WO2017193320A1 - 一种睡眠监测仪 - Google Patents

一种睡眠监测仪 Download PDF

Info

Publication number
WO2017193320A1
WO2017193320A1 PCT/CN2016/081793 CN2016081793W WO2017193320A1 WO 2017193320 A1 WO2017193320 A1 WO 2017193320A1 CN 2016081793 W CN2016081793 W CN 2016081793W WO 2017193320 A1 WO2017193320 A1 WO 2017193320A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleep monitor
pulse
sensor
arch
filter
Prior art date
Application number
PCT/CN2016/081793
Other languages
English (en)
French (fr)
Inventor
覃国秘
谭和华
罗辉
钟志威
李耀军
李光煌
Original Assignee
深圳市赛亿科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市赛亿科技开发有限公司 filed Critical 深圳市赛亿科技开发有限公司
Priority to CN201680039102.1A priority Critical patent/CN107847155A/zh
Priority to PCT/CN2016/081793 priority patent/WO2017193320A1/zh
Publication of WO2017193320A1 publication Critical patent/WO2017193320A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present invention relates to the field of sleep state detection technologies, and in particular, to a sleep monitor.
  • the general monitoring sleep device is a wristband worn on the wrist, and the parameters fed back by the acceleration sensor in the wristband determine whether the user has turned over during sleep, and the magnitude and frequency of the turning over to determine the use.
  • the quality of sleep, and further, some bracelets can monitor the heartbeat frequency of the user while sleeping by monitoring the pulse on the wrist, thereby increasing the basis for judging the quality of sleep.
  • this kind of smart bracelet must be worn on the hand to monitor the quality of sleep, which brings a lot of discomfort to the user, and the acceleration sensor in the wristband can only monitor the activity of the hand during sleep, and judge by the activity of the hand. The activity of the entire body is less accurate.
  • the present invention proposes a sleep monitor that measures the sleep quality of a user with high accuracy and without wearing on the user's body.
  • a sleep monitor includes a control circuit board, a breathing sensor, and a pulse sensor
  • the control circuit board includes a microprocessor, a wireless communication module for communicating with the mobile terminal, and an electronic circuit
  • the respiratory sensor and the pulse sensor respectively include a pressure An electrical module; when the piezoelectric module receives the stress of the user, generates an electrical signal, and the electrical signal is processed by the electronic circuit and transmitted to the microprocessor, and the microprocessor obtains user breathing after corresponding processing And pulse data, the user breathing and pulse data being transmitted to the mobile terminal via the wireless communication module.
  • the sleep monitor transmits the signal generated by the piezoelectric module to the microprocessor through the electronic circuit, and the microprocessor transmits the data of the user's breathing and pulse to the mobile terminal through the wireless communication module after corresponding processing.
  • the user's sleep condition is displayed on the mobile terminal.
  • the sleep monitor only The user's pressure is required to be used above, and the sensitivity is high and does not need to be worn on the user's body.
  • FIG. 1 is a schematic diagram of a sleep monitor of an embodiment
  • FIG. 2 is a schematic structural view of a respiratory sensor
  • FIG. 3 is a schematic structural view of a piezoelectric module
  • FIG. 4 is a schematic structural view of a pulse sensor
  • Figure 5 is a schematic view showing the structure of a head of a sleep monitor
  • Figure 6 is a schematic illustration of an electronic circuit 70 in a control circuit board.
  • a sleep monitor 1 has a long strip shape including a head 10 and a long strip 20.
  • the respiratory sensor 30 and the pulse sensor 40 are disposed in the elongated strip 20, and the number of the respiratory sensor 30 and the pulse sensor 40 is not limited herein. When there are a plurality of the respiratory sensor 30 and the pulse sensor 40, they are arranged in an array.
  • the long strip 20 is composed of a lightweight sheet material, and the end of the long strip 20 is connected to the leader 10.
  • FIG. 2 is a schematic structural view of the respiratory sensor 30.
  • the respiration sensor 30 is a double-sided arched structure comprising an arched upper portion 31 and an arched lower portion 32.
  • the upper portion 31 of the arch or the lower portion 32 of the arch has a piezoelectric module 33 having a rectangular structure.
  • the piezoelectric module 33 is made of a polyvinylidene fluoride (PVDF) polymer composite material and has high sensitivity.
  • PVDF polyvinylidene fluoride
  • FIG. 3 is a schematic structural diagram of the piezoelectric module 33.
  • the piezoelectric module 33 includes a PVDF material 331, an insulating film 332, an electrode 333, and a polyester film 334.
  • the periphery of the PVDF material 331 is surrounded by an insulating film 332.
  • a polyester film 334 coated with an electrode 333 is adhered to the upper and lower surfaces of the insulating film 332.
  • the electrode is preferably a constantan foil electrode, and the polyester film 334 ensures the electrode.
  • 333 has good electrical contact with the plating of PVDF material 331. Electrode 333 serves to protect and characterize the shape of PVDF material 331 to avoid short circuits. The electrode 333 is also used to transmit an electrical signal, and the electrode 333 is used with two wires 335. It is taken out and connected to the control circuit through the wire 335.
  • the upper portion of the arch of the breathing sensor and the lower portion of the arch are respectively arched in opposite directions, and the upper portion 31 of the arch and the lower portion 32 of the arch are combined into a spring structure, and under the action of the breathing, the upper portion of the arch 31 Stress is generated by the lower portion 32 of the arch, and the transmitted stress fluctuations are converted into electrical signals by the piezoelectric module 33, and the electrical signals are transmitted from the two followers 335 to the control circuit.
  • both the upper portion 31 of the arch and the lower portion 32 of the arch are subjected to stress, which improves the sensitivity of the sensor and the strength of the signal.
  • FIG. 4 is a schematic structural view of the pulse sensor 40.
  • the pulse sensor 40 employs a "thin shell” structure which is preferably a hyperbolic flat shell “thin shell”.
  • the pulse sensor 40 includes a piezoelectric module 43, a receiving groove 41 and a columnar hollow structure 42 under the piezoelectric module 43.
  • the columnar hollow structure 42 is placed inside the receiving groove 41, and the piezoelectric module 43 is placed on the side of the opening of the receiving groove 41.
  • the receiving groove is a rubber groove. Please refer to FIG. 3 for the structure of the piezoelectric module 43.
  • the stress generated by the pulse acts on the piezoelectric module 43, which converts the transmitted stress fluctuation into an electrical signal that is transmitted to the control circuit. Since the "thin shell" structure of the pulse sensor 40 is empty in the middle, the stress acts on the piezoelectric module 43, and the electrical signal strength outputted by the piezoelectric module can be improved, so that the piezoelectric module 43 is sensitive to the weak pulse signal. .
  • FIG. 5 is a schematic view of a structure of the head 10.
  • the control circuit board 11 is disposed in the head 10, and the control circuit board 11 includes a microprocessor 111, a wireless communication module 112, and an electronic circuit 70.
  • the piezoelectric module is connected to the control circuit board 11 by two wires 335 connected by electrodes.
  • the microprocessor 111 is electrically coupled to the wireless communication module 112.
  • the sleep monitor communicates with the corresponding application bound on the mobile terminal through the wireless communication module 112, and the wireless communication module 112 can be a Bluetooth wireless communication module.
  • FIG. 6 is a schematic diagram of the electronic circuit 70 in the control circuit board 11.
  • the electronic circuit 70 includes a charge amplifying circuit 71, a first filter 72, a voltage amplifying circuit 73, a second filter 74, a voltage boosting circuit 75, and an A/D converter 76.
  • the two wires 335 connected to the electrode 333 are connected to the control circuit board 11 with a charge amplifying circuit 71, a first filter 72, a voltage amplifying circuit 73, a second filter 74, a voltage boosting circuit 75 and an A/D converter. After 76, it is connected to the microprocessor 111.
  • the charge amplifying circuit 71 is used to convert the weak charge into a voltage proportional thereto; the first filter 72 is used to filter out other signals (because the PVDF module is detectable by many vibrations); the voltage amplifying module 73 It is used to amplify the filtered voltage; the second filter is used to filter out other signals and leave a pulse signal if it is a signal for detecting the pulse; if it is a signal for detecting the breath, filter out other signals. No., leaving a signal of breathing; the voltage boosting circuit 75 is used to boost the signal from the second filter to a positive value or more to facilitate the A/D converter 76 to acquire signals.
  • the first filter 72 and the second filter 74 are low pass filters, and preferably, the first filter 72 and the second filter 74 are second order Butterworth active low pass filters.
  • the breathing sensor 30 corresponds to an electronic circuit, the first filter and the second filter in the electronic circuit are used to filter other signals, leaving a signal of breathing; the pulse sensor 40 corresponds to an electronic circuit, and the first filtering in the electronic circuit The second filter and the second filter are used to filter other signals, leaving a pulse signal.
  • the piezoelectric module 33 and/or the piezoelectric module 43 When the piezoelectric module 33 and/or the piezoelectric module 43 receives the stress, the electrons are released to the periphery to generate an electrical signal. In the absence of the electric field, the piezoelectric equation of the piezoelectric module is:
  • D is the magnitude and direction of stress
  • d is the matrix of piezoelectric stress constants
  • is the amount of charge in the direction of the area of the PVDF material.
  • A is the area size of the PVDF material
  • K is the sensitivity constant of the PVDF material
  • the magnitude of the stress experienced by the PVDF material is proportional to the voltage value.
  • the voltage across the capacitor is monitored, and the relationship between the pressure and the voltage is used to derive the magnitude of the pressure experienced by the PVDF material, and the user's respiratory rate and pulse rate are determined by the change in the received pressure. .
  • the voltage curve generated only by the respiratory vibration is a signal similar to a sinusoid
  • the vibration voltage signal of the pulse is a tip pulse signal
  • the pressure at the respiratory frequency is monitored.
  • the other signals are filtered out in the electrical module and the electronic circuit to obtain the signal in the breathing cycle.
  • other signals are filtered out in the piezoelectric module and the electronic circuit for monitoring the pulse frequency, and the interval between each of the two tip pulses is obtained. It is a cycle of pulse vibration.
  • the microprocessor 111 can further filter the signal after receiving the signal from the respiration sensor or the pulse sensor.
  • the filtering of the microprocessor 111 has a good suppression of periodic interference and can filter the interference generated by the user's body shake.
  • the microprocessor 111 also determines whether the user has turned over based on the voltage generated by the piezoelectric module. When the user turns over, the part of the user that is in contact with the piezoelectric module will leave the monitor, and after a while, re-contact, after leaving the piezoelectric module, the piezoelectric module can not detect the vibration, and when the user touches the piezoelectric module again, In an instant, the piezoelectric module generates a huge voltage, and determines whether the user has turned over according to whether the piezoelectric module monitors the vibration after monitoring the vibration.
  • the sleep monitor in the embodiment of the present invention is activated by the mobile terminal application program, and the sleep monitor transmits the monitored respiratory frequency and heartbeat frequency to the mobile terminal through the wireless communication module 112, and the mobile terminal receives the received data.
  • the sleep monitor 1 has a battery for powering the sleep monitor, and the battery is connected to a USB interface to charge the battery.
  • the above sleep monitor can be used only when the user presses on it, the material is light and thin, the use comfort is high, and the carrying is convenient; the pulse and respiratory frequency are monitored by the new PVDF material, and the instrument is sensitive and accurate.
  • the sleep monitor has the advantages of being convenient to use and easy to promote.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种睡眠监测仪(1),所述睡眠监测仪(1)包括控制电路板(11)、呼吸传感器(30)、脉搏传感器(40),所述控制电路板(11)包括微处理器(111)、与移动终端进行通讯的无线通讯模块(112)、电子线路(70),所述呼吸传感器(30)和脉搏传感器(40)分别包括有压电模块(33,43);所述压电模块(33,43)接收到用户的应力时,产生电信号,所述电信号通过所述电子线路(70)处理后传输到所述微处理器(111),所述微处理器(111)经过相应处理后获得用户呼吸和脉搏的数据,所述用户呼吸和脉搏的数据通过所述无线通讯模块(112)传到所述移动终端。所述睡眠监测仪(1)准确率高且无需携带在使用者身上。

Description

一种睡眠监测仪 技术领域
本发明涉及睡眠状态检测技术领域,尤其涉及一种睡眠监测仪。
背景技术
当前人们工作生活的压力越来越大,从而极大地影响了睡眠质量,由此容易造成工作效率低下、乏力、代谢系统异常等问题,甚至会产生抑郁症等症状,更有甚者,已经有不少由于睡眠不足而产生猝死的案子。
目前一般的监测睡眠装置都是戴在手腕上的手环,通过手环中的加速度传感器反馈的参数来判定使用者在睡觉时是否有翻身,以及翻身的幅度和频率的大小等,以判断使用者的睡眠质量,更进一步的,有些手环可以通过监测手腕上的脉搏来监测使用者睡觉时的心跳频率,从而增加判断睡眠质量的依据。然而,这类智能手环必须戴在手上才能监测睡眠质量,给使用者带来了不少的不适,而且手环中的加速度传感器只能监测睡眠时手的活动,通过手的活动来判定整个身体的活动,准确度较低。
发明内容
本发明提出了一种准确率高且无需戴在使用者身体上的测量使用者睡眠质量的睡眠监测仪。
一种睡眠监测仪包括控制电路板、呼吸传感器、脉搏传感器,所述控制电路板包括微处理器、与移动终端进行通讯的无线通讯模块、电子线路,所述呼吸传感器和脉搏传感器分别包括有压电模块;所述压电模块接收到用户的应力时,产生电信号,所述电信号通过所述电子线路处理后传输到所述微处理器,所述微处理器经过相应处理后获得用户呼吸和脉搏的数据,所述用户呼吸和脉搏的数据通过所述无线通讯模块传到所述移动终端。
上述睡眠监测仪将压电模块产生的信号通过电子线路处理后传输到微处理器,微处理器经过相应处理后将用户呼吸和脉搏的数据通过所述无线通讯模块传到所述移动终端,在所述移动终端上显示用户的睡眠情况。该睡眠监测仪只 需用户的压在上面即可使用,灵敏度高且无需戴在用户身体上。
附图说明
为了更清楚的说明本发明实施例中的方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图得到其他的附图。
图1为一种实施例的睡眠监测仪示意图;
图2为呼吸传感器的结构示意图;
图3为压电模块的结构示意图;
图4为脉搏传感器的结构示意图;
图5为一种睡眠监测仪带头的结构示意图;
图6为控制电路板中电子线路70的一种示意图。
具体实施方式
为使本发明的目的、方案和优点更加清楚,下面将结合附图对本发明的具体实施方式作进一步地详细描述。
请参看图1,一种睡眠监测仪1呈扁长条带形状,包括带头10和长条带20。呼吸传感器30和脉搏传感器40设置于长条带20内,呼吸传感器30和脉搏传感器40的个数在这里不限制。当呼吸传感器30与脉搏传感器40有多个时,呈阵列排列。长条带20由轻型薄片材料构成,长条带20的一端连接有带头10。
图2为呼吸传感器30的一种结构示意图。请参看图2,呼吸传感器30为双面拱型结构,包括拱型的上部分31和拱型的下部分32。
拱型的上部分31或者拱型的下部分32上有压电模块33,该压电模块33为长方形结构。压电模块33是由聚偏二氟乙烯(PVDF)高分子复合材料所做成的,灵敏度高。请参看图3,图3为压电模块33的结构示意图。该压电模块33包括PVDF材料331、绝缘膜332、电极333、聚酯膜334。PVDF材料331的四周被一层绝缘膜332围住,绝缘膜332的上下两面各粘贴有一层镀有电极333的聚酯膜334,该电极优选为康铜箔电极,该聚酯膜334保证电极333与PVDF材料331的镀层有良好的电接触。电极333用以保护和定性PVDF材料331的形状,避免短路。电极333还用于传输电信号,电极333用两根导线335 引出,通过导线335接入到控制电路当中。
呼吸传感器的拱型的上部分和拱型下部分分别向相反的方向拱起,拱型的上部分31和拱型下部分32结合成一种弹簧结构,在呼吸作用下,拱型的上部分31和拱型下部分32都会产生应力,通过压电模块33将传递的应力波动转换成电信号,由两跟导线335将电信号传递到控制电路当中。呼吸传感器30的双面拱形结构当受到应力时,拱型的上部分31和拱型下部分32都会受到应力,提高了传感器的灵敏度和信号的强度。
图4为脉搏传感器40的一种结构示意图。请参看图4,脉搏传感器40采用“薄壳”结构,该“薄壳”结构优选为双曲扁壳“薄壳”。脉搏传感器40包括压电模块43、收容槽41和位于压电模块43下的柱状空心结构42,柱状空心结构42置于收容槽41的内部,压电模块43置于收容槽41开口的一侧,具体地,收容槽为橡胶槽。压电模块43的结构请参看图3。当使用脉搏传感器40时,脉搏产生的应力会作用在压电模块43上,压电模块43将传递的应力波动转换成电信号传递到控制电路中。脉搏传感器40的“薄壳”结构由于中间是空的,因此应力会全部作用在压电模块43上,可以提高压电模块输出的电信号强度,使得压电模块43对微弱的脉搏信号反映灵敏。
图5为带头10的一种结构示意图。请参看图5,控制电路板11设置于带头10内,控制电路板11包括微处理器111、无线通讯模块112以及电子线路70。压电模块通过电极连接的两根导线335与控制电路板11相连。微处理器111与无线通讯模块112电连接。该睡眠监测仪通过无线通讯模块112与移动终端上绑定的相应应用程序相互通讯,该无线通讯模块112可以为蓝牙无线通讯模块。
请参看图6,为控制电路板11中电子线路70的一种示意图。电子线路70包括电荷放大电路71、第一滤波器72、电压放大电路73、第二滤波器74、电压提升电路75、A/D转换器76。与电极333连接的两根导线335在控制电路板11上连接着电荷放大电路71、第一滤波器72、电压放大电路73、第二滤波器74,电压提升电路75和一个A/D转换器76后与微处理器111相连。其中,电荷放大电路71用于使微弱电荷变换成与其成正比的电压;第一滤波器72用于过滤掉其他的信号(因为PVDF模块是很多的震动都可以检测到的);电压放大模块73用于放大过滤后的电压;第二滤波器用于如果是检测脉搏的信号,过滤掉其他的信号,留下脉搏的信号;如果是检测呼吸的信号,过滤掉其他的信 号,留下呼吸的信号;电压提升电路75用于将第二滤波器出来的信号提升到正值以上,以方便A/D转换器76采集信号。具体地,第一滤波器72和第二滤波器74为低通滤波器,优选地,第一滤波器72和第二滤波器74为二阶巴特沃斯有源低通滤波器。
在本实施例中。呼吸传感器30对应有一电子线路,该电子线路中的第一滤波器和第二滤波器用来过滤其他的信号,留下呼吸的信号;脉搏传感器40对应有一电子线路,该电子线路中的第一滤波器和第二滤波器用来过滤其他的信号,留下脉搏的信号。
当压电模块33和/或压电模块43收到应力时,会向四周释放电子产生电信号,在没有电场的情况下,压电模块的压电方程为:
D=d·σ
其中:D为应力大小及方向,d为压电应力常数矩阵,σ为单位PVDF材料面积方向上的电荷大小。电荷放大电路中有一个电容,假设电容的值为C,电荷放大电路中电容两端的电压,假设为U,则电压与电荷之间的关系式为
Q=U/C
σ=Q/(A·K)
其中,A为PVDF材料的面积大小,K为PVDF材料的灵敏度常系数,从而得到应力与电压之间的关系式为
D=d·U/(A·K·C)
PVDF材料受到的应力大小与电压值成正比。
在本实施例中,通过监测电容两端的电压,并且利用压力与电压之间的关系式推算出PVDF材料所受到的压力的大小,并且通过所受的压力的变化来判断用户呼吸频率和脉搏频率。经过滤波后,由于呼吸的振动在一个周期内为连续振动,所以仅由呼吸振动产生的电压曲线为类似于正弦曲线的信号,而脉搏的振动电压信号为尖端脉冲信号,在监测呼吸频率的压电模块及电子线路中过滤掉其他的信号,得到呼吸周期中的信号;同理,在监测脉搏频率的压电模块及电子线路中过滤掉其他的信号,得到每两个尖端脉冲之间的区间即是一个脉搏振动的周期。
当用户压在长条带20上时,微处理器111接收到呼吸传感器或脉搏传感器的信号后,可对信号进行进一步的滤波。例如,微处理器111采用平均值滤波 法。具体地,微处理111将连续得到的n个数值作为一个数列,假设n=256;每当微处理器111得到一个新的数值时,就把该数列的最后一个值去掉,把新的数值放在数列的首位,使得n始终保持256个;数列256个值中,去掉一个最大值和一个最小值,对剩下的254个值求平均值;将得到的平均值作为输出值。微处理器111的滤波对周期性干扰有良好的抑制作用,能过滤用户身体抖动产生的干扰。
微处理器111还会根据压电模块产生的电压来判定用户是否有翻身的行为。当用户翻身时,用户原本与压电模块接触的部位会离开监测仪,片刻之后,再重新接触,在离开压电模块后,压电模块检测不到振动,而当用户重新接触压电模块的瞬间,压电模块会产生巨大的电压,根据压电模块是否在监测不到振动后又监测到剧烈振动来判定用户是否翻了身。
本发明实施例中的睡眠监测仪通过移动终端应用程序唤起后进行工作,该睡眠监测仪把监测到的呼吸频率和心跳频率通过无线通讯模块112发送至移动终端,移动终端通过接收到的数据来判断睡眠时间,以及浅睡和深睡的时间,并且根据深睡和浅睡的时间来判定睡眠质量的优劣,然后把判定的睡眠时间和睡眠质量的结果在移动终端应用程序界面上显示出来,达到监测睡眠质量的目的。
该睡眠监测仪1中有电池,用以该睡眠监测仪的供电,该电池连接着一个USB接口,可以对电池进行充电。
上述睡眠监测仪只需用户压在上面即可使用,材料轻薄、使用舒适度高,携带方便;采用新型PVDF材料监测脉搏和呼吸频率,仪器灵敏,准确度高。该睡眠监测仪具有使用方便、易于推广的优点。
以上实施例仅为说明本发明的技术方案,而非对其限制,本领域的普通技术人员应当理解,依然可对前述记载的各个实施例进行修改或者采用部分技术特征等同替换,而这些修改和替换并不脱离本发明的技术原理也视为本发明的保护范围。

Claims (10)

  1. 一种睡眠监测仪,其特征在于:包括控制电路板、呼吸传感器、脉搏传感器,所述控制电路板包括微处理器、与移动终端进行通讯的无线通讯模块、电子线路,所述呼吸传感器和脉搏传感器分别包括有压电模块;所述压电模块接收到用户的应力时,产生电信号,所述电信号通过所述电子线路处理后传输到所述微处理器,所述微处理器经过相应处理后获得用户呼吸和脉搏的数据,所述用户呼吸和脉搏的数据通过所述无线通讯模块传到所述移动终端。
  2. 如权利要求1所述的睡眠监测仪,其特征在于:所述压电模块包括压电材料、围住所述压电材料的绝缘膜、所述绝缘膜的上下两面各粘贴的一层镀有电极的聚酯膜,所述电极用两根导线引出用来传输电信号。
  3. 如权利要求2所述的睡眠监测仪,其特征在于:所述压电材料为聚偏二氟乙烯高分子复合材料。
  4. 如权利要求1所述的睡眠监测仪,其特征在于:所述电子线路包括电荷放大电路、与所述线性电荷放大电路连接着的第一滤波器、与所述第一滤波器连接着的电压放大电路、与所述电压放大电路连接着的第二滤波器、与所述第二滤波器连接着的电压提升电路、与所述电压提升电路连接着的A/D转换器,所述A/D转换器与所述微处理器相连。
  5. 如权利要求4所述的睡眠监测仪,其特征在于:所述第一滤波器和第二滤波器为二阶巴特沃斯有源低通滤波器。
  6. 如权利要求1所述的睡眠监测仪,其特征在于:所述脉搏传感器还包括收容槽、所述压电模块下的柱状空心结构,所述柱状空心结构置于所述收容槽的内部,所述压电模块置于所述收容槽开口的一侧。
  7. 如权利要求1所述的睡眠监测仪,其特征在于:所述呼吸传感器为双面拱型结构,包括拱型的上部分和拱型的下部分,拱型的上部分和拱型的下部分分别向相反的方向拱起;所述压电模块位于拱型的上部分或者拱型的下部分上。
  8. 如权利要求1所述的睡眠监测仪,其特征在于:所述睡眠监测仪中还包括电池,所述电池用于供电,所述电池连接着USB接口,通过USB接口对所述电池进行充电。
  9. 如权利要求1所述的睡眠监测仪,其特征在于:所述睡眠监测仪呈扁长条带形状,所述呼吸传感器和所述脉搏传感器设置在所述长条带内,所述长条带的一端连接有带头,所述控制电路板设置于所述带头内。
  10. 如权利要求1所述的睡眠监测仪,其特征在于:所述无线通讯模块为蓝牙 无线通讯模块。
PCT/CN2016/081793 2016-05-12 2016-05-12 一种睡眠监测仪 WO2017193320A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680039102.1A CN107847155A (zh) 2016-05-12 2016-05-12 一种睡眠监测仪
PCT/CN2016/081793 WO2017193320A1 (zh) 2016-05-12 2016-05-12 一种睡眠监测仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081793 WO2017193320A1 (zh) 2016-05-12 2016-05-12 一种睡眠监测仪

Publications (1)

Publication Number Publication Date
WO2017193320A1 true WO2017193320A1 (zh) 2017-11-16

Family

ID=60266015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081793 WO2017193320A1 (zh) 2016-05-12 2016-05-12 一种睡眠监测仪

Country Status (2)

Country Link
CN (1) CN107847155A (zh)
WO (1) WO2017193320A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115584A (zh) * 2019-03-06 2019-08-13 河南中医药大学第一附属医院 一种咳嗽呼吸监测系统
CN114176542A (zh) * 2021-12-24 2022-03-15 江西洪都航空工业集团有限责任公司 一种飞行员瞬间生理状态评估方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024273A1 (en) * 2007-08-21 2009-02-26 University College Dublin, National University Of Ireland, Dublin Method and system for monitoring sleep
CN102551725A (zh) * 2010-12-27 2012-07-11 深圳市迈迪加科技发展有限公司 一种新型呼吸传感器
CN103462595A (zh) * 2013-09-22 2013-12-25 天津万合星辰信息技术有限公司 一种便携式传感器组件
CN203447278U (zh) * 2013-09-22 2014-02-26 天津万合星辰信息技术有限公司 便携式传感器组件
CN203987995U (zh) * 2014-07-07 2014-12-10 安进医疗科技(北京)有限公司 一种实时监测人体睡眠状态的睡眠仪
CN204698533U (zh) * 2015-02-13 2015-10-14 安徽建筑大学 户外锻炼环境参数与脉率检测仪
CN105286823A (zh) * 2015-10-13 2016-02-03 吉林大学 穿戴式自供电多生理参数监测装置及监测方法
CN105310648A (zh) * 2014-07-07 2016-02-10 安进医疗科技(北京)有限公司 一种实时监测人体睡眠状态的睡眠仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204708829U (zh) * 2015-04-24 2015-10-21 吉林大学 一种无线呼吸、脉搏监测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024273A1 (en) * 2007-08-21 2009-02-26 University College Dublin, National University Of Ireland, Dublin Method and system for monitoring sleep
CN102551725A (zh) * 2010-12-27 2012-07-11 深圳市迈迪加科技发展有限公司 一种新型呼吸传感器
CN103462595A (zh) * 2013-09-22 2013-12-25 天津万合星辰信息技术有限公司 一种便携式传感器组件
CN203447278U (zh) * 2013-09-22 2014-02-26 天津万合星辰信息技术有限公司 便携式传感器组件
CN203987995U (zh) * 2014-07-07 2014-12-10 安进医疗科技(北京)有限公司 一种实时监测人体睡眠状态的睡眠仪
CN105310648A (zh) * 2014-07-07 2016-02-10 安进医疗科技(北京)有限公司 一种实时监测人体睡眠状态的睡眠仪
CN204698533U (zh) * 2015-02-13 2015-10-14 安徽建筑大学 户外锻炼环境参数与脉率检测仪
CN105286823A (zh) * 2015-10-13 2016-02-03 吉林大学 穿戴式自供电多生理参数监测装置及监测方法

Also Published As

Publication number Publication date
CN107847155A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN204708829U (zh) 一种无线呼吸、脉搏监测装置
CN105637665B (zh) 用于将用户的移动转换为电压的设备
US9332940B1 (en) Compact wearable biological sensor modules
EP3727248B1 (en) Devices and method for bruxism management
US20110009729A1 (en) Apparatus for measuring physiological signals
ATE473678T1 (de) Tragbare drahtlose vorrichtung zur überwachung, analyse und mitteilung des physiologischen status
US20140329214A1 (en) Physiological Indicator Monitoring For Identifying Stress Triggers and Certain Health Problems
US20190343452A1 (en) Bruxism monitoring and prevention system
WO2017117739A1 (zh) 睡眠监测系统
WO2019120289A1 (zh) 睡眠监测装置
CN105615870A (zh) 心电信号的获取方法及装置、可穿戴设备
US20170035350A1 (en) System and method for detecting bruxism
KR20190089353A (ko) 필름형 다채널 압전 센서를 이용한 생체신호 측정 시스템
US20170128000A1 (en) Method and apparatus for monitoring a physiological indication associated with functioning of a living animal
WO2017193320A1 (zh) 一种睡眠监测仪
CN110811594A (zh) 无线穿戴式神经信号检测装置及系统
US20150366506A1 (en) Electrode patch and physiological signal device
US20190324520A1 (en) Wearing determination apparatus and electronic device
WO2017117738A1 (zh) 睡眠监测枕和睡眠监测系统
KR102550593B1 (ko) 생체 정보를 검출하는 전자 장치
KR102377703B1 (ko) 수면 진단 기기
KR102471204B1 (ko) 인체 신호 검출 헤드셋 장치
WO2018149057A1 (zh) 一种监测系统
CN219048442U (zh) 压电薄膜振动检测设备和枕头
CN107714034A (zh) 基于智能移动终端的人体体征多参数监测装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901275

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901275

Country of ref document: EP

Kind code of ref document: A1