WO2017199452A1 - Next-generation high-resolution human calorimeter - Google Patents

Next-generation high-resolution human calorimeter Download PDF

Info

Publication number
WO2017199452A1
WO2017199452A1 PCT/JP2016/070772 JP2016070772W WO2017199452A1 WO 2017199452 A1 WO2017199452 A1 WO 2017199452A1 JP 2016070772 W JP2016070772 W JP 2016070772W WO 2017199452 A1 WO2017199452 A1 WO 2017199452A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
air
temperature
sub
exhaust
Prior art date
Application number
PCT/JP2016/070772
Other languages
French (fr)
Japanese (ja)
Inventor
中島 茂
Original Assignee
富士医科産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士医科産業株式会社 filed Critical 富士医科産業株式会社
Publication of WO2017199452A1 publication Critical patent/WO2017199452A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0833Measuring rate of oxygen consumption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/02Calorimeters using transport of an indicating substances, e.g. evaporation calorimeters
    • G01K17/025Calorimeters using transport of an indicating substances, e.g. evaporation calorimeters where evaporation, sublimation or condensation caused by heating or cooling, is measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature

Definitions

  • the present invention is a next generation that continuously measures the gas concentration of N2, O2, CO2-44, CO2-45, Ar, etc. of a subject housed in a chamber to measure the subject's energy consumption and the amount of oxidation of the energy substrate. It relates to type high analysis human calorimeter.
  • the pressure inside the chamber is set to the same pressure as the outside air pressure.
  • a cooler using chiller water as cooling circulating water, a heater unit, and these devices An air conditioner equipped with a digital indicating controller that performs measurement control is installed. Further, the air whose temperature is controlled by the air conditioner is blown into the chamber by a plurality of ventilation fans.
  • the conventional human calorimeter has adopted a configuration in which air temperature-controlled by an air conditioner is directly blown into the chamber. That is, the air temperature controlled by the air conditioner is blown into the chamber by a plurality of ventilation fans.
  • the air supplied into the chamber needs to be supplied at a constant flow rate with air conditioned by an air conditioner.
  • the oxygen concentration (O2) in the metabolic laboratory increases and the carbon dioxide (CO2) decreases.
  • This slight variation in the air concentration uses a gas analyzer / high-accuracy mass spectrometer, so that temporary noise is measured, resulting in inconvenience.
  • This change in air concentration affects energy consumption.
  • the present invention was created to solve the above-mentioned problems, and by controlling the air supply amount and exhaust amount in the chamber, the air is circulated in the room on average to make the gas concentration uniform.
  • the purpose is to provide a next-generation high-analysis human calorimeter that can measure energy metabolism in a stable state.
  • the first means in the present invention is an energy metabolism for measuring the subject's metabolism from the oxygen intake amount and carbon dioxide production amount of the subject housed in the chamber 10 in which the air supply / exhaust amount is adjusted.
  • the sub-chamber 20 that controls the temperature of air taken in from the outside with an air conditioner
  • the air supply fan 11 that supplies the temperature-controlled air in the sub-chamber 20 to the chamber 10
  • the exhaust fan 12 for discharging the air to the outside
  • the pair of DC power supply controllers 13 and 14 for controlling the current values of the air supply fan 11 and the exhaust fan 12 respectively
  • the supply and exhaust amount of air in the chamber 10 Is provided with a pair of mass flow meters 15 and 16 and adjusts the current values of the DC power supply controllers 13 and 14 to equalize the supply / exhaust air volume indicated by the mass flow meters 15 and 16. It lies in the sea urchin configuration.
  • the second means is that a total heat exchanger 30 for exchanging heat between the temperature of the outside air supplied into the sub-chamber 20 and the temperature of the indoor air exhausted from the sub-chamber 20 is disposed outside the sub-chamber 20. It is configured to supply air into the sub chamber 20 after the outside air temperature is brought close to the temperature of room air by the total heat exchanger 30.
  • the third means is to install a self-supporting air conditioner 40 that sucks air in the chamber 10 from below and exhausts it from the top in the chamber 10, and supplies and exhausts the self-supporting air conditioner 40.
  • the gas concentration in the chamber 10 was configured to be uniform.
  • the fourth means is configured such that the set temperature and humidity in the chamber 10 are set in advance according to the environmental conditions of the temperature and humidity of the living environment where the person lives.
  • the fifth means comprises a high-accuracy new mass spectrometer with an analysis accuracy of 0.001% in the mass analysis in the chamber 10.
  • the configuration is as follows.
  • a sub-chamber 20 that controls the temperature of air taken in from the outside with an air conditioner.
  • An air supply fan 11 that supplies air whose temperature is controlled in the sub-chamber 20 to the chamber 10.
  • An exhaust fan 12 that exhausts the air in the chamber 10 to the outside.
  • a pair of DC power supply controllers 13 and 14 for controlling current values of the air supply fan 11 and the exhaust fan 12, respectively.
  • a pair of mass flow meters 15 and 16 that measure the supply and exhaust amount of air in the chamber 10 are provided. The current values of the DC power supply controllers 13 and 14 were adjusted so that the supply / exhaust air amounts indicated by the mass flow meters 15 and 16 were equalized.
  • the supply amount of air supplied into the sub-chamber 20 and the discharge amount discharged from the sub-chamber 2010 are controlled to the same amount, and the differential pressure in the sub-chamber 2010 is always 0, resulting in a normal pressure environment. .
  • the inside of the chamber 10 becomes an environment where there is no leakage in the room under normal pressure and the gas concentration in the metabolic laboratory is not affected. Moreover, even in a large test room, the supply and exhaust settings can be accurately controlled even in a large test room, so that a small test room environment can be created. Furthermore, there is no change in the indoor volume used for the calculation of energy metabolism, and the accuracy of measurement becomes high.
  • the total heat exchanger 30 is installed outside the sub-chamber 20 so that the outside air temperature is brought close to the temperature of the room air in the total heat exchanger 30 and then supplied into the sub-chamber 20. Configured. Even in a state where the outside air temperature changes rapidly, the temperature change in the sub-chamber 20 can be suppressed as much as possible, and the temperature difference in the sub-chamber 20 can be kept small.
  • a self-supporting air conditioner 40 that sucks the air in the chamber 10 from below and exhausts it from the upper part is installed in the chamber 10, and the supply and exhaust of the self-supporting air conditioner 40 By configuring the gas concentration in the chamber 10 to be uniform, the measurement accuracy of energy consumption is further improved. In addition, since the subject has no temperature difference in the room, a high-accuracy metabolic test room excellent in comfort can be provided.
  • the human calorimeter normally performs a human metabolic test under constant temperature and humidity conditions.
  • the human living environment has a diurnal variation in the temperature difference between daytime and nighttime, or the temperature difference during the daytime, and a program has been developed that enables a more accurate metabolic test under the human living environment.
  • the effects of the living environment on the human internal environment can be accurately reproduced and energy metabolism tests can be performed.
  • the set temperature and humidity in the chamber 10 are pre-programmed according to changes in the temperature and humidity of the outside air, so that the external environment that gives the indoor environment of daily fluctuations of the living environment to the human internal environment can be accurately Can be reproduced.
  • the mass analysis in the chamber 10 is equipped with a high-accuracy new type mass spectrometer having an analysis accuracy of 0.001%, it is possible to measure a small amount of energy consumption with higher accuracy.
  • the air supply amount and the exhaust amount in the chamber can be controlled to circulate the indoor air to make the gas concentration uniform, and the energy metabolism amount can be measured with high accuracy in a stable state. Is possible.
  • the apparatus of the present invention is a metabolic calorimeter that measures the metabolic calorie of a subject, and in particular, measures the metabolic calorie from the consumption of oxygen and the discharge of carbon dioxide gas of the subject accommodated in the chamber.
  • the main configuration of the present invention includes a chamber 10 and a sub-chamber 20, an air supply fan 11 and an exhaust fan 12, and DC power supply controllers 13 and 14 and mass flow meters 15 and 16.
  • the chamber 10 constitutes an independent highly airtight room for accommodating the subject.
  • This chamber 10 is an assembly of heat-insulated panels made of steel plates, and the joint portion of each panel is sealed with silicon caulking to maintain airtightness. Furthermore, the atmospheric pressure in the chamber 10 is set to be the same as the external atmospheric pressure.
  • the temperature of air taken from outside in the sub-chamber 20 is controlled by an air conditioner, and the air supply fan 11 that supplies the temperature-controlled air to the chamber 10 and the air in the chamber 10 are discharged to the outside.
  • the exhaust fan 12 is controlled.
  • a pair of DC power supply controllers 13 and 14 for controlling the current values of the air supply fan 11 and the exhaust fan 12 are provided.
  • a pair of mass flow meters 15 and 16 for measuring the amount of air supply and exhaust in the chamber 10 are installed.
  • the DC power supply controllers 13 and 14 and the mass flow meters 15 and 16 are configured so that the atmospheric pressure in the chamber 10 becomes the same as the external atmospheric pressure. That is, the current values of the DC power supply controllers 13 and 14 are controlled to adjust the supply / exhaust air amounts indicated by the mass flow meters 15 and 16 to be equal.
  • a self-supporting air conditioner 40 is provided in the chamber 10 so as to circulate in the chamber 10 with a uniform airflow (see FIG. 1).
  • This self-supporting air conditioner 40 is a device that accurately controls the temperature and humidity in the chamber 10, and the air concentration in the chamber 10 is reduced by inhaling the air in the chamber 10 from the bottom and exhausting it from the top. It is configured to be uniform.
  • a fan 17, a humidifier 18, a heater unit 19, and a cooler 22 are provided, and these controls are performed by the measurement control unit 3.
  • the cooler 22 controls the temperature of the cooler 22 to be constant by circulating the chiller water to the cooling water tank by the chiller unit 21. For example, cooling water whose water temperature is controlled to 5 degrees ⁇ 0.1 degrees Celsius is circulated through the chiller unit 21 and air in the chamber 10 passing through the chiller unit 21 is cooled.
  • the heater unit 19 heats the temperature in the chamber 10.
  • the chiller unit 21 and the air conditioner 22 are controlled by the measurement control unit 3 that measures and controls the chiller unit 21 and the air conditioner 22, and the temperature in the chamber 10 is made constant.
  • the fan 17 circulates the air in the chamber 10 by exhausting the air sucked into the lower part of the self-supporting air conditioner 40 from the upper part, thereby controlling the temperature and humidity of the room air at a constant level.
  • the fan 17 adopts a plurality of pressure-type multi-air flow systems and performs ventilation by inverter control, thereby adopting an air conditioning system in which no temperature difference occurs in the room.
  • the chamber 10 has a uniform environment with no difference in gas concentration, stabilizes the temperature / humidity and air concentration, and realizes an environment having a uniform indoor gas concentration from rest to exercise.
  • the humidifier 18 is provided to accurately control the humidity in the chamber 10.
  • the humidifier 18 desirably has an accuracy of ⁇ 1% or less with respect to a set value of 50%, for example ( ⁇ 3% or less by environmental test room A class control).
  • highly accurate humidity control in the chamber 10 can be realized.
  • the use of the steam humidifier 18, which is boiled and sterilized at the time of humidification and sprays clean steam that does not contain bacteria and white powder, is optimal for a test for humans in the chamber 10 indoor environment.
  • the personal computer 1, the controller 2, the outdoor air-conditioning condenser 4 etc. are provided as other structures.
  • the sub-chamber 20 is a room in which air taken in from the outside is temperature-controlled by an air conditioner. After adjusting the outside air temperature to a constant temperature, the sub-chamber 20 is supplied into the chamber 10 by the DC power supply controllers 13 and 14. An air conditioner 23 is installed in the sub-chamber 20 to control the outside air taken into the sub-chamber 20 and supply a certain amount into the chamber 10. In the illustrated example, a total heat exchanger 30 is installed outside the sub-chamber 20.
  • the total heat exchanger 30 is a device for exchanging heat between the temperature of the outside air and the temperature of the indoor air exhausted from the sub-chamber 20, and controls the air temperature to a constant temperature to supply air to the chamber 10. ing. Even in a situation where the outside air temperature greatly deviates from the temperature in the sub-chamber 20, the temperature control efficiency in the sub-chamber 20 is increased by passing the total heat exchanger 30.
  • the set temperature / humidity in the chamber 10 is configured to be programmed in advance according to changes in the temperature / humidity of the outside air, so that the temperature / humidity is adapted to the living environment and has a function of reproducing daily fluctuations. Then, environmental conditions such as temperature, humidity, and time are set from the graphic panel control screen, and the temperature and humidity can be set from a minimum of 1 hour. For example, the room temperature increases from morning to afternoon during the day, and the temperature decreases from evening to night / dawn. In addition, during nighttime sleep, the indoor temperature can be reduced to conduct a metabolic test. In this way, a more accurate metabolic test can be performed in the living environment of daily life associated with daily fluctuations.
  • the amount of oxygen in the chamber 10 is determined by the amount of inflow during ventilation and the amount of oxygen taken by the subject.
  • the rate of change in carbon dioxide concentration is determined by the amount of carbon dioxide inflow from outside air and the amount of carbon dioxide produced by the subject. Therefore, in order to precisely adjust the air supply / exhaust amount in the chamber 10, this flow rate control is provided with mass flow meters 15 and 16 for measuring a mass flow rate that is not affected by temperature and pressure (see FIG. 1). ).
  • the mass flow meters 15 and 16 measure the flow rate per unit time with a high accuracy of 0.5% error.
  • the high-precision new mass spectrometer 50 in the chamber 10 is equipped with a high-precision new mass spectrometer with an analysis accuracy of 0.001% (see FIG. 1).
  • a mass spectrometer (Prima dB manufactured by Thermo) having an analyzer accuracy of 0.002% was used.
  • a high-precision new mass spectrometer (product name: PrimaPrimPro, Prima ⁇ BT, manufactured by Thermo) having an analysis accuracy of 0.001% is used.
  • stable isotope CO2-45 is measured with high accuracy.
  • the conventional human calorimeter uses one type of simultaneous analysis algorithm.
  • the algorithm used for the 24-hour metabolic test was the Henning algorithm.
  • this Henning algorithm does not support short-time motion analysis.
  • Brown's moving average algorithm that can calculate energy consumption for a short time can be used to support a long-term metabolic test from short-time exercise (see Table 1). .
  • the conventional energy consumption is calculated from the difference between the concentration of O2 and CO2 in the open air and the concentration of O2 and oxygen produced by people in the metabolic laboratory.
  • the outside air and the inside air are alternately measured at a constant time, the data becomes intermittent and the continuous data cannot be evaluated.
  • the analysis accuracy is inferior.
  • the outside air at a certain time before the test and the outside air at the end of the test are generally measured and averaged, and the outside air concentration during the test is used for energy calculation.
  • the outdoor air concentration varies depending on the location conditions of the device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pulmonology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Air Conditioning Control Device (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

[Problem] To provide a next-generation high-resolution human calorimeter which controls an air supply volume and an exhaust volume within a chamber, thereby measuring an energy metabolism rate in a stable state. [Solution] A sub-chamber 20 is disposed which controls, with an air conditioner, the temperature of air which is introduced from the outside. An air supply fan 11 is disposed which supplies a chamber 10 with the air inside the sub-chamber 20. An exhaust fan 12 is disposed which discharges the air inside the chamber 10 externally thereto. A pair of DC power supply regulators 13, 14 are disposed which respectively control the current values of the air supply fan 11 and the exhaust fan 12. A pair of mass flow meters 15, 16 are disposed which measure and control the air supply and exhaust volumes of the air inside the chamber 10. The current values of the DC power supply regulators 13, 14 are regulated. The configuration is such that the air supply and exhaust volumes of each of the mass flow meters 15, 16 are equal.

Description

次世代型高解析ヒューマンカロリーメーターNext generation high analysis human calorimeter
 本発明は、チャンバー内に収容した被験者のN2・O2・CO2-44・CO2-45・Ar等のGas濃度を連続的に計測し被験者のエネルギー消費量やエネルギー基質の酸化量を測定する次世代型高解析ヒューマンカロリーメーターに関する。 The present invention is a next generation that continuously measures the gas concentration of N2, O2, CO2-44, CO2-45, Ar, etc. of a subject housed in a chamber to measure the subject's energy consumption and the amount of oxidation of the energy substrate. It relates to type high analysis human calorimeter.
 従来のヒューマンカロリーメーターとして、当出願人が先に提案した高解析ヒューマンカロリーメーターがある(特許文献1参照)。このヒューマンカロリーメーターでは、チャンバー内の気圧を外部の気圧と同圧に設定したもので、チャンバー内の温度制御に、チラー水を冷却循環水とする冷却器と、ヒーターユニットと、これらの機器の計測制御を行なうデジタル指示調節計とを備えた空気調和機を設置した構成を成している。更に、空気調和機で温度制御された空気を複数台の換気用送風機でチャンバー内に送風するように設けたものである。 As a conventional human calorimeter, there is a high-analysis human calorimeter previously proposed by the present applicant (see Patent Document 1). In this human calorimeter, the pressure inside the chamber is set to the same pressure as the outside air pressure. For the temperature control inside the chamber, a cooler using chiller water as cooling circulating water, a heater unit, and these devices An air conditioner equipped with a digital indicating controller that performs measurement control is installed. Further, the air whose temperature is controlled by the air conditioner is blown into the chamber by a plurality of ventilation fans.
 このヒューマンカロリーメーターにより、食事等の微量な熱量や、安静時の熱量、睡眠時の熱量などでも短時間で測定することが可能になり、チャンバーを使用する代謝熱量測定装置の測定精度を高めることができるようになった。しかも日常の生活スタイルにおける代謝熱量などでも極めて正確に測定することが可能になり、この正確な代謝熱量測定により新たな研究にも活用可能な高精度の機能を有するものである。 With this human calorimeter, it is possible to measure even a small amount of heat such as meals, heat at rest, heat during sleep, etc. in a short time, and improve the measurement accuracy of metabolic calorimeter using chamber Can now. Moreover, it is possible to measure the metabolic calorie in daily life very accurately, and it has a highly accurate function that can be used for new research by this accurate metabolic calorie measurement.
特許第4591852号公報Japanese Patent No. 4591852
 従来のヒューマンカロリーメーターでは、空気調和機で温度制御された空気をチャンバー内に直接送風する構成を採用していた。すなわち空気調和機で温度制御された空気を複数台の換気用送風機でチャンバー内に送風するように構成している。 The conventional human calorimeter has adopted a configuration in which air temperature-controlled by an air conditioner is directly blown into the chamber. That is, the air temperature controlled by the air conditioner is blown into the chamber by a plurality of ventilation fans.
 ところが、チャンバー内に供給する空気は、空気調和機で空調された空気を常に一定の流量で供給する必要がある。間欠給気で代謝試験室に外気が一時的に多く給気された時、その影響を受け代謝試験室の酸素濃度(O2)は高くなり二酸化炭素(CO2)は低くなる。この僅かな空気の濃度変動をガス分析計・高精度質量分析計を使用しているために一時的なノイズを測定することになり、不都合が生じる。この空気の濃度変化がエネルギー消費量に影響を与える。 However, the air supplied into the chamber needs to be supplied at a constant flow rate with air conditioned by an air conditioner. When a lot of outside air is temporarily supplied to the metabolic laboratory with intermittent air supply, the oxygen concentration (O2) in the metabolic laboratory increases and the carbon dioxide (CO2) decreases. This slight variation in the air concentration uses a gas analyzer / high-accuracy mass spectrometer, so that temporary noise is measured, resulting in inconvenience. This change in air concentration affects energy consumption.
 そこでこの問題を解決するため、新たなFlowシステムを開発する必要がある。測定精度を更に高精度にするには、給気量と排気量を正確にコントロールして試験室内に常に給排気量が一定になるようにコントロールする必要があるためである。 Therefore, it is necessary to develop a new Flow system to solve this problem. This is because, in order to further increase the measurement accuracy, it is necessary to control the air supply amount and the exhaust amount accurately so that the air supply amount is always constant in the test chamber.
 また、従来海外のヒューマンカロリーメーターは空気調和機を室内天井部の内部に設置していた。すなわち、天井前面から吹き出し、同天井部後部から給気するシステムであり、室内天井部から室内に吹き出した空気を循環させている。この方法では室内の気流が均一になり難く、空気が完全に混ざらない為に、室内に温度差と空気濃度とに誤差が生じる虞もあった。 In addition, overseas human calorimeters have conventionally installed an air conditioner inside the indoor ceiling. That is, it is a system that blows out from the front of the ceiling and supplies air from the rear of the ceiling, and circulates the air that has been blown out from the indoor ceiling into the room. In this method, the air flow in the room is difficult to be uniform, and air is not completely mixed, so that there is a possibility that an error occurs between the temperature difference and the air concentration in the room.
 そこで、本発明は、上述の課題を解消すべく創出されたもので、チャンバー内の給気量と排気量とをコントロールすることで、室内に平均に空気を循環させてガス濃度を均一にすることができ、エネルギー代謝量を安定した状態で測定できる次世代型高解析ヒューマンカロリーメーターの提供を目的とするものである。 Therefore, the present invention was created to solve the above-mentioned problems, and by controlling the air supply amount and exhaust amount in the chamber, the air is circulated in the room on average to make the gas concentration uniform. The purpose is to provide a next-generation high-analysis human calorimeter that can measure energy metabolism in a stable state.
 上述の目的を達成すべく本発明における第1の手段は、空気の給排気量が調整されるチャンバー10内に収容した被験者の酸素摂取量と炭酸ガス産生量から被験者の代謝を測定するエネルギー代謝熱量測定装置において、屋外から取り込んだ空気を空調機で温度制御するサブチャンバー20と、該サブチャンバー20内で温度制御された空気をチャンバー10に給気する給気用ファン11と、チャンバー10内の空気を室外へ排出する排気用ファン12と、給気用ファン11及び排気用ファン12の電流値を夫々制御する一対のDC電源調節計13,14と、チャンバー10内の空気の給排気量を計測する一対の質量流量計15, 16を備え、DC電源調節計13,14の電流値を調節して各質量流量計15,16が示す給排気量を等しくするように構成したことにある。 In order to achieve the above-mentioned object, the first means in the present invention is an energy metabolism for measuring the subject's metabolism from the oxygen intake amount and carbon dioxide production amount of the subject housed in the chamber 10 in which the air supply / exhaust amount is adjusted. In the calorimeter, the sub-chamber 20 that controls the temperature of air taken in from the outside with an air conditioner, the air supply fan 11 that supplies the temperature-controlled air in the sub-chamber 20 to the chamber 10, The exhaust fan 12 for discharging the air to the outside, the pair of DC power supply controllers 13 and 14 for controlling the current values of the air supply fan 11 and the exhaust fan 12 respectively, and the supply and exhaust amount of air in the chamber 10 Is provided with a pair of mass flow meters 15 and 16 and adjusts the current values of the DC power supply controllers 13 and 14 to equalize the supply / exhaust air volume indicated by the mass flow meters 15 and 16. It lies in the sea urchin configuration.
 第2の手段は、前記サブチャンバー20内に給気する外気の温度と、前記サブチャンバー20内から排気する室内空気の温度とを熱交換せしめる全熱交換器30を前記サブチャンバー20の外側に設置し、該全熱交換器30にて外気温を室内空気の温度に近づけてから前記サブチャンバー20内に給気するように構成したものである。 The second means is that a total heat exchanger 30 for exchanging heat between the temperature of the outside air supplied into the sub-chamber 20 and the temperature of the indoor air exhausted from the sub-chamber 20 is disposed outside the sub-chamber 20. It is configured to supply air into the sub chamber 20 after the outside air temperature is brought close to the temperature of room air by the total heat exchanger 30.
 第3の手段は、前記チャンバー10内に、前記チャンバー10内の空気を下から吸引して上部から排気する自立型空気調和機40を設置し、該自立型空気調和機40の給排気にて前記チャンバー10内のガス濃度が均一になるように構成した。 The third means is to install a self-supporting air conditioner 40 that sucks air in the chamber 10 from below and exhausts it from the top in the chamber 10, and supplies and exhausts the self-supporting air conditioner 40. The gas concentration in the chamber 10 was configured to be uniform.
 第4の手段は、前記チャンバー10内の設定温度・湿度を、人が居住する住環境の温度・湿度の環境条件に合わせて予めプログラム設定するように構成したものである。 The fourth means is configured such that the set temperature and humidity in the chamber 10 are set in advance according to the environmental conditions of the temperature and humidity of the living environment where the person lives.
 第5の手段は、前記チャンバー10内の質量分析に、分析精度が0.001%の高精度新型質量分析計を備えたものである。 The fifth means comprises a high-accuracy new mass spectrometer with an analysis accuracy of 0.001% in the mass analysis in the chamber 10.
 本発明の請求項1によると、下記のように構成される。屋外から取り込んだ空気を空調機で温度制御するサブチャンバー20。サブチャンバー20内で温度制御された空気をチャンバー10に給気する給気用ファン11。チャンバー10内の空気を室外へ排出する排気用ファン12。給気用ファン11及び排気用ファン12の電流値を夫々制御する一対のDC電源調節計13,14。チャンバー10内の空気の給排気量を計測する一対の質量流量計15,16とを備える。DC電源調節計13,14の電流値を調節して各質量流量計15,16が示す給排気量を等しくするように構成した。このことによりサブチャンバー20内に供給される空気の供給量とサブチャンバー2010から排出される排出量とが同量に制御され、サブチャンバー2010内の差圧は常に0となり、常圧環境になる。 According to claim 1 of the present invention, the configuration is as follows. A sub-chamber 20 that controls the temperature of air taken in from the outside with an air conditioner. An air supply fan 11 that supplies air whose temperature is controlled in the sub-chamber 20 to the chamber 10. An exhaust fan 12 that exhausts the air in the chamber 10 to the outside. A pair of DC power supply controllers 13 and 14 for controlling current values of the air supply fan 11 and the exhaust fan 12, respectively. A pair of mass flow meters 15 and 16 that measure the supply and exhaust amount of air in the chamber 10 are provided. The current values of the DC power supply controllers 13 and 14 were adjusted so that the supply / exhaust air amounts indicated by the mass flow meters 15 and 16 were equalized. As a result, the supply amount of air supplied into the sub-chamber 20 and the discharge amount discharged from the sub-chamber 2010 are controlled to the same amount, and the differential pressure in the sub-chamber 2010 is always 0, resulting in a normal pressure environment. .
 この結果、チャンバー10内は常圧環境で室内にリークがなくなり、代謝試験室ガス濃度に影響を与えない環境になる。また給排気の設定で大型の試験室であっても給排気が正確にコントロールできるため容積が小さな試験室の環境を作ることができる。更にエネルギー代謝の計算に用いられている室内の容積に変化がなくなり、測定の精度が高精度になる。 As a result, the inside of the chamber 10 becomes an environment where there is no leakage in the room under normal pressure and the gas concentration in the metabolic laboratory is not affected. Moreover, even in a large test room, the supply and exhaust settings can be accurately controlled even in a large test room, so that a small test room environment can be created. Furthermore, there is no change in the indoor volume used for the calculation of energy metabolism, and the accuracy of measurement becomes high.
 請求項2のように、全熱交換器30をサブチャンバー20の外側に設置し、該全熱交換器30にて外気温を室内空気の温度に近づけてからサブチャンバー20内に給気するように構成した。外気温が急激に変化する状態でもサブチャンバー20内の温度変化を極力抑制することができ、サブチャンバー20内の温度差を少なく保つことができる。 As in claim 2, the total heat exchanger 30 is installed outside the sub-chamber 20 so that the outside air temperature is brought close to the temperature of the room air in the total heat exchanger 30 and then supplied into the sub-chamber 20. Configured. Even in a state where the outside air temperature changes rapidly, the temperature change in the sub-chamber 20 can be suppressed as much as possible, and the temperature difference in the sub-chamber 20 can be kept small.
 請求項3のごとく、チャンバー10内に、前記チャンバー10内の空気を下から吸引して上部から排気する自立型空気調和機40を設置し、該自立型空気調和機40の給排気にて前記チャンバー10内のガス濃度が均一になるように構成したことで、エネルギー消費量の測定精度が更に向上する。しかも、被験者も室内の温度差がない為、居住性に優れた高精度代謝試験室を提供することができる。 As in claim 3, a self-supporting air conditioner 40 that sucks the air in the chamber 10 from below and exhausts it from the upper part is installed in the chamber 10, and the supply and exhaust of the self-supporting air conditioner 40 By configuring the gas concentration in the chamber 10 to be uniform, the measurement accuracy of energy consumption is further improved. In addition, since the subject has no temperature difference in the room, a high-accuracy metabolic test room excellent in comfort can be provided.
 請求項4のように、ヒューマンカロリーメーターは通常一定の温度・湿度条件で人の代謝試験を行っている。実際人の居住環境は昼間と夜間の温度差または日中の温度差の日内変動があり、人の居住環境下でより正確な環境下での代謝試験ができるプログラムを開発した。住環境が人の内部環境に与える影響を、正確に再現し、エネルギー代謝試験が行えるようになった。チャンバー10内の設定温度・湿度は、外気の温度・湿度の変化に合わせて予めプログラム設定するように構成したことで、住環境の日内変動の室内環境を人の内部環境に与える外部環境を正確に再現することができる。この結果、一定温度化の環境と日常の環境の違いが人の代謝に影響を与える試験研究が行えるようになった。 As described in claim 4, the human calorimeter normally performs a human metabolic test under constant temperature and humidity conditions. In fact, the human living environment has a diurnal variation in the temperature difference between daytime and nighttime, or the temperature difference during the daytime, and a program has been developed that enables a more accurate metabolic test under the human living environment. The effects of the living environment on the human internal environment can be accurately reproduced and energy metabolism tests can be performed. The set temperature and humidity in the chamber 10 are pre-programmed according to changes in the temperature and humidity of the outside air, so that the external environment that gives the indoor environment of daily fluctuations of the living environment to the human internal environment can be accurately Can be reproduced. As a result, it has become possible to conduct experimental studies in which the difference between the constant temperature environment and the daily environment affects human metabolism.
 請求項5のように、チャンバー10内の質量分析に、分析精度が0.001%の高精度新型質量分析計を備えたことから、より高精度で微量なエネルギー消費量を測定する事が出来る。 As described in claim 5, since the mass analysis in the chamber 10 is equipped with a high-accuracy new type mass spectrometer having an analysis accuracy of 0.001%, it is possible to measure a small amount of energy consumption with higher accuracy.
 このように本発明により、チャンバー内の給気量・排気量をコントロールし室内空気を循環させてガス濃度を均一にすることができ、安定した状態でエネルギー代謝量を高精度で測定することが可能である。 As described above, according to the present invention, the air supply amount and the exhaust amount in the chamber can be controlled to circulate the indoor air to make the gas concentration uniform, and the energy metabolism amount can be measured with high accuracy in a stable state. Is possible.
本発明装置を示す概略図である。It is the schematic which shows this invention apparatus. 本発明チャンバーの空気の撹拌状態を示す概略図である。It is the schematic which shows the stirring state of the air of this invention chamber.
 以下、図面を参照して本発明の一実施例を説明する。本発明装置は、被験者の代謝熱量を測定する代謝熱量測定装置であり、特に、チャンバー内に収容した被験者の酸素の消費量と炭酸ガスの排出量から代謝熱量を測定するものである。本発明の主な構成として、チャンバー10とサブチャンバー20、そして給気用ファン11と排気用ファン12、更に、DC電源調節計13,14と質量流量計15,16を備えている。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The apparatus of the present invention is a metabolic calorimeter that measures the metabolic calorie of a subject, and in particular, measures the metabolic calorie from the consumption of oxygen and the discharge of carbon dioxide gas of the subject accommodated in the chamber. The main configuration of the present invention includes a chamber 10 and a sub-chamber 20, an air supply fan 11 and an exhaust fan 12, and DC power supply controllers 13 and 14 and mass flow meters 15 and 16.
 チャンバー10は、被験者を収容する独立した高気密性の部屋を構成している。このチャンバー10は、鋼板製断熱式パネルを組み立てたもので、各パネルの結合部をシリコンコーキングにてシーリング加工をし気密性を保持している。更に、チャンバー10内の気圧を外部の気圧と同圧になるように設定している。 The chamber 10 constitutes an independent highly airtight room for accommodating the subject. This chamber 10 is an assembly of heat-insulated panels made of steel plates, and the joint portion of each panel is sealed with silicon caulking to maintain airtightness. Furthermore, the atmospheric pressure in the chamber 10 is set to be the same as the external atmospheric pressure.
 すなわち、サブチャンバー20にて、屋外から取り込んだ空気を空調機で温度制御し、この温度制御された空気をチャンバー10に給気する給気用ファン11と、チャンバー10内の空気を室外へ排出する排気用ファン12とをコントロールする構成である。 That is, the temperature of air taken from outside in the sub-chamber 20 is controlled by an air conditioner, and the air supply fan 11 that supplies the temperature-controlled air to the chamber 10 and the air in the chamber 10 are discharged to the outside. The exhaust fan 12 is controlled.
 本発明では、給気用ファン11及び排気用ファン12の電流値を夫々制御する一対のDC電源調節計13,14を設けている。一方、チャンバー10内の空気の給排気量を計測する一対の質量流量計15,16を設置している。そして、これらDC電源調節計13,14と質量流量計15,16とによりチャンバー10内の気圧を外部の気圧と同圧になるように構成している。すなわち、DC電源調節計13,14の電流値をコントロールして各質量流量計15,16が示す給排気量が等しくなるように調整する構成である。 In the present invention, a pair of DC power supply controllers 13 and 14 for controlling the current values of the air supply fan 11 and the exhaust fan 12 are provided. On the other hand, a pair of mass flow meters 15 and 16 for measuring the amount of air supply and exhaust in the chamber 10 are installed. The DC power supply controllers 13 and 14 and the mass flow meters 15 and 16 are configured so that the atmospheric pressure in the chamber 10 becomes the same as the external atmospheric pressure. That is, the current values of the DC power supply controllers 13 and 14 are controlled to adjust the supply / exhaust air amounts indicated by the mass flow meters 15 and 16 to be equal.
 また、チャンバー10内に供給された空気が室内の空気に完全に混ざり合わなければ、チャンバー10内の空気の濃度に誤差が生じ、この誤差がエネルギー消費量に大きな影響を与える。そのため本発明では、このチャンバー10内を全て均一化した気流で循環するようにチャンバー10内に自立型空気調和機40を備えている(図1参照)。 In addition, if the air supplied into the chamber 10 is not completely mixed with the indoor air, an error occurs in the concentration of air in the chamber 10, and this error greatly affects energy consumption. Therefore, in the present invention, a self-supporting air conditioner 40 is provided in the chamber 10 so as to circulate in the chamber 10 with a uniform airflow (see FIG. 1).
 この自立型空気調和機40は、チャンバー10内の温度や湿度を正確に制御する装置であり、チャンバー10内の空気を下から吸気して上部から排気することで、チャンバー10内のガス濃度が均一になるように構成したものである。図示例では、ファン17、加湿器18、ヒーターユニット19、冷却器22を備えたもので、これらの制御は、計測制御部3にて行われる。 This self-supporting air conditioner 40 is a device that accurately controls the temperature and humidity in the chamber 10, and the air concentration in the chamber 10 is reduced by inhaling the air in the chamber 10 from the bottom and exhausting it from the top. It is configured to be uniform. In the illustrated example, a fan 17, a humidifier 18, a heater unit 19, and a cooler 22 are provided, and these controls are performed by the measurement control unit 3.
 冷却器22は、チラーユニット21により、チラー水を冷却水タンクに循環させて冷却器22の温度を一定に制御する。たとえば、水温を摂氏5度±0.1度に温度制御した冷却水をチラーユニット21に循環させ、このチラーユニット21を通過するチャンバー10内の空気を冷却するものである。 The cooler 22 controls the temperature of the cooler 22 to be constant by circulating the chiller water to the cooling water tank by the chiller unit 21. For example, cooling water whose water temperature is controlled to 5 degrees ± 0.1 degrees Celsius is circulated through the chiller unit 21 and air in the chamber 10 passing through the chiller unit 21 is cooled.
 ヒーターユニット19は、チャンバー10内の温度を加熱するものである。そして、これらチラーユニット21と空調機22を計測制御する計測制御部3により、チラーユニット21や空調機22がコントロールされ、チャンバー10内の温度を一定にする。 The heater unit 19 heats the temperature in the chamber 10. The chiller unit 21 and the air conditioner 22 are controlled by the measurement control unit 3 that measures and controls the chiller unit 21 and the air conditioner 22, and the temperature in the chamber 10 is made constant.
 ファン17は、自立型空気調和機40の下部に吸気した空気を上部から排出することで、チャンバー10内の空気を循環し室内空気を一定に温湿度制御するものである。このファン17の前面に、上下左右に向き調整可能なブレードを装着することで、更に効率良く空気を循環させることが可能になる。また、このファン17は、有圧型多風量式を複数台採用し、換気をインバーター制御で行なうことで、室内に温度差が生じない空調方式とする。この結果、チャンバー10内においてガス濃度差が無い均一な環境になり、温湿度・空気濃度を安定化し、安静時から運動時における室内ガス濃度の均一な環境を実現する。 The fan 17 circulates the air in the chamber 10 by exhausting the air sucked into the lower part of the self-supporting air conditioner 40 from the upper part, thereby controlling the temperature and humidity of the room air at a constant level. By mounting a blade that can be adjusted vertically and horizontally on the front surface of the fan 17, it becomes possible to circulate air more efficiently. In addition, the fan 17 adopts a plurality of pressure-type multi-air flow systems and performs ventilation by inverter control, thereby adopting an air conditioning system in which no temperature difference occurs in the room. As a result, the chamber 10 has a uniform environment with no difference in gas concentration, stabilizes the temperature / humidity and air concentration, and realizes an environment having a uniform indoor gas concentration from rest to exercise.
 加湿器18は、チャンバー10内の湿度制御を正確にするために備えている。この加湿器18は、例えば設定値50%に対し±1%以下の精度を有するものが望ましい(環境試験室A級制御で±3%以下)。このような加湿器18を採用することで、チャンバー10内の高精度の湿度制御を実現することができる。また、蒸気式の加湿器18を用いることで、加湿時に煮沸殺菌され、細菌や白い粉を含まないクリーンな蒸気を噴霧するので、チャンバー10室内環境に人間を対象とした試験に最適である。尚、図1には、この他の構成として、パソコン1、コントローラー2、屋外空調コンデンサー4などを備えている。 The humidifier 18 is provided to accurately control the humidity in the chamber 10. The humidifier 18 desirably has an accuracy of ± 1% or less with respect to a set value of 50%, for example (± 3% or less by environmental test room A class control). By adopting such a humidifier 18, highly accurate humidity control in the chamber 10 can be realized. Further, the use of the steam humidifier 18, which is boiled and sterilized at the time of humidification and sprays clean steam that does not contain bacteria and white powder, is optimal for a test for humans in the chamber 10 indoor environment. In addition, in FIG. 1, the personal computer 1, the controller 2, the outdoor air-conditioning condenser 4 etc. are provided as other structures.
 一方、サブチャンバー20は、屋外から取り込んだ空気を空調機で温度制御する部屋で、外気温を一定の温度に調整した後、DC電源調節計13,14でチャンバー10内に給気する。このサブチャンバー20には、エアコン23が設置されており、サブチャンバー20内に取り込んだ外気を制御しチャンバー10内に一定量を給気している。図示例では、サブチャンバー20の外側に全熱交換器30を設置している。 On the other hand, the sub-chamber 20 is a room in which air taken in from the outside is temperature-controlled by an air conditioner. After adjusting the outside air temperature to a constant temperature, the sub-chamber 20 is supplied into the chamber 10 by the DC power supply controllers 13 and 14. An air conditioner 23 is installed in the sub-chamber 20 to control the outside air taken into the sub-chamber 20 and supply a certain amount into the chamber 10. In the illustrated example, a total heat exchanger 30 is installed outside the sub-chamber 20.
 この全熱交換器30は、外気の温度と、サブチャンバー20内から排気する室内空気の温度とを熱交換する装置で、外気温を空調し一定の温度に制御してチャンバー10へ給気している。そして、外気温がサブチャンバー20内の温度と大きく乖離している状況でも、この全熱交換器30を通すことで、サブチャンバー20内の温度制御の効率を上げている。 The total heat exchanger 30 is a device for exchanging heat between the temperature of the outside air and the temperature of the indoor air exhausted from the sub-chamber 20, and controls the air temperature to a constant temperature to supply air to the chamber 10. ing. Even in a situation where the outside air temperature greatly deviates from the temperature in the sub-chamber 20, the temperature control efficiency in the sub-chamber 20 is increased by passing the total heat exchanger 30.
 チャンバー10内の設定温度・湿度は、外気の温度・湿度の変化に合わせて予めプログラム設定するように構成し、温度・湿度を住環境に合わせ日内変動を再現する機能を持つようにしている。そして、グラフィックパネルコントロール画面から温度・湿度・時間の環境条件を設定し最小1時間からの温度・湿度の設定ができるように構成する。例えば、日中は午前から午後にかけ室内温度が上がり、夕方から夜間・明け方は気温が下がるように設定する。また、夜間の睡眠時の際は室内の温度をさげ代謝試験を行う事が出来る。このように、日内変動に伴う日常生活の住環境下で、より正確な代謝試験を行うことができる。 The set temperature / humidity in the chamber 10 is configured to be programmed in advance according to changes in the temperature / humidity of the outside air, so that the temperature / humidity is adapted to the living environment and has a function of reproducing daily fluctuations. Then, environmental conditions such as temperature, humidity, and time are set from the graphic panel control screen, and the temperature and humidity can be set from a minimum of 1 hour. For example, the room temperature increases from morning to afternoon during the day, and the temperature decreases from evening to night / dawn. In addition, during nighttime sleep, the indoor temperature can be reduced to conduct a metabolic test. In this way, a more accurate metabolic test can be performed in the living environment of daily life associated with daily fluctuations.
 チャンバー10内の酸素量は換気時の流入量及び被験者の酸素摂取量によって決定され、同様に二酸化炭素濃度の変化率は外気からの二酸化炭素流入量と被験者の二酸化炭素生産量から決定される。そこで、チャンバー10内の空気の給排気量を精密に調整するため、この流量制御に、温度と気圧の影響を受けない質量流量を計測する質量流量計15,16を備えている(図1参照)。この質量流量計15,16は、単位時間当たりの流量を0.5%の誤差の高精度で計測する。 The amount of oxygen in the chamber 10 is determined by the amount of inflow during ventilation and the amount of oxygen taken by the subject. Similarly, the rate of change in carbon dioxide concentration is determined by the amount of carbon dioxide inflow from outside air and the amount of carbon dioxide produced by the subject. Therefore, in order to precisely adjust the air supply / exhaust amount in the chamber 10, this flow rate control is provided with mass flow meters 15 and 16 for measuring a mass flow rate that is not affected by temperature and pressure (see FIG. 1). ). The mass flow meters 15 and 16 measure the flow rate per unit time with a high accuracy of 0.5% error.
 チャンバー10内の高精度新型質量分析計50に、分析精度が0.001%の高精度新型質量分析計を備える(図1参照)。従来のヒューマンカロリーメーターでは、分析計精度0.002%の質量分析計(Thermo社製Prima dB)を使用していた。本発明では、特に、分析精度が0.001%の高精度新型質量分析計(Thermo社製:製品名Prima Pro,Prima BT)を使用する。あわせて安定同位体CO2-45の測定を高精度で行う。 The high-precision new mass spectrometer 50 in the chamber 10 is equipped with a high-precision new mass spectrometer with an analysis accuracy of 0.001% (see FIG. 1). In the conventional human calorimeter, a mass spectrometer (Prima dB manufactured by Thermo) having an analyzer accuracy of 0.002% was used. In the present invention, in particular, a high-precision new mass spectrometer (product name: PrimaPrimPro, Prima 製 BT, manufactured by Thermo) having an analysis accuracy of 0.001% is used. At the same time, stable isotope CO2-45 is measured with high accuracy.
 また、従来のHuman Calorimeterは同時解析のアルゴリズムは1種類で行っている。そして、24時間の代謝試験のために用いられてきたアルゴリズムは、Henningのアルゴリズムが使用されていた。ところが、このHenningのアルゴリズムは短時間の運動の解析には対応しない。近年は短時間の代謝試験で運動を解析する試験研究が求められている。そこで、Henningのアルゴリズムに加えて、短時間のエネルギー消費量が計算できるBrownの移動平均方式のアルゴリズムを用いることで短時間の運動から長時間の代謝試験に対応できるようになる(表1参照)。
Figure JPOXMLDOC01-appb-T000001
In addition, the conventional human calorimeter uses one type of simultaneous analysis algorithm. The algorithm used for the 24-hour metabolic test was the Henning algorithm. However, this Henning algorithm does not support short-time motion analysis. In recent years, there has been a demand for experimental studies that analyze exercise in short-term metabolic tests. Therefore, in addition to Henning's algorithm, Brown's moving average algorithm that can calculate energy consumption for a short time can be used to support a long-term metabolic test from short-time exercise (see Table 1). .
Figure JPOXMLDOC01-appb-T000001
 更に、従来のエネルギー消費量の計算は外気のO2・CO2濃度と代謝試験室の人が入室して消費するO2・と産生するCO2の濃度差から求めている。この場合、交互に一定の時間で外気・内気を測定するとDataが間欠になり連続してのDataの評価ができない。また交互に分析計で外気と内気を測定したときは分析精度が劣る。この為一般的に試験前の一定時間の外気と試験終了時の外気を測定し平均化して試験中の外気濃度をエネルギー計算に用いている。しかし装置の立地条件により外気濃度に変動が生じる。この影響により微量なエネルギー消費量を求める際は外気変動が影響を与えエネルギー消費量が変化する。そこで、1時間毎に外気を測定し1時間毎のエネルギー消費量を求める新たな外気変動型のアルゴリズム計算式により、外気変動に対応するアルゴリズムができ、より正確なエネルギー消費量が求められるようになる(表2参照)。
Figure JPOXMLDOC01-appb-T000002
Furthermore, the conventional energy consumption is calculated from the difference between the concentration of O2 and CO2 in the open air and the concentration of O2 and oxygen produced by people in the metabolic laboratory. In this case, if the outside air and the inside air are alternately measured at a constant time, the data becomes intermittent and the continuous data cannot be evaluated. Moreover, when the outside air and the inside air are measured alternately by the analyzer, the analysis accuracy is inferior. For this reason, the outside air at a certain time before the test and the outside air at the end of the test are generally measured and averaged, and the outside air concentration during the test is used for energy calculation. However, the outdoor air concentration varies depending on the location conditions of the device. Due to this influence, when obtaining a small amount of energy consumption, fluctuations in the outside air have an effect and the energy consumption changes. Therefore, an algorithm corresponding to fluctuations in the outside air can be created by a new outside air fluctuation type algorithm calculation formula that measures the outside air every hour and obtains the energy consumption per hour so that more accurate energy consumption can be obtained. (See Table 2).
Figure JPOXMLDOC01-appb-T000002
 尚、本発明は、図示例に限定されるものではなく、各構成要素の設計変更や材質の置換、用途の変更などは、本発明の要旨を変更しない範囲で任意に行えるものである。 It should be noted that the present invention is not limited to the illustrated example, and design changes, material substitutions, application changes, and the like of each component can be arbitrarily performed without changing the gist of the present invention.
1 パソコン
2 コントローラー
3 計測制御部
4 屋外空調コンデンサー
10 チャンバー
11 給気用ファン
12 排気用ファン
13 DC電源調節計
14 DC電源調節計
15 質量流量計
16 質量流量計
17 ファン
18 加湿器
19 ヒーターユニット
20 サブチャンバー
21 チラーユニット
22 冷却器
23 エアコン
30 全熱交換器
40 自立型空気調和機
50 高精度新型質量分析計
DESCRIPTION OF SYMBOLS 1 PC 2 Controller 3 Measurement control part 4 Outdoor air-conditioning condenser 10 Chamber 11 Supply fan 12 Exhaust fan 13 DC power supply controller 14 DC power supply controller 15 Mass flow meter 16 Mass flow meter 17 Fan 18 Humidifier 19 Heater unit 20 Subchamber 21 Chiller unit 22 Cooler 23 Air conditioner 30 Total heat exchanger 40 Self-supporting air conditioner 50 High-precision new mass spectrometer

Claims (5)

  1.  空気の給排気量が調整されるチャンバー内に収容した被験者の酸素摂取量と炭酸ガス産生量から被験者の代謝を測定するエネルギー代謝熱量測定装置において、
    屋外から取り込んだ空気を空調機で温度制御するサブチャンバーと、
    該サブチャンバー内で温度制御された空気をチャンバーに給気する給気用ファンと、チャンバー内の空気を室外へ排出する排気用ファンと、
    給気用ファン及び排気用ファンの電流値を夫々制御する一対のDC電源調節計と、
    チャンバー内の空気の給排気量を計測する一対の質量流量計とを備え、
    DC電源調節計の電流値を調節して各質量流量計が示す給排気量を等しくするように構成したことを特徴とする次世代型高解析ヒューマンカロリーメーター。
    In an energy metabolism calorimeter measuring the metabolism of a subject from the amount of oxygen intake and carbon dioxide production of the subject contained in a chamber in which the supply and exhaust amount of air is adjusted,
    A sub-chamber that controls the temperature of air taken from outside with an air conditioner;
    An air supply fan for supplying air temperature-controlled in the sub-chamber to the chamber; an exhaust fan for discharging the air in the chamber to the outside;
    A pair of DC power supply controllers for controlling the current values of the supply fan and the exhaust fan, respectively;
    A pair of mass flowmeters that measure the amount of air supply and exhaust in the chamber,
    A next-generation high-analysis human calorimeter characterized in that the current value of the DC power supply controller is adjusted to equalize the air supply / exhaust amount indicated by each mass flow meter.
  2.  前記サブチャンバー内に給気する外気の温度と、前記サブチャンバー内から排気する室内空気の温度とを熱交換せしめる全熱交換器を前記サブチャンバーの外側に設置し、該全熱交換器にて外気温を室内空気の温度に近づけてから前記サブチャンバー内に給気するように構成した請求項1記載の次世代型高解析ヒューマンカロリーメーター。 A total heat exchanger for exchanging heat between the temperature of the outside air supplied into the sub-chamber and the temperature of the indoor air exhausted from the sub-chamber is installed outside the sub-chamber, and the total heat exchanger The next-generation high-analysis human calorimeter according to claim 1, wherein the outside air temperature is brought close to the temperature of room air and then supplied into the sub-chamber.
  3.  前記チャンバー内に、前記チャンバー内の空気を下から吸気して上部から排気する自立型空気調和機を設置し、該自立型空気調和機の給排気にて前記チャンバー内のガス濃度が均一になるように構成した請求項1記載の次世代型高解析ヒューマンカロリーメーター。 A self-supporting air conditioner that inhales the air in the chamber from below and exhausts it from the top is installed in the chamber, and the gas concentration in the chamber becomes uniform by supply and exhaust of the self-supporting air conditioner The next-generation high-analysis human calorimeter according to claim 1 configured as described above.
  4.  前記チャンバー内の設定温度・湿度は、日内変動に合わせた住環境再現のプログラム設定をするように構成した請求項1記載の次世代型高解析ヒューマンカロリーメーター。 The next-generation high-analysis human calorimeter according to claim 1, wherein the set temperature and humidity in the chamber are configured to set a program for reproducing the living environment in accordance with daily fluctuations.
  5.  前記チャンバー内の質量分析計に、分析精度が0.001%の高精度新型質量分析計を備えた請求項1記載の次世代型高解析ヒューマンカロリーメーター。 The next-generation high-analysis human calorimeter according to claim 1, wherein the mass spectrometer in the chamber is equipped with a new high-precision mass spectrometer having an analysis accuracy of 0.001%.
PCT/JP2016/070772 2016-05-17 2016-07-14 Next-generation high-resolution human calorimeter WO2017199452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098360A JP6335969B2 (en) 2016-05-17 2016-05-17 Next generation high analysis human calorimeter
JP2016-098360 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199452A1 true WO2017199452A1 (en) 2017-11-23

Family

ID=60325612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070772 WO2017199452A1 (en) 2016-05-17 2016-07-14 Next-generation high-resolution human calorimeter

Country Status (4)

Country Link
JP (1) JP6335969B2 (en)
KR (1) KR101910019B1 (en)
CN (1) CN107374634B (en)
WO (1) WO2017199452A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794397B2 (en) * 2018-04-27 2020-12-02 富士医科産業株式会社 Next-generation high-analysis human calorimeter
CN114831624A (en) * 2022-03-30 2022-08-02 海尔(深圳)研发有限责任公司 Method and device for determining human body metabolism, air conditioner and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386604A (en) * 1981-02-27 1983-06-07 Daniel Hershey Determination of the basal metabolic rate of humans with a whole-body calorimeter
US5135311A (en) * 1991-07-03 1992-08-04 University Of New Mexico Convective calorimeter apparatus and method
US20070073182A1 (en) * 2005-09-23 2007-03-29 Wilson Kitchener C Dynamic metabolism monitoring system
JP4591852B2 (en) * 2005-12-20 2010-12-01 富士医科産業株式会社 High analysis human calorimeter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858360B2 (en) * 2011-12-01 2016-02-10 ダイナエアー株式会社 Cultivation space air conditioning system, control method therefor, and cultivation space air conditioning method
GB2497304A (en) * 2011-12-06 2013-06-12 Tecom Analytical Systems Estimation of energy expenditure
DE102014014671B3 (en) * 2014-10-04 2015-12-10 Fischer Analysen Instrumente Gmbh 13C Breath Gas Test to verify gastrointestinal function and / or metabolic functions and device therefor
CN104665835A (en) * 2015-02-04 2015-06-03 中国科学院合肥物质科学研究院 Human energy metabolism detection device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386604A (en) * 1981-02-27 1983-06-07 Daniel Hershey Determination of the basal metabolic rate of humans with a whole-body calorimeter
US5135311A (en) * 1991-07-03 1992-08-04 University Of New Mexico Convective calorimeter apparatus and method
US20070073182A1 (en) * 2005-09-23 2007-03-29 Wilson Kitchener C Dynamic metabolism monitoring system
JP4591852B2 (en) * 2005-12-20 2010-12-01 富士医科産業株式会社 High analysis human calorimeter

Also Published As

Publication number Publication date
JP6335969B2 (en) 2018-05-30
CN107374634B (en) 2021-06-01
JP2017205186A (en) 2017-11-24
KR20170129582A (en) 2017-11-27
CN107374634A (en) 2017-11-24
KR101910019B1 (en) 2018-10-19

Similar Documents

Publication Publication Date Title
JP6794397B2 (en) Next-generation high-analysis human calorimeter
Zhang et al. Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving
Sun et al. In-situ implementation and validation of a CO2-based adaptive demand-controlled ventilation strategy in a multi-zone office building
JP5185319B2 (en) Air conditioning system and air conditioning control method for server room management
US9185829B2 (en) Air-conditioning system and air-conditioning method for server room management
JP5932350B2 (en) Air conditioning apparatus and air conditioning control method
US9091454B2 (en) Air change rate measurement and control
JP2009030820A (en) Air-conditioning control device and its method
Chen et al. Experimental and simulated energy performance of a personalized ventilation system with individual airflow control in a hot and humid climate
JP2006145070A (en) Air conditioning system and air conditioning system control method
JP2012532308A (en) Climate simulation system using cold storage technology
KR102500304B1 (en) CO2 control method for variable air volume system
JP2013047579A (en) Air-conditioning control system and air-conditioning control method
Southard et al. Performance of HVAC Systems at ASHRAE HQ.
CN108302732A (en) Air conditioning control method and air conditioner
JP6335969B2 (en) Next generation high analysis human calorimeter
CN103759391B (en) A kind of constant temperature and humidity air-conditioning system and the control method of raising indoor temperature and humidity precision
Cheng et al. Experimental study of air distribution and heating performances of deflection ventilation
CN108302706A (en) Air conditioning control method and air conditioner
CN114811732A (en) Fresh air purification air conditioner and control method thereof
CN114263974A (en) Central heating system flow control method and system based on regulating valve
JP4591852B2 (en) High analysis human calorimeter
KR101432753B1 (en) Equipment for adjusting steel frame
CN108253597A (en) Air conditioning control method and air conditioner
JP2004301350A (en) Ventilator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902471

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902471

Country of ref document: EP

Kind code of ref document: A1