WO2017198262A1 - Verfahren und anordnung zur regelung und steuerung von rohrextrusionsanlagen - Google Patents

Verfahren und anordnung zur regelung und steuerung von rohrextrusionsanlagen Download PDF

Info

Publication number
WO2017198262A1
WO2017198262A1 PCT/DE2017/100420 DE2017100420W WO2017198262A1 WO 2017198262 A1 WO2017198262 A1 WO 2017198262A1 DE 2017100420 W DE2017100420 W DE 2017100420W WO 2017198262 A1 WO2017198262 A1 WO 2017198262A1
Authority
WO
WIPO (PCT)
Prior art keywords
extrusion
calibration device
tube
pipe
data
Prior art date
Application number
PCT/DE2017/100420
Other languages
English (en)
French (fr)
Inventor
Roland Böhm
Original Assignee
INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik filed Critical INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik
Priority to EP17728443.7A priority Critical patent/EP3458244A1/de
Publication of WO2017198262A1 publication Critical patent/WO2017198262A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/907Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using adjustable calibrators, e.g. the dimensions of the calibrator being changeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/325Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections
    • B29C48/327Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections with centering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/903Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92123Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92171Distortion, shrinkage, dilatation, swell or warpage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92447Moulded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Definitions

  • the present invention relates to a method for the regulation and control of pipe extrusion plants according to the preamble of claim 1.
  • a plastic granulate is melted by means of an extruder and pressed in an extrusion die through an annular gap which is formed by a nozzle and a mandrel arranged therein.
  • the hot melt tube produced in this way is pressed and cooled in a subsequent calibration device under negative pressure against an external calibration device, usually a calibration sleeve.
  • the calibrated and cooled tube is drawn by means of a draw-off device from the extrusion die through the calibration device and optionally through further extrusion follower devices.
  • the annular gap of the extrusion tool is greater than the diameter of the vacuum device operating with negative pressure, so that the molten tube can run in excess and seal the calibration device against the ambient pressure.
  • the inlet angle of the melt tube into the calibration device is important, which can be influenced by the distance between the extrusion tool and the calibration device. If the oversize is too small or the inlet angle is too low, it is no longer possible to seal the calibration device against the ambient pressure. If the excess is too large or the inlet angle too steep, the molten tube is stretched too fast, which can lead to stresses in the finished tube or even cracking of the melt tube before or in the calibration.
  • DDR Dimension Draw Down
  • DDR (nozzle -DKali) / D nozzle.
  • This value should be between 5% and 50% for the most important plastic pipe material HDPE (high-density polyethylene) according to the prior art.
  • the wall thickness of the extruded tube since the outer diameter is fixed by the calibrator, results from the mass flow rate of the extruder and the speed with which the tube is pulled by the extraction device.
  • the melt tube is drawn on the one hand to the diameter of the calibration device, but at the same time depending on the speed of the trigger wall thickness of the melt Hose reduced. This double stretching of the melt tube is only possible within limits and is described by the characteristic dimension ration balance (DRB):
  • This value should be between 0.97 and 1.095 for the most important plastic pipe material HDPE (high-density polyethylene) according to the prior art.
  • the hot, soft melt hose in the extrusion plant must always be in train, so as not to accumulate in the plant. At the same time the train must not be too high, because otherwise the melt tube constricts and tears off.
  • the pull acting on the molten tube is described by the ratio of the exit area of the melt from the tool to the entrance surface of the molten tube into the calibrator
  • This value should be between 130% and 700% for the most important plastic pipe material HDPE (high-density polyethylene) according to the prior art.
  • HDPE high-density polyethylene
  • the diameter, the wall thickness, any shape deviations and the sagging of the melt tube are determined at several points between the extrusion tool and the calibration device.
  • four major effects in pipe extrusion can be included in the design of the extrusion tool, which were previously not considered.
  • these measurement data can be used for optimum centering of the nozzle and mandrel of the extrusion tool as well as for setting an optimal inlet angle of the molten tube into the calibration device.
  • optical or fully electronic terahertz or gigahertz measuring technology is used to acquire the measured data. Since this type of measurement technique operates without contact and without coupling medium, a measurement can also be made on hot, contact-sensitive bodies, such as a molten tube, directly after the extrusion tool in the tube extrusion.
  • Fig. 1 shows an extrusion plant for the production of plastic pipes with their main components in a schematic representation
  • Fig. 2 is a very schematic representation of a forming between the output of the extrusion die and the inlet of the calibration sleeve melt tube.
  • the extrusion line for plastic pipe shown in Figure 1 comprises an extruder unit 1 with a feed hopper 2, via which the extruder unit 1, a thermoplastic resin in granular or powder form is fed.
  • the extruder unit 1 the granulate or the powder is warms, kneads and plasticizes. Subsequently, the plastic is conveyed as a moldable material in an extrusion die 3 and pressed there through an annular gap 1 1.
  • the thus formed, still deformable melt tube 4 'runs with oversize in a calibration device 6, which has a vacuum tank 7 with a arranged at the input, perforated Kalibrierhülse 8.
  • the calibration sleeve 8 is infinitely adjustable in diameter, so that the extruded tube 4 can be fixed to the desired outer diameter.
  • the tube 4 After leaving the calibration device 6, the tube 4 enters a cooling section 9, in which it is cooled to about room temperature.
  • a saw 10 At the end of the extrusion line a saw 10 is arranged, in which the extruded tube 4 is cut to a predetermined length.
  • the produced pipe 4 is pulled by means of a take-off unit 5 through the upstream facilities of the extrusion plant.
  • the melt tube 4 'emerging from the annular gap 1 1 formed between a nozzle 12 and a mandrel 13 of the extrusion die 3 passes into the calibration sleeve 8 of the calibrating device 6 with an oversize.
  • the calibration device 6 Immediately after exiting the extrusion die 3 and immediately before entering the calibration sleeve 8, the calibration device 6 has a plurality of gigahertz or terahertz sensors 14 distributed over the circumference of the melt tube 4 '. By means of these sensors 14, the geometric data of the molten tube 4 'are determined. Thus, the distances between the sensors 14 and the molten tube 4 'are measured, from which the diameter of the molten tube 4' and its sagging can be calculated. Furthermore, the wall thickness of the melt tube 4 'is measured at the positions of the sensors 14, and distributed from the measured differences over the circumference, determines the eccentricity of the wall thickness.
  • the inlet angle of the molten tube 4 'into the calibrating device 6 can be calculated by comparing the distance measured values of the sensors 14 after the extrusion die 3 and before the calibrating device 6.
  • the sagging of the plastic melt after the exit from the extrusion die 3 are calculated.
  • the measured data obtained or the values calculated therefrom can be used in a variety of ways to optimize the process.
  • by the measurement data with suitable algorithms via the plant control either automatically make a correction of the control variables or suggest a detailed graphical user interface (GUI) the operator detailed settings.
  • GUI graphical user interface
  • the measured data obtained can also be used to optimize the design of the extrusion tool 3, especially for calculating the optimum annular gap geometry for a wide range of applications.
  • the actual measured diameter and wall thickness of the enlarged by the strand expansion melt tube 4 ' incorporated into the interpretation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Regelung und Steuerung von Rohrextrusionsanlagen unter Einbeziehung von Messdaten eines produzierten Rohres (4), wobei ein aus einem Ringspalt (11) einer Extrudereinheit (1) austretender Schmelzeschlauch (4') mit Übermaß in eine nachfolgende Kalibriervorrichtung (6) einläuft. Aufgabe der vorliegenden Erfindung ist es, ein derartiges Verfahren zur Verfügung zu stellen, welches mit Messwerten arbeitet, die eine optimale Fahrweise der Extrusionsanlage auch bei einem Dimensionswechsel gewährleisten. Gelöst wird diese Aufgabe dadurch, dass zwischen Extrusionswerkzeug (3) und Kalibriervorrichtung (6) an mehreren Stellen exakt der Durchmesser, die Wandstärke, etwaige Formabweichungen und das Durchhängen des Schmelzeschlauches (4') ermittelt wird, und diese Messwerte bzw. daraus berechnete Daten zur Regelung und Steuerung der Extrusionsanlage herangezogen werden.

Description

VERFAHREN UND ANORDNUNG ZUR REGELUNG UND STEUERUNG VON ROHREXTRUSIONSAN LAGEN
Die vorliegende Erfindung betrifft ein Verfahren zur Regelung und Steu- erung von Rohrextrusionsanlagen gemäß dem Oberbegriff des Anspruchs 1 .
Bei einer Rohrextrusion wird mittels eines Extruders ein Kunststoffgra- nulat aufgeschmolzen und in einem Extrusionswerkzeug durch einen Ringspalt gepresst, der durch eine Düse und einen darin angeordneten Dorn ge- bildet ist. Der so erzeugte heiße Schmelzeschlauch wird in einer nachfolgenden Kalibiervorrichtung unter Unterdruck gegen eine Außenkalibrier-einrich- tung, meistens eine Kalibrierhülse, gepresst und abgekühlt. Das kalibrierte und abgekühlte Rohr wird mittels einer Abzugsvorrichtung aus dem Extrusionswerkzeug durch die Kalibriervorrichtung und gegebenenfalls durch wei- tere Extrusionsnachfolgeeinrichtungen gezogen.
In diesem Verfahren ist der Ringspalt des Extrusionswerkzeuges größer als der Durchmesser der mit Unterdruck arbeitenden Kalibiervorrichtung, damit der Schmelzeschlauch mit Übermaß einlaufen und die Kalibrier-vorrich- tung gegen den Umgebungsdruck abdichten kann. Neben dem Übermaß ist auch der Einlaufwinkel des Schmelzeschlauches in die Kalibrier-vorrichtung wichtig, was durch den Abstand zwischen dem Extrusionswerkzeug und der Kalibriervorrichtung beeinflusst werden kann. Bei zu geringen Übermaß oder zu flachen Einlaufwinkel ist keine Abdichtung der Kalibriervorrichtung gegen den Umgebungsdruck mehr möglich. Ist das Übermaß zu groß bzw. der Einlaufwinkel zu steil, so wird der Schmelzeschlauch zu schnell verstreckt, was zu Spannungen im fertigen Rohr oder sogar zum Reißen des Schmelzeschlauches vor oder in der Kalibriervorrichtung führen kann.
Zum Fahren der Extrusionsanlage werden Auslegekriterien verwendet, wobei nach dem Stand der Technik als Messtechnik das Ultraschallmessverfahren zur Anwendung kommt, wie z.B. in der DE 10 2006 056 735 A1 beschrieben.
Eines der Auslegekriterien ist das Übermaß, mit dem der Schmelzeschlauch in die Kalibriervorrichtung einläuft. Es wird mit dem Kennwert Dimension Draw Down (DDR) beschrieben:
DDR=( Düüse -DKali)/DDüse.
Dieser Wert sollte für den wichtigsten Kunststoff-Rohrwerkstoff HDPE (Polyethylen mit hoher Dichte) gemäß dem Stand der Technik zwischen 5% und 50% liegen.
In dieser und den nachstehenden Formeln bedeuten:
Düüse Außendurchmesser Düse
DKaii Innendurchmesser Kalibrierhülse
dspait Ringspalt Extrusionswerkzeug
dRohr Wandstärke Rohr
Die Wandstärke des extrudierten Rohres ergibt sich, da der Außendurchmesser durch die Kalibriervorrichtung fixiert wird, aus dem Massedurchsatz des Extruders und der Geschwindigkeit, mit der das Rohr von der Abzugsvorrichtung gezogen wird. Hierbei wird, ausgehend von dem Ringspalte des Extrusionswerkzeuges, der Schmelzeschlauch zum einen auf den Durchmesser der Kalibriervorrichtung gezogen, gleichzeitig aber in Abhängigkeit von der Geschwindigkeit des Abzugs die Wandstärke des Schmelze- Schlauches reduziert. Dieses doppelte Verstrecken des Schmelzeschlauches ist nur in Grenzen möglich und wird durch den Kennwert Dimension Ration Balance (DRB) beschrieben:
Düüse / DKali
DRB =
(Düüse - dspalt) / (DKali - dRohr)
Dieser Wert sollte für den wichtigsten Kunststoff-Rohrwerkstoff HDPE (Polyethylen mit hoher Dichte) gemäß dem Stand der Technik zwischen 0,97 und 1 ,095 liegen.
Darüber hinaus ist zu beachten, dass der heiße, weiche Schmelzeschlauch in der Extrusionsanlage immer unter Zug stehen muss, um sich nicht in der Anlage aufzustauen. Gleichzeitig darf der Zug nicht zu hoch sein, da sich der Schmelzeschlauch sonst einschnürt und abreißt. Der Zug, der auf den Schmelzeschlauch wirkt, wird durch das Verhältnis der Austrittsfläche der Schmelze aus dem Werkzeug zur Eintrittsfläche des Schmelzeschlauchs in die Kalibriervorrichtung beschrieben
Awerkzeug Ddüse2 - (Düüse - dspalt)2
ARohr DKali2 - (DKali - dRohr)2
Dieser Wert sollte für den wichtigsten Kunststoff-Rohrwerkstoff HDPE (Polyethylen mit hoher Dichte) gemäß dem Stand der Technik zwischen 130% und 700% liegen. Um den Aufwand für Rüstvorgänge bei dem Wechsel von einer Rohrdimension (Durchmesser und Wandstärke) auf eine andere zu reduzieren, ist es von großem Nutzen, wenn der Ringspalt des Extrusionswerkzeuges optimiert auf möglichst viele Produktvarianten abgestimmt ist. Gerade wenn im Prozess zusätzlich noch eine verstellbare Kalibriervorrichtung eingesetzt wird, kann mit einer so optimierten Auslegung des Extrusionswerkzeuges ein großes Produktfenster ohne Anlagenstopp und Umbauarbeiten abgedeckt werden. Die oben angeführten Auslegekriterien sind dafür unzureichend.
Aufgabe der vorliegenden Erfindung ist es daher, ein gattungsgemäßes Verfahren zur Verfügung zu stellen, welches mit Messwerten arbeitet, die eine optimale Fahrweise der Extrusionsanlage auch bei einem Dimensionswechsel gewährleisten.
Diese Aufgabe wird erfindungsgemäß mit einem Verfahren gelöst, welches die Merkmale des Anspruchs 1 aufweist.
Erfindungsgemäß wird zwischen dem Extrusionswerkzeug und der Kalibriervorrichtung an mehreren Stellen exakt der Durchmesser, die Wandstärke, etwaige Formabweichungen und das Durchhängen des Schmelzeschlauches ermittelt. Damit können vier wesentliche Effekte in der Rohrextru- sion mit in die Auslegung des Extrusionswerkzeuges einbezogen werden, die bisher nicht berücksichtigt wurden.
Einer dieser Effekte ist die Strangaufweitung der Schmelze nach dem Verlassen des Extrusionswerkzeuges. Im Extrusionswerkzeug wird das ge- schmolzene Kunststoffmaterial unter hohem Druck durch enge Kanäle und schließlich den Ringspalt am Austritt gepresst. Hierbei orientieren sich die freibeweglichen Makromoleküle des Kunststoffes in Extrusionsrichtung. Nach dem Verlassen des Extrusionswerkzeuges unterliegen die Makromoleküle keinem so großen äußeren Zwang mehr, so dass sie sich wieder zusammen- ziehen und zu einem Aufweiten des Durchmessers und einer Vergrößerung der Wandstärke des Schmelzeschlauches führen. Ein weiterer Effekt ist das Durchhängen des weichen Schmelzeschlauches zwischen Extrusionswerkzeug und Kalibriervorrichtung, dem bei großen Rohrdurchmessern mit einem Höhenversatz zwischen Extrusionswerkzeug und Kalibriervorrichtung entgegengewirkt werden muss.
Schließlich ist ein weiterer Effekt das sogenannte Sagging, das Fließen von heißem, fließfähigem Kunststoffmaterial von der Oberseite des Schmelzeschlauches zu dessen Unterseite.
Darüber hinaus können diese Messdaten für eine optimale Zentrierung von Düse und Dorn des Extrusionswerkzeuges sowie zum Einstellen eines optimalen Einlaufwinkels des Schmelzeschlauchs in die Kalibiervorrichtung genutzt werden.
In vorteilhafter Ausgestaltung der Erfindung wird zur Erfassung der Messdaten die optische oder vollelektronische Terahertz- oder Gigahertz- Messtechnik eingesetzt. Da diese Art der Messtechnik berührungslos und ohne Koppelmedium arbeitet, kann eine Messung auch an heißen, berüh- rungsempfindlichen Körpern, wie einem Schmelzeschlauch direkt nach dem Extrusionswerkzeug in der Rohrextrusion erfolgen.
Ordnet man Gigahertz- oder Terahertz-Sensoren an mehreren Positionen des Umfangs des Schmelzeschlauchs direkt nach Austritt aus dem Extrusionswerkzeug und ebenso an mehreren Positionen des Umfangs unmittelbar vor dem Eintritt in die Kalibriervorrichtung an, so ermöglicht das:
- die Vermessung der Abstände zwischen den Sensoren und dem
Schmelzeschlauch und damit die Berechnung des Durchmessers der Schmelzvorlage und des Durchhängens des Schmelzeschlauches - die Vermessung der Wandstärken des Schmelzeschlauchs an den Sensorpositionen und, über die die Unterschiede auf dem Umfang, die Exzentrizität der Wandstärke
- durch Vergleich der Abstands-Messwerte nach dem Extrusionswerk- zeug und vor der Kalibriervorrichtung, die Berechnung der Einlaufwinkel des Schmelzeschlauchs in die Kalibriervorrichtung über den Umfang (bedingt durch die Schwerkraft ist der Einlaufwinkel an der Unterseite des Schmelzeschlauches immer anders als an der Oberseite)
- durch Vergleich der Wandstärkenmesswerte nach dem Extrusions- werkzeug und vor der Kalibriervorrichtung, die Berechnung des Sagging der Kunststoffschmelze nach Austritt aus dem Extrusionswerk- zeug.
Die Erfindung wird nachstehend anhand eines Ausführungsbeispiels her erläutert. In der dazugehörigen Zeichnung zeigt:
Fig. 1 eine Extrusionsanlage zur Herstellung von Kunststoffrohren mit ihren Hauptkomponenten in schematischer Darstellung, und
Fig. 2 eine sehr schematische Darstellung eines sich zwischen dem Ausgang des Extrusionswerkzeuges und dem Einlauf der Kalibrierhülse ausbildenden Schmelzeschlauches.
Die in Figur 1 dargestellte Extrusionsanlage für Kunststoff röhre umfasst einen Extrudereinheit 1 mit einem Aufgabetrichter 2, über den der Extrudereinheit 1 ein thermoplastischer Kunststoff in Granulat- oder Pulverform zu- geführt wird. In der Extrudereinheit 1 wird das Granulat bzw. das Pulver er- wärmt, geknetet und plastifiziert. Anschließend wird der Kunststoff als formbare Masse in ein Extrusionswerkzeug 3 gefördert und dort durch einen Ringspalt 1 1 gedrückt. Der dadurch gebildete heiße, noch verformbare Schmelzeschlauch 4' läuft mit Übermaß in eine Kalibriervorrichtung 6 ein, die einen Vakuumtank 7 mit einer an dessen Eingang angeordneten, perforierten Kalibrierhülse 8 aufweist. Die Kalibrierhülse 8 ist stufenlos im Durchmesser einstellbar, so dass das extrudierte Rohr 4 auf den gewünschten Außendurchmesser fixiert werden kann. Nach dem Verlassen der Kalibriervorrichtung 6 tritt das Rohr 4 in eine Kühlstrecke 9 ein, in der es auf etwa Raumtem- peratur abgekühlt wird. Am Ende der Extrusionslinie ist eine Säge 10 angeordnet, in der das extrudierte Rohr 4 auf eine vorgegebene Länge abgelängt wird. Das produzierte Rohr 4 wird mittels einer Abzugseinheit 5 durch die vorgelagerten Einrichtungen der Extrusionsanlage gezogen. Wie aus Figur 2 hervorgeht, läuft der aus dem zwischen einer Düse 12 und einem Dorn 13 des Extrusionswerkzeuges 3 gebildete Ringspalt 1 1 austretende Schmelzeschlauch 4' mit Übermaß in die Kalibrierhülse 8 der Kalibriervorrichtung 6 ein. Unmittelbar nach Austritt aus dem Extrusionswerkzeug 3 und unmittelbar vor dem Eintritt in die Kalibrierhülse 8 die Kalibrier-vorrich- tung 6 sind auf dem Umfang des Schmelzeschlauches 4' verteilt mehrere Gigahertz- oder Terahertz-Sensoren 14 angeordnet. Mittels dieser Sensoren 14 werden die Geometriedaten des Schmelzeschlauches 4' ermittelt. So werden die Abstände zwischen den Sensoren 14 und dem Schmelzeschlauch 4' vermessen, woraus sich der Durchmesser des Schmelzeschlauches 4' und sein Durchhängen berechnen lässt. Weiterhin wird die Wandstärke des Schmelzeschlauches 4' an den Positionen der Sensoren 14 vermessen, und aus den gemessenen Unterschieden über dem Umfang verteilt, die Exzentrizität der Wandstärke bestimmt. Ferner kann durch einen Vergleich der Abstands- messwerte der Sensoren 14 nach dem Extrusionswerkzeug 3 und vor der Kalibriervorrichtung 6 der Einlaufwinkel des Schmelzeschlauches 4' in die Kalibriervorrichtung 6 berechnet werden. Darüber hinaus kann durch einen Vergleich der Wandstärkenmesswerte nach dem Extrusionswerkzeug 3 und vor der Kalibriervorrichtung 6 das Sagging der Kunststoffschmelze nach dem Austritt aus dem Extrusionswerkzeug 3 berechnet werden. Die gewonnenen Messdaten bzw. die daraus berechneten Werte können auf vielfältige Weise zur Optimierung des Prozesses verwendet werden. Vorzugsweise indem die Messdaten mit geeigneten Algorithmen über die Anlagensteuerung entweder automatisch eine Korrektur der Steuergrößen vornehmen oder über eine geeignete grafische Benutzeroberfläche (GUI) dem Bediener detaillierte Einstellungsvorgaben vorschlagen. Hierbei sind die Messdaten und die korrelierenden Steuergrößen die folgenden:
Messwert Exzentrizität Steuergröße Zentrierschrauben des
Extrusionswerkzeuges Temperaturzonen des Extrusionswerkzeuges (bei thermischer Rohrkopfzentrierung)
Messwert Durchhängen Steuergröße Höhenversatz zwischen
Extrusionswerkzeug und Kalibriervorrichtung
Messwert Einlaufwinkel Steuergröße Abstand zwischen Extrusionswerkzeug und Kalibriervorrichtung
Weiterhin können die gewonnenen Messdaten auch zur Optimierung der Auslegung des Extrusionswerkzeuges 3, speziell zur Berechnung der optimalen Ringspaltgeometrie für einen breiten Einsatzbereich genutzt werden. Hier können im Besonderen anstelle der Abmessungen des Ringspaltes 1 1 des Extrusionswerkzeuges 3 die tatsächlich gemessenen Durchmesser und Wandstärken des durch die Strangaufweitung vergrößerten Schmelzeschlauches 4' in die Auslegung einfließen.

Claims

Patentansprüche
1 . Verfahren zur Regelung und Steuerung von Rohrextrusionsanlagen unter Einbeziehung von Messdaten eines produzierten Rohres (4), wobei ein aus einem Ringspalt (1 1 ) einer Extrudereinheit (1 ) austretender Schmelzeschlauch (4') mit Übermaß in eine nachfolgende Kalibriervorrichtung (6) einläuft, dadurch gekennzeichnet, dass zwischen Extrusionswerkzeug (3) und Kalibriervorrichtung (6) an mehreren Stellen exakt der Durchmesser, die Wandstärke, etwaige Formab- weichungen, die Ovalität und das Durchhängen des Schmelzeschlauches (4') ermittelt wird, und diese Messwerte bzw. daraus berechnete Daten zur Regelung und Steuerung der Extrusionsanlage herangezogen werden. 2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die
Messdaten berührungslos erfasst werden.
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die
Messdaten mittels optischer oder vollelektronischer Messtechnik Giga- oder Terahertz-Bereich erfasst werden.
Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Messdaten und die daraus berechneten Daten für eine automatische kontinuierliche Ansteuerung der Extrusionsanlage Abstand Extrusionswerkzeug (3) zur Kalibriervorrichtung (6), Höhenversatz Extrusionswerkzeug (3) zur Kalibriervorrichtung (6), Zentrierung Düse (12) zu Dorn (13)) genutzt werden.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Ansteuerung der Extrusionsanlage anhand der Messdaten und der daraus berechneten Daten durch eine detaillierte Benutzerführung über eine geeignete grafische Benutzeroberfläche (GUI) erfolgt.
Anordnung zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zur Erfassung der Messdaten mehrere Sensoren (14) unmittelbar nach dem Austritt des Schmelzeschlauches (4') aus dem Extrusionswerkzeug (3) und unmittelbar vor seinem Eintritt in die Kalibriervorrichtung (6) jeweils auf den Umfang des Schmelzeschlauches (4') verteilt angeordnet sind.
PCT/DE2017/100420 2016-05-18 2017-05-17 Verfahren und anordnung zur regelung und steuerung von rohrextrusionsanlagen WO2017198262A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17728443.7A EP3458244A1 (de) 2016-05-18 2017-05-17 Verfahren und anordnung zur regelung und steuerung von rohrextrusionsanlagen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016109087.5A DE102016109087A1 (de) 2016-05-18 2016-05-18 Verfahren zur Regelung und Steuerung von Rohrextrusionsanlagen
DE102016109087.5 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017198262A1 true WO2017198262A1 (de) 2017-11-23

Family

ID=59021206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100420 WO2017198262A1 (de) 2016-05-18 2017-05-17 Verfahren und anordnung zur regelung und steuerung von rohrextrusionsanlagen

Country Status (3)

Country Link
EP (1) EP3458244A1 (de)
DE (1) DE102016109087A1 (de)
WO (1) WO2017198262A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815841A (zh) * 2021-01-04 2021-05-18 中国航空制造技术研究院 法向测量传感器的位置标定方法及装置
CN114126830A (zh) * 2019-07-18 2022-03-01 斯考拉股份公司 用于测量管状的股线的方法和设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018006144U1 (de) 2018-03-01 2019-04-29 Sikora Ag Vorrichtung zum Vermessen eines rohrförmigen Strangs
DE102018122391A1 (de) * 2018-09-13 2020-03-19 Sikora Ag Vorrichtung und Verfahren zum Detektieren eines Gegenstandes
DE102018126192A1 (de) * 2018-10-22 2020-04-23 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Verfahren und Vorrichtung zum Bestimmen und Regeln des Einlaufwinkels eines Schmelzschlauchs in eine Kalibrierhülse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099418A (en) * 1975-04-01 1978-07-11 Aluminum Company Of America System for determining tube eccentricity
DE3937273A1 (de) * 1988-11-18 1990-05-31 Cincinnati Milacron Austria Verfahren zum herstellen von rohren und profilen aus thermoplastischen kunststoffmassen
DE102006056735A1 (de) 2006-12-01 2008-06-05 Inoex Gmbh Messverfahren zur Bestimmung der Wanddicke eines extrudierten Kunststoffprofils
US20080282565A1 (en) * 2007-05-16 2008-11-20 Rod Livingston Eccentricity gauge for wire and cable and method for measuring concentricity
EP2752287A1 (de) * 2013-01-02 2014-07-09 Proton Products International Limited Vorrichtung zur Messung von durch Extrusionstechniken hergestellten, industriellen Produkten
WO2015074642A1 (de) * 2013-11-22 2015-05-28 Inoex Gmbh Messvorrichtung und verfahren zur vermessung von prüfobjekten
DE102014214046B3 (de) * 2014-07-18 2015-10-01 Inoex Gmbh Messvorrichtung und Verfahren zur Vermessung von Prüfobjekten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2982932B1 (de) * 2015-03-12 2017-10-18 Proton Products International Limited Messung von durch extrusionstechniken hergestellten, industriellen produkten mit terahertz strahlung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099418A (en) * 1975-04-01 1978-07-11 Aluminum Company Of America System for determining tube eccentricity
DE3937273A1 (de) * 1988-11-18 1990-05-31 Cincinnati Milacron Austria Verfahren zum herstellen von rohren und profilen aus thermoplastischen kunststoffmassen
DE102006056735A1 (de) 2006-12-01 2008-06-05 Inoex Gmbh Messverfahren zur Bestimmung der Wanddicke eines extrudierten Kunststoffprofils
US20080282565A1 (en) * 2007-05-16 2008-11-20 Rod Livingston Eccentricity gauge for wire and cable and method for measuring concentricity
EP2752287A1 (de) * 2013-01-02 2014-07-09 Proton Products International Limited Vorrichtung zur Messung von durch Extrusionstechniken hergestellten, industriellen Produkten
WO2015074642A1 (de) * 2013-11-22 2015-05-28 Inoex Gmbh Messvorrichtung und verfahren zur vermessung von prüfobjekten
DE102014214046B3 (de) * 2014-07-18 2015-10-01 Inoex Gmbh Messvorrichtung und Verfahren zur Vermessung von Prüfobjekten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126830A (zh) * 2019-07-18 2022-03-01 斯考拉股份公司 用于测量管状的股线的方法和设备
CN112815841A (zh) * 2021-01-04 2021-05-18 中国航空制造技术研究院 法向测量传感器的位置标定方法及装置
CN112815841B (zh) * 2021-01-04 2022-08-09 中国航空制造技术研究院 法向测量传感器的位置标定方法及装置

Also Published As

Publication number Publication date
DE102016109087A1 (de) 2017-11-23
EP3458244A1 (de) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017198262A1 (de) Verfahren und anordnung zur regelung und steuerung von rohrextrusionsanlagen
DE10251152B4 (de) Extrudieren von peroxidischen vernetzbaren Formteilen aus Kunststoff
EP0062788B1 (de) Verfahren und Vorrichtung zum Herstellen von vorzugsweise schlauchförmigen Strangabschnitten aus thermoplastischem Kunststoff
DE69201583T2 (de) Luftring und Verfahren zum Regeln der Blasfolien-Dicke.
EP2347878B1 (de) Verfahren zur herstellung von peroxidvernetzten polyethylenrohren in einer extrusionslinie
DE3815415C2 (de)
EP2404735B1 (de) Verfahren und Vorrichtung zum Anfahren einer Rohrextrusionslinie
WO2009053320A2 (de) Vorrichtung und verfahren zum kühlen extrudierter kunststoffprofile
EP1916089B1 (de) Vorrichtung zun Extrudieren von Hohlsträngen
EP3658349B1 (de) Verfahren und vorrichtung zur fertigungskontrolle eines extrudierten kunststoffprodukts sowie extrusionsanlage zum extrudieren eines derartigen kunststoffprodukts
EP0516992B1 (de) Verfahren zur Bestimmung und/oder Regelung des Orientierungsgrades von in Blasfolienanlagen hergestellten Schauchfolien
DE102015009528B3 (de) Stufenlos einstellbare Kalibrierhülse für extrudierte Kunststoffrohre
DE202007002954U1 (de) Vorrichtung zur fortlaufenden Herstellung eines Verbundrohres mit Rohrmuffe
EP3687762B1 (de) Verfahren zur herstellung von kunststoffhohlkörpern
EP0325961A2 (de) Verfahren und Vorrichtung zur Temperaturbeeinflussung eines Polymer- bzw. Kunststoff-Folienschlauches, insbesondere Blasfolienschlauches
DE2706927A1 (de) Verfahren und anlage zum regeln beim strangpressen von kunststoffprofilstraengen
EP2052839B1 (de) Vorrichtung mit einem steuerbaren Hauptkühlgasring mit Gleichrichtereinheit und einem Zusatzkühlgasring
DE102018120052B4 (de) Verfahren zum Dimensionswechsel während der Herstellung eines extrudierten Rohres aus Kunststoff
EP2991815B1 (de) Verfahren und vorrichtung zur herstellung eines doppellagigen wellrohres mit rohrmuffe
EP1257404B1 (de) Verfahren und anlage zur innenbeschichtung eines rohrförmigen aussenkörpers
EP2626188B1 (de) Verstellbares Kalibrierverfahren
WO2010029143A2 (de) Vorrichtung und verfahren zum kühlen von kunststoffprofilen
DE2051568A1 (en) Molten plastic extrusion - with pressure - controlled recycle system
DE202004019566U1 (de) Führungskammer als Anfahrhilfe
EP0594018A1 (de) Vorrichtung zum Extrudieren von Kunststoffprofilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17728443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017728443

Country of ref document: EP

Effective date: 20181218