WO2017198167A1 - 磁场强度检测套件 - Google Patents

磁场强度检测套件 Download PDF

Info

Publication number
WO2017198167A1
WO2017198167A1 PCT/CN2017/084662 CN2017084662W WO2017198167A1 WO 2017198167 A1 WO2017198167 A1 WO 2017198167A1 CN 2017084662 W CN2017084662 W CN 2017084662W WO 2017198167 A1 WO2017198167 A1 WO 2017198167A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
magnetic field
field strength
processing
board
Prior art date
Application number
PCT/CN2017/084662
Other languages
English (en)
French (fr)
Inventor
张金翼
Original Assignee
深圳市智信精密仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市智信精密仪器有限公司 filed Critical 深圳市智信精密仪器有限公司
Publication of WO2017198167A1 publication Critical patent/WO2017198167A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices

Definitions

  • the present invention relates to the field of magnetic field detection, and more particularly to a magnetic field strength detection kit.
  • Magnetic phenomenon is one of the earliest physical phenomena recognized by human beings. With the rapid development of science and technology, it plays an increasingly important role in industry, medical care and life. In recent years, new applications on personal smart terminals, such as magnetic connection ports, automatic light-off screens, etc., require the actual measurement of the magnetic field strength in the production of assembled terminal equipment.
  • the existing magnetic field strength detecting devices are mostly dedicated devices, which integrate function modules such as signal detection, processing and analysis, occupy a large space, lack flexibility and convenience, and are inconveniently embedded in various online production and testing devices. High cost of use.
  • the technical problem to be solved by the present invention is to provide a magnetic field strength detecting kit for the above-mentioned drawbacks of the prior art.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a magnetic field strength detecting kit, which comprises a detecting probe, a processing device and a collecting board which are disposed separately from each other on a separate circuit board, wherein:
  • the detecting probe includes a Hall element for sensing a magnetic field strength and generating a corresponding potential difference signal, a signal output interface electrically connected to the Hall element, and the Hall element and the signal output interface are disposed at First circuit board;
  • the processing device includes a signal input interface for receiving the potential difference signal, a processing circuit for processing the potential difference signal to generate analog data related to the potential difference signal, and connecting to the processing circuit Analog data output interface; the signal input interface, the processing circuit, and the simulation The data output interface is disposed on the second circuit board;
  • the acquisition board is provided with an analog data input interface for connecting with the processing circuit, and an A/D conversion circuit for performing A/D conversion on the analog data to generate corresponding digital data, And a digital data output interface connected to the industrial computer to transmit the digital data to the industrial computer for further analysis processing.
  • a second connection cable for connecting the processing device and the acquisition card.
  • one end of the first connecting cable is connected to a signal output interface disposed on the first circuit board, and the other end is connected to a signal input interface on the second circuit board;
  • one end of the second connection cable is connected to an analog data output interface disposed on the second circuit board, and the other end is connected to an analog data input interface on the acquisition board.
  • the acquisition board is a PCI bus analog data acquisition card, and is disposed on a PCI slot of the base of the industrial computer, and the digital data output interface of the acquisition board is docked with the PCI slot.
  • the first circuit board is mounted on a probe substrate made of a weak magnetic material
  • the second circuit board is mounted on a fixed substrate made of a metal material.
  • the processing device includes: a power conversion circuit and a constant current source circuit for providing a working power supply to the processing circuit and the detecting probe,
  • the power conversion circuit includes a DC 24V to +/-15V conversion circuit, and a +15V to +10V conversion circuit.
  • the processing circuit includes:
  • a bias amplifying circuit for filtering and amplifying a potential difference signal generated by the Hall element; [0022] an amplitude-adjustable amplification for adjusting an amplitude of an output signal of the bias amplifying circuit a circuit; and [0023] a differential conversion circuit for differentially transforming an output signal of the amplitude amplifying circuit.
  • the +15V to +10V conversion circuit is configured to provide a working voltage for the constant current source circuit
  • the +10V to +5V conversion circuit is configured to provide a reference voltage for the constant current source circuit, and provide a positive working voltage for the bias amplification circuit, the amplitude amplification circuit, and the differential conversion circuit;
  • the -15V to -5V conversion circuit is configured to provide a negative operating voltage for the bias amplifying circuit, the amplitude amplifying circuit, and the differential converting circuit.
  • the magnetic field strength detecting kit embodying the present invention has the following beneficial effects: a potential difference signal generated by a Hall element disposed on an independent circuit board is processed after being processed by a processing circuit disposed on another independent circuit board The potential difference signal of the magnetic field strength is converted into a voltage signal that can be recognized by the computer board (ie, the acquisition board), and then processed by the A/D conversion circuit on the acquisition board, and the digital data representing the strength of the magnetic field is sent to the computer for analysis. Due to the separation of the detection probe, the processing device and the acquisition board, the magnetic field strength (magnetic flux) detection and signal processing phase separation function can be realized, which is easy to integrate into various online production and testing equipments, and has high flexibility and easy disassembly. Easy to install, easy to integrate, and reliable.
  • FIG. 1 is a block diagram showing the structure of a magnetic field strength detecting kit of the present invention
  • FIG. 2 is a schematic structural view of a detecting probe in a magnetic field strength detecting kit of the present invention
  • FIG. 3 is a schematic structural view of a processing device in a magnetic field strength detecting kit of the present invention.
  • FIG. 4 is a schematic structural view of a acquisition board in the magnetic field strength detection kit of the present invention.
  • FIG. 5 is a schematic diagram of a +15V to +10V conversion circuit in the processing apparatus of the magnetic field strength detecting kit of the present invention
  • FIG. 6 is a schematic diagram of a 24V to + /-15V conversion circuit in the processing device of the magnetic field strength detecting kit of the present invention
  • FIG. 7 is a schematic diagram of a -15V to -5V conversion circuit in the processing apparatus of the magnetic field strength detecting kit of the present invention.
  • FIG. 8 is a schematic diagram of a +10V to +5V conversion circuit in the processing apparatus of the magnetic field strength detecting kit of the present invention.
  • FIG. 9 is a schematic diagram of a constant current source circuit in a processing apparatus of a magnetic field strength detecting kit of the present invention.
  • FIG. 10 is a schematic diagram of a bias amplifying circuit in a processing apparatus of a magnetic field strength detecting kit of the present invention
  • 11 is a schematic diagram of a magnitude-adjustable amplifying circuit in a processing apparatus of a magnetic field strength detecting kit of the present invention
  • FIG. 12 is a schematic diagram of a differential switching circuit in a processing apparatus of a magnetic field strength detecting kit of the present invention
  • FIG. 13 is a schematic view showing the working principle of a Hall element in the magnetic field strength detecting kit of the present invention.
  • Figure 14 is a graph showing the relationship between the magnetic field strength measured by the detecting element of the magnetic field strength detecting kit of the present invention and the generated potential difference;
  • FIG. 15a is a waveform diagram of an output signal of a Hall element in the magnetic field strength detecting kit of the present invention.
  • FIG. 15b is an output waveform diagram of the bias amplifying circuit in the magnetic field strength detecting kit of the present invention.
  • FIG. 16a is a diagram showing an output waveform of the amplitude amplifying circuit in the magnetic field strength detecting kit of the present invention, and a voltage waveform of the grounding point d in FIG. 11;
  • 16b is an output waveform diagram of the differential conversion circuit in the magnetic field strength detecting kit of the present invention, and the voltage waveforms of the probes e and f in FIG. 12, respectively.
  • the magnetic field strength detecting kit of the present invention includes the detecting probe 1, the processing device 2, and the collecting board 3 which are disposed separately from each other on separate circuit boards.
  • the detecting probe 1 includes a Hall element 12 for sensing a magnetic field strength and generating a corresponding potential difference signal, and a signal output interface 17 electrically connected to the Hall element (not shown).
  • the Hall element 12 and the signal output interface 17 are disposed on the first circuit board la, and the first circuit board la is mounted on the probe substrate lb made of a weak magnetic material (e.g., copper, aluminum, etc.).
  • the processing device 2 comprises a signal input interface 27 for receiving a potential difference signal, a processing circuit 21 for processing the potential difference signal to generate analog data related to the potential difference signal, and a connection to the processing circuit.
  • Analog data output interface 28 The signal input interface 27, the processing circuit 21, and the analog data output interface 28 are disposed on the second circuit board 2a, and the second circuit board 2a is mounted on the fixed substrate 2b made of a metal material.
  • the acquisition board 3 is provided with an analog data input interface 38 for connecting to the processing circuit, and an A/D conversion circuit for performing A/D conversion on the analog data to generate corresponding digital data.
  • an A/D conversion circuit for performing A/D conversion on the analog data to generate corresponding digital data.
  • Used for industrial control Digital data output interface connected to the machine to transmit digital data to the industrial computer for further analysis and processing
  • the magnetic field strength detecting kit of the present invention further includes a first connecting cable 7 and a second connecting cable 8.
  • the first connecting cable 7 is used to connect the detecting probe to the processing device.
  • the second connection cable 8 is used to connect the processing device to the acquisition board.
  • the first connection cable 7-terminal is connected to the signal output interface 17 disposed on the first circuit board la, and the other end is connected to the signal input interface 27 on the second circuit board 2a.
  • the second connection cable 8 is connected to the analog data output interface 28 disposed on the second circuit board 2a, and the other end is connected to the analog data input interface 38 on the acquisition board 3.
  • the acquisition board is a PCI bus analog data acquisition card, which is placed on the PCI slot of the base of the industrial control board, and the digital data output interface of the acquisition board is docked with the PCI slot.
  • the processing device 2 further includes: a power conversion circuit 23 and a constant current source circuit 25 for supplying operating power to the processing circuit 21 and the detecting probe 1.
  • the power conversion circuit 23 includes a DC 24V to +/-15V conversion circuit, a +15V to +10V conversion circuit, a +10V to +5V conversion circuit, and a -15V to -5V conversion circuit, see Figure 5-8.
  • 5 is a schematic diagram of a +15V to +10V conversion circuit in the processing apparatus of the magnetic field strength detecting kit of the present invention
  • FIG. 6 is a 24V to + in the processing apparatus of the magnetic field strength detecting kit of the present invention.
  • FIG. 7 is a schematic diagram of a -15V to -5 V conversion circuit in the processing apparatus of the magnetic field strength detecting kit of the present invention
  • FIG. 8 is a +10V to the processing apparatus of the magnetic field strength detecting kit of the present invention. +5V conversion circuit schematic.
  • FIG. 9 is a schematic diagram of a constant current source circuit in a processing apparatus of a magnetic field strength detecting kit according to an embodiment of the present invention. Above +15V
  • the conversion +10V conversion circuit is used to supply the operating voltage to the constant current source circuit 25, and the reference voltage is supplied to the constant current source circuit 25 by the +10V to +5V conversion circuit.
  • the constant current source circuit supplies the operating voltage to the Hall element.
  • the processing circuit 21 in the processing device of the magnetic field strength detecting kit of the present invention comprises: a bias amplifying circuit for filtering and amplifying the potential difference signal generated by the Hall element; and an output signal for the bias amplifying circuit The amplitude-adjustable amplifying circuit for adjusting the amplitude; and a differential converting circuit for differentially transforming the output signal of the amplitude amplifying circuit.
  • 10 is a schematic diagram of an embodiment of a bias amplifying circuit in a processing apparatus of a magnetic field strength detecting kit of the present invention.
  • the bias amplifying circuit filters and processes the potential difference signal from both ends of the Hall element, and the bias circuit is composed of R13, R14, and R15 in FIG.
  • FIG. 11 is a schematic diagram of an embodiment of a magnitude-adjustable amplifying circuit in a processing apparatus of a magnetic field strength detecting kit of the present invention. As shown in Figure 11, the amplitude adjustment is implemented by R16 and R18.
  • the differential conversion circuit is composed of an inverse amplification circuit of U3, R17 and R22.
  • the above +10V to +5V conversion circuit provides a positive working voltage for the bias amplification circuit, the amplitude amplification circuit and the differential conversion circuit; -/15V to 5V conversion circuit is used for the bias amplification circuit and the amplitude amplification circuit And a differential conversion circuit provides a negative operating voltage.
  • FIG. 13 is a schematic view showing the operation principle of a Hall element in the magnetic field strength detecting kit of the present invention.
  • Figure 14 is a graph showing the relationship between the magnetic field strength measured by the detecting element of the magnetic field strength detecting kit of the present invention and the generated potential difference.
  • Figure 1
  • the waveform 1 shown in FIG. 15a is an output signal waveform diagram of a Hall element in the magnetic field strength detecting kit of the present invention.
  • the waveform 2 shown in Fig. 15b is an output waveform diagram of the bias amplifying circuit (shown in Fig. 10) in the magnetic field strength detecting kit of the present invention, and a voltage waveform of the detecting point c to ground in Fig. 10.
  • the waveform 3 shown in Fig. 16a is an output waveform diagram of the amplitude amplifying circuit (shown in Fig. 11) in the magnetic field strength detecting kit of the present invention, and a voltage waveform of the probe d to ground in Fig. 11.
  • the waveform 4 shown in Fig. 16b is an output waveform diagram of the differential conversion circuit (shown in Fig. 12) in the magnetic field strength detecting kit of the present invention, and the voltage waveforms of the probe points e and f in Fig. 12, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种磁场强度检测套件,其包括相互分离地设置在各自独立的电路板上的检测探头(1)、处理装置(2)和采集板卡(3)。其中,检测探头(1)包括设置于第一电路板(1a)上的霍尔元件(12)、与霍尔元件(12)电连接的信号输出接口(17);处理装置(2)包括设置于第二电路板(2a)上的信号输入接口(27)、处理电路(21)、模拟数据输出接口(28);采集板卡(3)上设置有模拟数据输入接口(38)、A/D转换电路、数字数据输出接口,用以传送数字数据至工控机以进行进一步分析处理。由于检测探头(1)、处理装置(2)和采集板卡(3)三者分离,可实现磁场强度(磁通量)探测、信号处理相分离的功能,便于将磁场强度检测装置集成到各种在线的生产和检测设备中,具有灵活度高、易拆装、易集成、可靠性好的优势。

Description

磁场强度检测套件
技术领域
[0001] 本发明涉及磁场检测领域, 更具体地说, 涉及一种磁场强度检测套件。
背景技术
[0002] 磁现象是一种最早被人类认识的物理现象, 随着科技水平的飞速发展, 在工业 、 医疗和生活等方面扮演越来越重要的角色。 近些年, 个人智能终端上的新应 用, 如磁连接端口、 自动亮熄屏等, 就需要在生产组装终端设备吋, 对磁场强 度进行实吋测量。 现有的磁场强度检测设备大都是专用设备, 集信号检测、 处 理、 分析等功能模块为一体, 体积大占空间, 且缺少灵活性、 方便性, 不便嵌 入各种在线的生产和检测设备中, 使用成本高。
[0003] 因此, 需要幵发一种能满足灵活度高、 易拆装、 易集成、 可靠性好等要求的检 测装置。
技术问题
[0004] 本发明要解决的技术问题在于, 针对现有技术的上述缺陷, 提供一种磁场强度 检测套件。
问题的解决方案
技术解决方案
[0005] 本发明解决其技术问题所采用的技术方案是: 构造一种磁场强度检测套件, 其 包括相互分离地设置在各自独立的电路板上的检测探头、 处理装置和采集板卡 , 其中:
[0006] 所述检测探头包括用于感测磁场强度并产生相应的电势差信号的霍尔元件、 与 霍尔元件电连接的信号输出接口, 且所述霍尔元件和所述信号输出接口设置于 第一电路板上;
[0007] 所述处理装置包括用于接收所述电势差信号的信号输入接口、 用于对所述电势 差信号进行处理以生成与所述电势差信号相关的模拟数据的处理电路、 与所述 处理电路连接的模拟数据输出接口; 所述信号输入接口、 处理电路和所述模拟 数据输出接口设置于第二电路板上;
[0008] 所述采集板卡上设置有用于与所述处理电路连接的模拟数据输入接口、 用于对 所述模拟数据进行 A/D转换生成相应的数字数据的 A/D转换电路、 用于与工控机 连接的数字数据输出接口, 以传送所述数字数据至所述工控机以进行进一步分 析处理。
[0009] 在本发明所述的磁场强度检测套件中, 包括
[0010] 用于连接所述检测探头与所述处理装置的第一连接线缆; 及
[0011] 用于连接所述处理装置与所述采集板卡的第二连接线缆。
[0012] 在本发明所述的磁场强度检测套件中,
[0013] 所述第一连接线缆一端与设置于所述第一电路板上的信号输出接口连接、 另一 端与所述第二电路板上的信号输入接口连接;
[0014] 所述第二连接线缆一端与设置于所述第二电路板上的模拟数据输出接口连接、 另一端与所述采集板卡上的模拟数据输入接口连接。
[0015] 在本发明所述的磁场强度检测套件中,
[0016] 所述采集板卡是 PCI总线模拟量数据采集卡, 其安置在所述工控机底板的 PCI插 槽上, 所述采集板卡的数字数据输出接口与所述 PCI插槽对接。
[0017] 在本发明所述的磁场强度检测套件中, 所述第一电路板安装在弱磁性材料制成 的探头底板上, 所述第二电路板安装在金属材料制成的固定基板上。
[0018] 在本发明所述的磁场强度检测套件中,
[0019] 所述处理装置包括: 用于为所述处理电路和检测探头提供工作电源的电源转换 电路和恒流源电路,
其中所述电源转换电路包括直流 24V转 +/-15V转换电路、 +15V转 +10V转换电路
、 +10V转 +5V转换电路、 以及 -15V转 -5V转换电路。
[0020] 在本发明所述的磁场强度检测套件中, 所述处理电路包括:
[0021] 用于对所述霍尔元件产生的电势差信号进行滤波及放大处理的偏置放大电路; [0022] 用于对偏置放大电路的输出信号的幅值进行调节的幅值可调放大电路; 及 [0023] 用于对幅值放大电路的输出信号进行差分变换的差分变换电路。
[0024] 在本发明所述的磁场强度检测套件中, [0025] 所述 +15V转 +10V转换电路用于为所述恒流源电路提供工作电压;
[0026] 所述 +10V转 +5V转换电路用于为所述恒流源电路提供基准电压、 并为所述偏置 放大电路、 幅值放大电路和差分变换电路提供正工作电压;
[0027] 所述 -15V转 -5V转换电路用于为所述偏置放大电路、 幅值放大电路和差分变换 电路提供负工作电压。
发明的有益效果
有益效果
[0028] 实施本发明的磁场强度检测套件, 具有以下有益效果: 设置在独立电路板上的 霍尔元件产生的电势差信号, 经设置在另一独立电路板上的处理电路进行处理 后, 将表征磁场强度的电势差信号转换成计算机板卡 (即采集板卡) 所能识别 的电压信号, 再由采集板卡上的 A/D转换电路处理, 将表征磁场强度的数字数据 送入计算机进行分析。 由于检测探头、 处理装置和采集板卡三者分离, 可实现 磁场强度 (磁通量)探测、 信号处理相分离的功能, 便于集成到各种在线的生产和 检测设备中, 具有灵活度高、 易拆装、 易集成、 可靠性好的优势。
对附图的简要说明
附图说明
[0029] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0030] 图 1是本发明磁场强度检测套件的结构框图;
[0031] 图 2是本发明磁场强度检测套件中检测探头的结构示意图;
[0032] 图 3是本发明磁场强度检测套件中处理装置的结构示意图;
[0033] 图 4是本发明磁场强度检测套件中采集板卡的结构示意图;
[0034] 图 5是本发明磁场强度检测套件的处理装置中的 +15V到 +10V转换电路原理图;
[0035] 图 6是本发明磁场强度检测套件的处理装置中的 24V到 + /-15V转换电路原理图
[0036] 图 7是本发明磁场强度检测套件的处理装置中的 -15V到 -5V转换电路原理图;
[0037] 图 8是本发明磁场强度检测套件的处理装置中的 +10V到 +5V转换电路原理图;
[0038] 图 9是本发明磁场强度检测套件的处理装置中的恒流源电路原理图;
[0039] 图 10是本发明磁场强度检测套件的处理装置中的偏置放大电路原理图; [0040] 图 11是本发明磁场强度检测套件的处理装置中的幅值可调放大电路原理图; [0041] 图 12是本发明磁场强度检测套件的处理装置中的差分转换电路原理图;
[0042] 图 13是本发明磁场强度检测套件中的霍尔元件工作原理示意图;
[0043] 图 14是本发明磁场强度检测套件的检测元件测得的磁场强度与产生的电势差的 关系图;
[0044] 图 15a所示是本发明磁场强度检测套件中的霍尔元件的输出信号波形图, 及图 1
0中探点 a和 b间电压波形;
[0045] 图 15b所示是本发明磁场强度检测套件中的偏置放大电路的输出波形图, 及图 1
0中探点 c对地电压波形;
[0046] 图 16a所示是本发明磁场强度检测套件中的幅值放大电路输出波形图, 及图 11 中探点 d对地电压波形;
[0047] 图 16b所示的是本发明磁场强度检测套件中的差分变换电路的输出波形图, 及 图 12中探点 e和 f分别对地电压波形。
本发明的实施方式
[0048] 结合图 1-4可知, 本发明的磁场强度检测套件包括相互分离地设置在各自独立 的电路板上的检测探头 1、 处理装置 2和采集板卡 3。
[0049] 如图 2所示, 检测探头 1包括用于感测磁场强度并产生相应的电势差信号的霍尔 元件 12、 与霍尔元件电连接 (图中未示出) 的信号输出接口 17。 霍尔元件 12和 信号输出接口 17设置于第一电路板 la上, 第一电路板 la安装在弱磁性材料 (例如 铜、 铝等) 制成的探头底板 lb上。
[0050] 如图 3所示, 处理装置 2包括用于接收电势差信号的信号输入接口 27、 用于对电 势差信号进行处理以生成与电势差信号相关的模拟数据的处理电路 21、 与处理 电路连接的模拟数据输出接口 28。 信号输入接口 27、 处理电路 21和模拟数据输 出接口 28设置于第二电路板上 2a, 第二电路板 2a安装在金属材料制成的固定基板 2b上。
[0051] 如图 4所示, 采集板卡 3上设置有用于与处理电路连接的模拟数据输入接口 38、 用于对模拟数据进行 A/D转换生成相应的数字数据的 A/D转换电路、 用于与工控 机连接的数字数据输出接口, 以传送数字数据至工控机以进行进一步分析处理
[0052] 本发明的磁场强度检测套件还包括第一连接线缆 7和第二连接线缆 8。
[0053] 如图 2和 3所示, 第一连接线缆 7用于连接检测探头与处理装置。
[0054] 如图 3和 4所示, 第二连接线缆 8用于连接处理装置与采集板卡。
[0055] 其中, 第一连接线缆 7—端与设置于第一电路板 la上的信号输出接口 17连接、 另一端与第二电路板 2a上的信号输入接口 27连接。
[0056] 第二连接线缆 8—端与设置于第二电路板 2a上的模拟数据输出接口连接 28、 另 一端与采集板卡 3上的模拟数据输入接口 38连接。
[0057] 在本发明的一实施例中, 采集板卡是 PCI总线模拟量数据采集卡, 其安置在工 控机底板的 PCI插槽上, 采集板卡的数字数据输出接口与 PCI插槽对接。
[0058] 再参见图 1, 处理装置 2还包括: 用于为处理电路 21和检测探头 1提供工作电源 的电源转换电路 23和恒流源电路 25。 其中电源转换电路 23包括直流 24V转 +/-15V 转换电路、 +15V转 +10V转换电路、 +10V转 +5V转换电路、 以及 -15V转 -5V转换 电路, 参见图 5-8。 其中, 图 5是本发明磁场强度检测套件的处理装置中的 +15V 到 +10V转换电路原理图; 图 6是本发明磁场强度检测套件的处理装置中的 24V到 +
/-15V转换电路原理图; 图 7是本发明磁场强度检测套件的处理装置中的 -15V到 -5 V转换电路原理图; 图 8是本发明磁场强度检测套件的处理装置中的 +10V到 +5V 转换电路原理图。
[0059] 图 9是根据本发明一实施例的磁场强度检测套件的处理装置中的恒流源电路原 理图。 上述 +15V
转 +10V转换电路用于为恒流源电路 25提供工作电压, 另外, 由 +10V转 +5V转换 电路为恒流源电路 25提供基准电压。 恒流源电路为霍尔元件提供工作电压。
[0060] 本发明磁场强度检测套件的处理装置中的处理电路 21包括: 用于对霍尔元件产 生的电势差信号进行滤波及放大处理的偏置放大电路; 用于对偏置放大电路的 输出信号的幅值进行调节的幅值可调放大电路; 及用于对幅值放大电路的输出 信号进行差分变换的差分变换电路。 [0061] 图 10是本发明磁场强度检测套件的处理装置中的偏置放大电路一实施例的原理 图。 偏置放大电路将来自霍尔元件两端的电势差信号进行滤波处理, 然后进行 放大, 偏置电路由图 10中 R13、 R14、 R15构成。
[0062] 图 11是本发明磁场强度检测套件的处理装置中的幅值可调放大电路一实施例的 原理图。 如图 11所示, 幅值调节由 R16、 R18实现。
[0063] 图 12是本发明磁场强度检测套件的处理装置中的差分转换电路一实施例的原理 图。 差分转换电路由 U3、 R17和 R22所组的反向放大电路构成。
[0064] 上述 +10V转 +5V转换电路为偏置放大电路、 幅值放大电路和差分变换电路提供 正工作电压; -/15V转 -5V转换电路用于为偏置放大电路、 幅值放大电路和差分 变换电路提供负工作电压。
[0065] 图 13是本发明磁场强度检测套件中的霍尔元件工作原理示意图。 图 14是本发明 磁场强度检测套件的检测元件测得的磁场强度与产生的电势差的关系图。 如图 1
3所示, 在一个截面为定值, 通过 CI 、 C2的电流为定值, 在 C3、 C4两端的电势 差 Vb与该截面法线方向的磁场强度 B成正比, 如图 14所示。
[0066] 图 15a所示的波形 1是本发明磁场强度检测套件中的霍尔元件的输出信号波形图
, 及图 10中探点 a和 b间电压波形。
[0067] 图 15b所示的波形 2是本发明磁场强度检测套件中的偏置放大电路 (图 10所示) 的输出波形图, 及图 10中探点 c对地电压波形。
[0068] 图 16a所示的波形 3是本发明磁场强度检测套件中的幅值放大电路 (图 11所示) 输出波形图, 及图 11中探点 d对地电压波形。
[0069] 图 16b所示的波形 4是本发明磁场强度检测套件中的差分变换电路 (图 12所示) 的输出波形图, 及图 12中探点 e和 f分别对地电压波形。
[0070] 以上实施例只为说明本发明的技术构思及特点, 其目的在于让熟悉此项技术的 人士能够了解本发明的内容并据此实施, 并不能限制本发明的保护范围。 凡跟 本发明权利要求范围所做的均等变化与修饰, 均应属于本发明权利要求的涵盖 范围。

Claims

权利要求书
[权利要求 1] 一种磁场强度检测套件, 其特征在于, 包括相互分离地设置在各自独 立的电路板上的检测探头 (1) 、 处理装置 (2) 和采集板卡 (3) , 其中:
所述检测探头 (1) 包括用于感测磁场强度并产生相应的电势差信号 的霍尔元件 (12) 、 与霍尔元件电连接的信号输出接口 (17) , 且所 述霍尔元件 (12) 和所述信号输出接口 (17) 设置于第一电路板 (la ) 上;
所述处理装置 (2) 包括用于接收所述电势差信号的信号输入接口 (2 7) 、 用于对所述电势差信号进行处理以生成与所述电势差信号相关 的模拟数据的处理电路 (21) 、 与所述处理电路连接的模拟数据输出 接口 (28) ; 所述信号输入接口 (27) 、 处理电路 (21) 和模拟数据 输出接口 (28) 设置于第二电路板 (2a) 上;
所述采集板卡 (3) 上设置有用于与所述处理电路连接的模拟数据输 入接口 (38) 、 用于对所述模拟数据进行 A/D转换生成相应的数字数 据的 A/D转换电路、 用于与工控机连接的数字数据输出接口, 以传送 所述数字数据至所述工控机以进行进一步分析处理。
[权利要求 2] 根据权利要求 1所述的磁场强度检测套件, 其特征在于, 包括
用于连接所述检测探头与所述处理装置的第一连接线缆 (7) ; 及 用于连接所述处理装置与所述采集板卡的第二连接线缆 (8) 。
[权利要求 3] 根据权利要求 2所述的磁场强度检测套件, 其特征在于,
所述第一连接线缆 (7) —端与设置于所述第一电路板上的信号输出 接口 (17) 连接、 另一端与所述第二电路板上的信号输入接口 (27) 连接;
所述第二连接线缆 (8) —端与设置于所述第二电路板上的模拟数据 输出接口连接 (28) 、 另一端与所述采集板卡上的模拟数据输入接口 (38) 连接。
[权利要求 4] 根据权利要求 1所述的磁场强度检测套件, 其特征在于, 所述采集板卡是 PCI总线模拟量数据采集卡, 其安置在所述工控机底 板的 PCI插槽上, 所述采集板卡的数字数据输出接口与所述 PCI插槽 对接。
[权利要求 5] 根据权利要求 1所述的磁场强度检测套件, 其特征在于, 所述第一电 路板 (la) 安装在弱磁性材料制成的探头底板 (lb) 上, 所述第二电 路板 (2a) 安装在金属材料制成的固定基板 (2b) 上。
[权利要求 6] 根据权利要求 1所述的磁场强度检测套件, 其特征在于,
所述处理装置 (2) 包括: 用于为所述处理电路 (21) 和检测探头 (1 ) 提供工作电源的电源转换电路 (23) 和恒流源电路 (25) , 其中 所述电源转换电路 (23) 包括直流 24V转 +/-15V转换电路、 +15V 转 +10V转换电路、 +10V转 +5V转换电路、 以及 -15V转 -5V转换电路
[权利要求 7] 根据权利要求 6所述的磁场强度检测套件, 其特征在于, 所述处理电 路 (21) 包括:
用于对所述霍尔元件产生的电势差信号进行滤波及放大处理的偏置放 大电路;
用于对偏置放大电路的输出信号的幅值进行调节的幅值可调放大电路 ; 及
用于对幅值放大电路的输出信号进行差分变换的差分变换电路。
[权利要求 8] 根据权利要求 7所述的磁场强度检测套件, 其特征在于,
所述 +15V转 +10V转换电路用于为所述恒流源电路 (25) 提供工作电 压;
所述 +10V转 +5V转换电路用于为所述恒流源电路 (25) 提供基准电压 、 并为所述偏置放大电路、 幅值放大电路和差分变换电路提供正工作 电压;
所述 -15V转 -5V转换电路用于为所述偏置放大电路、 幅值放大电路和 差分变换电路提供负工作电压。
PCT/CN2017/084662 2016-05-17 2017-05-17 磁场强度检测套件 WO2017198167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610325455.XA CN105866714A (zh) 2016-05-17 2016-05-17 磁场强度检测套件
CN201610325455.X 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017198167A1 true WO2017198167A1 (zh) 2017-11-23

Family

ID=56634224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084662 WO2017198167A1 (zh) 2016-05-17 2017-05-17 磁场强度检测套件

Country Status (2)

Country Link
CN (1) CN105866714A (zh)
WO (1) WO2017198167A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024006078A1 (en) 2022-06-27 2024-01-04 Helicoid Industries Inc. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866714A (zh) * 2016-05-17 2016-08-17 深圳市智信精密仪器有限公司 磁场强度检测套件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221227A (zh) * 2008-01-30 2008-07-16 安泰科技股份有限公司 剩余电流动作保护器磁芯磁性能测试系统及其方法
CN101702010A (zh) * 2009-10-20 2010-05-05 河北工业大学 基于视觉导引机器人的磁场测量装置
CN101950005A (zh) * 2010-09-10 2011-01-19 上海交通大学 环形软磁材料磁性能测试仪
CN102495382A (zh) * 2011-11-30 2012-06-13 四川电力科学研究院 一种瞬态磁场记录仪
CN203720340U (zh) * 2014-03-16 2014-07-16 四川农业大学 三维磁场强度测量仪
CN105866714A (zh) * 2016-05-17 2016-08-17 深圳市智信精密仪器有限公司 磁场强度检测套件
CN205643669U (zh) * 2016-05-17 2016-10-12 深圳市智信精密仪器有限公司 磁场强度检测套件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201993124U (zh) * 2011-01-30 2011-09-28 辉景电子科技(上海)有限公司 多通道物理量测量装置
CN103162093B (zh) * 2013-03-27 2015-08-26 东北大学 一种用于输油管道漏磁检测器的数据采集装置及方法
CN204228936U (zh) * 2014-10-14 2015-03-25 国家电网公司 一种磁场信号检测系统
CN104500982B (zh) * 2014-11-24 2017-02-22 北京华航无线电测量研究所 一种多通道磁传感器检测和数据采集电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221227A (zh) * 2008-01-30 2008-07-16 安泰科技股份有限公司 剩余电流动作保护器磁芯磁性能测试系统及其方法
CN101702010A (zh) * 2009-10-20 2010-05-05 河北工业大学 基于视觉导引机器人的磁场测量装置
CN101950005A (zh) * 2010-09-10 2011-01-19 上海交通大学 环形软磁材料磁性能测试仪
CN102495382A (zh) * 2011-11-30 2012-06-13 四川电力科学研究院 一种瞬态磁场记录仪
CN203720340U (zh) * 2014-03-16 2014-07-16 四川农业大学 三维磁场强度测量仪
CN105866714A (zh) * 2016-05-17 2016-08-17 深圳市智信精密仪器有限公司 磁场强度检测套件
CN205643669U (zh) * 2016-05-17 2016-10-12 深圳市智信精密仪器有限公司 磁场强度检测套件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024006078A1 (en) 2022-06-27 2024-01-04 Helicoid Industries Inc. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures
US11952103B2 (en) 2022-06-27 2024-04-09 Helicoid Industries Inc. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures

Also Published As

Publication number Publication date
CN105866714A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN104923467B (zh) 电容型电气机械变换器
CN105527480A (zh) 电压检测装置
WO2017198167A1 (zh) 磁场强度检测套件
CN206788647U (zh) 一种电机控制器测试装置
CN102749506A (zh) 一种直流电流数字信号采样电路
CN202351329U (zh) 恒流异频限压型抗干扰地网电阻测试系统
CN108896839A (zh) 一种基于高速模拟开关的直流电场的测量方法
CN110085018A (zh) 一种振动信号无线采集装置及无线采集系统
CN205643669U (zh) 磁场强度检测套件
CN206348378U (zh) 一种直流电压隔离测量装置
CN103792399A (zh) 多路输入输出电路板的测试夹具
CN209070032U (zh) 电信号采集装置
Wang et al. Design of high-speed ECT and ERT system
CN103472292A (zh) 电力设备负载端电压监测采集技术
CN207232274U (zh) 一种轨道车辆和轨道电路电磁兼容性测试系统
WO2015096908A1 (en) Processing system and measurement device for condition monitoring electric machine and system therefor
CN206584027U (zh) 一种电源电位偏移和地电位偏移测试装置
CN206074467U (zh) 三维成像的木材无损检测系统
CN203519565U (zh) 一种自动识别声学检测仪
CN103713185A (zh) 交流变频电机的机端电压测量装置
CN104076301A (zh) 一种交直流混叠磁场的分离式监测电路
CN105510807A (zh) 一种电子电路故障诊断电路
CN217385643U (zh) 功率检测装置、插座以及功率检测系统
CN219349094U (zh) 电机数据检测系统
CN103645364B (zh) 一种多路模拟信号总加变送器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798730

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.04.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17798730

Country of ref document: EP

Kind code of ref document: A1