is set to 100 μm (0.1 mm), and the rubber sheet has a thickness of 0.5 mm in common.
 各試験タイヤの評価は、グリーンタイヤでの耐剥がれ性(耐剥離性)を以下に記載する方法で評価した。 Each test tire was evaluated by the method described below for the peel resistance (peel resistance) of the green tire.
 (a)グリーンタイヤでの耐剥がれ性(耐剥離性):
 完成したグリーンタイヤの内周面を目視で観察し、インナーライナーのスプライス部における剥がれが発生したグリーンタイヤの本数を数えた。得られた結果は、剥がれが発生したグリーンタイヤの本数の逆数を用い、従来例を100とする指数として表1の「グリーンタイヤでの耐剥離性」の欄に記載した。この指数が大きいほど、インナーライナーの剥がれが少なく、成形性が優れていることを意味する。
(A) Peeling resistance (peeling resistance) in a green tire:
The inner peripheral surface of the completed green tire was visually observed, and the number of green tires where peeling occurred at the splice portion of the inner liner was counted. The obtained results are shown in the column of “Peeling resistance in green tires” in Table 1 as an index using the reciprocal of the number of green tires in which peeling occurred, with the conventional example being 100. A larger index means less peeling of the inner liner and better moldability.
 得られたグリーンタイヤを加硫し、それぞれ100本ずつの空気入りタイヤを製造した。この空気入りタイヤの耐久性試験後の耐剥がれ性(耐剥離性)を以下に記載する方法で評価した。 The resulting green tires were vulcanized to produce 100 pneumatic tires each. The peel resistance (peel resistance) after the durability test of this pneumatic tire was evaluated by the method described below.
 (b)製品タイヤでの耐剥がれ性(耐剥離性):
 製造した空気入りタイヤをJATMA標準リム15×6Jに取り付け、空気をタイヤ内圧で120kPaに充填した。このタイヤをJIS D4230に準拠する室内ドラム試験機(ドラム径1707mm)にかけて、荷重7.24kN、速度81km/hで80時間走行させた。その後、インナーライナーのスプライス部のタイヤ内面を目視で観察し、剥がれ及びクラックが発生した製品タイヤの本数を数えた。得られた結果は、剥がれ及びクラックが発生した製品タイヤの本数の逆数を用い、従来例を100とする指数として表1の「製品タイヤでの耐剥離性」の欄に記載した。この指数が大きいほど、インナーライナーの剥がれが少なく、タイヤ耐久性が優れていることを意味する。
(B) Peeling resistance (peeling resistance) on product tires:
The manufactured pneumatic tire was attached to JATMA standard rim 15 × 6J, and air was charged to 120 kPa at the tire internal pressure. This tire was run on an indoor drum tester (drum diameter 1707 mm) in accordance with JIS D4230 for 80 hours at a load of 7.24 kN and a speed of 81 km / h. Thereafter, the inner surface of the tire at the splice portion of the inner liner was visually observed, and the number of product tires in which peeling and cracks occurred were counted. The obtained results are shown in the column of “Peeling resistance on product tires” in Table 1 as an index using the reciprocal of the number of product tires in which peeling and cracks occurred and taking the conventional example as 100. The larger the index, the less the inner liner peels, and the better the tire durability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から判るように、フィルムに孔部を設けることで、実施例1~8のタイヤは、グリーンタイヤの成形時及び耐久試験後のいずれにおいても、ラップスプライス部付近において剥がれやクラックの発生が抑制され、故障の発生が少ない空気入りタイヤであることがわかる。 As can be seen from Table 1, by providing a hole in the film, the tires of Examples 1 to 8 were peeled off and cracked in the vicinity of the lap splice portion both when the green tire was molded and after the durability test. It can be seen that this is a pneumatic tire that is suppressed and has few failures.
 1 インナーライナー部材
 2 フィルム
 2A タイヤ径方向内側に位置する端部
 2B タイヤ径方向外側に位置する端部
 3A、3B ゴムシート
 4 ラップスプライス部
 5 タイヤ成形ドラム
 6 孔部
 7 剥離状態
 8 フィルムの先端付近
 10 インナーライナー層
 11 トレッド部
 12 サイドウォール部
 13 ビード部
 14 カーカス層
 15 ベルト層
 16 ビードコア
 T 空気入りタイヤ
 S ラップスプライス部のタイヤ周方向の長さ

 
DESCRIPTION OF SYMBOLS 1 Inner liner member 2 Film 2A End part located inside tire radial direction 2B End part located outside tire radial direction 3A, 3B Rubber sheet 4 Lap splice part 5 Tire molding drum 6 Hole part 7 Peeling state 8 Near the front end of the film DESCRIPTION OF SYMBOLS 10 Inner liner layer 11 Tread part 12 Side wall part 13 Bead part 14 Carcass layer 15 Belt layer 16 Bead core T Pneumatic tire S The length of the lap splice part in the tire circumferential direction

Claims (4)

  1.  熱可塑性樹脂又は熱可塑性樹脂とエラストマーのブレンド物を含んで構成された熱可塑性エラストマー組成物を主成分とするフィルムとその両サイドに積層されたゴムシートの少なくとも3層構造から構成されたインナーライナー部材をタイヤ内周面に有し、前記フィルムのタイヤ周方向端部同士が前記ゴムシートを介して重なるラップスプライス部を有する空気入りタイヤであって、前記ラップスプライス部において少なくともタイヤ径方向内側に位置する前記フィルムの端部に複数の孔部を備えることを特徴とする空気入りタイヤ。 Inner liner composed of at least a three-layer structure of a film composed mainly of a thermoplastic elastomer composition comprising a thermoplastic resin or a blend of a thermoplastic resin and an elastomer, and a rubber sheet laminated on both sides thereof A pneumatic tire having a member on an inner circumferential surface of the tire and having a lap splice portion in which tire circumferential ends of the film overlap with each other via the rubber sheet, and at least radially inward in the lap splice portion A pneumatic tire comprising a plurality of holes at an end portion of the film positioned.
  2.  前記孔部がタイヤ中心線に近いほど前記フィルムの先端寄りに配置されていることを特徴とする請求項1に記載の空気入りタイヤ。 2. The pneumatic tire according to claim 1, wherein the hole portion is arranged closer to a front end of the film as being closer to a tire center line.
  3.  前記孔部の総面積が前記ラップスプライス部の面積の10%以上50%未満であることを特徴とする請求項1又は2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein a total area of the hole portions is 10% or more and less than 50% of an area of the lap splice portion.
  4.  前記ラップスプライス部のタイヤ周方向の長さSが5mm以上30mm未満であることを特徴とする請求項1~3のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein a length S of the lap splice portion in a tire circumferential direction is 5 mm or more and less than 30 mm.
PCT/JP2017/017717 2016-05-16 2017-05-10 Pneumatic tire WO2017199816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016097899A JP6233449B2 (en) 2016-05-16 2016-05-16 Pneumatic tire
JP2016-097899 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017199816A1 true WO2017199816A1 (en) 2017-11-23

Family

ID=60325830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017717 WO2017199816A1 (en) 2016-05-16 2017-05-10 Pneumatic tire

Country Status (2)

Country Link
JP (1) JP6233449B2 (en)
WO (1) WO2017199816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119422A (en) * 2018-01-11 2019-07-22 横浜ゴム株式会社 Pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308007A (en) * 2007-06-14 2008-12-25 Bridgestone Corp Pneumatic tire
JP2012006499A (en) * 2010-06-25 2012-01-12 Yokohama Rubber Co Ltd:The Pneumatic tire and method of manufacturing the same
JP2012171252A (en) * 2011-02-22 2012-09-10 Bridgestone Corp Unvulcanized tire and pneumatic tire
JP2012254718A (en) * 2011-06-09 2012-12-27 Yokohama Rubber Co Ltd:The Pneumatic tire and method of manufacturing the same
US20140283975A1 (en) * 2007-07-23 2014-09-25 The Yokohama Rubber Co., Ltd. Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308007A (en) * 2007-06-14 2008-12-25 Bridgestone Corp Pneumatic tire
US20140283975A1 (en) * 2007-07-23 2014-09-25 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2012006499A (en) * 2010-06-25 2012-01-12 Yokohama Rubber Co Ltd:The Pneumatic tire and method of manufacturing the same
JP2012171252A (en) * 2011-02-22 2012-09-10 Bridgestone Corp Unvulcanized tire and pneumatic tire
JP2012254718A (en) * 2011-06-09 2012-12-27 Yokohama Rubber Co Ltd:The Pneumatic tire and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019119422A (en) * 2018-01-11 2019-07-22 横浜ゴム株式会社 Pneumatic tire
JP7091664B2 (en) 2018-01-11 2022-06-28 横浜ゴム株式会社 Pneumatic tires

Also Published As

Publication number Publication date
JP2017206052A (en) 2017-11-24
JP6233449B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP5287281B2 (en) Pneumatic tire manufacturing method and pneumatic tire
US8251114B2 (en) Pneumatic tire
JP2010125891A (en) Pneumatic tire
WO2016060128A1 (en) Pneumatic tire
JP6065924B2 (en) Pneumatic tire
JP5354057B2 (en) Pneumatic tire
JP6233449B2 (en) Pneumatic tire
JP5928227B2 (en) Pneumatic tire manufacturing method
JP5810646B2 (en) Pneumatic tire
JP7091664B2 (en) Pneumatic tires
JP2012254718A (en) Pneumatic tire and method of manufacturing the same
WO2018142901A1 (en) Method for manufacturing pneumatic tire and pneumatic tire
WO2016063785A1 (en) Pneumatic tire
JP6094654B2 (en) Pneumatic tire manufacturing method
JP6065085B2 (en) Pneumatic tire manufacturing method
JP6331649B2 (en) Pneumatic tire manufacturing method
JP7091663B2 (en) Pneumatic tires
JP7180151B2 (en) pneumatic tire
JP5321025B2 (en) Pneumatic tire
JP6031466B2 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP5252096B2 (en) Pneumatic tire
JP2019119424A (en) Pneumatic tire
JP6019628B2 (en) Pneumatic tire
JP2014028541A (en) Pneumatic tire
JP2013141855A (en) Pneumatic tire

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799241

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799241

Country of ref document: EP

Kind code of ref document: A1