WO2017195715A1 - Sol and gel comprising alkoxysilanes and polyrotaxane - Google Patents

Sol and gel comprising alkoxysilanes and polyrotaxane Download PDF

Info

Publication number
WO2017195715A1
WO2017195715A1 PCT/JP2017/017340 JP2017017340W WO2017195715A1 WO 2017195715 A1 WO2017195715 A1 WO 2017195715A1 JP 2017017340 W JP2017017340 W JP 2017017340W WO 2017195715 A1 WO2017195715 A1 WO 2017195715A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyrotaxane
carbon atoms
airgel
gel
Prior art date
Application number
PCT/JP2017/017340
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 耕三
ラン ジャン
和明 加藤
横山 英明
皓一 眞弓
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2017195715A1 publication Critical patent/WO2017195715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to a sol comprising alkoxysilanes and a polyrotaxane, a gel obtained from the sol, a method for producing the sol, and a method for producing the gel.
  • the present invention also relates to novel alkoxysilanes or novel modified polyrotaxanes that form the sol.
  • Silica airgel which is a very low density porous material, needs to have both heat insulation and transparency, such as window materials, because it exhibits very high heat insulation and transparency due to its fine pores. Application to the material is expected. However, application of aerogels composed only of silica has not progressed due to their mechanical vulnerability.
  • Non-Patent Document 1 a composite airgel in which a polymer is blended with silica has been proposed (Non-Patent Document 1) instead of silica-only aerogel.
  • Non-Patent Document 1 a composite aerogel is prepared by blending polyacrylate resin, polyamide resin, epoxy resin, polystyrene, polyurea, or the like as a polymer.
  • the composite airgel can solve the problem of mechanical vulnerability, but has a problem that causes a remarkable decrease in transparency. Specifically, by blending a polymer, only the airgel having transparency deteriorated and becoming turbid can be prepared, and there is a problem that application to a material requiring transparency is hindered.
  • an object of the present invention is to solve the above problems. Specifically, an object of the present invention is to provide a silica-based airgel having desired properties in heat insulation, transparency and mechanical strength. Moreover, the objective of this invention is providing the sol for obtaining this silica type airgel in addition to the said objective. Furthermore, the objective of this invention is providing the manufacturing method of the said sol, and the manufacturing method of the said gel in addition to the said objective or the said objective. Another object of the present invention is to provide novel alkoxysilanes or novel modified polyrotaxanes that can form the sol in addition to or in addition to the above objects.
  • polyrotaxane has a cyclic molecule of —SiR 11 m (OR 12 ) 3-m (Wherein R 11 and R 12 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4, carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups; m represents an integer of 0 to 2, preferably 0 to 1, more preferably 0) It is good to have group represented by these.
  • the polyrotaxane has a cyclic molecule of —SiR 11 m (OR 12 ) 3-m (Wherein R 11 and R 12 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4, carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups; m represents an integer of 0 to 2, preferably 0 to 1, more preferably 0) Having a group represented by The linker moiety may be a linear or branched alkyl group having 1 to 20 carbon atoms, an optionally substituted phenyl group, an ethylene glycol group or a group having a siloxane bond, preferably 1 to 20 carbon atoms, A linear or branched alkyl group or ethylene glycol group having 1 to 5 carbon atoms is
  • ⁇ 4> A gel obtained from the sol described in any one of ⁇ 1> to ⁇ 3> above.
  • the gel may be an airgel.
  • the gel is an airgel
  • the maximum compressive strain of the airgel should be 10% or more, preferably 30% or more, more preferably 50% or more, and most preferably 60% or more.
  • the gel may be an airgel, and the airgel may be transparent.
  • transparent means that, for example, an SEM image of an airgel does not show a particle size of 100 nm or more due to growth or aggregation of silica particles.
  • the airgel having a thickness of 2 mm may transmit light having a wavelength of 550 nm by 60% or more, preferably 65 to 100%, more preferably 70 to 100%.
  • the transmittance T (2) at 2 mm can be obtained by substituting the transmittance T at 550 nm at another thickness d (mm) into the following formula (X).
  • the gel is an airgel
  • the airgel has a porosity of 80% or more, preferably 85% or more, more preferably 90% or more.
  • the gel is an airgel
  • the thermal conductivity of the airgel is 0.05 Wm ⁇ 1 K ⁇ 1 or less, preferably 0.02 Wm ⁇ 1 K ⁇ 1 or less. More preferably, it is 0.015 Wm ⁇ 1 K ⁇ 1 or less.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups; n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0); and (b) the ends of the pseudopolyrotaxane in which the openings of the cyclic molecule are skewered by the linear molecule.
  • a method for preparing a sol comprising: (I) a step of preparing (a) SiR 1 n (OR 2 ) 4-n ; (II) preparing (b) the polyrotaxane; and (III) mixing the (a) SiR 1 n (OR 2 ) 4-n and the (b) polyrotaxane and performing hydrolysis; The method as described above, wherein the sol is obtained.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups; n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0); and (b) the ends of the pseudopolyrotaxane in which the openings of the cyclic molecule are skewered by the linear molecule.
  • a method for preparing a gel comprising: (I) a step of preparing (a) SiR 1 n (OR 2 ) 4-n ; (II) a step of preparing the (b) polyrotaxane; and (III) the (a) SiR 1 n (OR 2 ) 4-n and the (b) polyrotaxane are mixed and hydrolyzed to obtain a sol. Process; (IV) A step of preparing the wet gel by allowing the obtained sol to stand; A method for preparing a wet gel.
  • a method for preparing an airgel further comprising:
  • An airgel having a —Si—O—Si— bond and a group derived from a cyclic molecule, wherein the maximum compressive strain of the airgel is 10% or more, preferably 30% or more, more preferably 50% or more. Airgel, most preferably 60% or more.
  • the cyclic molecule is represented by the following formula I (Wherein X 11 is a linear or branched alkylene group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms, more preferably 2 to 10 carbon atoms (provided that non-adjacent carbon atoms are —CO—NH—, — NH-CO-, -CO-, -CO-O-, -O-CO- may be substituted), a group represented by-(CH 2 -CH (R 25 ) -O) n- (formula R 25 represents hydrogen or a linear or branched alkyl group having 1 to 8, preferably 1 to 6, and more preferably 1 to 4 carbon atoms, and
  • the present invention it is possible to provide a silica-based airgel having desired properties in heat insulation, transparency, and mechanical strength.
  • the present invention can provide a sol for obtaining the silica-based aerogel.
  • a method for producing the sol and a method for producing the gel can be provided.
  • the present invention can provide novel alkoxysilanes or novel modified polyrotaxanes that can form the sol.
  • Example 3 shows an FT-IR spectrum of the triethoxysilyl-modified polyrotaxane synthesized in Example 1.
  • the black line shows the FT-IR spectrum of polyrotaxane (HAPR) which is the starting material used in Example 1.
  • Embodiment 1 H NMR spectrum of Example starting material used in 1 polyrotaxane (HAPR) (in FIG. 2, indicated by "C"), 1 H NMR spectrum of triethoxysilyl modified polyrotaxane synthesized in Example 1 (FIG. 2 And 1 H NMR spectrum (shown as “B” in FIG. 2) of the reaction product obtained in Example 1.
  • Example 3 shows SEC chromatograms of the triethoxysilyl-modified polyrotaxane synthesized in Example 1 and the polyrotaxane (HAPR) that is the starting material used in Example 1.
  • FIG. The thermogravimetric analysis results of the polyrotaxane-reinforced silica airgels A-1 to A-5 obtained in Examples 2 to 6 are shown.
  • the SEM image inside a polyrotaxane reinforced silica airgel A-1 is shown.
  • the present application provides a sol comprising an alkoxysilane and a polyrotaxane, a gel obtained from the sol, a method for producing the sol, and a method for producing the gel.
  • the present application also provides novel modified polyrotaxanes that form the sol or novel alkoxysilanes from a different point of view. Hereinafter, it demonstrates in order.
  • the present application provides a sol comprising an alkoxysilane and a polyrotaxane.
  • the sol of the present application is (A) SiR 1 n (OR 2 ) 4-n (Wherein R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups; n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0); and (b) the ends of the pseudopolyrotaxane in which the openings of the cyclic molecule are skewered by the linear molecule.
  • the sol may contain or contain components other than the above (a) and (b). Further, the sol of the present application may be formed from only the components (a) and (b). Hereinafter, the component (a) and the component (b) will be described in this order.
  • R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 carbon atoms.
  • n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0.
  • Component (a) may be a conventionally known substance or a newly synthesized substance. More specifically, examples of the component (a) include tetraethoxysilane in which n is 0 and R 2 is an ethyl group, and tetramethoxysilane in which n is 0 and R 2 is a methyl group. Although it can, it is not limited to these.
  • Component (b) is a polyrotaxane in which blocking groups are arranged so that the cyclic molecules are not detached at both ends of the pseudopolyrotaxane in which the openings of the cyclic molecules are skewered by linear molecules.
  • the polyrotaxane is a conventionally known polyrotaxane, for example, the polyrotaxane described in Japanese Patent No. 4521875, as described in detail below, the cyclic molecule is optionally —SiR 11 m (OR 12 )
  • a polyrotaxane having a group represented by 3-m may be used.
  • Each component of the polyrotaxane, that is, “cyclic molecule”, “linear molecule”, and “blocking group” will be described later.
  • the polyrotaxane as the component (b) preferably has a cyclic molecule having a group represented by —SiR 11 m (OR 12 ) 3-m , optionally via a linker moiety.
  • R 11 and R 12 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 carbon atoms.
  • m represents an integer of 0 to 2, preferably 0 to 1, more preferably 0.
  • the linker moiety may be a linear or branched alkyl group having 1 to 20 carbon atoms, an optionally substituted phenyl group, an ethylene glycol group, or a group having a siloxane bond, preferably 1 to 1 carbon atoms. It may be a linear or branched alkyl group or ethylene glycol group having 20, preferably 1 to 5, more preferably a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms.
  • the cyclic molecule may have a group other than the above-described linker moiety and a group represented by —SiR 11 m (OR 12 ) 3-m .
  • Other groups include acetyl group, propionyl group, hexanoyl group, methyl group, ethyl group, propyl group, 2-hydroxypropyl group, 1,2-dihydroxypropyl group, cyclohexyl group, butylcarbamoyl group, hexylcarbamoyl group, phenyl group , Polycaprolactone groups, or derivatives thereof, but are not limited thereto.
  • the polyrotaxane should be free of vinyl groups.
  • “vinyl group-free” means that vinyl group is not present at all or is present at 10 ⁇ 5 mol / g (1 / 100,000 mol per gram) or less.
  • the vinyl group in the polyrotaxane can be confirmed by measuring its presence by 1 H NMR. Specifically, since a peak derived from a vinyl group appears at 5.8 to 6.3 ppm, in the present invention, the peak is not present at all or even if the peak is present, the amount is 4.8 to 5.1 ppm. It is good that it is 1/30 or less of the peak area derived from the methine proton at position 1 of cyclodextrin.
  • the cyclic molecule is represented by the following formula I (Wherein X 11 is a linear or branched alkylene group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms, more preferably 2 to 10 carbon atoms (provided that non-adjacent carbon atoms are —CO—NH—, — NH-CO-, -CO-, -CO-O-, -O-CO- may be substituted), a group represented by-(CH 2 -CH (R 25 ) -O) n- (formula R 25 represents hydrogen or a linear or branched alkyl group having 1 to 8, preferably 1 to 6, and more preferably 1 to 4 carbon atoms, and n is 1 to 50, preferably 1 to 10, And more preferably represents an integer of 1 to 3, and a divalent group selected from the group
  • X 11 is — (CH 2 —CH (CH 3 ) —O) m1 —CO—NH— (CH 2 ) m2 — (wherein m1 and m2 are each independently 1 to 10, Preferably, it represents a number of 1 to 5, more preferably 1 to 3, and m2 represents an integer of 1 to 20, preferably 1 to 10, and more preferably 2 to 5.
  • the hydroxyl group is represented by a group represented by —SiR 11 m (OR 12 ) 3-m
  • the desired cyclic molecule or the desired polyrotaxane can be obtained by substituting with a group to be converted.
  • the hydroxyl group may be substituted in whole or in part with a desired group.
  • the cyclic molecule is ⁇ -cyclodextrin and the hydroxyl group (—OH) is substituted with a group represented by —SiR 11 m (OR 12 ) 3-m , the following preparation is performed. be able to.
  • a conventionally known polyrotaxane for example, a polyrotaxane described in Japanese Patent No. 3475252, WO2005 / 080469, JP2011-46917, etc. is prepared.
  • a compound represented by R 101 —SiR 11 m (OR 12 ) 3-m is prepared.
  • R 11 , R 12 and m have the same definition as described above.
  • R 101 has —N ⁇ C ⁇ O group, epoxy group, —CO—X 1 , —X 1 , —COOH, —CO—OR 102 (R 102 is an electron-withdrawing substituent), —SO— A group having X 1 , —SO 2 —X 1 (in the above, X 1 represents halogen) is preferable.
  • R 101 a polyrotaxane and a compound represented by R 101 —SiR 11 m (OR 12 ) 3-m are reacted in an appropriate solvent under appropriate reaction conditions, whereby a hydroxyl group (—OH) is converted to —SiR.
  • a polyrotaxane having a cyclic molecule substituted with a group represented by 11 m (OR 12 ) 3-m can be obtained, but is not limited to these methods.
  • the cyclic molecule is not particularly limited as long as it is cyclic, has an opening, and is included in a skewered manner by a linear molecule.
  • the cyclic molecule may have a group represented by —SiR 11 m (OR 12 ) 3-m and may have other groups.
  • the cyclic molecule may be selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin, for example.
  • a cyclic molecule for example, a hydroxyl group (—OH) of ⁇ -cyclodextrin is represented by —SiR It may be formed by substitution with a group represented by 11 m (OR 12 ) 3-m and / or other groups. The method is as described above.
  • linear molecule of the polyrotaxane of the present invention is not particularly limited as long as it can be included in a skewered manner in the opening of the cyclic molecule to be used.
  • linear molecules polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulosic resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl Polyolefin resins such as acetal resins, polyvinyl methyl ether, polyamines, polyethyleneimine, casein, gelatin, starch, and / or copolymers thereof, polyethylene, polypropylene, and copolymers of other olefin monomers; Polyester resins, polyvinyl chloride resins, polystyrene resins such as polystyrene and acrylon
  • polyethylene glycol polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and polyvinyl methyl ether.
  • polyethylene glycol Particularly preferred is polyethylene glycol.
  • the linear molecule may have a weight average molecular weight of 3,000 to 500,000, preferably 5,000 to 100,000, more preferably 10,000 to 50,000.
  • numerator can be measured by a gel permeation chromatography (Gel Permeation Chromatography, GPC). GPC measurement conditions depend on the type of linear molecule, but the type of eluent, column, temperature, and standard substance should be appropriately selected.
  • the combination of (cyclic molecule, linear molecule) is preferably (derived from ⁇ -cyclodextrin, derived from polyethylene glycol).
  • the blocking group is not particularly limited as long as it is a group that is arranged at both ends of the pseudopolyrotaxane and acts so that the cyclic molecule to be used does not leave.
  • a blocking group dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, pyrenes, substituted benzenes (substituents are alkyl, alkyloxy, hydroxy, Examples include, but are not limited to, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc.
  • substituents may be present), optionally substituted polynuclear aromatics (substituted) Examples of the group include, but are not limited to, the same as described above, and one or more substituents may be present.) And a group consisting of steroids. It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes, more preferably adamantane groups or cyclodextrins. It should be similar.
  • Component (a) and component (b) are those in which sol (a): component (b) is 99.9: 0.1-50: 50, preferably 99: 1-80: 20, more preferably It may be present in an amount of 99: 1 to 90: 5. Further, in the gel, particularly in the aerogel, the proportion of the weight of the component (b), that is, the proportion of weight reduction up to 500 ° C. by thermogravimetric analysis is 50% or less, preferably 20% or less, more preferably 10% or less. There should be.
  • the sol of the present invention includes the component (a) and the component (b), and may include other components other than the component (a) and the component (b).
  • other components include components that impart desired properties to the sol and / or gel, depending on the affinity with the obtained sol and / or the obtained gel.
  • the component include metal alkoxides other than the component (a) or analogs thereof, high elastic polymers, high impact polymers, polymer nanocomposites, electrically conductive molecules, plasticizers, crosslinking agents, and the like. It is not limited to these.
  • the metal alkoxide or its analogs other than components (a) may be mentioned MxR 111 y (OR 112) z .
  • examples of M include, but are not limited to, Al, Ti, Zr, Zn, and W.
  • X, y and z are natural numbers depending on the metal M.
  • M Al
  • M Ti
  • y is 0 to 3, preferably 0 to 1, and more preferably 0.
  • R 111 and R 112 should have the same definition as R 1 and R 2 .
  • R 111 and R 112 are linear or branched alkyl groups having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 to 3 carbon atoms. It represents 10, more preferably 3 to 6 cyclic alkyl groups or an optionally substituted phenyl group.
  • the present application provides a method for preparing the sol described above.
  • the preparation method is as follows: (I) (a) preparing SiR 1 n (OR 2 ) 4-n ; (II) (b) a step of preparing a polyrotaxane; and (III) (a) a step of mixing SiR 1 n (OR 2 ) 4-n and the (b) polyrotaxane and performing hydrolysis;
  • the above-mentioned sol is obtained by having
  • Step (I) is a step of preparing (a) SiR 1 n (OR 2 ) 4-n .
  • the compound represented by SiR 1 n (OR 2 ) 4-n may be a conventionally known compound or a newly synthesized compound. In the case of a conventionally known compound, it may be prepared by obtaining a commercially available product.
  • Step (II) is a step of preparing (b) polyrotaxane.
  • the polyrotaxane may be a conventionally known polyrotaxane or may be obtained by newly synthesizing. In the case of a conventionally known polyrotaxane, it may be prepared by obtaining a commercially available product.
  • a polyrotaxane can be obtained by the method described above.
  • Step (III) is a step in which (a) SiR 1 n (OR 2 ) 4-n and (b) polyrotaxane are mixed and subjected to hydrolysis.
  • the solvent depends on the component (a), component (b) and the like to be used, and examples thereof include a mixed solvent of N, N-dimethylformamide (DMF) and water, but are not limited thereto.
  • Step (III) depends on the components (a) and (b) to be used, but in the presence of a base or acid, it should be carried out under temperature conditions where water does not evaporate, that is, from room temperature to 100 ° C. .
  • the present application provides a gel obtained from the sol described above.
  • the gel of the present invention may be a so-called wet gel having a solvent, a so-called dry gel having no solvent, or an aerogel.
  • the gel of the present invention is an airgel.
  • the gels of the present invention may have one, two or more combinations of the following mechanical properties.
  • maximum compression strain 10% or more, preferably 30% or more, more preferably 50% or more, most preferably 60% or more; However, it is not limited to these.
  • the gel of the present invention has a thermal conductivity of 0.05 Wm ⁇ 1 K ⁇ 1 or less, preferably 0.02 Wm ⁇ 1 K ⁇ 1 or less, more preferably 0.015 Wm ⁇ 1 K ⁇ 1 or less.
  • the airgel of the present invention preferably has the thermal conductivity in addition to the mechanical properties.
  • the bulk density [rho b can be measured by a density measuring instrument to apply the principle of Archimedes.
  • the gel of the present invention should be transparent.
  • the airgel of the present invention should be transparent in addition to the mechanical properties and the thermal conductivity.
  • “transparent” means, for example, that an SEM image of an airgel does not show a particle size of 100 nm or more due to growth or aggregation of silica particles.
  • “transparent” means that a 2 mm thick airgel transmits 60% or more, preferably 65 to 100%, more preferably 70 to 100% of light having a wavelength of 550 nm.
  • the transmittance T (2) at 2 mm can be obtained by substituting the transmittance T at 550 nm at another thickness d (mm) into the following formula (X).
  • the gel of the present invention has a porosity of 80% or more, preferably 85% or more, more preferably 90% or more.
  • the porosity is determined as follows using the bulk density ⁇ b and the density ⁇ s of the skeleton portion other than the vacancies.
  • the bulk density [rho b can be measured by a density measuring instrument to apply the principle of Archimedes.
  • the present application provides a method for preparing the gel described above.
  • the preparation method is as follows: (I) (a) preparing SiR 1 n (OR 2 ) 4-n ; (II) (b) a step of preparing a polyrotaxane; and (III) (a) a step of mixing SiR 1 n (OR 2 ) 4-n and (b) polyrotaxane and performing hydrolysis to obtain a sol; (IV) A step of adding a catalyst to the obtained sol and then allowing it to stand to prepare a wet gel; Have Moreover, in order to prepare an airgel, it is good to have further (V) the process of drying a wet gel.
  • steps (I) to (III) are the same as the sol preparation method, and thus the description thereof will be omitted.
  • Step (IV) is a step of preparing a wet gel by adding a catalyst to the sol obtained in step (III) and then allowing to stand.
  • a general acid or base used in the sol-gel method can be used as the catalyst.
  • a base such as hydroxylamine can be used, but is not limited thereto.
  • Step (V) is a step of drying the wet gel obtained in step (IV).
  • a conventionally known method can be used for this step.
  • conventionally known methods include, but are not limited to, a solvent replacement step in which the solvent contained in the wet gel is replaced with a solvent that is easier to dry, a supercritical drying step, and combinations thereof.
  • the combination of the solvent replacement step and the supercritical drying step is good, and in this case, the solvent replacement step is performed using a solvent that can be easily replaced with supercritical carbon dioxide used in the supercritical drying step, for example, a solvent such as methanol. It is good to do.
  • the step (V) depends on the component (a), the component (b) to be used, the solvent to be used and the like, but preferably a supercritical drying step is performed through a solvent substitution step.
  • the gel of the present invention can be applied to materials that are required to have desired properties in heat insulation, transparency and mechanical strength.
  • the material include, but are not limited to, window materials, heat insulating materials, catalysts, and particulate collection materials.
  • polyrotaxane (manufactured by Advanced Soft Materials)
  • HPR polyrotaxane
  • PEG polyethylene glycol
  • Characterization of the triethoxysilyl modified polyrotaxane was performed by infrared spectroscopy, proton nuclear magnetic resonance, and size exclusion chromatography.
  • the infrared spectrum was measured using a total reflection method with a DuraSamplIR II diamond ATR accessory mounted on a NICOLET iS50 Spectrometer from Thermo Electron Co., Ltd.
  • the proton nuclear magnetic resonance spectrum was measured using deuterated DMSO as a solvent using JNM-AL400 manufactured by JEOL.
  • Size exclusion chromatography was measured at 50 ° C. using DMSO in which 10 mM LiBr was dissolved in a solvent as an eluent using a column in which two OHpak SB-804 HQs manufactured by Shodex were directly connected.
  • a differential refraction detector was used for detection.
  • the FT-IR spectrum of the triethoxysilyl modified polyrotaxane is shown in FIG. In FIG. 1, absorption derived from carbonyl stretching vibration was confirmed at 1714 cm ⁇ 1 which is not found in the starting polyrotaxane. From this, it was suggested that the urethane bond was formed by the reaction of the hydroxyl group of the cyclic molecule and IPTS.
  • Example 1 A chromatogram obtained by size exclusion chromatography for the triethoxysilyl-modified polyrotaxane synthesized in Example 1 and the polyrotaxane (HAPR) which is the starting material used in Example 1 is shown in FIG.
  • the starting materials used in Example 1, polyrotaxane and HAPR show a peak at an elution time of about 43 minutes, indicating that the cyclodextrin as an impurity is contained.
  • the triethoxysilyl-modified polyrotaxane synthesized in Example 1 has an elution time slightly shorter than that of the raw material polyrotaxane, which is 26 minutes, indicating no other peaks.
  • Example 2 ⁇ Synthesis of Polyrotaxane Reinforced Silica Airgel A-2 to A-5>
  • the amount of triethoxysilyl-modified polyrotaxane was 47 mg (Example 3), 70.5 mg (Example 4), 94 mg (Example 5), 141 mg (Example 6), and the total weight with TEOS was Polyrotaxane-reinforced silica airgels A-2 to A-5 were prepared in the same manner as in Example 1 except that the amount of TEOS was adjusted to 940 mg.
  • Example 1 ⁇ Synthesis of Silica Airgel C-1>
  • silica airgel C-1 was prepared in the same manner as in Example 1, except that the amount of triethoxysilyl-modified polyrotaxane was 0 mg and the amount of TEOS was 94 mg.
  • Comparative Example 2 ⁇ Synthesis of Silica Airgel C-2>
  • silica airgel C-1 was prepared in the same manner as in Example 1 except that the amount of triethoxysilyl-modified polyrotaxane was 470 mg and the amount of TEOS was also 470 mg.
  • thermogravimetric analysis The weight ratio of the polyrotaxane contained in the airgels A-1 to A-5 obtained in Examples 2 to 6 was determined by thermogravimetric analysis. The measurement was performed using a Thermo Plus Evo TG8120 manufactured by Rigaku, under a nitrogen atmosphere at a heating rate of 5 ° C./min.
  • FIG. 4 shows the change in weight with increasing temperature. The following can be seen from FIG. That is, a significant weight reduction is observed at 300 ° C. or higher, and the weight is almost constant at 500 ° C. Thermal decomposition is derived from polyrotaxane, which is an organic substance, and the residue is considered to be silica.
  • Example 2 where the polyrotaxane content at the time of blending the raw materials was 2.5%, it was confirmed that the obtained airgel A-1 contained about 7% polyrotaxane.
  • airgels A-2 to A-5 the amount of polyrotaxane in the airgel was measured in the same manner as airgel A-1. The results are shown in Table 1.
  • the porosity was determined according to the above formula.
  • the bulk density ⁇ b of the polyrotaxane reinforced silica airgel A-1 was 0.15 g / cm 3 as determined by a density measuring device applying Archimedes' principle. Since the ratio of the polyrotaxane in the airgel is low, the porosity ⁇ s of the skeleton portion other than the vacancies was approximated by the density of amorphous silica (2.2 g / cm 3 ) to obtain the porosity. As a result, the porosity was calculated to be 93%.
  • the porosity was determined in the same manner as airgel A-1. The results are shown in Table 1.
  • the thermal conductivity ⁇ was calculated from the above formula.
  • the thermal diffusivity ⁇ was measured using ai-Phase Mobile 1u manufactured by Eye Phase Co., Ltd.
  • the heat capacity C p was determined by differential scanning calorimetry using a DSC 7000X manufactured by Hitachi High-Technologies Corporation.
  • the thermal conductivity ⁇ of the airgel A-1 was 0.014 Wm ⁇ 1 K ⁇ 1 .
  • the thermal conductivity of the airgels A-2 to A-5 and C-1 to C-2 was determined. The results are shown in Table 1.

Abstract

The invention provides a silica aerogel having desired properties in terms of the heat-insulating property, transparency, and mechanical strength. The invention provides a sol comprising (a) SIR1 n(OR2)4-n (in the formula, R1 and R2 each independently represent a C1-20 linear or branched alkyl group, C3-20 cyclic alkyl group, or optionally substituted phenyl group, n represents an integer of 0-3) and (b) a polyrotaxane obtained by arranging blocking groups so that cyclic molecules are not eliminated at both ends of a pseudopolyrotaxane in which cyclic molecules are included in a manner such that the openings thereof are skewered by linear molecules.

Description

アルコキシシラン類及びポリロタキサンを有してなるゾル及びゲルSol and gel comprising alkoxysilanes and polyrotaxane
 本発明は、アルコキシシラン類及びポリロタキサンを有してなるゾル、該ゾルから得られるゲル、並びに該ゾルの製造方法及び該ゲルの製造方法に関する。
 また、本発明は、該ゾルを形成する新規アルコキシシラン類又は新規修飾化ポリロタキサンに関する。
The present invention relates to a sol comprising alkoxysilanes and a polyrotaxane, a gel obtained from the sol, a method for producing the sol, and a method for producing the gel.
The present invention also relates to novel alkoxysilanes or novel modified polyrotaxanes that form the sol.
 非常に低密度の多孔材料であるシリカエアロゲルは、その微細な空孔のため非常に高い断熱性と透明性を示すため、例えば窓材のような断熱性及び透明性の双方を備えることを必要とする材料への応用が期待されている。しかしながら、シリカのみからなるエアロゲルは、その力学的な脆弱性により応用が進んでいない。 Silica airgel, which is a very low density porous material, needs to have both heat insulation and transparency, such as window materials, because it exhibits very high heat insulation and transparency due to its fine pores. Application to the material is expected. However, application of aerogels composed only of silica has not progressed due to their mechanical vulnerability.
 この力学的な脆弱性の問題を解決するため、シリカのみによるエアロゲルではなく、高分子をシリカに配合させた複合化エアロゲルが提案されている(非特許文献1)。非特許文献1では、例えば、高分子としてポリアクリレート系樹脂、ポリアミド系樹脂、エポキシ樹脂、ポリスチレン、ポリウレアなどを配合させて複合化エアロゲルを調製している。 In order to solve this problem of mechanical vulnerability, a composite airgel in which a polymer is blended with silica has been proposed (Non-Patent Document 1) instead of silica-only aerogel. In Non-Patent Document 1, for example, a composite aerogel is prepared by blending polyacrylate resin, polyamide resin, epoxy resin, polystyrene, polyurea, or the like as a polymer.
 しかしながら、該複合化エアロゲルは、力学的な脆弱性という問題を解決できるが、透明性の点において顕著な低下を招く問題を抱えていた。具体的には、高分子を配合させることにより透明性が劣化し濁ったエアロゲルしか調製できず、透明性が求められる材料への応用が阻害されるという問題があった。 However, the composite airgel can solve the problem of mechanical vulnerability, but has a problem that causes a remarkable decrease in transparency. Specifically, by blending a polymer, only the airgel having transparency deteriorated and becoming turbid can be prepared, and there is a problem that application to a material requiring transparency is hindered.
 そこで、本発明の目的は、上記課題を解決することにある。
 具体的には、本発明の目的は、断熱性、透明性及び機械的強度において所望の特性を有する、シリカ系エアロゲルを提供することにある。
 また、本発明の目的は、上記目的に加えて、該シリカ系エアロゲルを得るためのゾルを提供することにある。
 さらに、本発明の目的は、上記目的に加えて、又は上記目的以外に、上記ゾルの製造方法及び上記ゲルの製造方法を提供することにある。
 また、本発明の目的は、上記目的に加えて、又は上記目的以外に、上記ゾルを形成することができる新規アルコキシシラン類又は新規修飾化ポリロタキサンを提供することにある。
Therefore, an object of the present invention is to solve the above problems.
Specifically, an object of the present invention is to provide a silica-based airgel having desired properties in heat insulation, transparency and mechanical strength.
Moreover, the objective of this invention is providing the sol for obtaining this silica type airgel in addition to the said objective.
Furthermore, the objective of this invention is providing the manufacturing method of the said sol, and the manufacturing method of the said gel in addition to the said objective or the said objective.
Another object of the present invention is to provide novel alkoxysilanes or novel modified polyrotaxanes that can form the sol in addition to or in addition to the above objects.
 本発明者らは、次の発明を見出した。
 <1> (a)SiR (OR4-n(式中、R及びRは各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
nは0~3、好ましくは0~1、より好ましくは0の整数を示す);及び
 (b)環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサン;
を有してなるゾル。
The inventors have found the following invention.
<1> (a) SiR 1 n (OR 2 ) 4-n (wherein R 1 and R 2 are each independently a straight chain having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms) A chain or branched alkyl group, a cyclic alkyl group having 3 to 20 carbon atoms, preferably 3 to 10, more preferably 3 to 6 carbon atoms, or an optionally substituted phenyl group,
n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0); and (b) the ends of the pseudopolyrotaxane in which the openings of the cyclic molecule are skewered by the linear molecule. A polyrotaxane in which a blocking group is arranged so that a cyclic molecule is not eliminated;
A sol comprising:
 <2> 上記<1>において、(b)ポリロタキサンは、その環状分子が-SiR11 (OR123-m
(式中、R11及びR12は各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
 mは0~2、好ましくは0~1、より好ましくは0の整数を示す)
で表される基を有するのがよい。 
<2> In the above item <1>, (b) polyrotaxane has a cyclic molecule of —SiR 11 m (OR 12 ) 3-m
(Wherein R 11 and R 12 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4, carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups;
m represents an integer of 0 to 2, preferably 0 to 1, more preferably 0)
It is good to have group represented by these.
 <3> 上記<1>又は<2>において、(b)ポリロタキサンは、その環状分子がリンカー部位を介して-SiR11 (OR123-m
(式中、R11及びR12は各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
 mは0~2、好ましくは0~1、より好ましくは0の整数を示す)
で表される基を有し、
 該リンカー部位が炭素数1~20の直鎖又は分岐鎖のアルキル基、置換されてもよいフェニル基、エチレングリコール基又はシロキサン結合を有する基であるのがよく、好ましくは炭素数1~20、好ましくは1~5の直鎖又は分岐鎖のアルキル基またはエチレングリコール基、より好ましくは炭素数1~20、好ましくは1~5の直鎖又は分岐鎖のアルキル基であるのがよい。
<3> In the above item <1> or <2>, (b) the polyrotaxane has a cyclic molecule of —SiR 11 m (OR 12 ) 3-m
(Wherein R 11 and R 12 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4, carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups;
m represents an integer of 0 to 2, preferably 0 to 1, more preferably 0)
Having a group represented by
The linker moiety may be a linear or branched alkyl group having 1 to 20 carbon atoms, an optionally substituted phenyl group, an ethylene glycol group or a group having a siloxane bond, preferably 1 to 20 carbon atoms, A linear or branched alkyl group or ethylene glycol group having 1 to 5 carbon atoms is preferable, and a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms is more preferable.
 <4> 上記<1>~<3>のいずれかに記載されるゾルから得られるゲル。
 <5> 上記<4>において、ゲルがエアロゲルであるのがよい。
<4> A gel obtained from the sol described in any one of <1> to <3> above.
<5> In the above item <4>, the gel may be an airgel.
 <6> 上記<4>又は<5>において、ゲルがエアロゲルであり、
 該エアロゲルの最大圧縮歪みが10%以上、好ましくは30%以上、より好ましくは50%以上、最も好ましくは60%以上であるのがよい。
<6> In the above <4> or <5>, the gel is an airgel,
The maximum compressive strain of the airgel should be 10% or more, preferably 30% or more, more preferably 50% or more, and most preferably 60% or more.
 <7> 上記<4>~<6>のいずれかにおいて、ゲルがエアロゲルであり、該エアロゲルが透明であるのがよい。ここで「透明」であるとは、例えば、エアロゲルのSEM像において、シリカ粒子の成長や凝集によって100nm以上の粒径を示さないことをいうのがよい。また、2mm厚のエアロゲルが、550nmの波長の光を60%以上、好ましくは65~100%、より好ましくは70~100%透過するのがよい。具体的には2mmでの透過率T(2)は、他の厚みd(mm)での550nmの透過率Tを以下の式(X)に代入することで求めることができる。 <7> In any one of the above items <4> to <6>, the gel may be an airgel, and the airgel may be transparent. Here, “transparent” means that, for example, an SEM image of an airgel does not show a particle size of 100 nm or more due to growth or aggregation of silica particles. The airgel having a thickness of 2 mm may transmit light having a wavelength of 550 nm by 60% or more, preferably 65 to 100%, more preferably 70 to 100%. Specifically, the transmittance T (2) at 2 mm can be obtained by substituting the transmittance T at 550 nm at another thickness d (mm) into the following formula (X).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 <8> 上記<4>~<7>のいずれかにおいて、ゲルがエアロゲルであり、
 該エアロゲルの空孔率が80%以上、好ましくは85%以上、より好ましくは90%以上であるのがよい。
 <9> 上記<4>~<8>のいずれかにおいて、ゲルがエアロゲルであり、該エアロゲルの熱伝導率が0.05Wm-1-1以下、好ましくは0.02Wm-1-1以下、より好ましくは0.015Wm-1-1以下であるのがよい。
<8> In any one of the above items <4> to <7>, the gel is an airgel,
The airgel has a porosity of 80% or more, preferably 85% or more, more preferably 90% or more.
<9> In any one of the above items <4> to <8>, the gel is an airgel, and the thermal conductivity of the airgel is 0.05 Wm −1 K −1 or less, preferably 0.02 Wm −1 K −1 or less. More preferably, it is 0.015 Wm −1 K −1 or less.
 <10>
 (a)SiR (OR4-n 
(式中、R及びRは各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
nは0~3、好ましくは0~1、より好ましくは0の整数を示す);及び
 (b)環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサン;
を有してなるゾルの調製方法であって、
 (I) 前記(a)SiR (OR4-nを準備する工程;
 (II) 前記(b)ポリロタキサンを準備する工程;及び
 (III) 前記(a)SiR (OR4-nと前記(b)ポリロタキサンとを混合し、加水分解を行う工程;
を有することにより、前記ゾルを得る、上記方法。
<10>
(A) SiR 1 n (OR 2 ) 4-n
(Wherein R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups;
n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0); and (b) the ends of the pseudopolyrotaxane in which the openings of the cyclic molecule are skewered by the linear molecule. A polyrotaxane in which a blocking group is arranged so that a cyclic molecule is not eliminated;
A method for preparing a sol comprising:
(I) a step of preparing (a) SiR 1 n (OR 2 ) 4-n ;
(II) preparing (b) the polyrotaxane; and (III) mixing the (a) SiR 1 n (OR 2 ) 4-n and the (b) polyrotaxane and performing hydrolysis;
The method as described above, wherein the sol is obtained.
 <11>
 (a)SiR (OR4-n
(式中、R及びRは各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
nは0~3、好ましくは0~1、より好ましくは0の整数を示す);及び
 (b)環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサン;
を有してなるゲルの調製方法であって、
 (I) 前記(a)SiR (OR4-nを準備する工程;
 (II) 前記(b)ポリロタキサンを準備する工程;及び
 (III) 前記(a)SiR (OR4-nと前記(b)ポリロタキサンとを混合し、加水分解を行い、ゾルを得る工程;
 (IV) 得られたゾルを静置してウェットゲルを調製する工程;
を有する、ウェットゲルの調製方法。
<11>
(A) SiR 1 n (OR 2 ) 4-n
(Wherein R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups;
n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0); and (b) the ends of the pseudopolyrotaxane in which the openings of the cyclic molecule are skewered by the linear molecule. A polyrotaxane in which a blocking group is arranged so that a cyclic molecule is not eliminated;
A method for preparing a gel comprising:
(I) a step of preparing (a) SiR 1 n (OR 2 ) 4-n ;
(II) a step of preparing the (b) polyrotaxane; and (III) the (a) SiR 1 n (OR 2 ) 4-n and the (b) polyrotaxane are mixed and hydrolyzed to obtain a sol. Process;
(IV) A step of preparing the wet gel by allowing the obtained sol to stand;
A method for preparing a wet gel.
 <12> 上記<11>で得られたウェットゲルを乾燥させる工程;
をさらに有する、エアロゲルの調製方法。
<12> a step of drying the wet gel obtained in the above <11>;
A method for preparing an airgel, further comprising:
 <13> -Si-O-Si-結合を有し、環状分子由来の基を有するエアロゲルであって、該エアロゲルの最大圧縮歪みが10%以上、好ましくは30%以上、より好ましくは50%以上、最も好ましくは60%以上である、エアロゲル。 <13> An airgel having a —Si—O—Si— bond and a group derived from a cyclic molecule, wherein the maximum compressive strain of the airgel is 10% or more, preferably 30% or more, more preferably 50% or more. Airgel, most preferably 60% or more.
 <14>
 環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、
 環状分子が下記式I
(式中、X11は炭素数1~20、好ましくは2~18、より好ましくは2~10の直鎖又は分岐鎖のアルキレン基(ただし、隣り合わない炭素原子は-CO-NH-、-NH-CO-、-CO-、-CO-O-、-O-CO-で置換されてもよい)、-(CH-CH(R25)-O)-で表される基(式中、R25は、水素又は炭素数1~8、好ましくは1~6、より好ましくは1~4の直鎖又は分岐鎖のアルキル基を表し、nは1~50、好ましくは1~10、より好ましくは1~3の整数を表す)、及びこれらの組合せからなる群から選ばれる2価の基を表し;
 R21~R23は各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表す)
を有し、
 該ポリロタキサンがビニル基フリーである、上記ポリロタキサン。
<14>
A polyrotaxane in which a blocking group is arranged so that a cyclic molecule is not detached at both ends of a pseudo-polyrotaxane in which an opening of a cyclic molecule is included in a skewered manner by a linear molecule,
The cyclic molecule is represented by the following formula I
(Wherein X 11 is a linear or branched alkylene group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms, more preferably 2 to 10 carbon atoms (provided that non-adjacent carbon atoms are —CO—NH—, — NH-CO-, -CO-, -CO-O-, -O-CO- may be substituted), a group represented by-(CH 2 -CH (R 25 ) -O) n- (formula R 25 represents hydrogen or a linear or branched alkyl group having 1 to 8, preferably 1 to 6, and more preferably 1 to 4 carbon atoms, and n is 1 to 50, preferably 1 to 10, And more preferably represents an integer of 1 to 3, and a divalent group selected from the group consisting of combinations thereof;
R 21 to R 23 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, More preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups)
Have
The polyrotaxane, wherein the polyrotaxane is free of vinyl group.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明により、断熱性、透明性及び機械的強度において所望の特性を有する、シリカ系エアロゲルを提供することができる。
 また、本発明により、上記効果に加えて、該シリカ系エアロゲルを得るためのゾルを提供することができる。
 さらに、本発明により、上記効果以外に、又は、上記効果に加えて、上記ゾルの製造方法及び上記ゲルの製造方法を提供することができる。
 また、本発明により、上記効果以外に、又は、上記効果に加えて、上記ゾルを形成することができる新規アルコキシシラン類又は新規修飾化ポリロタキサンを提供することができる。
According to the present invention, it is possible to provide a silica-based airgel having desired properties in heat insulation, transparency, and mechanical strength.
In addition to the above effects, the present invention can provide a sol for obtaining the silica-based aerogel.
Furthermore, according to the present invention, in addition to or in addition to the above effects, a method for producing the sol and a method for producing the gel can be provided.
In addition to the above effects or in addition to the above effects, the present invention can provide novel alkoxysilanes or novel modified polyrotaxanes that can form the sol.
実施例1で合成したトリエトキシシリル修飾ポリロタキサンのFT-IRスペクトルを示す。黒線は、実施例1で用いた出発物質であるポリロタキサン(HAPR)のFT-IRスペクトルを示す。3 shows an FT-IR spectrum of the triethoxysilyl-modified polyrotaxane synthesized in Example 1. The black line shows the FT-IR spectrum of polyrotaxane (HAPR) which is the starting material used in Example 1. 実施例1で用いた出発物質であるポリロタキサン(HAPR)のH NMRスペクトル(図2中、「C」で示す)、実施例1で合成したトリエトキシシリル修飾ポリロタキサンのH NMRスペクトル(図2中、「A」で示す)、実施例1で得られた反応生成物のH NMRスペクトル(図2中、「B」で示す)をそれぞれ示す。Embodiment 1 H NMR spectrum of Example starting material used in 1 polyrotaxane (HAPR) (in FIG. 2, indicated by "C"), 1 H NMR spectrum of triethoxysilyl modified polyrotaxane synthesized in Example 1 (FIG. 2 And 1 H NMR spectrum (shown as “B” in FIG. 2) of the reaction product obtained in Example 1. 実施例1で合成したトリエトキシシリル修飾ポリロタキサン及び実施例1で用いた出発物質であるポリロタキサン(HAPR)のSECクロマトグラムを示す。3 shows SEC chromatograms of the triethoxysilyl-modified polyrotaxane synthesized in Example 1 and the polyrotaxane (HAPR) that is the starting material used in Example 1. FIG. 実施例2~6で得られたポリロタキサン強化シリカエアロゲルA-1~A-5の熱重量分析結果を示す。The thermogravimetric analysis results of the polyrotaxane-reinforced silica airgels A-1 to A-5 obtained in Examples 2 to 6 are shown. ポリロタキサン強化シリカエアロゲルA-1内部のSEM像を示す。The SEM image inside a polyrotaxane reinforced silica airgel A-1 is shown.
 以下、本願に記載する発明を詳細に説明する。
 本願は、アルコキシシラン類及びポリロタキサンを有してなるゾル、該ゾルから得られるゲル、並びに該ゾルの製造方法及び該ゲルの製造方法を提供する。
 また、本願は、該ゾルを形成する新規修飾化ポリロタキサン又は違う観点からすると新規アルコキシシラン類を提供する。以下、順に説明する。
Hereinafter, the invention described in the present application will be described in detail.
The present application provides a sol comprising an alkoxysilane and a polyrotaxane, a gel obtained from the sol, a method for producing the sol, and a method for producing the gel.
The present application also provides novel modified polyrotaxanes that form the sol or novel alkoxysilanes from a different point of view. Hereinafter, it demonstrates in order.
<アルコキシシラン類及びポリロタキサンを有してなるゾル>
 本願は、アルコキシシラン類及びポリロタキサンを有してなるゾルを提供する。
 具体的には、本願のゾルは、
 (a)SiR (OR4-n
(式中、R及びRは各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
nは0~3、好ましくは0~1、より好ましくは0の整数を示す);及び
 (b)環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサン;
を有してなる。
<Sol comprising alkoxysilanes and polyrotaxane>
The present application provides a sol comprising an alkoxysilane and a polyrotaxane.
Specifically, the sol of the present application is
(A) SiR 1 n (OR 2 ) 4-n
(Wherein R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20, preferably 1 to 10, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably Represents 3 to 10, more preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups;
n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0); and (b) the ends of the pseudopolyrotaxane in which the openings of the cyclic molecule are skewered by the linear molecule. A polyrotaxane in which a blocking group is arranged so that a cyclic molecule is not eliminated;
It has.
 ここで、「有してなる」とは、上記成分(a)及び(b)を有し、かつそれらを有して形成されることを意味する。したがって、該ゾルは、上記(a)及び(b)以外の成分を含んでも形成されていてもよい。
 また、本願のゾルは、上記成分(a)及び(b)のみから形成されてもよい。
 以下、成分(a)、成分(b)の順に説明する。
Here, “having” means having the above-mentioned components (a) and (b) and having them. Therefore, the sol may contain or contain components other than the above (a) and (b).
Further, the sol of the present application may be formed from only the components (a) and (b).
Hereinafter, the component (a) and the component (b) will be described in this order.
<<成分(a)>>
 本願のゾルを形成する成分(a)は、SiR (OR4-nで表される。
 ここで、R及びRは各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
nは0~3、好ましくは0~1、より好ましくは0の整数を示す
<< Ingredient (a) >>
The component (a) that forms the sol of the present application is represented by SiR 1 n (OR 2 ) 4-n .
Here, R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 carbon atoms. Represents a cyclic alkyl group of 10 to 10, more preferably 3 to 6 or an optionally substituted phenyl group,
n represents an integer of 0 to 3, preferably 0 to 1, more preferably 0.
 成分(a)は、従来公知の物質であっても新規に合成される物質であってもよい。
 より具体的には、成分(a)は、nが0であり且つRがエチル基であるテトラエトキシシラン、nが0であり且つRがメチル基であるテトラメトキシシランなどを挙げることができるが、これらに限定されない。
Component (a) may be a conventionally known substance or a newly synthesized substance.
More specifically, examples of the component (a) include tetraethoxysilane in which n is 0 and R 2 is an ethyl group, and tetramethoxysilane in which n is 0 and R 2 is a methyl group. Although it can, it is not limited to these.
<<成分(b)>>
 成分(b)は、環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンである。
 該ポリロタキサンは、従来公知のポリロタキサン、例えば特許第4521875号に記載されるポリロタキサンであっても、下記に詳述するように、環状分子が、所望によりリンカー部位を介して、-SiR11 (OR123-mで表される基を有するポリロタキサンであってもよい。
 なお、ポリロタキサンの各構成成分、即ち「環状分子」、「直鎖状分子」、「封鎖基」については、後述する。
<< Component (b) >>
Component (b) is a polyrotaxane in which blocking groups are arranged so that the cyclic molecules are not detached at both ends of the pseudopolyrotaxane in which the openings of the cyclic molecules are skewered by linear molecules.
Even if the polyrotaxane is a conventionally known polyrotaxane, for example, the polyrotaxane described in Japanese Patent No. 4521875, as described in detail below, the cyclic molecule is optionally —SiR 11 m (OR 12 ) A polyrotaxane having a group represented by 3-m may be used.
Each component of the polyrotaxane, that is, “cyclic molecule”, “linear molecule”, and “blocking group” will be described later.
<<環状分子が-SiR11 (OR123-mで表される基を有するポリロタキサン>>
 本願において、成分(b)のポリロタキサンは、その環状分子が、所望によりリンカー部位を介して、-SiR11 (OR123-mで表される基を有するのがよい。
 ここで、R11及びR12は各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表し、
 mは0~2、好ましくは0~1、より好ましくは0の整数を示す。
<< Polyrotaxane in which the cyclic molecule has a group represented by -SiR 11 m (OR 12 ) 3-m >>
In the present application, the polyrotaxane as the component (b) preferably has a cyclic molecule having a group represented by —SiR 11 m (OR 12 ) 3-m , optionally via a linker moiety.
Here, R 11 and R 12 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 carbon atoms. Represents a cyclic alkyl group of 10 to 10, more preferably 3 to 6 or an optionally substituted phenyl group,
m represents an integer of 0 to 2, preferably 0 to 1, more preferably 0.
 また、リンカー部位は、炭素数1~20の直鎖又は分岐鎖のアルキル基、置換されてもよいフェニル基、エチレングリコール基又はシロキサン結合を有する基であるのがよく、好ましくは炭素数1~20、好ましくは1~5の直鎖又は分岐鎖のアルキル基またはエチレングリコール基、より好ましくは炭素数1~20、好ましくは1~5の直鎖又は分岐鎖のアルキル基であるのがよい。
 なお、環状分子は、上述のリンカー部位、-SiR11 (OR123-mで表される基以外のその他の基を有してもよい。
 その他の基として、アセチル基、プロピオニル基、ヘキサノイル基、メチル基、エチル基、プロピル基、2-ヒドロキシプロピル基、1,2-ジヒドロキシプロピル基、シクロヘキシル基、ブチルカルバモイル基、ヘキシルカルバモイル基、フェニル基、ポリカプロラクトン基、もしくはこれらの誘導体を挙げることができるが、これらに限定されない。
The linker moiety may be a linear or branched alkyl group having 1 to 20 carbon atoms, an optionally substituted phenyl group, an ethylene glycol group, or a group having a siloxane bond, preferably 1 to 1 carbon atoms. It may be a linear or branched alkyl group or ethylene glycol group having 20, preferably 1 to 5, more preferably a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms.
The cyclic molecule may have a group other than the above-described linker moiety and a group represented by —SiR 11 m (OR 12 ) 3-m .
Other groups include acetyl group, propionyl group, hexanoyl group, methyl group, ethyl group, propyl group, 2-hydroxypropyl group, 1,2-dihydroxypropyl group, cyclohexyl group, butylcarbamoyl group, hexylcarbamoyl group, phenyl group , Polycaprolactone groups, or derivatives thereof, but are not limited thereto.
 ポリロタキサンは、ビニル基フリーであるのがよい。
 本明細書において、「ビニル基フリー」とは、ビニル基が全く存在しないか又は存在しても10-5 mol/g(1グラム当たり10万分の1モル)以下で存在することをいう。
 ポリロタキサン中のビニル基は、その存在をH NMRで測定することにより確認できる。具体的には、5.8~6.3ppmにビニル基由来のピークが表れるため、本発明においては、該ピークが全く存在しないか又は存在してもその量が4.8~5.1ppmのシクロデキストリンの1位のメチンプロトン由来のピーク面積の30分の1以下であるのがよい。
The polyrotaxane should be free of vinyl groups.
In the present specification, “vinyl group-free” means that vinyl group is not present at all or is present at 10 −5 mol / g (1 / 100,000 mol per gram) or less.
The vinyl group in the polyrotaxane can be confirmed by measuring its presence by 1 H NMR. Specifically, since a peak derived from a vinyl group appears at 5.8 to 6.3 ppm, in the present invention, the peak is not present at all or even if the peak is present, the amount is 4.8 to 5.1 ppm. It is good that it is 1/30 or less of the peak area derived from the methine proton at position 1 of cyclodextrin.
 環状分子が-SiR11 (OR123-mで表される基を有するポリロタキサンとして、より具合的には、環状分子が下記式I
(式中、X11は炭素数1~20、好ましくは2~18、より好ましくは2~10の直鎖又は分岐鎖のアルキレン基(ただし、隣り合わない炭素原子は-CO-NH-、-NH-CO-、-CO-、-CO-O-、-O-CO-で置換されてもよい)、-(CH-CH(R25)-O)-で表される基(式中、R25は、水素又は炭素数1~8、好ましくは1~6、より好ましくは1~4の直鎖又は分岐鎖のアルキル基を表し、nは1~50、好ましくは1~10、より好ましくは1~3の整数を表す)、及びこれらの組合せからなる群から選ばれる2価の基を表し;
 R21~R23は各々独立に、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表す)
を有するのがよい。
 より具体的には、X11が-(CH-CH(CH)-O)m1-CO-NH-(CHm2-(式中、m1及びm2は各々独立に、1~10、好ましくは1~5、より好ましくは1~3の数を表し、m2は1~20、好ましくは1~10、より好ましくは2~5の整数を表す)であるのがよい。
As a polyrotaxane in which the cyclic molecule has a group represented by —SiR 11 m (OR 12 ) 3-m , more specifically, the cyclic molecule is represented by the following formula I
(Wherein X 11 is a linear or branched alkylene group having 1 to 20 carbon atoms, preferably 2 to 18 carbon atoms, more preferably 2 to 10 carbon atoms (provided that non-adjacent carbon atoms are —CO—NH—, — NH-CO-, -CO-, -CO-O-, -O-CO- may be substituted), a group represented by-(CH 2 -CH (R 25 ) -O) n- (formula R 25 represents hydrogen or a linear or branched alkyl group having 1 to 8, preferably 1 to 6, and more preferably 1 to 4 carbon atoms, and n is 1 to 50, preferably 1 to 10, And more preferably represents an integer of 1 to 3, and a divalent group selected from the group consisting of combinations thereof;
R 21 to R 23 are each independently a linear or branched alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 to 10 carbon atoms, More preferably 3 to 6 cyclic alkyl groups or optionally substituted phenyl groups)
It is good to have.
More specifically, X 11 is — (CH 2 —CH (CH 3 ) —O) m1 —CO—NH— (CH 2 ) m2 — (wherein m1 and m2 are each independently 1 to 10, Preferably, it represents a number of 1 to 5, more preferably 1 to 3, and m2 represents an integer of 1 to 20, preferably 1 to 10, and more preferably 2 to 5.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 用いる環状分子に依存するが、水酸基を有する環状分子、例えばα-シクロデキストリンなどを用いる場合、該水酸基を-SiR11 (OR123-mで表される基、例えば上記式Iで表される基で置換することにより、所望の環状分子又は所望のポリロタキサンを得ることができる。なお、環状分子が水酸基を有する場合、該水酸基が所望の基に、全て又は一部、置換されるのがよい。
 例えば、環状分子がα-シクロデキストリンである場合であって、水酸基(-OH)が-SiR11 (OR123-mで表される基で置換される場合、次のように調製することができる。
Depending on the cyclic molecule used, when a cyclic molecule having a hydroxyl group, such as α-cyclodextrin, is used, the hydroxyl group is represented by a group represented by —SiR 11 m (OR 12 ) 3-m , The desired cyclic molecule or the desired polyrotaxane can be obtained by substituting with a group to be converted. In the case where the cyclic molecule has a hydroxyl group, the hydroxyl group may be substituted in whole or in part with a desired group.
For example, when the cyclic molecule is α-cyclodextrin and the hydroxyl group (—OH) is substituted with a group represented by —SiR 11 m (OR 12 ) 3-m , the following preparation is performed. be able to.
 まず、従来公知のポリロタキサン、例えば特許第3475252号、WO2005/080469公報、特開2011-46917号公報などに記載されるポリロタキサンを準備する。
 該ポリロタキサンとは別に、R101-SiR11 (OR123-mで表される化合物を準備する。ここで、R11、R12、mは上述と同じ定義を有する。R101は、その末端に-N=C=O基、エポキシ基、-CO-X、-X、-COOH、-CO-OR102(R102は電子吸引性置換基)、-SO-X、-SO2-X(上述において、Xはハロゲンを表す)を有する基であるのがよい。
 ついで、ポリロタキサンとR101-SiR11 (OR123-mで表される化合物とを、適切な溶媒中で、適切な反応条件下で反応させることにより、水酸基(-OH)が-SiR11 (OR123-mで表される基で置換された環状分子を有するポリロタキサンを得ることができるが、これらの方法に限定されない。
First, a conventionally known polyrotaxane, for example, a polyrotaxane described in Japanese Patent No. 3475252, WO2005 / 080469, JP2011-46917, etc. is prepared.
Apart from the polyrotaxane, a compound represented by R 101 —SiR 11 m (OR 12 ) 3-m is prepared. Here, R 11 , R 12 and m have the same definition as described above. R 101 has —N═C═O group, epoxy group, —CO—X 1 , —X 1 , —COOH, —CO—OR 102 (R 102 is an electron-withdrawing substituent), —SO— A group having X 1 , —SO 2 —X 1 (in the above, X 1 represents halogen) is preferable.
Next, a polyrotaxane and a compound represented by R 101 —SiR 11 m (OR 12 ) 3-m are reacted in an appropriate solvent under appropriate reaction conditions, whereby a hydroxyl group (—OH) is converted to —SiR. A polyrotaxane having a cyclic molecule substituted with a group represented by 11 m (OR 12 ) 3-m can be obtained, but is not limited to these methods.
<<環状分子>>
 環状分子は、環状であり、開口部を有し、直鎖状分子によって串刺し状に包接されるものであれば、特に限定されない。
 上述のように、環状分子は、-SiR11 (OR123-mで表される基を有してもよく、また、その他の基を有してもよい。
 環状分子として、例えば、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群から選択されるのがよい。
 なお、環状分子が、-SiR11 (OR123-mで表される基及び/又はその他の基を有する場合、環状分子、例えばα-シクロデキストリンの水酸基(-OH)が該-SiR11 (OR123-mで表される基及び/又はその他の基で置換することにより形成するのがよい。なお、その方法は、上述したとおりである。
<< Cyclic molecule >>
The cyclic molecule is not particularly limited as long as it is cyclic, has an opening, and is included in a skewered manner by a linear molecule.
As described above, the cyclic molecule may have a group represented by —SiR 11 m (OR 12 ) 3-m and may have other groups.
The cyclic molecule may be selected from the group consisting of α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin, for example.
In the case where the cyclic molecule has a group represented by —SiR 11 m (OR 12 ) 3-m and / or other groups, a cyclic molecule, for example, a hydroxyl group (—OH) of α-cyclodextrin is represented by —SiR It may be formed by substitution with a group represented by 11 m (OR 12 ) 3-m and / or other groups. The method is as described above.
<<直鎖状分子>>
 本発明のポリロタキサンの直鎖状分子は、用いる環状分子の開口部に串刺し状に包接され得るものであれば、特に限定されない。
 例えば、直鎖状分子として、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアセタール系樹脂、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん等及び/またはこれらの共重合体、ポリエチレン、ポリプロピレン、およびその他オレフィン系単量体との共重合樹脂などのポリオレフィン系樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレンやアクリロニトリル-スチレン共重合樹脂等のポリスチレン系樹脂、ポリメチルメタクリレートや(メタ)アクリル酸エステル共重合体、アクリロニトリル-メチルアクリレート共重合樹脂などのアクリル系樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール樹脂等;及びこれらの誘導体又は変性体、ポリイソブチレン、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ナイロンなどのポリアミド類、ポリイミド類、ポリイソプレン、ポリブタジエンなどのポリジエン類、ポリジメチルシロキサンなどのポリシロキサン類、ポリスルホン類、ポリイミン類、ポリ無水酢酸類、ポリ尿素類、ポリスルフィド類、ポリフォスファゼン類、ポリケトン類、ポリフェニレン類、ポリハロオレフィン類、並びにこれらの誘導体からなる群から選ばれるのがよい。例えばポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコール及びポリビニルメチルエーテルからなる群から選ばれるのがよい。特にポリエチレングリコールであるのがよい。
<< Linear molecule >>
The linear molecule of the polyrotaxane of the present invention is not particularly limited as long as it can be included in a skewered manner in the opening of the cyclic molecule to be used.
For example, as linear molecules, polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulosic resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polypropylene glycol, polyvinyl Polyolefin resins such as acetal resins, polyvinyl methyl ether, polyamines, polyethyleneimine, casein, gelatin, starch, and / or copolymers thereof, polyethylene, polypropylene, and copolymers of other olefin monomers; Polyester resins, polyvinyl chloride resins, polystyrene resins such as polystyrene and acrylonitrile-styrene copolymer resins, polymethyl Acrylic resin such as tacrylate, (meth) acrylic acid ester copolymer, acrylonitrile-methyl acrylate copolymer resin, polycarbonate resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin, etc .; and derivatives or Modified products, polyisobutylene, polytetrahydrofuran, polyaniline, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyamides such as nylon, polyimides, polydienes such as polyisoprene and polybutadiene, polysiloxanes such as polydimethylsiloxane , Polysulfones, polyimines, polyacetic anhydrides, polyureas, polysulfides, polyphosphazenes, polyketones, polyphenylenes, polyhaloolefins, and It may be selected from the group consisting of these derivatives. For example, it may be selected from the group consisting of polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol and polyvinyl methyl ether. Particularly preferred is polyethylene glycol.
 直鎖状分子は、その重量平均分子量が3,000~500,000、好ましくは5,000~100,000、より好ましくは10,000~50,000であるのがよい。
 なお、直鎖状分子の重量平均分子量は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography、GPC)で測定することができる。GPCの測定条件は、直鎖状分子の種類にも依るが、溶離液やカラムの種類、温度、標準物質を適切に選択するのがよい。
 本願の、ポリロタキサンにおいて、(環状分子、直鎖状分子)の組合せが、(α-シクロデキストリン由来、ポリエチレングリコール由来)であるのが好ましい。
The linear molecule may have a weight average molecular weight of 3,000 to 500,000, preferably 5,000 to 100,000, more preferably 10,000 to 50,000.
In addition, the weight average molecular weight of a linear molecule | numerator can be measured by a gel permeation chromatography (Gel Permeation Chromatography, GPC). GPC measurement conditions depend on the type of linear molecule, but the type of eluent, column, temperature, and standard substance should be appropriately selected.
In the polyrotaxane of the present application, the combination of (cyclic molecule, linear molecule) is preferably (derived from α-cyclodextrin, derived from polyethylene glycol).
<<封鎖基>>
 封鎖基は、擬ポリロタキサンの両端に配置され、用いる環状分子が脱離しないように作用する基であれば、特に限定されない。
 例えば、封鎖基として、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、ピレン類、置換ベンゼン類(置換基として、アルキル、アルキルオキシ、ヒドロキシ、ハロゲン、シアノ、スルホニル、カルボキシル、アミノ、フェニルなどを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、置換されていてもよい多核芳香族類(置換基として、上記と同じものを挙げることができるがこれらに限定されない。置換基は1つ又は複数存在してもよい。)、及びステロイド類からなる群から選ばれるのがよい。なお、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、及びピレン類からなる群から選ばれるのが好ましく、より好ましくはアダマンタン基類又はシクロデキストリン類であるのがよい。
<< Blocking group >>
The blocking group is not particularly limited as long as it is a group that is arranged at both ends of the pseudopolyrotaxane and acts so that the cyclic molecule to be used does not leave.
For example, as a blocking group, dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, pyrenes, substituted benzenes (substituents are alkyl, alkyloxy, hydroxy, Examples include, but are not limited to, halogen, cyano, sulfonyl, carboxyl, amino, phenyl, etc. One or more substituents may be present), optionally substituted polynuclear aromatics (substituted) Examples of the group include, but are not limited to, the same as described above, and one or more substituents may be present.) And a group consisting of steroids. It is preferably selected from the group consisting of dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes, more preferably adamantane groups or cyclodextrins. It should be similar.
<<成分(a)と成分(b)との量>>
 成分(a)と成分(b)とは、ゾル中、成分(a):成分(b)が99.9:0.1~50:50、好ましくは99:1~80:20、より好ましくは99:1~90:5の量で存在するのがよい。
 また、ゲル中、特にエアロゲル中、成分(b)の重量の割合、すなわち熱重量分析による500℃までの重量減少の割合が、50%以下、好ましくは20%以下、より好ましくは10%以下であるのがよい。
<< Amount of component (a) and component (b) >>
Component (a) and component (b) are those in which sol (a): component (b) is 99.9: 0.1-50: 50, preferably 99: 1-80: 20, more preferably It may be present in an amount of 99: 1 to 90: 5.
Further, in the gel, particularly in the aerogel, the proportion of the weight of the component (b), that is, the proportion of weight reduction up to 500 ° C. by thermogravimetric analysis is 50% or less, preferably 20% or less, more preferably 10% or less. There should be.
<<ゾル中のその他の成分>>
 本発明のゾルは、上述のように、成分(a)及び成分(b)を有してなり、成分(a)及び成分(b)以外のその他の成分を有してもよい。
 その他の成分として、得られるゾル及び/又は得られるゲルとの親和性などにも依存するが、ゾル及び/又はゲルに所望の特性を付与する成分を挙げることができる。該成分として、例えば成分(a)以外の金属アルコキシド又はその類縁体、高弾性ポリマー、高耐衝撃性ポリマー、高分子ナノコンポジット、電気伝導性分子、可塑剤、架橋剤などを挙げることができるがこれらに限定されない。
 なお、成分(a)以外の金属アルコキシド又はその類縁体として、MxR111y(OR112)zを挙げることができる。ここで、Mとして、Al、Ti、Zr、Zn、Wなどを挙げることができるが、これらに限定されない。また、x、y及びzは、金属Mに依存する自然数であり、例えば、MがAlの場合、xは1、y+z=3であり、yは0~2、好ましくは0~1、より好ましくは0であるのがよい。また、MがTiの場合、xは1、y+z=4であり、yは0~3、好ましくは0~1、より好ましくは0であるのがよい。
 R111及びR112は、R及びRと同じ定義を有するのがよい。具体的には、R111及びR112は、炭素数1~20、好ましくは1~10、より好ましくは1~4の直鎖又は分岐鎖のアルキル基、炭素数3~20、好ましくは3~10、より好ましくは3~6の環状アルキル基又は置換されてもよいフェニル基を表す。
<< Other components in sol >>
As described above, the sol of the present invention includes the component (a) and the component (b), and may include other components other than the component (a) and the component (b).
Examples of other components include components that impart desired properties to the sol and / or gel, depending on the affinity with the obtained sol and / or the obtained gel. Examples of the component include metal alkoxides other than the component (a) or analogs thereof, high elastic polymers, high impact polymers, polymer nanocomposites, electrically conductive molecules, plasticizers, crosslinking agents, and the like. It is not limited to these.
The metal alkoxide or its analogs other than components (a), may be mentioned MxR 111 y (OR 112) z . Here, examples of M include, but are not limited to, Al, Ti, Zr, Zn, and W. X, y and z are natural numbers depending on the metal M. For example, when M is Al, x is 1, y + z = 3, and y is 0 to 2, preferably 0 to 1, more preferably. Should be 0. When M is Ti, x is 1, y + z = 4, and y is 0 to 3, preferably 0 to 1, and more preferably 0.
R 111 and R 112 should have the same definition as R 1 and R 2 . Specifically, R 111 and R 112 are linear or branched alkyl groups having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, 3 to 20 carbon atoms, preferably 3 to 3 carbon atoms. It represents 10, more preferably 3 to 6 cyclic alkyl groups or an optionally substituted phenyl group.
<ゾルの調製方法>
 本願は、上述したゾルを調製する方法を提供する。
 該調製方法は、
 (I) (a)SiR (OR4-nを準備する工程;
 (II) (b)ポリロタキサンを準備する工程;及び
 (III) (a)SiR (OR4-nと前記(b)ポリロタキサンとを混合し、加水分解を行う工程;
を有することにより、上述のゾルを得る。
<Method for preparing sol>
The present application provides a method for preparing the sol described above.
The preparation method is as follows:
(I) (a) preparing SiR 1 n (OR 2 ) 4-n ;
(II) (b) a step of preparing a polyrotaxane; and (III) (a) a step of mixing SiR 1 n (OR 2 ) 4-n and the (b) polyrotaxane and performing hydrolysis;
The above-mentioned sol is obtained by having
<工程(I)>
 工程(I)は、(a)SiR (OR4-nを準備する工程である。
 SiR (OR4-nで表される化合物は、従来公知の化合物であっても、新規に合成する化合物であってもよい。従来公知の化合物の場合、市販品を入手することにより準備してもよい。
<Process (I)>
Step (I) is a step of preparing (a) SiR 1 n (OR 2 ) 4-n .
The compound represented by SiR 1 n (OR 2 ) 4-n may be a conventionally known compound or a newly synthesized compound. In the case of a conventionally known compound, it may be prepared by obtaining a commercially available product.
<工程(II)>
 工程(II)は、(b)ポリロタキサンを準備する工程である。
 (b)ポリロタキサンは、従来公知のポリロタキサンであっても、新規に合成することにより入手してもよい。従来公知のポリロタキサンの場合、市販品を入手することにより準備してもよい。
 新規に合成する場合、特に環状分子が-SiR11 (OR123-mで表される基を有する場合、上述した方法によりポリロタキサンを得ることができる。
<Process (II)>
Step (II) is a step of preparing (b) polyrotaxane.
(B) The polyrotaxane may be a conventionally known polyrotaxane or may be obtained by newly synthesizing. In the case of a conventionally known polyrotaxane, it may be prepared by obtaining a commercially available product.
When newly synthesized, especially when the cyclic molecule has a group represented by —SiR 11 m (OR 12 ) 3-m , a polyrotaxane can be obtained by the method described above.
<工程(III)>
 工程(III)は、(a)SiR (OR4-nと(b)ポリロタキサンとを混合し、加水分解を行う工程である。
 工程(III)において、溶媒として、用いる成分(a)、成分(b)などに依存するが、例えばN,N-ジメチルホルムアミド(DMF)と水との混合溶媒を挙げることができるがこれらに限定されない。
 また、工程(III)は、用いる成分(a)、成分(b)などに依存するが、塩基あるいは酸存在下、水が気化しない温度条件、即ち室温から100℃までの条件で行うのがよい。
<Step (III)>
Step (III) is a step in which (a) SiR 1 n (OR 2 ) 4-n and (b) polyrotaxane are mixed and subjected to hydrolysis.
In step (III), the solvent depends on the component (a), component (b) and the like to be used, and examples thereof include a mixed solvent of N, N-dimethylformamide (DMF) and water, but are not limited thereto. Not.
Step (III) depends on the components (a) and (b) to be used, but in the presence of a base or acid, it should be carried out under temperature conditions where water does not evaporate, that is, from room temperature to 100 ° C. .
<ゾルから得られるゲル>
 本願は、上述したゾルから得られるゲルを提供する。
 本発明のゲルは、溶媒を有する、いわゆるウェットゲルであっても、溶媒を有しない、いわゆるドライゲルであっても、エアロゲルであってもよい。好ましくは、本発明のゲルはエアロゲルであるのがよい。
<Gel obtained from sol>
The present application provides a gel obtained from the sol described above.
The gel of the present invention may be a so-called wet gel having a solvent, a so-called dry gel having no solvent, or an aerogel. Preferably, the gel of the present invention is an airgel.
<<力学特性>>
 本発明のゲル、特にエアロゲルは、次の力学特性のうち、1つ、2つ又はそれ以上の組合せを有するのがよい。
 力学特性として、最大圧縮歪み:10%以上、好ましくは30%以上、より好ましくは50%以上、最も好ましくは60%以上;
を挙げることができるがこれらに限定されない。
<< Mechanical properties >>
The gels of the present invention, in particular aerogels, may have one, two or more combinations of the following mechanical properties.
As mechanical properties, maximum compression strain: 10% or more, preferably 30% or more, more preferably 50% or more, most preferably 60% or more;
However, it is not limited to these.
<<熱伝導率>>
 また、本発明のゲル、特にエアロゲルは、熱伝導率が0.05Wm-1-1以下、好ましくは0.02Wm-1-1以下、より好ましくは0.015Wm-1-1以下であるのがよい。特に、本発明のエアロゲルは、上記力学特性に加えて、上記熱伝導率を有するのがよい。
 なお、本願において、熱伝導率は、次のように測定するのがよい。即ち、熱伝導率λは、熱拡散率α及び熱容量Cを測定し、且つバルク密度ρを測定し、それらの値を用いて、以下の式に沿って、求めることができる。なお、バルク密度ρは、アルキメデスの原理を応用する密度測定機により測定することができる。
<< Thermal conductivity >>
The gel of the present invention, particularly the airgel, has a thermal conductivity of 0.05 Wm −1 K −1 or less, preferably 0.02 Wm −1 K −1 or less, more preferably 0.015 Wm −1 K −1 or less. There should be. In particular, the airgel of the present invention preferably has the thermal conductivity in addition to the mechanical properties.
In addition, in this application, it is good to measure thermal conductivity as follows. That is, the thermal conductivity λ can be obtained according to the following equation by measuring the thermal diffusivity α and the thermal capacity C p and measuring the bulk density ρ b and using those values. Incidentally, the bulk density [rho b can be measured by a density measuring instrument to apply the principle of Archimedes.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
<<透明性>>
 さらに、本発明のゲル、特にエアロゲルは、透明であるのがよい。特に、本発明のエアロゲルは、上記力学特性及び上記熱伝導率に加えて、透明であるのがよい。
 ここで、「透明である」とは、例えば、エアロゲルのSEM像において、シリカ粒子の成長や凝集によって100nm以上の粒径を示さないことをいうのがよい。
 また、「透明である」とは、2mm厚のエアロゲルが、550nmの波長の光を60%以上、好ましくは65~100%、より好ましくは70~100%透過するのがよい。
 具体的には2mmでの透過率T(2)は、他の厚みd(mm)での550nmの透過率Tを以下の式(X)に代入することで求めることができる。
<< Transparency >>
Furthermore, the gel of the present invention, in particular the airgel, should be transparent. In particular, the airgel of the present invention should be transparent in addition to the mechanical properties and the thermal conductivity.
Here, “transparent” means, for example, that an SEM image of an airgel does not show a particle size of 100 nm or more due to growth or aggregation of silica particles.
In addition, “transparent” means that a 2 mm thick airgel transmits 60% or more, preferably 65 to 100%, more preferably 70 to 100% of light having a wavelength of 550 nm.
Specifically, the transmittance T (2) at 2 mm can be obtained by substituting the transmittance T at 550 nm at another thickness d (mm) into the following formula (X).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本発明のゲル、特にエアロゲルは、空孔率が80%以上、好ましくは85%以上、より好ましくは90%以上であるのがよい。
 なお、本発明のエアロゲルにおいて、空孔率は、バルク密度ρと空孔以外の骨格部分の密度ρを用いて以下のように求められる。なお、バルク密度ρは、アルキメデスの原理を応用する密度測定機により測定することができる。
The gel of the present invention, particularly the airgel, has a porosity of 80% or more, preferably 85% or more, more preferably 90% or more.
In the airgel of the present invention, the porosity is determined as follows using the bulk density ρ b and the density ρ s of the skeleton portion other than the vacancies. Incidentally, the bulk density [rho b can be measured by a density measuring instrument to apply the principle of Archimedes.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
<ゲルの調製方法>
 本願は、上述したゲルを調製する方法を提供する。
 該調製方法は、
 (I) (a)SiR (OR4-nを準備する工程;
 (II) (b)ポリロタキサンを準備する工程;及び
 (III) (a)SiR (OR4-nと(b)ポリロタキサンとを混合し、加水分解を行い、ゾルを得る工程;
 (IV) 得られたゾルに触媒を加えた後、静置してウェットゲルを調製する工程;
を有する。
 また、エアロゲルを調製するためには、(V)ウェットゲルを乾燥させる工程;をさらに有するのがよい。
 以下、各工程について説明するが、工程(I)~(III)は、ゾルの調製方法と同じであるので、説明を省略する。
<Gel preparation method>
The present application provides a method for preparing the gel described above.
The preparation method is as follows:
(I) (a) preparing SiR 1 n (OR 2 ) 4-n ;
(II) (b) a step of preparing a polyrotaxane; and (III) (a) a step of mixing SiR 1 n (OR 2 ) 4-n and (b) polyrotaxane and performing hydrolysis to obtain a sol;
(IV) A step of adding a catalyst to the obtained sol and then allowing it to stand to prepare a wet gel;
Have
Moreover, in order to prepare an airgel, it is good to have further (V) the process of drying a wet gel.
Hereinafter, each step will be described, but steps (I) to (III) are the same as the sol preparation method, and thus the description thereof will be omitted.
<<工程(IV)>>
 工程(IV)は、工程(III)で得られたゾルに触媒を加えた後、静置してウェットゲルを調製する工程である。
 ここで、触媒として、ゾルゲル法で用いられる一般的な酸又は塩基を用いることができる。例えば、ヒドロキシルアミンなどの塩基を用いることができるが、これに限定されない。
 なお、静置において、用いる成分(a)、成分(b)などに依存して、0℃から100℃の条件下で行うのがよいが、これに限定されない。
<< Step (IV) >>
Step (IV) is a step of preparing a wet gel by adding a catalyst to the sol obtained in step (III) and then allowing to stand.
Here, a general acid or base used in the sol-gel method can be used as the catalyst. For example, a base such as hydroxylamine can be used, but is not limited thereto.
In addition, depending on the component (a), the component (b), etc. to be used in the standing, it is good to carry out under the conditions of 0 ° C. to 100 ° C., but is not limited thereto.
<<工程(V)>>
 工程(V)は、工程(IV)で得られたウェットゲルを乾燥させる工程である。
 この工程は、従来公知の手法を用いることができる。
 従来公知の手法として、例えば、ウェットゲルに含まれる溶媒を、より乾燥しやすい溶媒などに置換する溶媒置換工程、超臨界乾燥工程、及びこれらの組合せを挙げることができるがこれらに限定されない。好ましくは、溶媒置換工程と超臨界乾燥工程との組合せがよく、この際、溶媒置換工程は、超臨界乾燥工程で用いる超臨界二酸化炭素に置換しやすい溶媒、例えばメタノールなどの溶媒を用いて置換するのがよい。
 工程(V)は、用いる成分(a)、成分(b)、用いる溶媒などに依存するが、好ましくは溶媒置換工程を経て、超臨界乾燥工程を行うのがよい。
<< Step (V) >>
Step (V) is a step of drying the wet gel obtained in step (IV).
A conventionally known method can be used for this step.
Examples of conventionally known methods include, but are not limited to, a solvent replacement step in which the solvent contained in the wet gel is replaced with a solvent that is easier to dry, a supercritical drying step, and combinations thereof. Preferably, the combination of the solvent replacement step and the supercritical drying step is good, and in this case, the solvent replacement step is performed using a solvent that can be easily replaced with supercritical carbon dioxide used in the supercritical drying step, for example, a solvent such as methanol. It is good to do.
The step (V) depends on the component (a), the component (b) to be used, the solvent to be used and the like, but preferably a supercritical drying step is performed through a solvent substitution step.
 本発明のゲル、特にエアロゲルは、断熱性、透明性及び機械的強度において所望の特性を備えることが要求される材料に適用することがえきる。該材料として、例えば窓材、断熱材、触媒、微粒子捕集材料などを挙げることができるがこれらに限定されない。 The gel of the present invention, particularly the airgel, can be applied to materials that are required to have desired properties in heat insulation, transparency and mechanical strength. Examples of the material include, but are not limited to, window materials, heat insulating materials, catalysts, and particulate collection materials.
 以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明は本実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
<トリエトキシシリル修飾ポリロタキサンの合成>
 出発物質であるポリロタキサン(HAPR)(アドバンスト・ソフトマテリアルズ社製)は、直鎖状分子として分子量35,000のポリエチレングリコール(PEG)、環状分子としてヒドロキシプロピル化α-シクロデキストリン、封鎖基としてアダマンタン基を有した。
 該ポリロタキサン(HAPR)1gを脱水DMF(N,N-ジメチルホルムアミド)20mlに溶解し、そこへイソシアン酸3-(トリエトキシリル)プロピル(3-isocyanatopropyltriethoxysilane)(IPTS)0.2mlを滴下し、室温で一晩撹拌した。その後、得られた反応液をアセトン200mlに滴下することで生成物を析出させ、遠心分離により上澄を取り除いて沈殿を回収した。この沈殿をアセトンで繰り返し洗浄してから乾燥させることで、トリエトキシシリル修飾ポリロタキサン870mgを得た(下記反応スキームを参照のこと)。
<Synthesis of triethoxysilyl-modified polyrotaxane>
The starting material, polyrotaxane (HAPR) (manufactured by Advanced Soft Materials), is a polyethylene glycol (PEG) having a molecular weight of 35,000 as a linear molecule, hydroxypropylated α-cyclodextrin as a cyclic molecule, and adamantane as a blocking group Has a group.
1 g of the polyrotaxane (HAPR) is dissolved in 20 ml of dehydrated DMF (N, N-dimethylformamide), and 0.2 ml of 3-isocyanatopropyltriethoxysilane (IPTS) is added dropwise thereto at room temperature. And stirred overnight. Thereafter, the resulting reaction solution was added dropwise to 200 ml of acetone to precipitate the product, and the supernatant was removed by centrifugation to collect the precipitate. This precipitate was repeatedly washed with acetone and then dried to obtain 870 mg of a triethoxysilyl-modified polyrotaxane (see the following reaction scheme).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 トリエトキシシリル修飾ポリロタキサンのキャラクタリゼーションは、赤外分光法、プロトン核磁気共鳴法、サイズ排除クロマトグラフィーによって行った。
 赤外分光スペクトルはThermo Electron Co., Ltd.のNICOLET iS50 SpectrometerにDuraSamplIR II diamond ATR accessoryを搭載して全反射法を用いて測定した。
 プロトン核磁気共鳴スペクトルは、JEOL社製JNM-AL400を用いて重水素化DMSOを溶媒として用いて測定した。
 サイズ排除クロマトグラフィーは、Shodex社製OHpak SB-804 HQを二本直接で連結したカラムを用いて、溶媒に10mMのLiBrを溶解したDMSOを溶出液として用いて50℃で測定した。検出には示差屈折検出器を用いた。
Characterization of the triethoxysilyl modified polyrotaxane was performed by infrared spectroscopy, proton nuclear magnetic resonance, and size exclusion chromatography.
The infrared spectrum was measured using a total reflection method with a DuraSamplIR II diamond ATR accessory mounted on a NICOLET iS50 Spectrometer from Thermo Electron Co., Ltd.
The proton nuclear magnetic resonance spectrum was measured using deuterated DMSO as a solvent using JNM-AL400 manufactured by JEOL.
Size exclusion chromatography was measured at 50 ° C. using DMSO in which 10 mM LiBr was dissolved in a solvent as an eluent using a column in which two OHpak SB-804 HQs manufactured by Shodex were directly connected. A differential refraction detector was used for detection.
 トリエトキシシリル修飾ポリロタキサンのFT-IRスペクトルを図1に示す。図1において、出発物質であるポリロタキサンにはない1714cm-1にカルボニル伸縮振動に由来する吸収が確認された。このことから、環状分子の水酸基とIPTSが反応することでウレタン結合が形成されたことが示唆された。 The FT-IR spectrum of the triethoxysilyl modified polyrotaxane is shown in FIG. In FIG. 1, absorption derived from carbonyl stretching vibration was confirmed at 1714 cm −1 which is not found in the starting polyrotaxane. From this, it was suggested that the urethane bond was formed by the reaction of the hydroxyl group of the cyclic molecule and IPTS.
 H NMRスペクトルと各ピークの帰属を図2に示す。1.15ppmに現れるトリエトキシシリル基由来のメチルプロトンのピークと4.8ppmに現れるシクロデキストリン由来のC1Hプロトンの積分比より、出発物質であるポリロタキサンの環状分子が有する水酸基の2%(環状分子一つあたり、0.36個の修飾基に相当)が修飾されたことを確認した。
 また、5.8~6.3ppmに表れるビニル基のピークが観測されていないことから、得られたポリロタキサンは、ビニル基を有さないことを確認した。
The 1 H NMR spectrum and the assignment of each peak are shown in FIG. From the integral ratio of the methyl proton peak derived from the triethoxysilyl group appearing at 1.15 ppm and the C1H proton derived from the cyclodextrin appearing at 4.8 ppm, 2% of the hydroxyl groups possessed by the cyclic molecule of the polyrotaxane as the starting material (one cyclic molecule It was confirmed that 0.36 modification groups) were modified.
Further, since no vinyl group peak appearing at 5.8 to 6.3 ppm was observed, it was confirmed that the obtained polyrotaxane did not have a vinyl group.
 実施例1で合成したトリエトキシシリル修飾ポリロタキサン及び実施例1で用いた出発物質であるポリロタキサン(HAPR)についてのサイズ排除クロマトで得られたクロマトグラムを図3に示す。
 実施例1で用いた出発物質であるポリロタキサン、HAPRは、溶出時間43分程度にピークを示し、不純物であるシクロデキストリンが含まれていることがわかる。
 一方、実施例1で合成したトリエトキシシリル修飾ポリロタキサンについて、その溶出時間は原料ポリロタキサンよりやや短く26分となり、他にピークを示さないことがわかる。このことから、反応過程でのポリロタキサンの分解生成物や原料に含まれていた未包接シクロデキストリン(溶出時間:42分)をほぼ含まない、トリエトキシシリル修飾ポリロタキサンが単離できたことが確認された。
A chromatogram obtained by size exclusion chromatography for the triethoxysilyl-modified polyrotaxane synthesized in Example 1 and the polyrotaxane (HAPR) which is the starting material used in Example 1 is shown in FIG.
The starting materials used in Example 1, polyrotaxane and HAPR, show a peak at an elution time of about 43 minutes, indicating that the cyclodextrin as an impurity is contained.
On the other hand, the triethoxysilyl-modified polyrotaxane synthesized in Example 1 has an elution time slightly shorter than that of the raw material polyrotaxane, which is 26 minutes, indicating no other peaks. From this, it was confirmed that the triethoxysilyl-modified polyrotaxane containing almost no uninclusion cyclodextrin (elution time: 42 minutes) contained in the degradation products and raw materials of the polyrotaxane during the reaction could be isolated. It was done.
<ポリロタキサン強化シリカエアロゲルA-1の合成>
 実施例1で得られたトリエトキシシリル修飾ポリロタキサン23.5mgと、テトラエトキシシラン(TEOS)0.975ml(916.5mg)、イオン交換水0.3ml、14%アンモニア水0.1mlをDMF2mlに溶解しゾルを得た。
 このゾルをテフロン(登録商標)製の型に流し込み、36時間室温で静置することでゲルを得た。このゲルをエタノールに浸漬することで溶媒置換を行い、新しいエタノールに繰り返し浸漬することで完全にDMFを取り除いた。このゲルを超臨界二酸化炭素(40℃、9MPa)雰囲気下で乾燥させることで、ポリロタキサン強化シリカエアロゲルA-1を得た。
<Synthesis of Polyrotaxane Reinforced Silica Airgel A-1>
Dissolve 23.5 mg of triethoxysilyl-modified polyrotaxane obtained in Example 1, 0.975 ml (916.5 mg) of tetraethoxysilane (TEOS), 0.3 ml of ion-exchanged water, and 0.1 ml of 14% ammonia water in 2 ml of DMF. A sol was obtained.
This sol was poured into a Teflon (registered trademark) mold and allowed to stand at room temperature for 36 hours to obtain a gel. Solvent replacement was performed by immersing the gel in ethanol, and DMF was completely removed by repeatedly immersing the gel in fresh ethanol. This gel was dried in a supercritical carbon dioxide (40 ° C., 9 MPa) atmosphere to obtain a polyrotaxane-reinforced silica airgel A-1.
(実施例3~6)
<ポリロタキサン強化シリカエアロゲルA-2~A-5の合成>
 実施例2において、トリエトキシシリル修飾ポリロタキサンの量を47mg(実施例3)、70.5mg(実施例4)、94mg(実施例5)、141mg(実施例6)とし、TEOSとの合計重量が940mgになるようにTEOSの量を調整した以外、実施例1と同様に、ポリロタキサン強化シリカエアロゲルA-2~A-5を調製した。
(Examples 3 to 6)
<Synthesis of Polyrotaxane Reinforced Silica Airgel A-2 to A-5>
In Example 2, the amount of triethoxysilyl-modified polyrotaxane was 47 mg (Example 3), 70.5 mg (Example 4), 94 mg (Example 5), 141 mg (Example 6), and the total weight with TEOS was Polyrotaxane-reinforced silica airgels A-2 to A-5 were prepared in the same manner as in Example 1 except that the amount of TEOS was adjusted to 940 mg.
(比較例1)
<シリカエアロゲルC-1の合成>
 実施例2において、トリエトキシシリル修飾ポリロタキサンの量を0mgとしTEOSの量を94mgとした以外、実施例1と同様に、シリカエアロゲルC-1を調製した。
(比較例2)
<シリカエアロゲルC-2の合成>
 実施例2において、トリエトキシシリル修飾ポリロタキサンの量を470mg、TEOSの量も470mgとした以外、実施例1と同様に、シリカエアロゲルC-1を調製した。
(Comparative Example 1)
<Synthesis of Silica Airgel C-1>
In Example 2, silica airgel C-1 was prepared in the same manner as in Example 1, except that the amount of triethoxysilyl-modified polyrotaxane was 0 mg and the amount of TEOS was 94 mg.
(Comparative Example 2)
<Synthesis of Silica Airgel C-2>
In Example 2, silica airgel C-1 was prepared in the same manner as in Example 1 except that the amount of triethoxysilyl-modified polyrotaxane was 470 mg and the amount of TEOS was also 470 mg.
<熱重量分析によるエアロゲルA-1~A-5中のポリロタキサン量の定量化>
 実施例2~実施例6で得られたエアロゲルA-1~A-5に含まれるポリロタキサンの重量比を、熱重量分析により求めた。測定はRigaku社製Thermo Plus Evo TG8120を用い、窒素雰囲気下、昇温速度5℃/分で行った。昇温に伴う重量変化を図4に示す。
 図4から次のことがわかる。即ち、300℃以上で顕著な重量減少が見られ、500℃にはほぼ重量が一定となる。熱分解は有機物であるポリロタキサン由来であり、残渣はシリカであると考えられる。この結果、原料配合時点でのポリロタキサン含有率が2.5%である実施例2において、それによって得られたエアロゲルA-1は、約7%のポリロタキサンが含まれていることが確認された。
 エアロゲルA-2~A-5についても、エアロゲルA-1と同様に、エアロゲル中のポリロタキサン量を計測した。それらの結果を表1に示す。
<Quantification of polyrotaxane content in aerogels A-1 to A-5 by thermogravimetric analysis>
The weight ratio of the polyrotaxane contained in the airgels A-1 to A-5 obtained in Examples 2 to 6 was determined by thermogravimetric analysis. The measurement was performed using a Thermo Plus Evo TG8120 manufactured by Rigaku, under a nitrogen atmosphere at a heating rate of 5 ° C./min. FIG. 4 shows the change in weight with increasing temperature.
The following can be seen from FIG. That is, a significant weight reduction is observed at 300 ° C. or higher, and the weight is almost constant at 500 ° C. Thermal decomposition is derived from polyrotaxane, which is an organic substance, and the residue is considered to be silica. As a result, in Example 2 where the polyrotaxane content at the time of blending the raw materials was 2.5%, it was confirmed that the obtained airgel A-1 contained about 7% polyrotaxane.
For airgels A-2 to A-5, the amount of polyrotaxane in the airgel was measured in the same manner as airgel A-1. The results are shown in Table 1.
<<空孔率>>
 空孔率を、上述の式に沿って、求めた。
 ポリロタキサン強化シリカエアロゲルA-1のバルク密度ρは、アルキメデスの原理を応用する密度測定機により求めたところ、0.15g/cmであった。
 エアロゲルに占めるポリロタキサンの割合が低いので、空孔以外の骨格部分の密度ρをアモルファスシリカの密度(2.2g/cm)で近似して空孔率を求めた。その結果、空孔率は93%と算出された。
 エアロゲルA-2~A-5及びC-1~C-2についても、エアロゲルA-1と同様に、空孔率を求めた。それらの結果を表1に示す。
<< Porosity >>
The porosity was determined according to the above formula.
The bulk density ρ b of the polyrotaxane reinforced silica airgel A-1 was 0.15 g / cm 3 as determined by a density measuring device applying Archimedes' principle.
Since the ratio of the polyrotaxane in the airgel is low, the porosity ρ s of the skeleton portion other than the vacancies was approximated by the density of amorphous silica (2.2 g / cm 3 ) to obtain the porosity. As a result, the porosity was calculated to be 93%.
For airgels A-2 to A-5 and C-1 to C-2, the porosity was determined in the same manner as airgel A-1. The results are shown in Table 1.
<<熱物性>>
 熱伝導率性λを、上述の式から算出した。なお、熱拡散率αは、アイフェイズ株式会社製のai-Phase Mobile 1uを用いて測定した。また、熱容量Cは、日立ハイテクノロジーズ社製のDSC 7000Xを用いる示差走査熱量測定より求めた。
 その結果、エアロゲルA-1の熱伝導率λは、0.014Wm-1-1であった。
 エアロゲルA-1と同様に、エアロゲルA-2~A-5及びC-1~C-2についても、熱伝導率を求めた。それらの結果を表1に示す。
<< Thermal properties >>
The thermal conductivity λ was calculated from the above formula. The thermal diffusivity α was measured using ai-Phase Mobile 1u manufactured by Eye Phase Co., Ltd. Moreover, the heat capacity C p was determined by differential scanning calorimetry using a DSC 7000X manufactured by Hitachi High-Technologies Corporation.
As a result, the thermal conductivity λ of the airgel A-1 was 0.014 Wm −1 K −1 .
As with the airgel A-1, the thermal conductivity of the airgels A-2 to A-5 and C-1 to C-2 was determined. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<<力学物性>>
 実施例2で調製した円盤状エアロゲルA-1(直径約6mm厚み約8mm)を、圧縮モードによる応力-歪み挙動を測定した。
 測定はTA Instrument社製RSAIIIを用い、室温で歪み速度2mm/分で測定した。
 ポリロタキサンを含まない比較例1で調製したエアロゲルC-1は、圧縮歪み5%程度で破壊が始まり、圧縮歪み8%で完全に応力がゼロになるのに対し、実施例2で調製したエアロゲルA-1は、圧縮歪み73%程度まで圧縮可能であった。
 エアロゲルA-2~A-3についても、エアロゲルA-1と同様に、その力学物性を測定した。その結果を表2に示す。
<< Mechanical properties >>
The stress-strain behavior of the disk-shaped airgel A-1 (diameter of about 6 mm and thickness of about 8 mm) prepared in Example 2 was measured.
Measurement was performed using RSAIII manufactured by TA Instrument Co., at room temperature and a strain rate of 2 mm / min.
The airgel C-1 prepared in Comparative Example 1 containing no polyrotaxane begins to break at a compression strain of about 5%, and the stress becomes completely zero at a compression strain of 8%, whereas the airgel A prepared in Example 2 -1 was compressible to a compression strain of about 73%.
For airgels A-2 to A-3, the mechanical properties were measured in the same manner as airgel A-1. The results are shown in Table 2.
<<透明性>>
<1.ポリロタキサン強化シリカエアロゲルA-1の内部構造>
 実施例2で得られたポリロタキサン強化シリカエアロゲルA-1の内部構造を走査型電子顕微鏡(SEM S4800、日立製)によって観察した。試料は予め破断面を作り金でスパッタコーティングした。こうして得られたSEM像を図5に示す。
 図5の像からわかるように、このエアロゲルの骨格部分は直径20nm程度の粒径がそろったシリカナノ粒子で形成されており、凝集がほとんど見られない。そのためポリロタキサン強化シリカエアロゲルはほとんど白濁せず透明性を維持していると考えられる。
<< Transparency >>
<1. Internal structure of polyrotaxane reinforced silica airgel A-1>
The internal structure of the polyrotaxane-reinforced silica airgel A-1 obtained in Example 2 was observed with a scanning electron microscope (SEM S4800, manufactured by Hitachi). The sample was preliminarily made into a fracture surface and sputter coated with gold. The SEM image thus obtained is shown in FIG.
As can be seen from the image in FIG. 5, the skeleton portion of the airgel is formed of silica nanoparticles having a diameter of about 20 nm and hardly aggregates. Therefore, it is considered that the polyrotaxane reinforced silica airgel is hardly clouded and maintains transparency.
<2.透過率測定>
 実施例1~3及び比較例1で得られたエアロゲルA-1~A-3及びC-1について、透過率を測定した。
 測定に際して、厚み約2mm、縦横が約20mm×約10mmの試料を準備し、該試料の波長550nmでの透過率を紫外可視近赤外分光光度計で測定した。試料の厚みd(mm)での実測透過率Tを上述の式(X)に代入することで、2mmにおける透過率T(2)を求めた。その結果を表2に示す。
 表2の透過率から、実施例1~3のエアロゲルA-1~A-3は、ポリロタキサンを含まない比較例1のエアロゲルC-1とほぼ同程度の透過率であり、透明性を有することがわかる。
<2. Transmittance measurement>
The transmittances of the airgels A-1 to A-3 and C-1 obtained in Examples 1 to 3 and Comparative Example 1 were measured.
In the measurement, a sample having a thickness of about 2 mm and a length and width of about 20 mm × about 10 mm was prepared, and the transmittance of the sample at a wavelength of 550 nm was measured with an ultraviolet-visible-near infrared spectrophotometer. The transmittance T (2) at 2 mm was obtained by substituting the measured transmittance T at the thickness d (mm) of the sample into the above formula (X). The results are shown in Table 2.
From the transmittance in Table 2, the airgels A-1 to A-3 of Examples 1 to 3 have almost the same transmittance as the airgel C-1 of Comparative Example 1 that does not contain polyrotaxane, and have transparency. I understand.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (14)

  1.  (a)SiR (OR4-n
    (式中、R及びRは各々独立に、炭素数1~20の直鎖又は分岐鎖のアルキル基、炭素数3~20の環状アルキル基又は置換されてもよいフェニル基を表し、
     nは0~3の整数を示す);及び
     (b)環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサン;
    を有してなるゾル。
    (A) SiR 1 n (OR 2 ) 4-n
    (Wherein R 1 and R 2 each independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or an optionally substituted phenyl group;
    n represents an integer of 0 to 3); and (b) a blocking group is provided so that the cyclic molecule is not detached at both ends of the pseudopolyrotaxane in which the opening of the cyclic molecule is skewered by the linear molecule. A polyrotaxane formed;
    A sol comprising:
  2.  前記(b)ポリロタキサンは、その環状分子が-SiR11 (OR123-m
    (式中、R11及びR12は各々独立に、炭素数1~20の直鎖又は分岐鎖のアルキル基、炭素数3~20の環状アルキル基又は置換されてもよいフェニル基を表し、
    mは0~2の整数を示す)
    で表される基を有する請求項1記載のゾル。
    In the (b) polyrotaxane, the cyclic molecule is —SiR 11 m (OR 12 ) 3-m
    (Wherein R 11 and R 12 each independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or an optionally substituted phenyl group;
    m represents an integer of 0 to 2)
    The sol according to claim 1 having a group represented by the formula:
  3.  前記(b)ポリロタキサンは、その環状分子がリンカー部位を介して-SiR11 (OR123-m
    (式中、R11及びR12は各々独立に、炭素数1~20の直鎖又は分岐鎖のアルキル基、炭素数3~20の環状アルキル基又は置換されてもよいフェニル基を表し、
    mは0~2の整数を示す)
    で表される基を有し、
    該リンカー部位が炭素数1~20の直鎖又は分岐鎖のアルキル基、置換されてもよいフェニル基、エチレングリコール基又はシロキサン結合を有する基である請求項1又は2記載のゾル。
    In the (b) polyrotaxane, the cyclic molecule is —SiR 11 m (OR 12 ) 3-m via a linker site.
    (Wherein R 11 and R 12 each independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or an optionally substituted phenyl group;
    m represents an integer of 0 to 2)
    Having a group represented by
    The sol according to claim 1 or 2, wherein the linker moiety is a linear or branched alkyl group having 1 to 20 carbon atoms, an optionally substituted phenyl group, an ethylene glycol group or a group having a siloxane bond.
  4.  請求項1~3のいずれか1項記載のゾルから得られるゲル。 A gel obtained from the sol according to any one of claims 1 to 3.
  5.  ゲルがエアロゲルである請求項4記載のゲル。 The gel according to claim 4, wherein the gel is an aerogel.
  6.  ゲルがエアロゲルであり、該エアロゲルの最大圧縮歪みが10%以上である請求項4又は5記載のゲル。 The gel according to claim 4 or 5, wherein the gel is an airgel, and the maximum compressive strain of the airgel is 10% or more.
  7.  ゲルがエアロゲルであり、該エアロゲルが透明である請求項4~6のいずれか1項記載のゲル。 The gel according to any one of claims 4 to 6, wherein the gel is an airgel, and the airgel is transparent.
  8.  ゲルがエアロゲルであり、該エアロゲルの空孔率が80%以上である請求項4~7のいずれか1項記載のゲル。 The gel according to any one of claims 4 to 7, wherein the gel is an airgel, and the porosity of the airgel is 80% or more.
  9.  ゲルがエアロゲルであり、該エアロゲルの熱伝導率が0.05Wm-1-1以下である請求項4~8のいずれか1項記載のゲル。 The gel according to any one of claims 4 to 8, wherein the gel is an airgel, and the thermal conductivity of the airgel is 0.05 Wm -1 K -1 or less.
  10.  (a)SiR (OR4-n
    (式中、R及びRは各々独立に、炭素数1~20の直鎖又は分岐鎖のアルキル基、炭素数3~20の環状アルキル基又は置換されてもよいフェニル基を表し、
     nは0~3の整数を示す);及び
     (b)環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサン;
    を有してなるゾルの調製方法であって、
     (I) 前記(a)SiR (OR4-nを準備する工程;
     (II) 前記(b)ポリロタキサンを準備する工程;及び
     (III) 前記(a)SiR (OR4-nと前記(b)ポリロタキサンとを混合し、加水分解を行う工程;
    を有することにより、前記ゾルを得る、上記方法。
    (A) SiR 1 n (OR 2 ) 4-n
    (Wherein R 1 and R 2 each independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or an optionally substituted phenyl group;
    n represents an integer of 0 to 3); and (b) a blocking group is provided so that the cyclic molecule is not detached at both ends of the pseudopolyrotaxane in which the opening of the cyclic molecule is skewered by the linear molecule. A polyrotaxane formed;
    A method for preparing a sol comprising:
    (I) a step of preparing (a) SiR 1 n (OR 2 ) 4-n ;
    (II) preparing (b) the polyrotaxane; and (III) mixing the (a) SiR 1 n (OR 2 ) 4-n and the (b) polyrotaxane and performing hydrolysis;
    The method as described above, wherein the sol is obtained.
  11.  (IV) 請求項10で得られたゾルを静置してウェットゲルを調製する工程;
    を有する、ウェットゲルの調製方法。
    (IV) A step of allowing the sol obtained in claim 10 to stand to prepare a wet gel;
    A method for preparing a wet gel.
  12.  (V) 請求項11で得られたウェットゲルを乾燥させる工程;
    を有する、エアロゲルの調製方法。
    (V) drying the wet gel obtained in claim 11;
    A method for preparing an airgel, comprising:
  13.  -Si-O-Si-結合を有し、環状分子由来の基を有するエアロゲルであって、該エアロゲルの最大圧縮歪みが10%以上である、エアロゲル。 An airgel having a —Si—O—Si— bond and a group derived from a cyclic molecule, wherein the airgel has a maximum compressive strain of 10% or more.
  14.  環状分子の開口部が直鎖状分子によって串刺し状に包接されてなる擬ポリロタキサンの両端に環状分子が脱離しないように封鎖基を配置してなるポリロタキサンであって、
     環状分子が下記式I
    (式中、X11は炭素数1~20の直鎖又は分岐鎖のアルキレン基(ただし、隣り合わない炭素原子は-CO-NH-、-NH-CO-、-CO-、-CO-O-、-O-CO-で置換されてもよい)、-(CH-CH(R25)-O)-で表される基(式中、R25は、水素又は炭素数1~8の直鎖又は分岐鎖のアルキル基を表し、nは1~50の整数を表す)、及びこれらの組合せからなる群から選ばれる2価の基を表し;
     R21~R23は各々独立に、炭素数1~20の直鎖又は分岐鎖のアルキル基、炭素数3~20の環状アルキル基又は置換されてもよいフェニル基を表す)
    を有し、
     該ポリロタキサンがビニル基フリーである、上記ポリロタキサン。
    Figure JPOXMLDOC01-appb-C000001
    A polyrotaxane in which a blocking group is arranged so that a cyclic molecule is not detached at both ends of a pseudo-polyrotaxane in which an opening of a cyclic molecule is included in a skewered manner by a linear molecule,
    The cyclic molecule is represented by the following formula I
    (In the formula, X 11 represents a linear or branched alkylene group having 1 to 20 carbon atoms, provided that carbon atoms that are not adjacent to each other are —CO—NH—, —NH—CO—, —CO—, —CO—O; -, - O-CO- or substituted with), - (CH 2 -CH ( R 25) -O) n - group (where represented by, R 25 is 1 hydrogen or carbon atoms to 8 And n represents an integer of 1 to 50), and a divalent group selected from the group consisting of combinations thereof;
    R 21 to R 23 each independently represents a linear or branched alkyl group having 1 to 20 carbon atoms, a cyclic alkyl group having 3 to 20 carbon atoms, or an optionally substituted phenyl group)
    Have
    The polyrotaxane, wherein the polyrotaxane is free of vinyl group.
    Figure JPOXMLDOC01-appb-C000001
PCT/JP2017/017340 2016-05-09 2017-05-08 Sol and gel comprising alkoxysilanes and polyrotaxane WO2017195715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093711A JP2019131622A (en) 2016-05-09 2016-05-09 Sol and gel having alkoxy silanes and polyrotaxane
JP2016-093711 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017195715A1 true WO2017195715A1 (en) 2017-11-16

Family

ID=60267229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017340 WO2017195715A1 (en) 2016-05-09 2017-05-08 Sol and gel comprising alkoxysilanes and polyrotaxane

Country Status (2)

Country Link
JP (1) JP2019131622A (en)
WO (1) WO2017195715A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050823A (en) * 2018-09-28 2020-04-02 Toyo Tire株式会社 Rubber composition, pneumatic tire using the same, and manufacturing method of rubber composition
JP2020050824A (en) * 2018-09-28 2020-04-02 Toyo Tire株式会社 Rubber composition for side wall, pneumatic tire using the same, and manufacturing method of rubber composition for side wall
JP2020100812A (en) * 2018-12-20 2020-07-02 パロ アルト リサーチ センター インコーポレイテッド High optical transparency polymer aerogels using low refractive index monomers
CN111430783A (en) * 2020-05-08 2020-07-17 曹亚琼 Lithium ion battery diaphragm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327502A (en) * 1986-07-22 1988-02-05 Agency Of Ind Science & Technol Cyclodextrin-silica composite material and production thereof
JP2003257488A (en) * 2002-02-27 2003-09-12 Nippon Zeon Co Ltd Polymer gel electrolyte
WO2005080470A1 (en) * 2004-01-08 2005-09-01 The University Of Tokyo Crosslinked polyrotaxane and process for producing the same
JP2012144591A (en) * 2011-01-07 2012-08-02 Toyota Central R&D Labs Inc Sliding member and sliding part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327502A (en) * 1986-07-22 1988-02-05 Agency Of Ind Science & Technol Cyclodextrin-silica composite material and production thereof
JP2003257488A (en) * 2002-02-27 2003-09-12 Nippon Zeon Co Ltd Polymer gel electrolyte
WO2005080470A1 (en) * 2004-01-08 2005-09-01 The University Of Tokyo Crosslinked polyrotaxane and process for producing the same
JP2012144591A (en) * 2011-01-07 2012-08-02 Toyota Central R&D Labs Inc Sliding member and sliding part

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG,LAN ET AL., TRANSPARENT POLYROTAXANE-SILICA HYBRID AEROGEL WITH STRONG MECHANICAL PROPERTY, vol. 65, no. 2, 24 August 2016 (2016-08-24), pages 2ESB06 *
WANG,JIN ET AL.: "Binary Crystallized Supramolecular Aerogels Derived from Host-Guest Inclusion Complexes", ACS NANO, vol. 9, no. 11, 2015, pages 11389 - 11397, XP055599922, ISSN: 1936-0851, DOI: 10.1021/acsnano.5b05281 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020050823A (en) * 2018-09-28 2020-04-02 Toyo Tire株式会社 Rubber composition, pneumatic tire using the same, and manufacturing method of rubber composition
JP2020050824A (en) * 2018-09-28 2020-04-02 Toyo Tire株式会社 Rubber composition for side wall, pneumatic tire using the same, and manufacturing method of rubber composition for side wall
JP7105669B2 (en) 2018-09-28 2022-07-25 Toyo Tire株式会社 Method for producing sidewall rubber composition and method for producing pneumatic tire
JP7105668B2 (en) 2018-09-28 2022-07-25 Toyo Tire株式会社 Method for producing rubber composition and method for producing pneumatic tire
JP2020100812A (en) * 2018-12-20 2020-07-02 パロ アルト リサーチ センター インコーポレイテッド High optical transparency polymer aerogels using low refractive index monomers
JP7285200B2 (en) 2018-12-20 2023-06-01 パロ アルト リサーチ センター インコーポレイテッド Highly transparent polymer aerogels using low refractive index monomers
CN111430783A (en) * 2020-05-08 2020-07-17 曹亚琼 Lithium ion battery diaphragm

Also Published As

Publication number Publication date
JP2019131622A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2017195715A1 (en) Sol and gel comprising alkoxysilanes and polyrotaxane
Pabón et al. TiO2–SiO2 mixed oxides prepared by a combined sol–gel and polymer inclusion method
Liu et al. Preparation and characterization of copolymerized aminopropyl/phenylsilsesquioxane microparticles
Sheen et al. Synthesis and characterization of amorphous octakis-functionalized polyhedral oligomeric silsesquioxanes for polymer nanocomposites
Yan et al. Synthesis of polyimide cross-linked silica aerogels with good acoustic performance
Kang et al. A green functional nanohybrid: preparation, characterization and properties of a β-cyclodextrin based functional layered double hydroxide
Iswar et al. Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers
WO2004024799A1 (en) Organopolysiloxane-modified polysaccharide and process for producing the same
Luzardo‐Álvarez et al. Preparation and characterization of β‐cyclodextrin‐linked chitosan microparticles
Ganesan et al. Facile Preparation of Nanofibrillar Networks of “Ureido‐Chitin” Containing Ureido and Amine as Chelating Functional Groups
Garcia et al. Carbon nanotubes/chitin nanowhiskers aerogel achieved by quaternization‐induced gelation
Semsarzadeh et al. Preparation and characterization of inclusion complexes of poly (dimethylsiloxane) s with γ-cyclodextrin without utilizing sonic energy
Cerrutti et al. Synthesis of carboxymethylcelluloses with different degrees of substitution and their performance as renewable stabilizing agents for aqueous ceramic suspensions
Zeng et al. Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films
Lee et al. Effect of molecular structures and mobility on the thermal and dynamical mechanical properties of thermally cured epoxy-bridged polyorganosiloxanes
Wahab et al. Nanopore engineered tortuosity towards thermo-mechanically enhanced low-k polymer-mesoporous organosilica composite membranes
Petzold-Welcke et al. 2, 3-O-Methyl cellulose: studies on synthesis and structure characterization
WO2018021267A1 (en) Pseudopolyrotaxane, polyrotaxane, and methods for producing pseudopolyrotaxane and polyrotaxane
EP4061854A1 (en) Silicon glycan and method of preparing same
Ciesielczyk et al. Comprehensive characteristic and potential application of POSS-coated MgO-SiO2 binary oxide system
CN113439091A (en) Silicones and preparation method thereof
Liu et al. Effect of substituent distribution on water solubility of O-methylcellulose
Lee et al. Preparation and characterization of polyimide/modified β-cyclodextrin nanocomposite films
JP2018518569A (en) Cellulose ether powder
Chan et al. Supramolecular aggregations through the inclusion complexation of cyclodextrins and polymers with bulky end groups

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796076

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP