WO2017195376A1 - Virtualization system managing device and virtualization system managing method - Google Patents

Virtualization system managing device and virtualization system managing method Download PDF

Info

Publication number
WO2017195376A1
WO2017195376A1 PCT/JP2016/064400 JP2016064400W WO2017195376A1 WO 2017195376 A1 WO2017195376 A1 WO 2017195376A1 JP 2016064400 W JP2016064400 W JP 2016064400W WO 2017195376 A1 WO2017195376 A1 WO 2017195376A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtualization system
information
resource
server device
communication
Prior art date
Application number
PCT/JP2016/064400
Other languages
French (fr)
Japanese (ja)
Inventor
彰人 宮澤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/064400 priority Critical patent/WO2017195376A1/en
Publication of WO2017195376A1 publication Critical patent/WO2017195376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]

Definitions

  • the present invention relates to a virtualization system management apparatus and a virtualization system management method, and can be applied to a server apparatus that uses a virtualization system.
  • a server / client type information processing system using a network is routinely used as a means for providing information.
  • a virtualization system that operates a plurality of operating systems (hereinafter referred to as “OS”) on one server apparatus is used.
  • OS operating systems
  • LPAR Logical Partition
  • VM operating the OS by using software that emulates the hardware.
  • Virtual Machine
  • Japanese Patent Laid-Open No. 2004-151867 operates a plurality of virtual machines operating on a physical computer having one or more CPUs, a load state monitoring unit that monitors a load state of the virtual machines, and allocation of physical resources to the plurality of virtual machines.
  • a virtual computer system comprising: a reconfiguration unit that changes automatically, and a control unit that requests the reconfiguration unit to reconfigure based on the load state is disclosed.
  • Patent Document 2 discloses a storage subsystem that changes a connection configuration (connection path) of a switch device so as to identify a faulty part in a connection path when a fault occurrence is detected and to bypass the faulty part. Yes.
  • JP 2002-202959 A Japanese Patent No. 5127491
  • the system administrator when there is a possibility that the communication band of a service provided by a certain OS is not sufficient, the NIC (Network Interface Card) of the server device used by the OS Communication hardware such as HBA (Host Bus Adapter) is additionally allocated or migrated to another server device to improve the communication bandwidth of the provided service.
  • the OS Communication hardware such as HBA (Host Bus Adapter)
  • the communication bandwidth of the service provided by the server device is not only due to communication resources arranged in the server device such as NIC or HBA, but also of a switch or other connected communication device connected via a cable. Since it is determined on the basis of the communication band, even if the communication band is not actually sufficient due to the connection destination communication device, an additional NIC or There is a risk that communication resources such as HBA will be allocated or transferred to a new server device, resulting in a decrease in the aggregation rate of the virtualization system.
  • the present invention has been made in view of the above points, and provides a virtualization system management apparatus capable of increasing the aggregation rate of virtualized server apparatuses by efficiently using communication resources of the server apparatuses It is something to try.
  • the virtualization system management device is used by the server device and the communication band resource information of the connected communication device connected to the server device, and the server device and the connected communication device.
  • a network information acquisition unit that acquires used communication band information that is communication band information and a requested communication band information that is a communication band requested by a virtualization system that is an execution environment of an operating system executed by the server device is calculated.
  • a virtualization system that determines whether or not the virtualization system can be allocated to the server device based on a request resource calculation unit, the communication band resource information, the used communication band information, and the requested communication band information
  • the virtual A virtualization system allocation unit for allocating a system, a virtualization system management device comprising a.
  • the virtualization system management method of the present disclosure includes information on a communication band resource of a server device and a connected communication device connected to the server device, and information on a communication band used by the server device and the connected communication device. Is used to calculate requested communication bandwidth information which is a communication bandwidth requested by a virtualization system which is an execution environment of an operating system executed on the server device, and information on the communication bandwidth resource, Based on the used communication band information and the requested communication band information, it is determined whether or not the virtualization system can be allocated to the server device, and when the determination of the virtualization system allocation determination unit is affirmative A virtualization system management method for allocating a virtualization system.
  • the virtualization system management device of the present disclosure it is possible to increase the aggregation rate of the virtualized server device by efficiently using the communication resources of the server device.
  • FIG. 1 is a diagram schematically showing a virtualization server system according to an embodiment of the present invention.
  • FIG. It is a figure which shows roughly about the structure of a 1st server apparatus, and the connection communication apparatus connected to the 1st server apparatus.
  • It is a flowchart of a network information acquisition process.
  • requirement IO communication band information. 10 is a table showing an example of processing resource excess / deficiency information.
  • 5 is a table showing an example of network communication band excess / deficiency information.
  • FIG. 1 is a diagram schematically illustrating a virtualization server system 100 according to an embodiment of the present disclosure.
  • the virtualization server system 100 includes first server device SV1 to third server device SV3, and each of the first server device SV1 to third server device SV3 is connected to each server device.
  • a first network switch SW1, a second network switch SW2, a fiber channel switch SW3, and a management-side network switch 103 are connected.
  • the first network switch SW1 is connected to the Internet 122 via the router 121, the second network switch SW2 is connected to the office network 123, the fiber channel switch SW3 is connected to the storage device 124, and the management-side network switch 103 is connected.
  • the virtualization system management device 200 is connected to the virtualization system management device 200.
  • the first network switch SW1, the second network switch SW2, and the fiber channel switch SW3 are respectively connected to the virtualization system management apparatus 200.
  • the virtualization system management apparatus 200 includes the first network switch SW1, the second network switch SW2, and the like.
  • the fiber channel switch SW3 can be set. This setting may include a setting for allocating a communication band to a so-called VLAN (Virtual Local Area Network).
  • the management-side network switch 103 is an input terminal for inputting, for example, information related to addition or change of the virtualization system formed in any one of the server devices from the screen provided by the virtualization system management device 200 via the network. 108 may be connected.
  • the virtualization system in the present embodiment means an environment constructed by hardware or software used when an OS (operating system) operates.
  • One OS operates in one virtualization system.
  • LPAR Logical Partition
  • VM Virtual Machine
  • FIG. 2 is a diagram schematically showing the configuration of the first server device SV1 and the connected communication devices connected to the first server device SV1.
  • the first server device SV1 is a first logical partition (hereinafter also referred to as “LPAR1”) LP1 which is a virtualization system in which two CPUs (Central Processing Unit) and 10 GB of memory are allocated.
  • LPAR2 second logical partition
  • LPAR2 second logical partition
  • 12 CPUs and 12 GB memory are unused.
  • the first operating system 138 operates on the first logical partition LP1, and the second operating system 139 operates on the second logical partition LP2.
  • the logical partition is added, changed, and deleted by the virtualization system setting unit 135 in the first server device SV1 that has received a command from the virtualization system management device 200.
  • the first logical partition LP1 and the second logical partition LP2 are respectively connected to a first communication socket A connected to an IP (Internet Protocol) communication line such as Ethernet (registered trademark) and a second communication connected to a SAN (Storage Area Network). Connected to socket B, respectively.
  • the first communication socket A has a first port A1 and a second port A2, and the second communication socket B has a third port B1 and a fourth port B2.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of the virtualization system management device 200 according to the present embodiment.
  • the virtualization system management apparatus 200 includes a CPU (Central Processing Unit) 201, a volatile storage unit 202 such as a RAM (Random Access Memory), a non-volatile storage unit 203 such as a hard disk and a flash memory, A network interface 204 for connecting to a network can be configured.
  • CPU Central Processing Unit
  • volatile storage unit 202 such as a RAM (Random Access Memory)
  • non-volatile storage unit 203 such as a hard disk and a flash memory
  • a network interface 204 for connecting to a network can be configured.
  • These hardware can process information in cooperation with software, which is information stored in each storage device.
  • SAN iSCSI (Internet Small Computer System Interface), FCoE (Fibre Channel over Ethernet), or the like
  • the nonvolatile storage unit 203 may be connected via a communication network.
  • the virtualization system management device 200 may be realized by
  • FIG. 4 is a diagram showing functional blocks realized by hardware of the virtualization system management apparatus 200 of FIG. 3 and software stored in each storage device.
  • the virtualization system management device 200 includes information about communication band resources of the first server device SV1 and connected communication devices such as a network switch and a fiber channel switch connected to the first server device SV1.
  • a network information acquisition unit 211 that acquires used communication bandwidth information 902 that is information of a communication bandwidth used by the first server device SV1 and the connected communication device, and an operating environment of the operating system executed by the first server device SV1
  • a request resource calculation unit 212 that calculates request communication band information that is a communication band required by the virtualization system related to addition or change, and information on communication band resources, used communication band Based on the information and the requested communication bandwidth information
  • a virtualization system allocation determination unit 213 that determines whether allocation is possible, and a virtualization system allocation unit 214 that allocates a virtualization system when the determination of the virtualization system allocation determination unit 213 is positive Yes.
  • the resource management unit 215 may further include a resource shortage processing unit 215 that displays a resource shortage portion.
  • FIG. 5 is a flowchart of virtualization system addition / change processing S100 executed when addition or change of a virtualization system such as a logical partition is requested.
  • the addition or change of the virtualization system is performed via a screen provided by the virtualization system management apparatus 200 from a terminal such as the input terminal 108, for example.
  • the virtualization system addition change process S100 executes a network information acquisition process S110 by the network information acquisition unit 211.
  • FIG. 6 is a flowchart of the network information acquisition process S110.
  • network configuration information 901 which is information on the communication band resources of the server device and the connected communication device connected to the server device, is acquired (S111).
  • the network configuration information 901 can be information indicating network connection information for each connection.
  • the “Type” column is indicated by “IP” or “SAN”, “IP” indicates an IP connection by Ethernet (registered trademark) as a communication line, and “SAN” indicates a SAN by Fiber Channel. Indicates a connection.
  • “Src” (Source) and “Dst” (Destination) indicate both ends of the connection.
  • the network configuration information 901 may be information stored in the virtualization system management apparatus 200, or may be stored in another server apparatus or received by a user, for example. It may be the information received by.
  • the communication band resource information is information including communication band information between the connections.
  • the used communication band information 902 which is information of the communication band used by the server device and the connected communication device is acquired (S112).
  • the used communication band information 902 indicates the communication band used between the virtual system such as the first logical partition LP1 and the second logical partition LP2 and the connection destination.
  • “Peak” is a communication band in the time zone indicated by “Peak Time” in the table showing the busy time information 903 in FIG. 9, and “Idle” means a communication band in other time zones.
  • the Peak Time is divided for each virtualization system of the first logical partition LP1 and the second logical partition LP2, but the Peak Time setting may be set for each connection destination.
  • the busy time information 903 may be included in the used communication band information 902.
  • FIG. 10 to 12 show the first logical partition LP1 and the second logical partition LP2 regarding the use status of the communication bandwidth of each connection destination based on the network configuration information 901 and the used communication bandwidth information 902 acquired in the network information acquisition processing S110. It is a graph shown for every.
  • FIG. 10 is a graph showing the usage status of the communication band in connection to the Internet 122 for each of the first logical partition LP1 and the second logical partition LP2.
  • FIG. 11 is a graph showing the usage status of the communication band in connection to the office network 123 for each of the first logical partition LP1 and the second logical partition LP2.
  • FIG. 12 is a graph showing the usage status of the communication band in connection with the storage apparatus 124 for each of the first logical partition LP1 and the second logical partition LP2.
  • the resource information display unit 216 displays a display screen 810 as shown in FIG. 13 on the display screen of the input terminal 108. Can be displayed.
  • the first server device SV1 and the map showing the network around the first server device SV1, together with the information of the first server device SV1 shown in the map and the information of the connected communication device are displayed. Yes.
  • communication bandwidth used for each virtualization system such as the first logical partition LP1 and the second logical partition LP2, and information on processing resources such as a CPU and a memory are shown.
  • the usage status of the communication band of the cable connected to the first network switch SW1, the second network switch SW2, and the fiber channel switch SW3, which are connected communication devices may be indicated.
  • the number of CPUs and the memory capacity, which are processing resource information of the first server device SV1 of interest may be indicated for each virtualization system.
  • the usage rate may be displayed together with the bar graph in units of one hour, or may be displayed in a line graph in units of one day.
  • an input device such as a mouse
  • information on the communication band of the cable is displayed / hidden. It is good also as being able to perform.
  • FIG. 14 is a diagram illustrating an example of a screen 820 that displays resource information in the entire virtualization server system 100. As indicated by the reference numeral 821 in this figure, information about the first server device SV1 of interest is displayed for each virtualization system, and information other than the first server device SV1 is displayed collectively. May be. By performing such display, it is possible to make the user easily grasp the network configuration and usage status visually. However, the display as shown in FIGS. 13 and 14 may not be performed.
  • the network information acquisition unit 211 acquires the used communication band information 902, the network information acquisition process S ⁇ b> 110 ends.
  • FIG. 15 is a flowchart of the available resource calculation process S120.
  • resource information of the first server device SV1 is acquired (S121).
  • the resource information of the first server device SV1 is, for example, as shown in FIG. 16, the server device processing resource information 905 indicating the memory capacity and the number of CPUs of the first server device SV1, or the first server device of FIG.
  • the server device communication resource information 906 indicating the performance of the first communication socket A and the second communication socket B of SV1 may be included.
  • “Mode” indicates one of settings related to the communication performance of the communication socket.
  • resource information used by each virtualization system is acquired (S122).
  • the resource information used by the virtualization system is, for example, information on the number of CPUs and the memory capacity used by the first logical partition LP1 and the second logical partition LP2, as shown in the virtualization system processing resource information 908 in FIG.
  • the virtualization system communication resource information 909 in FIG. 19 information on communication ports used by the respective virtualization systems may be included.
  • the available processing resource information 911 is calculated from the acquired resource information of the server device and the resource information used by the virtualization system of the first logical partition LP1 and the second logical partition LP2 (S123). For example, as shown in FIG. 20, the available processing resource information 911 can be calculated by subtracting the total of the virtualization system processing resource information 908 in FIG. 18 from the server apparatus processing resource information 905 in FIG. Further, the remaining system bandwidth 912, which is the remaining bandwidth in the entire system around the first server device SV1, is calculated (S124). For example, as shown in FIG. 21, the remaining system bandwidth 912 can be calculated using information of the network configuration information 901 in FIG. 7, the used communication bandwidth information 902 in FIG. 8, and the busy time information 903 in FIG.
  • the remaining system band 912 in the present embodiment is shown separately for each time zone using the busy time information 903. However, when there is no busy time information, the remaining system band 912 is shown separately for each time zone. It does not have to be.
  • service software on a virtualization system that provides services with different “Peak” periods can be placed on the same server device.
  • the aggregation rate can be increased.
  • the time zone is not limited to every 3 hours, but may be every hour, or the time unit may be variable. When the time unit is variable, the time unit may be determined according to the time range such as the busy time information 903 in FIG.
  • a remaining IO (Input / Output) band 913 that is a remaining band of the network resource of the first server device SV1 is calculated (S125).
  • the remaining IO bandwidth 913 of the first server device SV1 includes the information of the server device communication resource information 906 in FIG. 17, the used communication bandwidth information 902 in FIG. 8, and the busy time information 903 in FIG. Can be used to calculate.
  • the available resource calculation process S120 ends.
  • the available resource calculation process S120 may be executed for each of the available resources of a plurality of server apparatuses.
  • the request resource calculation unit 212 proceeds to the request resource calculation process S130 for calculating the requested resource.
  • FIG. 23 is a flowchart showing the requested resource calculation process S130.
  • requested process resource information 914 that is information of the requested process resource is acquired or calculated (S131).
  • the acquisition source may be acquired from a request specification 920 as shown in FIG. 25, for example, which is created when a user requests creation of the third logical partition LP3 via the input terminal 108.
  • the requested resource calculation unit 212 acquires or calculates requested network communication bandwidth information 915 that is information on the requested communication bandwidth of the network as one of the requested communication bandwidth information (S132). Specifically, for example, as shown in FIG. 26, the requested network communication bandwidth information 915 requested by the third logical partition LP3, which is a newly created virtualization system, is acquired or calculated.
  • the request network communication band information 915 may be acquired from, for example, the request specification 920 shown in FIG.
  • the requested resource calculation unit 212 calculates requested IO communication bandwidth information 916 that is information on the requested communication bandwidth of the first server device SV1 as one of the requested communication bandwidth information (S133). Specifically, for example, as shown in FIG. 27, the requested IO communication bandwidth information 916 requested by the third logical partition LP3, which is a newly created virtualization system, is acquired or calculated.
  • the request IO communication band information 916 may be acquired from, for example, the request specification 920 shown in FIG. In the example of FIG. 27, the connection to the storage device 124 is designed as a multiplexed or redundant connection.
  • the resources indicated by the requested processing resource information 914, the requested network communication bandwidth information 915, and the requested IO communication bandwidth information 916 are allocated to any of the server devices and the network. It is determined whether or not it is possible (S103).
  • the resource shortage processing unit 215 performs resource allocation.
  • the excess / deficiency information is calculated (S105).
  • the resource excess / deficiency information is calculated as a difference between the available process resource information 911 in FIG. 20 and the request process resource information 914 in FIG. 24, for example, as shown in the process resource excess / deficiency information 925 in FIG. It is also good to do. In the example of FIG. 28, there is no particular shortage. Further, the resource excess / deficiency information is calculated as a difference between the remaining system bandwidth 912 in FIG. 21 and the requested network communication bandwidth information 915 in FIG.
  • the network communication bandwidth excess / deficiency information 926 in FIG. It is good as well.
  • the resource excess / deficiency information is calculated as, for example, the difference between the remaining IO bandwidth 913 in FIG. 22 and the requested IO communication bandwidth information 916 in FIG. 27, as shown in the IO communication bandwidth excess / deficiency information 927 in FIG. It is also good to do.
  • the shortage occurs at the third port B1 and the fourth port B2 at 0-3 o'clock and 6-9 o'clock.
  • the calculated information may be displayed on the display device of the input terminal 108 by the resource information display unit 216 according to an instruction from the resource shortage processing unit 215. For example, as shown in a screen 830 in FIG.
  • the resource shortage portion 831 may be displayed together with the current resource information and the resource information after creating a new virtualization system, together with a map showing the server device SV1 and the network around the first server device SV1. . By performing such display, the user can grasp the lack of resources more easily.
  • the resource shortage processing unit 215 performs the solution proposal presenting process S150.
  • FIG. 32 is a flowchart showing the solution proposal presenting process S150.
  • the solution proposal presenting process S150 first, for example, processing resource excess / deficiency information 925 in FIG. 28, network communication band excess / deficiency information 926 in FIG. 29, and IO communication bandwidth excess / deficiency information 927 in FIG. Etc., an unselected insufficient resource is selected (S151).
  • a plurality of operations for eliminating the insufficient resources are selected (S152).
  • FIG. 33 shows a table in which examples of work for insufficient resources are listed, and a plurality of work for solving the resource shortage can be selected.
  • “decrease IO redundancy” in the table means that, for example, two sockets are connected to the same virtualization system and the same switch in order to ensure communication even when a failure occurs.
  • a redundant configuration may be used, and a new virtualization system may be created by eliminating this redundant configuration. Therefore, when it is possible to eliminate the redundant configuration for creating a new virtualization system, the operation of “reduce IO redundancy” can be selected.
  • the table of FIG. 33 may indicate the work time according to each work. One unselected combination is selected from the selected combination of multiple operations (S153). For example, when the memory capacity is insufficient, five operations of adding a blade, adding memory, reducing an existing logical partition, moving an existing logical partition, and changing an operation time are selected.
  • FIG. 34 is a table showing an example of a combination of work as a proposal for solving a resource shortage. In addition to the combination of operations, the number of operations and the number of logical partitions affected by the operation are shown. These proposals can be displayed on the display screen of the input terminal 108 by the resource information display unit 216 that has received an instruction from the resource shortage processing unit 215. Moreover, it is good also as each work being evaluated independently, without being combined.
  • the resource shortage processing unit 215 calculates a score of work complexity (S154).
  • the score of the work complexity can be calculated, for example, as in the following equation (1).
  • Work complexity (Number of work types x first coefficient) + ( ⁇ (number of operations n ⁇ operation time) ⁇ second coefficient) (1)
  • the first coefficient and the second coefficient can be arbitrarily determined.
  • the remaining resources after work are calculated for the selected combination (S155). Since this process is the same as the resource excess / deficiency calculation in step S105 of the virtualization system addition / change process S100, a duplicate description is omitted.
  • the process proceeds to a remaining resource score calculation process S210 based on the resources after the work.
  • FIG. 35 is a flowchart showing the remaining resource score calculation process S210.
  • a hardware aggregation rate is calculated for each server device (S211).
  • the hardware aggregation rate can be calculated as, for example, the following equation (3).
  • Hardware aggregation rate (Used memory capacity / total memory capacity) x third coefficient + (Number of CPUs used / total number of CPUs) x fourth coefficient (3)
  • the third coefficient and the fourth coefficient can be appropriately determined according to the first server device SV1 and the like.
  • the virtualization system allocation determination unit 213 calculates a network aggregation rate (S212).
  • the network aggregation rate can be calculated as in the following formula (4).
  • Network aggregation rate (Used first communication socket band / total first communication socket band) x fifth coefficient + (Used second communication socket bandwidth / total first communication socket bandwidth) x sixth coefficient (4)
  • the fifth coefficient and the sixth coefficient can be appropriately determined according to the first server device SV1 and the like.
  • the virtualization system allocation determination unit 213 calculates a network free bandwidth rate (S213).
  • the network free bandwidth ratio can be calculated, for example, as in the following equation (5).
  • Network free bandwidth ratio Average (Network n usage rate x Network n coefficient) (5)
  • the score can be calculated by appropriately weighting the hardware aggregation rate, the network aggregation rate, and the network free bandwidth rate.
  • all of the hardware aggregation rate, the network aggregation rate, and the network free bandwidth rate may be used, or only a part may be used.
  • step S157 it is determined whether or not all combinations have been selected. If there is a combination that has not yet been selected, the process returns to step S153 to repeat the process. . If all combinations have been selected, it is determined whether all insufficient resources have been selected (S158). If there is a shortage resource that has not been selected, the process returns to step S151 to repeat the process. If all the insufficient resources have been selected, for example, solutions are presented in descending order of the score calculated in the remaining resource score calculation process S210 (S159). The solution plan is displayed on the display device of the input terminal 108 according to an instruction from the resource shortage processing unit 215, for example.
  • FIG. 36 shows an example of presentation of a solution plan.
  • the solution plan is displayed together with the calculated scores. Those with low complexity and downtime, high aggregation rate, and free bandwidth rate are evaluated as more efficient work.
  • the ranking may be displayed based on the calculated remaining resource score, the ranking may be displayed based on the work complexity, or a combination of these may be displayed. It is good also as ranking and displaying based on a numerical value.
  • the user can compare and examine a plurality of solution plans by displaying a plan for solving a plurality of resource shortages. Moreover, a plurality of plans can be objectively evaluated by displaying together with the score.
  • the resource information display unit 216 may display a screen 840 as shown in FIG.
  • a proposal for solving the resource shortage is visually displayed together with a map showing the first server device SV1 and the network around the first server device SV1.
  • a shortage resource elimination procedure in the addition of the third logical partition LP3 is displayed.
  • reference numeral 842 it is visually shown that a cable is added between the first network switch SW1 and the second network switch SW2, and the cable is added together with the communication band used by the cable. Later, the numerical value of the communication band in which the resource shortage is resolved is shown.
  • VLAN Virtual Local Area Network
  • the virtualization system allocation determination unit 213 may select the solution plan.
  • a solution plan may be selected based on the calculated score.
  • the virtualization system allocating unit 214 receives the selection signal (S106), for example, a request for creating a virtualization system such as the third logical partition LP3 or the like.
  • a change request is created (S107), and the virtualization system setting unit 135 of the first server device SV1 is requested to create / change (S104).
  • FIG. 38 shows an example of a logical partition creation request 921 that is a virtualization system. As shown in FIG. 38, the first server device SV1 in which the virtualization system is created, and in this embodiment, the CPU, memory, and IO that are hardware used as the logical partition are specified.
  • the virtualization system setting unit 135 of the first server device SV1 creates or changes a virtualization system in accordance with a request from the virtualization system allocation unit 214. Thereby, the communication resource of 1st server apparatus SV1 can be utilized efficiently, and the aggregation rate of a virtualization system can be raised.
  • step S103 in FIG. 5 when the requested resource can be assigned to any server device, the optimum server which is processing for identifying the optimum server device The process proceeds to the apparatus specifying process S140.
  • FIG. 39 is a flowchart showing the optimum server device specifying process S140 executed by the virtualization system allocation determining unit 213.
  • the optimum server device specifying process S140 it is first determined whether or not a virtualization system, for example, the third logical partition LP3 can be created for two or more server devices (S141). This determination is made based on, for example, available processing resource information 911, remaining system bandwidth 912 and remaining IO bandwidth 913, request processing resource information 914, requested network communication bandwidth information 915, and requested IO communication bandwidth information 916. Can do.
  • the process proceeds to a remaining resource score calculation process S210.
  • the remaining resource score calculation process S210 is the same as the process of FIG.
  • the remaining resource score calculation process S210 it is determined whether or not the configuration of the virtualization system such as the first logical partition LP1 is changed (S143).
  • the score is corrected so that the virtualization system subject to the configuration change is preferentially selected (S144), and the server device is selected (S145).
  • the process proceeds to step S145 to select a server device (S145).
  • the score of the virtualization system of another server device is higher even after correcting the score, it may be more efficient to create a new virtualization system, so the original virtualization The user selects to delete the system and newly create it in another server device.
  • the resource information display unit 216 that has received an instruction from the resource shortage processing unit 215 is, for example, the first server to which allocation is to be performed.
  • a map showing the network around the device SV1 and the first server device SV1 is displayed, and the resource information including the used communication bandwidth information of the first server device SV1 related to the allocated virtualization system and the resource information after the allocation are both It may be displayed.
  • changes in resource information before and after allocation may be displayed as indicated by an arrow 851. By displaying such a screen, the user can easily grasp the communication bandwidth before and after the change.
  • the virtualization system allocation determination unit 213 performs a task complexity score calculation S154 that is a task complexity for the selected server device.
  • the work complexity score calculation S154 is the same as the work complexity score calculation S154 in FIG.
  • the work complexity calculated here may be calculated as a reference, or may be selected not to perform work according to the work complexity.
  • the task complexity score calculation S154 may not be performed.
  • the virtualization system allocation unit 214 creates a virtualization system creation request or change request for the selected first server device SV1 (S147), and ends the optimum server device identification process S140. When the optimum server device specifying process S140 is completed, the processing returns to FIG.
  • the virtualization system assigning unit 214 requests the virtualization system setting unit 135 of the specified first server device SV1 to create / change (S104).
  • the virtualization system setting unit 135 of the first server device SV1 creates or changes a virtualization system in accordance with a request from the virtualization system allocation unit 214. Thereby, the communication resource of 1st server apparatus SV1 can be utilized efficiently, and the aggregation rate of a virtualization system can be raised.
  • FIG. 41 is a diagram illustrating an example of the virtualization server system 100 using the fourth server device SV4 using a virtualization system different from the first server device SV1 of FIG.
  • the fourth server device SV4 includes a first virtual machine VM1 and a second virtual machine, which are virtual systems as so-called virtual machines, which cause a single server device to execute a plurality of OSes by software emulating hardware.
  • VM2 is applied. Even in the case of the fourth server device SV4 using such a virtualization system, the same processing as that described with reference to FIGS. 1 to 40 can be performed.
  • the hypervisor that is the virtualization system setting unit 135 that forms the virtual machine is described separately from the first virtual machine VM1 and the second virtual machine VM2, but the virtual machine is formed in the hypervisor. Is included in the concept of the virtualization system of the present invention.
  • the virtualization system management device 200 has the communication band resources of the first server device SV1 and the connected communication devices SW1 to SW3 connected to the first server device SV1.
  • a network information acquisition unit 211 that acquires information (for example, network configuration information 901) and used communication bandwidth information 902 that is information of a communication bandwidth used by the first server device SV1 and the connected communication devices SW1 to SW3; Request resource calculation for calculating requested communication band information (for example, requested network communication band information 915 and requested IO communication band information 916) that is a communication band requested by the virtualization system which is an execution environment of the operating system executed by the server apparatus SV1.
  • the virtual system allocation determining unit 213 that determines whether or not the virtual system can be allocated to the server device based on the communication request bandwidth information, and the virtual system allocation determining unit 213 determines whether the determination is positive. And the virtualization system allocation unit 214 for allocating the virtualization system, it is possible to efficiently use at least the communication resources of the first server device SV1 and increase the aggregation rate of the virtualized server devices.
  • This disclosure can be applied to a server device using a virtualization system.

Abstract

[Problem] To provide a virtualization system managing device capable of increasing the aggregation rate of a virtualized server device by efficiently using a communication resource of a server device. [Solution] A virtualization system managing device 200 is provided with: a network information acquiring unit that acquires information about a communication band resource of a server device and a connection communication apparatus connected to the server device, and acquires usage communication band information which is information about a communication band being used by the server device and the connection communication apparatus; a requested resource calculating unit that calculates requested communication band information about a communication band requested by a virtualization system which is an execution environment for an operating system to be executed by the server device; a virtualization system allocation determining unit that determines whether or not the virtualization system can be allocated to the server device, on the basis of the information about the communication band resource, the usage communication band information, and the requested communication band information; and a virtualization system allocating unit that allocates the virtualization system when the determination made by the virtualization system allocation determining unit is positive.

Description

仮想化システム管理装置及び仮想化システム管理方法Virtualization system management apparatus and virtualization system management method
 本発明は、仮想化システム管理装置及び仮想化システム管理方法に関し、仮想化システムを用いるサーバ装置に適用することができる。 The present invention relates to a virtualization system management apparatus and a virtualization system management method, and can be applied to a server apparatus that uses a virtualization system.
 ネットワークを利用したサーバ・クライアント型の情報処理システムが、情報を提供する手段として日常的に利用されている。このようなシステムに用いられるサーバ装置では、ハードウェア資源を有効に利用するために、複数のオペレーティングシステム(以下、「OS」という。)を一つのサーバ装置で動作させる仮想化システムを用いることが多い。仮想化システムには、ハードウェアを直接、占有又は共有により割り当てたLPAR(Logical Partition)を利用してOSを動作させるものや、ハードウェアをエミュレートするソフトウェアを利用してOSを動作させるVM(Virtual Machine)と呼ばれるもの等がある。 A server / client type information processing system using a network is routinely used as a means for providing information. In a server apparatus used in such a system, in order to effectively use hardware resources, a virtualization system that operates a plurality of operating systems (hereinafter referred to as “OS”) on one server apparatus is used. Many. In the virtualization system, an OS is operated by using LPAR (Logical Partition) assigned by occupying or sharing the hardware directly, or a VM (operating the OS by using software that emulates the hardware). There is something called Virtual (Machine).
 特許文献1は、1以上のCPUを有する物理計算機上で動作する複数の仮想計算機と、前記仮想計算機の負荷状態を監視する負荷状態監視部と、複数の仮想計算機への物理資源の割り当てを動的に変更する再構成部と、前記負荷状態に基づき前記再構成部に再構成を要求する制御部とを備えたことを特徴とする仮想計算機システムについて開示している。特許文献2は、障害の発生を検出すると、コネクションパス中の障害部位を特定し、当該障害部位を迂回するように、スイッチデバイスの接続構成(コネクションパス)を変更するストレージサブシステムについて開示している。 Japanese Patent Laid-Open No. 2004-151867 operates a plurality of virtual machines operating on a physical computer having one or more CPUs, a load state monitoring unit that monitors a load state of the virtual machines, and allocation of physical resources to the plurality of virtual machines. A virtual computer system comprising: a reconfiguration unit that changes automatically, and a control unit that requests the reconfiguration unit to reconfigure based on the load state is disclosed. Patent Document 2 discloses a storage subsystem that changes a connection configuration (connection path) of a switch device so as to identify a faulty part in a connection path when a fault occurrence is detected and to bypass the faulty part. Yes.
特開2002-202959号公報JP 2002-202959 A 特許第5127491号公報Japanese Patent No. 5127491
 仮想化システムが動作するサーバ装置において、システムの管理者は、あるOSが提供するサービスの通信帯域が十分でなくなる恐れがある場合に、当該OSが利用するサーバ装置のNIC(Network Interface Card)やHBA(Host Bus Adapter)等の通信用ハードウェアを、更に追加的に割り当てたり、別のサーバ装置にマイグレーションしたりして、提供されるサービスの通信帯域の向上を図っていた。 In a server device in which a virtualized system operates, the system administrator, when there is a possibility that the communication band of a service provided by a certain OS is not sufficient, the NIC (Network Interface Card) of the server device used by the OS Communication hardware such as HBA (Host Bus Adapter) is additionally allocated or migrated to another server device to improve the communication bandwidth of the provided service.
 しかしながら、サーバ装置が提供するサービスの通信帯域は、NICやHBA等のサーバ装置に配置された通信資源に起因するだけでなく、ケーブルを介して接続されるスイッチその他の接続先の接続通信機器の通信帯域に基づいて定まるものであるため、実際には通信帯域が十分でないのは接続先通信機器に起因する場合であっても、サーバ装置のハードウェアの問題と錯誤して追加的にNICやHBA等の通信資源を割り当てたり、新たなサーバ装置に移管したりしてしまい、結果として仮想化システムの集約率を低下させてしまう恐れがあった。 However, the communication bandwidth of the service provided by the server device is not only due to communication resources arranged in the server device such as NIC or HBA, but also of a switch or other connected communication device connected via a cable. Since it is determined on the basis of the communication band, even if the communication band is not actually sufficient due to the connection destination communication device, an additional NIC or There is a risk that communication resources such as HBA will be allocated or transferred to a new server device, resulting in a decrease in the aggregation rate of the virtualization system.
 本発明は以上の点を考慮してなされたもので、サーバ装置の通信リソースを効率的に利用して、仮想化されたサーバ装置の集約率を高めさせることのできる仮想化システム管理装置を提供しようとするものである。 The present invention has been made in view of the above points, and provides a virtualization system management apparatus capable of increasing the aggregation rate of virtualized server apparatuses by efficiently using communication resources of the server apparatuses It is something to try.
 かかる課題を解決するため本開示の仮想化システム管理装置は、サーバ装置及び前記サーバ装置に接続された接続通信機器の通信帯域リソースの情報、及び前記サーバ装置及び前記接続通信機器が使用している通信帯域の情報である使用通信帯域情報を取得するネットワーク情報取得部と、前記サーバ装置で実行されるオペレーティングシステムの実行環境である仮想化システムが要求する通信帯域である要求通信帯域情報を算出する要求リソース算出部と、前記通信帯域リソースの情報、前記使用通信帯域情報、及び前記要求通信帯域情報に基づいて、前記サーバ装置に前記仮想化システムを割当てることができるかどうかについて判定する仮想化システム割当判定部と、前記仮想化システム割当判定部の判定が肯定的な場合に前記仮想化システムを割当てる仮想化システム割当部と、を備える仮想化システム管理装置である。 In order to solve such a problem, the virtualization system management device according to the present disclosure is used by the server device and the communication band resource information of the connected communication device connected to the server device, and the server device and the connected communication device. A network information acquisition unit that acquires used communication band information that is communication band information and a requested communication band information that is a communication band requested by a virtualization system that is an execution environment of an operating system executed by the server device is calculated. A virtualization system that determines whether or not the virtualization system can be allocated to the server device based on a request resource calculation unit, the communication band resource information, the used communication band information, and the requested communication band information When the determination of the allocation determination unit and the virtualization system allocation determination unit is positive, the virtual A virtualization system allocation unit for allocating a system, a virtualization system management device comprising a.
 また、本開示の仮想化システム管理方法は、サーバ装置及び前記サーバ装置に接続された接続通信機器の通信帯域リソースの情報、及び前記サーバ装置及び前記接続通信機器が使用している通信帯域の情報である使用通信帯域情報を取得し、前記サーバ装置で実行されるオペレーティングシステムの実行環境である仮想化システムが要求する通信帯域である要求通信帯域情報を算出し、前記通信帯域リソースの情報、前記使用通信帯域情報、及び前記要求通信帯域情報に基づいて、前記サーバ装置に前記仮想化システムを割当てることができるかどうかについて判定し、前記仮想化システム割当判定部の判定が肯定的な場合に前記仮想化システムを割当てる、仮想化システム管理方法である。 Further, the virtualization system management method of the present disclosure includes information on a communication band resource of a server device and a connected communication device connected to the server device, and information on a communication band used by the server device and the connected communication device. Is used to calculate requested communication bandwidth information which is a communication bandwidth requested by a virtualization system which is an execution environment of an operating system executed on the server device, and information on the communication bandwidth resource, Based on the used communication band information and the requested communication band information, it is determined whether or not the virtualization system can be allocated to the server device, and when the determination of the virtualization system allocation determination unit is affirmative A virtualization system management method for allocating a virtualization system.
 本開示の仮想化システム管理装置によれば、サーバ装置の通信リソースを効率的に利用して仮想化されたサーバ装置の集約率を高めることができる。 According to the virtualization system management device of the present disclosure, it is possible to increase the aggregation rate of the virtualized server device by efficiently using the communication resources of the server device.
本発明の一実施の形態に係る仮想化サーバシステムについて概略的に示す図である。1 is a diagram schematically showing a virtualization server system according to an embodiment of the present invention. FIG. 第1サーバ装置の構成及び第1サーバ装置に接続された接続通信機器について概略的に示す図である。It is a figure which shows roughly about the structure of a 1st server apparatus, and the connection communication apparatus connected to the 1st server apparatus. 仮想化システム管理装置のハードウェア構成の例を示す図である。It is a figure which shows the example of the hardware constitutions of a virtualization system management apparatus. 仮想化システム管理装置の機能ブロックについて示す図である。It is a figure shown about the functional block of a virtualization system management apparatus. 仮想化システムの追加又は変更が要求された際に実行される仮想化システム追加変更処理のフローチャートである。It is a flowchart of the virtualization system addition change process performed when the addition or change of a virtualization system is requested | required. ネットワーク情報取得処理のフローチャートである。It is a flowchart of a network information acquisition process. ネットワーク構成情報の例について示す表である。It is a table | surface shown about the example of network configuration information. 使用通信帯域情報の例について示す表である。It is a table | surface shown about the example of used communication band information. 繁忙時間情報の例について示す表である。It is a table | surface shown about the example of busy time information. インターネットへの接続における通信帯域の使用状況について示すグラフである。It is a graph which shows about the use condition of the communication band in the connection to the internet. オフィスネットワークへの接続における通信帯域の使用状況について示すグラフである。It is a graph which shows the use condition of the communication band in the connection to an office network. ストレージ装置への接続における通信帯域の使用状況について示すグラフである。It is a graph which shows about the use condition of the communication band in the connection to a storage apparatus. ネットワークを示すマップと共に、第1サーバ装置の情報及び接続通信機器の情報を表示する画面の一例について示す図である。It is a figure shown about an example of the screen which displays the information of a 1st server apparatus, and the information of a connected communication apparatus with the map which shows a network. ネットワークを示すマップと共に、仮想化サーバシステム全体でリソース情報を表示する画面の一例について示す図である。It is a figure shown about an example of the screen which displays resource information in the whole virtualization server system with the map which shows a network. 利用可能リソース算出処理のフローチャートである。It is a flowchart of an available resource calculation process. サーバ装置処理リソース情報の一例について示す表である。It is a table | surface shown about an example of server apparatus processing resource information. サーバ装置通信リソース情報の一例について示す表である。It is a table | surface shown about an example of server apparatus communication resource information. 仮想化システム処理リソース情報の一例について示す表である。It is a table | surface shown about an example of virtualization system processing resource information. 仮想化システム通信リソース情報の一例について示す表である。It is a table | surface shown about an example of virtualization system communication resource information. 利用可能処理リソース情報の一例について示す表である。It is a table | surface shown about an example of available process resource information. 残システム帯域の一例について示す表である。It is a table | surface shown about an example of a remaining system zone | band. 残IO帯域の一例について示す表である。It is a table | surface shown about an example of a remaining IO zone | band. 要求リソース算出処理について示すフローチャートである。It is a flowchart shown about a request | requirement resource calculation process. 要求処理リソース情報の一例について示す表である。10 is a table showing an example of request processing resource information. 要求スペックの一例について示す表である。It is a table | surface shown about an example of a requirement specification. 要求ネットワーク通信帯域情報の一例について示す表である。It is a table | surface shown about an example of request | requirement network communication band information. 要求IO通信帯域情報の一例について示す表である。It is a table | surface shown about an example of request | requirement IO communication band information. 処理リソース過不足情報の一例について示す表である。10 is a table showing an example of processing resource excess / deficiency information. ネットワーク通信帯域過不足情報の一例について示す表である。5 is a table showing an example of network communication band excess / deficiency information. IO通信帯域過不足情報の一例について示す表である。It is a table | surface shown about an example of IO communication bandwidth excess / deficiency information. ネットワークマップと共に、リソース不足の個所を現在のリソース情報と新たな仮想化システムを作成した後のリソース情報と共に表示する画面の一例について示す図である。It is a figure which shows about an example of the screen which displays the resource shortage part with the resource information after creating the new resource system with the current resource information with a network map. 解消案提示処理を示すフローチャートである。It is a flowchart which shows a solution plan presentation process. 不足するリソースを解消するための作業が列挙された表である。It is a table listing work for resolving insufficient resources. リソース不足を解消する提案としての作業の組み合わせの例について示す表である。It is a table | surface shown about the example of the combination of the work as a proposal which eliminates resource shortages. 残リソーススコア算出処理について示すフローチャートである。It is a flowchart shown about a remaining resource score calculation process. 解消案の提示の例について示す図である。It is a figure shown about the example of presentation of a solution plan. ネットワークマップと共に、リソース不足を解消する提案を表示する画面の一例について示す図である。It is a figure shown about an example of the screen which displays the proposal which eliminates a resource shortage with a network map. 仮想化システムである論理パーティションの作成要求の一例について示す図である。It is a figure shown about an example of the creation request of the logical partition which is a virtualization system. 最適サーバ装置特定処理について示すフローチャートである。It is a flowchart shown about the optimal server apparatus specific process. ネットワークを示すマップと共に、使用しているリソース情報、及び仮想システム割当て後のリソース情報を共に表示する画面の一例について示す図である。It is a figure shown about an example of the screen which displays both the resource information currently used and the resource information after virtual system allocation with the map which shows a network. 仮想マシンを用いた仮想化サーバシステムの例について示す図である。It is a figure shown about the example of the virtualization server system using a virtual machine.
 以下図面を用いて本開示に係る実施の形態を詳述する。以下の説明において、同様の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment according to the present disclosure will be described in detail with reference to the drawings. In the following description, similar elements are denoted by the same reference numerals, and redundant description is omitted.
(1) 本実施の形態による仮想化サーバシステムの構成
 図1は、本開示の一実施の形態に係る仮想化サーバシステム100について概略的に示す図である。この図に示されるように仮想化サーバシステム100は、第1サーバ装置SV1~第3サーバ装置SV3を有し、第1サーバ装置SV1~第3サーバ装置SV3のそれぞれには、各サーバ装置の接続通信機器として第1ネットワークスイッチSW1、第2ネットワークスイッチSW2、ファイバチャネルスイッチSW3及び管理側ネットワークスイッチ103がそれぞれ接続されている。
(1) Configuration of Virtualization Server System According to this Embodiment FIG. 1 is a diagram schematically illustrating a virtualization server system 100 according to an embodiment of the present disclosure. As shown in this figure, the virtualization server system 100 includes first server device SV1 to third server device SV3, and each of the first server device SV1 to third server device SV3 is connected to each server device. As communication devices, a first network switch SW1, a second network switch SW2, a fiber channel switch SW3, and a management-side network switch 103 are connected.
 第1ネットワークスイッチSW1は、ルータ121を介してインターネット122に接続され、第2ネットワークスイッチSW2は、オフィスネットワーク123に接続され、ファイバチャネルスイッチSW3は、ストレージ装置124に接続され、管理側ネットワークスイッチ103は、仮想化システム管理装置200に接続されている。 The first network switch SW1 is connected to the Internet 122 via the router 121, the second network switch SW2 is connected to the office network 123, the fiber channel switch SW3 is connected to the storage device 124, and the management-side network switch 103 is connected. Are connected to the virtualization system management device 200.
 また第1ネットワークスイッチSW1、第2ネットワークスイッチSW2及びファイバチャネルスイッチSW3は、それぞれ仮想化システム管理装置200に接続され、仮想化システム管理装置200は、第1ネットワークスイッチSW1、第2ネットワークスイッチSW2及びファイバチャネルスイッチSW3の設定を行うことができる。この設定には、いわゆるVLAN(Virtual Local Area Network)への通信帯域の割当て設定を含んでいてもよい。また、管理側ネットワークスイッチ103には、仮想化システム管理装置200がネットワークを介して提供する画面から、例えばいずれかのサーバ装置に形成される仮想化システムの追加又は変更に関する情報を入力する入力端末108が接続されていることとしてもよい。 The first network switch SW1, the second network switch SW2, and the fiber channel switch SW3 are respectively connected to the virtualization system management apparatus 200. The virtualization system management apparatus 200 includes the first network switch SW1, the second network switch SW2, and the like. The fiber channel switch SW3 can be set. This setting may include a setting for allocating a communication band to a so-called VLAN (Virtual Local Area Network). Also, the management-side network switch 103 is an input terminal for inputting, for example, information related to addition or change of the virtualization system formed in any one of the server devices from the screen provided by the virtualization system management device 200 via the network. 108 may be connected.
 ここで、本実施の形態における仮想化システムとは、OS(オペレーティングシステム)が動作する際に利用するハードウェア又はソフトウェアで構築される環境を意味する。1つの仮想化システムにおいて一つのOSが動作する。1つのサーバ装置に対して複数の仮想化システムを配置させることにより、1つのサーバ装置に対して複数のOSを実行させることができる。具体的には、所謂論理パーティション(以下、「LPAR(Logical Partition)」ともいう。)やVM(Virtual Machine)が仮想化システムに該当する。 Here, the virtualization system in the present embodiment means an environment constructed by hardware or software used when an OS (operating system) operates. One OS operates in one virtualization system. By arranging a plurality of virtualization systems for one server device, a plurality of OSs can be executed for one server device. Specifically, a so-called logical partition (hereinafter also referred to as “LPAR (Logical Partition)”) or VM (Virtual Machine) corresponds to the virtualization system.
 図2は、第1サーバ装置SV1の構成及び第1サーバ装置SV1に接続された接続通信機器について概略的に示す図である。この図に示されるように、第1サーバ装置SV1は、CPU(Central Processing Unit)が2つとメモリが10GB割り当てられた仮想化システムである第1論理パーティション(以下、「LPAR1」ともいう。)LP1と、同様にCPUが2つとメモリが10GB割り当てられた仮想化システムである第2論理パーティション(以下、「LPAR2」ともいう。)LP2とを有している。また、12個のCPUと12GBのメモリが未使用であることを示している。第1論理パーティションLP1上では第1オペレーティングシステム138が動作し、第2論理パーティションLP2上では第2オペレーティングシステム139が動作する。論理パーティションは、仮想化システム管理装置200から指令を受けた第1サーバ装置SV1内の仮想化システム設定部135により追加、変更及び削除の処理が行われる。第1論理パーティションLP1及び第2論理パーティションLP2は、それぞれEthernet(登録商標)等のIP(Internet Protocol)通信回線と接続する第1通信ソケットAと、SAN(Storage Area Network)と接続する第2通信ソケットBとにそれぞれ接続される。第1通信ソケットAは、第1ポートA1及び第2ポートA2を有し、第2通信ソケットBは、第3ポートB1及び第4ポートB2を有している。 FIG. 2 is a diagram schematically showing the configuration of the first server device SV1 and the connected communication devices connected to the first server device SV1. As shown in this figure, the first server device SV1 is a first logical partition (hereinafter also referred to as “LPAR1”) LP1 which is a virtualization system in which two CPUs (Central Processing Unit) and 10 GB of memory are allocated. Similarly, it has a second logical partition (hereinafter also referred to as “LPAR2”) LP2, which is a virtualization system in which two CPUs and 10 GB of memory are allocated. In addition, 12 CPUs and 12 GB memory are unused. The first operating system 138 operates on the first logical partition LP1, and the second operating system 139 operates on the second logical partition LP2. The logical partition is added, changed, and deleted by the virtualization system setting unit 135 in the first server device SV1 that has received a command from the virtualization system management device 200. The first logical partition LP1 and the second logical partition LP2 are respectively connected to a first communication socket A connected to an IP (Internet Protocol) communication line such as Ethernet (registered trademark) and a second communication connected to a SAN (Storage Area Network). Connected to socket B, respectively. The first communication socket A has a first port A1 and a second port A2, and the second communication socket B has a third port B1 and a fourth port B2.
(2) 仮想化システム管理装置の構成
 図3は、本実施の形態に係る仮想化システム管理装置200のハードウェア構成の例を示す図である。この図に示されるように、仮想化システム管理装置200は、CPU(Central Processing Unit)201、RAM(Random Access Memory)等の揮発性記憶部202、ハードディスクやフラッシュメモリ等の不揮発性記憶部203、ネットワークに接続するためのネットワークインタフェース204から構成されることができる。これらのハードウェアは、各記憶装置に保存された情報であるソフトウェアと協働して情報の処理を行うことができる。なお、SAN、iSCSI(Internet Small Computer System Interface)又はFCoE(Fibre Channel over Ethernet)等を使用している場合には、不揮発性記憶部203は通信ネットワークを介して接続されていてもよい。また、仮想化システム管理装置200は、図2のようなハードウェア構成のコンピュータ装置が複数ネットワーク接続されたコンピュータシステムにより実現されていてもよい。
(2) Configuration of Virtualization System Management Device FIG. 3 is a diagram illustrating an example of a hardware configuration of the virtualization system management device 200 according to the present embodiment. As shown in this figure, the virtualization system management apparatus 200 includes a CPU (Central Processing Unit) 201, a volatile storage unit 202 such as a RAM (Random Access Memory), a non-volatile storage unit 203 such as a hard disk and a flash memory, A network interface 204 for connecting to a network can be configured. These hardware can process information in cooperation with software, which is information stored in each storage device. When SAN, iSCSI (Internet Small Computer System Interface), FCoE (Fibre Channel over Ethernet), or the like is used, the nonvolatile storage unit 203 may be connected via a communication network. Further, the virtualization system management device 200 may be realized by a computer system in which a plurality of computer devices having a hardware configuration as shown in FIG. 2 are connected to a network.
 図4は、図3の仮想化システム管理装置200のハードウェア及び各記憶装置に保存されたソフトウェアにより実現される機能ブロックについて示す図である。この図に示されるように、仮想化システム管理装置200は、第1サーバ装置SV1及び第1サーバ装置SV1に接続された、ネットワークスイッチやファイバチャネルスイッチ等の接続通信機器の通信帯域リソースの情報、及び第1サーバ装置SV1及び接続通信機器が使用している通信帯域の情報である使用通信帯域情報902を取得するネットワーク情報取得部211と、第1サーバ装置SV1で実行されるオペレーティングシステムの実行環境である論理パーティション等の仮想化システムのうち、追加又は変更に係る仮想化システムが要求する通信帯域である要求通信帯域情報を算出する要求リソース算出部212と、通信帯域リソースの情報、使用通信帯域情報、及び要求通信帯域情報に基づいて、サーバ装置に仮想化システムを割当てることができるかどうかについて判定する仮想化システム割当判定部213と、仮想化システム割当判定部213の判定が肯定的な場合に仮想化システムを割当てる仮想化システム割当部214と、を有している。また、仮想化システム割当判定部213の判定が否定的な場合に、リソース不足の個所を表示させるリソース不足処理部215を更に有していてもよい。 FIG. 4 is a diagram showing functional blocks realized by hardware of the virtualization system management apparatus 200 of FIG. 3 and software stored in each storage device. As shown in this figure, the virtualization system management device 200 includes information about communication band resources of the first server device SV1 and connected communication devices such as a network switch and a fiber channel switch connected to the first server device SV1. And a network information acquisition unit 211 that acquires used communication bandwidth information 902 that is information of a communication bandwidth used by the first server device SV1 and the connected communication device, and an operating environment of the operating system executed by the first server device SV1 A request resource calculation unit 212 that calculates request communication band information that is a communication band required by the virtualization system related to addition or change, and information on communication band resources, used communication band Based on the information and the requested communication bandwidth information A virtualization system allocation determination unit 213 that determines whether allocation is possible, and a virtualization system allocation unit 214 that allocates a virtualization system when the determination of the virtualization system allocation determination unit 213 is positive Yes. In addition, when the determination of the virtualization system allocation determination unit 213 is negative, the resource management unit 215 may further include a resource shortage processing unit 215 that displays a resource shortage portion.
(3) 仮想化システム追加変更処理
 図5は、論理パーティションのような仮想化システムの追加又は変更が要求された際に実行される仮想化システム追加変更処理S100のフローチャートである。仮想化システムの追加又は変更は、例えば、入力端末108のような端末から仮想化システム管理装置200が提供する画面を介して行われる。このフローチャートに示されるように、まず、仮想化システム追加変更処理S100は、ネットワーク情報取得部211によるネットワーク情報取得処理S110を実行する。
(3) Virtualization System Addition / Change Processing FIG. 5 is a flowchart of virtualization system addition / change processing S100 executed when addition or change of a virtualization system such as a logical partition is requested. The addition or change of the virtualization system is performed via a screen provided by the virtualization system management apparatus 200 from a terminal such as the input terminal 108, for example. As shown in this flowchart, first, the virtualization system addition change process S100 executes a network information acquisition process S110 by the network information acquisition unit 211.
 図6は、ネットワーク情報取得処理S110のフローチャートである。このフローチャートに示されるように、ネットワーク情報取得処理S110では、まず、サーバ装置及びサーバ装置に接続された接続通信機器の通信帯域リソースの情報であるネットワーク構成情報901を取得する(S111)。ネットワーク構成情報901は、例えば、図7の表に示されるように、ネットワークの接続の情報が接続毎に示される情報とすることができる。図7において、“Type”の欄は、“IP”又は“SAN”で示され、“IP”は通信回線であるEthernet(登録商標)によるIP接続を示し、“SAN”は、Fiber ChannelによるSAN接続を示している。“Src”(Source)及び“Dst”(Destination)は、接続の両端を示している。“Bandwidth”は通信帯域(bps)を示している。ネットワーク構成情報901は、仮想化システム管理装置200内に保存されている情報であってもよいし、他のサーバ装置に保存されていたり、利用者により入力されたものを受信する等その他の方法により受信する情報であってもよい。通信帯域リソースの情報は、各接続間の通信帯域の情報を含む情報である。 FIG. 6 is a flowchart of the network information acquisition process S110. As shown in this flowchart, in the network information acquisition process S110, first, network configuration information 901, which is information on the communication band resources of the server device and the connected communication device connected to the server device, is acquired (S111). For example, as shown in the table of FIG. 7, the network configuration information 901 can be information indicating network connection information for each connection. In FIG. 7, the “Type” column is indicated by “IP” or “SAN”, “IP” indicates an IP connection by Ethernet (registered trademark) as a communication line, and “SAN” indicates a SAN by Fiber Channel. Indicates a connection. “Src” (Source) and “Dst” (Destination) indicate both ends of the connection. “Bandwidth” indicates a communication band (bps). The network configuration information 901 may be information stored in the virtualization system management apparatus 200, or may be stored in another server apparatus or received by a user, for example. It may be the information received by. The communication band resource information is information including communication band information between the connections.
 図6に戻り、次にサーバ装置及び接続通信機器が使用している通信帯域の情報である使用通信帯域情報902を取得する(S112)。使用通信帯域情報902は、例えば、図8の表に示されるように、第1論理パーティションLP1や第2論理パーティションLP2等の仮想化システムと接続先との間で使用している通信帯域が示される。ここで“Peak”は、図9の繁忙時間情報903が示された表の“Peak Time”で示される時間帯における通信帯域であり、“Idle”はそれ以外の時間帯における通信帯域を意味している。図9では、第1論理パーティションLP1及び第2論理パーティションLP2の仮想化システム毎にPeak Timeが分かれているが、Peak Timeの設定は接続先毎に設定されていてもよい。繁忙時間情報903は、使用通信帯域情報902に含まれていてもよい。 Returning to FIG. 6, next, the used communication band information 902 which is information of the communication band used by the server device and the connected communication device is acquired (S112). For example, as shown in the table of FIG. 8, the used communication band information 902 indicates the communication band used between the virtual system such as the first logical partition LP1 and the second logical partition LP2 and the connection destination. It is. Here, “Peak” is a communication band in the time zone indicated by “Peak Time” in the table showing the busy time information 903 in FIG. 9, and “Idle” means a communication band in other time zones. ing. In FIG. 9, the Peak Time is divided for each virtualization system of the first logical partition LP1 and the second logical partition LP2, but the Peak Time setting may be set for each connection destination. The busy time information 903 may be included in the used communication band information 902.
 図10~12は、ネットワーク情報取得処理S110において取得されたネットワーク構成情報901及び使用通信帯域情報902に基づいて、各接続先の通信帯域の使用状況について第1論理パーティションLP1及び第2論理パーティションLP2ごとに示すグラフである。図10は、インターネット122への接続における通信帯域の使用状況について第1論理パーティションLP1及び第2論理パーティションLP2ごとに示すグラフである。図11は、オフィスネットワーク123への接続における通信帯域の使用状況について第1論理パーティションLP1及び第2論理パーティションLP2ごとに示すグラフである。図12は、ストレージ装置124への接続における通信帯域の使用状況について第1論理パーティションLP1及び第2論理パーティションLP2ごとに示すグラフである。 10 to 12 show the first logical partition LP1 and the second logical partition LP2 regarding the use status of the communication bandwidth of each connection destination based on the network configuration information 901 and the used communication bandwidth information 902 acquired in the network information acquisition processing S110. It is a graph shown for every. FIG. 10 is a graph showing the usage status of the communication band in connection to the Internet 122 for each of the first logical partition LP1 and the second logical partition LP2. FIG. 11 is a graph showing the usage status of the communication band in connection to the office network 123 for each of the first logical partition LP1 and the second logical partition LP2. FIG. 12 is a graph showing the usage status of the communication band in connection with the storage apparatus 124 for each of the first logical partition LP1 and the second logical partition LP2.
 ここで、ネットワーク情報取得処理S110において、例えば、ステップS112における使用通信帯域情報の取得の後、リソース情報表示部216は、入力端末108の表示画面に対して、図13のような表示画面810を表示させることができる。図13に示される画面では、第1サーバ装置SV1及び第1サーバ装置SV1の周囲のネットワークを示すマップと共に、マップに示された第1サーバ装置SV1の情報及び接続通信機器の情報を表示している。図13に示されるように、例えば、第1論理パーティションLP1及び第2論理パーティションLP2のように仮想化システム毎に使用する通信帯域や、CPUやメモリ等の処理リソースの情報が示される。特に接続通信機器である第1ネットワークスイッチSW1、第2ネットワークスイッチSW2及びファイバチャネルスイッチSW3に接続されるケーブルの通信帯域の使用状況が示されることとしてもよい。例えば、図13の符号811に示されるように、注目している第1サーバ装置SV1の処理リソース情報であるCPUの数及びメモリ容量を仮想化システム毎に示すこととしてもよい。また、一時間単位で棒グラフと共に使用率を表示してもよいし、一日単位で折れ線グラフにより表示することとしてもよい。また、第1サーバ装置SV1に直接又は間接的に接続されたケーブルの画像部分に対して、マウス等の入力機器によりクリック操作等を行うことにより、そのケーブルの通信帯域の情報の表示・非表示を行うことができることとしてもよい。また、符号812に示されるように、通信帯域の使用を示すグラフを二段書きにし、一方の仮想化システムが使用する帯域が二段に渡って占めている場合には、多重化されていることを示すこととしてもよい。図14は、仮想化サーバシステム100全体でリソース情報を表示する画面820の一例について示す図である。この図の符号821の部分に示されるように、注目する第1サーバ装置SV1の情報については仮想化システム毎に表示を行い、第1サーバ装置SV1以外の情報についてはまとめて表示を行うようにしてもよい。このような表示を行うことにより、視覚的にネットワークの構成及び使用の状況について、利用者に容易に把握させることができる。しかしながら、図13及び14のような表示は行われなくてもよい。 Here, in the network information acquisition process S110, for example, after acquiring the used communication band information in step S112, the resource information display unit 216 displays a display screen 810 as shown in FIG. 13 on the display screen of the input terminal 108. Can be displayed. In the screen shown in FIG. 13, the first server device SV1 and the map showing the network around the first server device SV1, together with the information of the first server device SV1 shown in the map and the information of the connected communication device are displayed. Yes. As shown in FIG. 13, for example, communication bandwidth used for each virtualization system, such as the first logical partition LP1 and the second logical partition LP2, and information on processing resources such as a CPU and a memory are shown. In particular, the usage status of the communication band of the cable connected to the first network switch SW1, the second network switch SW2, and the fiber channel switch SW3, which are connected communication devices, may be indicated. For example, as indicated by reference numeral 811 in FIG. 13, the number of CPUs and the memory capacity, which are processing resource information of the first server device SV1 of interest, may be indicated for each virtualization system. Further, the usage rate may be displayed together with the bar graph in units of one hour, or may be displayed in a line graph in units of one day. In addition, by clicking on the image portion of the cable directly or indirectly connected to the first server device SV1 using an input device such as a mouse, information on the communication band of the cable is displayed / hidden. It is good also as being able to perform. Also, as indicated by reference numeral 812, the graph indicating the use of the communication band is written in two stages, and if the band used by one virtualization system occupies two stages, it is multiplexed. It is good also as showing this. FIG. 14 is a diagram illustrating an example of a screen 820 that displays resource information in the entire virtualization server system 100. As indicated by the reference numeral 821 in this figure, information about the first server device SV1 of interest is displayed for each virtualization system, and information other than the first server device SV1 is displayed collectively. May be. By performing such display, it is possible to make the user easily grasp the network configuration and usage status visually. However, the display as shown in FIGS. 13 and 14 may not be performed.
 図6に戻り、ネットワーク情報取得部211は、使用通信帯域情報902を取得するとネットワーク情報取得処理S110を終了する。図5に戻り、要求が仮想化システムの変更か追加かを判定する(S101)。ここで変更である場合には、図8の使用通信帯域情報902及び必要な場合には、図9の繁忙時間情報903において対象となる仮想化システムの情報を削除する(S102)。削除を行った場合又はステップS101において変更でない場合には、仮想化システム割当判定部213による利用可能リソース算出処理S120に移行する。 Returning to FIG. 6, when the network information acquisition unit 211 acquires the used communication band information 902, the network information acquisition process S <b> 110 ends. Returning to FIG. 5, it is determined whether the request is a change or addition of the virtualization system (S101). If it is a change here, the information on the virtual system to be used is deleted in the used communication band information 902 in FIG. 8 and, if necessary, in the busy time information 903 in FIG. 9 (S102). If it has been deleted or if it has not been changed in step S101, the process proceeds to an available resource calculation process S120 by the virtualization system allocation determination unit 213.
 図15は、利用可能リソース算出処理S120のフローチャートである。このフローチャートに示されるように、利用可能リソース算出処理S120では、まず、第1サーバ装置SV1のリソース情報を取得する(S121)。ここで、第1サーバ装置SV1のリソース情報は、例えば図16に示されるように、第1サーバ装置SV1のメモリ容量及びCPU数を示すサーバ装置処理リソース情報905や、図17の第1サーバ装置SV1の第1通信ソケットA及び第2通信ソケットBの性能を示すサーバ装置通信リソース情報906を含んでいてもよい。ここで“Mode”は通信ソケットの通信性能に関する設定の一つを示している。 FIG. 15 is a flowchart of the available resource calculation process S120. As shown in this flowchart, in the available resource calculation process S120, first, resource information of the first server device SV1 is acquired (S121). Here, the resource information of the first server device SV1 is, for example, as shown in FIG. 16, the server device processing resource information 905 indicating the memory capacity and the number of CPUs of the first server device SV1, or the first server device of FIG. The server device communication resource information 906 indicating the performance of the first communication socket A and the second communication socket B of SV1 may be included. Here, “Mode” indicates one of settings related to the communication performance of the communication socket.
 次に、各仮想化システムが使用しているリソース情報を取得する(S122)。仮想化システムが使用するリソース情報は、例えば、図18の仮想化システム処理リソース情報908に示されるように、第1論理パーティションLP1及び第2論理パーティションLP2がそれぞれ使用するCPU数及びメモリ容量の情報や、図19の仮想化システム通信リソース情報909に示されるように、各仮想化システムが使用する通信ポートの情報等を含んでいてもよい。 Next, resource information used by each virtualization system is acquired (S122). The resource information used by the virtualization system is, for example, information on the number of CPUs and the memory capacity used by the first logical partition LP1 and the second logical partition LP2, as shown in the virtualization system processing resource information 908 in FIG. Alternatively, as shown in the virtualization system communication resource information 909 in FIG. 19, information on communication ports used by the respective virtualization systems may be included.
 また、取得したサーバ装置のリソース情報及び第1論理パーティションLP1及び第2論理パーティションLP2の仮想化システムが使用するリソース情報から、利用可能処理リソース情報911を算出する(S123)。利用可能処理リソース情報911は、例えば図20に示されるように、図16のサーバ装置処理リソース情報905から、図18の仮想化システム処理リソース情報908の合計を差し引くことにより算出することができる。また、第1サーバ装置SV1周辺のシステム全体での残り帯域である残システム帯域912を算出する(S124)。残システム帯域912は、例えば図21に示されるように、図7のネットワーク構成情報901、図8の使用通信帯域情報902及び図9の繁忙時間情報903の情報を用いて算出することができる。ここで、本実施の形態における残システム帯域912は、繁忙時間情報903を用いて時間帯ごとに分けて示すこととしたが、繁忙時間情報がない場合には、時間帯に分けて示すものでなくてもよい。時間帯ごとに分けられた情報として扱うことにより、例えば、同一のサーバ装置に、“Peak”期間が互いに異なるサービスを提供する仮想化システム上のサービスソフトウェアを載せる等を行うことができ、サーバ装置の集約率を高めることができる。なお、時間帯は、3時間ごとに限られず、1時間ごとであってもよいし、時間単位を可変にすることとしてもよい。また、時間単位を可変にした場合には、図9の繁忙時間情報903等の時間範囲に応じて時間単位を決定することとしてもよい。 Further, the available processing resource information 911 is calculated from the acquired resource information of the server device and the resource information used by the virtualization system of the first logical partition LP1 and the second logical partition LP2 (S123). For example, as shown in FIG. 20, the available processing resource information 911 can be calculated by subtracting the total of the virtualization system processing resource information 908 in FIG. 18 from the server apparatus processing resource information 905 in FIG. Further, the remaining system bandwidth 912, which is the remaining bandwidth in the entire system around the first server device SV1, is calculated (S124). For example, as shown in FIG. 21, the remaining system bandwidth 912 can be calculated using information of the network configuration information 901 in FIG. 7, the used communication bandwidth information 902 in FIG. 8, and the busy time information 903 in FIG. Here, the remaining system band 912 in the present embodiment is shown separately for each time zone using the busy time information 903. However, when there is no busy time information, the remaining system band 912 is shown separately for each time zone. It does not have to be. By treating it as information divided for each time zone, for example, service software on a virtualization system that provides services with different “Peak” periods can be placed on the same server device. The aggregation rate can be increased. The time zone is not limited to every 3 hours, but may be every hour, or the time unit may be variable. When the time unit is variable, the time unit may be determined according to the time range such as the busy time information 903 in FIG.
 また、第1サーバ装置SV1のネットワークリソースの残り帯域である残IO(Input/Output)帯域913を算出する(S125)。第1サーバ装置SV1の残IO帯域913は、例えば図22に示されるように、図17のサーバ装置通信リソース情報906、図8の使用通信帯域情報902及び図9の繁忙時間情報903の情報を用いて算出することができる。残IO帯域913の算出が終わると、利用可能リソース算出処理S120を終了する。ここで利用可能リソース算出処理S120は、複数のサーバ装置の利用可能リソースについてそれぞれ実行されることとしてもよい。図5に戻り、利用可能リソース算出処理S120を終了すると、要求リソース算出部212が、要求されたリソースの算出を行う要求リソース算出処理S130に移行する。 Also, a remaining IO (Input / Output) band 913 that is a remaining band of the network resource of the first server device SV1 is calculated (S125). For example, as shown in FIG. 22, the remaining IO bandwidth 913 of the first server device SV1 includes the information of the server device communication resource information 906 in FIG. 17, the used communication bandwidth information 902 in FIG. 8, and the busy time information 903 in FIG. Can be used to calculate. When the calculation of the remaining IO band 913 ends, the available resource calculation process S120 ends. Here, the available resource calculation process S120 may be executed for each of the available resources of a plurality of server apparatuses. Returning to FIG. 5, when the available resource calculation process S120 ends, the request resource calculation unit 212 proceeds to the request resource calculation process S130 for calculating the requested resource.
 図23は、要求リソース算出処理S130について示すフローチャートである。このフローチャートに示されるように、要求リソース算出処理S130では、まず、要求された処理リソースの情報である要求処理リソース情報914を取得又は算出する(S131)。具体的には、例えば図24に示されるように、新しく作成する仮想化システムである第3論理パーティションLP3が要求する処理リソースであるCPUの数及びメモリ容量を取得して要求処理リソース情報914とする。取得元は例えば、利用者が入力端末108を介して第3論理パーティションLP3の作成を要求した際に作成される、例えば図25に示されるような要求スペック920から取得することとしてもよい。 FIG. 23 is a flowchart showing the requested resource calculation process S130. As shown in this flowchart, in the requested resource calculation process S130, first, requested process resource information 914 that is information of the requested process resource is acquired or calculated (S131). Specifically, for example, as shown in FIG. 24, the number of CPUs and the memory capacity that are processing resources requested by the third logical partition LP3, which is a newly created virtualization system, are acquired, and the requested processing resource information 914 and To do. For example, the acquisition source may be acquired from a request specification 920 as shown in FIG. 25, for example, which is created when a user requests creation of the third logical partition LP3 via the input terminal 108.
 次に、要求リソース算出部212は、要求通信帯域情報の一つとして要求されたネットワークの通信帯域の情報である要求ネットワーク通信帯域情報915を取得又は算出する(S132)。具体的には、例えば、図26に示されるように、新しく作成する仮想化システムである第3論理パーティションLP3が要求する要求ネットワーク通信帯域情報915を取得又は算出する。要求ネットワーク通信帯域情報915は、例えば図25に示される要求スペック920から取得することとしてもよい。 Next, the requested resource calculation unit 212 acquires or calculates requested network communication bandwidth information 915 that is information on the requested communication bandwidth of the network as one of the requested communication bandwidth information (S132). Specifically, for example, as shown in FIG. 26, the requested network communication bandwidth information 915 requested by the third logical partition LP3, which is a newly created virtualization system, is acquired or calculated. The request network communication band information 915 may be acquired from, for example, the request specification 920 shown in FIG.
 また、要求リソース算出部212は、要求通信帯域情報の一つとして、要求された第1サーバ装置SV1の通信帯域の情報である要求IO通信帯域情報916を算出する(S133)。具体的には、例えば、図27に示されるように、新しく作成する仮想化システムである第3論理パーティションLP3が要求する要求IO通信帯域情報916を取得又は算出する。要求IO通信帯域情報916は、例えば図25に示される要求スペック920から取得することとしてもよい。図27の例では、ストレージ装置124に対する接続は多重化又は冗長化された接続として設計されている。 Further, the requested resource calculation unit 212 calculates requested IO communication bandwidth information 916 that is information on the requested communication bandwidth of the first server device SV1 as one of the requested communication bandwidth information (S133). Specifically, for example, as shown in FIG. 27, the requested IO communication bandwidth information 916 requested by the third logical partition LP3, which is a newly created virtualization system, is acquired or calculated. The request IO communication band information 916 may be acquired from, for example, the request specification 920 shown in FIG. In the example of FIG. 27, the connection to the storage device 124 is designed as a multiplexed or redundant connection.
 図5に戻り、要求リソース算出処理S130を終了すると、サーバ装置のいずれか及びネットワークに対して、要求処理リソース情報914、要求ネットワーク通信帯域情報915、要求IO通信帯域情報916に示されるリソースを割り当てることができるかどうかを判定する(S103)。 Returning to FIG. 5, when the requested resource calculation process S <b> 130 ends, the resources indicated by the requested processing resource information 914, the requested network communication bandwidth information 915, and the requested IO communication bandwidth information 916 are allocated to any of the server devices and the network. It is determined whether or not it is possible (S103).
(4) 要求されたリソースが不足する場合の処理
 ステップS103において、要求されたリソースをいずれのサーバ装置にも割り当てることができないと判定された場合には、まず、リソース不足処理部215が、リソースの過不足情報を算出する(S105)。ここでリソースの過不足情報は、例えば、図28の処理リソース過不足情報925に示されるように、図20の利用可能処理リソース情報911と図24の要求処理リソース情報914との差として算出されることとしてもよい。この図28の例においては特に不足は生じていない。また、リソースの過不足情報は、例えば図29のネットワーク通信帯域過不足情報926に示されるように、図21の残システム帯域912と図26の要求ネットワーク通信帯域情報915との差として算出されることとしてもよい。この図29の例においては、0~3時のインターネット122への接続において不足が生じているのが分かる。また、リソースの過不足情報は、例えば、図30のIO通信帯域過不足情報927に示されるように、図22の残IO帯域913と図27の要求IO通信帯域情報916との差として算出されることとしてもよい。この図30の例においては、0~3時及び6~9時の第3ポートB1及び第4ポートB2において不足が生じているのが分かる。
(4) Processing when requested resource is insufficient When it is determined in step S103 that the requested resource cannot be allocated to any server device, first, the resource shortage processing unit 215 performs resource allocation. The excess / deficiency information is calculated (S105). Here, the resource excess / deficiency information is calculated as a difference between the available process resource information 911 in FIG. 20 and the request process resource information 914 in FIG. 24, for example, as shown in the process resource excess / deficiency information 925 in FIG. It is also good to do. In the example of FIG. 28, there is no particular shortage. Further, the resource excess / deficiency information is calculated as a difference between the remaining system bandwidth 912 in FIG. 21 and the requested network communication bandwidth information 915 in FIG. 26, for example, as shown in the network communication bandwidth excess / deficiency information 926 in FIG. It is good as well. In the example of FIG. 29, it can be seen that there is a shortage in connection to the Internet 122 at 0-3 o'clock. Further, the resource excess / deficiency information is calculated as, for example, the difference between the remaining IO bandwidth 913 in FIG. 22 and the requested IO communication bandwidth information 916 in FIG. 27, as shown in the IO communication bandwidth excess / deficiency information 927 in FIG. It is also good to do. In the example of FIG. 30, it can be seen that the shortage occurs at the third port B1 and the fourth port B2 at 0-3 o'clock and 6-9 o'clock.
 これらの算出された情報は、リソース不足処理部215の指示によりリソース情報表示部216により入力端末108の表示装置に表示してもよいし、例えば図31の画面830に示されるように、第1サーバ装置SV1及び第1サーバ装置SV1の周囲のネットワークを示すマップと共に、リソース不足の個所831を、現在のリソース情報と新たな仮想化システムを作成した後のリソース情報と共に表示するようにしてもよい。このような表示を行うことにより、利用者はリソース不足について、より分かりやすく把握することができる。図5に戻り、ステップS105のリソースの過不足の算出が終了すると、リソース不足処理部215が解消案提示処理S150を行う。 The calculated information may be displayed on the display device of the input terminal 108 by the resource information display unit 216 according to an instruction from the resource shortage processing unit 215. For example, as shown in a screen 830 in FIG. The resource shortage portion 831 may be displayed together with the current resource information and the resource information after creating a new virtualization system, together with a map showing the server device SV1 and the network around the first server device SV1. . By performing such display, the user can grasp the lack of resources more easily. Returning to FIG. 5, when the calculation of the resource excess / deficiency in step S105 is completed, the resource shortage processing unit 215 performs the solution proposal presenting process S150.
 図32は、解消案提示処理S150を示すフローチャートである。このフローチャートに示されるように、解消案提示処理S150では、まず、例えば、図28の処理リソース過不足情報925、図29のネットワーク通信帯域過不足情報926及び図30のIO通信帯域過不足情報927等から未選択の不足リソースを選択する(S151)。次に、不足リソースを解消する複数の作業を選択する(S152)。ここで、図33には、不足するリソースに対する作業の例が列挙された表が示されており、この中からリソース不足を解消する作業を複数選択することができる。ここで表の「IOの冗長度を下げる」とは、例えば、障害が発生した場合であっても通信を確保するために、2つのソケットがそれぞれ同じ仮想化システムと同じスイッチに対して接続されて冗長な構成としている場合があり、この冗長な構成を解消させることにより新たな仮想化システムを作成できる場合がある。そのため新たな仮想化システムの作成のために冗長な構成を解消してもよい場合には「IOの冗長度を下げる」の作業を選択することができる。ここで、図33の表には、それぞれの作業に応じた作業時間が示されていてもよい。この選択された複数作業の組み合わせのうち、未選択の組み合わせを一つ選択する(S153)。例えば、メモリ容量が不足している場合には、ブレードの追加、メモリ増設、既存論理パーティションの縮小、既存論理パーティションの移動、稼働時間の変更の5つの作業が選択される。このうちいくつか又は全部の組み合わせを検討して、リソース不足の解消案を提示する。ここで、図32では、すべての組み合わせについて演算することとしているが、すべての組み合わせについて演算を行わず、一部の組み合わせのみについて演算を行うこととしてもよい。また、すべての組み合わせについて、リソース不足を解消するかどうかシミュレーションを行い、リソース不足を解消したものについてステップS154以降の処理を行うこととしてもよい。 FIG. 32 is a flowchart showing the solution proposal presenting process S150. As shown in this flowchart, in the solution proposal presenting process S150, first, for example, processing resource excess / deficiency information 925 in FIG. 28, network communication band excess / deficiency information 926 in FIG. 29, and IO communication bandwidth excess / deficiency information 927 in FIG. Etc., an unselected insufficient resource is selected (S151). Next, a plurality of operations for eliminating the insufficient resources are selected (S152). Here, FIG. 33 shows a table in which examples of work for insufficient resources are listed, and a plurality of work for solving the resource shortage can be selected. Here, “decrease IO redundancy” in the table means that, for example, two sockets are connected to the same virtualization system and the same switch in order to ensure communication even when a failure occurs. In some cases, a redundant configuration may be used, and a new virtualization system may be created by eliminating this redundant configuration. Therefore, when it is possible to eliminate the redundant configuration for creating a new virtualization system, the operation of “reduce IO redundancy” can be selected. Here, the table of FIG. 33 may indicate the work time according to each work. One unselected combination is selected from the selected combination of multiple operations (S153). For example, when the memory capacity is insufficient, five operations of adding a blade, adding memory, reducing an existing logical partition, moving an existing logical partition, and changing an operation time are selected. Consider some or all of these combinations and present a solution to solve resource shortages. Here, in FIG. 32, calculation is performed for all combinations, but calculation may be performed for only some combinations without performing calculation for all combinations. Moreover, it is good also as simulating whether a resource shortage is eliminated about all the combinations, and performing the process after step S154 about what solved the resource shortage.
 図34は、リソース不足を解消する提案としての作業の組み合わせの例について示す表である。作業の組み合わせの他、その作業の回数と、作業により影響を受ける論理パーティション数が示されている。これらの提案は、リソース不足処理部215から指示を受けたリソース情報表示部216により、入力端末108の表示画面に表示することができる。また、各作業は組み合わせられることなく、単独で評価されることとしてもよい。 FIG. 34 is a table showing an example of a combination of work as a proposal for solving a resource shortage. In addition to the combination of operations, the number of operations and the number of logical partitions affected by the operation are shown. These proposals can be displayed on the display screen of the input terminal 108 by the resource information display unit 216 that has received an instruction from the resource shortage processing unit 215. Moreover, it is good also as each work being evaluated independently, without being combined.
 次に、選択された組み合わせについて、リソース不足処理部215は作業複雑度のスコア算出を行う(S154)。ここで作業複雑度のスコア算出は、例えば以下の式(1)のように算出することができる。
  作業複雑度 =
    (作業種別数×第1係数)+
    (Σ(作業nの回数×作業時間)×第2係数)  (1)
Next, for the selected combination, the resource shortage processing unit 215 calculates a score of work complexity (S154). Here, the score of the work complexity can be calculated, for example, as in the following equation (1).
Work complexity =
(Number of work types x first coefficient) +
(Σ (number of operations n × operation time) × second coefficient) (1)
 ここで、第1係数及び第2係数は任意に定めることができ、第1係数を大きくすると、作業の「種別数」に重点をおいて複雑度を評価し、作業の「回数」に重点をおいて複雑度を評価することとなる。また、作業複雑度に加えて、例えば、以下の式(2)で示されるような、サービス停止時間累計のスコアを算出し評価することとしてもよい。
 サービス停止時間累計 =
 Σ(作業nの回数×作業時間×影響を受ける論理パーティション数) (2)
Here, the first coefficient and the second coefficient can be arbitrarily determined. When the first coefficient is increased, the complexity is evaluated with an emphasis on the “number of types” of work, and the “number of times” of work is emphasized. The complexity will be evaluated. Further, in addition to the work complexity, for example, a score of accumulated service stop time as represented by the following formula (2) may be calculated and evaluated.
Cumulative service downtime =
Σ (number of operations n × operation time × number of affected logical partitions) (2)
 次に、選択された組み合わせについて作業後の残リソースの算出を行う(S155)。この処理は、仮想化システム追加変更処理S100のステップS105のリソース過不足算出と同様であるため、重複する説明を省略する。ステップS155の作業後の残リソースの算出が終了すると、作業後のリソースに基づく、残リソーススコア算出処理S210に移行する。 Next, the remaining resources after work are calculated for the selected combination (S155). Since this process is the same as the resource excess / deficiency calculation in step S105 of the virtualization system addition / change process S100, a duplicate description is omitted. When the calculation of the remaining resources after the work in step S155 ends, the process proceeds to a remaining resource score calculation process S210 based on the resources after the work.
 図35は、残リソーススコア算出処理S210について示すフローチャートである。このフローチャートに示されるように、残リソーススコア算出処理S210では、まずハードウェア集約率をそれぞれのサーバ装置に対して算出する(S211)。ハードウェア集約率は例えば以下の式(3)のように算出することができる。
  ハードウェア集約率 = 
  (使用メモリ容量/全体メモリ容量)×第3係数 +
  (使用CPU数/全体CPU数)×第4係数     (3)
FIG. 35 is a flowchart showing the remaining resource score calculation process S210. As shown in this flowchart, in the remaining resource score calculation process S210, first, a hardware aggregation rate is calculated for each server device (S211). The hardware aggregation rate can be calculated as, for example, the following equation (3).
Hardware aggregation rate =
(Used memory capacity / total memory capacity) x third coefficient +
(Number of CPUs used / total number of CPUs) x fourth coefficient (3)
 ここで、第3係数及び第4係数は、第1サーバ装置SV1等に応じて適宜定めることができる。次に、仮想化システム割当判定部213は、ネットワーク集約率を算出する(S212)。ネットワーク集約率は例えば以下の式(4)のように算出することができる。
 ネットワーク集約率 = 
 (使用第1通信ソケット帯域/全体第1通信ソケット帯域)×第5係数 +
 (使用第2通信ソケット帯域/全体第1通信ソケット帯域)×第6係数 (4)
Here, the third coefficient and the fourth coefficient can be appropriately determined according to the first server device SV1 and the like. Next, the virtualization system allocation determination unit 213 calculates a network aggregation rate (S212). For example, the network aggregation rate can be calculated as in the following formula (4).
Network aggregation rate =
(Used first communication socket band / total first communication socket band) x fifth coefficient +
(Used second communication socket bandwidth / total first communication socket bandwidth) x sixth coefficient (4)
 ここで、第5係数及び第6係数は、第1サーバ装置SV1等に応じて適宜定めることができる。次に、仮想化システム割当判定部213は、ネットワーク空き帯域率を算出する(S213)。ネットワーク空き帯域率は例えば以下の式(5)のように算出することができる。
  ネットワーク空き帯域率 = 
    Average(ネットワークn使用率×ネットワークn係数) (5)
Here, the fifth coefficient and the sixth coefficient can be appropriately determined according to the first server device SV1 and the like. Next, the virtualization system allocation determination unit 213 calculates a network free bandwidth rate (S213). The network free bandwidth ratio can be calculated, for example, as in the following equation (5).
Network free bandwidth ratio =
Average (Network n usage rate x Network n coefficient) (5)
 ここで、ハードウェア集約率、ネットワーク集約率及びネットワーク空き帯域率に対して、それぞれ適宜重みづけをしてスコアを算出することができる。また、スコアの算出に際して、ハードウェア集約率、ネットワーク集約率及びネットワーク空き帯域率のすべて用いることとしてもよいし、一部のみを用いることとしてもよい。また、他の計算式や他の観点をスコア算出に用いることとしてもよい。このように、複数のリソース不足を解消する案の組み合わせについてそれぞれスコアを算出することにより、複数のリソース不足を解消する案を客観的に評価することができ、また、効率的な案を選択することができる。 Here, the score can be calculated by appropriately weighting the hardware aggregation rate, the network aggregation rate, and the network free bandwidth rate. In calculating the score, all of the hardware aggregation rate, the network aggregation rate, and the network free bandwidth rate may be used, or only a part may be used. Moreover, it is good also as using another calculation formula and another viewpoint for score calculation. In this way, by calculating the score for each combination of proposals that resolve multiple resource shortages, it is possible to objectively evaluate the proposal to resolve multiple resource shortages, and to select an efficient proposal be able to.
 図32に戻り、残リソーススコア算出処理S210が終了すると、すべての組み合わせについて選択されたかどうかを判定し(S157)、まだ選択されていない組み合わせがある場合には、ステップS153に戻って処理を繰り返す。すべての組み合わせについて選択されている場合には、すべての不足リソースについて選択済みかどうかを判定する(S158)。まだ選択されていない不足リソースがある場合には、ステップS151に戻って処理を繰り返す。すべての不足リソースについて選択されている場合には、例えば、残リソーススコア算出処理S210において算出されたスコアが高い順に解消案を提示する(S159)。解消案は、例えばリソース不足処理部215の指示により、入力端末108の表示装置に表示される。 Returning to FIG. 32, when the remaining resource score calculation process S210 ends, it is determined whether or not all combinations have been selected (S157). If there is a combination that has not yet been selected, the process returns to step S153 to repeat the process. . If all combinations have been selected, it is determined whether all insufficient resources have been selected (S158). If there is a shortage resource that has not been selected, the process returns to step S151 to repeat the process. If all the insufficient resources have been selected, for example, solutions are presented in descending order of the score calculated in the remaining resource score calculation process S210 (S159). The solution plan is displayed on the display device of the input terminal 108 according to an instruction from the resource shortage processing unit 215, for example.
 図36には解消案の提示の例が示されている。この図に示されるように、解消案は、算出された各スコアと共に表示される。複雑度・停止時間が小さく、集約率・空き帯域率が高いものがより効率のよい作業として評価される。この解消案の提示では、算出された残リソーススコアに基づいて順位づけして表示することとしてもよいし、作業複雑度に基づいて順位づけして表示することとしてもよいし、これらの組み合わせた数値に基づいて順位づけして表示することとしてもよい。利用者は、複数のリソース不足を解消する案が表示されることにより、複数の解消案を比較検討することができる。また、スコアと共に表示することにより、複数の案を客観的に評価することができる。 FIG. 36 shows an example of presentation of a solution plan. As shown in this figure, the solution plan is displayed together with the calculated scores. Those with low complexity and downtime, high aggregation rate, and free bandwidth rate are evaluated as more efficient work. In presenting the solution, the ranking may be displayed based on the calculated remaining resource score, the ranking may be displayed based on the work complexity, or a combination of these may be displayed. It is good also as ranking and displaying based on a numerical value. The user can compare and examine a plurality of solution plans by displaying a plan for solving a plurality of resource shortages. Moreover, a plurality of plans can be objectively evaluated by displaying together with the score.
 また、図36のように表示された複数の解消案のうちの一つを選択すると、リソース情報表示部216が、図37のような画面840を表示することとしてもよい。画面840では、第1サーバ装置SV1及び第1サーバ装置SV1の周囲のネットワークを示すマップと共に、リソース不足を解消する提案を視覚的に表示している。この例では、符号841に示されるように、第3論理パーティションLP3の追加における、不足リソース解消手順が表示される。また、符号842に示されるように、第1ネットワークスイッチSW1及び第2ネットワークスイッチSW2の間にケーブルを追加することが視覚的に示され、そのケーブルが使用する通信帯域と共に、ケーブルが追加された後の、リソース不足が解消された通信帯域の数値が示される。この例では、さらに符号843に示されるように、追加されるケーブルを用いた通信には新たにVLAN(Virtual Local Area Network)を割り当てて、通信を隔離するようにすることが示されている。このような画面を表示することにより、利用者は解消案について容易に把握することができる。ここで本実施の形態においては、利用者が解消案を選択することとしているが、仮想化システム割当判定部213が解消案を選択することとしてもよい。またこの場合には算出されたスコアに基づいて解消案を選択することとしてもよい。 Further, when one of a plurality of solutions displayed as shown in FIG. 36 is selected, the resource information display unit 216 may display a screen 840 as shown in FIG. On the screen 840, a proposal for solving the resource shortage is visually displayed together with a map showing the first server device SV1 and the network around the first server device SV1. In this example, as indicated by reference numeral 841, a shortage resource elimination procedure in the addition of the third logical partition LP3 is displayed. Further, as indicated by reference numeral 842, it is visually shown that a cable is added between the first network switch SW1 and the second network switch SW2, and the cable is added together with the communication band used by the cable. Later, the numerical value of the communication band in which the resource shortage is resolved is shown. In this example, as indicated by reference numeral 843, it is indicated that a new VLAN (Virtual Local Area Network) is allocated to the communication using the added cable to isolate the communication. By displaying such a screen, the user can easily grasp the solution plan. Here, in the present embodiment, the user selects the solution plan, but the virtualization system allocation determination unit 213 may select the solution plan. In this case, a solution plan may be selected based on the calculated score.
 図5に戻り、利用者が提示された解消案を選択すると、仮想化システム割当部214は、選択信号を受信し(S106)、例えば、第3論理パーティションLP3等の仮想化システムの作成要求又は変更要求を作成し(S107)、第1サーバ装置SV1の仮想化システム設定部135に作成・変更を要求する(S104)。図38は、仮想化システムである論理パーティションの作成要求921の一例が示されている。図38に示されるように、仮想化システムが作成される第1サーバ装置SV1、本実施形態においては、論理パーティションとして使用するハードウェアであるCPU、メモリ及びIOが特定されている。第1サーバ装置SV1の仮想化システム設定部135は、仮想化システム割当部214からの要求に従って、仮想化システムの作成又は変更を行う。これにより、第1サーバ装置SV1の通信リソースを効率的に利用して、仮想化システムの集約率を高めることができる。 Returning to FIG. 5, when the user selects the proposed solution, the virtualization system allocating unit 214 receives the selection signal (S106), for example, a request for creating a virtualization system such as the third logical partition LP3 or the like. A change request is created (S107), and the virtualization system setting unit 135 of the first server device SV1 is requested to create / change (S104). FIG. 38 shows an example of a logical partition creation request 921 that is a virtualization system. As shown in FIG. 38, the first server device SV1 in which the virtualization system is created, and in this embodiment, the CPU, memory, and IO that are hardware used as the logical partition are specified. The virtualization system setting unit 135 of the first server device SV1 creates or changes a virtualization system in accordance with a request from the virtualization system allocation unit 214. Thereby, the communication resource of 1st server apparatus SV1 can be utilized efficiently, and the aggregation rate of a virtualization system can be raised.
(5) 要求されたリソースがある場合の処理
 図5のステップS103で、要求されたリソースをいずれかのサーバ装置に割り当てることができる場合には、最適なサーバ装置を特定する処理である最適サーバ装置特定処理S140に移行する。
(5) Processing in the case where there is a requested resource In step S103 in FIG. 5, when the requested resource can be assigned to any server device, the optimum server which is processing for identifying the optimum server device The process proceeds to the apparatus specifying process S140.
 図39は、仮想化システム割当判定部213において実行される最適サーバ装置特定処理S140について示すフローチャートである。このフローチャートに示されるように、最適サーバ装置特定処理S140では、まず、2つ以上のサーバ装置に対して、仮想化システム、例えば第3論理パーティションLP3を作成可能かどうかを判定する(S141)。ここでの判定は、例えば、利用可能処理リソース情報911、残システム帯域912及び残IO帯域913、並びに要求処理リソース情報914、要求ネットワーク通信帯域情報915及び要求IO通信帯域情報916に基づいて行うことができる。ここで、2つ以上のサーバ装置に対して、仮想化システムを作成可能と判定された場合には、残リソーススコア算出処理S210に移行する。残リソーススコア算出処理S210は、図35の処理と同様であるため、説明を省略する。 FIG. 39 is a flowchart showing the optimum server device specifying process S140 executed by the virtualization system allocation determining unit 213. As shown in this flowchart, in the optimum server device specifying process S140, it is first determined whether or not a virtualization system, for example, the third logical partition LP3 can be created for two or more server devices (S141). This determination is made based on, for example, available processing resource information 911, remaining system bandwidth 912 and remaining IO bandwidth 913, request processing resource information 914, requested network communication bandwidth information 915, and requested IO communication bandwidth information 916. Can do. Here, when it is determined that a virtualization system can be created for two or more server devices, the process proceeds to a remaining resource score calculation process S210. The remaining resource score calculation process S210 is the same as the process of FIG.
 残リソーススコア算出処理S210を終了すると、第1論理パーティションLP1等の仮想化システムの構成変更かどうかを判定する(S143)。ここで、仮想化システムの構成変更の場合には、構成変更の対象となる仮想化システムが優先的に選択されるようにスコアの補正を行い(S144)、サーバ装置の選択を行う(S145)。一方、仮想化システムの構成変更でない場合には、ステップS145に移行し、サーバ装置の選択を行う(S145)。ここで、スコアの補正を行っても他のサーバ装置の仮想化システムのスコアの方が高い場合には、新規に仮想化システムを作成した方が効率がよいと考えられるため、元の仮想化システムを削除して、他のサーバ装置に新規に作成することを選択することとなる。例えば第1サーバ装置SV1が選択されると、図40の表示画面850に示されるように、リソース不足処理部215の指示を受けたリソース情報表示部216が、例えば割当てを行おうとする第1サーバ装置SV1及び第1サーバ装置SV1の周囲のネットワークを示すマップを表示し、さらに割当てられる仮想化システムに係る第1サーバ装置SV1の使用通信帯域情報を含むリソース情報、及び割当て後のリソース情報を共に表示することとしてもよい。ここで図に示されるように、割当て前と割当て後のリソース情報の変化を矢印851で示すように表示することとしてもよい。このような画面を表示させることにより、利用者は、変化の前後の通信帯域について容易に把握することができる。 When the remaining resource score calculation process S210 is completed, it is determined whether or not the configuration of the virtualization system such as the first logical partition LP1 is changed (S143). Here, in the case of changing the configuration of the virtualization system, the score is corrected so that the virtualization system subject to the configuration change is preferentially selected (S144), and the server device is selected (S145). . On the other hand, if the configuration of the virtualization system is not changed, the process proceeds to step S145 to select a server device (S145). Here, if the score of the virtualization system of another server device is higher even after correcting the score, it may be more efficient to create a new virtualization system, so the original virtualization The user selects to delete the system and newly create it in another server device. For example, when the first server device SV1 is selected, as shown in the display screen 850 of FIG. 40, the resource information display unit 216 that has received an instruction from the resource shortage processing unit 215 is, for example, the first server to which allocation is to be performed. A map showing the network around the device SV1 and the first server device SV1 is displayed, and the resource information including the used communication bandwidth information of the first server device SV1 related to the allocated virtualization system and the resource information after the allocation are both It may be displayed. Here, as shown in the figure, changes in resource information before and after allocation may be displayed as indicated by an arrow 851. By displaying such a screen, the user can easily grasp the communication bandwidth before and after the change.
 サーバ装置の選択の後、仮想化システム割当判定部213は、選択されたサーバ装置に対する作業の複雑度である作業複雑度スコア算出S154を行う。作業複雑度スコア算出S154は、図32の作業複雑度スコア算出S154と同様であるため、説明を省略する。ここで算出される作業複雑度は参考として算出されるものであってもよいし、作業複雑度に応じて作業を行わないことを選択させることとしてもよい。また、最適サーバ装置特定処理S140において、作業複雑度のスコア算出S154は行われなくてもよい。最後に、仮想化システム割当部214が、選択された第1サーバ装置SV1に対する仮想化システムの作成要求又は変更要求を作成して(S147)、最適サーバ装置特定処理S140を終了する。最適サーバ装置特定処理S140が終了すると、図5に戻り、仮想化システム割当部214は、特定した第1サーバ装置SV1の仮想化システム設定部135に対して作成・変更を要求する(S104)。第1サーバ装置SV1の仮想化システム設定部135は、仮想化システム割当部214からの要求に従って、仮想化システムの作成又は変更を行う。これにより、第1サーバ装置SV1の通信リソースを効率的に利用して、仮想化システムの集約率を高めることができる。 After the server device is selected, the virtualization system allocation determination unit 213 performs a task complexity score calculation S154 that is a task complexity for the selected server device. The work complexity score calculation S154 is the same as the work complexity score calculation S154 in FIG. The work complexity calculated here may be calculated as a reference, or may be selected not to perform work according to the work complexity. In the optimal server device specifying process S140, the task complexity score calculation S154 may not be performed. Finally, the virtualization system allocation unit 214 creates a virtualization system creation request or change request for the selected first server device SV1 (S147), and ends the optimum server device identification process S140. When the optimum server device specifying process S140 is completed, the processing returns to FIG. 5 and the virtualization system assigning unit 214 requests the virtualization system setting unit 135 of the specified first server device SV1 to create / change (S104). The virtualization system setting unit 135 of the first server device SV1 creates or changes a virtualization system in accordance with a request from the virtualization system allocation unit 214. Thereby, the communication resource of 1st server apparatus SV1 can be utilized efficiently, and the aggregation rate of a virtualization system can be raised.
 図41は、図2の第1サーバ装置SV1とは異なる仮想化システムを用いた第4サーバ装置SV4を用いた仮想化サーバシステム100の例について示す図である。第4サーバ装置SV4は、ソフトウェアがハードウェアをエミュレートすることにより、1つのサーバ装置に複数のOSを実行させる、所謂仮想マシンとしての仮想化システムである第1仮想マシンVM1及び第2仮想マシンVM2が適用されている。このような仮想化システムを用いた第4サーバ装置SV4であったとしても、図1~図40を用いて説明した処理と同様の処理を行うことができる。なお、図面においては、仮想マシンを形成する仮想化システム設定部135であるハイパーバイザが第1仮想マシンVM1及び第2仮想マシンVM2と別に記載されているが、ハイパーバイザ内に仮想マシンが形成される場合であっても、本発明の仮想化システムの概念に含まれる。 FIG. 41 is a diagram illustrating an example of the virtualization server system 100 using the fourth server device SV4 using a virtualization system different from the first server device SV1 of FIG. The fourth server device SV4 includes a first virtual machine VM1 and a second virtual machine, which are virtual systems as so-called virtual machines, which cause a single server device to execute a plurality of OSes by software emulating hardware. VM2 is applied. Even in the case of the fourth server device SV4 using such a virtualization system, the same processing as that described with reference to FIGS. 1 to 40 can be performed. In the drawing, the hypervisor that is the virtualization system setting unit 135 that forms the virtual machine is described separately from the first virtual machine VM1 and the second virtual machine VM2, but the virtual machine is formed in the hypervisor. Is included in the concept of the virtualization system of the present invention.
(6) 本実施の形態に係る効果
 本実施の形態に係る仮想化システム管理装置200は、第1サーバ装置SV1及び第1サーバ装置SV1に接続された接続通信機器SW1~SW3の通信帯域リソースの情報(例えばネットワーク構成情報901)、及び第1サーバ装置SV1及び接続通信機器SW1~SW3が使用している通信帯域の情報である使用通信帯域情報902を取得するネットワーク情報取得部211と、第1サーバ装置SV1で実行されるオペレーティングシステムの実行環境である仮想化システムが要求する通信帯域である要求通信帯域情報(例えば要求ネットワーク通信帯域情報915及び要求IO通信帯域情報916)を算出する要求リソース算出部212と、通信帯域リソースの情報、使用通信帯域情報902、及び要求通信帯域情報に基づいて、サーバ装置に前記仮想化システムを割当てることができるかどうかについて判定する仮想化システム割当判定部213と、仮想化システム割当判定部213の判定が肯定的な場合に仮想化システムを割当てる仮想化システム割当部214と、を備えるため、少なくとも第1サーバ装置SV1の通信リソースを効率的に利用して、仮想化されたサーバ装置の集約率を高めることができる。
(6) Effects according to the present embodiment The virtualization system management device 200 according to the present embodiment has the communication band resources of the first server device SV1 and the connected communication devices SW1 to SW3 connected to the first server device SV1. A network information acquisition unit 211 that acquires information (for example, network configuration information 901) and used communication bandwidth information 902 that is information of a communication bandwidth used by the first server device SV1 and the connected communication devices SW1 to SW3; Request resource calculation for calculating requested communication band information (for example, requested network communication band information 915 and requested IO communication band information 916) that is a communication band requested by the virtualization system which is an execution environment of the operating system executed by the server apparatus SV1. 212, communication band resource information, used communication band information 902, and The virtual system allocation determining unit 213 that determines whether or not the virtual system can be allocated to the server device based on the communication request bandwidth information, and the virtual system allocation determining unit 213 determines whether the determination is positive. And the virtualization system allocation unit 214 for allocating the virtualization system, it is possible to efficiently use at least the communication resources of the first server device SV1 and increase the aggregation rate of the virtualized server devices.
 本開示は、仮想化システムを用いるサーバ装置に適用することができる。 This disclosure can be applied to a server device using a virtualization system.
100 仮想化サーバシステム、103 管理側ネットワークスイッチ、108 入力端末、121 ルータ、122 インターネット、123 オフィスネットワーク、124 ストレージ装置、135 仮想化システム設定部、138 第1オペレーティングシステム、139 第2オペレーティングシステム、200 仮想化システム管理装置、202 揮発性記憶部、203 不揮発性記憶部、204 ネットワークインタフェース、211 ネットワーク情報取得部、212 要求リソース算出部、213 仮想化システム割当判定部、214 仮想化システム割当部、215 リソース不足処理部、216 リソース情報表示部、901 ネットワーク構成情報、902 使用通信帯域情報、903 繁忙時間情報、905 サーバ装置処理リソース情報、906 サーバ装置通信リソース情報、908 仮想化システム処理リソース情報、909 仮想化システム通信リソース情報、911 利用可能処理リソース情報、912 残システム帯域、913 残IO帯域、914 要求処理リソース情報、915 要求ネットワーク通信帯域情報、916 要求IO通信帯域情報、920 要求スペック、921 作成要求、925 処理リソース過不足情報、926 ネットワーク通信帯域過不足情報、927 IO通信帯域過不足情報、SV1 第1サーバ装置、SV2 第2サーバ装置、SV3 第3サーバ装置、SW1 第1ネットワークスイッチ、SW2 第2ネットワークスイッチ、SW3 ファイバチャネルスイッチ、LP1 第1論理パーティション、LP2 第2論理パーティション、LP3 第3論理パーティション、LP4 第4論理パーティション、VM1 第1仮想マシン、VM2 第2仮想マシン
 
DESCRIPTION OF SYMBOLS 100 Virtualization server system, 103 Management side network switch, 108 Input terminal, 121 Router, 122 Internet, 123 Office network, 124 Storage apparatus, 135 Virtualization system setting part, 138 1st operating system, 139 2nd operating system, 200 Virtualization system management device, 202 volatile storage unit, 203 nonvolatile storage unit, 204 network interface, 211 network information acquisition unit, 212 request resource calculation unit, 213 virtualization system allocation determination unit, 214 virtualization system allocation unit, 215 Resource shortage processing unit, 216 resource information display unit, 901 network configuration information, 902 used communication bandwidth information, 903 busy time information, 905 server device processing resource information, 906 Server device communication resource information, 908 Virtualization system processing resource information, 909 Virtualization system communication resource information, 911 Available processing resource information, 912 Remaining system bandwidth, 913 Remaining IO bandwidth, 914 Request processing resource information, 915 Request network communication bandwidth Information, 916 request IO communication band information, 920 request specification, 921 creation request, 925 processing resource excess / deficiency information, 926 network communication band excess / deficiency information, 927 IO communication band excess / deficiency information, SV1 first server device, SV2 second server Device, SV3 third server device, SW1 first network switch, SW2 second network switch, SW3 Fiber Channel switch, LP1 first logical partition, LP2 second logical partition, LP3 third logical partition , LP4 fourth logical partition, VM1 first virtual machine, VM2 second virtual machine

Claims (13)

  1.  サーバ装置及び前記サーバ装置に接続された接続通信機器の通信帯域リソースの情報、及び前記サーバ装置及び前記接続通信機器が使用している通信帯域の情報である使用通信帯域情報を取得するネットワーク情報取得部と、
     前記サーバ装置で実行されるオペレーティングシステムの実行環境である仮想化システムが要求する通信帯域である要求通信帯域情報を算出する要求リソース算出部と、
     前記通信帯域リソースの情報、前記使用通信帯域情報、及び前記要求通信帯域情報に基づいて、前記サーバ装置に前記仮想化システムを割当てることができるかどうかについて判定する仮想化システム割当判定部と、
     前記仮想化システム割当判定部の判定が肯定的な場合に前記仮想化システムを割当てる仮想化システム割当部と、を備える仮想化システム管理装置。
    Network information acquisition for acquiring information on communication band resources of a server device and a connected communication device connected to the server device, and used communication band information that is information of a communication band used by the server device and the connected communication device And
    A request resource calculation unit that calculates request communication bandwidth information that is a communication bandwidth requested by a virtualization system that is an execution environment of an operating system executed by the server device;
    A virtualization system allocation determination unit that determines whether or not the virtualization system can be allocated to the server device based on the information on the communication band resource, the used communication band information, and the requested communication band information;
    A virtualization system management apparatus comprising: a virtualization system allocation unit that allocates the virtualization system when the determination of the virtualization system allocation determination unit is positive.
  2.  請求項1に記載の仮想化システム管理装置において、
     前記仮想化システム割当判定部の前記判定が否定的な場合に、リソース不足の個所を表示させるリソース不足処理部を更に備える仮想化システム管理装置。
    The virtualization system management device according to claim 1,
    A virtualization system management device further comprising a resource shortage processing unit that displays a resource shortage location when the determination of the virtualization system allocation determination unit is negative.
  3.  請求項2に記載の仮想化システム管理装置において、
     前記リソース不足処理部は、前記仮想化システム割当判定部の前記判定が否定的な場合に、リソース不足を解消する提案を表示する、
     ことを特徴とする仮想化システム管理装置。
    The virtualization system management device according to claim 2,
    The resource shortage processing unit displays a proposal to solve the resource shortage when the determination of the virtualization system allocation determination unit is negative;
    A virtualization system management apparatus characterized by that.
  4.  請求項3に記載の仮想化システム管理装置において、
     前記リソース不足処理部は、前記解消する提案が実施された場合の残リソースを評価した残リソーススコアを算出し、前記提案を前記算出された前記残リソーススコアに基づいて順位づけして表示する
     ことを特徴とする仮想化システム管理装置。
    The virtualization system management device according to claim 3,
    The resource shortage processing unit calculates a remaining resource score that evaluates a remaining resource when the proposal to be resolved is implemented, and ranks and displays the proposal based on the calculated remaining resource score. A virtualization system management device characterized by the above.
  5.  請求項3に記載の仮想化システム管理装置において、
     前記リソース不足処理部は、前記解消する提案が実施された場合の作業複雑度を評価した作業複雑度を算出し、前記提案を前記算出された前記作業複雑度に基づいて順位づけして表示する
     ことを特徴とする仮想化システム管理装置。
    The virtualization system management device according to claim 3,
    The resource shortage processing unit calculates a task complexity that evaluates a task complexity when the proposal to be resolved is implemented, and ranks and displays the proposals based on the calculated task complexity. A virtualization system management apparatus characterized by that.
  6.  請求項1に記載の仮想化システム管理装置において、
     前記仮想化システム割当判定部は、前記仮想化システム割当判定部の前記判定が肯定的で、前記仮想化システムを複数の前記サーバ装置に割当てが可能な場合に、前記複数の前記サーバ装置のそれぞれにおける残リソースを評価した残リソーススコアを算出し、前記残リソーススコアに基づいて、前記複数の前記サーバ装置のうちの一つを選択させる
     ことを特徴とする仮想化システム管理装置。
    The virtualization system management device according to claim 1,
    The virtualization system allocation determination unit is configured so that, when the determination of the virtualization system allocation determination unit is affirmative and the virtualization system can be allocated to a plurality of server devices, each of the plurality of server devices. A virtualization system management apparatus, comprising: calculating a remaining resource score that evaluates a remaining resource in; and selecting one of the plurality of server apparatuses based on the remaining resource score.
  7.  請求項2に記載の仮想化システム管理装置において、
     前記仮想化システム割当判定部の前記判定が肯定的な場合に、前記仮想化システム割当判定部は、割当てられる前記仮想化システムに係る前記サーバ装置の前記使用通信帯域情報を含むリソース情報、及び割当て後の前記リソース情報を共に表示させる
     ことを特徴とする仮想化システム管理装置。
    The virtualization system management device according to claim 2,
    When the determination of the virtualization system allocation determination unit is positive, the virtualization system allocation determination unit includes resource information including the used communication bandwidth information of the server device related to the allocated virtualization system, and allocation A virtualization system management apparatus that displays the resource information later.
  8.  請求項1乃至7のいずれか一項に記載の仮想化システム管理装置において、
     前記サーバ装置及び前記サーバ装置の周囲のネットワークを示すマップと共に、マップに示された前記サーバ装置の情報及び前記接続通信機器の情報を表示するリソース情報表示部を更に有する、
     ことを特徴とする仮想化システム管理装置。
    In the virtualization system management device according to any one of claims 1 to 7,
    A resource information display unit that displays information about the server device and information about the connected communication device shown on the map, together with a map showing the server device and a network around the server device.
    A virtualization system management apparatus characterized by that.
  9.  請求項1乃至7のいずれか一項に記載の仮想化システム管理装置において、
     前記使用通信帯域情報及び前記要求通信帯域情報は、それぞれ一日を複数に分けた時間帯毎の情報である
     ことを特徴とする仮想化システム管理装置。
    In the virtualization system management device according to any one of claims 1 to 7,
    The virtual communication system management apparatus, wherein the used communication bandwidth information and the requested communication bandwidth information are information for each time zone obtained by dividing a day into a plurality of times.
  10.  請求項1乃至7のいずれか一項に記載の仮想化システム管理装置において、
     前記仮想化システムは、論理パーティションである
     ことを特徴とする仮想化システム管理装置。
    In the virtualization system management device according to any one of claims 1 to 7,
    The virtualization system management apparatus, wherein the virtualization system is a logical partition.
  11.  請求項1乃至7のいずれか一項に記載の仮想化システム管理装置において、
     前記仮想化システムは、仮想マシンである
     ことを特徴とする仮想化システム管理装置。
    In the virtualization system management device according to any one of claims 1 to 7,
    The virtualization system management apparatus, wherein the virtualization system is a virtual machine.
  12.  請求項1乃至7のいずれか一項に記載の仮想化システム管理装置において、
     前記接続通信機器は、ネットワークスイッチである
     ことを特徴とする仮想化システム管理装置。
    In the virtualization system management device according to any one of claims 1 to 7,
    The virtual communication system management apparatus, wherein the connection communication device is a network switch.
  13.  サーバ装置及び前記サーバ装置に接続された接続通信機器の通信帯域リソースの情報、及び前記サーバ装置及び前記接続通信機器が使用している通信帯域の情報である使用通信帯域情報を取得し、
     前記サーバ装置で実行されるオペレーティングシステムの実行環境である仮想化システムが要求する通信帯域である要求通信帯域情報を算出し、
     前記通信帯域リソースの情報、前記使用通信帯域情報、及び前記要求通信帯域情報に基づいて、前記サーバ装置に前記仮想化システムを割当てることができるかどうかについて判定し、
     前記判定が肯定的な場合に前記仮想化システムを割当てる、
     仮想化システム管理方法。
     
    Obtaining information on the communication band resources of the server device and the connected communication device connected to the server device, and information on the communication band used by the server device and the connected communication device;
    Calculating requested communication bandwidth information which is a communication bandwidth requested by a virtualization system which is an execution environment of an operating system executed by the server device;
    Based on the information on the communication band resource, the used communication band information, and the requested communication band information, it is determined whether the virtualization system can be allocated to the server device,
    Assigning the virtualization system if the determination is positive;
    Virtualization system management method.
PCT/JP2016/064400 2016-05-13 2016-05-13 Virtualization system managing device and virtualization system managing method WO2017195376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064400 WO2017195376A1 (en) 2016-05-13 2016-05-13 Virtualization system managing device and virtualization system managing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064400 WO2017195376A1 (en) 2016-05-13 2016-05-13 Virtualization system managing device and virtualization system managing method

Publications (1)

Publication Number Publication Date
WO2017195376A1 true WO2017195376A1 (en) 2017-11-16

Family

ID=60267737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064400 WO2017195376A1 (en) 2016-05-13 2016-05-13 Virtualization system managing device and virtualization system managing method

Country Status (1)

Country Link
WO (1) WO2017195376A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270420A (en) * 2005-03-23 2006-10-05 Yamaha Corp Connection setting apparatus, program thereof and music network system
JP2013250775A (en) * 2012-05-31 2013-12-12 Fujitsu Ltd Virtual machine management device, virtual machine management program, virtual machine management method and network system
WO2015015592A1 (en) * 2013-07-31 2015-02-05 株式会社日立製作所 Computer system and computer system control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006270420A (en) * 2005-03-23 2006-10-05 Yamaha Corp Connection setting apparatus, program thereof and music network system
JP2013250775A (en) * 2012-05-31 2013-12-12 Fujitsu Ltd Virtual machine management device, virtual machine management program, virtual machine management method and network system
WO2015015592A1 (en) * 2013-07-31 2015-02-05 株式会社日立製作所 Computer system and computer system control method

Similar Documents

Publication Publication Date Title
US11182220B2 (en) Proactive high availability in a virtualized computer system
US8386610B2 (en) System and method for automatic storage load balancing in virtual server environments
US7673113B2 (en) Method for dynamic load balancing on partitioned systems
US9569244B2 (en) Implementing dynamic adjustment of I/O bandwidth for virtual machines using a single root I/O virtualization (SRIOV) adapter
US9146793B2 (en) Management system and management method
US9697068B2 (en) Building an intelligent, scalable system dump facility
US10942759B2 (en) Seamless virtual standard switch to virtual distributed switch migration for hyper-converged infrastructure
EP2510436A1 (en) Computer cluster and method for providing a disaster recovery functionality for a computer cluster
US20150074251A1 (en) Computer system, resource management method, and management computer
US20160357647A1 (en) Computer, hypervisor, and method for allocating physical cores
WO2015072026A1 (en) Computer system
EP2867763B1 (en) Data storage with virtual appliances
US10387180B2 (en) Hypervisor controlled redundancy for I/O paths using virtualized I/O adapters
US20190317787A1 (en) Rebuilding a virtual infrastructure based on user data
CN111124250A (en) Method, apparatus and computer program product for managing storage space
US10210127B2 (en) Storage system cabling analysis
US10552224B2 (en) Computer system including server storage system
JP2008268994A (en) Computer system, load dispersion method and management computer
WO2017195376A1 (en) Virtualization system managing device and virtualization system managing method
JP2018133005A (en) Control device and control method
US10789139B2 (en) Method of rebuilding real world storage environment
JP6653786B2 (en) I / O control method and I / O control system
US11847482B2 (en) Distributed resource scheduler as a service
US11074060B2 (en) Automated detection of patch criticality on customer environment
JP2010205207A (en) Host computer, multipath system, and method and program for allocating path

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901723

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP