WO2017196160A1 - Procédé et dispositif de transmission d'informations de liaison descendante - Google Patents

Procédé et dispositif de transmission d'informations de liaison descendante Download PDF

Info

Publication number
WO2017196160A1
WO2017196160A1 PCT/KR2017/005025 KR2017005025W WO2017196160A1 WO 2017196160 A1 WO2017196160 A1 WO 2017196160A1 KR 2017005025 W KR2017005025 W KR 2017005025W WO 2017196160 A1 WO2017196160 A1 WO 2017196160A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
power
lbt
transmission power
channel
Prior art date
Application number
PCT/KR2017/005025
Other languages
English (en)
Inventor
Yingyang Li
Yi Wang
Shichang Zhang
Original Assignee
Samsung Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610652034.8A external-priority patent/CN107371226A/zh
Application filed by Samsung Electronics Co., Ltd. filed Critical Samsung Electronics Co., Ltd.
Priority to US16/099,008 priority Critical patent/US10624047B2/en
Priority to KR1020187023650A priority patent/KR102249748B1/ko
Publication of WO2017196160A1 publication Critical patent/WO2017196160A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to wireless communication technologies, in particular to a method and device for transmitting uplink information on an unlicensed band.
  • the 5G or pre-5G communication system is also called a 'Beyond 4G Network' or a 'Post LTE System'.
  • the 5G communication system is considered to be implemented in higher frequency (mmWave) bands, e.g., 60GHz bands, so as to accomplish higher data rates.
  • mmWave e.g., 60GHz bands
  • MIMO massive multiple-input multiple-output
  • FD-MIMO Full Dimensional MIMO
  • array antenna an analog beam forming, large scale antenna techniques are discussed in 5G communication systems.
  • RANs Cloud Radio Access Networks
  • D2D device-to-device
  • CoMP Coordinated Multi-Points
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC sliding window superposition coding
  • ACM advanced coding modulation
  • FBMC filter bank multi carrier
  • NOMA non-orthogonal multiple access
  • SCMA sparse code multiple access
  • the Internet which is a human centered connectivity network where humans generate and consume information
  • IoT Internet of Things
  • IoE Internet of Everything
  • sensing technology “wired/wireless communication and network infrastructure”, “service interface technology”, and “Security technology”
  • M2M Machine-to-Machine
  • MTC Machine Type Communication
  • IoT Internet technology services
  • IoT may be applied to a variety of fields including smart home, smart building, smart city, smart car or connected cars, smart grid, health care, smart appliances and advanced medical services through convergence and combination between existing Information Technology (IT) and various industrial applications.
  • IT Information Technology
  • 5G communication systems to IoT networks.
  • technologies such as a sensor network, Machine Type Communication (MTC), and Machine-to-Machine (M2M) communication may be implemented by beamforming, MIMO, and array antennas.
  • MTC Machine Type Communication
  • M2M Machine-to-Machine
  • Application of a cloud Radio Access Network (RAN) as the above-described Big Data processing technology may also be considered to be as an example of convergence between the 5G technology and the IoT technology.
  • RAN Radio Access Network
  • a Long Term Evolution (LTE) system of a standard organization of 3rd Generation Partnership Project (3GPP) supports three types of frame structures, which includes Frequency Division Duplex (FDD) and Time Division Duplex (TDD). FDD and TDD are deployed on a licensed band generally. Further, a third frame structure is used on an unlicensed band, which coexists with other wireless access technologies based on the technology of 'listen before talk' (LBT) transmission, that is detection before transmission.
  • LBT 'listen before talk'
  • a wireless frame with a length of 10ms is configured and it is equally divided into 10 sub-frames with a length of 1ms. Wherein, a sub-frame consists of two consecutive time slots each with a length of 0.5ms.
  • Fig. 1 shows a frame structure of a TDD system.
  • Each wireless frame is divided into two half-frames with a length of 5ms.
  • Each half-frame includes 8 time slots each with a length of 0.5ms and 3 special fields, i.e., a downlink pilot time slot (DwPTS), a guard period (GP) and an uplink pilot time slot (UpPTS). And the total length of these special fields is 1ms.
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • TTI downlink transmission time interval
  • a wider working bandwidth may be obtained by adopting carrier aggregation (CA) technology, wherein one cell is Primary Cell (Pcell), and other cells are secondary Cells (Scells).
  • CA carrier aggregation
  • Pcell Primary Cell
  • Scells secondary Cells
  • the third frame structure deployed on the unlicensed band may be configured to be Scell, that is, the cell in another licensed band is configured to be Pcell.
  • an uplink grant signaling (UL-Grant) sent in downlink sub-frame n is to schedule data transmission in uplink sub-frame n+k.
  • k may equal to 4.
  • k may be larger than or equal to 4.
  • a timing relationship between the UL-Grant and uplink data scheduled by the UL-Grant may be dynamic, but its time delay still needs to be larger than or equal to 4.
  • a transmission power of the physical uplink shared channel (PUSCH) in sub-frame i of a cell c may be determined according to the following formula:
  • each parameter in the above formula is defined in section 5.1.1.1 of 36.212 of the 3GPP specification in detail. And these parameters are briefly introduced as follows: refers to a maximum transmission power of a UE configured in cell c; refers to the number of PRBs occupied by the PUSCH; refers to a power offset configured by a higher layer signaling; refers to a link loss; refers to all or part of a control compensation link loss; refers to an accumulated value controlled by closed loop power; and refers to a parameter related to MCS of an uplink transmission. Specifically speaking, when parameter equals to 1.25, . For a case in which only A-CSI is sent and uplink data are not sent, .
  • C refers to the number of CBs divided by one TB; refers to the number of bits of the rth CB and refers to the total number of REs included in the PUSCH channel.
  • the allocation granularity of the uplink PUSCH channel of the UE is one interlace.
  • one interlace includes 10 PRBs, and they are distributed on the whole bandwidth at equal intervals, that is, the interval is 10 PRBs.
  • uplink energy of LAA is distributed on the whole system bandwidth; in the other aspect, under a premise of meeting a certain Power Spectral Density (PSD), the transmission power of the UE in one PRB may be improved, thus in a case that only one interlace is allocated by the UE, uplink transmission may still be performed with a higher power.
  • PSD Power Spectral Density
  • the problem to be solved is how to ensure friendly coexistence with other devices.
  • power adjustments of devices need a transition time.
  • the transmission power of the device would increase from a very low value or 0, such as an OFF power, to a transmission power, which would not be stable in a set power, such as an ON power, till a certain transition time has lapsed.
  • the certain transition time may be named as a power increase transition time hereinafter.
  • the transmission power of the device decreases from a higher value, such as an ON power to a transmission power, which would not be stable in a very small power value or power value 0, such as an OFF value, till a certain transition time has lapsed.
  • the certain transition time would be named as power decrease transition time hereinafter.
  • the power increase transition time of the UE may be 20us after the start time of uplink transmission scheduled by a base station; and the power decrease transition time of the UE may be 20us after the end time of uplink transmission scheduled by the base station.
  • the existing LTE specifications as shown in Figs. 4 and 5, for a PRACH and an SRS, the power increase transition time of the UE may be 20us before start time of the PRACH and the SRS; and the power decrease transition time of the UE may be 20us after end time of the PRACH and the SRS.
  • 3GPP RAN4 specifications there are no demands on an instantaneous value of the transmission power of the device in the transition time. However, the transmission power of the device is required to reach a required value after the transition time.
  • LBT type 4 LBT type 4
  • the device may generate a random number N according the size of a certain contention window (CW). Then the channel may only be occupied when the number of idle channels reaches N.
  • the device may instantly send a filling signal occupying the channel till a start timing of the uplink transmission scheduled, and then starts the uplink transmission scheduled.
  • the device may execute a Self-Defer process, and start the scheduled uplink transmission only when the channel is detected to be idle for a length of time T0 before the start timing of the uplink transmission scheduled.
  • T0 may equal to 25us
  • Another solution is LBT type 2 (CAT-2).
  • the device may occupy the channel as long as the device detects that the channel is idle for a length of time T1 before the start timing of the uplink transmission scheduled.
  • T1 may equal to 25us.
  • the basic principle of the LBT mechanisms is to avoid collision from other devices by detecting whether a CCA time slot is idle.
  • the LBT solution may be NO LBT. That is, the device may start an uplink transmission directly without executing LBT after deferring a time period no longer than T3 from the end of a downlink transmission.
  • T3 may equal to 16us, which is consistent with the short inter-frame space (SIFS) of WiFi.
  • SIFS short inter-frame space
  • NO LBT may be considered that the LBT must be successful after the time of T3.
  • the device may start transmission, and the transmission power of the device needs to be quickly adjusted to a certain value so as to prevent the channel being occupied by other devices. But this requirement contradicts to the requirement that no limitation should be put to the instantaneous power in the power increase transition time of the UE. Therefore, how to process the LBT and the power increase transition time is an urgent problem to be solved.
  • the present disclosure provides a method, a device and a base station for transmitting uplink information, and also provides an LBT-based channel contention method, which may reasonably adjust uplink transmission power of the UE, such that coexistence with other systems in an unlicensed band may be ensured.
  • a method for transmitting uplink information includes:
  • UE user equipment
  • LBT listen before talk
  • the determining the maximum transmission power allowed in the current sub-frame, and determining an uplink transmission power of the UE incldues :
  • the determining the maximum transmission power allowed in the current sub-frame, and determining an uplink transmission power of the UE includes:
  • the determining the maximum transmission power allowed in the current sub-frame, and determining an uplink transmission power of the UE comprises:
  • the performing an uplink data transmission according to the uplink transmission power determined after the LBT is successful includes:
  • Ta and Pa are selected so that the channel is detected as busy by other devices nearby after the power increase transition time of a device starts.
  • the performing an uplink data transmission according to the uplink transmission power determined after the LBT is successful includes at least one of the following:
  • T3us deferring T3us after the ending of a downlink transmission, taking the moment as the start timing of a power increase transition time of the UE, wherein T3 is the length of the deferred time.
  • the LBT comprises:
  • CAT4 occupying, by the UE, the channel only when CAT4 detection is finished before moment t;
  • CAT2 occupying, by the UE, the channel only when the channel is detected as idle for T1us before the moment t;
  • NO LBT the length of period between the moment t and the ending of a downlink transmission is T3us, wherein the start timing of the uplink transmission scheduled by a base station is t; or
  • the length of period between the moment t-Tt and the ending of a downlink transmission is T3us, wherein the start timing of the uplink transmission scheduled by a base station is t, and the power increase transition time of the UE is Tt.
  • the performing an uplink data transmission according to the uplink transmission power determined after the LBT is successful comprises at least one of the following:
  • the last CCA time slot of the LBT of the UE comprising a power increase transition time of the UE
  • a later part of the T3us time period after the ending of a downlink transmission comprising a power increase transition time of the UE.
  • the performing an uplink data transmission according to the uplink transmission power determined after the LBT is successful comprises at least one of the following:
  • the last CCA time slot of the LBT of the UE comprising a first part of a power increase transition time of the UE;
  • the later part of the T3us time period after the ending of a downlink transmission comprising a first part of the power increase transition time of the UE.
  • the LBT comprises:
  • CAT4 occupying, by the UE, the channel only when CAT4 detection is finished before moment t-Tr;
  • CAT2 occupying, by the UE, the channel only when the channel is detected as idle for T1us before the moment t-Tr;
  • NO LBT occupying, by the UE, the channel after a time period of T3us from the ending of a downlink transmission, wherein the start timing of the uplink transmission scheduled by a base station is t, and a residual time of the power increase transition time between the LBT ending moment and the start timing of the uplink transmission scheduled by the base station is Tr; or
  • CAT4 occupying, by the UE, the channel only when CAT4 detection is finished before moment t;
  • CAT2 occupying , by the UE, the channel only when the channel is detected as idle for T1us before the moment t;
  • NO LBT occupying, by the UE, the channel after a time period of T3us from the ending of the downlink transmission, wherein the start timing of the uplink transmission scheduled by a base station is t, a last part of a power increase transition time of the UE is the moment t.
  • the performing an uplink data transmission comprises:
  • Tb and Pb are selected so that other devices nearby detect the channel as idle after the power decrease transition time of one device starts.
  • the performing an uplink data transmission according to the uplink transmission power determined after the LBT is successful comprises:
  • T1+x us after the start timing of OFDM symbol 0 of a sub-frame, performing, by the UE, an uplink data transmission according to the uplink transmission power determined, wherein T1 is a channel idle time required by CAT2, and x is a predetermined value or a value configured by a higher layer signaling; or
  • T1+TA+z us after the start timing of OFDM symbol 0 of a sub-frame, performing, by the UE, an uplink data transmission according to the uplink transmission power determined, wherein T1 is a channel idle time required by CAT2, TA is a time advancement of the UE, and z is a predetermined value or a value configured by a higher layer signaling.
  • a base station includes: a scheduling module and a transceiving module, wherein
  • the scheduling module is to allocate uplink resources occupied by UEs, determine an LBT mechanism, and determine a transmission power allowed by the UEs according to a total uplink resources occupied by all the UEs scheduled in the current sub-frame;
  • the transceiving module is to send a scheduling signaling to the UEs, indicate the UEs to perform uplink and downlink transmission and correspondingly send downlink data and receive uplink data.
  • a UE inlcudes a scheduling analyzing module and a transceiving module, wherein
  • the scheduling analyzing module is to analyze a scheduling signaling from a base station, determine uplink and downlink resources allocated by the base station, determine an LBT mechanism and related parameters adopted by the base station for configuring uplink transmission and determine a maximum transmission power allowed;
  • the transceiving module is to receive the scheduling signaling from the base station, receive downlink data, execute uplink LBT and send uplink data when the LBT is successful.
  • the total uplink transmission power of an entire cell in one sub-frame can be controlled, so as to realize coexistence with other devices, and by reasonably setting an LBT time period and a power increase conversion time, the probablity of collisions among devices can be reduced.
  • Fig. 1 is a schematic diagram illustrating a frame structure of an existing TDD system
  • Fig. 2 is a schematic diagram illustrating PUSCH resource allocation based on interlaces
  • Fig. 3 is a schematic diagram illustrating a power transition time of a PUSCH according to existing LTE specifications
  • Fig. 4 is a schematic diagram illustrating a power transition time of a PRACH according to existing LTE specifications
  • Fig. 5 is a schematic diagram illustrating a power transition time of an SRS according to existing LTE specifications
  • Fig. 6 is a flow chart illustrating the process of performing process on LBT and uplink transmission power according to some examples of the present disclosure
  • Fig. 7 is a schematic diagram illustrating a power increase transition time
  • Fig. 8 is a schematic diagram illustrating a power increase transition time immediately following an LBT time period
  • Fig. 9 is a schematic diagram illustrating a power increase transition time immediately following an LBT time period
  • Fig. 10 is a schematic diagram illustrating a power increase transition time immediately following an LBT time period
  • Fig. 11 is a schematic diagram illustrating a power increase transition time being in an LBT time period
  • Fig. 12 is a schematic diagram illustrating a part of the power increase transition time being in an LBT time period
  • Fig. 13 is a schematic diagram illustrating a part of the power increase transition time being in an LBT time period
  • Fig. 14 is a schematic diagram illustrating NO LBT operation
  • Fig. 15 is a schematic diagram illustrating NO LBT operation
  • Fig. 16 is a schematic diagram illustrating a power decrease transition time
  • Fig. 17 is a schematic diagram illustrating the structure of a base station device of the present disclosure.
  • Fig. 18 is a schematic diagram illustrating the structure of a UE device of the present disclosure.
  • the device contends for a channel based on an LBT mechanism.
  • the candidate LBT mechanisms may include CAT4, CAT2 and NO LBT.
  • the device may occupy the channel to transmit data.
  • Signals transmitted by the device must meet a series of requirements. For example, the transmission power is required to be smaller than a maximum transmission power allowed in a frequency band, the PSD of the transmitted signal is required to be smaller than a maximum PSD allowed in the frequency band, and the bandwidth of the transmission channel is required to be larger than or equal to 80% of the channel bandwidth.
  • Fig. 6 is a flow chart illustrating the process of processing LBT and uplink transmission power according to some examples of the present disclosure.
  • Step 601 UE detects control information, i.e., UL-Grant, for scheduling uplink data transmissions from a base station.
  • control information i.e., UL-Grant
  • the UL-Grant includes control information of the uplink data transmission scheduled for the UE.
  • the UL-Grant includes a PRB set allocated, MCS, and the like.
  • the UL-Grant may also indicate an LBT mechanism required to be executed by the UE.
  • Step 602 the UE determines PRB resources allocated by the base station and other information according to the UL-Grant, determines a maximum transmission power allowed in the current sub-frame, and determines an uplink transmission power of the UE.
  • the uplink transmission power of the UE is limited by the maximum transmission power and the maximum PSD in the band.
  • the base station may schedule multiple UEs, thus a total transmission power of the multiple UEs needs to be further limited to avoid the total uplink transmission power on one sub-frame being overhigh when viewed from the cell as a whole. And it is favorable for coexistence with other devices.
  • Step 603 the UE works according to an LBT mechanism configured by the UL-Grant and starts uplink data transmission after the LBT is successful.
  • an allocation granularity of an uplink PUSCH channel of the UE is one interlace.
  • One interlace contains multiple PRBs, and these PRBs are dispersed on the whole band.
  • Fig. 2 shows that it is assumed that one interlace includes 10 PRBs which are distributed at equal intervals on the whole band of 20MHz.
  • the uplink PUSCH of the UE needs to meet the requirements of a maximum transmission power in one aspect and needs to meet the limitation of the PSD in the other aspect.
  • the PUSCH resource allocation structure based on interlaces may be adopted relaying on a definition method of the frequency granularity of the PSD.
  • the allowed maximum transmission power of the UE may be increased.
  • the frequency granularity of the PSD is 1MHz and the limitation of the PSD is 10dBm/MHz
  • the transmission power on one PRB of one interlace may reach 10dBm
  • the maximum transmission power of the UE on one interlace may reach 20dBm.
  • the maximum transmission power of the UE during allocation of one interlace is increased, but when the base station schedules a plurality of UEs in one sub-frame, the total transmission power in this sub-frame is also increased viewed from the cell as a whole. For example, the base station schedules 10 UEs, the total transmission power may reach 30dBm. For coexistence, the total uplink transmission power of the whole cell in the sub-frame needs to be limited. And a processing method of the present disclosure is described below.
  • the maximum transmission power of one UE should be additionally limited.
  • a first method for controlling the maximum transmission power of the UE is to introduce a power offset relative to the maximum transmission power of the UE.
  • the maximum transmission power of the UE may reach .
  • the transmission power of the UE may be calculated through the following formula, i.e.,
  • a first method for determining is that the UL-Grant scheduling an uplink transmission of the UE includes a field for indicating the power offset .
  • the base station may dynamically adjust the allowed maximum transmission power of the UE, and the flexibility of scheduling may be improved.
  • a second method for determining is that the UL-Grant scheduling UE uplink transmission indicates a reference value L.
  • the power offset is a function of L, that is, .
  • L may be the total number of interlaces of all UEs scheduled by the base station in the current sub-frame. Or, L may be set by the base station according to the number of interlaces scheduled for the multiple UEs. But the L should not be limited to being equal to the total number of interlaces of all UEs scheduled in the current sub-frame. Or, L may be the total number of PRBs of all UEs scheduled by the base station in the current sub-frame. Or L may be set according to the number of PRBs scheduled for the multiple UEs.
  • L should not be limited to being equal to the total number of PRBs of all UEs scheduled by the base station in the current sub-frame.
  • the base station may set L as a lager value for other UEs to increase the allowed maximum transmission power.
  • a primer C may be introduced.
  • C is a value configured by a higher layer signaling, or a predetermined constant. Wherein, .
  • the range of L is from 1 to .
  • the base station may dynamically adjust the allowed maximum transmission power of the UE, and the flexibility of scheduling may be improved.
  • a third method is that some information fields of the UL-Grant for scheduling a UE may be reused to calculate the power offset .
  • the method may be based on the number of PRBs N of the UEs scheduled. Assuming that a total number of PRBs of the system bandwidth be set as , a primer may be introduced. is a value configured by a higher layer signaling, or a predetermined constant. And .
  • the method may be based on the number of interlaces M of the UE scheduled. And assuming the total number of interlaces of the system bandwidth be set as , a primer may be introduced. is a value configured by a higher layer signaling, or a predetermined constant. And .
  • a second method for controlling the maximum transmission power of the UE is to introduce the allowed maximum transmission power of one UE in case of multi-user scheduling.
  • a required transmission power may be calculated according to the scheduling of the base station and a TPC command. That is, .And the transmission power of the UE needs to be smaller than or equal to the maximum transmission power .
  • the transmission power of the UE also needs to meet the limitation caused by multi-use scheduling in one sub-frame. That is, the transmission power of the UE needs to be smaller than or equal to .
  • the transmission power of the UE may be calculated according to the formula as follows.
  • a first method for determining is that the UL-Grant scheduling UE uplink transmission includes indication information, which is used for controlling the transmission power and PSD of the UE.
  • indication information which is used for controlling the transmission power and PSD of the UE.
  • the information controlling the transmission power and PSD may be a reference value L.
  • L may be the total number of interlaces of all UEs scheduled by the base station in the current sub-frame. Or, L may be set by the base station according to the number of interlaces of the multiple UEs scheduled. But L should not be limited to being equal to the total number of interlaces scheduled by the base station in the current sub-frame. Or L may be the total number of PRBs of all UEs scheduled by the base station in the current sub-frame. Or, L may be set by the base station according to the number of PRBs of the multiple UEs scheduled. But L should not be limited to equaling to the total number of PRBs of all UEs scheduled by the base station in the current sub-frame.
  • the base station may increase the allowed maximum transmission power of other UEs by setting L as a small value for other UEs.
  • L is a method of calculating according to L. It is assumed that the maximum transmission power of one device allowed by a national/regional regulation is P m , and the maximum total transmission power of multiple UEs allowed in one sub-frame is .
  • C is a value configured by a higher layer signaling, or a predetermined constant. For example, C equals to 1. Then the total uplink transmission power of all UEs in one sub-frame may be enabled to be smaller than or equal to P m .
  • the maximum transmission power allowed by one device may be controlled.
  • the reference value L is the total number of interlaces scheduled currently.
  • the maximum transmission power allowed by one interlace is .
  • the maximum transmission power allowed by this UE may be obtained by, for example, .
  • a second method is to configure a maximum transmission power of the UE on one PRB or to configure a maximum value of the total transmission power of the UE on all PRBs of one interlace, thus the total transmission power of UEs in the whole cell may be limited in one sub-frame.
  • a total transmission power of a PRB is limited to , and UE schedules N PRBs, then the allowed maximum transmission power of the UE is .
  • the maximum transmission power of one PRB above may be configured by a higher layer signaling or predetermined.
  • the maximum value of the total transmission power of all PRBs on one interlace is limited to , and UE schedules M interlaces, then the allowed maximum transmission power of the UE is .
  • the maximum of the total transmission power of all PRBs on one interlace may be configured by a higher layer signaling or predetermined.
  • a third method for controlling the maximum transmission power of the UE is that controlling over the uplink transmission PSD is further introduced based on the power control method of the existing LTE system.
  • the allowed maximum PSD of one UE is obtained according to the information of the uplink transmission UL-Grant for scheduling UEs, which is labeled as . may be smaller than or equal to the allowed maximum PSD of an unlicensed band, which is labeled as .
  • the transmission power of the UE in one sub-frame may be calculated according to the formula (formula A) as follows according to the LTE method.
  • the uplink transmission PSD of the UE should be smaller than or equal to .
  • the UE may send an uplink signal according to the uplink transmission power calculated according to the formula A. Otherwise, the UE needs to reduce the uplink transmission power till the uplink transmission PSD is smaller than or equals to .
  • a first method for determining is that the UL-Grant for scheduling uplink transmissions of the UE includes a field indicating a deviation of the allowed maximum PSD of the UE relative to . That is, . And may be smaller than or equal to 0. Therefore, the base station may dynamically adjust the allowed uplink transmission PSD of the UE, and further adjusts the allowed maximum transmission power of the UE. Thus the flexibility of scheduling is improved.
  • a second method for determining is that the UL-Grant for scheduling uplink transmissions of the UE indicates a reference value L. And is a function of L. That is, .
  • L may be the total number of interlaces of all UEs scheduled by the base station in the current sub-frame. Or, L may be set by the base station according to the number of interlaces scheduled for the multiple UEs. But, the L may not be limited to equaling to the total number of interlaces of all UEs scheduled in the current sub-frame. Or, L may be a total number of the PRBs of all UEs scheduled by the base station in the current sub-frame. Or, L may be set by the base station according to the number of PRBs scheduled for the multiple UEs.
  • the L may not be limited to equaling to the total number of PRBs of all UEs scheduled by the base station in the current sub-frame.
  • a primer C may be introduced.
  • C is a value configured by a higher layer signaling or a predetermined constant.
  • the range of L is from 1 to .
  • the base station may set L as a lager value for other UEs to increase the allowed maximum PSD and the allowed maximum transmission power.
  • the base station may dynamically adjust the allowed PSD and maximum transmission power. And thus the flexibility of scheduling is improved.
  • a third method is that some information fields of the UL-Grant for scheduling UEs are reused to obtain by calculation.
  • the method may be based on the number of PRBs N scheduled for the UE.
  • the total number of PRBs of the system bandwidth may be set as .
  • a primer may be introduced.
  • the method may be based on the number of interlaces M scheduled for the UE.
  • the total of interlaces of the system bandwidth may be set as .
  • a primer may be introduced, and is a value configured by a higher layer signaling, or a predetermined constant. And .
  • the transition time during power adjusting of the device always exists in actual working environments.
  • the transition time includes a power increase transition time and a power decrease transition time.
  • positions of the power increase transition time of different types of signals relative to a sub-frame/OFDM signal are different. That is, for a PUSCH, the power increase transition time of the UE is 20us after the start time of the uplink transmission scheduled by the base station; for a PRACH and an SRS, the power increase transition time of the UE is 20us before the start time of the PRACH and the SRS.
  • the 3GPP RAN4 specifications there are no requirements on the instantaneous value of the transmission power of the device in the transition time. However the transmission power of the device is required to reach a required value after the transition time.
  • the UE contends for a channel by executing LBT, and starts an uplink transmission after completing the LBT successfully.
  • the LBT may be CAT2 or CAT4.
  • the LBT may also be NO LBT. That is, after the downlink transmission, the uplink transmission may be started directly within T3us without the CAA detection. For example, T3 may equal to 16. In this method, it is assumed that the LBT is successful. And the transmission power of the UE needs to reach a certain value quickly to avoid the channel being occupied by other devices. That is, if the power increase transition time is allowed to be 20us and the value of the power during the 20us is also not limited, collisions between the UE and other devices may be caused.
  • the channel may be detected as idle by other UEs or Wi-Fi terminals nearby in the first 9us time period. As a result, an uplink transmission may be started by one of these terminals, and a collision may be caused.
  • the power increase transition time of the UE is set as Tt, which may be 20us, or of other values. For example, Tt is smaller than 20us, thus the power may be adjusted faster by the device, which is favorable for the LBT mechanism.
  • Tt is smaller than 20us, thus the power may be adjusted faster by the device, which is favorable for the LBT mechanism.
  • the transmission power of the UE is required to be increased to a certain strength Pa from an OFF power in the first Ta time after the power increase transition time starts according to the present disclosure.
  • the transmission power is not required to be stabilized on a target uplink transmission power. But the power during this time period is required to be of a relatively large value.
  • the transmission power after the moment Ta may be larger than or equal to Pa.
  • Pa may be not equal to the target uplink transmission power of the UE.
  • Pa may be an absolute power value, or be determined according to the current target uplink transmission power of the UE.
  • Ta is smaller than or equals to Tt, and Ta is required to be a relatively small value.
  • Ta is far smaller than 9us.
  • the parameters Ta and Pa above may be configured by a higher layer signaling or predetermined. By setting Ta to be a small value and Pa to be a large value, after the power increase transition time of one device starts, the channel would be detected as busy by other devices nearby. Thus collisions are avoided.
  • a timing relation between a time period occupied by the uplink LBT and the power increase transition time of the UE needs to be reasonably configured, such that the probability of collisions between terminals may be avoided being increased.
  • a first method for configuring the timing relation between a time period occupied by the uplink LBT and the power increase transition time of the UE is described below.
  • the transmission power of the UE needs to be maintained below the OFF power.
  • the UE may starts to increase the transmission power according to the scheduling of the base station. That is, the power increase transition time of the UE follows the last CCA time slot immediately.
  • NO LBT in the time period with a length of T3us after the ending of the downlink transmission, the transmission power of the UE needs to be maintained below the OFF power.
  • the UE starts to increase the transmission power according to the scheduling of the base station. That is, the power increase transition time follows the T3us time period immediately.
  • the UE may start the uplink transmission.
  • the start timing of the uplink transmission scheduled by the base station is labeled as t.
  • the CAT4 detection needs to be finished before the moment t, and only after that moment t the UE may occupy the channel.
  • the UE may occupy the channel.
  • a time period of T3us between the moment t and the ending of the downlink transmission is required before the UE occupies the channel.
  • the UE since the power increase transition time ends before the starting time of the uplink transmission scheduled by the base station, the UE needs to finish the LBT before the start timing of the power increase transition time of the uplink transmission scheduled by the base station, and then the UE may start the uplink transmission. It is assumed that the start timing of the uplink transmission scheduled by the base station is labeled as t, and the power increase transition time of the UE is Tt.
  • the CAT4 detection needs to be finished before the moment t-Tt, and only after that moment the UE may occupy the channel.
  • the UE may occupy the channel.
  • a time period T3us between the moment t-Tt and the ending of the downlink transmission is required before the UE occupies the channel.
  • the power increase transition time of the UE may be configured by a higher layer signaling or predetermined.
  • the power increase transition time ends before the start timing of the SRS symbol, such as the method as shown in Fig. 9.
  • the power increase transition time of the UE may be defined to end before the start timing of the scheduled PUSCH, such that the method as shown in Fig. 9 is adopted.
  • LBT time may be obtained by knocking out some OFDM symbols. And the time for LBT is reduced to some extent in the method that the power increase transition time ends before the start timing of the scheduled PUSCH. But interferences in the uplink transmission from/to other UEs may be avoided.
  • the power increase transition time of the UE may be defined to start after the staring timing of the PRACH, such that the method as shown in Fig. 8 is adopted. That the power increase transition time starts after the staring timing of the PRACH is equivalent to reduction of the length of a cyclic prefix (CP) of the PRACH.
  • CP cyclic prefix
  • the structure of the power increase transition time as shown in Fig. 7 may be adopted.
  • the power increase transition time of the UE may start before the start timing of the uplink transmission scheduled by the base station, and the power increase transition time may end after the start timing of the uplink transmission scheduled by the base station.
  • a length of the part of the power increase transition time before the start timing of the uplink transmission scheduled by the base station may be defined as Ta.
  • the transmission power of the UE needs to be increased to a certain strength Pa from OFF power.
  • the power increase transition time of the UE follows the last CCA time slot immediately.
  • the power increase transition time follows the T3 us time period immediately. It is assumed that the start timing of the uplink transmission scheduled by the base station is t. Then for CAT4, the CAT4 detection needs to be finished before t-Ta, and only after that moment the UE may occupy the channel. For CAT2, only when the UE detects the channel has been idle for T1us before the moment t-Ta, the UE may occupy the channel. For NO LBT, a time period of T3us between the moment t-Ta and ending of the downlink transmission is required before the UE occupies the channel.
  • a first part of the power increase transition time needs to be before the start timing of the uplink transmission scheduled by the base station, and a later part of the power increase transition time needs to be after the start timing of the uplink transmission scheduled by the base station.
  • the last CCA time slot of the LBT operation of the UE includes the power increase transition time of the UE. That is, the power increase transition time of the UE starts in a later part of the last CCA time slot, as shown in Fig. 11.
  • the UE sends an uplink signal in a later part of the last CCA time slot, which does not influence the judgment that the last CCA time slot is an idle time slot.
  • the later part of the T3us time period after the ending of downlink transmission may include the power increase transition time of the UE.
  • This method requires that the power increase transition time of the UE is very short, and correspondingly, requirements on the device are higher. Assuming that the start timing of the uplink transmission scheduled by the base station is labeled as t, the power increase transition time of the UE may end before the moment t. For CAT4, the CAT4 detection needs to be finished before the moment t, and only after that moment the UE may occupy the channel. For CAT2, only when the UE detects the channel has been idle for T1us before the moment t, the UE may occupy the channel. For NO LBT, a time period of T3us between the moment t and the ending of a downlink transmission is required before the UE occupies the channel.
  • the method in Fig. 11 may be used for processing a PRACH and an SRS. For a PUSCH, if the method as shown in Fig. 11 is used, the power increase transition time of the UE needs to end before the start timing of the scheduled PUSCH.
  • the last CCA time slot of the LBT operation of the UE includes the first part of the power increase transition time of the UE. That is, the power increase transition time of the UE is overlapped in part with the last CCA time slot.
  • the UE may send an uplink signal in a later part of the last CCA time slot, which does not influence the judgment that the last CCA time slot is the idle time slot.
  • the later part of the T3us time period after the ending of a downlink transmission may include a first part of the power increase transition time of the UE.
  • the power increase transition time of the UE is overlapped in part with the T3us time period.
  • the length of the first part of the power increase transition time may be configured by a higher layer signaling or predetermined.
  • the power is also allowed to be adjusted after the ending of the last CCA time slot or after the ending of the time period of T3us, therefore the requirements on the device are lower.
  • the transmission power of the UE may reach a certain strength, such that CCA detection of other devices may be stopped, and the probability of collisions may be reduced.
  • a time period of T3us between the moment t-Tr and the ending of downlink transmission is required before the UE occupies the channel.
  • the residual part Tr of the power increase transition time may be configured by a higher layer signaling or predetermined.
  • the method in Fig. 12 may be used for a PRACH and an SRS.
  • the power increase transition time of the UE needs to end before the start timing of the scheduled PUSCH.
  • the UE is required to finish the LBT before the start timing of the uplink transmission scheduled by the base station, and then the UE may start the uplink transmission.
  • the UE is defined to increase transmission power before the start timing of the scheduled uplink signal, and the power increase transition time may extend to a time after the start timing of the scheduled uplink signal.
  • the start timing scheduled by the base station is labeled as t.
  • the CAT4 detection needs to be finished before moment t, and only after that moment the UE may occupy the channel.
  • CAT2 only when the UE detects the channel has been idle for T1us before the moment t, the UE may occupy the channel.
  • a time period T3us between the moment t and the ending of a downlink transmission is required before the UE may occupies the channel.
  • a PRACH and an SRS it may be defined that a first part of the power increase transition time is before the start timing of the uplink transmission scheduled by the base station, and a later part of the power increase transition time is after the start timing of the uplink transmission scheduled by the base station.
  • the UE may directly perform an uplink transmission according to the schedule of the base station without detecting the ending position of a downlink transmission of the base station.
  • the starting part of the uplink signal of the UE still includes the power increase transition time.
  • UE does not need to care the length of the time period between the uplink signal sent and the ending position of the downlink transmission of the base station.
  • the requirements on the time period between the ending of the downlink transmission and the uplink signal of the UE of NO LBT are guaranteed by the base station.
  • the base station may need to further send a signal occupying the channel after the last OFDM signal of a downlink data channel till the time period between the ending of the downlink transmission and the uplink signal of the UE meets the requirements of NO LBT.
  • the time period is smaller than or equal to 16us.
  • the base station may reserve a time period of 16us based on a UE which is close to the base station. In this way, for a UE farther away from the base station, due to an influence of a time advancement (TA) of the uplink signal, the length of the time period between the uplink signal of the UE and the ending position of downlink transmission of the base station may be shortened, therefore, the requirements on conversion time from a receiving end to a sending end of the UE may become more strict in fact.
  • TA time advancement
  • the base station may reserve a time period of 16us based on a UE closest to the base station among the multiple UEs. In this way, the time period between the ending position of the downlink sub-frame at the base station side and the starting position of the received UE uplink signal may be larger than 16us. For the UE closest to the base station, after the influence of the TA of the UE is considered, the time period between the UE uplink signal and the ending position of the downlink transmission of the base station is about 16us.
  • the time period between the uplink signal of the UE and the ending position of downlink transmission of the base station may be shortened, and thus the requirements on conversion time from a receiving end to a sending end of the UE may become more strict in fact.
  • the transition time may include a power increase transition time and a power decrease transition time.
  • the power decrease transition time of the UE is 20us after the ending of corresponding uplink transmission.
  • the transmission power of the device needs to reach a required value after the transition time.
  • the UE contends for a channel by executing LBT, and starts uplink transmission after completing LBT successfully.
  • the above LBT may be CAT2 or CAT4.
  • the LBT may also be NO LBT.
  • the transmission power of the UE needs to be decreased to be below a certain value in a short time. Otherwise, the residual power in the transition time may interfere the CCA operations of other devices. For example, if the actual transmission power of the first 9us of the UE in the 20us power decrease transition time is high, the channel would be detected as busy by other UEs or WiFi terminals nearby in the first 9us time period, and thus no uplink transmission would be started.
  • the power decrease transition time of the UE is Tt, which may be 20us or of other values. For example, Tt may be smaller than 20us.
  • the device may adjust the power faster, which is favorable for the LBT mechanism.
  • the transmission power of the UE is required to be decreased to be below a certain strength Pb from the OFF power before the moment Tb according to the present disclosure.
  • the transmission power is not required to be stabilized on the OFF power, but the power during this time period is required to be of a small value.
  • the transmission power after the moment Tb may be smaller than or equal to Pb.
  • Pb may not equal to OFF power.
  • Pb may be an absolute power value, or determined according to a target uplink transmission power of the current sub-frame of the UE.
  • Tb may be smaller than or equal to Tt, and Tb needs to be of a smaller value.
  • Tb is far smaller than 9us.
  • the parameters Tb and Pb above may be configured by a higher layer signaling or predetermined. If Tb is a smaller value and Pb is a value small enough, after the power decrease transition time of one device starts, the channel would be detected as idle by other devices nearby.
  • the power decrease time may start after the ending timing of an uplink transmission.
  • a first part of the power decrease transition time may be before the ending timing of the uplink transmission, and a later part may be after the ending timing of the uplink transmission.
  • the length of the first part of the power decrease transition time may be configured by a higher layer signaling or predetermined. Particularly, the length of the first part may be Tb, after the uplink transmission is ended, although the transmission power of the UE is still unstable, the transmission power is decreased to a certain degree, such that the influence on the CCA of other devices is reduced.
  • this UE may start to execute CAT2 after deferring a certain time x relative to the start timing of OFDM symbol 0 of sub-frame n.
  • x is larger than or equals to 0.
  • the channel may be occupied by the UE for uplink transmission. That is, the timing that the UE starts the uplink transmission is T1+x us after the start timing of OFDM symbol 0 of sub-frame n.
  • x may be a predetermined value or a value configured by a higher layer signaling.
  • x may be public for a group of UEs, all UEs in a cell or all UEs in an entire network, such that the multiple UEs may start CAT2 in the same timing position and start uplink transmission at the same time.
  • the power decrease transition time may be labeled as Tt.
  • x may equal to Tt.
  • x may be smaller than Tt.
  • the delay time x may be smaller than Tt.
  • the delay time x may equal to Tb. Since the power during the time period after Tb of the power decrease transition time is smaller than Pb, other UEs would not be stopped generally.
  • this UE may start to execute CAT2 after deferring a certain time y relative to the start timing of OFDM symbol 0 of sub-frame n.
  • y TA+z
  • z is larger than or equals to 0.
  • TA is included in the delay time to compensate the influence of the timing overlapping of the uplink and downlink sub-frames caused by TA.
  • z is included in the delay time for compensating the influence of the power decrease transition time.
  • z may be a predetermined value or a value configured by a higher layer signaling.
  • z may be public for a group of UEs, all UEs in a cell or all UEs in an entire network, such that the multiple UEs may start CAT2 in the same timing position and start uplink transmissions at the same time.
  • the power decrease transition time may be labeled as Tt, and z may equal to Tt. Or, z may be smaller than Tt.
  • the delay time z above may be smaller than Tt.
  • the delay time z may equal to Tb.
  • Pb since the power during the time period after Tb of the power decrease transition time is smaller than Pb, other UEs may not be stopped generally.
  • z may be the same or not the same as the parameter x in the method for processing the last OFDM symbol of sub-frame n-1 for other UEs.
  • the present application also discloses a base station.
  • the base station device may include a scheduling module and a transceiving module.
  • the scheduling module is to allocate uplink resources to be occupied by UEs, determine an LBT mechanism, and determine an allowed transmission power of each UE according to a total amount of the uplink resources occupied by all the UEs scheduled in the current sub-frames.
  • the transceiving module is to send a scheduling signaling to the UEs, indicate the UEs to perform uplink and downlink transmission and correspondingly send downlink data and receive uplink data.
  • the present application also discloses a UE.
  • the UE device may include a scheduling analyzing module and a transceiving module.
  • the scheduling analyzing module is to analyze a scheduling signaling from a base station, determine uplink and downlink resources allocated by the base station, determine an LBT mechanism and related parameters adopted by the base station for configuring uplink transmission and determine a maximum transmission power allowed.
  • the transceiving module is to receive the scheduling signaling from the base station, receive downlink data, execute uplink LBT and send uplink data when the LBT is successful.
  • respective function units in all embodiments of the present application may be integrated in one processing module, or respective units exist physically, or two or more units are integrated in one module.
  • the integrated module may be implemented by adopting a hardware form or implemented by adopting a form of software function module.
  • the integrated module may be stored in one computer-readable storage medium when implemented in the form of software function module and sold or used as an independent product.
  • the storage medium mentioned above may be a read-only storage, a magnetic disk or compact disc.

Abstract

L'invention concerne un procédé et un système de communication permettant de faire converger un système de communication de 5ème génération (5G) destiné à prendre en charge des débits de données supérieurs à ceux d'un système de 4ème génération (4G) avec une technologie destinée à l'Internet des objets (IoT). La présente invention peut être appliquée à des services intelligents fondés sur la technologie de communication 5G et la technologie associée à l'IoT, notamment les maisons intelligentes, les bâtiments intelligents, les villes intelligentes, les voitures intelligentes, les voitures connectées, les soins de santé, l'enseignement numérique, la vente au détail intelligente et les services liés à la sécurité et à la sûreté. L'invention concerne un procédé de transmission d'informations de liaison montante, dans lequel : un équipement utilisateur (UE) détecte des informations de commande, c'est-à-dire un octroi de liaison montante (UL-Grant) pour programmer des transmissions de données de liaison montante à partir d'une station de base; détermine, en fonction des informations de commande, le nombre de blocs de ressources physiques (PRB) affectés par la station de base, détermine une puissance de transmission maximale autorisée dans la sous-trame courante et détermine une puissance de transmission de liaison montante de l'UE; exécute une écoute avant transmission (LBT) selon des configurations d'octroi de liaison montante et lance une transmission de données de liaison montante après la réussite de la LBT. Le procédé selon invention permet de réguler la puissance de transmission de liaison montante totale d'une cellule entière dans une sous-trame, de sorte à réaliser la coexistence avec d'autres dispositifs. En outre, le réglage raisonnable d'une durée de LBT et d'une durée de transition d'augmentation de puissance permet de réduire la probabilité de collisions entre des dispositifs.
PCT/KR2017/005025 2016-05-13 2017-05-15 Procédé et dispositif de transmission d'informations de liaison descendante WO2017196160A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/099,008 US10624047B2 (en) 2016-05-13 2017-05-15 Method and device for transmitting uplink information
KR1020187023650A KR102249748B1 (ko) 2016-05-13 2017-05-15 업링크 정보를 송신하기 위한 방법 및 장치

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610319889 2016-05-13
CN201610319889.9 2016-05-13
CN201610324383.7 2016-05-16
CN201610324383 2016-05-16
CN201610652034.8A CN107371226A (zh) 2016-05-13 2016-08-10 传输上行信息的方法及设备
CN201610652034.8 2016-08-10

Publications (1)

Publication Number Publication Date
WO2017196160A1 true WO2017196160A1 (fr) 2017-11-16

Family

ID=60266708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005025 WO2017196160A1 (fr) 2016-05-13 2017-05-15 Procédé et dispositif de transmission d'informations de liaison descendante

Country Status (1)

Country Link
WO (1) WO2017196160A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012545A (zh) * 2018-01-04 2019-07-12 苹果公司 Laa和dsd部署的吞吐量性能
WO2020089688A3 (fr) * 2018-10-31 2020-07-02 Lenovo (Singapore) Pte. Ltd. Préemption d'une attribution de ressources de liaison montante
CN111436234A (zh) * 2018-11-13 2020-07-21 联发科技(新加坡)私人有限公司 在移动通信中检测一致的先听后说失败的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082437A (ko) * 2010-01-11 2011-07-19 삼성전자주식회사 이동 통신 시스템에서 경쟁 기반 액세스의 데이터 송수신 방법 및 장치
US20150057011A1 (en) * 2012-02-24 2015-02-26 Interdigital Patent Holdings, Inc. Random access in dynamic and shared spectrums
WO2015042594A2 (fr) * 2013-09-23 2015-03-26 Qualcomm Incorporated Programmation de forme d'onde en liaison montante et multi-sous-trame variable en lte-u
US20150296463A1 (en) * 2012-02-02 2015-10-15 Broadcom Corporation Power control for carrier aggregation on shared bands
US20160095134A1 (en) * 2014-09-30 2016-03-31 Qualcomm Incorporated Uplink grant management for lte in unlicensed spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082437A (ko) * 2010-01-11 2011-07-19 삼성전자주식회사 이동 통신 시스템에서 경쟁 기반 액세스의 데이터 송수신 방법 및 장치
US20150296463A1 (en) * 2012-02-02 2015-10-15 Broadcom Corporation Power control for carrier aggregation on shared bands
US20150057011A1 (en) * 2012-02-24 2015-02-26 Interdigital Patent Holdings, Inc. Random access in dynamic and shared spectrums
WO2015042594A2 (fr) * 2013-09-23 2015-03-26 Qualcomm Incorporated Programmation de forme d'onde en liaison montante et multi-sous-trame variable en lte-u
US20160095134A1 (en) * 2014-09-30 2016-03-31 Qualcomm Incorporated Uplink grant management for lte in unlicensed spectrum

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110012545A (zh) * 2018-01-04 2019-07-12 苹果公司 Laa和dsd部署的吞吐量性能
CN110012545B (zh) * 2018-01-04 2022-12-06 苹果公司 Laa和dsd部署的吞吐量性能
WO2020089688A3 (fr) * 2018-10-31 2020-07-02 Lenovo (Singapore) Pte. Ltd. Préemption d'une attribution de ressources de liaison montante
US11304223B2 (en) 2018-10-31 2022-04-12 Lenovo (Singapore) Pte. Ltd. Preempting an allocation of uplink resources
US11956800B2 (en) 2018-10-31 2024-04-09 Lenovo (Singapore) Pte. Ltd. Preempting an allocation of uplink resources
CN111436234A (zh) * 2018-11-13 2020-07-21 联发科技(新加坡)私人有限公司 在移动通信中检测一致的先听后说失败的方法及装置
CN111436234B (zh) * 2018-11-13 2023-06-13 联发科技(新加坡)私人有限公司 在移动通信中检测一致的先听后说失败的方法及装置

Similar Documents

Publication Publication Date Title
WO2018030711A1 (fr) Procédé et appareil de prise en charge d'une bande passante d'ue souple dans un système de communication de nouvelle génération
WO2020055212A1 (fr) Fonctionnement d'équipement d'utilisateur à consommation d'énergie réduite
WO2021015596A1 (fr) Procédé et appareil de signalisation de commande pour une utilisation de ressources améliorée
WO2018174610A1 (fr) Procédé et équipement d'utilisateur pour une transmission de données multiporteuses
WO2020009383A1 (fr) Améliorations apportées à la fiabilité de réception pour des données et des informations de commande
WO2020067848A1 (fr) Signal de référence de positionnement
WO2021066379A1 (fr) Procédé et appareil destinés à une procédure d'accès aléatoire
WO2019031756A1 (fr) Procédé et appareil de transmission en liaison montante dans un système de communication sans fil
EP3443800A2 (fr) Procédé et appareil de transmission de données
WO2018124675A1 (fr) Équipement utilisateur (ue) et procédé pour effectuer un accès aléatoire pour un transfert intercellulaire de mode connecté basé sur la formation de faisceau
WO2016208953A1 (fr) Procédé et appareil de mise en œuvre de communication dans un système de communication sans fil
WO2021086116A1 (fr) Procédé et appareil de configuration de partie de bande passante dans un système de communication sans fil
WO2021162398A1 (fr) Procédé et appareil pour procédure d'accès aléatoire dans un système de communication sans fil
WO2022060103A1 (fr) Amélioration de la flexibilité de planification pour un fonctionnement avec agrégation de porteuses
WO2017196160A1 (fr) Procédé et dispositif de transmission d'informations de liaison descendante
WO2020141948A1 (fr) Gestion d'accès inter-réseaux pour systèmes à spectre partagé
WO2013024985A2 (fr) Point de transmission, procédé pour la configuration d'un signal de référence pour celui-ci, terminal et procédé pour l'émission du signal de référence pour celui-ci
WO2015046831A1 (fr) Procédé d'attribution de ressources de canal de commande en liaison descendante d'un terminal et appareil associé
WO2017196053A2 (fr) Procédé et appareil de transmission de données
WO2021157969A1 (fr) Procédé et appareil de sélection de groupe de préambule d'accès aléatoire dans un système de communication sans fil
CA3112352C (fr) Procedure d'acces aleatoire
WO2021162485A1 (fr) Commande de puissance de liaison montante dans une connectivité double
WO2019194645A1 (fr) Procédé et appareil de synchronisation dans un système de communication sans fil
WO2021125627A1 (fr) Procédé et appareil pour libérer des ressources de pusch allouées pour un accès aléatoire dans un système de communication sans fil
WO2019232690A1 (fr) Configuration de ressources pour mesure d'interférences inter-liaisons

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187023650

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796460

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796460

Country of ref document: EP

Kind code of ref document: A1