WO2017194022A1 - Method, device, and system for transmitting downlink control information - Google Patents

Method, device, and system for transmitting downlink control information Download PDF

Info

Publication number
WO2017194022A1
WO2017194022A1 PCT/CN2017/084279 CN2017084279W WO2017194022A1 WO 2017194022 A1 WO2017194022 A1 WO 2017194022A1 CN 2017084279 W CN2017084279 W CN 2017084279W WO 2017194022 A1 WO2017194022 A1 WO 2017194022A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
spdcch
stti
tti
level
Prior art date
Application number
PCT/CN2017/084279
Other languages
French (fr)
Chinese (zh)
Inventor
石靖
夏树强
左志松
张雯
韩祥辉
任敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610666794.4A external-priority patent/CN107371272B/en
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017194022A1 publication Critical patent/WO2017194022A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, an apparatus, and a system for transmitting downlink control information.
  • next-generation mobile communication technology Long Term Evolution (LTE)
  • LTE-Advance/LTE-A Long-Term Evolution Advance
  • 5G next-generation mobile communication technology
  • ultra-high speed, ultra-high capacity, ultra-high reliability, and ultra-low-latency transmission characteristics For the ultra-low latency index in 5G systems, it is currently recognized that the air interface delay is on the order of 1 ms.
  • a method for effectively implementing the ultra-low latency is to reduce the processing delay interval by reducing the transmission time interval (TTI) of the LTE system to support the characteristic requirement of the above 1 ms air interface delay.
  • TTI transmission time interval
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method is in a 5G high frequency communication system. It is involved in both ultra-dense networks; another method is to reduce the TTI length by reducing the number of OFDM symbols in a single TTI as currently discussed by 3GPP.
  • the advantage of this method is that it can be fully compatible with current LTE systems. This article focuses on the latter method.
  • the downlink control information (DCI, Downlink Control Information) in the LTE system is carried by the downlink control channel (PDCCH) of the resource region occupying the first 0-4 OFDM symbols in the system bandwidth, or by using the downlink data traffic channel.
  • Enhanced downlink control channel (ePDCCH, Enhanced Physical Downlink) of some PRB resource areas in (PDSCH, Physical Downlink Shared Channel) Control Channel) can schedule 1ms TTI services. Compared with the current 1 ms TTI length subframe, the shortened TTI with fewer OFDM symbols is used as a new granular short TTI (sTTI), the length of the sTTI is less than 1 ms, and the possible length is 1-7 OFDM symbols. .
  • sTTI granular short TTI
  • the embodiments of the present disclosure provide a method, an apparatus, and a system for transmitting downlink control information, so as to at least solve the problem of lacking downlink control information supporting short TTI and related service scheduling in a low latency communication scenario in the related art.
  • a method for transmitting downlink control information including: carrying, by using at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, a UE for scheduling sTTI a DCI, where the sPDCCH is a physical downlink control channel in the sTTI, and the bearer is sent to the terminal, where the DCI is used for scheduling the traffic channel, including at least one of the following: only the traffic channel in the sTTI; Traffic channel or traffic channel in 1ms TTI; traffic channel in sTTI and traffic channel in 1ms TTI.
  • the DCI of the UE for scheduling the sTTI is the same as the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI.
  • the DCIs of the UEs for scheduling sTTIs and the DCIs for scheduling 1ms PDSCHs are located in different search spaces;
  • the DCI of the UE for scheduling the sTTI is distinguished by the indication flag in the first-level DCI of the first-level DCI or the two-level DCI for scheduling the traffic channel in the 1 ms TTI or for scheduling the traffic channel in the sTTI.
  • the message carried by the traffic channel in the 1 ms TTI includes at least one of the following: a UE unicast message, or a cell broadcast message, or a public message of a group of UEs, or a cell System change message notification information for a level or group of UEs.
  • the scheduling information of the traffic channel is indicated by at least one of the following: the first level and the second level of the two-level DCI together form complete scheduling information; The second level in the DCI contains complete scheduling information.
  • the method further includes: using one of the modes or pre-defining one of the modes by the eNB by using a high layer signaling SIB or RRC notification.
  • the first-level DCI of the two-level DCI includes at least one of the following information: information indicating a parameter required for detecting an sPDCCH carrying a second-level DCI, where the second-level DCI includes scheduling sPDSCH and/or a second-level DCI of the sPUSCH; information indicating a DMRS port or a reserved RE when the sPDCCH and/or sPDSCH rate of the second-level DCI is matched; and demodulation using the pilot of the sPDCCH and/or the sPDSCH carrying the second-level DCI Information of CRS and/or DMRS; information indicating a transmission mode of sPDSCH; information indicating whether sPDCCH and/or sPDSCH carrying the second-level DCI is used based on CRS demodulation; indicating sPDCCH carrying the second-level DCI and/or Whether the sPDSCH is based on the information of the CRS when demodulating the DMRS; indicating the information of
  • the parameters required for detecting the sPDCCH that carries the second-level DCI include at least one of the following: an aggregation level, a number of candidate sets, a search space frequency domain location, a search space time domain location, an sPDCCH scrambling parameter, and an sPDCCH usage.
  • the first-level DCI of the two-level DCI includes information indicating a parameter required for detecting sPDCCH of the second-level DCI
  • the first-level DCI is indicated on a parameter of the RRC or SIB configuration.
  • a subset of the parameters of the RRC or SIB configuration, the subset comprising a subset of the parameter categories, and/or a subset of the parameter value ranges.
  • the second-level DCI of the two-level DCI includes at least one of the following information: when the two-level DCI forms a complete scheduling information, the second-level DCI includes information about resource allocation and is in the first An indication based on resource allocation in the first-level DCI; when the second level of the two-level DCI includes complete scheduling information, the second-level DCI includes information of resource allocation; indicating sPDSCH and/or sPUSCH resources Allocation information; information indicating a DMRS port or a reserved RE when the sPDSCH rate is matched; information indicating a PRB position where the DMRS is used for sPDSCH demodulation; information indicating a length of the DL sTTI and/or a length of the UL sTTI; indicating DL The sTTI binds the number of transmissions and/or the number of UL sTTI binding transmissions.
  • an update period of the first-level DCI in the two-level DCI is configured by a high-level signaling SIB or RRC.
  • the sPDSCH port is used to indicate the sPDSCH port by using the sPDCCH transmission mode.
  • the sPDSCH port usage principle includes at least one of the following: preferentially using the RE location of the DMRS with the sPDCCH. The same port, and secondly uses a port different from the RE location where the DMRS of the sPDCCH is located.
  • the DMRS resource location adopts different occupation manners according to whether the sPDCCH and the sPDSCH share the DMRS.
  • the DMRS frequency domain location shared by the sPDCCH and the sPDSCH when the DMRS frequency domain location shared by the sPDCCH and the sPDSCH is located in a part of the PRB, the DMRS frequency domain location shared by the sPDCCH and the sPDSCH includes at least one of the following: only in the PRB where the sPDCCH is located; at least in the PRB where the sPDCCH is located Medium; located in the PRB of the intermediate interval selected by the sPDCCH or sPDSCH.
  • the scrambling initialization method of the sPDCCH includes: the scrambling initialization method of the sPDCCH is independently scrambled in a subframe or in each sTTI in a radio frame, where the first sTTI or the legacy PDCCH region in the subframe sPDCCH scrambling initialization is satisfied c init is the scrambling initialization value, n s is the slot number, Is the cell identification number.
  • the scheduling of the 1 ms TTI traffic channel with reduced processing delay or the scheduling delay of the 1 ms TTI traffic channel is not reduced, and the scheduling manner includes the following at least One: 1ms TTI delay is reduced and 1ms TTI delay is not reduced.
  • Uniform DCI is used.
  • the content in the DCI is implicitly determined to be less than the preset TBS threshold, the 1ms TTI delay is reduced. Otherwise, The 1 ms TTI delay does not decrease; the 1 ms TTI delay decreases and the 1 ms TTI delay does not decrease.
  • the unified DCI is used, and the independent bit field display in the DCI indicates whether to perform 1 ms TTI delay reduction; 1 ms TTI delay decreases and 1 ms TTI Do not reduce the use of the respective DCI format.
  • the method when scheduling the 1 ms TTI service channel by using the DCI, the method further includes: performing, by using the high layer signaling SIB or the RRC, whether to perform the 1 ms TTI delay reduction.
  • the uplink data scheduling delay or the downlink data feedback delay k satisfies 0 ⁇ k ⁇ 4 and is an integer, and the value of k includes at least one of the following: an eNB and The UE side uses the same fixed k value, or the eNB and the UE side respectively use different fixed k values; the downlink and uplink use the same fixed k value, or the downlink and uplink respectively use different fixed k values; pass DCI or SIB or RRC Notifying the eNB and the UE side of the same k value, or notifying the eNB and the UE side of different k values by DCI or SIB or RRC; notifying the same k value for downlink and uplink by DCI or SIB or RRC, or by DCI or SIB Or RRC notifies the downlink and uplink of different k values.
  • indicating that the uplink HARQ process ID and/or the redundancy version RV includes at least one of the following manners: when the 1 ms TTI delay is not used.
  • the fixed bit field in the DCI is re-interpreted and then indicated; indicated by the independent bit field in the DCI; the CRC implicit indication is scrambled by different RNTI values.
  • the sPDCCH resource mode includes at least one of the following manners: when the sPDCCH is included in the sPDSCH frequency domain range, or when there is only one sPDCCH in the search space, the sPDSCH frequency domain is excluded by default.
  • All the resources except the sPDCCH are allowed to be used, or 1 bit in the DCI indicates whether the remaining resources in the search space where the sPDCCH is located are allowed to be used; when there are multiple sPDCCHs in the search space, when the candidate set fills the search space, the indication is not a candidate set to be used; indicating an unused control channel unit when the control channel unit occupies the search space; indicating an unused resource unit group or resource block when the resource unit group or the resource block occupies the search space; Indicates unused resource units when the search space is filled.
  • the indication range corresponding to the indication includes at least one of: a resource indicating that the sPDCCH is not used in the sPDSCH frequency domain range; a resource indicating that the sPDCCH is not used in the sTTI band frequency domain range; indicating in the SS where the sPDCCH is located
  • the short control channel unit sCCE used by the sPDCCH is composed of a short resource unit group sREG, and the composition manner includes at least one of the following manners: one sCCE is composed of a fixed number of sREGs; One sCCE consists of a different number of sREGs.
  • the method for detecting the DCI includes at least one of the following: attempting blind detection according to different sPDCCH detection positions corresponding to different sTTI lengths; and corresponding sTTI lengths
  • the sPDCCH detection positions are the same, but the respective pilot patterns in different sTTI lengths are respectively attempted to be demodulated in different rate matching manners; the sPDCCH detection positions corresponding to different sTTI lengths are the same and the same rate is used according to the pilots in the same position in the sPDCCH region at the same rate.
  • the matching method attempts to demodulate.
  • the DCI supports scheduling different TTI lengths and supporting whether the delay is reduced.
  • a method for transmitting downlink control information including: receiving, by using at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, for scheduling
  • the DCI of the UE for scheduling the sTTI is the same as the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI.
  • the DCIs of the UEs for scheduling sTTIs and the DCIs for scheduling 1ms PDSCHs are located in different search spaces;
  • the DCI of the UE for scheduling the sTTI is distinguished by the indication flag in the first-level DCI of the first-level DCI or the two-level DCI for scheduling the traffic channel in the 1 ms TTI or for scheduling the traffic channel in the sTTI.
  • a transmission apparatus for downlink control information includes: a bearer module, configured to carry, by using at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, a DCI of a UE for scheduling an sTTI, where the sPDCCH is a physical downlink in the sTTI And a sending module, configured to send the bearer DCI to the terminal, where the DCI is used for scheduling the traffic channel, including at least one of: a traffic channel only in the sTTI; a traffic channel in the sTTI or a 1 ms TTI Traffic channel in; traffic channel in sTTI and traffic channel in 1ms TTI.
  • the terminal UE includes: a receiving module, configured to receive a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH,
  • the downlink control information DCI of the UE for scheduling the short transmission time interval sTTI, the sPDCCH is a physical downlink control channel in the sTTI
  • the scheduling module is configured to use the DCI for scheduling, where
  • the traffic channel used for scheduling by the DCI includes at least one of: a traffic channel only in the sTTI; a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
  • a transmission system for downlink control information including the foregoing transmission device for downlink control information of a base station, and the foregoing transmission device for downlink control information of the terminal are provided.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing: transmitting, by at least one of legacy PDCCH, ePDCCH, sPDCCH, DCI of a UE for scheduling sTTI, the sPDCCH being a physical downlink control channel in an sTTI;
  • the DCI is sent to the terminal; wherein the traffic channel used by the DCI for scheduling includes at least one of: a traffic channel only in the sTTI; a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; a traffic channel in the sTTI And the traffic channel in the 1ms TTI.
  • the storage medium is further configured to store program code for performing the following steps: receiving, by using at least one of legacy PDCCH, ePDCCH, and sPDCCH, for scheduling sTTI
  • the DCI of the UE is the physical downlink control channel in the sTTI; the UE uses the DCI for scheduling; wherein the traffic channel used by the DCI for scheduling includes at least one of the following: a traffic channel only in the sTTI Traffic channel in sTTI or traffic channel in 1ms TTI; traffic channel in sTTI and traffic channel in 1ms TTI.
  • the DCI of the UE for scheduling the sTTI is carried in at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, and is sent to the UE, which solves the short support in the low-latency communication scenario in the related art.
  • the problem of downlink control information for TTI and its related service scheduling is given.
  • the implementation scheme of supporting short TTI scheduling and its related different length TTI service scheduling is given to ensure the delay communication requirement.
  • FIG. 1 is a flowchart of a method for transmitting downlink control information according to an embodiment of the present disclosure
  • FIG. 2(a) is a diagram 1 showing an example of the composition of sCCE/sREG according to an embodiment of the present disclosure
  • FIG. 2(b) is a diagram 2 showing an example of the composition of sCCE/sREG according to an embodiment of the present disclosure
  • 2(c) is an exemplary diagram 3 of a manner of composition of sCCE/sREG according to an embodiment of the present disclosure
  • FIG. 3 is a structural block diagram of a transmission apparatus for downlink control information according to an embodiment of the present disclosure
  • FIG. 5 is a structural block diagram of another transmission apparatus for downlink control information according to an embodiment of the present disclosure.
  • FIG. 6 is a structural block diagram of a transmission system of downlink control information according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an sPDCCH occupying resources only in a portion of an sPRB in a first OFDM symbol in an sTTI according to a preferred embodiment of the present disclosure
  • FIG. 8 is a DMRS requirement in a PRB where an sPDCCH is located according to a preferred embodiment of the present disclosure. Schematic diagram shared with sPDSCH;
  • FIG. 9 is a schematic diagram of a portion of a PRB in which a sPDSCH is located, without sharing a DMRS with an sPDCCH, in accordance with a preferred embodiment of the present disclosure.
  • the embodiments of the present disclosure provide a method for transmitting downlink control information, which can solve the problem of designing downlink control information in short TTIs with fewer OFDM symbols, and support short TTI scheduling and different length TTI service scheduling. Problem, guarantee delay communication needs.
  • FIG. 1 is a flowchart of a method for transmitting downlink control information according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes the following steps:
  • Step S102 Carrying, by using at least one of a legacy physical downlink control channel (Legacy PDCCH), an enhanced physical downlink control channel (ePDCCH), and an sPDCCH (Short PDCCH), a downlink (UE) for scheduling a short transmission time interval (sTTI) Control information (DCI), the sPDCCH is a physical downlink control channel in the sTTI;
  • Legacy PDCCH legacy physical downlink control channel
  • ePDCCH enhanced physical downlink control channel
  • Short PDCCH short PDCCH
  • DCI Control information
  • the sPDCCH is a physical downlink control channel in the sTTI;
  • Step S104 the bearer of the DCI is sent to the terminal.
  • the service channel in which the DCI is used for scheduling includes at least one of the following:
  • Traffic channel in sTTI and traffic channel in 1ms TTI are traffic channel in sTTI and traffic channel in 1ms TTI.
  • the DCI of the UE for scheduling the sTTI is carried in at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, and is sent to the UE, which solves the problem that the short TTI is supported in the low-latency communication scenario in the related art.
  • an implementation scheme supporting short TTI scheduling and its associated different length TTI service scheduling is given to ensure delay communication requirements.
  • Legacy PDCCH and ePDCCH in this paper mainly describe a legacy PDCCH and an ePDCCH in an LTE system.
  • the size of the DCI of the UE for scheduling the sTTI is the same as the size of the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI, including distinguishing by different values of different types of RNTIs. Or distinguish by different values of the same type of RNTI.
  • the different scrambling code RNTI of the first-level DCI of the first-level DCI or the two-level DCI may be used to distinguish whether the DCI is used for scheduling a traffic channel in a 1 ms TTI or for scheduling a traffic channel in an sTTI.
  • it may be used to schedule only the traffic channel in the sTTI; or to schedule a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; or to schedule a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
  • the DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces. It can be distinguished by restricting the search space (Search Space, referred to as SS) in which the DCIs of different service channels are scheduled, for example, respectively located in CSS or USS, respectively in the Legacy search space and the newly defined search space. Preferably, it can be used to schedule only the traffic channel in the sTTI; schedule the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; schedule the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
  • Search Space Search Space
  • the method is preferably used to schedule a traffic channel in sTTI or 1 ms The situation when the traffic channel is in the TTI.
  • the message carried by the traffic channel in the 1 ms TTI may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs.
  • Message notification information may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs.
  • the downlink control information may be a first-level DCI or a two-level DCI, where the traffic channel scheduling information indicated when the DCI is two-level DCI may include at least one of the following: two-level DCI The first level and the second level together constitute complete scheduling information; the second level of the two-level DCI contains complete scheduling information.
  • the terminal demodulates the slow DCI and skips to the next subframe to continue detecting the slow DCI without Detect the fast DCI in this sub-frame.
  • the terminal demodulates the slow DCI and continues to detect the fast DCI in this subframe.
  • both the first-level and second-level DCIs contain resource allocation information and the second-level resource allocation is based on the first-level resource allocation.
  • both the first-level DCI and the second-level DCI contain resource allocation information and the second-level resource allocation does not depend on the first-level resource allocation.
  • the first-level DCI includes the detection information required to indicate the second-level DCI to reduce the second-level DCI detection complexity, but even if the first-level DCI is not detected, the terminal can still detect the parameters according to the high-level signaling RRC or SIB configuration. Second level DCI.
  • one of the above two methods may be used by the base station (eNB) through the high layer signaling RRC or SIB notification or one of the above two methods may be predefined.
  • At least one of the following information may be included in the first level DCI:
  • Determining a parameter required for sPDCCH detection of a second-level DCI where the second-level DCI includes a second-level DCI that schedules sPDSCH and/or sPUSCH, where the parameter may include an aggregation level, a number of candidate sets, and a search space frequency domain. At least one of a location, a search space time domain location, an sPDCCH scrambling parameter, a DMRS scrambling parameter used by the sPDCCH, an sPDCCH transmission mode, and a DMRS port used for sPDCCH demodulation;
  • the reserved RE is preferably an RE corresponding to all the DMRS ports, or an RE corresponding to the port occupying the same RE;
  • DL downlink
  • UL uplink
  • the first-level DCI indicates a parameter required for detecting sPDCCH of the second-level DCI, indicating a subset of parameters of the RRC or SIB configuration based on parameters of the RRC or SIB configuration.
  • the subset may include a subset of the parameter categories, and/or a subset of the parameter value ranges.
  • the second level DCI may include at least one of the following information:
  • the second level DCI includes resource allocation and is indicated on the basis of resource allocation in the first level DCI;
  • the reserved RE is preferably the RE corresponding to all the DMRS ports, or the RE corresponding to the port occupying the same RE;
  • an update period of the first-level DCI in the two-level DCI may be configured by a high-level signaling SIB or RRC. This method can be applied to the case where the fast DCI has complete scheduling information. When a slow DCI demodulation error occurs, but is still within the update period range, the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
  • the sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode.
  • the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1.
  • the sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode.
  • the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used.
  • sPDSCH makes Use port x1, x2 at the same RE position as port x1, or port y1, y2 at the same RE position as port y1, or use port x1, y1 (preferred), or indicate the port corresponding to the sPDCCH transmission mode, when sPDCCH transmission mode
  • port x1 it indicates that sPDSCH uses ports x1 and x2 of the same RE position as port x1.
  • sPDSCH uses port x1 and x2 of the same RE position as port x1, or is the same as port y1.
  • Port y1, y2 of the RE position, or port x1, y1 (preferred).
  • the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode.
  • the sPDCCH transmission mode uses port x1
  • the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted.
  • port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ...
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
  • the DMRS resource location may adopt different occupation manners according to whether the sPDCCH and the sPDSCH share the DMRS.
  • the possible DMRS resource occupation manner is as follows.
  • the partial PRB is located in the PRB where the sPDCCH is located, at least in the PRB where the sPDCCH is located, and is located in the PRB resource occupied by the sPDCCH or the sPDSCH.
  • the selected PRB is medium; if the sPDCCH and the sPDSCH do not share the DMRS, the DMRS resource occupation mode may be equal to the PRB selected by each PRB and located at the middle interval of the PRB resources occupied by the sPDSCH.
  • the DMRS frequency domain location shared by the sPDCCH and the sPDSCH is located in a part.
  • PRB include at least one of the following occupation methods:
  • the PRB is located in the PRB of the intermediate interval of the PDCCH occupied by the sPDCCH or the sPDSCH.
  • the max ⁇ sPDCCH occupies the PRB resource
  • the sPDSCH occupies the PRB resource ⁇ .
  • the scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies c init is the scrambling initialization value, n s is the slot number, It is the identification (ID) number of the cell.
  • the scheduling of the 1 ms TTI traffic channel with reduced processing delay or the scheduling of the 1 ms TTI traffic channel without processing delay is supported. Including at least one of the following:
  • Manner 1 1ms TTI delay is reduced and 1ms TTI delay is not reduced. Use unified DCI.
  • the TBS is less than the preset TBS threshold in the DCI (for example, the resource allocation RA and the modulation and coding mode MCS)
  • the TBS is small, and the 1 ms TTI delay can be reduced. Otherwise, the 1 ms TTI delay is supported. Not lowering.
  • Manner 2 1 ms TTI delay is reduced and 1 ms TTI delay is not reduced. Use unified DCI.
  • the display of the independent bit field in the DCI indicates whether to perform the 1 ms TTI delay reduction.
  • Mode 3 1 ms TTI delay is reduced with 1 ms TTI delay is not reduced using the respective DCI format.
  • the method when scheduling the 1 ms TTI service channel by using the DCI, the method further includes: performing, by using the high layer signaling SIB or the RRC, whether to perform the 1 ms TTI delay reduction.
  • the k value manner includes at least one of the following:
  • Manner 1 Fixed value, including eNB and UE side respectively using the same k value, or eNB Different values are used for the UE side and the UE side; the same k value is used for the downlink and uplink, respectively, or different k values are used for the downlink and uplink respectively.
  • Manner 2 non-fixed value, the k value is notified by DCI or SIB or RRC, including notifying the eNB and the UE side of the same k value, or notifying the eNB and the UE side of different k values; the same k for the downlink and uplink notifications Value, or different k values for downstream and upstream notifications.
  • k is the uplink data scheduling delay or the downlink data feedback delay.
  • k 4 for the FDD system and k ⁇ 4 for the TDD system.
  • delay reduction the delay is smaller than the current LTE system, and k is a positive integer less than 4.
  • TBS threshold fixed or SIB/RRC configurable. From the perspective of different UE capabilities, the RRC is configured to configure the TBS threshold.
  • the DCI indicates whether to perform the 1ms TTI delay reduction.
  • the TBS threshold is not needed at this time and is completely determined by the DCI dynamic scheduling.
  • the DCI is a DCI that introduces a new bit field. For example, when the 1 ms TTI delay is reduced, the PUCCH resource indication and the newly designed RA may be added to the DCI. At this time, the small TBS does not necessarily perform the 1 ms TTI delay.
  • Sub-method 1 Increase the execution condition of If used for latency reduction mode for format 0/4. At this time, adding the DCI size of the new bit field does not exceed the size of the original legacy format 0/4, that is, it needs to compress other bit fields (such as RA), and there is a new design.
  • Sub-method 2 Add the bit field directly in format 0/4, otherwise reserved if not used. The corresponding format 1A may complement padding.
  • whether the 1ms TTI delay is reduced including: through DCI or SIB/RRC 1 bit indicates whether to perform a 1 ms TTI delay reduction, or indicates one of the k value sets by x bit in DCI or SIB/RRC, or indicates a k value set by x bit in SIB/RRC.
  • both of the above methods can support only one or more values of k when the 1 ms TTI delay is reduced.
  • the RRC notification can be used.
  • the k value is not unique and can be notified by DCI or RRC.
  • the 1 ms TTI delay is reduced, there are two cases: the eNB has the same k value as the UE, or the eNB has a different k value from the UE.
  • the k value is unique when the 1 ms TTI delay is reduced, and includes two cases: the eNB has the same k value as the UE, or the eNB and the UE have different k values.
  • Manner 1 1ms TTI delay is reduced and 1ms TTI delay is not reduced. Use unified DCI. Same as dynamic one. At this time, the TBS cannot be too large, and only a small TBS is allocated semi-static.
  • Manner 2 1 ms TTI delay is reduced and 1 ms TTI delay is not reduced. Use unified DCI. Same as dynamic mode two. It is completely determined by the schedule, and one of them is semi-statically executed.
  • Mode 3 1 ms TTI delay is reduced with 1 ms TTI delay is not reduced using the respective DCI format. Use only one of them semi-static.
  • the default new UE can perform delay reduction.
  • the delay is configured when the new UE is not configured to perform 1 ms TTI, even if the small TBS does not perform the 1 ms TTI delay, and only when the high-level signaling configuration can be executed, the further TBS is performed.
  • the 1ms TTI delay is reduced.
  • the 1 ms TTI delay is definitely reduced.
  • indicating an uplink HARQ process number and or a redundancy version (RV) includes at least one of the following manners. :
  • the UL grant needs to introduce a UL HARQ process number (2 to 4 bits) and an RV (1 to 2 bits).
  • Option 1 Existing bit field reinterpretation.
  • the UL HARQ process number 2 bits and the RV 1 bit are implemented by the DMRS CS/OCC bit field 3 bits and the DMRS CS/OCC fixed or RRC configuration of the UE.
  • Option 2 Pass RNTI.
  • the UL HARQ process number and the RV are determined by a plurality of different C-RNTIs of the UE.
  • multiple C-RNTIs are allocated to the UE through the RRC, and the correspondence between the values of the different C-RNTIs and the process number and the RV version is clarified.
  • DCI is a DCI that introduces a new bit field. That is, the UL HARQ process number and RV are independent bit fields.
  • Option 1 Add in existing format 0/4. DCI is still an existing format. Increase the UL HARQ process number and RV for format 0/4, that is, when the remaining delay does not decrease. In addition, format 1A may need to fill padding.
  • DCI is the new format. After adding the UL HARQ process number and RV, whether other bit fields are newly designed or not.
  • the process number bit field size may use different size bit fields, or the size corresponding to the largest number of processes in different TTIs.
  • indicating an unused sPDCCH resource manner includes at least one of the following manners:
  • Mode S1 When only the sPDCCH scheduling the sPDCCH in the sPDSCH frequency domain range or when there is only one sPDCCH in the search space, all resources except the sPDCCH may be used in the sPDSCH frequency domain by default, or in the DCI.
  • the first bit indicates whether the remaining resources in the search space where the sPDCCH is located are usable.
  • Mode S2 when there are multiple sPDCCHs in the search space, indicating that the candidate set is not used when the candidate set fills the search space; indicating the unused control channel unit when the control channel unit fills the search space; Indicates an unused resource unit group or resource block when the group or resource block fills the search space; indicates an unused resource unit when the resource unit fills the search space;
  • the indication range corresponding to the indication includes at least one of the following manners:
  • Mode 1 A resource indicating that the sPDCCH is not used is indicated in the sPDSCH frequency domain range.
  • (Mode 2) Indicates resources that are not used by the sPDCCH in the sTTI band frequency domain range.
  • Mode 3 A resource that is not used by the sPDCCH is indicated in a search space (referred to as SS) in which the sPDCCH is located.
  • SS search space
  • Mode 4 Indicates resources that are not used by the sPDCCH in all SS or sTTI band frequency domain ranges.
  • mode 1 When in the TDM mode and in the first OFDM symbol, mode 1: occupy all frequency domain resources: (similar to the PDCCH region frequency domain occupies full bandwidth). Indicates unused REG or RB (fine graininess); indicates unused CCE or candidate set (coarse granularity); (CRS position UE is known).
  • Mode 2 Partial frequency domain resources: Indicates unused sREG or RB; indicates unused CCE or candidate set.
  • Mode 2-1 When all UEs have only one short TTI SS, it indicates that no RB or sCCE is used.
  • Mode 2-2 When all UEs have more than one short TTI SS, when the sPDSCH is only possible to use unused resources in the SS, it indicates that the RB or sCCE is not used in the SS, and is applicable to the DL service self-contained DL control. . When the sPDSCH may use other resources not used in the SS, it is necessary to indicate that the RBs are not used in all the SSs, and also indicate the frequency domain range of all the SSs.
  • mode 1 occupies resources in a (2 OFDM symbol, 1 RB) minimum granularity mode: indicates an unused RB or CCE or candidate set.
  • Mode 2 is (1 OFDM symbol, 1 RB) minimum granularity mode or when EREG occupies resources: indicates an unused sCCE or a candidate set.
  • the TDM mode there is also a problem that all UEs have one or more short TTI SSs.
  • the sPDSCH may use unused resources in other SSs, it also indicates the frequency domain range of all SSs.
  • the resource granularity is assumed to be the candidate set > sCCE > RB / sREG > RE:
  • the overhead is considered, and the DCI should not be too large, and it is expected to be about 2 to 4 bits.
  • the unused candidate set is indicated, and when all the detected candidate sets occupy the SS: the candidate set numbers that are not used in the N candidate sets are indicated.
  • Determination of N Select 1. Only 1 SS or only SS for its own when there are multiple SSs (multi-UE shared SS): Consider the total number of blind detections in each sTTI, and the N value is based on the candidate set. In the case of 2 to 4, the unused candidate set overhead is saved by 2-4 bits, and then the corresponding sCCE or RB or sREG resource can be converted.
  • the 2.sPDSCH self-contained sPDCCH is selected (single UE exclusive SS): only 1 bit can be used to indicate whether resources other than sPDCCH occupancy are available or not.
  • Select 3. When there are multiple SSs: the N value corresponding to the entire symbol in the sTTI band or the scheduled sPDSCH range. The overhead is greater than option 1.
  • the control channel unit fills the search space, the unused control channel unit is indicated, and the candidate set does not occupy the SS, indicating the unused sCCE sequence number in the N sCCEs, similar to the above, the overhead is increased; Or a resource block fills the search space Indicates an unused resource unit group or a resource block.
  • the CCE does not fill the SS, indicating that the sREG or RB sequence number is not used in the N sREGs or RBs, and the overhead is larger; when the resource unit fills the search space, the indication is not The resource unit used is the most expensive at this time.
  • the sPDCCH may be used as the resource that is not used for the sPDCCH, and may be used when allocating the sPDSCH resource, that is, the sPDCCH is not used when the resource used by the sPDSCH is allocated.
  • the resources are allocated to the sPDSCH, ie no additional signaling indication is required.
  • different symbols belong to different sPDSCHs in order to avoid the same PRB.
  • a limit may be added.
  • the RB occupied by the sPDCCH must be the RB occupied by the sPDSCH, and the RA in the DCI only needs to allocate the RBs of other locations.
  • sPDSCH is occupied by sREG as granularity
  • sCCE/sREG is composed of RBG
  • sCCE/sREG is still composed of RB but allocated Only one RB of the four RBs corresponding to each RBG can be allocated in the SS.
  • composition of sCCE/sREG ie, sCCE and/or sREG
  • at least one of the following methods is included:
  • Mode 3 Still use REG, CCE definition. Not applicable when using DMRS demodulation.
  • sREG is the sequence number of the X PRBs after subtracting the CRS and or DMRS. Then, sCCE is formed according to the ECCE method.
  • sCCE/sREG is based on RBG or PRG.
  • the sCCE is composed of 4 REBs, that is, 1 REG.
  • the sCCE includes 4 sREGs, and 1 sREG consists of 1 RB.
  • Example 1 TDM mode 1, as shown in FIG. 2(a), the sPDCCH region is all the first OFDM symbols, the resources occupied by the sPDCCH of the UE1 are PRB1, 3, and 5, and the other sPDCCHs occupy the PRBs 4, 6, and 8.
  • the sPDSCH occupied resource of UE1 is PRB1-8.
  • Example 2 In TDM mode 2, as shown in Figure 2(b), only one short TTI SS is PRB1-8, the sPDSCH of UE1 occupies PRB1-10, and the sPDCCH of UE1 occupies PRB1, 3, and 5.
  • the PRB 2, 7 is not used by the sPDCCH according to the mode 1 or 2.
  • Example 3 TDM mode 2, as shown in Figure 2(b), there are only 2 short TTI SSs, the first SS is PRB1-6, the second SS is PRB3-8, and the sPDSCH of UE1 occupies PRB1-10.
  • the sPDCCH of UE1 is located in the first SS and occupies PRB1, 3, and 5. In this case, only PRB2 and 7 are not used by sPDCCH according to mode 1 or 2, and the frequency domain range of the second SS needs to be notified to the UE1.
  • Example 4 In the FDM mode, as shown in Figure 2(c), only one short TTI SS is PRB1-4, the sPDCCH of UE1 occupies CCE1, the other sPDCCH occupies CCE2, and the remaining CCE3 is unused. The scheduled sPDSCH of UE1 occupies PRB1-10. At this time, according to mode 1 or 2, CCE3 is not used in the SS.
  • the manner of detecting the DCI includes at least one of the following:
  • Mode 1 respectively, try blind detection according to different sTTI lengths, including: different sPDCCH detection positions corresponding to different sTTI lengths; sPDCCH corresponding to different sTTI lengths The detection positions are the same but the demodulation is attempted separately according to the respective pilot patterns of different sTTI lengths in different rate matching manners.
  • Mode 2 Try blind detection without distinguishing between different sTTI lengths.
  • the method includes: the sPDCCH detection positions corresponding to different sTTI lengths are the same, and the pilots in the same position according to the same position in the sPDCCH region try to demodulate in the same rate matching manner.
  • the sPDCCH blind detection only needs to follow the DMRS in the specific sTTI.
  • the blind detection of the sPDCCH has no problem.
  • the sPDCCH is sPDCCH
  • the DMRS defaults to one RE in the frequency domain and occupies 3 REs.
  • the DMRS defaults to one RE in the frequency domain and occupies 3 REs.
  • the DCI usage mode includes at least one of the following:
  • TTI 1 slots (for example, 7 OFDM symbols)
  • 1 ms TTI for example, 14 OFDM symbols
  • 1 ms TTI delay are not reduced.
  • the DCI format that is, also includes whether the delay is reduced at 1 ms TTI.
  • the DCI format or the two-level DCI, the above three DCI formats are different from each other.
  • the mode 1 is equivalent to a unified design, that is, the UE supporting the reduced delay at this time uses a DCI.
  • Alt.1 is based on the existing format 0/1A, adds the bit field, and uses RRC to configure the TTI length.
  • Alt.2 is based on the newly designed DCI format, which uses the TTI length indication, single-level DCI or slow DCI.
  • Advantages Unified DCI design. Disadvantages: alt.1 does not support dynamic scheduling of PDSCH and sPDSCH.
  • Alt.2 is necessary for the single-level DCI except that the first sTTI in the subframe has a TTI length indication, and the other sTTI indications are useless.
  • the TTI length When the TTI length is not known when detecting fast DCI or single-level DCI, it can be semi-statically configured through high-level signaling, or DCI can be blindly checked according to different TTI lengths, one or two in the same way as G. Moreover, when the TTI length is not indicated in the DCI, the other bit fields corresponding to different TTI lengths are all the same at this time.
  • Reason 3 The 1 ms delay does not reduce the use of the existing legacy DCI, and the rest of the delay reduction can use common features such as asynchronous UL HARQ.
  • Modes 5 and 6 consider three DCIs, that is, the 1 ms TTI delay does not decrease.
  • distinguishing too many DCI formats adds complexity to UE blind detection.
  • the 1 ms TTI delay is reduced and the same DCI format is used for the 1 ms TTI existing delay, the following possible ways are included: 1. Use the existing DCI without modification. When the PHICH is still used to feed back ACK/NACK to the PUSCH, the 1 ms delay reduction is implicitly determined by the TBS. 2. Add a new bit field directly. It may be new DCI format, or it may be modified directly in format 0 or 4 to increase the bit field. It is possible to add a UL HARQ process number, RV (asynchronous HARQ) in Format 0/4, and a timing k indication may be added in format 0 or 4 or 1A. Affects format 1A to increase padding.
  • RV asynchronous HARQ
  • the sTTI DCI can also be supported when a new bit field is added at this time.
  • the newly added bit field can be reserved.
  • the respective bit fields can be defined separately. 3.
  • DCI bit field reuse When the PHICH is not used, the UL grant needs to add the UL HARQ process number, RV, and the reinterpreted bit field is used when implicitly performing a 1 ms delay reduction according to the RRC configuration according to the TBS or display or according to different C-RNTI scrambling.
  • the remaining bit fields of different TTI lengths may be separately designed.
  • the bit field mainly functions in the first sTTI or legacy PDCCH region.
  • the remaining bit fields of different TTI lengths need to be uniformly designed.
  • the TTI length can be semi-statically configured by the high layer signaling or a fixed value.
  • a The transmission device of the line control information is located in the base station, and the device is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a transmission apparatus for downlink control information according to an embodiment of the present disclosure. As shown in FIG. 3, the apparatus includes:
  • the bearer module 22 is configured to carry downlink control information DCI of the terminal UE for scheduling the short transmission time interval sTTI by using at least one of a legacy physical downlink control channel (legacy PDCCH), an enhanced physical downlink control channel (ePDCCH), and an sPDCCH.
  • legacy PDCCH legacy physical downlink control channel
  • ePDCCH enhanced physical downlink control channel
  • sPDCCH sPDCCH
  • the sPDCCH is a physical downlink control channel in the sTTI; the sending module 24 is connected to the bearer module 22, and is configured to send the DCI carried by the bearer module 22 to the terminal; where the DCI is used for scheduling the traffic channel, including at least the following One: only the traffic channel in the sTTI; the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
  • the apparatus may further include a notification module, configured to use one of the foregoing two manners by using the high layer signaling RRC or the SIB notification or to use one of the foregoing two methods.
  • a notification module configured to use one of the foregoing two manners by using the high layer signaling RRC or the SIB notification or to use one of the foregoing two methods.
  • the apparatus may further include: a configuration module, configured to configure an update period of the first-level DCI in the two-level DCI by using high-level signaling SIB or RRC.
  • a configuration module configured to configure an update period of the first-level DCI in the two-level DCI by using high-level signaling SIB or RRC. This method can be applied to the case where the fast DCI has complete scheduling information.
  • the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
  • the apparatus may further include a port selection module configured to select to use a corresponding sPDSCH port according to a port usage principle.
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
  • the sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode.
  • the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1.
  • the sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode.
  • the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used.
  • the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode
  • the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred).
  • the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode.
  • the sPDCCH transmission mode uses port x1
  • the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted.
  • port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or uses port x1, y1, x2.
  • the sPDSCH uses the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1, y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1 , x3..., or port y1, y2, y3... at the same RE position as port y1, or using ports x1, y1, x2, y2, ... (preferred);
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
  • the apparatus may further include a scrambling module configured to scramble the sPDCCH.
  • the scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies c init is the scrambling initialization value, n s is the slot number, It is the identification (ID) number of the cell.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 4 is a flowchart of another method for transmitting downlink control information according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes The following steps:
  • Step S302 receiving downlink control information (DCI) of a terminal (UE) for scheduling a short transmission time interval (sTTI) carried by at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH,
  • DCI downlink control information
  • UE terminal
  • sTTI short transmission time interval
  • the sPDCCH is a physical downlink control channel in an sTTI
  • Step S304 the UE uses the DCI to perform scheduling.
  • the service channel in which the DCI is used for scheduling includes at least one of the following:
  • Traffic channel in sTTI and traffic channel in 1ms TTI are traffic channel in sTTI and traffic channel in 1ms TTI.
  • the DCI of the UE for scheduling the sTTI is carried in at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, and the UE uses the DCI to perform scheduling, which solves the short support in the low-latency communication scenario in the related art.
  • the problem of downlink control information for TTI and its related service scheduling is given to support short TTI scheduling and its associated different length TTIs.
  • the implementation of the service scheduling ensures the delay communication requirements.
  • the size of the DCI of the UE for scheduling the sTTI is the same as the size of the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI, including distinguishing by different values of different types of RNTIs. Or distinguish by different values of the same type of RNTI.
  • the different scrambling code RNTI of the first-level DCI of the first-level DCI or the two-level DCI may be used to distinguish whether the DCI is used for scheduling a traffic channel in a 1 ms TTI or for scheduling a traffic channel in an sTTI.
  • it may be used to schedule only the traffic channel in the sTTI; or to schedule a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; or to schedule a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
  • the DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces. It can be distinguished by restricting the search space in which the DCIs of different service channels are scheduled, for example, respectively located in CSS or USS, respectively in the Legacy search space and the newly defined search space. Preferably, it can be used to schedule only the traffic channel in the sTTI; schedule the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; schedule the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
  • the method is preferably used to schedule a traffic channel in an sTTI or a traffic channel in a 1 ms TTI.
  • the message carried by the traffic channel in the 1 ms TTI may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs.
  • Message notification information may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs.
  • the downlink control information may be a first-level DCI or a two-level DCI, where the traffic channel scheduling information indicated when the DCI is two-level DCI may include at least one of the following: two-level DCI The first level and the second level together constitute complete scheduling information; The second level of the two-level DCI contains complete scheduling information.
  • the terminal demodulates the slow DCI and skips to the next subframe to continue detecting the slow DCI without Detect the fast DCI in this sub-frame.
  • the terminal demodulates the slow DCI and continues to detect the fast DCI in this subframe.
  • both the first-level and second-level DCIs contain resource allocation information and the second-level resource allocation is based on the first-level resource allocation.
  • both the first-level DCI and the second-level DCI contain resource allocation information and the second-level resource allocation does not depend on the first-level resource allocation.
  • the first-level DCI includes the detection information required to indicate the second-level DCI to reduce the second-level DCI detection complexity, but even if the first-level DCI is not detected, the terminal can still detect the parameters according to the high-level signaling RRC or SIB configuration. Second level DCI.
  • one of the above two methods may be used by the base station (eNB) through the high layer signaling RRC or SIB notification or one of the above two methods may be predefined.
  • At least one of the following information may be included in the first level DCI:
  • Determining a parameter required for sPDCCH detection of a second-level DCI where the second-level DCI includes a second-level DCI that schedules sPDSCH and/or sPUSCH, where the parameter may include an aggregation level, a number of candidate sets, and a search space frequency domain. At least one of a location, a search space time domain location, an sPDCCH scrambling parameter, a DMRS scrambling parameter used by the sPDCCH, an sPDCCH transmission mode, and a DMRS port used for sPDCCH demodulation;
  • the reserved RE is preferably an RE corresponding to all the DMRS ports, or an RE corresponding to the port occupying the same RE;
  • DL downlink
  • UL uplink
  • the first-level DCI indicates a parameter required for detecting sPDCCH of the second-level DCI, indicating a subset of parameters of the RRC or SIB configuration based on parameters of the RRC or SIB configuration.
  • the subset may include a subset of the parameter categories, and/or a subset of the parameter value ranges.
  • the second level DCI may include at least one of the following information:
  • the second level DCI includes resource allocation and is indicated on the basis of resource allocation in the first level DCI;
  • the second-level DCI includes resource allocation
  • the reserved RE is preferably the RE corresponding to all the DMRS ports, or the RE corresponding to the port occupying the same RE;
  • an update period of the first-level DCI in the two-level DCI may be configured by a high-level signaling SIB or RRC. This method can be applied to the case where the fast DCI has complete scheduling information. When a slow DCI demodulation error occurs, but is still within the update period range, the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
  • the sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode.
  • the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1.
  • the sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode.
  • the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used.
  • the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode
  • the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred).
  • the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode.
  • the sPDCCH transmission mode uses port x1
  • the sPDSCH uses the same RE location as the port x1.
  • Port x1, x2, x3, ... when port x1, y1 is used for the sPDCCH transmission mode, sPDSCH uses port x1, x2, x3, ... of the same RE position as port x1, or port y1, y2 of the same RE position as port y1 Y3..., or use port x1, y1, x2, y2, ... (preferred), or port x1, x2, x3, ...
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
  • the DMRS resource location may adopt different occupation manners according to whether the sPDCCH and the sPDSCH share the DMRS.
  • the possible DMRS resource occupation manner is as follows.
  • the partial PRB is located in the PRB where the sPDCCH is located, at least in the PRB where the sPDCCH is located, and is located in the PRB resource occupied by the sPDCCH or the sPDSCH.
  • the selected PRB is medium; if the sPDCCH and the sPDSCH do not share the DMRS, the DMRS resource occupation mode may be equal to the PRB selected by each PRB and located at the middle interval of the PRB resources occupied by the sPDSCH.
  • the DMRS frequency domain location shared by the sPDCCH and the sPDSCH is located in a part of the PRB, at least one of the following occupation modes is included:
  • the PRB is located in the PRB of the intermediate interval of the PDCCH occupied by the sPDCCH or the sPDSCH.
  • the max ⁇ sPDCCH occupies the PRB resource
  • the sPDSCH occupies the PRB resource ⁇ .
  • the scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies c init is the scrambling initialization value, n s is the slot number, It is the identification (ID) number of the cell.
  • another downlink control information transmission device is further provided, which is located in the UE, and the device is used to implement the foregoing embodiment and the preferred embodiment, and has been performed. The description will not be repeated.
  • FIG. 5 is a structural block diagram of another apparatus for transmitting downlink control information according to an embodiment of the present disclosure. As shown in FIG. 5, the apparatus includes:
  • the receiving module 42 is configured to receive downlink control information of a UE for scheduling a short transmission time interval (sTTI) carried by at least one of a legacy physical downlink control channel (legacy PDCCH), an enhanced physical downlink control channel (ePDCCH), and an sPDCCH. (DCI), the sPDCCH is a physical downlink control channel in the sTTI, and the scheduling module 44 is configured to perform scheduling by using the DCI received by the receiving module 42.
  • sTTI short transmission time interval
  • legacy PDCCH legacy physical downlink control channel
  • ePDCCH enhanced physical downlink control channel
  • sPDCCH sPDCCH
  • DCI sPDCCH
  • the scheduling module 44 is configured to perform scheduling by using the DCI received by the receiving module 42.
  • the traffic channel used by the DCI for scheduling includes at least one of the following: : only the traffic channel in the sTTI; the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
  • the apparatus may further include an obtaining module, configured to obtain, by using the high layer signaling RRC or the SIB, one of the foregoing two methods or one of the foregoing two methods.
  • an obtaining module configured to obtain, by using the high layer signaling RRC or the SIB, one of the foregoing two methods or one of the foregoing two methods.
  • the acquiring module may be further configured to acquire an update period of the first-level DCI in the two-level DCI configured by the high-layer signaling SIB or RRC.
  • This method can be applied to the case where the fast DCI has complete scheduling information.
  • the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
  • the apparatus may further include a port selection module configured to select to use a corresponding sPDSCH port according to a port usage principle.
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
  • the sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode.
  • the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1.
  • the sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode.
  • the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used.
  • the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode
  • the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred).
  • the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode.
  • the sPDCCH transmission mode uses port x1
  • the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted.
  • port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or uses port x1, y1, x2.
  • the sPDSCH uses the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1, y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1 , x3..., or port y1, y2, y3... at the same RE position as port y1, or using ports x1, y1, x2, y2, ... (preferred);
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
  • the apparatus may further include a scrambling module configured to scramble the sPDCCH.
  • the scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies c init is the scrambling initialization value, n s is the slot number, It is the identification (ID) number of the cell.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 6 is a structural block diagram of a transmission system for downlink control information according to an embodiment of the present disclosure. As shown in FIG. 6, the device includes the same as shown in FIG. The transmission device 30 located in the downlink control information of the base station further includes a transmission device 40 located in the downlink control information of the UE as shown in FIG. 5.
  • the problem of designing downlink control information in short TTIs with fewer OFDM symbols can be solved, short TTI scheduling and scheduling services of different lengths of TTIs are supported, and low-latency communication requirements are ensured. .
  • a downlink control information transmission scheme is provided: the base station carries the downlink control information of the scheduled sTTI UE by using at least one of the legacy PDCCH and the sPDCCH, and sends the downlink control information to the terminal.
  • the traffic channel scheduled by the downlink control information includes at least one of the following:
  • It is used to schedule the traffic channel in the sTTI and the traffic channel in the 1ms TTI.
  • the Legacy PDCCH is a physical downlink control channel in the LTE system, and includes a PDCCH, an ePDCCH, an rPDCCH, and the like.
  • the sPDCCH indicates a physical downlink control channel in the sTTI, which may be simply referred to as a sPDCCH (Short PDCCH), and similarly, a physical downlink traffic channel in the sTTI. It can be abbreviated as sPDSCH (Short PDSCH), and the physical uplink traffic channel in sTTI can be simply referred to as sPUSCH (Short PUSCH).
  • the sTTI is a TTI that is less than 1 ms in time.
  • the short TTI is composed of N OFDM symbols, and the number N of OFDM symbols included is ⁇ 1, 2, 3, 4, 5, 6, 7 ⁇ . At least one of them.
  • the sTTI includes N OFDM symbols
  • the sPDCCH occupies X OFDM symbols in the time domain, X ⁇ N, and X preferably takes a value of 1 or 2.
  • X OFDM symbols are located in the first X OFDM symbols among the N OFDM symbols of the sTTI.
  • the value of X can be fixed or configured by the base station.
  • the sPDCCH is located in a subframe or a partial resource position in an OFDM symbol or an OFDM symbol, and the partial resource is a partial PRB or REG resource in one or more OFDM symbols in a subframe or an sTTI, or a partial resource is a partial PRB or REG resource in the OFDM symbol.
  • the resource unit in the frequency domain may also use the PRB aggregation and use or configure the N PRBs as a group; similar REGs may also be used for aggregation.
  • the downlink control information includes at least one of a legacy DCI in the LTE system and a newly designed sTTI DCI in the sTTI UE.
  • the legacy PDCCH carries the 1 ms TTI traffic channel of the legacy DCI scheduling sTTI UE, and the legacy channel is carried by the legacy PDCCH or the sPDCCH carrying the sTTI DCI; the downlink control information is used for The traffic channel in the sTTI or the traffic channel in the 1 ms TTI is scheduled by the Legacy PDCCH or the sPDCCH carrying the sTTI DCI when the traffic channel in the sTTI or the traffic channel in the 1 ms TTI is scheduled.
  • the downlink control information is used to schedule the traffic channel in the sTTI and the traffic in the 1 ms TTI.
  • the Legacy DCI carries the 1 ms TTI traffic channel of the sTTI UE, and the sPDCCH carries the sTTI DCI to schedule the traffic channel in the sTTI;
  • the indication bit field is used to distinguish whether the service channel in the 1 ms TTI is scheduled. Traffic channel in sTTI.
  • the sTTI DCI includes a function of scheduling sTTI or 1 ms TTI.
  • whether the 1ms TTI or the sTTI traffic channel is scheduled is indicated by the sTTI/TTI flag bit field.
  • the sPDCCH is used to carry the sTTI DCI and simultaneously supports 1 ms TTI and sTTI dynamic scheduling.
  • the sTTI/TTI flag is useless in the non-first sTTI in the subframe, or the sTTI/TTI flag is used to indicate other functions in the non-first sTTI.
  • the first-level DCI (also referred to as a slow DCI) indicates whether to schedule a 1 ms TTI or an sTTI traffic channel by using the sTTI/TTI flag, and may be a legacy PDCCH or an sPDCCH bearer for the slow DCI.
  • the sTTI extracted per subframe scheduling information may include DL and/or UL scheduling information, such as the sTTI band resource allocation (the resource allocation refers to the resource indication on the frequency domain, preferably indicating the system bandwidth) Which PRB resources are occupied) may be DL sTTI band resource allocation and/or UL sTTI band resource allocation, sTTI length may be DL sTTI length and/or UL sTTI length, fast DCI resource indication (fast DCI resource indication refers to sPDCCH carrying fast DCI) The parameter indication required for detection) may be a DL fast DCI resource indication and/or a UL fast DCI resource indication.
  • the sTTI band resource allocation the resource allocation refers to the resource indication on the frequency domain, preferably indicating the system bandwidth
  • which PRB resources are occupied may be DL sTTI band resource allocation and/or UL sTTI band resource allocation
  • sTTI length may be DL sTTI length and/or UL s
  • the DCI when the DCI is used to schedule a traffic channel in a sTTI or a traffic channel in a 1 ms TTI, whether the service channel in the 1 ms TTI is scheduled by using the indication bit field in the first level of the first-level DCI or the two-level DCI Traffic channel in sTTI.
  • the identifier bit field is not only 1 bit indicating 1 ms TTI and sTTI, but also 2 bits indicating sTTI of different granularity, such as using 2 bits.
  • the size of the DCI of the UE for scheduling the sTTI is the same as the size of the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI, including distinguishing by different values of different types of RNTIs. Or distinguish by different values of the same type of RNTI.
  • the different scrambling code RNTI of the first-level DCI of the first-level DCI or the two-level DCI may be used to distinguish whether the DCI is used for scheduling a traffic channel in a 1 ms TTI or for scheduling a traffic channel in an sTTI.
  • it may be used to schedule only the traffic channel in the sTTI; or to schedule a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; or to schedule a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
  • the DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces. It can be distinguished by restricting the search space in which the DCIs of different service channels are scheduled, for example, respectively located in CSS or USS, respectively in the Legacy search space and the newly defined search space. Preferably, it can be used to schedule only the traffic channel in the sTTI; schedule the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; schedule the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
  • the method is preferably used to schedule a traffic channel in an sTTI or a traffic channel in a 1 ms TTI.
  • the message carried by the traffic channel in the 1 ms TTI may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs.
  • Message notification information may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs.
  • the downlink control information is a first-level DCI or a two-level DCI, where the traffic channel scheduling information indicated by the two-level DCI includes at least one of the following:
  • the second level of the two-level DCI includes complete scheduling information.
  • the first level optionally includes but is not limited to at least one of the following: partial scheduling information, indication information of the second-level DCI, frequency domain range of the sTTI, and downlink.
  • DL length of sTTI
  • UL uplink
  • DL sTTI length of uplink
  • the terminal demodulates the slow DCI and skips to the next subframe to continue detecting the slow DCI without Detect the fast DCI in this sub-frame.
  • the terminal demodulates the slow DCI and continues to detect the fast DCI in this subframe.
  • both the first-level and second-level DCIs contain resource allocation information and the second-level resource allocation is based on the first-level resource allocation.
  • both the first-level DCI and the second-level DCI contain resource allocation information and the second-level resource allocation does not depend on the first-level resource allocation.
  • the first-level DCI includes the detection information required to indicate the second-level DCI to reduce the second-level DCI detection complexity, but even if the first-level DCI is not detected, the terminal can still detect the parameters according to the high-level signaling RRC or SIB configuration. Second level DCI.
  • one of the above two methods may be used by the base station (eNB) through the high layer signaling RRC or SIB notification or one of the above two methods may be predefined.
  • each DCI can independently schedule the corresponding traffic channel, and has complete scheduling information. In the case that no base station configuration detects the sTTI time, the default is required in each sTTI.
  • the DCI is detected.
  • the two-stage DCI indicates that the traffic channel scheduling information is that the first level and the second level of the two-level DCI form a complete scheduling information, and the terminal needs to obtain the information in the two-level DCI to obtain the service.
  • Channel scheduling information is the downlink control information is the first-level DCI.
  • the two-stage DCI indicates that the traffic channel scheduling information is that the second level of the two-level DCI includes complete scheduling information, and the terminal needs to obtain only The information in the second-level DCI can obtain the scheduling information of the traffic channel.
  • the information in the first-level DCI is the information that assists the second-level DCI detection or the dynamic configuration information of other physical layers.
  • the second-level DCI is also called fast DCI.
  • the first level DCI includes at least one of the following information:
  • the partial polymerization level in the rank is preferably one.
  • the number of candidate sets indicated is a partial candidate set of all candidate sets corresponding to each aggregation level, preferably one.
  • the indicated search space frequency domain location is part of the RBG or PRB or REG location in the system bandwidth or sTTI band.
  • the indicated search space time domain location is a partial OFDM symbol position in a subframe or in an sTTI. Instructing the sPDCCH scrambling initial value parameter to be UE-specific Or group-specific There is no need to indicate the use of a cell ID for public messages. Indicates that the DMRS scrambling initial value parameter used by the sPDCCH is UE-specific Or group-specific There is no need to indicate the use of a cell ID for public messages.
  • the sPDCCH transmission mode is indicated to be at least one of a centralized transmission, a distributed transmission, and a transmit diversity transmission.
  • Indicates the DMRS port used for sPDCCH demodulation that is, the DMRS port number used by the eNB to directly indicate the second-level DCI demodulation through the first-stage DCI, or indicates the port number combination used.
  • the first-level DCI indicates the DMRS port when the sPDCCH and/or the sPDSCH rate of the second-level DCI is matched, so that the sPDCCH carrying the second-level DCI is used.
  • the sPDSCH can know the DMRS pilot that does not need to be demodulated but exists in the rate matching in the frequency domain overlapping region, so that the eNB and the terminal match at the rate. Understand the same.
  • the first-stage DCI indicates that the sPDCCH and/or sPDSCH demodulation using the second-level DCI uses the pilot as a CRS or DMRS, or both CRS and DMRS.
  • the first-level DCI indicates an sPDSCH transmission mode in the subframe.
  • the first-level DCI indicates whether the sPDCCH and/or the sPDSCH carrying the second-level DCI is used based on CRS demodulation.
  • the first-level DCI indicates whether the sPDCCH and/or the sPDSCH carrying the second-level DCI is used based on the DMRS demodulation.
  • the first-level DCI indicates the PRB location of the DMRS used when the sPDCCH and/or sPDSCH carrying the second-level DCI is demodulated.
  • the sPDCCH and or sPDSCH related parameters for non UE-specific are indicated.
  • the sPDCCH and or sPDSCH related parameters for UE-specific are indicated.
  • the first-level DCI indicates a parameter required for detecting the sPDCCH of the second-level DCI, indicating the RRC or SIB configuration based on the parameters of the RRC or SIB configuration.
  • the subset may include a subset of the parameter categories, and/or a subset of the parameter value ranges.
  • parameters required for sPDCCH detection of the second-level DCI are still configured by higher layer signaling (SIB or RRC signaling), where the parameters include an aggregation level, a number of candidate sets, a search space frequency domain location, and a search space time domain.
  • the configured search space time domain location indicates a reduced or specific time domain location.
  • the second level DCI includes at least one of the following information:
  • the second-level DCI includes the resource allocation and is indicated on the basis of the resource allocation in the first-level DCI; specifically, the sTTI frequency domain in the current subframe indicated by the first-level DCI
  • the second-level DCI indicates that the UE supports all or part of the resources in the resource R allocated by the first-level DCI. For example, 3 bits are used to indicate that resources occupying ⁇ 1, 1/2, 1/4 ⁇ R, that is, 7 possibilities, wherein 1/2R and 1/4R can occupy occupied resources at equal intervals or at equal intervals.
  • the second level DCI includes resource allocation and is indicated on the basis of resource allocation in the first level DCI;
  • the second-level DCI includes resource allocation
  • the reserved RE is preferably the RE corresponding to all the DMRS ports, or the RE corresponding to the port occupying the same RE;
  • the second-level DCI indicates the DMRS port when the sPDSCH rate matches, so that the sPDSCH can know the DMRS that does not need to be demodulated but exists in the rate matching in the frequency domain overlapping area.
  • the pilots make the eNB and the terminal understand the consistency in rate matching.
  • the second-level DCI indicates the PRB location of the DMRS used when the sPDSCH is demodulated.
  • an update period of the first-level DCI (also referred to as a slow DCI) in the two-stage DCI is configured by higher layer signaling (SIB or RRC).
  • SIB higher layer signaling
  • the second-level DCI also called fast DCI
  • the previous slow DCI indication is used to lower the fast DCI demodulation complexity.
  • the update period is at least one of 1 ms, 4 ms, 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms, 320 ms.
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
  • the sPDSCH port may be indicated by the DCI in combination with the sPDCCH transmission mode.
  • the sPDSCH port may be used when the sPDSCH port is used in the DCI, or the same port as the RE where the sPDCCH is used, and the sPDCCH port is used.
  • X1, sPDSCH also uses port x1, or port x2 with the same RE position as port x1.
  • the sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode.
  • the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used.
  • the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode
  • the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred).
  • the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode.
  • the sPDCCH transmission mode uses port x1
  • the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted.
  • port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or uses port x1, y1, x2.
  • the sPDSCH uses the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1, y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1 , x3..., or port y1, y2, y3... at the same RE position as port y1, or using ports x1, y1, x2, y2, ... (preferred);
  • the sPDCCH uses a DMRS port similar to ePDCCH.
  • FIG. 7 is a schematic diagram of an sPDCCH occupying resources only in a portion of an sPRB in a first OFDM symbol in an sTTI according to a preferred embodiment of the present disclosure. As shown in FIG. 7, the sPDCCH is only occupied in a portion of the sPRB in the first OFDM symbol in the sTTI. Resources. It is assumed that PRB#48-49 and 36-37 are occupied by sPDCCH1, and the scheduled sPDSCH1 is located at PRB#44-49, 32-37.
  • FIG. 8 is a schematic diagram of a DMRS in a PRB where an sPDCCH is located in need of sharing with an sPDSCH according to a preferred embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a part of a PRB in which a sPDSCH is located without sharing a DMRS with an sPDCCH according to a preferred embodiment of the present disclosure.
  • DMRS in PRB #48-49, 36-37 shown in 8 may need to be shared with sPDSCH (used in sPDSCH)
  • the CRS or sPDSCH does not need to be shared when using the exclusive DMRS.
  • the DMRSs in the PRBs #44-47 and 32-35 (if the sPDSCH uses the DMRS) need not be shared with the sPDCCH.
  • Sharing means that two channels need to use DMRS at the same RE location in CDM mode.
  • the sPDCCH and the sPDSCH each use an independent DMRS RE, which makes the pilot overhead in the sTTI larger.
  • sPDSCH When sPDCCH is centralized, such as port7, sPDSCH also uses centralized port7.
  • sPDCCH uses distributed time port 7/9, sPDSCH also uses port7/9;
  • the sPDSCH layer is the same as the sPDCCH port7, and the port used by the other layer is recommended to select the port 8 of the same RE location;
  • sPDCCH When sPDCCH is distributed, such as port7/9, the two layers of sPDSCH use port7 and port9 respectively;
  • the sPDSCH layer is the same as the sPDCCH port7, and the port used by the other layer is recommended to preferentially select ports 8, 11, and 13 of the same RE location, and then select ports 9, 10, and 12 of different RE locations. 14;
  • the port of the sPDSCH can be flexibly selected.
  • the use of ports for PDSCH may introduce restrictions when RI > 2.
  • the principle is to consider the overhead first, and try to make the DMRS overhead of the sPDSCH not increase based on the DMRS cost used by the sPDCCH when the RI requirement is met. When the RI requires, the resource location that increases the DMRS overhead is selected.
  • the sPDSCH port usage principle includes at least one of the following:
  • the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
  • the sPDCCH uses the DMRS port 7
  • the sPDSCH preferentially uses the DMRS ports 8, 11, and 13, and the sub-optimal uses the DMRS ports 9, 10, 12, and 14.
  • the method includes at least one of the following manners:
  • the DMRS of the UE is configured only from the PRB including the sPDCCH, and the demodulation performance for the sPDSCH may be deteriorated at this time.
  • the sPDCCH is preferably distributed in the PRB occupied by the sPDSCH, so that the DMRS is dispersed in the frequency domain as much as possible.
  • the DMRS of the UE is also configured in the PRB of the PRB where the sPDSCH is located, except for the DMRS in which the PDCCH is located in the PRB.
  • the PRB is located in the PRB of the intermediate interval of the PDCCH occupied by the sPDCCH or the sPDSCH.
  • the max ⁇ sPDCCH occupies the PRB resource
  • the sPDSCH occupies the PRB resource ⁇ .
  • the interval is x PRBs, where x is a fixed value or a value configured by the eNB through higher layer signaling or physical layer signaling.
  • the PRB location where the DMRS is located may also be indicated by higher layer signaling or physical layer signaling.
  • the scrambling initialization method of the sPDCCH is the same as the legacy PDCCH scrambling in the first sTTI in the subframe, and the subsequent sTTI in the subframe is different from the legacy PDCCH scrambling.
  • the initial value determining manner used by the scrambling sequence includes at least one of the following. It should be noted that the following methods (1), (2), and (3) only take the sTTI as two OFDM symbols and the normal CP as an example, and the sTTI number in the subframe is 0 to 6. Also suitable for short TTIs of other lengths. If the sTTI is 7 OFDM symbols, the sTTI sequence number in the subframe is 0 to 1. If the sTTI is 4-3-4-3 OFDM symbols, the sTTI sequence number in the subframe is 0 to 3. The c init in the following formula is the scrambling initialization value, and n s is the slot number. It is the identification (ID) number of the cell.
  • ID identification
  • n TTI 0, 1, ..., 6.
  • n TTI 0, 1, ..., 6.
  • the scrambling mode is better than the frame-based scrambling randomization method when the sTTI index can be accurately known, and the sPDCCH scrambling in the legacy PDCCH region in the subframe is not added to the PDCCH. Interference conflicts, compatible after implementation.
  • the C-RNTI or the Group-RNTI is used instead.
  • This preferred embodiment 1 implements scheduling PDSCH or sPDSCH through two-level DCI
  • the base station schedules the sPDSCH through two-stage DCI.
  • the first-level DCI optionally includes a frequency domain occupied position indicating an sTTI band, and optionally includes an indication sTTI length/pattern.
  • the first-level DCI can flexibly schedule 1ms PDSCH and sTTI sPDSCH for the sTTI UE.
  • the indication of 1 ms TTI and sTTI scheduling identity is included in the first level of DCI.
  • the first-level DCI is located in the Legacy PDCCH region, or is in the first sTTI, and is carried by the Legacy PDCCH or the sPDCCH.
  • the first-level DCI (slow DCI) content is exemplified in Table 1, and the downlink traffic channel is scheduled as an example.
  • the base station schedules the sPDSCH in the sTTI
  • the sPDCCH carrying the second-level DCI (fast DCI) is transmitted in the sTTI.
  • the fast DCI content is exemplified in Table 2, and the downlink traffic channel is scheduled as an example.
  • the resource allocation 3 bits indicates that the resources occupying ⁇ 1, 1/2, 1/4 ⁇ R, that is, 7 kinds of possibilities, wherein R/2 and R/4 can occupy the resources or occupy the resources at equal intervals.
  • the two types corresponding to R/2 may be a group of even numbers of 16 parts, an odd numbered group; the four types corresponding to R/4 may be 16 parts of the number ⁇ 0, A group of 4, 8, 12 ⁇ , a group of numbers ⁇ 1, 5, 9, 13 ⁇ , a group of numbers ⁇ 2, 6, 10, 14 ⁇ , one of numbers ⁇ 3, 7, 11, 15 ⁇ group.
  • the terminal When receiving the downlink service data, the terminal first demodulates the slow DCI in the Legacy PDCCH region. When demodulating and determining that the PDSCH is scheduled according to the flag, the terminal no longer receives the detected fast DCI, and receives the PDSCH in the detection subframe according to the scheduling information. When it is determined by the flag that the sTTI sPDSCH is scheduled according to the flag, the fast DCI carried in the sPDCCH is continuously detected in the sTTI.
  • the sPDSCH is demodulated in the sTTI according to the information of the scheduled sPDSCH in the demodulation fast DCI.
  • the first-level DCI in the two-level DCI is added to distinguish the 1ms TTI or the sTTI flag identifier, so that the sTTI terminal performs only one TTI length service channel demodulation in the same subframe, without At the same time, PDSCHs of different TTI lengths are demodulated to reduce the complexity of terminal detection processing. Guaranteed delay requirements.
  • Two-stage DCI is used in the preferred embodiment 2, and is used independently or independently to indicate fast DCI, transmission mode, pilot, etc.
  • the base station schedules the sPDSCH through two-stage DCI.
  • the first-level DCI includes a frequency domain occupied position indicating an sTTI band, optionally including an indication sTTI length/pattern, optionally including an sPDSCH transmission mode, and optionally a demodulation pilot including sPDCCH and or sPDSCH.
  • the PRB location of the DMRS used by the sPDCCH and or the sPDSCH is optionally included, and optionally includes parameters required for fast DCI related detection.
  • the first-level DCI is located in the Legacy PDCCH region, or is in the first sTTI, and is carried by the Legacy PDCCH or the sPDCCH.
  • the content of the first-level DCI is exemplified in Table 3, and the downlink traffic channel is scheduled as an example.
  • the sPDSCH transmission indication may be indicated based on the existing LTE transmission mode (1-10), or may be indicated in the transmission mode set used by the sTTI UE, and the transmission mode set used by the sTTI UE may be only included in the LTE.
  • the demodulation pilot indication indicates whether the cell reference signal CRS or the UE demodulation reference signal DMRS is based.
  • the PRB location where the DMRS is located is only in the DMRS.
  • the Fast DCI detection parameter indication specifically includes an aggregation level, a number of candidate sets, a search space frequency domain location, a search space time domain location, an sPDCCH scrambling initial value parameter, a DMRS scrambling initial value parameter used by the sPDCCH, an sPDCCH transmission mode, and an sPDCCH demodulation. At least one of the DMRS ports used, or a subset of partial parameters (eg, a reduced value or a specific value), based on a higher layer signaling SIB or RRC configuration.
  • the base station schedules the sPDSCH in the sTTI, and transmits the sPDCCH carrying the second-level DCI (fast DCI) in the sTTI.
  • the fast DCI content is exemplified in Table 4, and the downlink traffic channel is scheduled as an example.
  • the second level DCI indicates further resource allocation, for example, 3 bits indicate that the resources occupying ⁇ 1, 1/2, 1/4 ⁇ R, that is, 7 possibilities, where R/2 and R/4 can occupy resources at equal intervals or at discrete intervals.
  • the second-level DCI is specifically independent of the sPDSCH scheduling information, the resource allocation information of the sPDSCH is directly indicated in the second level.
  • the terminal When receiving the downlink service data, the terminal first demodulates the slow DCI in the Legacy PDCCH region. When the two-stage DCI together constitutes the complete scheduling information, the terminal demodulates the second-level DCI based on the demodulation of the first-level DCI. Complete sPDSCH demodulation indicator parameters. When the second-level DCI in the two-stage DCI includes complete sPDSCH scheduling information, demodulating the first-level DCI can make the demodulation of the second-level DCI faster and reduce the detection complexity. Otherwise, the second-level DCI detection is not demodulated. When the first-level DCI is obtained, it is detected with a high detection complexity. When the second-level DCI can independently carry the sPDSCH scheduling information, the first-level DCI may not be referred to as DCI, that is, one physical layer signaling, and the detection complexity of the DCI is reduced by the indication.
  • the sPDSCH is demodulated in the sTTI according to the information of the scheduled sPDSCH in the demodulation fast DCI.
  • the first-level DCI is added to indicate the second-level DCI-related detection information in the two-level DCI, so that the sTTI terminal obtains the scheduling information with a lower detection complexity when detecting the two-level DCI.
  • the sTTI terminal transmission is flexible based on the subframe level change by adding information indicating the transmission mode of the sPDCCH and or the sPDSCH, demodulation pilot, and the like in the first-stage DCI in the two-stage DCI. Guaranteed delay requirements.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S102 The downlink control information (DCI) of the terminal (UE) for scheduling a short transmission time interval (sTTI) is carried by at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, where the legacy PDCCH and the ePDCCH are legacy in the LTE system.
  • PDCCH, ePDCCH, the sPDCCH is a physical downlink control channel in the sTTI;
  • Step S104 the bearer of the DCI is sent to the terminal.
  • the service channel in which the DCI is used for scheduling includes at least one of the following:
  • Traffic channel in sTTI and traffic channel in 1ms TTI are traffic channel in sTTI and traffic channel in 1ms TTI.
  • the storage medium is further arranged to store program code for performing the following steps:
  • Step S302 receiving downlink control information (DCI) of a terminal (UE) for scheduling a short transmission time interval (sTTI) carried by at least one of a legacy PDCCH, an ePDCCH, and an sPDCCH, where the legacy PDCCH and the ePDCCH are in an LTE system.
  • Legacy PDCCH, ePDCCH, the sPDCCH is a physical downlink control channel in the sTTI;
  • Step S304 the bearer of the DCI is sent to the terminal.
  • the service channel in which the DCI is used for scheduling includes at least one of the following:
  • Traffic channel in sTTI and traffic channel in 1ms TTI are traffic channel in sTTI and traffic channel in 1ms TTI.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the method, device, and system for transmitting downlink control information provided by the embodiments of the present invention have the following beneficial effects: the downlink control lacking support for short TTI and related service scheduling in the low latency communication scenario in the related art is solved.
  • the problem of information, the implementation scheme supporting short TTI scheduling and its related different length TTI service scheduling is given to ensure the delay communication requirement.

Abstract

Provided in embodiments of the present disclosure are a method, device, and system for transmitting downlink control information. The method comprises: carrying, by means of at least one from a legacy PDCCH, EPDCCH, and sPDCCH, DCI of UE for scheduling an sTTI; and sending to a terminal the carried DCI, wherein service channels to be scheduled by the DCI comprises at least one of the following: only service channels within the sTTI; service channels within the sTTI or service channels within a TTI of 1 ms; and service channels within the sTTI and service channels within a TTI of 1 ms. The embodiments of the present disclosure solve the problem of the related art in which lack of support for a short TTI and downlink control information of related service scheduling thereof exists in low-latency communication scenarios, and provide implementation schemes to support short TTI scheduling and related service scheduling with variable TTI lengths, thus ensuring that latency-related communication requirements are met.

Description

下行控制信息的传输方法、装置及系统Method, device and system for transmitting downlink control information 技术领域Technical field
本公开涉及通信领域,具体而言,涉及一种下行控制信息的传输方法、装置及系统。The present disclosure relates to the field of communications, and in particular, to a method, an apparatus, and a system for transmitting downlink control information.
背景技术Background technique
随着第四代移动通信技术(4G,the 4th Generation mobile communication technology)长期演进(LTE,Long-Term Evolution)/高级长期演进(LTE-Advance/LTE-A,Long-Term Evolution Advance)系统商用的日益完善,对下一代移动通信技术即第五代移动通信技术(5G,the 5th Generation mobile communication technology)的技术指标要求也越来越高。业内普遍认为,下一代移动通信系统应具有超高速率、超高容量、超高可靠性、以及超低延时传输特性等特征。对于5G系统中超低时延的指标目前公认的为空口时延约1ms的数量级。With the 4th Generation mobile communication technology (4G, the 4th Generation mobile communication technology) Long Term Evolution (LTE), the Long Term Evolution (LTE-Advance/LTE-A, Long-Term Evolution Advance) system is commercially available. More and more perfect, the technical requirements for the next-generation mobile communication technology, the 5th Generation mobile communication technology (5G), are also getting higher and higher. It is widely believed in the industry that next-generation mobile communication systems should have features such as ultra-high speed, ultra-high capacity, ultra-high reliability, and ultra-low-latency transmission characteristics. For the ultra-low latency index in 5G systems, it is currently recognized that the air interface delay is on the order of 1 ms.
一种有效实现超低时延的方法是通过减少LTE系统的发送时间间隔(TTI,Transmission Time Interval),充分缩短处理时延单元,以支持上述1ms空口时延的特性需求。目前存在两种缩小TTI的方法,一种是通过扩大正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)系统的子载波间隔来缩小单个OFDM符号的时长,该方法在5G的高频通信系统和超密集网络中均有涉及;另一种方法是目前3GPP所讨论的通过减少单个TTI中OFDM符号的数量来减小TTI长度,该方法的好处是可以和目前的LTE系统完全兼容。本文主要针对后一种方法进行说明。A method for effectively implementing the ultra-low latency is to reduce the processing delay interval by reducing the transmission time interval (TTI) of the LTE system to support the characteristic requirement of the above 1 ms air interface delay. At present, there are two methods for reducing TTI, one is to reduce the duration of a single OFDM symbol by expanding the subcarrier spacing of an Orthogonal Frequency Division Multiplexing (OFDM) system. The method is in a 5G high frequency communication system. It is involved in both ultra-dense networks; another method is to reduce the TTI length by reducing the number of OFDM symbols in a single TTI as currently discussed by 3GPP. The advantage of this method is that it can be fully compatible with current LTE systems. This article focuses on the latter method.
目前LTE系统中下行控制信息(DCI,Downlink Control Information)由占用系统带宽中前0-4个OFDM符号的资源区域的下行控制信道(PDCCH,Physical Downlink Control Channel)承载,或者由使用下行数据业务信道(PDSCH,Physical Downlink Shared Channel)中部分PRB资源区域的增强下行控制信道(ePDCCH,Enhanced Physical Downlink  Control Channel)承载,均可以调度1ms TTI的业务。相对于目前1ms TTI长度的子帧,含有较少OFDM符号的缩短TTI作为一种新粒度的短TTI(sTTI,short TTI),sTTI的长度小于1ms,可能的长度为包含1-7个OFDM符号。The downlink control information (DCI, Downlink Control Information) in the LTE system is carried by the downlink control channel (PDCCH) of the resource region occupying the first 0-4 OFDM symbols in the system bandwidth, or by using the downlink data traffic channel. Enhanced downlink control channel (ePDCCH, Enhanced Physical Downlink) of some PRB resource areas in (PDSCH, Physical Downlink Shared Channel) Control Channel) can schedule 1ms TTI services. Compared with the current 1 ms TTI length subframe, the shortened TTI with fewer OFDM symbols is used as a new granular short TTI (sTTI), the length of the sTTI is less than 1 ms, and the possible length is 1-7 OFDM symbols. .
针对相关技术中低时延通信场景中缺少支持短TTI及其相关业务调度的下行控制信息的问题,目前尚未给出有效的解决方案。In view of the lack of downlink control information supporting short TTI and its related service scheduling in the low-latency communication scenario in the related art, an effective solution has not been given yet.
公开内容Public content
本公开实施例提供了一种下行控制信息的传输方法、装置及系统,以至少解决相关技术中低时延通信场景中缺少支持短TTI及其相关业务调度的下行控制信息的问题。The embodiments of the present disclosure provide a method, an apparatus, and a system for transmitting downlink control information, so as to at least solve the problem of lacking downlink control information supporting short TTI and related service scheduling in a low latency communication scenario in the related art.
根据本公开的一个实施例,提供了一种下行控制信息的传输方法,包括:通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载用于调度sTTI的UE的DCI,所述sPDCCH为sTTI中的物理下行控制信道;将承载的所述DCI发送至终端;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。According to an embodiment of the present disclosure, a method for transmitting downlink control information is provided, including: carrying, by using at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, a UE for scheduling sTTI a DCI, where the sPDCCH is a physical downlink control channel in the sTTI, and the bearer is sent to the terminal, where the DCI is used for scheduling the traffic channel, including at least one of the following: only the traffic channel in the sTTI; Traffic channel or traffic channel in 1ms TTI; traffic channel in sTTI and traffic channel in 1ms TTI.
可选地,在所述DCI用于调度业务信道时,包括以下方式至少之一:所述用于调度sTTI的UE的DCI的大小与用于调度1ms PDSCH的DCI大小相同,并通过RNTI进行区分,包括通过不同类型的RNTI的不同取值进行区分、或者通过相同类型的RNTI的不同取值进行区分;所述用于调度sTTI的UE的DCI与用于调度1ms PDSCH的DCI位于不同搜索空间;通过一级DCI或两级DCI的第一级DCI中的指示标识区分所述用于调度sTTI的UE的DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。Optionally, when the DCI is used to schedule a traffic channel, at least one of the following manners: the DCI of the UE for scheduling the sTTI is the same as the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI. And distinguishing by different values of different types of RNTIs, or by different values of the same type of RNTIs; the DCIs of the UEs for scheduling sTTIs and the DCIs for scheduling 1ms PDSCHs are located in different search spaces; The DCI of the UE for scheduling the sTTI is distinguished by the indication flag in the first-level DCI of the first-level DCI or the two-level DCI for scheduling the traffic channel in the 1 ms TTI or for scheduling the traffic channel in the sTTI.
可选地,所述1ms TTI中的业务信道承载的消息包括以下至少之一:UE单播消息,或者小区广播消息,或者一组UE的公共消息,或者小区 级或一组UE的系统变更消息通知信息。Optionally, the message carried by the traffic channel in the 1 ms TTI includes at least one of the following: a UE unicast message, or a cell broadcast message, or a public message of a group of UEs, or a cell System change message notification information for a level or group of UEs.
可选地,所述下行控制信息为两级DCI时,通过以下至少之一的方式指示业务信道的调度信息:两级DCI中的第一级和第二级共同构成完整的调度信息;两级DCI中的第二级包含完整的调度信息。Optionally, when the downlink control information is two-level DCI, the scheduling information of the traffic channel is indicated by at least one of the following: the first level and the second level of the two-level DCI together form complete scheduling information; The second level in the DCI contains complete scheduling information.
可选地,所述方法还包括:由eNB通过高层信令SIB或RRC通知使用所述方式其中之一或者预定义使用所述方式其中之一。Optionally, the method further includes: using one of the modes or pre-defining one of the modes by the eNB by using a high layer signaling SIB or RRC notification.
可选地,所述两级DCI的第一级DCI中包含以下信息至少之一:指示承载第二级DCI的sPDCCH检测时所需参数的信息,所述第二级DCI包含调度sPDSCH和/或sPUSCH的第二级DCI;指示承载第二级DCI的sPDCCH和/或sPDSCH速率匹配时的DMRS端口或预留RE的信息;指示承载第二级DCI的sPDCCH和/或sPDSCH的解调使用导频CRS和/或DMRS的信息;指示sPDSCH的传输模式的信息;指示承载第二级DCI的sPDCCH和/或sPDSCH基于CRS解调时是否使用DMRS的信息;指示承载第二级DCI的sPDCCH和/或sPDSCH基于DMRS解调时是否使用CRS的信息;指示承载第二级DCI的sPDCCH和/或sPDSCH解调时所使用的DMRS所在PRB位置的信息;指示下行链路DL sTTI band频域位置和/或上行链路UL sTTI band频域位置的信息;指示DL sTTI的长度和/或UL sTTI的长度的信息;指示DL sTTI绑定传输个数和/或UL sTTI绑定传输个数的信息。Optionally, the first-level DCI of the two-level DCI includes at least one of the following information: information indicating a parameter required for detecting an sPDCCH carrying a second-level DCI, where the second-level DCI includes scheduling sPDSCH and/or a second-level DCI of the sPUSCH; information indicating a DMRS port or a reserved RE when the sPDCCH and/or sPDSCH rate of the second-level DCI is matched; and demodulation using the pilot of the sPDCCH and/or the sPDSCH carrying the second-level DCI Information of CRS and/or DMRS; information indicating a transmission mode of sPDSCH; information indicating whether sPDCCH and/or sPDSCH carrying the second-level DCI is used based on CRS demodulation; indicating sPDCCH carrying the second-level DCI and/or Whether the sPDSCH is based on the information of the CRS when demodulating the DMRS; indicating the information of the PRB location of the DMRS used when the sPDCCH and/or the sPDSCH carrying the second-level DCI is demodulated; indicating the frequency domain position of the downlink DL sTTI band and/or Information of the uplink UL sTTI band frequency domain location; information indicating the length of the DL sTTI and/or the length of the UL sTTI; information indicating the number of DL sTTI bundling transmissions and/or the number of UL sTTI bundling transmissions.
可选地,所述承载第二级DCI的sPDCCH检测时所需参数包括以下至少之一:聚合等级、候选集数量、搜索空间频域位置、搜索空间时域位置、sPDCCH加扰参数、sPDCCH使用的DMRS加扰参数、sPDCCH传输模式、sPDCCH解调使用的DMRS端口。Optionally, the parameters required for detecting the sPDCCH that carries the second-level DCI include at least one of the following: an aggregation level, a number of candidate sets, a search space frequency domain location, a search space time domain location, an sPDCCH scrambling parameter, and an sPDCCH usage. DMRS scrambling parameters, sPDCCH transmission mode, DMRS port used for sPDCCH demodulation.
可选地,在所述两级DCI的第一级DCI包含指示承载第二级DCI的sPDCCH检测时所需参数的信息时,所述第一级DCI在RRC或SIB配置的参数基础上,指示所述RRC或SIB配置的参数的子集,所述子集包括参数种类的子集,和/或参数取值范围的子集。 Optionally, when the first-level DCI of the two-level DCI includes information indicating a parameter required for detecting sPDCCH of the second-level DCI, the first-level DCI is indicated on a parameter of the RRC or SIB configuration. A subset of the parameters of the RRC or SIB configuration, the subset comprising a subset of the parameter categories, and/or a subset of the parameter value ranges.
可选地,所述两级DCI的第二级DCI中包含以下信息至少之一:在所述两级DCI共同构成完整调度信息时,所述第二级DCI中包含资源分配的信息且在第一级DCI中的资源分配的基础上指示;在所述两级DCI中的第二级包含完整的调度信息时,所述第二级DCI中包含资源分配的信息;指示sPDSCH和/或sPUSCH资源分配信息;指示sPDSCH速率匹配时的DMRS端口或预留RE的信息;指示sPDSCH解调时所使用的DMRS所在PRB位置的信息;指示DL sTTI的长度和/或UL sTTI的长度的信息;指示DL sTTI绑定传输个数和/或UL sTTI绑定传输个数的信息。Optionally, the second-level DCI of the two-level DCI includes at least one of the following information: when the two-level DCI forms a complete scheduling information, the second-level DCI includes information about resource allocation and is in the first An indication based on resource allocation in the first-level DCI; when the second level of the two-level DCI includes complete scheduling information, the second-level DCI includes information of resource allocation; indicating sPDSCH and/or sPUSCH resources Allocation information; information indicating a DMRS port or a reserved RE when the sPDSCH rate is matched; information indicating a PRB position where the DMRS is used for sPDSCH demodulation; information indicating a length of the DL sTTI and/or a length of the UL sTTI; indicating DL The sTTI binds the number of transmissions and/or the number of UL sTTI binding transmissions.
可选地,所述两级DCI中的第一级DCI的更新周期由高层信令SIB或RRC配置。Optionally, an update period of the first-level DCI in the two-level DCI is configured by a high-level signaling SIB or RRC.
可选地,在所述sPDCCH基于DMRS解调的情况下,所述方法还包括:当所述DMRS与所述UE的sPDSCH共用时,sPDSCH端口的使用原则包含以下至少之一:在RI=1时使用与sPDCCH相同端口的DMRS;在RI=2时使用与sPDCCH的DMRS所在RE位置相同的端口;在RI>2时优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;结合sPDCCH传输方式通过DCI指示sPDSCH端口;当所述DMRS与非所述UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口。Optionally, in the case that the sPDCCH is based on DMRS demodulation, the method further includes: when the DMRS is shared with the sPDSCH of the UE, the usage principle of the sPDSCH port includes at least one of the following: at RI=1 The DMRS with the same port as the sPDCCH is used; when RI=2, the same port as the DMRS where the sPDCCH is located is used; when RI>2, the same port as the DMRS where the sPDCCH is located is used preferentially, and then the DMRS with the sPDCCH is used. The sPDSCH port is used to indicate the sPDSCH port by using the sPDCCH transmission mode. When the DMRS is shared with the sPDSCH that is not the UE, the sPDSCH port usage principle includes at least one of the following: preferentially using the RE location of the DMRS with the sPDCCH. The same port, and secondly uses a port different from the RE location where the DMRS of the sPDCCH is located.
可选地,所述DMRS资源位置根据sPDCCH与sPDSCH是否共用DMRS采用不同的占用方式。Optionally, the DMRS resource location adopts different occupation manners according to whether the sPDCCH and the sPDSCH share the DMRS.
可选地,在所述sPDCCH与sPDSCH共用的DMRS频域位置位于部分PRB时,所述sPDCCH与sPDSCH共用的DMRS频域位置包括以下至少之一:仅位于sPDCCH所在PRB中;至少位于sPDCCH所在PRB中;位于在sPDCCH或sPDSCH占用的PRB资源中等间隔选取的PRB中。Optionally, when the DMRS frequency domain location shared by the sPDCCH and the sPDSCH is located in a part of the PRB, the DMRS frequency domain location shared by the sPDCCH and the sPDSCH includes at least one of the following: only in the PRB where the sPDCCH is located; at least in the PRB where the sPDCCH is located Medium; located in the PRB of the intermediate interval selected by the sPDCCH or sPDSCH.
可选地,所述sPDCCH的加扰初始化方法包括:所述sPDCCH的加 扰初始化方法为子帧中或无线帧中每个sTTI独立加扰,其中子帧中首个sTTI中或Legacy PDCCH区域中的sPDCCH加扰初始化满足
Figure PCTCN2017084279-appb-000001
cinit为加扰初始化值,ns为时隙号,
Figure PCTCN2017084279-appb-000002
为小区标识号。
Optionally, the scrambling initialization method of the sPDCCH includes: the scrambling initialization method of the sPDCCH is independently scrambled in a subframe or in each sTTI in a radio frame, where the first sTTI or the legacy PDCCH region in the subframe sPDCCH scrambling initialization is satisfied
Figure PCTCN2017084279-appb-000001
c init is the scrambling initialization value, n s is the slot number,
Figure PCTCN2017084279-appb-000002
Is the cell identification number.
可选地,在所述DCI用于调度1ms TTI中的业务信道时,支持处理时延降低的1ms TTI业务信道的调度或处理时延不降低的1ms TTI业务信道的调度,调度方式包括以下至少之一:1ms TTI时延降低与1ms TTI时延不降低使用统一DCI,且在通过DCI中的内容隐含确定为TBS的值小于预设TBS门限值时,执行1ms TTI时延降低,否则执行1ms TTI时延不降低;1ms TTI时延降低与1ms TTI时延不降低使用统一DCI,且通过DCI中独立比特域显示指示是否执行1ms TTI时延降低;1ms TTI时延降低与1ms TTI时延不降低使用各自的DCI格式。Optionally, when the DCI is used to schedule a traffic channel in a 1 ms TTI, the scheduling of the 1 ms TTI traffic channel with reduced processing delay or the scheduling delay of the 1 ms TTI traffic channel is not reduced, and the scheduling manner includes the following at least One: 1ms TTI delay is reduced and 1ms TTI delay is not reduced. Uniform DCI is used. When the content in the DCI is implicitly determined to be less than the preset TBS threshold, the 1ms TTI delay is reduced. Otherwise, The 1 ms TTI delay does not decrease; the 1 ms TTI delay decreases and the 1 ms TTI delay does not decrease. The unified DCI is used, and the independent bit field display in the DCI indicates whether to perform 1 ms TTI delay reduction; 1 ms TTI delay decreases and 1 ms TTI Do not reduce the use of the respective DCI format.
可选地,在通过所述DCI调度1ms TTI业务信道时,还包括:通过高层信令SIB或RRC配置是否执行1ms TTI时延降低。Optionally, when scheduling the 1 ms TTI service channel by using the DCI, the method further includes: performing, by using the high layer signaling SIB or the RRC, whether to perform the 1 ms TTI delay reduction.
可选地,所述1ms TTI处理时延降低时,上行数据调度时延或下行数据反馈时延k满足0<k<4且为整数,且k的取值方式包括以下至少之一:eNB和UE侧使用相同的固定k值,或eNB和UE侧分别使用不同的固定k值;下行和上行使用相同的固定k值,或下行和上行分别使用不同的固定k值;通过DCI或SIB或RRC对eNB和UE侧通知相同的k值,或通过DCI或SIB或RRC对eNB和UE侧通知不同的k值;通过DCI或SIB或RRC对下行和上行通知相同的k值,或通过DCI或SIB或RRC对下行和上行通知不同的k值。Optionally, when the 1 ms TTI processing delay is decreased, the uplink data scheduling delay or the downlink data feedback delay k satisfies 0<k<4 and is an integer, and the value of k includes at least one of the following: an eNB and The UE side uses the same fixed k value, or the eNB and the UE side respectively use different fixed k values; the downlink and uplink use the same fixed k value, or the downlink and uplink respectively use different fixed k values; pass DCI or SIB or RRC Notifying the eNB and the UE side of the same k value, or notifying the eNB and the UE side of different k values by DCI or SIB or RRC; notifying the same k value for downlink and uplink by DCI or SIB or RRC, or by DCI or SIB Or RRC notifies the downlink and uplink of different k values.
可选地,所述DCI用于调度1ms TTI时延降低或sTTI的上行业务信道时,指示上行HARQ进程号和/或冗余版本RV包括以下方式至少之一:使用1ms TTI时延不降低时DCI中的固定比特域进行重新解释后进行指示;通过DCI中独立比特域指示;通过不同的RNTI取值加扰CRC隐含指示。Optionally, when the DCI is used to schedule an uplink traffic channel with a 1 ms TTI delay or sTTI, indicating that the uplink HARQ process ID and/or the redundancy version RV includes at least one of the following manners: when the 1 ms TTI delay is not used. The fixed bit field in the DCI is re-interpreted and then indicated; indicated by the independent bit field in the DCI; the CRC implicit indication is scrambled by different RNTI values.
可选地,在所述DCI为单级DCI或两级DCI中任何一级DCI时,指 示未使用的sPDCCH资源方式包括以下方式至少之一:当sPDSCH频域范围中仅包括调度所述sPDSCH的sPDCCH时或当搜索空间中仅有1个sPDCCH时,默认在该sPDSCH频域范围内除该sPDCCH以外的其他资源均允许使用,或在DCI中通过1bit指示该sPDCCH所在搜索空间内剩余资源是否允许使用;当搜索空间中有多个sPDCCH时,在候选集占满该搜索空间时指示未使用的候选集;在控制信道单元占满该搜索空间时指示未使用的控制信道单元;在资源单元组或资源块占满该搜索空间时指示未使用的资源单元组或资源块;在资源单元占满该搜索空间时指示未使用的资源单元。Optionally, when the DCI is a single-level DCI or a two-level DCI, The sPDCCH resource mode includes at least one of the following manners: when the sPDCCH is included in the sPDSCH frequency domain range, or when there is only one sPDCCH in the search space, the sPDSCH frequency domain is excluded by default. All the resources except the sPDCCH are allowed to be used, or 1 bit in the DCI indicates whether the remaining resources in the search space where the sPDCCH is located are allowed to be used; when there are multiple sPDCCHs in the search space, when the candidate set fills the search space, the indication is not a candidate set to be used; indicating an unused control channel unit when the control channel unit occupies the search space; indicating an unused resource unit group or resource block when the resource unit group or the resource block occupies the search space; Indicates unused resource units when the search space is filled.
可选地,所述指示对应的指示范围包括以下至少之一:在sPDSCH频域范围中指示sPDCCH未使用的资源;在sTTI band频域范围中指示sPDCCH未使用的资源;在sPDCCH所在SS中指示sPDCCH未使用的资源;在所有SS或sTTI band频域范围中指示sPDCCH没有使用的资源。Optionally, the indication range corresponding to the indication includes at least one of: a resource indicating that the sPDCCH is not used in the sPDSCH frequency domain range; a resource indicating that the sPDCCH is not used in the sTTI band frequency domain range; indicating in the SS where the sPDCCH is located A resource that is not used by the sPDCCH; indicates resources that are not used by the sPDCCH in all SS or sTTI band frequency domain ranges.
可选地,所述sPDCCH使用的短控制信道单元sCCE是由短资源单元组sREG组成的,组成方式包括以下方式中至少之一:1个sCCE由固定数量的sREG组成;根据预设条件的不同,1个sCCE由不同数量的sREG组成。Optionally, the short control channel unit sCCE used by the sPDCCH is composed of a short resource unit group sREG, and the composition manner includes at least one of the following manners: one sCCE is composed of a fixed number of sREGs; One sCCE consists of a different number of sREGs.
可选地,所述根据预设条件的不同,1个sCCE由不同数量的sREG组成包括:当有小区参考信号CRS时,1sCCE=4sREG;当没有CRS时,1sCCE=3sREG。Optionally, according to different preset conditions, the 1 sCCE is composed of different numbers of sREGs, including: when there is a cell reference signal CRS, 1sCCE=4sREG; when there is no CRS, 1sCCE=3sREG.
可选地,在所述DCI调度sTTI中业务信道,且sTTI长度未知时,检测DCI的方式包括以下至少之一:按照不同sTTI长度对应的不同的sPDCCH检测位置分别尝试盲检;不同sTTI长度对应的sPDCCH检测位置相同但依据不同sTTI长度中各自的导频图样以不同速率匹配方式分别尝试解调;不同sTTI长度对应的sPDCCH检测位置相同且依据在sPDCCH区域中同样位置的导频以同样的速率匹配方式尝试解调。Optionally, when the DCI schedules the traffic channel in the sTTI, and the sTTI length is unknown, the method for detecting the DCI includes at least one of the following: attempting blind detection according to different sPDCCH detection positions corresponding to different sTTI lengths; and corresponding sTTI lengths The sPDCCH detection positions are the same, but the respective pilot patterns in different sTTI lengths are respectively attempted to be demodulated in different rate matching manners; the sPDCCH detection positions corresponding to different sTTI lengths are the same and the same rate is used according to the pilots in the same position in the sPDCCH region at the same rate. The matching method attempts to demodulate.
可选地,在所述DCI支持调度不同TTI长度和支持是否时延降低的业 务信道时,所述DCI的使用方式至少包括以下之一:所述TTI=2个OFDM符号、TTI=1个时隙、1ms TTI时延降低和1ms TTI时延不降低均使用相同DCI格式;1ms TTI时延降低和1ms TTI时延不降低使用一种DCI格式,TTI=2个OFDM符号和TTI=1个时隙使用另一种DCI格式或两级DCI;1ms TTI时延不降低使用一种DCI格式,TTI=2个OFDM符号、TTI=1个时隙和1ms TTI时延降低使用另一种DCI格式或两级DCI;1ms TTI时延降低、1ms TTI时延不降低和TTI=1个时隙使用一种DCI格式,TTI=2个OFDM符号使用另一种DCI格式或两级DCI;1ms TTI时延不降低使用一种DCI格式,1ms TTI时延降低使用另一种DCI格式,TTI=2个OFDM符号和TTI=1个时隙使用再一种DCI格式或两级DCI;1ms TTI时延不降低使用一种DCI格式,1ms TTI时延降低和TTI=1个时隙使用另一种DCI格式,TTI=2个OFDM符号使用再一种DCI格式或两级DCI。Optionally, the DCI supports scheduling different TTI lengths and supporting whether the delay is reduced. When the channel is used, the DCI is used in at least one of the following: the TTI=2 OFDM symbols, TTI=1 time slots, 1 ms TTI delay reduction, and 1 ms TTI delay are not reduced, all using the same DCI format; 1ms TTI delay reduction and 1ms TTI delay does not decrease using one DCI format, TTI=2 OFDM symbols and TTI=1 time slots use another DCI format or two-level DCI; 1ms TTI delay does not decrease use one DCI format, TTI=2 OFDM symbols, TTI=1 time slots and 1ms TTI delay reduction using another DCI format or two-stage DCI; 1ms TTI delay reduction, 1ms TTI delay does not decrease, and TTI=1 One time slot uses one DCI format, TTI=2 OFDM symbols use another DCI format or two-level DCI; 1 ms TTI delay does not reduce the use of one DCI format, and 1 ms TTI delay reduces the use of another DCI format, TTI=2 OFDM symbols and TTI=1 time slots use another DCI format or two-stage DCI; 1ms TTI delay does not decrease using one DCI format, 1ms TTI delay is reduced and TTI=1 time slot is used A DCI format, TTI = 2 OFDM symbols using another DCI format or two-level DCI.
根据本公开的另一实施例,提供了另一种下行控制信息的传输方法,包括:接收通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载的用于调度短发送时间间隔sTTI的终端UE的下行控制信息DCI,所述sPDCCH为sTTI中的物理下行控制信道;所述UE使用所述DCI进行调度;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。According to another embodiment of the present disclosure, a method for transmitting downlink control information is provided, including: receiving, by using at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, for scheduling The downlink control information DCI of the terminal UE with a short transmission interval sTTI, the sPDCCH is a physical downlink control channel in the sTTI; the UE uses the DCI for scheduling; wherein the DCI is used for scheduling the traffic channel including at least the following One: only the traffic channel in the sTTI; the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
可选地,在所述DCI用于调度业务信道时,包括以下方式至少之一:所述用于调度sTTI的UE的DCI的大小与用于调度1ms PDSCH的DCI大小相同,并通过RNTI进行区分,包括通过不同类型的RNTI的不同取值进行区分、或者通过相同类型的RNTI的不同取值进行区分;所述用于调度sTTI的UE的DCI与用于调度1ms PDSCH的DCI位于不同搜索空间;通过一级DCI或两级DCI的第一级DCI中的指示标识区分所述用于调度sTTI的UE的DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。Optionally, when the DCI is used to schedule a traffic channel, at least one of the following manners: the DCI of the UE for scheduling the sTTI is the same as the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI. And distinguishing by different values of different types of RNTIs, or by different values of the same type of RNTIs; the DCIs of the UEs for scheduling sTTIs and the DCIs for scheduling 1ms PDSCHs are located in different search spaces; The DCI of the UE for scheduling the sTTI is distinguished by the indication flag in the first-level DCI of the first-level DCI or the two-level DCI for scheduling the traffic channel in the 1 ms TTI or for scheduling the traffic channel in the sTTI.
根据本公开的另一实施例,提供了一种下行控制信息的传输装置,位 于基站,包括:承载模块,设置为通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载用于调度sTTI的UE的DCI,所述sPDCCH为sTTI中的物理下行控制信道;发送模块,设置为将承载的所述DCI发送至终端;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。According to another embodiment of the present disclosure, a transmission apparatus for downlink control information is provided. The base station includes: a bearer module, configured to carry, by using at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, a DCI of a UE for scheduling an sTTI, where the sPDCCH is a physical downlink in the sTTI And a sending module, configured to send the bearer DCI to the terminal, where the DCI is used for scheduling the traffic channel, including at least one of: a traffic channel only in the sTTI; a traffic channel in the sTTI or a 1 ms TTI Traffic channel in; traffic channel in sTTI and traffic channel in 1ms TTI.
根据本公开的另一实施例,还提供了另一种下行控制信息的传输装置,位于终端UE,包括:接收模块,设置为接收通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载的用于调度短发送时间间隔sTTI的UE的下行控制信息DCI,所述sPDCCH为sTTI中的物理下行控制信道;调度模块,设置为使用所述DCI进行调度;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。According to another embodiment of the present disclosure, another apparatus for transmitting downlink control information is provided, where the terminal UE includes: a receiving module, configured to receive a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, The downlink control information DCI of the UE for scheduling the short transmission time interval sTTI, the sPDCCH is a physical downlink control channel in the sTTI, and the scheduling module is configured to use the DCI for scheduling, where The traffic channel used for scheduling by the DCI includes at least one of: a traffic channel only in the sTTI; a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
根据本公开的再一实施例,提供了一种下行控制信息的传输系统,包括上述位于基站的下行控制信息的传输装置,以及上述位于终端的下行控制信息的传输装置。According to still another embodiment of the present disclosure, a transmission system for downlink control information, including the foregoing transmission device for downlink control information of a base station, and the foregoing transmission device for downlink control information of the terminal are provided.
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:通过legacy PDCCH、ePDCCH、sPDCCH中至少之一承载用于调度sTTI的UE的DCI,所述sPDCCH为sTTI中的物理下行控制信道;将承载的所述DCI发送至终端;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。According to still another embodiment of the present disclosure, a storage medium is also provided. The storage medium is configured to store program code for performing: transmitting, by at least one of legacy PDCCH, ePDCCH, sPDCCH, DCI of a UE for scheduling sTTI, the sPDCCH being a physical downlink control channel in an sTTI; The DCI is sent to the terminal; wherein the traffic channel used by the DCI for scheduling includes at least one of: a traffic channel only in the sTTI; a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; a traffic channel in the sTTI And the traffic channel in the 1ms TTI.
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:接收通过legacy PDCCH、ePDCCH、sPDCCH中至少之一承载的用于调度sTTI 的UE的DCI,所述sPDCCH为sTTI中的物理下行控制信道;所述UE使用所述DCI进行调度;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。Optionally, the storage medium is further configured to store program code for performing the following steps: receiving, by using at least one of legacy PDCCH, ePDCCH, and sPDCCH, for scheduling sTTI The DCI of the UE is the physical downlink control channel in the sTTI; the UE uses the DCI for scheduling; wherein the traffic channel used by the DCI for scheduling includes at least one of the following: a traffic channel only in the sTTI Traffic channel in sTTI or traffic channel in 1ms TTI; traffic channel in sTTI and traffic channel in 1ms TTI.
通过本公开中的实施例,将用于调度sTTI的UE的DCI承载在Legacy PDCCH、ePDCCH、和sPDCCH至少之一中,并发送给UE,解决了相关技术中低时延通信场景中缺少支持短TTI及其相关业务调度的下行控制信息的问题,给出了支持短TTI调度以及其相关的不同长度TTI业务调度的实现方案,保证时延通信需求。With the embodiment of the present disclosure, the DCI of the UE for scheduling the sTTI is carried in at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, and is sent to the UE, which solves the short support in the low-latency communication scenario in the related art. The problem of downlink control information for TTI and its related service scheduling is given. The implementation scheme of supporting short TTI scheduling and its related different length TTI service scheduling is given to ensure the delay communication requirement.
附图说明DRAWINGS
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:The drawings described herein are provided to provide a further understanding of the present disclosure, which is a part of the present disclosure, and the description of the present disclosure and the description thereof are not intended to limit the disclosure. In the drawing:
图1是根据本公开实施例的一种下行控制信息的传输方法的流程图;FIG. 1 is a flowchart of a method for transmitting downlink control information according to an embodiment of the present disclosure;
图2(a)是根据本公开实施例的sCCE/sREG的组成方式的示例图一;2(a) is a diagram 1 showing an example of the composition of sCCE/sREG according to an embodiment of the present disclosure;
图2(b)是根据本公开实施例的sCCE/sREG的组成方式的示例图二;2(b) is a diagram 2 showing an example of the composition of sCCE/sREG according to an embodiment of the present disclosure;
图2(c)是根据本公开实施例的sCCE/sREG的组成方式的示例图三;2(c) is an exemplary diagram 3 of a manner of composition of sCCE/sREG according to an embodiment of the present disclosure;
图3是根据本公开实施例的一种下行控制信息的传输装置的结构框图;FIG. 3 is a structural block diagram of a transmission apparatus for downlink control information according to an embodiment of the present disclosure; FIG.
图4是根据本公开实施例的另一种下行控制信息的传输方法的流程图;4 is a flowchart of another method for transmitting downlink control information according to an embodiment of the present disclosure;
图5是根据本公开实施例的另一种下行控制信息的传输装置的结构框图;FIG. 5 is a structural block diagram of another transmission apparatus for downlink control information according to an embodiment of the present disclosure; FIG.
图6是根据本公开实施例的下行控制信息的传输系统的结构框图;6 is a structural block diagram of a transmission system of downlink control information according to an embodiment of the present disclosure;
图7是根据本公开优选实施例的sPDCCH仅在sTTI中第一个OFDM符号中部分sPRB中占用资源的示意图;7 is a schematic diagram of an sPDCCH occupying resources only in a portion of an sPRB in a first OFDM symbol in an sTTI according to a preferred embodiment of the present disclosure;
图8是根据本公开优选实施例的sPDCCH所在PRB中的DMRS需要 与sPDSCH共用的示意图;FIG. 8 is a DMRS requirement in a PRB where an sPDCCH is located according to a preferred embodiment of the present disclosure. Schematic diagram shared with sPDSCH;
图9是根据本公开优选实施例的sPDSCH所在部分PRB无需与sPDCCH共用DMRS的示意图。9 is a schematic diagram of a portion of a PRB in which a sPDSCH is located, without sharing a DMRS with an sPDCCH, in accordance with a preferred embodiment of the present disclosure.
具体实施方式detailed description
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。The present disclosure will be described in detail below with reference to the drawings in conjunction with the embodiments. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。It is to be understood that the terms "first", "second", and the like in the specification and claims of the present disclosure are used to distinguish similar objects, and are not necessarily used to describe a particular order or order.
考虑到需要使用的调度sTTI业务的DCI,以及调度sTTI业务的DCI如何同时支持1ms TTI和sTTI调度,需要给出一种适用于低时延需求的下行控制信息的传输方法。Considering the DCI of the scheduled sTTI service to be used and how the DCI scheduling the sTTI service supports 1 ms TTI and sTTI scheduling simultaneously, it is necessary to provide a transmission method for downlink control information suitable for low latency requirements.
基于上述考虑,本公开实施例提出了一种下行控制信息的传输方法,通过该方法,能够解决包含较少OFDM符号的短TTI中下行控制信息设计问题,支持短TTI调度以及不同长度TTI业务调度问题,保证时延通信需求。Based on the above considerations, the embodiments of the present disclosure provide a method for transmitting downlink control information, which can solve the problem of designing downlink control information in short TTIs with fewer OFDM symbols, and support short TTI scheduling and different length TTI service scheduling. Problem, guarantee delay communication needs.
在本实施例中,提供了一种下行控制信息的传输方法,图1是根据本公开实施例的一种下行控制信息的传输方法的流程图,如图1所示,该方法包括如下步骤:In this embodiment, a method for transmitting downlink control information is provided. FIG. 1 is a flowchart of a method for transmitting downlink control information according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes the following steps:
步骤S102,通过传统物理下行控制信道(Legacy PDCCH)、增强物理下行控制信道(ePDCCH)和sPDCCH(Short PDCCH)中至少之一承载用于调度短发送时间间隔(sTTI)的终端(UE)的下行控制信息(DCI),所述sPDCCH为sTTI中的物理下行控制信道;Step S102: Carrying, by using at least one of a legacy physical downlink control channel (Legacy PDCCH), an enhanced physical downlink control channel (ePDCCH), and an sPDCCH (Short PDCCH), a downlink (UE) for scheduling a short transmission time interval (sTTI) Control information (DCI), the sPDCCH is a physical downlink control channel in the sTTI;
步骤S104,将承载的所述DCI发送至终端。Step S104, the bearer of the DCI is sent to the terminal.
其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
仅sTTI中的业务信道; Only the traffic channel in the sTTI;
sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
本实施例通过上述步骤,将用于调度sTTI的UE的DCI承载在Legacy PDCCH、ePDCCH、sPDCCH至少之一中,并发送给UE,解决了相关技术中低时延通信场景中缺少支持短TTI及其相关业务调度的下行控制信息的问题,给出了支持短TTI调度以及其相关的不同长度TTI业务调度的实现方案,保证时延通信需求。本文中的Legacy PDCCH、ePDCCH主要描述的是LTE系统中的Legacy PDCCH、ePDCCH。In this embodiment, the DCI of the UE for scheduling the sTTI is carried in at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, and is sent to the UE, which solves the problem that the short TTI is supported in the low-latency communication scenario in the related art. For the problem of downlink control information related to service scheduling, an implementation scheme supporting short TTI scheduling and its associated different length TTI service scheduling is given to ensure delay communication requirements. Legacy PDCCH and ePDCCH in this paper mainly describe a legacy PDCCH and an ePDCCH in an LTE system.
作为一种优选实施方式,在所述DCI用于调度业务信道时,可以包括以下方式至少之一:As a preferred implementation manner, when the DCI is used to schedule a traffic channel, at least one of the following manners may be included:
A,所述用于调度sTTI的UE的DCI的大小(size)与用于调度1ms PDSCH的DCI的大小(size)相同,并通过RNTI进行区分,包括通过不同类型的RNTI的不同取值进行区分、或者通过相同类型的RNTI的不同取值进行区分。例如,可以通过一级DCI或两级DCI的第一级DCI的不同扰码RNTI区分所述DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。优选地,可以用于仅调度sTTI中的业务信道;或者调度sTTI中的业务信道或1ms TTI中的业务信道;或者调度sTTI中的业务信道和1ms TTI中的业务信道。A. The size of the DCI of the UE for scheduling the sTTI is the same as the size of the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI, including distinguishing by different values of different types of RNTIs. Or distinguish by different values of the same type of RNTI. For example, the different scrambling code RNTI of the first-level DCI of the first-level DCI or the two-level DCI may be used to distinguish whether the DCI is used for scheduling a traffic channel in a 1 ms TTI or for scheduling a traffic channel in an sTTI. Preferably, it may be used to schedule only the traffic channel in the sTTI; or to schedule a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; or to schedule a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
B,所述用于调度sTTI的UE的DCI与用于调度1ms PDSCH的DCI位于不同搜索空间。可以通过限制调度不同业务信道的DCI所处的搜索空间(Search Space,简称为SS)进行区分,例如分别位于CSS或USS,分别位于Legacy搜索空间和新定义的搜索空间。优选地,可以用于仅调度sTTI中的业务信道;调度sTTI中的业务信道或1ms TTI中的业务信道;调度sTTI中的业务信道和1ms TTI中的业务信道。B. The DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces. It can be distinguished by restricting the search space (Search Space, referred to as SS) in which the DCIs of different service channels are scheduled, for example, respectively located in CSS or USS, respectively in the Legacy search space and the newly defined search space. Preferably, it can be used to schedule only the traffic channel in the sTTI; schedule the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; schedule the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
C,通过一级DCI或两级DCI的第一级DCI中的指示标识区分所述用于调度sTTI的UE的DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。该方法优选可以用于调度sTTI中业务信道或1ms  TTI中业务信道时的情况。C. Differentiate the DCI of the UE for scheduling the sTTI by using the indication identifier in the first-level DCI or the first-level DCI of the two-level DCI to schedule the traffic channel in the 1 ms TTI or to schedule the traffic channel in the sTTI. The method is preferably used to schedule a traffic channel in sTTI or 1 ms The situation when the traffic channel is in the TTI.
可选地,所述1ms TTI中的业务信道承载的消息可以包括以下至少之一:UE单播消息,或者小区广播消息,或者一组UE的公共消息,或者小区级或一组UE的系统变更消息通知信息。Optionally, the message carried by the traffic channel in the 1 ms TTI may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs. Message notification information.
作为一种优选实施方式,所述下行控制信息(DCI)可以为一级DCI或两级DCI,其中当DCI为两级DCI时指示的业务信道调度信息可以包括以下至少之一:两级DCI中第一级和第二级共同构成完整的调度信息;两级DCI中第二级包含完整调度信息。As a preferred implementation, the downlink control information (DCI) may be a first-level DCI or a two-level DCI, where the traffic channel scheduling information indicated when the DCI is two-level DCI may include at least one of the following: two-level DCI The first level and the second level together constitute complete scheduling information; the second level of the two-level DCI contains complete scheduling information.
对于上述两种方式,当两级DCI中第一级DCI和第二级DCI共同构成完整的调度信息时,终端解调不出slow DCI就会跳至下一个子帧继续检测slow DCI而不会检测本子帧中fast DCI。而两级DCI中第二级包含完整调度信息时,终端解调不出slow DCI仍然会继续检测本子帧中fast DCI。例如,两级DCI中第一级DCI和第二级DCI共同构成完整的调度信息时,第一级和第二级DCI都包含资源分配信息并且第二级资源分配是在第一级资源分配基础上进行指示的。当两级DCI中第二级DCI包含完整的调度信息时,第一级DCI和第二级DCI都包含资源分配信息并且第二级资源分配并不依赖于第一级资源分配。或者第一级DCI包含指示第二级DCI所需的检测信息以降低第二级DCI检测复杂度,但是即使检测不到第一级DCI,终端仍然可以按照高层信令RRC或SIB配置的参数检测第二级DCI。For the above two modes, when the first-stage DCI and the second-level DCI in the two-stage DCI form a complete scheduling information, the terminal demodulates the slow DCI and skips to the next subframe to continue detecting the slow DCI without Detect the fast DCI in this sub-frame. When the second level of the two-stage DCI contains the complete scheduling information, the terminal demodulates the slow DCI and continues to detect the fast DCI in this subframe. For example, when the first-level DCI and the second-level DCI of the two-level DCI together form complete scheduling information, both the first-level and second-level DCIs contain resource allocation information and the second-level resource allocation is based on the first-level resource allocation. On the instructions. When the second-level DCI in the two-level DCI contains complete scheduling information, both the first-level DCI and the second-level DCI contain resource allocation information and the second-level resource allocation does not depend on the first-level resource allocation. Or the first-level DCI includes the detection information required to indicate the second-level DCI to reduce the second-level DCI detection complexity, but even if the first-level DCI is not detected, the terminal can still detect the parameters according to the high-level signaling RRC or SIB configuration. Second level DCI.
可选地,可以由基站(eNB)通过高层信令RRC或SIB通知使用上述两种方式其中之一或者预定义使用上述两种方式其中之一。Alternatively, one of the above two methods may be used by the base station (eNB) through the high layer signaling RRC or SIB notification or one of the above two methods may be predefined.
可选地,所述第一级DCI中可以包含以下信息至少之一:Optionally, at least one of the following information may be included in the first level DCI:
指示承载第二级DCI的sPDCCH检测时所需参数,所述第二级DCI包含调度sPDSCH和/或sPUSCH的第二级DCI,其中所述参数可以包含聚合等级、候选集数量、搜索空间频域位置、搜索空间时域位置、sPDCCH加扰参数、sPDCCH使用的DMRS加扰参数、sPDCCH传输模式、sPDCCH解调使用的DMRS端口至少之一; Determining a parameter required for sPDCCH detection of a second-level DCI, where the second-level DCI includes a second-level DCI that schedules sPDSCH and/or sPUSCH, where the parameter may include an aggregation level, a number of candidate sets, and a search space frequency domain. At least one of a location, a search space time domain location, an sPDCCH scrambling parameter, a DMRS scrambling parameter used by the sPDCCH, an sPDCCH transmission mode, and a DMRS port used for sPDCCH demodulation;
指示承载第二级DCI的sPDCCH和/或sPDSCH速率匹配时的DMRS端口或预留RE,其中预留RE优选可以为所有DMRS端口对应的RE,或者其中占用相同RE的端口对应的RE;Indicates a DMRS port or a reserved RE when the sPDCCH and/or the sPDSCH rate of the second-level DCI is matched, where the reserved RE is preferably an RE corresponding to all the DMRS ports, or an RE corresponding to the port occupying the same RE;
指示承载第二级DCI的sPDCCH和/或sPDSCH解调使用导频CRS和/或DMRS;Indicating that the sPDCCH and/or sPDSCH demodulation carrying the second-level DCI uses pilot CRS and/or DMRS;
指示sPDSCH的传输模式;Indicating a transmission mode of the sPDSCH;
指示承载第二级DCI的sPDCCH和/或sPDSCH基于CRS解调时是否使用DMRS;Determining whether to use the DMRS when the sPDCCH and/or the sPDSCH carrying the second-level DCI is demodulated based on the CRS;
指示承载第二级DCI的sPDCCH和/或sPDSCH基于DMRS解调时是否使用CRS;Determining whether to use CRS when sPDCCH and/or sPDSCH carrying the second-level DCI is demodulated based on DMRS;
指示承载第二级DCI的sPDCCH和/或sPDSCH解调时所使用的DMRS所在PRB位置;Indicate the PRB location of the DMRS used when demodulating the sPDCCH and/or sPDSCH carrying the second-level DCI;
指示下行链路(DL)sTTI带宽(band)频域位置和/或上行链路(UL)sTTI带宽(band)频域位置,其中所述频域位置优选可以为指示LTE系统带宽中的部分或全部PRB;Indicating a downlink (DL) sTTI band frequency domain location and/or an uplink (UL) sTTI band frequency domain location, wherein the frequency domain location may preferably be indicative of a portion of the LTE system bandwidth or All PRB;
指示DL sTTI的长度(length)和/或UL sTTI的长度(length);Indicates the length (length) of the DL sTTI and/or the length (length) of the UL sTTI;
指示DL sTTI绑定(bundling)传输个数和/或UL sTTI绑定(bundling)传输个数。Indicates the number of DL sTTI bundling transmissions and/or the number of UL sTTI bundling transmissions.
可选地,所述第一级DCI指示承载第二级DCI的sPDCCH检测时所需参数时,在RRC或SIB配置的参数基础上,指示该RRC或SIB配置的参数的子集。所述子集可以包括参数种类的子集,和/或参数取值范围的子集。Optionally, when the first-level DCI indicates a parameter required for detecting sPDCCH of the second-level DCI, indicating a subset of parameters of the RRC or SIB configuration based on parameters of the RRC or SIB configuration. The subset may include a subset of the parameter categories, and/or a subset of the parameter value ranges.
可选地,所述第二级DCI中可以包含以下信息至少之一:Optionally, the second level DCI may include at least one of the following information:
在所述两级DCI共同构成完整调度信息时,第二级DCI中包含资源分配且在第一级DCI中资源分配基础上指示;When the two levels of DCI together form complete scheduling information, the second level DCI includes resource allocation and is indicated on the basis of resource allocation in the first level DCI;
在所述两级DCI中的第二级包含完整的调度信息时,第二级DCI中 包含资源分配;When the second level of the two-level DCI contains complete scheduling information, in the second level DCI Contains resource allocations;
指示sPDSCH和/或sPUSCH资源分配信息;Indicating sPDSCH and/or sPUSCH resource allocation information;
指示sPDSCH速率匹配时的DMRS端口或预留RE,预留RE优选可以为所有DMRS端口对应的RE,或者其中占用相同RE的端口对应的RE;Indicates the DMRS port or the reserved RE when the sPDSCH rate is matched, and the reserved RE is preferably the RE corresponding to all the DMRS ports, or the RE corresponding to the port occupying the same RE;
指示sPDSCH解调时所使用的DMRS所在PRB位置;Indicates the PRB location of the DMRS used for sPDSCH demodulation;
指示DL sTTI的长度(length)和/或UL sTTI的长度(length);Indicates the length (length) of the DL sTTI and/or the length (length) of the UL sTTI;
指示DL sTTI绑定(bundling)传输个数和/或UL sTTI绑定(bundling)传输个数。Indicates the number of DL sTTI bundling transmissions and/or the number of UL sTTI bundling transmissions.
可选地,所述两级DCI中第一级DCI的更新周期可以由高层信令SIB或RRC配置。该方式可以应用于fast DCI具有完整调度信息的情况中,当某次slow DCI解调错误,但仍在更新周期范围内,使用之前的slow DCI指示,以降低fast DCI解调复杂度。Optionally, an update period of the first-level DCI in the two-level DCI may be configured by a high-level signaling SIB or RRC. This method can be applied to the case where the fast DCI has complete scheduling information. When a slow DCI demodulation error occurs, but is still within the update period range, the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
作为一种优选实施方式,在所述sPDCCH基于DMRS解调的情况下,As a preferred implementation manner, in a case where the sPDCCH is based on DMRS demodulation,
当该DMRS与本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH of the UE, the sPDSCH port usage principle includes at least one of the following:
在RI=1时使用与sPDCCH相同端口的DMRS;Use DMRS with the same port as sPDCCH when RI=1;
在RI=2时使用与sPDCCH的DMRS所在RE位置相同的端口;When RI=2, the same port as the RE location of the DMRS of the sPDCCH is used;
在RI>2时优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;When RI>2, the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
结合sPDCCH传输方式通过DCI指示sPDSCH端口,例如,可以包括:DCI中指示sPDSCH端口使用时,sPDSCH单层传输时可以不指示,或者指示与sPDCCH使用DMRS所在RE相同的端口,sPDCCH使用port x1,sPDSCH也使用port x1,或者使用与port x1相同RE位置的port x2。sPDSCH二层传输时可以不指示,根据sPDCCH传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使 用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选),或者指示与sPDCCH传输方式对应的端口,当sPDCCH传输方式使用port x1时,指示sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选)。当sPDSCH使用大于二层传输时,可以不指示,根据传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选),或者指示sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选);The sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode. For example, the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1. The sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode. When the sPDCCH transmission mode uses the port x1, the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used. When sPDSCH makes Use port x1, x2 at the same RE position as port x1, or port y1, y2 at the same RE position as port y1, or use port x1, y1 (preferred), or indicate the port corresponding to the sPDCCH transmission mode, when sPDCCH transmission mode When port x1 is used, it indicates that sPDSCH uses ports x1 and x2 of the same RE position as port x1. When port x1 and y1 are used for sPDCCH transmission mode, sPDSCH uses port x1 and x2 of the same RE position as port x1, or is the same as port y1. Port y1, y2 of the RE position, or port x1, y1 (preferred). When the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode. When the sPDCCH transmission mode uses port x1, the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted. When port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or uses port x1, y1, x2. Y2, ... (preferably), or port x1, x2, x3, ... indicating that the sPDSCH uses the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1, y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1 , x3..., or port y1, y2, y3... at the same RE position as port y1, or using ports x1, y1, x2, y2, ... (preferred);
当该DMRS与非本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH that is not the UE, the sPDSCH port usage principle includes at least one of the following:
优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口。The port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
可选地,所述DMRS资源位置可以根据sPDCCH与sPDSCH是否共用DMRS采用不同的占用方式。例如,如果sPDCCH与sPDSCH共用DMRS,则可能的DMRS资源占用方式如下所述,位于部分PRB,包含仅位于sPDCCH所在PRB中、至少位于sPDCCH所在PRB中、位于在sPDCCH或sPDSCH占用的PRB资源中等间隔选取的PRB中等;如果sPDCCH与sPDSCH不共用DMRS,则DMRS资源占用方式可能为每个PRB均有、位于在sPDSCH占用的PRB资源中等间隔选取的PRB中等。Optionally, the DMRS resource location may adopt different occupation manners according to whether the sPDCCH and the sPDSCH share the DMRS. For example, if the sPDCCH and the sPDSCH share the DMRS, the possible DMRS resource occupation manner is as follows. The partial PRB is located in the PRB where the sPDCCH is located, at least in the PRB where the sPDCCH is located, and is located in the PRB resource occupied by the sPDCCH or the sPDSCH. The selected PRB is medium; if the sPDCCH and the sPDSCH do not share the DMRS, the DMRS resource occupation mode may be equal to the PRB selected by each PRB and located at the middle interval of the PRB resources occupied by the sPDSCH.
可选地,所述sPDCCH与sPDSCH共用的DMRS频域位置位于部分 PRB时,包括以下占用方式至少之一:Optionally, the DMRS frequency domain location shared by the sPDCCH and the sPDSCH is located in a part. When PRB, include at least one of the following occupation methods:
仅位于sPDCCH所在PRB中;Only in the PRB where the sPDCCH is located;
至少位于sPDCCH所在PRB中;At least in the PRB where the sPDCCH is located;
位于在sPDCCH或sPDSCH占用的PRB资源中等间隔选取的PRB中。例如:在max{sPDCCH占用PRB资源,sPDSCH占用PRB资源}中等间隔占用。The PRB is located in the PRB of the intermediate interval of the PDCCH occupied by the sPDCCH or the sPDSCH. For example, the max{sPDCCH occupies the PRB resource, and the sPDSCH occupies the PRB resource}.
可选地,所述sPDCCH的加扰初始化方法为,子帧中或无线帧中每个sTTI独立加扰,其中子帧中首个sTTI中或Legacy PDCCH区域中的sPDCCH加扰初始化满足
Figure PCTCN2017084279-appb-000003
cinit为加扰初始化值,ns为时隙号,
Figure PCTCN2017084279-appb-000004
为小区(Cell)的标识(ID)号。
Optionally, the scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies
Figure PCTCN2017084279-appb-000003
c init is the scrambling initialization value, n s is the slot number,
Figure PCTCN2017084279-appb-000004
It is the identification (ID) number of the cell.
作为一种优选实施方式,所述DCI用于调度1ms TTI中的业务信道时,支持处理时延降低的1ms TTI业务信道的调度或处理时延不降低的1ms TTI业务信道的调度。包括以下方式至少之一:As a preferred implementation manner, when the DCI is used to schedule a traffic channel in a 1 ms TTI, the scheduling of the 1 ms TTI traffic channel with reduced processing delay or the scheduling of the 1 ms TTI traffic channel without processing delay is supported. Including at least one of the following:
方式一:1ms TTI时延降低与1ms TTI时延不降低使用统一DCI。通过DCI中(例如资源分配RA和调制编码方式MCS)隐含确定为TBS的值小于预设TBS门限值时,此时TBS较小,可以执行1ms TTI时延降低,否则支持1ms TTI时延不降低。Manner 1: 1ms TTI delay is reduced and 1ms TTI delay is not reduced. Use unified DCI. When the value of the TBS is less than the preset TBS threshold in the DCI (for example, the resource allocation RA and the modulation and coding mode MCS), the TBS is small, and the 1 ms TTI delay can be reduced. Otherwise, the 1 ms TTI delay is supported. Not lowering.
方式二:1ms TTI时延降低与1ms TTI时延不降低使用统一DCI。通过DCI中独立比特域显示指示是否执行1ms TTI时延降低。Manner 2: 1 ms TTI delay is reduced and 1 ms TTI delay is not reduced. Use unified DCI. The display of the independent bit field in the DCI indicates whether to perform the 1 ms TTI delay reduction.
方式三:1ms TTI时延降低与1ms TTI时延不降低使用各自的DCI格式(format)。Mode 3: 1 ms TTI delay is reduced with 1 ms TTI delay is not reduced using the respective DCI format.
可选地,在通过所述DCI调度1ms TTI业务信道时,还包括:通过高层信令SIB或RRC配置是否执行1ms TTI时延降低。Optionally, when scheduling the 1 ms TTI service channel by using the DCI, the method further includes: performing, by using the high layer signaling SIB or the RRC, whether to perform the 1 ms TTI delay reduction.
可选地,所述1ms TTI处理时延降低时,0<k<4且为整数,k取值方式包括以下至少之一:Optionally, when the 1 ms TTI processing delay is decreased, 0<k<4 and an integer, and the k value manner includes at least one of the following:
方式一:固定取值,包括eNB和UE侧分别使用相同的k值,或eNB 和UE侧分别使用不同的k值;下行和上行分别使用相同的k值,或下行和上行分别使用不同的k值。Manner 1: Fixed value, including eNB and UE side respectively using the same k value, or eNB Different values are used for the UE side and the UE side; the same k value is used for the downlink and uplink, respectively, or different k values are used for the downlink and uplink respectively.
方式二:非固定取值,通过DCI或SIB或RRC通知k值,包括对eNB和UE侧通知相同的k值,或对eNB和UE侧通知不同的k值;对下行和上行通知相同的k值,或对下行和上行通知不同的k值。Manner 2: non-fixed value, the k value is notified by DCI or SIB or RRC, including notifying the eNB and the UE side of the same k value, or notifying the eNB and the UE side of different k values; the same k for the downlink and uplink notifications Value, or different k values for downstream and upstream notifications.
其中,k表示上行数据调度时延,或表示下行数据反馈时延。目前LTE系统中对于FDD系统k=4,对于TDD系统,k≥4。这里所述的处理时延降低时(后续简称时延降低),时延小于目前LTE系统,此时k取值为小于4的正整数。Where k is the uplink data scheduling delay or the downlink data feedback delay. Currently, in the LTE system, k=4 for the FDD system and k≥4 for the TDD system. When the processing delay described here is reduced (hereinafter referred to as delay reduction), the delay is smaller than the current LTE system, and k is a positive integer less than 4.
具体的,对于如何确定执行1ms TTI时延降低,主要分为动态和半静态方式:Specifically, how to determine the execution delay of 1 ms TTI delay is mainly divided into dynamic and semi-static modes:
动态方式:Dynamic mode:
方式一:DCI中隐含确定(通过资源分配RA+调制编码方案MCS)小TBS时,都执行1ms TTI时延降低。此时DCI无影响。当然此方式还需要确定受限的TBS门限值大小。TBS门限值:固定或SIB/RRC可配置。从不同UE能力来看,倾向RRC配置TBS门限值。Manner 1: In the DCI, when the small TBS is implicitly determined (by the resource allocation RA+ modulation coding scheme MCS), the 1 ms TTI delay is reduced. At this time, DCI has no effect. Of course, this method also needs to determine the limited TBS threshold size. TBS threshold: fixed or SIB/RRC configurable. From the perspective of different UE capabilities, the RRC is configured to configure the TBS threshold.
方式二:DCI中显示指示是否执行1ms TTI时延降低。此时不需要TBS门限值,完全由DCI动态调度确定。此时DCI为引入新比特域的DCI。例如1ms TTI时延降低时DCI中可以添加PUCCH资源指示、新设计的RA。此时小TBS不一定都执行1ms TTI时延降低。Manner 2: The DCI indicates whether to perform the 1ms TTI delay reduction. The TBS threshold is not needed at this time and is completely determined by the DCI dynamic scheduling. At this time, the DCI is a DCI that introduces a new bit field. For example, when the 1 ms TTI delay is reduced, the PUCCH resource indication and the newly designed RA may be added to the DCI. At this time, the small TBS does not necessarily perform the 1 ms TTI delay.
对于方式二,当DCI仍为现有format时。子方法1:对format 0/4增加If used for latency reduction mode的执行条件。此时增加新比特域的DCI size不超过原legacy format 0/4的size,即需要对其他比特域(如RA)压缩,存在新设计。子方法2:直接在format 0/4增加比特域,其他情况不使用时reserved。相应的format 1A可能补padding。For mode two, when the DCI is still the existing format. Sub-method 1: Increase the execution condition of If used for latency reduction mode for format 0/4. At this time, adding the DCI size of the new bit field does not exceed the size of the original legacy format 0/4, that is, it needs to compress other bit fields (such as RA), and there is a new design. Sub-method 2: Add the bit field directly in format 0/4, otherwise reserved if not used. The corresponding format 1A may complement padding.
对于方式二,当DCI为新format。其他比特域是否新设计均可。For mode two, when DCI is the new format. Whether other bit fields are new or not.
另外,是否执行1ms TTI时延降低,包括:通过DCI或SIB/RRC中 1bit指示是否执行1ms TTI时延降低,或通过DCI或SIB/RRC中x bit指示k值集合之一,或通过SIB/RRC中x bit指示k值集合。In addition, whether the 1ms TTI delay is reduced, including: through DCI or SIB/RRC 1 bit indicates whether to perform a 1 ms TTI delay reduction, or indicates one of the k value sets by x bit in DCI or SIB/RRC, or indicates a k value set by x bit in SIB/RRC.
另外,上述两种方式均可支持1ms TTI时延降低时k取值唯一或多个。对于方式一,k值不唯一时可以通过RRC通知,对于方式二,k值不唯一时可以通过DCI或RRC通知。另外,1ms TTI时延降低时包括两种情况:eNB与UE相同k值,或eNB与UE不同k值。例如:eNB和UE均以相同k值如k=2执行上下行调度和上下行反馈定时,或者考虑到处理能力的不同,eNB和UE分别以不同的k值执行。还有,1ms TTI时延降低时k取值唯一,包括两种情况:eNB与UE相同k值,或eNB与UE不同k值。例:k值集合{1、2、3、4、(4,2)、(2,4)、(4,3)、(3,4)、(2,3)、(3,2)}。In addition, both of the above methods can support only one or more values of k when the 1 ms TTI delay is reduced. For mode 1, when the k value is not unique, the RRC notification can be used. For the second mode, the k value is not unique and can be notified by DCI or RRC. In addition, when the 1 ms TTI delay is reduced, there are two cases: the eNB has the same k value as the UE, or the eNB has a different k value from the UE. For example, the eNB and the UE perform uplink and downlink scheduling and uplink and downlink feedback timing with the same k value, such as k=2, or the eNB and the UE respectively perform with different k values in consideration of different processing capabilities. Also, the k value is unique when the 1 ms TTI delay is reduced, and includes two cases: the eNB has the same k value as the UE, or the eNB and the UE have different k values. Example: k-value set {1, 2, 3, 4, (4, 2), (2, 4), (4, 3), (3, 4), (2, 3), (3, 2)} .
半静态方式:Semi-static mode:
增加高层信令SIB/RRC配置是否执行1ms TTI时延降低。Increase whether the high-level signaling SIB/RRC configuration performs 1ms TTI delay reduction.
方式一:1ms TTI时延降低与1ms TTI时延不降低使用统一DCI。同动态方式一。此时TBS不能太大,半静态的仅分配小TBS。Manner 1: 1ms TTI delay is reduced and 1ms TTI delay is not reduced. Use unified DCI. Same as dynamic one. At this time, the TBS cannot be too large, and only a small TBS is allocated semi-static.
方式二:1ms TTI时延降低与1ms TTI时延不降低使用统一DCI。同动态方式二。完全由调度决定,并且半静态的执行其中一种。Manner 2: 1 ms TTI delay is reduced and 1 ms TTI delay is not reduced. Use unified DCI. Same as dynamic mode two. It is completely determined by the schedule, and one of them is semi-statically executed.
方式三:1ms TTI时延降低与1ms TTI时延不降低使用各自的DCI format。半静态的仅使用其中一种。Mode 3: 1 ms TTI delay is reduced with 1 ms TTI delay is not reduced using the respective DCI format. Use only one of them semi-static.
当没有该高层信令时默认新UE均可执行时延降低。区别在于:有高层信令配置时,在配置新UE不执行1ms TTI时延时,即使小TBS也不执行1ms TTI时延降低,只有在高层信令配置可以执行时,才进一步在小TBS时执行1ms TTI时延降低。而没有高层信令配置时,对于新UE,在小TBS时,肯定执行1ms TTI时延降低。When there is no such high layer signaling, the default new UE can perform delay reduction. The difference is that when there is a high-level signaling configuration, the delay is configured when the new UE is not configured to perform 1 ms TTI, even if the small TBS does not perform the 1 ms TTI delay, and only when the high-level signaling configuration can be executed, the further TBS is performed. The 1ms TTI delay is reduced. When there is no high-level signaling configuration, for a new UE, when the small TBS is performed, the 1 ms TTI delay is definitely reduced.
当所有TBS大小均可以支持时延降低时,仍然适用于上述方法,只不过无需区分是否为小TBS以及可能的TBS门限值。如果只有小TBS可以执行k=2,则eNB配置(半静态配置,但实际定时随TBS大小动态改变)决定终端在小TBS时是否执行1ms时延降低,额外的,TBS门限值 可选配置。如果无论TBS大小都可以执行k=2,则倾向eNB半静态配置终端在k=2和k=4之间改变,无需DCI动态指示k=2还是k=4。When all TBS sizes can support the delay reduction, the above method is still applicable, but it is not necessary to distinguish whether it is a small TBS and a possible TBS threshold. If only a small TBS can perform k=2, the eNB configuration (semi-static configuration, but the actual timing dynamically changes with the TBS size) determines whether the terminal performs a 1 ms delay reduction in the small TBS, and an additional TBS threshold. Optional. If k=2 can be performed regardless of the TBS size, the eNB semi-statically configured terminal changes between k=2 and k=4 without DCI dynamic indication k=2 or k=4.
作为一种优选实施方式,所述DCI用于调度1ms TTI时延降低或sTTI的上行业务信道时,指示上行HARQ进程号和或冗余版本(Redundancy Versions,简称为RV)包括以下方式至少之一:As a preferred implementation manner, when the DCI is used to schedule an uplink traffic channel with a 1 ms TTI delay or sTTI, indicating an uplink HARQ process number and or a redundancy version (RV) includes at least one of the following manners. :
方式一:使用1ms TTI时延不降低时DCI中的现有比特域进行重新解释后进行指示。Manner 1: When the 1 ms TTI delay is not reduced, the existing bit field in the DCI is re-interpreted and then indicated.
方式二:通过DCI中独立比特域指示。Manner 2: The independent bit field indication in the DCI.
方式三:通过不同的RNTI取值加扰CRC隐含指示。Manner 3: The CRC implicit indication is scrambled by different RNTI values.
具体的,当PUSCH或sPUSCH使用异步UL HARQ时,UL grant需要引入UL HARQ进程号(2~4bits)、RV(1~2bits)。Specifically, when the PUSCH or the sPUSCH uses the asynchronous UL HARQ, the UL grant needs to introduce a UL HARQ process number (2 to 4 bits) and an RV (1 to 2 bits).
可能的方法如下:The possible methods are as follows:
方法一:使用现有DCI格式(format)Method 1: Use the existing DCI format (format)
选择1:已有比特域重解释。例如:UL HARQ进程号2bit、RV 1bit通过DMRS CS/OCC比特域3bit实现且UE的DMRS CS/OCC固定或RRC配置。Option 1: Existing bit field reinterpretation. For example, the UL HARQ process number 2 bits and the RV 1 bit are implemented by the DMRS CS/OCC bit field 3 bits and the DMRS CS/OCC fixed or RRC configuration of the UE.
选择2:通过RNTI。例如:UL HARQ进程号、RV通过UE的多个不同C-RNTI确定。此时需要通过RRC分配给UE多个C-RNTI,并且明确不同C-RNTI取值与进程号、RV版本的对应关系。Option 2: Pass RNTI. For example, the UL HARQ process number and the RV are determined by a plurality of different C-RNTIs of the UE. In this case, multiple C-RNTIs are allocated to the UE through the RRC, and the correspondence between the values of the different C-RNTIs and the process number and the RV version is clarified.
方法二:DCI为引入新比特域的DCI。即UL HARQ进程号、RV作为独立比特域。Method 2: DCI is a DCI that introduces a new bit field. That is, the UL HARQ process number and RV are independent bit fields.
选择1:在现有format 0/4中新加。DCI仍为现有format。对format 0/4增加UL HARQ进程号、RV,即其余时延不降低的情况时reserved。额外的,format 1A可能需要补padding。Option 1: Add in existing format 0/4. DCI is still an existing format. Increase the UL HARQ process number and RV for format 0/4, that is, when the remaining delay does not decrease. In addition, format 1A may need to fill padding.
选择2:DCI为新format。在增加了UL HARQ进程号、RV后,其他比特域是否新设计均可。 Option 2: DCI is the new format. After adding the UL HARQ process number and RV, whether other bit fields are newly designed or not.
另外,对于不同大小的TTI(如TTI=2、7、14符号)时的进程号比特域大小可以使用不同size的比特域,或以不同TTI中最大的进程数对应的size为准。In addition, for different size TTIs (such as TTI=2, 7, 14 symbols), the process number bit field size may use different size bit fields, or the size corresponding to the largest number of processes in different TTIs.
作为一种优选实施方式,所述DCI为单级DCI或两级DCI中任何一级DCI时,指示未使用的sPDCCH资源方式包括以下方式至少之一:As a preferred implementation manner, when the DCI is a single-level DCI or any one-level DCI in a two-level DCI, indicating an unused sPDCCH resource manner includes at least one of the following manners:
方式S1:当sPDSCH频域范围中仅包括调度其的sPDCCH时或当搜索空间中仅有1个sPDCCH时,默认在该sPDSCH频域范围内除该sPDCCH以外的其他资源均可使用,或在DCI中通过1bit指示该sPDCCH所在搜索空间内剩余资源是否可以使用。Mode S1: When only the sPDCCH scheduling the sPDCCH in the sPDSCH frequency domain range or when there is only one sPDCCH in the search space, all resources except the sPDCCH may be used in the sPDSCH frequency domain by default, or in the DCI. The first bit indicates whether the remaining resources in the search space where the sPDCCH is located are usable.
方式S2:当搜索空间中有多个sPDCCH时,在候选集占满该搜索空间时指示未使用的候选集;在控制信道单元占满该搜索空间时指示未使用的控制信道单元;在资源单元组或资源块占满该搜索空间时指示未使用的资源单元组或资源块;在资源单元占满该搜索空间时指示未使用的资源单元;Mode S2: when there are multiple sPDCCHs in the search space, indicating that the candidate set is not used when the candidate set fills the search space; indicating the unused control channel unit when the control channel unit fills the search space; Indicates an unused resource unit group or resource block when the group or resource block fills the search space; indicates an unused resource unit when the resource unit fills the search space;
可选地,所述指示对应的指示范围包括以下方式至少之一:Optionally, the indication range corresponding to the indication includes at least one of the following manners:
(方式1)在sPDSCH频域范围中指示sPDCCH没有使用的资源。(Mode 1) A resource indicating that the sPDCCH is not used is indicated in the sPDSCH frequency domain range.
(方式2)在sTTI band频域范围中指示sPDCCH没有使用的资源。(Mode 2) Indicates resources that are not used by the sPDCCH in the sTTI band frequency domain range.
(方式3)在sPDCCH所在搜索空间(Search Space,简称为SS)中指示sPDCCH没有使用的资源。(Mode 3) A resource that is not used by the sPDCCH is indicated in a search space (referred to as SS) in which the sPDCCH is located.
(方式4)在所有SS或sTTI band频域范围中指示sPDCCH没有使用的资源。(Mode 4) Indicates resources that are not used by the sPDCCH in all SS or sTTI band frequency domain ranges.
具体的,考虑sPDCCH资源占用可能的两种方式(TDM、FDM),指示粒度考虑Specifically, considering two possible ways of sPDCCH resource occupation (TDM, FDM), indicating granularity considerations
当TDM方式且位于第一个OFDM符号中时,方式1:占用全部频域资源:(类似PDCCH region频域占用全带宽)。指示未使用的REG或RB (细颗粒度);指示未使用的CCE或候选集(粗颗粒度);(CRS位置UE是已知的)。方式2:占用部分频域资源:指示未使用的sREG或RB;指示未使用的CCE或候选集。方式2-1当所有UE仅有一个short TTI SS时,指示未使用RB或sCCE均可。方式2-2当所有UE有1个以上short TTI SS时,在sPDSCH仅可能使用自己的SS中未使用的资源时,指示自己的SS中未使用RB或sCCE,适用于DL业务自包含DL控制。在sPDSCH可能使用其它的SS中未使用的资源时,需要指示所有SS中未使用RB,还指示所有SS的频域范围。When in the TDM mode and in the first OFDM symbol, mode 1: occupy all frequency domain resources: (similar to the PDCCH region frequency domain occupies full bandwidth). Indicates unused REG or RB (fine graininess); indicates unused CCE or candidate set (coarse granularity); (CRS position UE is known). Mode 2: Partial frequency domain resources: Indicates unused sREG or RB; indicates unused CCE or candidate set. Mode 2-1 When all UEs have only one short TTI SS, it indicates that no RB or sCCE is used. Mode 2-2 When all UEs have more than one short TTI SS, when the sPDSCH is only possible to use unused resources in the SS, it indicates that the RB or sCCE is not used in the SS, and is applicable to the DL service self-contained DL control. . When the sPDSCH may use other resources not used in the SS, it is necessary to indicate that the RBs are not used in all the SSs, and also indicate the frequency domain range of all the SSs.
当FDM方式(两个OFDM符号均可占用)时,方式1以(2OFDM符号,1RB)最小粒度方式占用资源时:指示未使用的RB或CCE或候选集。方式2以(1OFDM符号,1RB)最小粒度方式或EREG占用资源时:指示未使用的sCCE或候选集,此时同TDM方式,同样存在所有UE具有1个还是多个short TTI SS的问题,当有多个short TTI SS时,当sPDSCH可能使用其它SS中未使用资源时,还指示所有SS的频域范围。When the FDM mode (both OFDM symbols can be occupied), mode 1 occupies resources in a (2 OFDM symbol, 1 RB) minimum granularity mode: indicates an unused RB or CCE or candidate set. Mode 2 is (1 OFDM symbol, 1 RB) minimum granularity mode or when EREG occupies resources: indicates an unused sCCE or a candidate set. In this case, as in the TDM mode, there is also a problem that all UEs have one or more short TTI SSs. When there are multiple short TTI SSs, when the sPDSCH may use unused resources in other SSs, it also indicates the frequency domain range of all SSs.
指示sPDCCH未使用资源的开销考虑:假设资源粒度为候选集>sCCE>RB/sREG>RE:The cost of indicating the unused resources of the sPDCCH is considered: the resource granularity is assumed to be the candidate set > sCCE > RB / sREG > RE:
对于上述方式S2指示开销考虑,DCI中不应该过大,预计大约2~4bit左右。在候选集占满该搜索空间时指示未使用的候选集,检测的所有候选集占满SS时:指示N个候选集中未使用的候选集序号。N的确定:选择1.仅有1个SS或在有多个SS时仅针对自己的SS(多UE共享SS):考虑总盲检次数在各个sTTI中均分,N值以候选集来看在2~4个,指示未使用的候选集开销较为节省2-4bit,之后可以换算出对应的sCCE或RB或sREG资源。选择2.sPDSCH自包含sPDCCH时(单UE独享SS):可以仅用1bit指示除了sPDCCH占用以外的资源可用还是不可用。选择3.有多个SS时:按照整个符号在sTTI band或所调度的sPDSCH范围对应的N值。开销大于选择1。在控制信道单元占满该搜索空间时指示未使用的控制信道单元,此时候选集未占满SS,指示N个sCCE中未使用的sCCE序号,与上述类似,开销会增大;在资源单元组或资源块占满该搜索空间 时指示未使用的资源单元组或资源块,此时CCE未占满SS,指示N个sREG或RB中未使用sREG或RB序号,开销会更大;在资源单元占满该搜索空间时指示未使用的资源单元,此时开销最大。For the above method S2, the overhead is considered, and the DCI should not be too large, and it is expected to be about 2 to 4 bits. When the candidate set fills the search space, the unused candidate set is indicated, and when all the detected candidate sets occupy the SS: the candidate set numbers that are not used in the N candidate sets are indicated. Determination of N: Select 1. Only 1 SS or only SS for its own when there are multiple SSs (multi-UE shared SS): Consider the total number of blind detections in each sTTI, and the N value is based on the candidate set. In the case of 2 to 4, the unused candidate set overhead is saved by 2-4 bits, and then the corresponding sCCE or RB or sREG resource can be converted. When the 2.sPDSCH self-contained sPDCCH is selected (single UE exclusive SS): only 1 bit can be used to indicate whether resources other than sPDCCH occupancy are available or not. Select 3. When there are multiple SSs: the N value corresponding to the entire symbol in the sTTI band or the scheduled sPDSCH range. The overhead is greater than option 1. When the control channel unit fills the search space, the unused control channel unit is indicated, and the candidate set does not occupy the SS, indicating the unused sCCE sequence number in the N sCCEs, similar to the above, the overhead is increased; Or a resource block fills the search space Indicates an unused resource unit group or a resource block. In this case, the CCE does not fill the SS, indicating that the sREG or RB sequence number is not used in the N sREGs or RBs, and the overhead is larger; when the resource unit fills the search space, the indication is not The resource unit used is the most expensive at this time.
对于上述方式S1无需信令指示的情况,可以通过资源分配来实现,对于sPDCCH没有使用的资源,对其他sPDSCH资源分配时使用即可,即,在分配sPDSCH使用的资源时可以直接将sPDCCH未使用资源分配给sPDSCH,即,无需额外的信令指示。此时为了避免出现同一个PRB不同符号属于不同sPDSCH。可以加一个限制,sPDCCH占用的RB,一定是sPDSCH占用的RB,DCI中的RA只用分配其他位置的RB。但如果考虑到sPDSCH是以sREG为颗粒度占用,则对sPDCCH两种限制方式,一种为sCCE/sREG是以RBG为单位组成的,另一种是sCCE/sREG仍以RB为单位组成但是分配SS时只能分配每个RBG对应4个RB中1个RB。For the case where the S1SCH does not need to be instructed, the sPDCCH may be used as the resource that is not used for the sPDCCH, and may be used when allocating the sPDSCH resource, that is, the sPDCCH is not used when the resource used by the sPDSCH is allocated. The resources are allocated to the sPDSCH, ie no additional signaling indication is required. In this case, different symbols belong to different sPDSCHs in order to avoid the same PRB. A limit may be added. The RB occupied by the sPDCCH must be the RB occupied by the sPDSCH, and the RA in the DCI only needs to allocate the RBs of other locations. However, if sPDSCH is occupied by sREG as granularity, there are two restrictions on sPDCCH, one is sCCE/sREG is composed of RBG, and the other is sCCE/sREG is still composed of RB but allocated Only one RB of the four RBs corresponding to each RBG can be allocated in the SS.
对于sCCE/sREG(即,sCCE和/或sREG)的组成方式,包括以下方式至少之一:For the composition of sCCE/sREG (ie, sCCE and/or sREG), at least one of the following methods is included:
方式1:1sREG(1OFDM,1PRB)=12RE,1sCCE=3REG。Mode 1:1 sREG (1 OFDM, 1 PRB) = 12 RE, 1 s CCE = 3 REG.
此时无CRS时1sCCE有36可用RE,当有CRS时,1CCE有24RE可用;如果再有DMRS存在,则相应可用RE会更少。At this time, there is 36 available REs in 1sCCE when there is no CRS. When there is CRS, 24RE is available in 1CCE; if there is another DMRS, the corresponding available RE will be less.
方式2:1sREG(1OFDM,1PRB)=12RE,组成sCCE的sREG数目不唯一。Mode 2: 1 sREG (1 OFDM, 1 PRB) = 12 RE, and the number of sREGs constituting the sCCE is not unique.
根据是否有CRS(即,根据sREG是否有CRS,或者sREG所在符号是否有CRS),组成sCCE的sREG数目不同,此时1sREG(1OFDM,1PRB)=12RE,参见下表5:According to whether there is CRS (that is, whether there is CRS according to sREG, or whether the symbol of sREG has CRS), the number of sREGs constituting sCCE is different. At this time, 1sREG(1OFDM, 1PRB)=12RE, see Table 5 below:
表5table 5
Figure PCTCN2017084279-appb-000005
Figure PCTCN2017084279-appb-000005
方式3:仍然使用REG、CCE定义。在使用DMRS解调时不适用。 Mode 3: Still use REG, CCE definition. Not applicable when using DMRS demodulation.
方式4:sREG为X个PRB中扣除掉CRS和或DMRS后顺序编号确定。之后按照ECCE方式组成sCCE。Mode 4: sREG is the sequence number of the X PRBs after subtracting the CRS and or DMRS. Then, sCCE is formed according to the ECCE method.
方式5:跟业务信道统一,sCCE/sREG基于以RBG或PRG为单位组成。例如sCCE是由连续4RB即1个REG组成,此时sCCE包含4个sREG,1个sREG由1个RB组成。Mode 5: Unified with the traffic channel, sCCE/sREG is based on RBG or PRG. For example, the sCCE is composed of 4 REBs, that is, 1 REG. In this case, the sCCE includes 4 sREGs, and 1 sREG consists of 1 RB.
例1:TDM方式1,如图2(a)所示,sPDCCH区域为全部的第1个OFDM符号,UE1的sPDCCH占用的资源为PRB1、3、5,另外的sPDCCH占用了PRB4、6、8,UE1的sPDSCH占用资源为PRB1-8。此时按照方式1需要指示PRB2、7未被sPDCCH使用,按照方式2需要指示PRB2、7…未被sPDCCH使用。Example 1: TDM mode 1, as shown in FIG. 2(a), the sPDCCH region is all the first OFDM symbols, the resources occupied by the sPDCCH of the UE1 are PRB1, 3, and 5, and the other sPDCCHs occupy the PRBs 4, 6, and 8. The sPDSCH occupied resource of UE1 is PRB1-8. At this time, according to the mode 1, it is required to indicate that the PRBs 2 and 7 are not used by the sPDCCH, and according to the mode 2, it is necessary to indicate that the PRBs 2, 7, ... are not used by the sPDCCH
例2:TDM方式2,如图2(b)所示,此时只有一个short TTI SS为PRB1-8,UE1的sPDSCH占用PRB1-10,UE1的sPDCCH占用PRB1、3、5,此时仅需要按照方式1或2指示PRB2、7未被sPDCCH使用。Example 2: In TDM mode 2, as shown in Figure 2(b), only one short TTI SS is PRB1-8, the sPDSCH of UE1 occupies PRB1-10, and the sPDCCH of UE1 occupies PRB1, 3, and 5. The PRB 2, 7 is not used by the sPDCCH according to the mode 1 or 2.
例3:TDM方式2,如图2(b)所示,此时只有2个short TTI SS,第一个SS为PRB1-6,第二SS为PRB3-8,UE1的sPDSCH占用PRB1-10,UE1的sPDCCH位于第一个SS且占用PRB1、3、5,此时仅需要按照方式1或2指示PRB2、7未被sPDCCH使用,并且还需要通知第2个SS的频域范围给该UE1。Example 3: TDM mode 2, as shown in Figure 2(b), there are only 2 short TTI SSs, the first SS is PRB1-6, the second SS is PRB3-8, and the sPDSCH of UE1 occupies PRB1-10. The sPDCCH of UE1 is located in the first SS and occupies PRB1, 3, and 5. In this case, only PRB2 and 7 are not used by sPDCCH according to mode 1 or 2, and the frequency domain range of the second SS needs to be notified to the UE1.
例4:FDM方式,如图2(c)所示,此时只有一个short TTI SS为PRB1-4,UE1的sPDCCH占用其中CCE1,另一个sPDCCH占用CCE2,还剩余1个CCE3未使用,此时UE1被调度的sPDSCH占用PRB1-10,此时按照方式1或2指示该SS中未使用CCE3。Example 4: In the FDM mode, as shown in Figure 2(c), only one short TTI SS is PRB1-4, the sPDCCH of UE1 occupies CCE1, the other sPDCCH occupies CCE2, and the remaining CCE3 is unused. The scheduled sPDSCH of UE1 occupies PRB1-10. At this time, according to mode 1 or 2, CCE3 is not used in the SS.
作为一种优选实施方式,所述DCI调度sTTI中业务信道时,在sTTI长度未知时,检测DCI的方式包括以下至少之一:As a preferred implementation manner, when the DCI schedules a traffic channel in the sTTI, when the sTTI length is unknown, the manner of detecting the DCI includes at least one of the following:
方式1:分别按照不同sTTI长度分别尝试盲检;包括:不同sTTI长度对应的不同的sPDCCH检测位置不同;不同sTTI长度对应的sPDCCH 检测位置相同但依据不同sTTI长度中各自的导频图样以不同速率匹配方式分别尝试解调。Mode 1: respectively, try blind detection according to different sTTI lengths, including: different sPDCCH detection positions corresponding to different sTTI lengths; sPDCCH corresponding to different sTTI lengths The detection positions are the same but the demodulation is attempted separately according to the respective pilot patterns of different sTTI lengths in different rate matching manners.
方式2:无需区分不同sTTI长度尝试盲检。包括:不同sTTI长度对应的sPDCCH检测位置相同且依据在sPDCCH区域中同样位置的导频以同样的速率匹配方式尝试解调。Mode 2: Try blind detection without distinguishing between different sTTI lengths. The method includes: the sPDCCH detection positions corresponding to different sTTI lengths are the same, and the pilots in the same position according to the same position in the sPDCCH region try to demodulate in the same rate matching manner.
具体的sPDCCH盲检测是否需要以不同sTTI长度分别盲检测,主要是DMRS-based时解调的问题,CRS-based是解调不存在该问题。Whether the specific sPDCCH blind detection needs to be blindly detected with different sTTI lengths is mainly a DMRS-based demodulation problem, and CRS-based demodulation does not exist.
在可以获知sTTI length时,如slow DCI通知本子帧的sTTI length,则sPDCCH盲检测时只要按照特定sTTI中DMRS——在可以获知sTTI length时,盲检测sPDCCH没有问题。When the sTTI length is known, if the slow DCI informs the sTTI length of the subframe, the sPDCCH blind detection only needs to follow the DMRS in the specific sTTI. When the sTTI length is known, the blind detection of the sPDCCH has no problem.
在无法获知sTTI length时,即盲检sPDCCH时需要考虑不同sTTI长度,此时不同sTTI长度内容DMRS RE不同,需要按照不同sTTI长度分别盲检sPDCCH。(DL sTTI仅支持2或7符号,问题主要集中在第二时隙的开始,假设sPDCCH位于sTTI中第一个OFDM符号):When the sTTI length is not known, that is, the sPDCCH is sPDCCH, the s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s (The DL sTTI only supports 2 or 7 symbols, the problem is mainly concentrated at the beginning of the second slot, assuming that the sPDCCH is located in the first OFDM symbol in the sTTI):
方式1:分别盲检Method 1: blind detection
sTTI=2符号时DL sTTI#3中检测OFDM符号#6,按照sTTI=2符号的DMRS RE解速率匹配;sTTI=7符号时检测OFDM符号#7,按照DMRS位于符号#9、10时解调,此时假设符号#7中没有DMRS。When sTTI=2 symbols, OFDM symbol #6 is detected in DL sTTI#3, and DMRS RE is de-rate matched according to sTTI=2 symbol; OFDM symbol #7 is detected when sTTI=7 symbol, demodulated according to DMRS located at symbols #9 and 10. At this time, it is assumed that there is no DMRS in symbol #7.
此时DMRS设计假设为:sTTI=7时,DMRS位于符号2、3和符号9、10;sTTI=2时,DMRS同时位于两个符号上。DMRS在频域上默认一个端口占用3个RE。At this time, the DMRS design assumes that when sTTI=7, the DMRS is located at symbols 2, 3 and symbols 9, 10; when sTTI=2, the DMRS is located at both symbols. The DMRS defaults to one RE in the frequency domain and occupies 3 REs.
方式2:统一盲检Method 2: Unified blind inspection
sTTI=2符号和sTTI=7符号均在OFDM符号#7盲检sPDCCH,以相同方式解速率匹配。DMRS对于sTTI=2符号和sTTI=7符号时在OFDM符号#7中DMRS RE位置相同。Both the sTTI=2 symbol and the sTTI=7 symbol blindly check the sPDCCH in OFDM symbol #7, and rate-matching is performed in the same manner. The DMRS has the same DMRS RE position in OFDM symbol #7 for sTTI=2 symbols and sTTI=7 symbols.
此时DMRS设计假设为:sTTI=7时,DMRS至少位于符号7;sTTI=2 时,DMRS同时位于两个符号上。DMRS在频域上默认一个端口占用3个RE。At this time, the DMRS design assumption is: when sTTI=7, the DMRS is at least at symbol 7; sTTI=2 At the same time, the DMRS is located on both symbols at the same time. The DMRS defaults to one RE in the frequency domain and occupies 3 REs.
备注:其他sTTI=2时按照在sTTI中第一个OFDM符号盲检(legacy PDCCH区域除外)。sTTI=7时在第一个时隙中在legacy PDCCH中盲检测。Remark: The other sTTI=2 is blinded according to the first OFDM symbol in the sTTI (except for the legacy PDCCH region). When sTTI=7, it is blindly detected in the legacy PDCCH in the first slot.
作为一种优选实施方式,所述DCI支持调度不同TTI长度和支持是否时延降低的业务信道时,所述DCI使用方式至少包括以下至少之一:As a preferred implementation manner, when the DCI supports scheduling a different TTI length and supporting a traffic channel with reduced delay, the DCI usage mode includes at least one of the following:
方式1:所述TTI=TTI=2个OFDM符号、TTI=1个时隙(例如7个OFDM符号)、1ms TTI(例如14个OFDM符号)时延降低和1ms TTI时延不降低均使用同一种DCI格式,即还包括在1ms TTI时区分是否时延降低。Mode 1: The TTI=TTI=2 OFDM symbols, TTI=1 slots (for example, 7 OFDM symbols), 1 ms TTI (for example, 14 OFDM symbols) delay reduction, and 1 ms TTI delay are not reduced. The DCI format, that is, also includes whether the delay is reduced at 1 ms TTI.
方式2:1ms TTI时延降低和1ms TTI时延不降低使用同一种DCI格式,TTI=2个OFDM符号和TTI=1个时隙(例如7个OFDM符号)使用另一种DCI格式或两级DCI,上述两种DCI格式互不相同。Mode 2: 1 ms TTI delay reduction and 1 ms TTI delay does not decrease using the same DCI format, TTI = 2 OFDM symbols and TTI = 1 slot (eg 7 OFDM symbols) using another DCI format or two levels DCI, the above two DCI formats are different from each other.
方式3:1ms TTI时延不降低使用一种DCI格式,TTI=2个OFDM符号、TTI=1个时隙(例如7个OFDM符号)、以及1msTTI(例如14个OFDM符号)时延降低使用另一种DCI格式或两级DCI,上述两种DCI格式互不相同。Mode 3: 1 ms TTI delay does not decrease using a DCI format, TTI = 2 OFDM symbols, TTI = 1 slot (eg, 7 OFDM symbols), and 1 ms TTI (eg, 14 OFDM symbols) delay reduction uses another A DCI format or two-level DCI, the above two DCI formats are different from each other.
方式4:1ms TTI时延降低、1ms TTI时延不降低和TTI=1个时隙(例如7个OFDM符号)使用同一种相同DCI格式,TTI=2个OFDM符号使用另一种DCI格式或两级DCI,上述两种DCI格式互不相同。Mode 4: 1 ms TTI delay is reduced, 1 ms TTI delay is not reduced, and TTI = 1 slot (for example, 7 OFDM symbols) uses the same DCI format, TTI = 2 OFDM symbols use another DCI format or two Level DCI, the above two DCI formats are different from each other.
方式5:1ms TTI时延不降低使用一种DCI格式,1ms TTI时延降低使用另一种DCI格式,TTI=2个OFDM符号和TTI=1个时隙(例如7个OFDM符号)使用再一种DCI格式或两级DCI,上述三种DCI格式互不相同。Mode 5: 1 ms TTI delay does not decrease using one DCI format, 1 ms TTI delay is reduced using another DCI format, TTI = 2 OFDM symbols and TTI = 1 slot (for example, 7 OFDM symbols) The DCI format or the two-level DCI, the above three DCI formats are different from each other.
方式6:1ms TTI时延不降低使用一种DCI格式,1ms TTI时延降低和TTI=1个时隙(例如7个OFDM符号)使用另一种DCI格式,TTI=2个OFDM符号使用再一种DCI格式或两级DCI,上述三种DCI格式互不 相同。Mode 6: 1 ms TTI delay does not decrease using one DCI format, 1 ms TTI delay reduction and TTI = 1 slot (for example, 7 OFDM symbols) use another DCI format, TTI = 2 OFDM symbols use one more Kind of DCI format or two-level DCI, the above three DCI formats are not mutually the same.
具体的,方式1相当于是一种统一设计,即此时支持时延降低的UE均使用一种DCI。Alt.1是均基于现有的format 0/1A,增加比特域,使用RRC配置TTI length。Alt.2是均基于新设计的DCI format,使用TTI length指示,single-level DCI或slow DCI共用。优点:统一的DCI设计。缺点:alt.1不支持动态调度PDSCH和sPDSCH。Alt.2对于single-level DCI来说除子帧中首个sTTI有TTI length指示的必要,其余sTTI中指示是无用的。如果new DCI中包含指示未使用的sPDCCH资源,则该DCI用PDCCH信道承载不合适。因此对于方式1,较适用于two-level DCI,slow DCI支持不同长度TTI,由PDCCH承载。此时sPDCCH承载fast DCI。对于TTI=14时,slow DCI包含完整调度信息。Specifically, the mode 1 is equivalent to a unified design, that is, the UE supporting the reduced delay at this time uses a DCI. Alt.1 is based on the existing format 0/1A, adds the bit field, and uses RRC to configure the TTI length. Alt.2 is based on the newly designed DCI format, which uses the TTI length indication, single-level DCI or slow DCI. Advantages: Unified DCI design. Disadvantages: alt.1 does not support dynamic scheduling of PDSCH and sPDSCH. Alt.2 is necessary for the single-level DCI except that the first sTTI in the subframe has a TTI length indication, and the other sTTI indications are useless. If the new DCI includes an sPDCCH resource indicating that it is not used, the DCI is not properly loaded with the PDCCH channel. Therefore, for mode 1, it is more suitable for two-level DCI, and the slow DCI supports different length TTIs and is carried by the PDCCH. At this time, the sPDCCH carries the fast DCI. For TTI=14, the slow DCI contains complete scheduling information.
对于在检测fast DCI或single-level DCI时不知道TTI长度时,可以通过高层信令半静态配置,或DCI分别按照不同TTI长度盲检,同G中方式一或二。并且在DCI中不指示TTI长度时,此时不同TTI长度的所对应的其他比特域全部相同。When the TTI length is not known when detecting fast DCI or single-level DCI, it can be semi-statically configured through high-level signaling, or DCI can be blindly checked according to different TTI lengths, one or two in the same way as G. Moreover, when the TTI length is not indicated in the DCI, the other bit fields corresponding to different TTI lengths are all the same at this time.
方式2至4均为考虑两种DCI。其中方式2和4可以看做是从TTI长度的角度区分两种不同DCI,方式3是从时延是否降低的角度区分两种不同DCI。方式2的好处:将1ms TTI时延降低与sTTI区别对待,即1ms TTI时延降低与1ms TTI时延不降低时使用相同DCI,尽量使用legacy DCI或稍许修改。而sTTI DCI设计则存在较大变数,如two-level DCI、指示未使用的sPDCCH资源等。方式4的好处:对于sTTI=7符号,确实比较矛盾,一方面指示时隙级的调度现有协议已经可以支持,即sTTI=7和TTI=14并没有本质上太大区别。另一方面sTTI=7一直以来是与sTTI=2共同讨论的,即二者也适合使用相同的DCI。所以方式4是另一种可能。方式3理由:1ms时延不降低使用现有legacy DCI,而其余时延降低均可以使用异步UL HARQ等共同特性。 Modes 2 through 4 consider both DCIs. Modes 2 and 4 can be regarded as distinguishing two different DCIs from the perspective of TTI length. Mode 3 distinguishes two different DCIs from the perspective of whether the delay is reduced. Benefits of Mode 2: The 1 ms TTI delay is treated differently from the sTTI, that is, the 1 ms TTI delay is reduced and the 1 ms TTI delay is not reduced. The same DCI is used, and the legacy DCI is used as much as possible or slightly modified. The sTTI DCI design has large variables, such as two-level DCI, indicating unused sPDCCH resources. The benefit of mode 4: For sTTI=7 symbols, it is indeed contradictory. On the one hand, the existing protocol indicating the scheduling of the slot level can already be supported, that is, sTTI=7 and TTI=14 are not substantially different. On the other hand, sTTI=7 has been discussed together with sTTI=2, that is, both are also suitable for using the same DCI. So way 4 is another possibility. Reason 3: The 1 ms delay does not reduce the use of the existing legacy DCI, and the rest of the delay reduction can use common features such as asynchronous UL HARQ.
方式5和6均为考虑三种DCI,即1ms TTI时延不降低仍使用现有 legacy DCI,对于1ms TTI时延降低与sTTI是否使用相同DCI以及sTTI=7符号分别分出了两种可能的情况。但是区分过多的DCI格式对于UE盲检测来说增加了复杂度。 Modes 5 and 6 consider three DCIs, that is, the 1 ms TTI delay does not decrease. The legacy DCI separates two possible cases for the 1 ms TTI delay reduction and whether the sTTI uses the same DCI and the sTTI=7 symbol. However, distinguishing too many DCI formats adds complexity to UE blind detection.
当1ms TTI时延降低与1ms TTI现有时延都使用相同的DCI format时,包括以下几种可能方式:1.使用现有DCI且无需改动。当仍使用PHICH对PUSCH反馈ACK/NACK时,执行1ms时延降低通过TBS隐式确定。2.直接添加新比特域。可能是new DCI format,或者是直接在format 0或4中修订增加比特域。Format 0/4中可能添加UL HARQ进程号、RV(异步HARQ时),format 0或4或1A中可能添加定时k指示。影响format 1A增加padding。此时添加新比特域时,也可以支持sTTI DCI。此时对于1ms TTI时延不降低时,可以对新添加的比特域reserved。或者,当有k指示时,可以分别定义各自比特域。3.目前DCI比特域重用。当不使用PHICH时,UL grant需要添加UL HARQ进程号、RV,当通过隐式根据TBS或显示根据RRC配置或根据不同C-RNTI加扰执行1ms时延降低时,使用重新解释的比特域。When the 1 ms TTI delay is reduced and the same DCI format is used for the 1 ms TTI existing delay, the following possible ways are included: 1. Use the existing DCI without modification. When the PHICH is still used to feed back ACK/NACK to the PUSCH, the 1 ms delay reduction is implicitly determined by the TBS. 2. Add a new bit field directly. It may be new DCI format, or it may be modified directly in format 0 or 4 to increase the bit field. It is possible to add a UL HARQ process number, RV (asynchronous HARQ) in Format 0/4, and a timing k indication may be added in format 0 or 4 or 1A. Affects format 1A to increase padding. The sTTI DCI can also be supported when a new bit field is added at this time. At this time, when the 1 ms TTI delay does not decrease, the newly added bit field can be reserved. Alternatively, when there is a k indication, the respective bit fields can be defined separately. 3. Currently DCI bit field reuse. When the PHICH is not used, the UL grant needs to add the UL HARQ process number, RV, and the reinterpreted bit field is used when implicitly performing a 1 ms delay reduction according to the RRC configuration according to the TBS or display or according to different C-RNTI scrambling.
当1ms TTI时延降低与sTTI使用相同DCI format时,包括以下几种可能方式:1.当DCI中存在TTI length指示比特域时,则不同TTI长度的其余比特域可以分别设计。在DCI为single-level DCI时,该比特域主要在首个sTTI或legacy PDCCH区域中其作用。在DCI为two-level DCI时,该比特域位于slow DCI中,并且对于TTI=1ms和或TTI=7符号时,slow DCI中包含完整的调度信息。2.当DCI中不存在TTI length指示比特域时,则不同TTI长度的其余比特域需要统一设计,此时TTI长度可由高层信令半静态配置或为固定值。对两级DCI中Slow DCI中不存在TTI length比特域时,此时资源分配域适用于所有TTI长度,并且对于调度sTTI=2或7或UL sTTI=4符号时,后续不需要的比特域reserved或部分用来重新解释指示fast DCI资源;对于调度TTI=14或7符号时,使用所有需要比特域。When the 1 ms TTI delay is reduced to use the same DCI format as the sTTI, the following possible modes are included: 1. When the TTI length indicating bit field exists in the DCI, the remaining bit fields of different TTI lengths may be separately designed. When the DCI is a single-level DCI, the bit field mainly functions in the first sTTI or legacy PDCCH region. When the DCI is two-level DCI, the bit field is located in the slow DCI, and for TTI=1ms and or TTI=7 symbols, the slow DCI contains complete scheduling information. 2. When there is no TTI length indication bit field in the DCI, the remaining bit fields of different TTI lengths need to be uniformly designed. In this case, the TTI length can be semi-statically configured by the high layer signaling or a fixed value. When there is no TTI length bit field in the downlink DCI in the two-stage DCI, the resource allocation field is applicable to all TTI lengths at this time, and when the scheduling sTTI=2 or 7 or UL sTTI=4 symbols, the subsequent undesired bit field reserved Or partially used to reinterpret the indication of fast DCI resources; for scheduling TTI = 14 or 7 symbols, all required bit fields are used.
对应于上述下行控制信息的传输方法,在本实施例中还提供了一种下 行控制信息的传输装置,位于基站中,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。Corresponding to the transmission method of the downlink control information, in this embodiment, a The transmission device of the line control information is located in the base station, and the device is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again. As used below, the term "module" may implement a combination of software and/or hardware of a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
图3是根据本公开实施例的一种下行控制信息的传输装置的结构框图,如图3所示,该装置包括:FIG. 3 is a structural block diagram of a transmission apparatus for downlink control information according to an embodiment of the present disclosure. As shown in FIG. 3, the apparatus includes:
承载模块22,设置为通过传统物理下行控制信道(legacy PDCCH)、增强物理下行控制信道(ePDCCH)、sPDCCH中至少之一承载用于调度短发送时间间隔sTTI的终端UE的下行控制信息DCI,所述sPDCCH为sTTI中的物理下行控制信道;发送模块24,与承载模块22相连,设置为将承载模块22承载的所述DCI发送至终端;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。The bearer module 22 is configured to carry downlink control information DCI of the terminal UE for scheduling the short transmission time interval sTTI by using at least one of a legacy physical downlink control channel (legacy PDCCH), an enhanced physical downlink control channel (ePDCCH), and an sPDCCH. The sPDCCH is a physical downlink control channel in the sTTI; the sending module 24 is connected to the bearer module 22, and is configured to send the DCI carried by the bearer module 22 to the terminal; where the DCI is used for scheduling the traffic channel, including at least the following One: only the traffic channel in the sTTI; the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
可选地,所述装置还可以包括通知模块,设置为通过高层信令RRC或SIB通知使用上述两种方式其中之一或者预定义使用上述两种方式其中之一。Optionally, the apparatus may further include a notification module, configured to use one of the foregoing two manners by using the high layer signaling RRC or the SIB notification or to use one of the foregoing two methods.
可选地,所述装置还可以包括配置模块,设置为通过高层信令SIB或RRC配置所述两级DCI中第一级DCI的更新周期。该方式可以应用于fast DCI具有完整调度信息的情况中,当某次slow DCI解调错误,但仍在更新周期范围内,使用之前的slow DCI指示,以降低fast DCI解调复杂度。Optionally, the apparatus may further include: a configuration module, configured to configure an update period of the first-level DCI in the two-level DCI by using high-level signaling SIB or RRC. This method can be applied to the case where the fast DCI has complete scheduling information. When a slow DCI demodulation error occurs, but is still within the update period range, the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
作为一种优选实施方式,在所述sPDCCH基于DMRS解调的情况下,所述装置还可以包括端口选择模块,设置为根据端口使用原则选择使用相应的sPDSCH端口。As a preferred embodiment, in a case where the sPDCCH is based on DMRS demodulation, the apparatus may further include a port selection module configured to select to use a corresponding sPDSCH port according to a port usage principle.
具体地,当该DMRS与本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:Specifically, when the DMRS is shared with the sPDSCH of the local UE, the sPDSCH port usage principle includes at least one of the following:
在RI=1时使用与sPDCCH相同端口的DMRS; Use DMRS with the same port as sPDCCH when RI=1;
在RI=2时使用与sPDCCH的DMRS所在RE位置相同的端口;When RI=2, the same port as the RE location of the DMRS of the sPDCCH is used;
在RI>2时优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;When RI>2, the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
结合sPDCCH传输方式通过DCI指示sPDSCH端口,例如,可以包括:DCI中指示sPDSCH端口使用时,sPDSCH单层传输时可以不指示,或者指示与sPDCCH使用DMRS所在RE相同的端口,sPDCCH使用port x1,sPDSCH也使用port x1,或者使用与port x1相同RE位置的port x2。sPDSCH二层传输时可以不指示,根据sPDCCH传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选),或者指示与sPDCCH传输方式对应的端口,当sPDCCH传输方式使用port x1时,指示sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选)。当sPDSCH使用大于二层传输时,可以不指示,根据传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选),或者指示sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选);The sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode. For example, the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1. The sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode. When the sPDCCH transmission mode uses the port x1, the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used. When the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode, when When port x1 is used for the sPDCCH transmission method, the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred). When the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode. When the sPDCCH transmission mode uses port x1, the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted. When port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or uses port x1, y1, x2. Y2, ... (preferably), or port x1, x2, x3, ... indicating that the sPDSCH uses the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1, y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1 , x3..., or port y1, y2, y3... at the same RE position as port y1, or using ports x1, y1, x2, y2, ... (preferred);
当该DMRS与非本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一: When the DMRS is shared with the sPDSCH that is not the UE, the sPDSCH port usage principle includes at least one of the following:
优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口。The port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
可选地,所述装置还可以包括加扰模块,设置为对所述sPDCCH进行加扰。其中,所述sPDCCH的加扰初始化方法为,子帧中或无线帧中每个sTTI独立加扰,其中子帧中首个sTTI中或Legacy PDCCH区域中的sPDCCH加扰初始化满足
Figure PCTCN2017084279-appb-000006
cinit为加扰初始化值,ns为时隙号,
Figure PCTCN2017084279-appb-000007
为小区(Cell)的标识(ID)号。
Optionally, the apparatus may further include a scrambling module configured to scramble the sPDCCH. The scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies
Figure PCTCN2017084279-appb-000006
c init is the scrambling initialization value, n s is the slot number,
Figure PCTCN2017084279-appb-000007
It is the identification (ID) number of the cell.
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。It should be noted that each of the above modules may be implemented by software or hardware. For the latter, the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination. The forms are located in different processors.
在本实施例中,还提供了另一种下行控制信息的传输方法,图4是根据本公开实施例的另一种下行控制信息的传输方法的流程图,如图4所示,该方法包括如下步骤:In this embodiment, another method for transmitting downlink control information is further provided. FIG. 4 is a flowchart of another method for transmitting downlink control information according to an embodiment of the present disclosure. As shown in FIG. 4, the method includes The following steps:
步骤S302,接收通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载的用于调度短发送时间间隔(sTTI)的终端(UE)的下行控制信息(DCI),所述sPDCCH为sTTI中的物理下行控制信道;Step S302, receiving downlink control information (DCI) of a terminal (UE) for scheduling a short transmission time interval (sTTI) carried by at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, The sPDCCH is a physical downlink control channel in an sTTI;
步骤S304,所述UE使用所述DCI进行调度。Step S304, the UE uses the DCI to perform scheduling.
其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
仅sTTI中的业务信道;Only the traffic channel in the sTTI;
sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
本实施例通过上述步骤,将用于调度sTTI的UE的DCI承载在legacy PDCCH、ePDCCH、sPDCCH至少之一中,UE使用该DCI进行调度,解决了相关技术中低时延通信场景中缺少支持短TTI及其相关业务调度的下行控制信息的问题,给出了支持短TTI调度以及其相关的不同长度TTI 业务调度的实现方案,保证时延通信需求。In this embodiment, the DCI of the UE for scheduling the sTTI is carried in at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, and the UE uses the DCI to perform scheduling, which solves the short support in the low-latency communication scenario in the related art. The problem of downlink control information for TTI and its related service scheduling is given to support short TTI scheduling and its associated different length TTIs. The implementation of the service scheduling ensures the delay communication requirements.
作为一种优选实施方式,在所述DCI用于调度业务信道时,可以包括以下方式至少之一:As a preferred implementation manner, when the DCI is used to schedule a traffic channel, at least one of the following manners may be included:
A,所述用于调度sTTI的UE的DCI的大小(size)与用于调度1ms PDSCH的DCI的大小(size)相同,并通过RNTI进行区分,包括通过不同类型的RNTI的不同取值进行区分、或者通过相同类型的RNTI的不同取值进行区分。例如,可以通过一级DCI或两级DCI的第一级DCI的不同扰码RNTI区分所述DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。优选地,可以用于仅调度sTTI中的业务信道;或者调度sTTI中的业务信道或1ms TTI中的业务信道;或者调度sTTI中的业务信道和1ms TTI中的业务信道。A. The size of the DCI of the UE for scheduling the sTTI is the same as the size of the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI, including distinguishing by different values of different types of RNTIs. Or distinguish by different values of the same type of RNTI. For example, the different scrambling code RNTI of the first-level DCI of the first-level DCI or the two-level DCI may be used to distinguish whether the DCI is used for scheduling a traffic channel in a 1 ms TTI or for scheduling a traffic channel in an sTTI. Preferably, it may be used to schedule only the traffic channel in the sTTI; or to schedule a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; or to schedule a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
B,所述用于调度sTTI的UE的DCI与用于调度1ms PDSCH的DCI位于不同搜索空间。可以通过限制调度不同业务信道的DCI所处的搜索空间进行区分,例如分别位于CSS或USS,分别位于Legacy搜索空间和新定义的搜索空间。优选地,可以用于仅调度sTTI中的业务信道;调度sTTI中的业务信道或1ms TTI中的业务信道;调度sTTI中的业务信道和1ms TTI中的业务信道。B. The DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces. It can be distinguished by restricting the search space in which the DCIs of different service channels are scheduled, for example, respectively located in CSS or USS, respectively in the Legacy search space and the newly defined search space. Preferably, it can be used to schedule only the traffic channel in the sTTI; schedule the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; schedule the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
C,通过一级DCI或两级DCI的第一级DCI中的指示标识区分所述用于调度sTTI的UE的DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。该方法优选可以用于调度sTTI中业务信道或1ms TTI中业务信道时的情况。C. Differentiate the DCI of the UE for scheduling the sTTI by using the indication identifier in the first-level DCI or the first-level DCI of the two-level DCI to schedule the traffic channel in the 1 ms TTI or to schedule the traffic channel in the sTTI. The method is preferably used to schedule a traffic channel in an sTTI or a traffic channel in a 1 ms TTI.
可选地,所述1ms TTI中的业务信道承载的消息可以包括以下至少之一:UE单播消息,或者小区广播消息,或者一组UE的公共消息,或者小区级或一组UE的系统变更消息通知信息。Optionally, the message carried by the traffic channel in the 1 ms TTI may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs. Message notification information.
作为一种优选实施方式,所述下行控制信息(DCI)可以为一级DCI或两级DCI,其中当DCI为两级DCI时指示的业务信道调度信息可以包括以下至少之一:两级DCI中第一级和第二级共同构成完整的调度信息; 两级DCI中第二级包含完整调度信息。As a preferred implementation, the downlink control information (DCI) may be a first-level DCI or a two-level DCI, where the traffic channel scheduling information indicated when the DCI is two-level DCI may include at least one of the following: two-level DCI The first level and the second level together constitute complete scheduling information; The second level of the two-level DCI contains complete scheduling information.
对于上述两种方式,当两级DCI中第一级DCI和第二级DCI共同构成完整的调度信息时,终端解调不出slow DCI就会跳至下一个子帧继续检测slow DCI而不会检测本子帧中fast DCI。而两级DCI中第二级包含完整调度信息时,终端解调不出slow DCI仍然会继续检测本子帧中fast DCI。例如,两级DCI中第一级DCI和第二级DCI共同构成完整的调度信息时,第一级和第二级DCI都包含资源分配信息并且第二级资源分配是在第一级资源分配基础上进行指示的。当两级DCI中第二级DCI包含完整的调度信息时,第一级DCI和第二级DCI都包含资源分配信息并且第二级资源分配并不依赖于第一级资源分配。或者第一级DCI包含指示第二级DCI所需的检测信息以降低第二级DCI检测复杂度,但是即使检测不到第一级DCI,终端仍然可以按照高层信令RRC或SIB配置的参数检测第二级DCI。For the above two modes, when the first-stage DCI and the second-level DCI in the two-stage DCI form a complete scheduling information, the terminal demodulates the slow DCI and skips to the next subframe to continue detecting the slow DCI without Detect the fast DCI in this sub-frame. When the second level of the two-stage DCI contains the complete scheduling information, the terminal demodulates the slow DCI and continues to detect the fast DCI in this subframe. For example, when the first-level DCI and the second-level DCI of the two-level DCI together form complete scheduling information, both the first-level and second-level DCIs contain resource allocation information and the second-level resource allocation is based on the first-level resource allocation. On the instructions. When the second-level DCI in the two-level DCI contains complete scheduling information, both the first-level DCI and the second-level DCI contain resource allocation information and the second-level resource allocation does not depend on the first-level resource allocation. Or the first-level DCI includes the detection information required to indicate the second-level DCI to reduce the second-level DCI detection complexity, but even if the first-level DCI is not detected, the terminal can still detect the parameters according to the high-level signaling RRC or SIB configuration. Second level DCI.
可选地,可以由基站(eNB)通过高层信令RRC或SIB通知使用上述两种方式其中之一或者预定义使用上述两种方式其中之一。Alternatively, one of the above two methods may be used by the base station (eNB) through the high layer signaling RRC or SIB notification or one of the above two methods may be predefined.
可选地,所述第一级DCI中可以包含以下信息至少之一:Optionally, at least one of the following information may be included in the first level DCI:
指示承载第二级DCI的sPDCCH检测时所需参数,所述第二级DCI包含调度sPDSCH和/或sPUSCH的第二级DCI,其中所述参数可以包含聚合等级、候选集数量、搜索空间频域位置、搜索空间时域位置、sPDCCH加扰参数、sPDCCH使用的DMRS加扰参数、sPDCCH传输模式、sPDCCH解调使用的DMRS端口至少之一;Determining a parameter required for sPDCCH detection of a second-level DCI, where the second-level DCI includes a second-level DCI that schedules sPDSCH and/or sPUSCH, where the parameter may include an aggregation level, a number of candidate sets, and a search space frequency domain. At least one of a location, a search space time domain location, an sPDCCH scrambling parameter, a DMRS scrambling parameter used by the sPDCCH, an sPDCCH transmission mode, and a DMRS port used for sPDCCH demodulation;
指示承载第二级DCI的sPDCCH和/或sPDSCH速率匹配时的DMRS端口或预留RE,其中预留RE优选可以为所有DMRS端口对应的RE,或者其中占用相同RE的端口对应的RE;Indicates a DMRS port or a reserved RE when the sPDCCH and/or the sPDSCH rate of the second-level DCI is matched, where the reserved RE is preferably an RE corresponding to all the DMRS ports, or an RE corresponding to the port occupying the same RE;
指示承载第二级DCI的sPDCCH和/或sPDSCH解调使用导频CRS和/或DMRS;Indicating that the sPDCCH and/or sPDSCH demodulation carrying the second-level DCI uses pilot CRS and/or DMRS;
指示sPDSCH的传输模式;Indicating a transmission mode of the sPDSCH;
指示承载第二级DCI的sPDCCH和/或sPDSCH基于CRS解调时是否 使用DMRS;Indicates whether the sPDCCH and/or sPDSCH carrying the second-level DCI is demodulated based on CRS Use DMRS;
指示承载第二级DCI的sPDCCH和/或sPDSCH基于DMRS解调时是否使用CRS;Determining whether to use CRS when sPDCCH and/or sPDSCH carrying the second-level DCI is demodulated based on DMRS;
指示承载第二级DCI的sPDCCH和/或sPDSCH解调时所使用的DMRS所在PRB位置;Indicate the PRB location of the DMRS used when demodulating the sPDCCH and/or sPDSCH carrying the second-level DCI;
指示下行链路(DL)sTTI带宽(band)频域位置和/或上行链路(UL)sTTI带宽(band)频域位置,其中所述频域位置优选可以为指示LTE系统带宽中的部分或全部PRB;Indicating a downlink (DL) sTTI band frequency domain location and/or an uplink (UL) sTTI band frequency domain location, wherein the frequency domain location may preferably be indicative of a portion of the LTE system bandwidth or All PRB;
指示DL sTTI的长度(length)和/或UL sTTI的长度(length);Indicates the length (length) of the DL sTTI and/or the length (length) of the UL sTTI;
指示DL sTTI绑定(bundling)传输个数和/或UL sTTI绑定(bundling)传输个数。Indicates the number of DL sTTI bundling transmissions and/or the number of UL sTTI bundling transmissions.
可选地,所述第一级DCI指示承载第二级DCI的sPDCCH检测时所需参数时,在RRC或SIB配置的参数基础上,指示该RRC或SIB配置的参数的子集。所述子集可以包括参数种类的子集,和/或参数取值范围的子集。Optionally, when the first-level DCI indicates a parameter required for detecting sPDCCH of the second-level DCI, indicating a subset of parameters of the RRC or SIB configuration based on parameters of the RRC or SIB configuration. The subset may include a subset of the parameter categories, and/or a subset of the parameter value ranges.
可选地,所述第二级DCI中可以包含以下信息至少之一:Optionally, the second level DCI may include at least one of the following information:
在所述两级DCI共同构成完整调度信息时,第二级DCI中包含资源分配且在第一级DCI中资源分配基础上指示;When the two levels of DCI together form complete scheduling information, the second level DCI includes resource allocation and is indicated on the basis of resource allocation in the first level DCI;
在所述两级DCI中的第二级包含完整的调度信息时,第二级DCI中包含资源分配;When the second level of the two-level DCI includes complete scheduling information, the second-level DCI includes resource allocation;
指示sPDSCH和/或sPUSCH资源分配信息;Indicating sPDSCH and/or sPUSCH resource allocation information;
指示sPDSCH速率匹配时的DMRS端口或预留RE,预留RE优选可以为所有DMRS端口对应的RE,或者其中占用相同RE的端口对应的RE;Indicates the DMRS port or the reserved RE when the sPDSCH rate is matched, and the reserved RE is preferably the RE corresponding to all the DMRS ports, or the RE corresponding to the port occupying the same RE;
指示sPDSCH解调时所使用的DMRS所在PRB位置;Indicates the PRB location of the DMRS used for sPDSCH demodulation;
指示DL sTTI的长度(length)和/或UL sTTI的长度(length);Indicates the length (length) of the DL sTTI and/or the length (length) of the UL sTTI;
指示DL sTTI绑定(bundling)传输个数和/或UL sTTI绑定(bundling) 传输个数。Indicates the number of DL sTTI bundling transmissions and/or UL sTTI bindings (bundling) The number of transmissions.
可选地,所述两级DCI中第一级DCI的更新周期可以由高层信令SIB或RRC配置。该方式可以应用于fast DCI具有完整调度信息的情况中,当某次slow DCI解调错误,但仍在更新周期范围内,使用之前的slow DCI指示,以降低fast DCI解调复杂度。Optionally, an update period of the first-level DCI in the two-level DCI may be configured by a high-level signaling SIB or RRC. This method can be applied to the case where the fast DCI has complete scheduling information. When a slow DCI demodulation error occurs, but is still within the update period range, the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
作为一种优选实施方式,在所述sPDCCH基于DMRS解调的情况下,As a preferred implementation manner, in a case where the sPDCCH is based on DMRS demodulation,
当该DMRS与本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH of the UE, the sPDSCH port usage principle includes at least one of the following:
在RI=1时使用与sPDCCH相同端口的DMRS;Use DMRS with the same port as sPDCCH when RI=1;
在RI=2时使用与sPDCCH的DMRS所在RE位置相同的端口;When RI=2, the same port as the RE location of the DMRS of the sPDCCH is used;
在RI>2时优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;When RI>2, the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
结合sPDCCH传输方式通过DCI指示sPDSCH端口,例如,可以包括:DCI中指示sPDSCH端口使用时,sPDSCH单层传输时可以不指示,或者指示与sPDCCH使用DMRS所在RE相同的端口,sPDCCH使用port x1,sPDSCH也使用port x1,或者使用与port x1相同RE位置的port x2。sPDSCH二层传输时可以不指示,根据sPDCCH传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选),或者指示与sPDCCH传输方式对应的端口,当sPDCCH传输方式使用port x1时,指示sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选)。当sPDSCH使用大于二层传输时,可以不指示,根据传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置 的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选),或者指示sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选);The sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode. For example, the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1. The sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode. When the sPDCCH transmission mode uses the port x1, the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used. When the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode, when When port x1 is used for the sPDCCH transmission method, the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred). When the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode. When the sPDCCH transmission mode uses port x1, the sPDSCH uses the same RE location as the port x1. Port x1, x2, x3, ..., when port x1, y1 is used for the sPDCCH transmission mode, sPDSCH uses port x1, x2, x3, ... of the same RE position as port x1, or port y1, y2 of the same RE position as port y1 Y3..., or use port x1, y1, x2, y2, ... (preferred), or port x1, x2, x3, ... indicating that sPDSCH uses the same RE position as port x1, and sPDSCH when port s1, y1 is used for sPDCCH transmission mode Use port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or use port x1, y1, x2, y2, ... (preferred);
当该DMRS与非本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH that is not the UE, the sPDSCH port usage principle includes at least one of the following:
优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口。The port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
可选地,所述DMRS资源位置可以根据sPDCCH与sPDSCH是否共用DMRS采用不同的占用方式。例如,如果sPDCCH与sPDSCH共用DMRS,则可能的DMRS资源占用方式如下所述,位于部分PRB,包含仅位于sPDCCH所在PRB中、至少位于sPDCCH所在PRB中、位于在sPDCCH或sPDSCH占用的PRB资源中等间隔选取的PRB中等;如果sPDCCH与sPDSCH不共用DMRS,则DMRS资源占用方式可能为每个PRB均有、位于在sPDSCH占用的PRB资源中等间隔选取的PRB中等。Optionally, the DMRS resource location may adopt different occupation manners according to whether the sPDCCH and the sPDSCH share the DMRS. For example, if the sPDCCH and the sPDSCH share the DMRS, the possible DMRS resource occupation manner is as follows. The partial PRB is located in the PRB where the sPDCCH is located, at least in the PRB where the sPDCCH is located, and is located in the PRB resource occupied by the sPDCCH or the sPDSCH. The selected PRB is medium; if the sPDCCH and the sPDSCH do not share the DMRS, the DMRS resource occupation mode may be equal to the PRB selected by each PRB and located at the middle interval of the PRB resources occupied by the sPDSCH.
可选地,所述sPDCCH与sPDSCH共用的DMRS频域位置位于部分PRB时,包括以下占用方式至少之一:Optionally, when the DMRS frequency domain location shared by the sPDCCH and the sPDSCH is located in a part of the PRB, at least one of the following occupation modes is included:
仅位于sPDCCH所在PRB中;Only in the PRB where the sPDCCH is located;
至少位于sPDCCH所在PRB中;At least in the PRB where the sPDCCH is located;
位于在sPDCCH或sPDSCH占用的PRB资源中等间隔选取的PRB中。例如:在max{sPDCCH占用PRB资源,sPDSCH占用PRB资源}中等间隔占用。The PRB is located in the PRB of the intermediate interval of the PDCCH occupied by the sPDCCH or the sPDSCH. For example, the max{sPDCCH occupies the PRB resource, and the sPDSCH occupies the PRB resource}.
可选地,所述sPDCCH的加扰初始化方法为,子帧中或无线帧中每个sTTI独立加扰,其中子帧中首个sTTI中或Legacy PDCCH区域中的 sPDCCH加扰初始化满足
Figure PCTCN2017084279-appb-000008
cinit为加扰初始化值,ns为时隙号,
Figure PCTCN2017084279-appb-000009
为小区(Cell)的标识(ID)号。
Optionally, the scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies
Figure PCTCN2017084279-appb-000008
c init is the scrambling initialization value, n s is the slot number,
Figure PCTCN2017084279-appb-000009
It is the identification (ID) number of the cell.
对应于上述另一种下行控制信息的传输方法,在本实施例中还提供了另一种下行控制信息的传输装置,位于UE中,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。Corresponding to the transmission method of the other downlink control information, in the embodiment, another downlink control information transmission device is further provided, which is located in the UE, and the device is used to implement the foregoing embodiment and the preferred embodiment, and has been performed. The description will not be repeated.
图5是根据本公开实施例的另一种下行控制信息的传输装置的结构框图,如图5所示,该装置包括:FIG. 5 is a structural block diagram of another apparatus for transmitting downlink control information according to an embodiment of the present disclosure. As shown in FIG. 5, the apparatus includes:
接收模块42,设置为接收通过传统物理下行控制信道(legacy PDCCH)、增强物理下行控制信道(ePDCCH)、sPDCCH中至少之一承载的用于调度短发送时间间隔(sTTI)的UE的下行控制信息(DCI),所述sPDCCH为sTTI中的物理下行控制信道;调度模块44,设置为使用接收模块42接收的所述DCI进行调度;其中,所述DCI用于调度的业务信道包括以下至少之一:仅sTTI中的业务信道;sTTI中的业务信道或1ms TTI中的业务信道;sTTI中的业务信道和1ms TTI中的业务信道。The receiving module 42 is configured to receive downlink control information of a UE for scheduling a short transmission time interval (sTTI) carried by at least one of a legacy physical downlink control channel (legacy PDCCH), an enhanced physical downlink control channel (ePDCCH), and an sPDCCH. (DCI), the sPDCCH is a physical downlink control channel in the sTTI, and the scheduling module 44 is configured to perform scheduling by using the DCI received by the receiving module 42. The traffic channel used by the DCI for scheduling includes at least one of the following: : only the traffic channel in the sTTI; the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
可选地,所述装置还可以包括获取模块,设置为通过高层信令RRC或SIB获取使用上述两种方式其中之一或者预定义使用上述两种方式其中之一。Optionally, the apparatus may further include an obtaining module, configured to obtain, by using the high layer signaling RRC or the SIB, one of the foregoing two methods or one of the foregoing two methods.
可选地,所述获取模块,还可以设置为获取通过高层信令SIB或RRC配置的所述两级DCI中第一级DCI的更新周期。该方式可以应用于fast DCI具有完整调度信息的情况中,当某次slow DCI解调错误,但仍在更新周期范围内,使用之前的slow DCI指示,以降低fast DCI解调复杂度。Optionally, the acquiring module may be further configured to acquire an update period of the first-level DCI in the two-level DCI configured by the high-layer signaling SIB or RRC. This method can be applied to the case where the fast DCI has complete scheduling information. When a slow DCI demodulation error occurs, but is still within the update period range, the previous slow DCI indication is used to reduce the fast DCI demodulation complexity.
作为一种优选实施方式,在所述sPDCCH基于DMRS解调的情况下,所述装置还可以包括端口选择模块,设置为根据端口使用原则选择使用相应的sPDSCH端口。As a preferred embodiment, in a case where the sPDCCH is based on DMRS demodulation, the apparatus may further include a port selection module configured to select to use a corresponding sPDSCH port according to a port usage principle.
具体地,当该DMRS与本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:Specifically, when the DMRS is shared with the sPDSCH of the local UE, the sPDSCH port usage principle includes at least one of the following:
在RI=1时使用与sPDCCH相同端口的DMRS; Use DMRS with the same port as sPDCCH when RI=1;
在RI=2时使用与sPDCCH的DMRS所在RE位置相同的端口;When RI=2, the same port as the RE location of the DMRS of the sPDCCH is used;
在RI>2时优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;When RI>2, the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
结合sPDCCH传输方式通过DCI指示sPDSCH端口,例如,可以包括:DCI中指示sPDSCH端口使用时,sPDSCH单层传输时可以不指示,或者指示与sPDCCH使用DMRS所在RE相同的端口,sPDCCH使用port x1,sPDSCH也使用port x1,或者使用与port x1相同RE位置的port x2。sPDSCH二层传输时可以不指示,根据sPDCCH传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选),或者指示与sPDCCH传输方式对应的端口,当sPDCCH传输方式使用port x1时,指示sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选)。当sPDSCH使用大于二层传输时,可以不指示,根据传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选),或者指示sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选);The sPDSCH port is indicated by the DCI in combination with the sPDCCH transmission mode. For example, the sPDSCH port may be not indicated when the sPDSCH is used in the DCI, or the same port as the RE where the sPDCCH is used by the sPDCCH, and the sPDCCH uses port x1, sPDSCH. Also use port x1, or use port x2 with the same RE location as port x1. The sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode. When the sPDCCH transmission mode uses the port x1, the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used. When the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode, when When port x1 is used for the sPDCCH transmission method, the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred). When the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode. When the sPDCCH transmission mode uses port x1, the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted. When port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or uses port x1, y1, x2. Y2, ... (preferably), or port x1, x2, x3, ... indicating that the sPDSCH uses the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1, y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1 , x3..., or port y1, y2, y3... at the same RE position as port y1, or using ports x1, y1, x2, y2, ... (preferred);
当该DMRS与非本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一: When the DMRS is shared with the sPDSCH that is not the UE, the sPDSCH port usage principle includes at least one of the following:
优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口。The port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
可选地,所述装置还可以包括加扰模块,设置为对所述sPDCCH进行加扰。其中,所述sPDCCH的加扰初始化方法为,子帧中或无线帧中每个sTTI独立加扰,其中子帧中首个sTTI中或Legacy PDCCH区域中的sPDCCH加扰初始化满足
Figure PCTCN2017084279-appb-000010
cinit为加扰初始化值,ns为时隙号,
Figure PCTCN2017084279-appb-000011
为小区(Cell)的标识(ID)号。
Optionally, the apparatus may further include a scrambling module configured to scramble the sPDCCH. The scrambling initialization method of the sPDCCH is that each sTTI in the subframe or the radio frame is independently scrambled, wherein the sPDCCH scrambling initialization in the first sTTI or the legacy PDCCH region in the subframe satisfies
Figure PCTCN2017084279-appb-000010
c init is the scrambling initialization value, n s is the slot number,
Figure PCTCN2017084279-appb-000011
It is the identification (ID) number of the cell.
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。It should be noted that each of the above modules may be implemented by software or hardware. For the latter, the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination. The forms are located in different processors.
在本实施例中,还提供了下行控制信息的传输系统,图6是根据本公开实施例的下行控制信息的传输系统的结构框图,如图6所示,该装置包括如图4所示的位于基站的下行控制信息的传输装置30,还包括如图5所示的位于UE的下行控制信息的传输装置40。In this embodiment, a transmission system for downlink control information is also provided. FIG. 6 is a structural block diagram of a transmission system for downlink control information according to an embodiment of the present disclosure. As shown in FIG. 6, the device includes the same as shown in FIG. The transmission device 30 located in the downlink control information of the base station further includes a transmission device 40 located in the downlink control information of the UE as shown in FIG. 5.
通过使用本实施例所提出的下行控制信息的传输方案,可以解决包含较少OFDM符号的短TTI中下行控制信息设计问题,支持短TTI调度以及不同长度TTI业务调度问题,保证低时延通信需求。By using the transmission scheme of the downlink control information proposed in this embodiment, the problem of designing downlink control information in short TTIs with fewer OFDM symbols can be solved, short TTI scheduling and scheduling services of different lengths of TTIs are supported, and low-latency communication requirements are ensured. .
下面结合优选实施例进行说明,以下优选实施例结合了上述实施例及其优选实施方式。The following description is made in conjunction with the preferred embodiments, and the following preferred embodiments incorporate the above-described embodiments and preferred embodiments thereof.
在以下优选实施例中,提供了一种下行控制信息的传输方案:基站通过Legacy PDCCH和sPDCCH中至少之一承载调度sTTI UE的下行控制信息并发送至终端。In the following preferred embodiments, a downlink control information transmission scheme is provided: the base station carries the downlink control information of the scheduled sTTI UE by using at least one of the legacy PDCCH and the sPDCCH, and sends the downlink control information to the terminal.
所述下行控制信息调度的业务信道包括以下至少之一:The traffic channel scheduled by the downlink control information includes at least one of the following:
仅用于调度sTTI中业务信道;Used only to schedule traffic channels in sTTI;
用于调度sTTI中业务信道或1ms TTI中业务信道;Used to schedule a traffic channel in a sTTI or a traffic channel in a 1 ms TTI;
用于调度sTTI中业务信道和1ms TTI中业务信道。 It is used to schedule the traffic channel in the sTTI and the traffic channel in the 1ms TTI.
其中,Legacy PDCCH为LTE系统中的物理下行控制信道,包括PDCCH、ePDCCH、rPDCCH等,sPDCCH表示sTTI中的物理下行控制信道,可简称为sPDCCH(Short PDCCH),类似的,sTTI中物理下行业务信道可简称为sPDSCH(Short PDSCH),sTTI中物理上行业务信道可简称为sPUSCH(Short PUSCH)。所述sTTI为时间上小于1ms的TTI,对于应用于LTE系统而言,短TTI由N个OFDM符号组成,包含的OFDM符号数目N为{1、2、3、4、5、6、7}中的至少一种。其中,若sTTI包含N个OFDM符号,sPDCCH在时域上占用X个OFDM符号,X≤N,X优选取值为1或2。并且X个OFDM符号位于sTTI的N个OFDM符号中前X个OFDM符号。X取值可以固定或由基站配置。其中,sPDCCH位于子帧或sTTI或OFDM符号中部分资源位置,部分资源为子帧或sTTI或中一个或多个OFDM符号中部分PRB或REG资源,或者部分资源为OFDM符号中部分PRB或REG资源;进一步的,频域上资源单位也可以将PRB聚合使用,以N个PRB为一组进行使用或配置;类似的REG也可以聚合使用。The Legacy PDCCH is a physical downlink control channel in the LTE system, and includes a PDCCH, an ePDCCH, an rPDCCH, and the like. The sPDCCH indicates a physical downlink control channel in the sTTI, which may be simply referred to as a sPDCCH (Short PDCCH), and similarly, a physical downlink traffic channel in the sTTI. It can be abbreviated as sPDSCH (Short PDSCH), and the physical uplink traffic channel in sTTI can be simply referred to as sPUSCH (Short PUSCH). The sTTI is a TTI that is less than 1 ms in time. For the LTE system, the short TTI is composed of N OFDM symbols, and the number N of OFDM symbols included is {1, 2, 3, 4, 5, 6, 7}. At least one of them. Wherein, if the sTTI includes N OFDM symbols, the sPDCCH occupies X OFDM symbols in the time domain, X≤N, and X preferably takes a value of 1 or 2. And X OFDM symbols are located in the first X OFDM symbols among the N OFDM symbols of the sTTI. The value of X can be fixed or configured by the base station. The sPDCCH is located in a subframe or a partial resource position in an OFDM symbol or an OFDM symbol, and the partial resource is a partial PRB or REG resource in one or more OFDM symbols in a subframe or an sTTI, or a partial resource is a partial PRB or REG resource in the OFDM symbol. Further, the resource unit in the frequency domain may also use the PRB aggregation and use or configure the N PRBs as a group; similar REGs may also be used for aggregation.
其中,所述下行控制信息包括LTE系统中Legacy DCI、为sTTI UE新设计的sTTI DCI中至少之一。所述下行控制信息仅用于调度sTTI中业务信道时,Legacy PDCCH承载Legacy DCI调度sTTI UE的1ms TTI业务信道,由Legacy PDCCH或sPDCCH承载sTTI DCI调度sTTI中业务信道;所述下行控制信息用于调度sTTI中业务信道或1ms TTI中业务信道时,由Legacy PDCCH或sPDCCH承载sTTI DCI调度sTTI中业务信道或1ms TTI中业务信道;所述下行控制信息用于调度sTTI中业务信道和1ms TTI中业务信道时,由Legacy PDCCH承载Legacy DCI调度sTTI UE的1ms TTI业务信道,由sPDCCH承载sTTI DCI调度sTTI中业务信道;The downlink control information includes at least one of a legacy DCI in the LTE system and a newly designed sTTI DCI in the sTTI UE. When the downlink control information is used only for scheduling the traffic channel in the sTTI, the legacy PDCCH carries the 1 ms TTI traffic channel of the legacy DCI scheduling sTTI UE, and the legacy channel is carried by the legacy PDCCH or the sPDCCH carrying the sTTI DCI; the downlink control information is used for The traffic channel in the sTTI or the traffic channel in the 1 ms TTI is scheduled by the Legacy PDCCH or the sPDCCH carrying the sTTI DCI when the traffic channel in the sTTI or the traffic channel in the 1 ms TTI is scheduled. The downlink control information is used to schedule the traffic channel in the sTTI and the traffic in the 1 ms TTI. In the case of the channel, the Legacy DCI carries the 1 ms TTI traffic channel of the sTTI UE, and the sPDCCH carries the sTTI DCI to schedule the traffic channel in the sTTI;
进一步,所述DCI用于调度sTTI中业务信道或1ms TTI中业务信道时,在一级DCI或两级DCI的第一级中通过指示标识比特域,区分用于调度1ms TTI中的业务信道还是sTTI中的业务信道。Further, when the DCI is used to schedule a traffic channel in a sTTI or a traffic channel in a 1 ms TTI, in the first level of the first-level DCI or the two-level DCI, the indication bit field is used to distinguish whether the service channel in the 1 ms TTI is scheduled. Traffic channel in sTTI.
具体的,sTTI DCI包含调度sTTI或1ms TTI的功能。当使用single-level  DCI时,通过sTTI/TTI flag比特域指示调度1ms TTI还是sTTI业务信道。使用sPDCCH承载sTTI DCI且同时支持1ms TTI和sTTI动态调度。其中可选的,sTTI/TTI flag在子帧中非第一个sTTI中是无用的,或者在非第一个sTTI中sTTI/TTI flag用做指示其他功能。当使用two-level DCI时,第一级DCI(也称为slow DCI)通过sTTI/TTI flag指示调度1ms TTI还是sTTI业务信道,对于slow DCI可以是Legacy PDCCH或sPDCCH承载。使用sTTI/TTI flag指示如表1所示,其中flag=0和flag=1所表示的情况也可以互换。此时在同一载波的1个子帧中仅支持调度PDSCH or sPDSCH的情况,检测复杂度低,终端处理简单。对于指示sTTI调度的情况,各个sTTI提取出的per subframe调度信息中可以包含DL和/或UL的调度信息,如所述sTTI band资源分配(资源分配指频域上资源指示,优选指示系统带宽中占用哪些PRB资源)可以是DL sTTI band资源分配和/或UL sTTI band资源分配,sTTI length可以是DL sTTI length和/或UL sTTI length,fast DCI资源指示(fast DCI资源指示指承载fast DCI的sPDCCH检测时所需参数指示)可以是DL fast DCI资源指示和/或UL fast DCI资源指示。Specifically, the sTTI DCI includes a function of scheduling sTTI or 1 ms TTI. When using single-level In the DCI, whether the 1ms TTI or the sTTI traffic channel is scheduled is indicated by the sTTI/TTI flag bit field. The sPDCCH is used to carry the sTTI DCI and simultaneously supports 1 ms TTI and sTTI dynamic scheduling. Optionally, the sTTI/TTI flag is useless in the non-first sTTI in the subframe, or the sTTI/TTI flag is used to indicate other functions in the non-first sTTI. When a two-level DCI is used, the first-level DCI (also referred to as a slow DCI) indicates whether to schedule a 1 ms TTI or an sTTI traffic channel by using the sTTI/TTI flag, and may be a legacy PDCCH or an sPDCCH bearer for the slow DCI. The use of the sTTI/TTI flag indication is shown in Table 1, where the cases indicated by flag=0 and flag=1 are also interchangeable. At this time, only one PDSCH or sPDSCH is scheduled to be supported in one subframe of the same carrier, and the detection complexity is low, and the terminal processing is simple. For the case of indicating the sTTI scheduling, the sTTI extracted per subframe scheduling information may include DL and/or UL scheduling information, such as the sTTI band resource allocation (the resource allocation refers to the resource indication on the frequency domain, preferably indicating the system bandwidth) Which PRB resources are occupied) may be DL sTTI band resource allocation and/or UL sTTI band resource allocation, sTTI length may be DL sTTI length and/or UL sTTI length, fast DCI resource indication (fast DCI resource indication refers to sPDCCH carrying fast DCI) The parameter indication required for detection) may be a DL fast DCI resource indication and/or a UL fast DCI resource indication.
表1sTTI/TTI flag指示Table 1sTTI/TTI flag indication
Figure PCTCN2017084279-appb-000012
Figure PCTCN2017084279-appb-000012
或者,所述DCI用于调度sTTI中业务信道或1ms TTI中业务信道时,在一级DCI或两级DCI的第一级中通过指示标识比特域,区分用于调度1ms TTI中的业务信道还是sTTI中的业务信道。此时标识比特域不仅是1bit指示1msTTI和sTTI,还可以是2bit指示不同粒度的sTTI,如使用2bit 指示1ms TTI、2OFDM符号sTTI、7OFDM符号sTTI、4-3-4-3OFDM符号sTTI(表示子帧中在Normal CP时14的OFDM符号划分为4个sTTI,分别具有4-3-4-3个OFDM符号,当Extended CP时,此结构为3-3-3-3OFDM符号)。Or, when the DCI is used to schedule a traffic channel in a sTTI or a traffic channel in a 1 ms TTI, whether the service channel in the 1 ms TTI is scheduled by using the indication bit field in the first level of the first-level DCI or the two-level DCI Traffic channel in sTTI. At this time, the identifier bit field is not only 1 bit indicating 1 ms TTI and sTTI, but also 2 bits indicating sTTI of different granularity, such as using 2 bits. Indicates 1 ms TTI, 2 OFDM symbol sTTI, 7 OFDM symbol sTTI, 4-3-4-3 OFDM symbol sTTI (indicating that the OFDM symbol in the normal CP at the time of the sub-frame is divided into 4 sTTIs, respectively having 4-3-4-3 OFDM symbol, when Extended CP, this structure is 3-3-3-3 OFDM symbol).
作为一种优选实施方式,在所述DCI用于调度业务信道时,可以包括以下方式至少之一:As a preferred implementation manner, when the DCI is used to schedule a traffic channel, at least one of the following manners may be included:
A,所述用于调度sTTI的UE的DCI的大小(size)与用于调度1ms PDSCH的DCI的大小(size)相同,并通过RNTI进行区分,包括通过不同类型的RNTI的不同取值进行区分、或者通过相同类型的RNTI的不同取值进行区分。例如,可以通过一级DCI或两级DCI的第一级DCI的不同扰码RNTI区分所述DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。优选地,可以用于仅调度sTTI中的业务信道;或者调度sTTI中的业务信道或1ms TTI中的业务信道;或者调度sTTI中的业务信道和1ms TTI中的业务信道。A. The size of the DCI of the UE for scheduling the sTTI is the same as the size of the DCI for scheduling the 1 ms PDSCH, and is distinguished by the RNTI, including distinguishing by different values of different types of RNTIs. Or distinguish by different values of the same type of RNTI. For example, the different scrambling code RNTI of the first-level DCI of the first-level DCI or the two-level DCI may be used to distinguish whether the DCI is used for scheduling a traffic channel in a 1 ms TTI or for scheduling a traffic channel in an sTTI. Preferably, it may be used to schedule only the traffic channel in the sTTI; or to schedule a traffic channel in the sTTI or a traffic channel in the 1 ms TTI; or to schedule a traffic channel in the sTTI and a traffic channel in the 1 ms TTI.
B,所述用于调度sTTI的UE的DCI与用于调度1ms PDSCH的DCI位于不同搜索空间。可以通过限制调度不同业务信道的DCI所处的搜索空间进行区分,例如分别位于CSS或USS,分别位于Legacy搜索空间和新定义的搜索空间。优选地,可以用于仅调度sTTI中的业务信道;调度sTTI中的业务信道或1ms TTI中的业务信道;调度sTTI中的业务信道和1ms TTI中的业务信道。B. The DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces. It can be distinguished by restricting the search space in which the DCIs of different service channels are scheduled, for example, respectively located in CSS or USS, respectively in the Legacy search space and the newly defined search space. Preferably, it can be used to schedule only the traffic channel in the sTTI; schedule the traffic channel in the sTTI or the traffic channel in the 1 ms TTI; schedule the traffic channel in the sTTI and the traffic channel in the 1 ms TTI.
C,通过一级DCI或两级DCI的第一级DCI中的指示标识区分所述用于调度sTTI的UE的DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。该方法优选可以用于调度sTTI中业务信道或1ms TTI中业务信道时的情况。C. Differentiate the DCI of the UE for scheduling the sTTI by using the indication identifier in the first-level DCI or the first-level DCI of the two-level DCI to schedule the traffic channel in the 1 ms TTI or to schedule the traffic channel in the sTTI. The method is preferably used to schedule a traffic channel in an sTTI or a traffic channel in a 1 ms TTI.
可选地,所述1ms TTI中的业务信道承载的消息可以包括以下至少之一:UE单播消息,或者小区广播消息,或者一组UE的公共消息,或者小区级或一组UE的系统变更消息通知信息。 Optionally, the message carried by the traffic channel in the 1 ms TTI may include at least one of the following: a UE unicast message, or a cell broadcast message, or a common message of a group of UEs, or a system change of a cell level or a group of UEs. Message notification information.
进一步,所述下行控制信息为一级DCI或两级DCI,其中两级DCI指示的业务信道调度信息包括以下至少之一:Further, the downlink control information is a first-level DCI or a two-level DCI, where the traffic channel scheduling information indicated by the two-level DCI includes at least one of the following:
两级DCI中第一级和第二级共同构成完整的调度信息;The first level and the second level of the two-level DCI together form complete scheduling information;
两级DCI中第二级包含完整调度信息,此时第一级可选地包括但不限于以下至少之一:部分调度信息、第二级DCI的指示信息、sTTI的频域范围、下行链路(DL)sTTI的长度、上行链路(UL)sTTI的长度、DL sTTI带宽(band)的频域范围、UL sTTI band的频域范围;The second level of the two-level DCI includes complete scheduling information. In this case, the first level optionally includes but is not limited to at least one of the following: partial scheduling information, indication information of the second-level DCI, frequency domain range of the sTTI, and downlink. (DL) length of sTTI, length of uplink (UL) sTTI, frequency domain range of DL sTTI bandwidth, frequency domain range of UL sTTI band;
对于上述两种方式,当两级DCI中第一级DCI和第二级DCI共同构成完整的调度信息时,终端解调不出slow DCI就会跳至下一个子帧继续检测slow DCI而不会检测本子帧中fast DCI。而两级DCI中第二级包含完整调度信息时,终端解调不出slow DCI仍然会继续检测本子帧中fast DCI。例如,两级DCI中第一级DCI和第二级DCI共同构成完整的调度信息时,第一级和第二级DCI都包含资源分配信息并且第二级资源分配是在第一级资源分配基础上进行指示的。当两级DCI中第二级DCI包含完整的调度信息时,第一级DCI和第二级DCI都包含资源分配信息并且第二级资源分配并不依赖于第一级资源分配。或者第一级DCI包含指示第二级DCI所需的检测信息以降低第二级DCI检测复杂度,但是即使检测不到第一级DCI,终端仍然可以按照高层信令RRC或SIB配置的参数检测第二级DCI。For the above two modes, when the first-stage DCI and the second-level DCI in the two-stage DCI form a complete scheduling information, the terminal demodulates the slow DCI and skips to the next subframe to continue detecting the slow DCI without Detect the fast DCI in this sub-frame. When the second level of the two-stage DCI contains the complete scheduling information, the terminal demodulates the slow DCI and continues to detect the fast DCI in this subframe. For example, when the first-level DCI and the second-level DCI of the two-level DCI together form complete scheduling information, both the first-level and second-level DCIs contain resource allocation information and the second-level resource allocation is based on the first-level resource allocation. On the instructions. When the second-level DCI in the two-level DCI contains complete scheduling information, both the first-level DCI and the second-level DCI contain resource allocation information and the second-level resource allocation does not depend on the first-level resource allocation. Or the first-level DCI includes the detection information required to indicate the second-level DCI to reduce the second-level DCI detection complexity, but even if the first-level DCI is not detected, the terminal can still detect the parameters according to the high-level signaling RRC or SIB configuration. Second level DCI.
可选地,可以由基站(eNB)通过高层信令RRC或SIB通知使用上述两种方式其中之一或者预定义使用上述两种方式其中之一。Alternatively, one of the above two methods may be used by the base station (eNB) through the high layer signaling RRC or SIB notification or one of the above two methods may be predefined.
具体的,下行控制信息为一级DCI时,此时每个DCI都可以独立调度相应的业务信道,具有完整的调度信息,在没有基站配置检测sTTI时刻的情况下,默认每个sTTI中都需要检测该DCI。下行控制信息为两级DCI时,两级DCI指示业务信道调度信息为两级DCI中第一级和第二级共同构成完整的调度信息时,终端需要获得两级DCI中的信息才能够获得业务信道的调度信息。下行控制信息为两级DCI时,两级DCI指示业务信道调度信息为两级DCI中第二级包含完整调度信息时,终端需要只要获 得第二级DCI中的信息就能够获得业务信道的调度信息,此时第一级DCI中的信息为辅助第二级DCI检测的信息或者其他物理层的动态配置信息。其中第二级DCI也称为fast DCI。Specifically, when the downlink control information is the first-level DCI, each DCI can independently schedule the corresponding traffic channel, and has complete scheduling information. In the case that no base station configuration detects the sTTI time, the default is required in each sTTI. The DCI is detected. When the downlink control information is two-level DCI, the two-stage DCI indicates that the traffic channel scheduling information is that the first level and the second level of the two-level DCI form a complete scheduling information, and the terminal needs to obtain the information in the two-level DCI to obtain the service. Channel scheduling information. When the downlink control information is two-level DCI, the two-stage DCI indicates that the traffic channel scheduling information is that the second level of the two-level DCI includes complete scheduling information, and the terminal needs to obtain only The information in the second-level DCI can obtain the scheduling information of the traffic channel. At this time, the information in the first-level DCI is the information that assists the second-level DCI detection or the dynamic configuration information of other physical layers. The second-level DCI is also called fast DCI.
进一步,所述第一级DCI中包含以下信息至少之一:Further, the first level DCI includes at least one of the following information:
指示承载第二级DCI的sPDCCH检测时所需参数,所述第二级DCI包含调度sPDSCH和/或sPUSCH的第二级DCI,其中所述参数包含聚合等级、候选集数量、搜索空间频域位置、搜索空间时域位置、sPDCCH加扰初始值参数、sPDCCH使用的DMRS加扰初始值参数、sPDCCH传输模式、sPDCCH解调使用的DMRS端口至少之一;具体的,指示聚合等级为sPDCCH支持所有聚合等级中的部分聚合等级,优选1种。指示的候选集数量为各个聚合等级对应的所有候选集中的部分候选集,优选1种。指示的搜索空间频域位置为系统带宽或sTTI band中的部分RBG或PRB或REG位置。指示的搜索空间时域位置为子帧中或sTTI中部分OFDM符号位置。指示sPDCCH加扰初始值参数为UE-specific的
Figure PCTCN2017084279-appb-000013
或group-specific的
Figure PCTCN2017084279-appb-000014
对于公有消息无需指示使用小区ID。指示sPDCCH使用的DMRS加扰初始值参数为UE-specific的
Figure PCTCN2017084279-appb-000015
或group-specific的
Figure PCTCN2017084279-appb-000016
对于公有消息无需指示使用小区ID。指示sPDCCH传输模式为集中式传输、分布式传输、发送分集方式传输中至少之一。指示sPDCCH解调使用的DMRS端口,即eNB直接通过第一级DCI指示第二级DCI解调时使用的DMRS端口号,或者指示使用的端口号组合。
Determining parameters required for sPDCCH detection carrying a second level DCI, the second level DCI including a second level DCI scheduling sPDSCH and/or sPUSCH, wherein the parameters include an aggregation level, a number of candidate sets, and a search space frequency domain location At least one of a search space time domain location, an sPDCCH scrambling initial value parameter, a DMRS scrambling initial value parameter used by the sPDCCH, an sPDCCH transmission mode, and a DMRS port used for sPDCCH demodulation; specifically, indicating that the aggregation level is sPDCCH supporting all aggregations The partial polymerization level in the rank is preferably one. The number of candidate sets indicated is a partial candidate set of all candidate sets corresponding to each aggregation level, preferably one. The indicated search space frequency domain location is part of the RBG or PRB or REG location in the system bandwidth or sTTI band. The indicated search space time domain location is a partial OFDM symbol position in a subframe or in an sTTI. Instructing the sPDCCH scrambling initial value parameter to be UE-specific
Figure PCTCN2017084279-appb-000013
Or group-specific
Figure PCTCN2017084279-appb-000014
There is no need to indicate the use of a cell ID for public messages. Indicates that the DMRS scrambling initial value parameter used by the sPDCCH is UE-specific
Figure PCTCN2017084279-appb-000015
Or group-specific
Figure PCTCN2017084279-appb-000016
There is no need to indicate the use of a cell ID for public messages. The sPDCCH transmission mode is indicated to be at least one of a centralized transmission, a distributed transmission, and a transmit diversity transmission. Indicates the DMRS port used for sPDCCH demodulation, that is, the DMRS port number used by the eNB to directly indicate the second-level DCI demodulation through the first-stage DCI, or indicates the port number combination used.
指示承载第二级DCI的sPDCCH和/或sPDSCH速率匹配时的DMRS端口或预留RE,其中预留RE优选可以为所有DMRS端口对应的RE,或者其中占用相同RE的端口对应的RE;具体的,当sPDCCH和sPDSCH在具有重叠频域位置的区域中使用DMRS时,第一级DCI指示承载第二级DCI的sPDCCH和/或sPDSCH速率匹配时的DMRS端口,以使得承载第二级DCI的sPDCCH和/或sPDSCH在频域重叠区域中速率匹配时能够获知不用做解调但又存在的DMRS导频,使得eNB和终端在速率匹配时 理解一致。Indicates a DMRS port or a reserved RE when the sPDCCH and/or the sPDSCH rate of the second-level DCI is matched, where the reserved RE is preferably an RE corresponding to all the DMRS ports, or an RE corresponding to the port occupying the same RE; When the sPDCCH and the sPDSCH use the DMRS in the region with the overlapping frequency domain locations, the first-level DCI indicates the DMRS port when the sPDCCH and/or the sPDSCH rate of the second-level DCI is matched, so that the sPDCCH carrying the second-level DCI is used. And/or the sPDSCH can know the DMRS pilot that does not need to be demodulated but exists in the rate matching in the frequency domain overlapping region, so that the eNB and the terminal match at the rate. Understand the same.
指示承载第二级DCI的sPDCCH和/或sPDSCH解调使用导频CRS and/or DMRS;具体的,第一级DCI指示承载第二级DCI的sPDCCH和/或sPDSCH解调使用导频是CRS或DMRS,或者同时使用CRS和DMRS。Indicating that the sPDCCH and/or sPDSCH demodulation carrying the second-level DCI uses the pilot CRS and/or DMRS; specifically, the first-stage DCI indicates that the sPDCCH and/or sPDSCH demodulation using the second-level DCI uses the pilot as a CRS or DMRS, or both CRS and DMRS.
指示sPDSCH的传输模式;具体的,第一级DCI指示该子帧中的sPDSCH传输模式。Indicates a transmission mode of the sPDSCH; specifically, the first-level DCI indicates an sPDSCH transmission mode in the subframe.
指示承载第二级DCI的sPDCCH和/或sPDSCH基于CRS解调时是否使用DMRS;具体的,第一级DCI指示承载第二级DCI的sPDCCH和/或sPDSCH基于CRS解调时是否使用DMRS。Indicates whether the sPDCCH and/or the sPDSCH carrying the second-level DCI is used based on CRS demodulation; specifically, the first-level DCI indicates whether the sPDCCH and/or the sPDSCH carrying the second-level DCI is used based on CRS demodulation.
指示承载第二级DCI的sPDCCH和/或sPDSCH基于DMRS解调时是否使用CRS;具体的,第一级DCI指示承载第二级DCI的sPDCCH和/或sPDSCH基于DMRS解调时是否使用CRS。Indicates whether the CRS is used when the sPDCCH and/or the sPDSCH carrying the second-level DCI is demodulated based on the DMRS; specifically, the first-level DCI indicates whether the sPDCCH and/or the sPDSCH carrying the second-level DCI is used based on the DMRS demodulation.
指示承载第二级DCI的sPDCCH和/或sPDSCH解调时所使用的DMRS所在PRB位置。具体的,第一级DCI指示承载第二级DCI的sPDCCH和/或sPDSCH解调时所使用的DMRS所在PRB位置。Indicates the PRB location of the DMRS used when demodulating the sPDCCH and/or sPDSCH carrying the second-level DCI. Specifically, the first-level DCI indicates the PRB location of the DMRS used when the sPDCCH and/or sPDSCH carrying the second-level DCI is demodulated.
指示下行链路DL sTTI带宽频域位置和/或上行链路UL sTTI带宽频域位置;Indicating a downlink DL sTTI bandwidth frequency domain location and/or an uplink UL sTTI bandwidth frequency domain location;
指示DL sTTI的长度(length)和/或UL sTTI的长度(length);Indicates the length (length) of the DL sTTI and/or the length (length) of the UL sTTI;
指示DL sTTI绑定(bundling)传输个数和/或UL sTTI绑定(bundling)传输个数。Indicates the number of DL sTTI bundling transmissions and/or the number of UL sTTI bundling transmissions.
对于以上所涉及到的指示,当第一级DCI为non UE-specific信令时,指示用于non UE-specific的sPDCCH和或sPDSCH相关参数。当第一级DCI为UE-specific信令时,指示用于UE-specific的sPDCCH和或sPDSCH相关参数。For the indications referred to above, when the first level DCI is non UE-specific signaling, the sPDCCH and or sPDSCH related parameters for non UE-specific are indicated. When the first level DCI is UE-specific signaling, the sPDCCH and or sPDSCH related parameters for UE-specific are indicated.
更进一步,所述第一级DCI指示承载第二级DCI的sPDCCH检测时所需参数时,在RRC或SIB配置的参数基础上,指示该RRC或SIB配置 的参数的子集。所述子集可以包括参数种类的子集,和/或参数取值范围的子集。具体的,第二级DCI的sPDCCH检测时所需参数仍然由高层信令(SIB或RRC信令)配置,其中所述参数包含聚合等级、候选集数量、搜索空间频域位置、搜索空间时域位置、sPDCCH加扰初始值参数、sPDCCH使用的DMRS加扰初始值参数、sPDCCH传输模式、sPDCCH解调使用的DMRS端口至少之一,第一级DCI在高层信令SIB或RRC指示参数的基础上,指示缩减的或具体的参数,即指示高层信令SIB或RRC指示参数的子集,所述子集包括参数种类的子集,和或参数取值范围的子集。如在配置的聚合等级集合中指示1种或少数几种,在配置的候选集集合中指示1种少数几种,在配置的搜索空间频域位置中指示缩减的或具体的频域位置,在配置的搜索空间时域位置中指示缩减的或具体的时域位置。Further, when the first-level DCI indicates a parameter required for detecting the sPDCCH of the second-level DCI, indicating the RRC or SIB configuration based on the parameters of the RRC or SIB configuration. A subset of the parameters. The subset may include a subset of the parameter categories, and/or a subset of the parameter value ranges. Specifically, parameters required for sPDCCH detection of the second-level DCI are still configured by higher layer signaling (SIB or RRC signaling), where the parameters include an aggregation level, a number of candidate sets, a search space frequency domain location, and a search space time domain. At least one of a location, an sPDCCH scrambling initial value parameter, a DMRS scrambling initial value parameter used by the sPDCCH, an sPDCCH transmission mode, and a DMRS port used for sPDCCH demodulation, where the first level DCI is based on a high layer signaling SIB or an RRC indication parameter Indicates a reduced or specific parameter, ie, a subset indicating a high layer signaling SIB or RRC indication parameter, the subset including a subset of the parameter categories, and or a subset of the parameter value ranges. If one or a few are indicated in the configured aggregation level set, one type is indicated in the configured candidate set, and the reduced or specific frequency domain location is indicated in the configured search space frequency domain location. The configured search space time domain location indicates a reduced or specific time domain location.
进一步,所述第二级DCI中包含以下信息至少之一:Further, the second level DCI includes at least one of the following information:
在所述两级DCI共同构成完整调度信息时,第二级DCI中包含资源分配且在第一级DCI中资源分配基础上指示;具体的,在第一级DCI指示的本子帧中sTTI频域位置范围R的基础上,第二级DCI在该范围内指示支持大于等于1个UE在第一级DCI分配的资源R中占用全部或部分资源。例如使用3bits指示占用{1、1/2、1/4}R的资源,即7种可能,其中1/2R和1/4R可以集中占用或等间隔离散占用资源。When the two-level DCI is configured to form the complete scheduling information, the second-level DCI includes the resource allocation and is indicated on the basis of the resource allocation in the first-level DCI; specifically, the sTTI frequency domain in the current subframe indicated by the first-level DCI Based on the location range R, the second-level DCI indicates that the UE supports all or part of the resources in the resource R allocated by the first-level DCI. For example, 3 bits are used to indicate that resources occupying {1, 1/2, 1/4} R, that is, 7 possibilities, wherein 1/2R and 1/4R can occupy occupied resources at equal intervals or at equal intervals.
在所述两级DCI共同构成完整调度信息时,第二级DCI中包含资源分配且在第一级DCI中资源分配基础上指示;When the two levels of DCI together form complete scheduling information, the second level DCI includes resource allocation and is indicated on the basis of resource allocation in the first level DCI;
在所述两级DCI中的第二级包含完整的调度信息时,第二级DCI中包含资源分配;When the second level of the two-level DCI includes complete scheduling information, the second-level DCI includes resource allocation;
指示sPDSCH和/或sPUSCH资源分配信息;Indicating sPDSCH and/or sPUSCH resource allocation information;
指示sPDSCH速率匹配时的DMRS端口或预留RE,预留RE优选可以为所有DMRS端口对应的RE,或者其中占用相同RE的端口对应的RE;Indicates the DMRS port or the reserved RE when the sPDSCH rate is matched, and the reserved RE is preferably the RE corresponding to all the DMRS ports, or the RE corresponding to the port occupying the same RE;
指示sPDSCH解调时所使用的DMRS所在PRB位置。Indicates the PRB location of the DMRS used when sPDSCH demodulation.
指示sPDSCH速率匹配时的DMRS端口;具体的,当sPDCCH和 sPDSCH在具有重叠频域位置的区域中使用DMRS时,第二级DCI指示sPDSCH速率匹配时的DMRS端口,以使得sPDSCH在频域重叠区域中速率匹配时能够获知不用做解调但又存在的DMRS导频,使得eNB和终端在速率匹配时理解一致。Indicates the DMRS port when the sPDSCH rate matches; specifically, when sPDCCH and When the sPDSCH uses the DMRS in the area with the overlapping frequency domain position, the second-level DCI indicates the DMRS port when the sPDSCH rate matches, so that the sPDSCH can know the DMRS that does not need to be demodulated but exists in the rate matching in the frequency domain overlapping area. The pilots make the eNB and the terminal understand the consistency in rate matching.
指示sPDSCH解调时所使用的DMRS所在PRB位置。具体的,第二级DCI指示sPDSCH解调时所使用的DMRS所在PRB位置。Indicates the PRB location of the DMRS used when sPDSCH demodulation. Specifically, the second-level DCI indicates the PRB location of the DMRS used when the sPDSCH is demodulated.
指示下行链路DL sTTI带宽频域位置和/或上行链路UL sTTI带宽频域位置。Indicates a downlink DL sTTI bandwidth frequency domain location and/or an uplink UL sTTI bandwidth frequency domain location.
指示DL sTTI的长度和/或UL sTTI的长度。Indicates the length of the DL sTTI and/or the length of the UL sTTI.
指示DL sTTI绑定传输个数和/或UL sTTI绑定传输个数。Indicates the number of DL sTTI binding transmissions and/or the number of UL sTTI binding transmissions.
进一步,所述两级DCI中第一级DCI(也称为slow DCI)的更新周期由高层信令(SIB或RRC)配置。具体的,在第二级DCI(也称为fast DCI)具有完整调度信息的情况时,当某次slow DCI解调错误,但仍在更新周期范围内,使用之前的slow DCI指示,以降低fast DCI解调复杂度。优选的,更新周期为1ms、4ms、5ms、10ms、20ms、40ms、80ms、160ms、320ms中至少之一。Further, an update period of the first-level DCI (also referred to as a slow DCI) in the two-stage DCI is configured by higher layer signaling (SIB or RRC). Specifically, when the second-level DCI (also called fast DCI) has complete scheduling information, when a slow DCI demodulation error occurs, but is still within the update period range, the previous slow DCI indication is used to lower the fast DCI demodulation complexity. Preferably, the update period is at least one of 1 ms, 4 ms, 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, 160 ms, 320 ms.
进一步,所述sPDCCH基于DMRS解调时:Further, when the sPDCCH is demodulated based on DMRS:
该DMRS与本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH of the UE, the sPDSCH port usage principle includes at least one of the following:
在RI=1时使用与sPDCCH相同端口的DMRS;Use DMRS with the same port as sPDCCH when RI=1;
在RI=2时使用与sPDCCH的DMRS所在RE位置相同的端口;When RI=2, the same port as the RE location of the DMRS of the sPDCCH is used;
在RI>2时优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;When RI>2, the port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
结合sPDCCH传输方式通过DCI指示sPDSCH端口,例如,可以包括:DCI中指示sPDSCH端口使用时,sPDSCH单层传输时可以不指示,或者指示与sPDCCH使用DMRS所在RE相同的端口,sPDCCH使用port  x1,sPDSCH也使用port x1,或者使用与port x1相同RE位置的port x2。sPDSCH二层传输时可以不指示,根据sPDCCH传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选),或者指示与sPDCCH传输方式对应的端口,当sPDCCH传输方式使用port x1时,指示sPDSCH使用与port x1相同RE位置的port x1、x2,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2,或者与port y1相同RE位置的port y1、y2,或者使用port x1、y1(优选)。当sPDSCH使用大于二层传输时,可以不指示,根据传输方式使用相应的端口,当sPDCCH传输方式使用port x1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选),或者指示sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,当sPDCCH传输方式使用port x1、y1时,sPDSCH使用与port x1相同RE位置的port x1、x2、x3…,或者与port y1相同RE位置的port y1、y2、y3…,或者使用port x1、y1、x2、y2、…(优选);The sPDSCH port may be indicated by the DCI in combination with the sPDCCH transmission mode. For example, the sPDSCH port may be used when the sPDSCH port is used in the DCI, or the same port as the RE where the sPDCCH is used, and the sPDCCH port is used. X1, sPDSCH also uses port x1, or port x2 with the same RE position as port x1. The sPDSCH layer 2 transmission may not indicate, and the corresponding port is used according to the sPDCCH transmission mode. When the sPDCCH transmission mode uses the port x1, the sPDSCH uses the port x1 and x2 of the same RE position as the port x1, and the port x1 and y1 are used when the sPDCCH transmission mode is used. When the sPDSCH uses port x1, x2 of the same RE location as port x1, or port y1, y2 of the same RE location as port y1, or uses port x1, y1 (preferred), or indicates a port corresponding to the sPDCCH transmission mode, when When port x1 is used for the sPDCCH transmission method, the sPDSCH is instructed to use the ports x1 and x2 of the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1 and y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1, or Port y1 port y1, y2 at the same RE position, or port x1, y1 (preferred). When the sPDSCH uses more than Layer 2 transmission, it may not indicate that the corresponding port is used according to the transmission mode. When the sPDCCH transmission mode uses port x1, the sPDSCH uses the port x1, x2, x3, ... of the same RE position as the port x1, when the sPDCCH is transmitted. When port x1 and y1 are used, sPDSCH uses port x1, x2, x3, ... at the same RE position as port x1, or port y1, y2, y3, ... at the same RE position as port y1, or uses port x1, y1, x2. Y2, ... (preferably), or port x1, x2, x3, ... indicating that the sPDSCH uses the same RE position as the port x1, and when the sPDCCH transmission mode uses the ports x1, y1, the sPDSCH uses the port x1, x2 of the same RE position as the port x1 , x3..., or port y1, y2, y3... at the same RE position as port y1, or using ports x1, y1, x2, y2, ... (preferred);
具体的,假设sPDCCH使用DMRS端口类似ePDCCH。Specifically, it is assumed that the sPDCCH uses a DMRS port similar to ePDCCH.
图7是根据本公开优选实施例的sPDCCH仅在sTTI中第一个OFDM符号中部分sPRB中占用资源的示意图,如图7所示,sPDCCH仅在sTTI中第一个OFDM符号中部分sPRB中占用资源。假设PRB#48-49、36-37中由sPDCCH1占用,调度的sPDSCH1位于PRB#44-49、32-37。7 is a schematic diagram of an sPDCCH occupying resources only in a portion of an sPRB in a first OFDM symbol in an sTTI according to a preferred embodiment of the present disclosure. As shown in FIG. 7, the sPDCCH is only occupied in a portion of the sPRB in the first OFDM symbol in the sTTI. Resources. It is assumed that PRB#48-49 and 36-37 are occupied by sPDCCH1, and the scheduled sPDSCH1 is located at PRB#44-49, 32-37.
图8是根据本公开优选实施例的sPDCCH所在PRB中的DMRS需要与sPDSCH共用的示意图,图9是根据本公开优选实施例的sPDSCH所在部分PRB无需与sPDCCH共用DMRS的示意图,此时,如图8所示PRB#48-49、36-37中的DMRS可能需要与sPDSCH共用(在sPDSCH使用 CRS或sPDSCH使用独享的DMRS时无需共用),如图9所示PRB#44-47、32-35中的DMRS(如果sPDSCH使用DMRS)无需与sPDCCH共用。8 is a schematic diagram of a DMRS in a PRB where an sPDCCH is located in need of sharing with an sPDSCH according to a preferred embodiment of the present disclosure, and FIG. 9 is a schematic diagram of a part of a PRB in which a sPDSCH is located without sharing a DMRS with an sPDCCH according to a preferred embodiment of the present disclosure. DMRS in PRB #48-49, 36-37 shown in 8 may need to be shared with sPDSCH (used in sPDSCH) The CRS or sPDSCH does not need to be shared when using the exclusive DMRS. As shown in FIG. 9, the DMRSs in the PRBs #44-47 and 32-35 (if the sPDSCH uses the DMRS) need not be shared with the sPDCCH.
共用意味着两个信道需要以CDM方式使用相同RE位置上的DMRS。Sharing means that two channels need to use DMRS at the same RE location in CDM mode.
如果不共用,则sPDCCH与sPDSCH各自使用独立的DMRS RE,会使得sTTI中导频开销更大。If not shared, the sPDCCH and the sPDSCH each use an independent DMRS RE, which makes the pilot overhead in the sTTI larger.
当sPDSCH使用RI=1时,使用相同port;When sPDSCH uses RI=1, the same port is used;
sPDCCH集中式时如port7,sPDSCH也使用集中式port7,When sPDCCH is centralized, such as port7, sPDSCH also uses centralized port7.
sPDCCH使用分布式时port 7/9,sPDSCH也使用port7/9;sPDCCH uses distributed time port 7/9, sPDSCH also uses port7/9;
——相当于PDSCH也增加空间分集方式。- Equivalent to PDSCH also increases the way of spatial diversity.
当sPDSCH使用RI=2时:When sPDSCH uses RI=2:
当sPDCCH使用集中式时如port7,则sPDSCH其中一层与sPDCCH相同port7,另一层使用的port建议选择相同RE位置的port8;When the sPDCCH is centralized, such as port 7, the sPDSCH layer is the same as the sPDCCH port7, and the port used by the other layer is recommended to select the port 8 of the same RE location;
当sPDCCH使用分布式时如port7/9,则sPDSCH的两层分别使用port7和port9;When sPDCCH is distributed, such as port7/9, the two layers of sPDSCH use port7 and port9 respectively;
——相当于对PDSCH的第二层端口使用引入限制。原则为首先考虑开销,尽量使得sPDSCH使用DMRS开销不会在sPDCCH使用的DMRS开销基础上增加。- Equivalent to the introduction of restrictions on the second layer port of the PDSCH. The principle is to consider the overhead first, and try to make the DMRS overhead of the sPDSCH not increase based on the DMRS overhead used by the sPDCCH.
当sPDSCH使用RI>2时:When sPDSCH uses RI>2:
当sPDCCH使用集中式时如port7,则sPDSCH其中一层与sPDCCH相同port7,另一层使用的port建议优先选择相同RE位置的port8、11、13,再选择不同RE位置的port9、10、12、14;When the sPDCCH is centralized, such as port 7, the sPDSCH layer is the same as the sPDCCH port7, and the port used by the other layer is recommended to preferentially select ports 8, 11, and 13 of the same RE location, and then select ports 9, 10, and 12 of different RE locations. 14;
当sPDCCH使用分布式时如port7/9,则sPDSCH的port可以灵活选择。When the sPDCCH is distributed, such as port 7/9, the port of the sPDSCH can be flexibly selected.
——类似于RI=2,当RI>2时对PDSCH的端口使用可能引入限制。原则为首先考虑开销,尽量在满足RI要求的情况下使得sPDSCH使用DMRS开销不会在sPDCCH使用的DMRS开销基础上增加,当无法满足 RI要求时选择增加DMRS开销的资源位置。- Similar to RI = 2, the use of ports for PDSCH may introduce restrictions when RI > 2. The principle is to consider the overhead first, and try to make the DMRS overhead of the sPDSCH not increase based on the DMRS cost used by the sPDCCH when the RI requirement is met. When the RI requires, the resource location that increases the DMRS overhead is selected.
该DMRS与非本UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH that is not the UE, the sPDSCH port usage principle includes at least one of the following:
优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;The port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used secondly;
具体的,若sPDCCH使用DMRS端口7,则sPDSCH优先使用DMRS端口8、11、13,次优使用DMRS端口9、10、12、14。Specifically, if the sPDCCH uses the DMRS port 7, the sPDSCH preferentially uses the DMRS ports 8, 11, and 13, and the sub-optimal uses the DMRS ports 9, 10, 12, and 14.
更进一步,所述sPDCCH与sPDSCH共用的DMRS频域位置位于部分PRB时包括以下方式至少之一:Further, when the DMRS frequency domain location shared by the sPDCCH and the sPDSCH is located in the partial PRB, the method includes at least one of the following manners:
仅位于sPDCCH所在PRB中;例如,仅自包含sPDCCH所在PRB配置该UE的DMRS,此时对于sPDSCH的解调性能可能变差。其中,自包含sPDCCH优选在sPDSCH占用的PRB中分布式占用资源,使得DMRS尽量在频域上离散。Only in the PRB where the sPDCCH is located; for example, the DMRS of the UE is configured only from the PRB including the sPDCCH, and the demodulation performance for the sPDSCH may be deteriorated at this time. The sPDCCH is preferably distributed in the PRB occupied by the sPDSCH, so that the DMRS is dispersed in the frequency domain as much as possible.
至少位于sPDCCH所在PRB中;例如,除了自包含sPDCCH所在PRB配置该UE的DMRS以外,其他sPDSCH所在PRB中部分PRB中也配置该UE的DMRS。The DMRS of the UE is also configured in the PRB of the PRB where the sPDSCH is located, except for the DMRS in which the PDCCH is located in the PRB.
位于在sPDCCH或sPDSCH占用的PRB资源中等间隔选取的PRB中。例如:在max{sPDCCH占用PRB资源,sPDSCH占用PRB资源}中等间隔占用。间隔x个PRB,x为固定值或eNB通过高层信令或物理层信令配置的值。The PRB is located in the PRB of the intermediate interval of the PDCCH occupied by the sPDCCH or the sPDSCH. For example, the max{sPDCCH occupies the PRB resource, and the sPDSCH occupies the PRB resource}. The interval is x PRBs, where x is a fixed value or a value configured by the eNB through higher layer signaling or physical layer signaling.
上述DMRS所在PRB位置也可以由高层信令或物理层信令指示。The PRB location where the DMRS is located may also be indicated by higher layer signaling or physical layer signaling.
进一步,所述sPDCCH的加扰初始化方法为子帧中首个sTTI中与Legacy PDCCH加扰相同,子帧中后续sTTI中与Legacy PDCCH加扰不同。Further, the scrambling initialization method of the sPDCCH is the same as the legacy PDCCH scrambling in the first sTTI in the subframe, and the subsequent sTTI in the subframe is different from the legacy PDCCH scrambling.
具体的,基站侧发送sPDCCH时,加扰序列所使用的初始值确定方式包括以下至少之一。需要说明的是,下述方式(1)、(2)、(3)仅以sTTI为2个OFDM符号且在normal CP时为例,子帧中sTTI序号为0至6。 也适用于于其他长度的短TTI。如sTTI为7个OFDM符号,则子帧中sTTI序号为0至1。如sTTI为4-3-4-3个OFDM符号,则子帧中sTTI序号为0至3。以下公式中的cinit为加扰初始化值,ns为时隙号,
Figure PCTCN2017084279-appb-000017
为小区(Cell)的标识(ID)号。
Specifically, when the base station side sends the sPDCCH, the initial value determining manner used by the scrambling sequence includes at least one of the following. It should be noted that the following methods (1), (2), and (3) only take the sTTI as two OFDM symbols and the normal CP as an example, and the sTTI number in the subframe is 0 to 6. Also suitable for short TTIs of other lengths. If the sTTI is 7 OFDM symbols, the sTTI sequence number in the subframe is 0 to 1. If the sTTI is 4-3-4-3 OFDM symbols, the sTTI sequence number in the subframe is 0 to 3. The c init in the following formula is the scrambling initialization value, and n s is the slot number.
Figure PCTCN2017084279-appb-000017
It is the identification (ID) number of the cell.
(1)
Figure PCTCN2017084279-appb-000018
nTTI=0,1,…,6。
(1)
Figure PCTCN2017084279-appb-000018
n TTI =0, 1, ..., 6.
(2)
Figure PCTCN2017084279-appb-000019
nTTI=0,1,…,6。
(2)
Figure PCTCN2017084279-appb-000019
n TTI =0, 1, ..., 6.
(3)
Figure PCTCN2017084279-appb-000020
且信道编码后的b(i)与c(i)加扰时,使用截取的c序列。即
Figure PCTCN2017084279-appb-000021
改为
Figure PCTCN2017084279-appb-000022
其中A与sTTI长度、系统带宽、调制阶数、sTTI band宽度等至少之一有关,例如对于sPDCCH,sTTI=2OFDM符号,优选A=2400或4800。
(3)
Figure PCTCN2017084279-appb-000020
And when the channel-coded b(i) and c(i) are scrambled, the truncated c-sequence is used. which is
Figure PCTCN2017084279-appb-000021
Changed to
Figure PCTCN2017084279-appb-000022
Where A is related to at least one of sTTI length, system bandwidth, modulation order, sTTI band width, etc., for example, for sPDCCH, sTTI = 2 OFDM symbols, preferably A = 2400 or 4800.
该加扰方式在能够准确得知sTTI index的情况下,基于sTTI加扰相对于基于subframe加扰随机化效果好,同时又能够保证在子帧中Legacy PDCCH区域中的sPDCCH加扰不与PDCCH加扰冲突,实现后相兼容。The scrambling mode is better than the frame-based scrambling randomization method when the sTTI index can be accurately known, and the sPDCCH scrambling in the legacy PDCCH region in the subframe is not added to the PDCCH. Interference conflicts, compatible after implementation.
进一步的,若sPDCCH是UE-specific,此时使用C-RNTI或Group-RNTI代替
Figure PCTCN2017084279-appb-000023
生成加扰初始值,或者是RRC配置的UE-specific的参数值
Figure PCTCN2017084279-appb-000024
Further, if the sPDCCH is UE-specific, the C-RNTI or the Group-RNTI is used instead.
Figure PCTCN2017084279-appb-000023
Generate a scrambling initial value, or a RRC-configured UE-specific parameter value
Figure PCTCN2017084279-appb-000024
下面通过具体的实施例对上述方案进行进一步详细说明。The above scheme will be further described in detail below through specific embodiments.
优选实施例1 Preferred embodiment 1
(本优选实施例1通过两级DCI,实现调度PDSCH or sPDSCH)(This preferred embodiment 1 implements scheduling PDSCH or sPDSCH through two-level DCI)
基站通过两级DCI调度sPDSCH。第一级DCI中可选的包含指示sTTI band的频域占用位置,可选的包含指示sTTI长度/pattern。同时第一级DCI可以实现对sTTI UE灵活调度1ms PDSCH和sTTI sPDSCH。在第一级DCI中优选包含指示1ms TTI和sTTI调度标识指示。其中第一级DCI位于Legacy PDCCH区域中,或者第一个sTTI中,由Legacy PDCCH或sPDCCH承载。 The base station schedules the sPDSCH through two-stage DCI. The first-level DCI optionally includes a frequency domain occupied position indicating an sTTI band, and optionally includes an indication sTTI length/pattern. At the same time, the first-level DCI can flexibly schedule 1ms PDSCH and sTTI sPDSCH for the sTTI UE. Preferably, the indication of 1 ms TTI and sTTI scheduling identity is included in the first level of DCI. The first-level DCI is located in the Legacy PDCCH region, or is in the first sTTI, and is carried by the Legacy PDCCH or the sPDCCH.
其中第一级DCI(slow DCI)内容以表1为例,以调度下行业务信道为例。The first-level DCI (slow DCI) content is exemplified in Table 1, and the downlink traffic channel is scheduled as an example.
表1Format XTable 1 Format X
Figure PCTCN2017084279-appb-000025
Figure PCTCN2017084279-appb-000025
若基站调度sTTI中sPDSCH,则在sTTI中发送承载第二级DCI(fast DCI)的sPDCCH。其中,fast DCI内容以表2为例,以调度下行业务信道为例。其中资源分配3bit指示占用{1、1/2、1/4}R的资源,即7种可能,其中R/2和R/4可以集中占用或等间隔离散占用资源。例如,将R划分为16份,则R/2对应的2种可能为16份中偶数编号的一组,奇数编号的一组;R/4对应的4种可能为16份中编号{0、4、8、12}的一组,编号{1、5、9、13}的一组,编号{2、6、10、14}的一组,编号{3、7、11、15}的一组。If the base station schedules the sPDSCH in the sTTI, the sPDCCH carrying the second-level DCI (fast DCI) is transmitted in the sTTI. The fast DCI content is exemplified in Table 2, and the downlink traffic channel is scheduled as an example. The resource allocation 3 bits indicates that the resources occupying {1, 1/2, 1/4} R, that is, 7 kinds of possibilities, wherein R/2 and R/4 can occupy the resources or occupy the resources at equal intervals. For example, if R is divided into 16 parts, the two types corresponding to R/2 may be a group of even numbers of 16 parts, an odd numbered group; the four types corresponding to R/4 may be 16 parts of the number {0, A group of 4, 8, 12}, a group of numbers {1, 5, 9, 13}, a group of numbers {2, 6, 10, 14}, one of numbers {3, 7, 11, 15} group.
表2Format YTable 2 Format Y
Figure PCTCN2017084279-appb-000026
Figure PCTCN2017084279-appb-000026
Figure PCTCN2017084279-appb-000027
Figure PCTCN2017084279-appb-000027
终端在接收下行业务数据时,首先在Legacy PDCCH区域中解调slow DCI,当解调后根据flag判断为调度1ms PDSCH时,则不再接收检测fast DCI,根据调度信息接收检测子帧中PDSCH。当解调后根据flag判断为调度sTTI sPDSCH时,在sTTI中继续检测sPDCCH中承载的fast DCI。When receiving the downlink service data, the terminal first demodulates the slow DCI in the Legacy PDCCH region. When demodulating and determining that the PDSCH is scheduled according to the flag, the terminal no longer receives the detected fast DCI, and receives the PDSCH in the detection subframe according to the scheduling information. When it is determined by the flag that the sTTI sPDSCH is scheduled according to the flag, the fast DCI carried in the sPDCCH is continuously detected in the sTTI.
根据解调fast DCI中调度sPDSCH的信息,在sTTI中解调sPDSCH。The sPDSCH is demodulated in the sTTI according to the information of the scheduled sPDSCH in the demodulation fast DCI.
通过本实施例的方案,通过在两级DCI中第一级DCI增加区分调度1ms TTI还是sTTI的flag标识,使得sTTI终端在同一子帧中仅执行一种TTI长度的业务信道解调,而不必同时解调不同TTI长度的PDSCH,降低终端检测处理复杂度。保证时延需求。With the scheme of the embodiment, the first-level DCI in the two-level DCI is added to distinguish the 1ms TTI or the sTTI flag identifier, so that the sTTI terminal performs only one TTI length service channel demodulation in the same subframe, without At the same time, PDSCHs of different TTI lengths are demodulated to reduce the complexity of terminal detection processing. Guaranteed delay requirements.
优选实施例2 Preferred embodiment 2
(本优选实施例2中采用两级DCI,非独立或独立使用,用于指示fast DCI、传输模式、导频等。)(Two-stage DCI is used in the preferred embodiment 2, and is used independently or independently to indicate fast DCI, transmission mode, pilot, etc.)
基站通过两级DCI调度sPDSCH。第一级DCI中可选的包含指示sTTI band的频域占用位置,可选的包含指示sTTI长度/pattern,可选的包含sPDSCH传输模式,可选的包含sPDCCH和或sPDSCH使用的解调导频,可选的包含sPDCCH和或sPDSCH使用的DMRS所在PRB位置,可选的包含指示fast DCI相关检测所需参数。其中第一级DCI位于Legacy PDCCH区域中,或者第一个sTTI中,由Legacy PDCCH或sPDCCH承载。The base station schedules the sPDSCH through two-stage DCI. Optionally, the first-level DCI includes a frequency domain occupied position indicating an sTTI band, optionally including an indication sTTI length/pattern, optionally including an sPDSCH transmission mode, and optionally a demodulation pilot including sPDCCH and or sPDSCH. Optionally, the PRB location of the DMRS used by the sPDCCH and or the sPDSCH is optionally included, and optionally includes parameters required for fast DCI related detection. The first-level DCI is located in the Legacy PDCCH region, or is in the first sTTI, and is carried by the Legacy PDCCH or the sPDCCH.
其中第一级DCI(slow DCI)内容以表3为例,以调度下行业务信道为例。其中sPDSCH传输指示,可以基于已有的LTE传输模式(1-10)进行指示,或者基于sTTI UE使用的传输模式集合中进行指示,所述sTTI UE使用的传输模式集合可以是仅包含LTE已有的传输模式,或者也包含为sTTI UE新定义的传输模式。解调导频指示表示基于小区参考信号CRS还是基于UE解调参考信号DMRS。DMRS所在PRB位置仅在DMRS不是 位于每个PRB时使用,即在部分PRB中存在DMRS时,且不是固定位置时使用,指示在资源分配区域中,DMRS所在PRB位置,如按照等间隔x(个PRB)选取的部分PRB配置DMRS。Fast DCI检测参数指示具体包含聚合等级、候选集数量、搜索空间频域位置、搜索空间时域位置、sPDCCH加扰初始值参数、sPDCCH使用的DMRS加扰初始值参数、sPDCCH传输模式、sPDCCH解调使用的DMRS端口至少之一,或者在高层信令SIB或RRC配置的基础上指示部分参数的子集(例如缩减值或具体值)。The content of the first-level DCI (slow DCI) is exemplified in Table 3, and the downlink traffic channel is scheduled as an example. The sPDSCH transmission indication may be indicated based on the existing LTE transmission mode (1-10), or may be indicated in the transmission mode set used by the sTTI UE, and the transmission mode set used by the sTTI UE may be only included in the LTE. The transmission mode, or also the newly defined transmission mode for the sTTI UE. The demodulation pilot indication indicates whether the cell reference signal CRS or the UE demodulation reference signal DMRS is based. The PRB location where the DMRS is located is only in the DMRS. Used in each PRB, that is, when there is a DMRS in a part of the PRB, and is not used in a fixed location, indicating that the PRB location where the DMRS is located in the resource allocation area, such as a part of the PRB selected according to the equal interval x (PRB), configures the DMRS. . The Fast DCI detection parameter indication specifically includes an aggregation level, a number of candidate sets, a search space frequency domain location, a search space time domain location, an sPDCCH scrambling initial value parameter, a DMRS scrambling initial value parameter used by the sPDCCH, an sPDCCH transmission mode, and an sPDCCH demodulation. At least one of the DMRS ports used, or a subset of partial parameters (eg, a reduced value or a specific value), based on a higher layer signaling SIB or RRC configuration.
表3Format XTable 3 Format X
Figure PCTCN2017084279-appb-000028
Figure PCTCN2017084279-appb-000028
基站调度sTTI中sPDSCH,在sTTI中发送承载第二级DCI(fast DCI)的sPDCCH。其中,fast DCI内容以表4为例,以调度下行业务信道为例。当第一级指示了sTTI资源分配时,第二级DCI指示进一步的资源分配,例如3bit指示占用{1、1/2、1/4}R的资源,即7种可能,其中R/2和R/4可以集中占用或等间隔离散占用资源。当第二级DCI具体独立的sPDSCH调度信息时,则第二级中直接指示sPDSCH的资源分配信息。The base station schedules the sPDSCH in the sTTI, and transmits the sPDCCH carrying the second-level DCI (fast DCI) in the sTTI. The fast DCI content is exemplified in Table 4, and the downlink traffic channel is scheduled as an example. When the first level indicates the sTTI resource allocation, the second level DCI indicates further resource allocation, for example, 3 bits indicate that the resources occupying {1, 1/2, 1/4} R, that is, 7 possibilities, where R/2 and R/4 can occupy resources at equal intervals or at discrete intervals. When the second-level DCI is specifically independent of the sPDSCH scheduling information, the resource allocation information of the sPDSCH is directly indicated in the second level.
表4Format YTable 4 Format Y
Figure PCTCN2017084279-appb-000029
Figure PCTCN2017084279-appb-000029
Figure PCTCN2017084279-appb-000030
Figure PCTCN2017084279-appb-000030
终端在接收下行业务数据时,首先在Legacy PDCCH区域中解调slow DCI,当两级DCI共同构成完整调度信息时,终端在解调出第一级DCI的基础上,解调第二级DCI获得完整的sPDSCH解调指示参数。当两级DCI中第二级DCI包含完整的sPDSCH调度信息时,解调出第一级DCI可以使得解调第二级DCI更加快速,降低检测复杂度,否则第二级DCI检测在没有解调出第一级DCI时以较高的检测复杂度检测得到。当第二级DCI可以独立承载sPDSCH调度信息,第一级DCI可以不称为DCI,即就是一个物理层信令,通过指示降低DCI的检测复杂度。When receiving the downlink service data, the terminal first demodulates the slow DCI in the Legacy PDCCH region. When the two-stage DCI together constitutes the complete scheduling information, the terminal demodulates the second-level DCI based on the demodulation of the first-level DCI. Complete sPDSCH demodulation indicator parameters. When the second-level DCI in the two-stage DCI includes complete sPDSCH scheduling information, demodulating the first-level DCI can make the demodulation of the second-level DCI faster and reduce the detection complexity. Otherwise, the second-level DCI detection is not demodulated. When the first-level DCI is obtained, it is detected with a high detection complexity. When the second-level DCI can independently carry the sPDSCH scheduling information, the first-level DCI may not be referred to as DCI, that is, one physical layer signaling, and the detection complexity of the DCI is reduced by the indication.
根据解调fast DCI中调度sPDSCH的信息,在sTTI中解调sPDSCH。The sPDSCH is demodulated in the sTTI according to the information of the scheduled sPDSCH in the demodulation fast DCI.
通过本实施例的方案,通过在两级DCI中第一级DCI增加指示第二级DCI相关检测信息,使得sTTI终端在检测两级DCI时以较低的检测复杂度获得调度信息。通过在两级DCI中第一级DCI增加指示sPDCCH和或sPDSCH的传输模式、解调导频等信息,使得sTTI终端传输基于子帧级变的更新灵活。保证时延需求。With the solution of the embodiment, the first-level DCI is added to indicate the second-level DCI-related detection information in the two-level DCI, so that the sTTI terminal obtains the scheduling information with a lower detection complexity when detecting the two-level DCI. The sTTI terminal transmission is flexible based on the subframe level change by adding information indicating the transmission mode of the sPDCCH and or the sPDSCH, demodulation pilot, and the like in the first-stage DCI in the two-stage DCI. Guaranteed delay requirements.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。 Through the description of the above embodiments, those skilled in the art can clearly understand that the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation. Based on such understanding, portions of the technical solutions of the present disclosure that contribute substantially or to the prior art may be embodied in the form of a software product stored in a storage medium (eg, ROM/RAM, disk, The optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present disclosure.
实施例4Example 4
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:Embodiments of the present disclosure also provide a storage medium. Optionally, in the embodiment, the foregoing storage medium may be configured to store program code for performing the following steps:
步骤S102,通过legacy PDCCH、ePDCCH、sPDCCH中至少之一承载用于调度短发送时间间隔(sTTI)的终端(UE)的下行控制信息(DCI),所述legacy PDCCH、ePDCCH为LTE系统中的legacy PDCCH、ePDCCH,所述sPDCCH为sTTI中的物理下行控制信道;Step S102: The downlink control information (DCI) of the terminal (UE) for scheduling a short transmission time interval (sTTI) is carried by at least one of the legacy PDCCH, the ePDCCH, and the sPDCCH, where the legacy PDCCH and the ePDCCH are legacy in the LTE system. PDCCH, ePDCCH, the sPDCCH is a physical downlink control channel in the sTTI;
步骤S104,将承载的所述DCI发送至终端。Step S104, the bearer of the DCI is sent to the terminal.
其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
仅sTTI中的业务信道;Only the traffic channel in the sTTI;
sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:Optionally, the storage medium is further arranged to store program code for performing the following steps:
步骤S302,接收通过legacy PDCCH、ePDCCH、sPDCCH中至少之一承载的用于调度短发送时间间隔(sTTI)的终端(UE)的下行控制信息(DCI),所述legacy PDCCH、ePDCCH为LTE系统中的legacy PDCCH、ePDCCH,所述sPDCCH为sTTI中的物理下行控制信道;Step S302, receiving downlink control information (DCI) of a terminal (UE) for scheduling a short transmission time interval (sTTI) carried by at least one of a legacy PDCCH, an ePDCCH, and an sPDCCH, where the legacy PDCCH and the ePDCCH are in an LTE system. Legacy PDCCH, ePDCCH, the sPDCCH is a physical downlink control channel in the sTTI;
步骤S304,将承载的所述DCI发送至终端。Step S304, the bearer of the DCI is sent to the terminal.
其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
仅sTTI中的业务信道;Only the traffic channel in the sTTI;
sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介 质。Optionally, in this embodiment, the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory. Various kinds of programs that can store program code, such as a disc or a disc. quality.
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。For example, the specific examples in this embodiment may refer to the examples described in the foregoing embodiments and the optional embodiments, and details are not described herein again.
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。It will be apparent to those skilled in the art that the various modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。The above description is only a preferred embodiment of the present disclosure, and is not intended to limit the disclosure, and various changes and modifications may be made to the present disclosure. Any modifications, equivalent substitutions, improvements, etc., made within the spirit and scope of the present disclosure are intended to be included within the scope of the present disclosure.
工业实用性Industrial applicability
如上所述,本发明实施例提供的一种下行控制信息的传输方法、装置及系统具有以下有益效果:解决了相关技术中低时延通信场景中缺少支持短TTI及其相关业务调度的下行控制信息的问题,给出了支持短TTI调度以及其相关的不同长度TTI业务调度的实现方案,保证时延通信需求。 As described above, the method, device, and system for transmitting downlink control information provided by the embodiments of the present invention have the following beneficial effects: the downlink control lacking support for short TTI and related service scheduling in the low latency communication scenario in the related art is solved. The problem of information, the implementation scheme supporting short TTI scheduling and its related different length TTI service scheduling is given to ensure the delay communication requirement.

Claims (29)

  1. 一种下行控制信息的传输方法,包括:A method for transmitting downlink control information includes:
    通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载用于调度短发送时间间隔sTTI的终端UE的下行控制信息DCI,所述sPDCCH为sTTI中的物理下行控制信道;The downlink control information DCI of the terminal UE for scheduling the short transmission time interval sTTI is carried by at least one of the legacy physical downlink control channel legacy PDCCH, the enhanced physical downlink control channel ePDCCH, and the sPDCCH, where the sPDCCH is the physical downlink control channel in the sTTI ;
    将承载的所述DCI发送至终端;Transmitting the DCI that is carried to the terminal;
    其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
    仅sTTI中的业务信道;Only the traffic channel in the sTTI;
    sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
    sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
  2. 根据权利要求1所述的方法,其中,在所述DCI用于调度业务信道时,包括以下方式至少之一:The method of claim 1, wherein when the DCI is used to schedule a traffic channel, at least one of the following is included:
    所述用于调度sTTI的UE的DCI的大小与用于调度1ms PDSCH的DCI大小相同,并通过RNTI进行区分,包括通过不同类型的RNTI的不同取值进行区分、或者通过相同类型的RNTI的不同取值进行区分;The size of the DCI of the UE for scheduling the sTTI is the same as the DCI size for scheduling the 1 ms PDSCH, and is differentiated by the RNTI, including distinguishing by different values of different types of RNTIs, or by different RNTIs of the same type. Value to distinguish;
    所述用于调度sTTI的UE的DCI与用于调度1ms PDSCH的DCI位于不同搜索空间;The DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces;
    通过一级DCI或两级DCI的第一级DCI中的指示标识区分所述用于调度sTTI的UE的DCI是用于调度1ms TTI中的业务信道还是用于调度sTTI中的业务信道。The DCI of the UE for scheduling the sTTI is distinguished by the indication flag in the first-level DCI of the first-level DCI or the two-level DCI for scheduling the traffic channel in the 1 ms TTI or for scheduling the traffic channel in the sTTI.
  3. 根据权利要求2所述的方法,其中,所述1ms TTI中的业务信道承载的消息包括以下至少之一:The method according to claim 2, wherein the message carried by the traffic channel in the 1 ms TTI comprises at least one of the following:
    UE单播消息,或者小区广播消息,或者一组UE的公共消息, 或者小区级或一组UE的系统变更消息通知信息。UE unicast message, or cell broadcast message, or a group of UE public messages, Or system change message notification information of a cell level or a group of UEs.
  4. 根据权利要求1所述的方法,其中,所述下行控制信息为两级DCI时,通过以下至少之一的方式指示业务信道的调度信息:The method according to claim 1, wherein when the downlink control information is two-level DCI, the scheduling information of the traffic channel is indicated by at least one of the following:
    两级DCI中的第一级和第二级共同构成完整的调度信息;The first level and the second level in the two-level DCI together constitute complete scheduling information;
    两级DCI中的第二级包含完整的调度信息。The second level of the two-level DCI contains complete scheduling information.
  5. 根据权利要求4所述的方法,其中,还包括:The method of claim 4, further comprising:
    由eNB通过高层信令SIB或RRC通知使用所述方式其中之一或者预定义使用所述方式其中之一。One of the modes is used by the eNB through high layer signaling SIB or RRC notification or one of the modes is predefined.
  6. 根据权利要求4所述的方法,其中,所述两级DCI的第一级DCI中包含以下信息至少之一:The method according to claim 4, wherein the first level DCI of the two-level DCI includes at least one of the following information:
    指示承载第二级DCI的sPDCCH检测时所需参数的信息,所述第二级DCI包含调度sPDSCH和/或sPUSCH的第二级DCI;Indicates information about parameters required for sPDCCH detection of the second-level DCI, where the second-level DCI includes a second-level DCI that schedules sPDSCH and/or sPUSCH;
    指示承载第二级DCI的sPDCCH和/或sPDSCH速率匹配时的DMRS端口或预留RE的信息;Information indicating a DMRS port or a reserved RE when the sPDCCH and/or sPDSCH rate carrying the second-level DCI is matched;
    指示承载第二级DCI的sPDCCH和/或sPDSCH的解调使用导频CRS和/或DMRS的信息;Demodulating the sPDCCH and/or sPDSCH carrying the second-level DCI using information of the pilot CRS and/or DMRS;
    指示sPDSCH的传输模式的信息;Information indicating a transmission mode of the sPDSCH;
    指示承载第二级DCI的sPDCCH和/或sPDSCH基于CRS解调时是否使用DMRS的信息;Indicates whether the sPDCCH and/or the sPDSCH carrying the second-level DCI is based on whether the DMRS is used when demodulating the CRS;
    指示承载第二级DCI的sPDCCH和/或sPDSCH基于DMRS解调时是否使用CRS的信息; Indicates whether the sPDCCH and/or the sPDSCH carrying the second-level DCI is based on whether the CRS is used when demodulating the DMRS;
    指示承载第二级DCI的sPDCCH和/或sPDSCH解调时所使用的DMRS所在PRB位置的信息;Information indicating a PRB location where the DMRS used for demodulation of the sPDCCH and/or sPDSCH carrying the second-level DCI is located;
    指示下行链路DL sTTI带宽频域位置和/或上行链路UL sTTI带宽频域位置的信息;Information indicating a downlink DL sTTI bandwidth frequency domain location and/or an uplink UL sTTI bandwidth frequency domain location;
    指示DL sTTI的长度和/或UL sTTI的长度的信息;Information indicating the length of the DL sTTI and/or the length of the UL sTTI;
    指示DL sTTI绑定传输个数和/或UL sTTI绑定传输个数的信息。Indicates the number of DL sTTI binding transmissions and/or the number of UL sTTI binding transmissions.
  7. 根据权利要求6所述的方法,其中,所述承载第二级DCI的sPDCCH检测时所需参数包括以下至少之一:The method according to claim 6, wherein the parameters required for detecting the sPDCCH carrying the second-level DCI include at least one of the following:
    聚合等级、候选集数量、搜索空间频域位置、搜索空间时域位置、sPDCCH加扰参数、sPDCCH使用的DMRS加扰参数、sPDCCH传输模式、sPDCCH解调使用的DMRS端口。Aggregation level, number of candidate sets, search space frequency domain location, search space time domain location, sPDCCH scrambling parameter, DMRS scrambling parameter used by sPDCCH, sPDCCH transmission mode, DMRS port used for sPDCCH demodulation.
  8. 根据权利要求6所述的方法,其中,在所述两级DCI的第一级DCI包含指示承载第二级DCI的sPDCCH检测时所需参数的信息时,所述第一级DCI在RRC或SIB配置的参数基础上,指示所述RRC或SIB配置的参数的子集,所述子集包括参数种类的子集,和/或参数取值范围的子集。The method according to claim 6, wherein when the first-level DCI of the two-level DCI includes information indicating a parameter required for sPDCCH detection of a second-level DCI, the first-level DCI is in RRC or SIB. Based on the configured parameters, a subset of the parameters of the RRC or SIB configuration is indicated, the subset comprising a subset of the parameter categories, and/or a subset of the parameter value ranges.
  9. 根据权利要求4所述的方法,其中,所述两级DCI的第二级DCI中包含以下信息至少之一:The method of claim 4, wherein the second level of DCI of the two-level DCI includes at least one of the following information:
    在所述两级DCI共同构成完整调度信息时,所述第二级DCI中包含资源分配的信息且在第一级DCI中的资源分配的基础上指示;When the two levels of DCI together form complete scheduling information, the second level DCI includes information about resource allocation and is indicated on the basis of resource allocation in the first level DCI;
    在所述两级DCI中的第二级包含完整的调度信息时,所述第二级DCI中包含资源分配的信息;When the second level of the two-level DCI includes complete scheduling information, the second-level DCI includes information about resource allocation;
    指示sPDSCH和/或sPUSCH资源分配信息; Indicating sPDSCH and/or sPUSCH resource allocation information;
    指示sPDSCH速率匹配时的DMRS端口或预留RE的信息;Information indicating a DMRS port or a reserved RE when the sPDSCH rate matches;
    指示sPDSCH解调时所使用的DMRS所在PRB位置的信息;Information indicating the location of the PRB where the DMRS is used for sPDSCH demodulation;
    指示DL sTTI的长度和/或UL sTTI的长度的信息;Information indicating the length of the DL sTTI and/or the length of the UL sTTI;
    指示DL sTTI绑定传输个数和/或UL sTTI绑定传输个数的信息。Indicates the number of DL sTTI binding transmissions and/or the number of UL sTTI binding transmissions.
  10. 根据权利要求4所述的方法,其中,所述两级DCI中的第一级DCI的更新周期由高层信令SIB或RRC配置。The method of claim 4, wherein an update period of the first level of DCI in the two-level DCI is configured by higher layer signaling SIB or RRC.
  11. 根据权利要求1所述的方法,其中,在所述sPDCCH基于DMRS解调的情况下,所述方法还包括:The method of claim 1, wherein, in the case that the sPDCCH is based on DMRS demodulation, the method further comprises:
    当所述DMRS与所述UE的sPDSCH共用时,sPDSCH端口的使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH of the UE, the usage principle of the sPDSCH port includes at least one of the following:
    在RI=1时使用与sPDCCH相同端口的DMRS;在RI=2时使用与sPDCCH的DMRS所在RE位置相同的端口;在RI>2时优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口;结合sPDCCH传输方式通过DCI指示sPDSCH端口;The DMRS of the same port as the sPDCCH is used when RI=1; the same port as the RE of the DMRS of the sPDCCH is used when RI=2; the same port as the RE of the DMRS of the sPDCCH is preferentially used when RI>2, and then used. a port different from the RE location of the DMRS of the sPDCCH; indicating the sPDSCH port by DCI in combination with the sPDCCH transmission mode;
    当所述DMRS与非所述UE的sPDSCH共用时,sPDSCH端口使用原则包含以下至少之一:When the DMRS is shared with the sPDSCH that is not the UE, the sPDSCH port usage principle includes at least one of the following:
    优先使用与sPDCCH的DMRS所在RE位置相同的端口,其次使用与sPDCCH的DMRS所在RE位置不同的端口。The port with the same RE location as the DMRS of the sPDCCH is preferentially used, and the port with the RE location of the DMRS of the sPDCCH is used next.
  12. 根据权利要求11所述的方法,其中,所述DMRS资源位置根据sPDCCH与sPDSCH是否共用DMRS采用不同的占用方式。The method according to claim 11, wherein the DMRS resource location adopts different occupation manners according to whether the sPDCCH and the sPDSCH share the DMRS.
  13. 根据权利要求11所述的方法,其中,在所述sPDCCH与 sPDSCH共用的DMRS频域位置位于部分PRB时,所述sPDCCH与sPDSCH共用的DMRS频域位置包括以下至少之一:The method of claim 11 wherein said sPDCCH is When the DMRS frequency domain location shared by the sPDSCH is located in a part of the PRB, the DMRS frequency domain location shared by the sPDCCH and the sPDSCH includes at least one of the following:
    仅位于sPDCCH所在PRB中;Only in the PRB where the sPDCCH is located;
    至少位于sPDCCH所在PRB中;At least in the PRB where the sPDCCH is located;
    位于在sPDCCH或sPDSCH占用的PRB资源中等间隔选取的PRB中。The PRB is located in the PRB of the intermediate interval of the PDCCH occupied by the sPDCCH or the sPDSCH.
  14. 根据权利要求1所述的方法,其中,所述sPDCCH的加扰初始化方法包括:The method according to claim 1, wherein the scrambling initialization method of the sPDCCH comprises:
    所述sPDCCH的加扰初始化方法为子帧中或无线帧中每个sTTI独立加扰,其中子帧中首个sTTI中或Legacy PDCCH区域中的sPDCCH加扰初始化满足
    Figure PCTCN2017084279-appb-100001
    cinit为加扰初始化值,ns为时隙号,
    Figure PCTCN2017084279-appb-100002
    为小区标识号。
    The scrambling initialization method of the sPDCCH is independently scrambled in a subframe or in each sTTI in a radio frame, where the sPDCCH scrambling initialization in the first sTTI or the Legacy PDCCH region in the subframe satisfies
    Figure PCTCN2017084279-appb-100001
    c init is the scrambling initialization value, n s is the slot number,
    Figure PCTCN2017084279-appb-100002
    Is the cell identification number.
  15. 根据权利要求1所述的方法,其中,在所述DCI用于调度1ms TTI中的业务信道时,支持处理时延降低的1ms TTI业务信道的调度或处理时延不降低的1ms TTI业务信道的调度,调度方式包括以下至少之一:The method according to claim 1, wherein when the DCI is used for scheduling a traffic channel in a 1 ms TTI, a scheduling or processing delay of a 1 ms TTI traffic channel with reduced processing delay is supported, and a 1 ms TTI traffic channel is not reduced. Scheduling and scheduling methods include at least one of the following:
    1ms TTI时延降低与1ms TTI时延不降低使用统一DCI,且在通过DCI中的内容隐含确定为TBS的值小于预设TBS门限值时,执行1ms TTI时延降低,否则执行1ms TTI时延不降低;The 1ms TTI delay is reduced and the 1ms TTI delay is not reduced. The unified DCI is used. When the content in the DCI is implicitly determined to be less than the preset TBS threshold, the 1ms TTI delay is reduced. Otherwise, the 1ms TTI is executed. The delay does not decrease;
    1ms TTI时延降低与1ms TTI时延不降低使用统一DCI,且通过DCI中独立比特域显示指示是否执行1ms TTI时延降低;The 1 ms TTI delay is reduced and the 1 ms TTI delay is not reduced. The unified DCI is used, and the independent bit field display in the DCI indicates whether to perform the 1 ms TTI delay reduction;
    1ms TTI时延降低与1ms TTI时延不降低使用各自的DCI格式。The 1ms TTI delay is reduced with the 1ms TTI delay without using the respective DCI format.
  16. 根据权利要求15所述的方法,其中,在通过所述DCI调度 1ms TTI业务信道时,还包括:通过高层信令SIB或RRC配置是否执行1ms TTI时延降低。The method of claim 15 wherein the DCI is scheduled to pass The 1 ms TTI service channel further includes: whether to perform a 1 ms TTI delay reduction by using the high layer signaling SIB or RRC configuration.
  17. 根据权利要求15所述的方法,其中,所述1ms TTI处理时延降低时,上行数据调度时延或下行数据反馈时延k满足0<k<4且为整数,且k的取值方式包括以下至少之一:The method according to claim 15, wherein when the 1 ms TTI processing delay is decreased, the uplink data scheduling delay or the downlink data feedback delay k satisfies 0<k<4 and is an integer, and the value of k includes At least one of the following:
    eNB和UE侧使用相同的固定k值,或eNB和UE侧分别使用不同的固定k值;下行和上行使用相同的固定k值,或下行和上行分别使用不同的固定k值;The eNB and the UE side use the same fixed k value, or the eNB and the UE side respectively use different fixed k values; the downlink and uplink use the same fixed k value, or the downlink and uplink respectively use different fixed k values;
    通过DCI或SIB或RRC对eNB和UE侧通知相同的k值,或通过DCI或SIB或RRC对eNB和UE侧通知不同的k值;通过DCI或SIB或RRC对下行和上行通知相同的k值,或通过DCI或SIB或RRC对下行和上行通知不同的k值。The eNB and the UE side are notified of the same k value by DCI or SIB or RRC, or the eNB and the UE side are notified of different k values by DCI or SIB or RRC; the same k value is notified to the downlink and uplink by DCI or SIB or RRC , or notify the downlink and uplink of different k values through DCI or SIB or RRC.
  18. 根据权利要求1所述的方法,其中,所述DCI用于调度1ms TTI时延降低或sTTI的上行业务信道时,指示上行HARQ进程号和/或冗余版本RV包括以下方式至少之一:The method according to claim 1, wherein when the DCI is used to schedule an uplink traffic channel with a 1 ms TTI delay reduction or sTTI, indicating an uplink HARQ process number and/or a redundancy version RV includes at least one of the following manners:
    使用1ms TTI时延不降低时DCI中的固定比特域进行重新解释后进行指示;When the 1 ms TTI delay is not lowered, the fixed bit field in the DCI is reinterpreted and then indicated;
    通过DCI中独立比特域指示;Indicated by an independent bit field in the DCI;
    通过不同的RNTI取值加扰CRC隐含指示。The CRC implicit indication is scrambled by different RNTI values.
  19. 根据权利要求1所述的方法,其中,在所述DCI为单级DCI或两级DCI中任何一级DCI时,指示未使用的sPDCCH资源方式包括以下方式至少之一:The method according to claim 1, wherein when the DCI is a single-level DCI or any one-level DCI in a two-level DCI, indicating an unused sPDCCH resource manner includes at least one of the following manners:
    当sPDSCH频域范围中仅包括调度所述sPDSCH的sPDCCH时 或当搜索空间中仅有1个sPDCCH时,默认在该sPDSCH频域范围内除该sPDCCH以外的其他资源均允许使用,或在DCI中通过1bit指示该sPDCCH所在搜索空间内剩余资源是否允许使用;When only the sPDCCH scheduling the sPDCCH is included in the sPDSCH frequency domain range Or when there is only one sPDCCH in the search space, by default, other resources except the sPDCCH are allowed to be used in the sPDSCH frequency domain, or 1 bit in the DCI is used to indicate whether the remaining resources in the search space where the sPDCCH is located are allowed to be used;
    当搜索空间中有多个sPDCCH时,在候选集占满该搜索空间时指示未使用的候选集;在控制信道单元占满该搜索空间时指示未使用的控制信道单元;在资源单元组或资源块占满该搜索空间时指示未使用的资源单元组或资源块;在资源单元占满该搜索空间时指示未使用的资源单元。When there are multiple sPDCCHs in the search space, the candidate set is indicated when the candidate set fills the search space; the unused control channel unit is indicated when the control channel unit fills the search space; in the resource unit group or resource Indicates an unused resource unit group or resource block when the block fills the search space; indicates an unused resource unit when the resource unit fills the search space.
  20. 根据权利要求19所述的方法,其中,所述指示对应的指示范围包括以下至少之一:The method of claim 19, wherein the indication corresponding indication range comprises at least one of the following:
    在sPDSCH频域范围中指示sPDCCH未使用的资源;Indicates resources that are not used by the sPDCCH in the sPDSCH frequency domain range;
    在sTTI band频域范围中指示sPDCCH未使用的资源;Indicates, in the sTTI band frequency domain range, resources that are not used by the sPDCCH;
    在sPDCCH所在搜索空间SS中指示sPDCCH未使用的资源;Indicates, in the search space SS where the sPDCCH is located, a resource that is not used by the sPDCCH;
    在所有SS或sTTI band频域范围中指示sPDCCH没有使用的资源。Resources that are not used by the sPDCCH are indicated in all SS or sTTI band frequency domain ranges.
  21. 根据权利要求1所述的方法,其中,所述sPDCCH使用的短控制信道单元sCCE是由短资源单元组sREG组成的,组成方式包括以下方式中至少之一:The method according to claim 1, wherein the short control channel unit sCCE used by the sPDCCH is composed of a short resource unit group sREG, and the composition manner includes at least one of the following manners:
    1个sCCE由固定数量的sREG组成;1 sCCE consists of a fixed number of sREGs;
    根据预设条件的不同,1个sCCE由不同数量的sREG组成。According to different preset conditions, one sCCE is composed of different numbers of sREGs.
  22. 根据权利要求21所述的方法,其中,所述根据预设条件的不同,1个sCCE由不同数量的sREG组成包括: The method according to claim 21, wherein the one sCCE is composed of different numbers of sREGs according to different preset conditions, including:
    当有小区参考信号CRS时,1sCCE=4sREG;When there is a cell reference signal CRS, 1sCCE=4sREG;
    当没有CRS时,1sCCE=3sREG。When there is no CRS, 1sCCE = 3sREG.
  23. 根据权利要求1所述的方法,其中,在所述DCI调度sTTI中业务信道,且sTTI长度未知时,检测DCI的方式包括以下至少之一:The method according to claim 1, wherein when the DCI schedules a traffic channel in the sTTI and the sTTI length is unknown, the manner of detecting the DCI includes at least one of the following:
    按照不同sTTI长度对应的不同的sPDCCH检测位置分别尝试盲检;不同sTTI长度对应的sPDCCH检测位置相同但依据不同sTTI长度中各自的导频图样以不同速率匹配方式分别尝试解调;Performing blind detection according to different sPDCCH detection positions corresponding to different sTTI lengths; sPDCCH detection positions corresponding to different sTTI lengths are the same, but different demodulation attempts are respectively performed according to different pilot patterns in different sTTI lengths;
    不同sTTI长度对应的sPDCCH检测位置相同且依据在sPDCCH区域中同样位置的导频以同样的速率匹配方式尝试解调。The sPDCCH detection positions corresponding to different sTTI lengths are the same and the demodulation is attempted in the same rate matching manner according to the pilots in the same position in the sPDCCH region.
  24. 根据权利要求1所述的方法,其中,在所述DCI支持调度不同TTI长度和支持是否时延降低的业务信道时,所述DCI的使用方式至少包括以下之一:The method according to claim 1, wherein when the DCI supports scheduling different TTI lengths and supporting a time delay reduced traffic channel, the DCI is used in at least one of the following manners:
    所述TTI=2个OFDM符号、TTI=1个时隙、1ms TTI时延降低和1ms TTI时延不降低均使用相同DCI格式;The TCI=2 OFDM symbols, TTI=1 time slots, 1 ms TTI delay reduction, and 1 ms TTI delay are not reduced, all using the same DCI format;
    1ms TTI时延降低和1ms TTI时延不降低使用一种DCI格式,在TTI=2个OFDM符号和TTI=1个时隙使用另一种DCI格式或两级DCI;1 ms TTI delay reduction and 1 ms TTI delay does not decrease using one DCI format, using another DCI format or two-level DCI in TTI=2 OFDM symbols and TTI=1 slots;
    1ms TTI时延不降低使用一种DCI格式,TTI=2个OFDM符号、TTI=1个时隙和1ms TTI时延降低使用另一种DCI格式或两级DCI;1 ms TTI delay does not reduce the use of one DCI format, TTI = 2 OFDM symbols, TTI = 1 time slot and 1 ms TTI delay reduces the use of another DCI format or two-level DCI;
    1ms TTI时延降低、1ms TTI时延不降低和TTI=1个时隙使用一种DCI格式,TTI=2个OFDM符号使用另一种DCI格式或两级DCI;1 ms TTI delay is reduced, 1 ms TTI delay is not reduced, and TTI = 1 slot uses one DCI format, TTI = 2 OFDM symbols using another DCI format or two-level DCI;
    1ms TTI时延不降低使用一种DCI格式,1ms TTI时延降低使用另一种DCI格式,TTI=2个OFDM符号和TTI=1个时隙时使用再一 种DCI格式或两级DCI;1ms TTI delay does not decrease using one DCI format, 1ms TTI delay is reduced using another DCI format, TTI=2 OFDM symbols and TTI=1 slots use one more time a DCI format or a two-level DCI;
    1ms TTI时延不降低使用一种DCI格式,1ms TTI时延降低和TTI=1个时隙使用另一种DCI格式,TTI=2个OFDM符号使用再一种DCI格式或两级DCI。The 1ms TTI delay does not decrease using one DCI format, the 1ms TTI delay is reduced and the TTI = 1 slot uses another DCI format, and the TTI = 2 OFDM symbols use another DCI format or two-level DCI.
  25. 一种下行控制信息的传输方法,包括:A method for transmitting downlink control information includes:
    接收通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载的用于调度短发送时间间隔sTTI的终端UE的下行控制信息DCI,所述sPDCCH为sTTI中的物理下行控制信道;Receiving downlink control information DCI of a terminal UE for scheduling a short transmission time interval sTTI carried by at least one of a legacy physical downlink control channel legacy PDCCH, an enhanced physical downlink control channel ePDCCH, and an sPDCCH, where the sPDCCH is a physical downlink in the sTTI Control channel
    所述UE使用所述DCI进行调度;The UE uses the DCI for scheduling;
    其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
    仅sTTI中的业务信道;Only the traffic channel in the sTTI;
    sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
    sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
  26. 根据权利要求25所述的方法,其中,在所述DCI用于调度业务信道时,包括以下方式至少之一:The method of claim 25, wherein when the DCI is used to schedule a traffic channel, at least one of the following is included:
    所述用于调度sTTI的UE的DCI的大小与用于调度1ms PDSCH的DCI大小相同,并通过RNTI进行区分,包括通过不同类型的RNTI的不同取值进行区分、或者通过相同类型的RNTI的不同取值进行区分;The size of the DCI of the UE for scheduling the sTTI is the same as the DCI size for scheduling the 1 ms PDSCH, and is differentiated by the RNTI, including distinguishing by different values of different types of RNTIs, or by different RNTIs of the same type. Value to distinguish;
    所述用于调度sTTI的UE的DCI与用于调度1ms PDSCH的DCI位于不同搜索空间;The DCI of the UE for scheduling the sTTI and the DCI for scheduling the 1 ms PDSCH are located in different search spaces;
    通过一级DCI或两级DCI的第一级DCI中的指示标识区分所述用于调度sTTI的UE的DCI是用于调度1ms TTI中的业务信道还是 用于调度sTTI中的业务信道。Is the DCI of the UE for scheduling the sTTI differentiated by the indication flag in the first-level DCI of the first-level DCI or the two-level DCI for scheduling the traffic channel in the 1ms TTI or Used to schedule traffic channels in sTTI.
  27. 一种下行控制信息的传输装置,位于基站,包括:A transmission device for downlink control information, located at a base station, comprising:
    承载模块,设置为通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载用于调度短发送时间间隔sTTI的终端UE的下行控制信息DCI,所述sPDCCH为sTTI中的物理下行控制信道;The bearer module is configured to carry, by using at least one of the legacy physical downlink control channel legacy PDCCH, the enhanced physical downlink control channel ePDCCH, and the sPDCCH, the downlink control information DCI of the terminal UE for scheduling the short transmission time interval sTTI, where the sPDCCH is in the sTTI Physical downlink control channel;
    发送模块,设置为将承载的所述DCI发送至终端;a sending module, configured to send the DCI that is carried to the terminal;
    其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
    仅sTTI中的业务信道;Only the traffic channel in the sTTI;
    sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
    sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
  28. 一种下行控制信息的传输装置,位于终端UE,包括:A transmission device for downlink control information, located at the terminal UE, includes:
    接收模块,设置为接收通过传统物理下行控制信道legacy PDCCH、增强物理下行控制信道ePDCCH、sPDCCH中至少之一承载的用于调度短发送时间间隔sTTI的UE的下行控制信息DCI,所述sPDCCH为sTTI中的物理下行控制信道;The receiving module is configured to receive downlink control information DCI of the UE for scheduling the short transmission time interval sTTI carried by at least one of the legacy physical downlink control channel legacy PDCCH, the enhanced physical downlink control channel ePDCCH, and the sPDCCH, where the sPDCCH is sTTI Physical downlink control channel;
    调度模块,设置为使用所述DCI进行调度;a scheduling module, configured to use the DCI for scheduling;
    其中,所述DCI用于调度的业务信道包括以下至少之一:The service channel in which the DCI is used for scheduling includes at least one of the following:
    仅sTTI中的业务信道;Only the traffic channel in the sTTI;
    sTTI中的业务信道或1ms TTI中的业务信道;Traffic channel in sTTI or traffic channel in 1ms TTI;
    sTTI中的业务信道和1ms TTI中的业务信道。Traffic channel in sTTI and traffic channel in 1ms TTI.
  29. 一种下行控制信息的传输系统,包括如权利要求27所述的下行控制信息的传输装置,以及如权利要求28所述的下行控制信息的传输装置。 A transmission system for downlink control information, comprising: transmission device for downlink control information according to claim 27, and transmission device for downlink control information according to claim 28.
PCT/CN2017/084279 2016-05-13 2017-05-15 Method, device, and system for transmitting downlink control information WO2017194022A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610319202.1 2016-05-13
CN201610319202 2016-05-13
CN201610666794.4 2016-08-12
CN201610666794.4A CN107371272B (en) 2016-05-13 2016-08-12 Transmission method, device and system of downlink control information

Publications (1)

Publication Number Publication Date
WO2017194022A1 true WO2017194022A1 (en) 2017-11-16

Family

ID=60266678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084279 WO2017194022A1 (en) 2016-05-13 2017-05-15 Method, device, and system for transmitting downlink control information

Country Status (1)

Country Link
WO (1) WO2017194022A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095478A1 (en) * 2017-11-17 2019-05-23 华为技术有限公司 Downlink control information sending method, terminal device, and network device
CN110167181A (en) * 2018-02-12 2019-08-23 北京三星通信技术研究有限公司 A kind of transmission method and equipment of signal
CN110278059A (en) * 2018-03-13 2019-09-24 中兴通讯股份有限公司 Control channel transmission, detection method, device and equipment, storage medium
US20210007139A1 (en) 2018-02-12 2021-01-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink information
CN112688766A (en) * 2019-10-17 2021-04-20 大唐移动通信设备有限公司 Transmission method, device and terminal for uplink shared channel PUSCH
CN113424594A (en) * 2019-02-15 2021-09-21 华为技术有限公司 Information sending method and device
US11368258B2 (en) 2019-03-28 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Downlink data transmission method, terminal device, and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064049A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064049A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "DCI Design for Short TTI", 3GPP TSG RAN WG1 MEETING #84BIS R1-162588, 15 April 2016 (2016-04-15), XP051080276 *
ZTE: "Downlink Control Channels for Shortened TTI", 3GPPTSG RAN WG1 MEETING #84BIS R1-162405, 15 April 2016 (2016-04-15), XP051084281 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095478A1 (en) * 2017-11-17 2019-05-23 华为技术有限公司 Downlink control information sending method, terminal device, and network device
WO2019095334A1 (en) * 2017-11-17 2019-05-23 华为技术有限公司 Method for sending downlink control information, terminal device, and network device
US10992502B2 (en) 2017-11-17 2021-04-27 Huawei Technologies Co., Ltd. Method for sending downlink control information, terminal device, and network device
CN110167181A (en) * 2018-02-12 2019-08-23 北京三星通信技术研究有限公司 A kind of transmission method and equipment of signal
US20210007139A1 (en) 2018-02-12 2021-01-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink information
US11889296B2 (en) 2018-02-12 2024-01-30 Samsung Electronics Co., Ltd. Method and apparatus for transmitting uplink information
CN110278059A (en) * 2018-03-13 2019-09-24 中兴通讯股份有限公司 Control channel transmission, detection method, device and equipment, storage medium
EP3767861A4 (en) * 2018-03-13 2021-12-08 ZTE Corporation Control channel sending method, apparatus and device, detection method, apparatus and device, and storage medium
US11412500B2 (en) 2018-03-13 2022-08-09 Zte Corporation Method, apparatus and device for sending a control channel, method, apparatus and device for detecting a control channel, and storage medium
CN113424594A (en) * 2019-02-15 2021-09-21 华为技术有限公司 Information sending method and device
US11368258B2 (en) 2019-03-28 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Downlink data transmission method, terminal device, and storage medium
CN112688766A (en) * 2019-10-17 2021-04-20 大唐移动通信设备有限公司 Transmission method, device and terminal for uplink shared channel PUSCH

Similar Documents

Publication Publication Date Title
US11166285B2 (en) Downlink control channel configuration method and apparatus in wireless communication system for reducing power consumption of terminal
US10462778B2 (en) Method, base station, and user equipment for communicating downlink control information
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
CN107371272B (en) Transmission method, device and system of downlink control information
KR102616557B1 (en) A method and apparatus for transmission and reception of data and control information in wireless communication system
KR102366007B1 (en) Method and apparatus for adaptation of downlink control channel receiving time in wireless communication system
US9661624B2 (en) Resource allocation signalling
JP6615617B2 (en) Terminal apparatus, base station apparatus, and communication method
WO2017194022A1 (en) Method, device, and system for transmitting downlink control information
US9877290B2 (en) Communication method and system for physical uplink control channel resource assignment, and base station, user equipment and integrated circuit therein
US9276710B2 (en) Method and apparatus for resource allocation with carrier extension
US10778378B2 (en) Method and apparatus for transmitting uplink data in wireless communication system
EP3101975A1 (en) Terminal device, base station device, and communication method
KR102196315B1 (en) Method for receiving control information in wireless communication system and apparatus therefor
CN111030792B (en) Method and equipment for configuring search space of downlink control channel
KR102359788B1 (en) Method and apparatus for scheduling in wireless communication system providing widebandwidth service
KR20140142281A (en) Harq-ack signal transmission in response to detection of control channel type in case of multiple control channel types
US11039430B2 (en) Method and device for setting control and data channel transmission time in wireless communication system
US11653336B2 (en) Method and apparatus for transmitting and receiving downlink control information in wireless communication system
US11337188B2 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
US20200145141A1 (en) Method and device for transmitting control information in wireless cellular communication system
US11569944B2 (en) Method for identifying a resource for repetitive transmission
US20210100024A1 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
US11432272B2 (en) Assignment of short physical downlink control channel (sPDCCH) candidates for short transmission time interval (sTTI)
US11202305B2 (en) Method and apparatus for transmission and reception of data channel in wireless communication system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795640

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795640

Country of ref document: EP

Kind code of ref document: A1