WO2017192003A1 - Solder ball, manufacturing method therefor, and electronic parts using same - Google Patents

Solder ball, manufacturing method therefor, and electronic parts using same Download PDF

Info

Publication number
WO2017192003A1
WO2017192003A1 PCT/KR2017/004686 KR2017004686W WO2017192003A1 WO 2017192003 A1 WO2017192003 A1 WO 2017192003A1 KR 2017004686 W KR2017004686 W KR 2017004686W WO 2017192003 A1 WO2017192003 A1 WO 2017192003A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
solder ball
core
metal
volume
Prior art date
Application number
PCT/KR2017/004686
Other languages
French (fr)
Korean (ko)
Inventor
이현규
곽정욱
김경태
천명호
박은광
은동진
추용철
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Publication of WO2017192003A1 publication Critical patent/WO2017192003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying

Definitions

  • solder ball used in a semiconductor package, a method of manufacturing the same, and an electronic component including the same. More specifically, a solder ball is disclosed that can be applied to all technical fields based on solder ball bonding, and that can be used in semiconductor packages based on connection of solder balls in the electronic industry.
  • the package used for semiconductor chips is getting smaller due to the lighter and shorter and higher functionality of electronic devices such as mobile phones and electronic components, and the next-generation high-density package is a chip size package as the mounting density increases.
  • a ball grid array implementation is used.
  • packages are being stacked in order to process more information, and accordingly, the weight of the chip is increasing.
  • solder balls are used to electrically connect the chip and the substrate.
  • the solder balls are submerged by the weight of the chips and bridged to the opposite solder balls.
  • Phenomenon occurs.
  • Cu cored solder ball CCSB
  • the core of the CCSB is a high melting point material (about 1000 DEG C or more), it is difficult to manufacture.
  • an object of the present specification is to provide a solder ball, which maintains the shape of a core including a metal having a low melting point even during reflow and has stable bonding reliability with a substrate.
  • the present disclosure aims to provide a solder ball that can prevent the occurrence of bonding defects when applied to the manufacture of electronic components, semiconductor packages and electronic products.
  • an object of the present disclosure is to provide a method of manufacturing the solder ball.
  • an object of the present disclosure is to provide an electronic component including the solder ball.
  • the present invention is a core containing a metal having a first melting point; And a first metal layer formed on an outer surface of the core and including a metal having a second melting point higher than the first melting point, wherein the thickness (B, ⁇ m) of the first metal layer is a particle size (A, It provides a solder ball that satisfies the following formula (1).
  • the first melting point of the core metal is 300 ° C. or less, or 300 to 600 ° C.
  • the second melting point of the first metal layer metal provides a solder ball of 400 to 4000 ° C.
  • the metal having the first melting point of 300 ° C. or less may include tin (Sn); Or an alloy including any one or more metals selected from the group consisting of Ag, Cu, Ni, Zn, Al, and Sb and Sn in the remainder;
  • the metal having the first melting point of 300 to 600 °C provides a solder ball of Bi-X or Cu-X (X is Sn, Cu, or Zn).
  • the first metal layer metal provides a solder ball including nickel.
  • solder ball having a use for a substrate surface-treated with Ni / Au.
  • the first metal layer provides a solder ball occupies 0.5 to 20% by volume of the total solder ball volume.
  • solder ball is provided on the outer surface of the first metal layer, and provides a solder ball further comprising a second metal layer containing tin or tin alloy.
  • the tin alloy provides at least one metal selected from the group consisting of Ag, Cu and Bi, and provides a solder ball consisting of the balance of tin.
  • the second metal layer provides a solder ball that occupies 20 to 80% by volume of the total solder ball volume.
  • the present invention also provides a method of forming a core comprising: (1) forming a core comprising a metal having a first melting point; And (2) forming a first metal layer on the outer surface of the core, the first metal layer including a metal having a second melting point higher than the first melting point, wherein step (2) uses electroless plating or electroplating. It provides a method of manufacturing a solder ball to the thickness (B, ⁇ m) of the first metal layer to have a thickness satisfying the following formula 1 with respect to the particle diameter (A, ⁇ m) of the core.
  • step (3) provides a method for manufacturing a solder ball further comprising the step of forming a second metal layer containing tin or tin alloy on the outer surface of the first metal layer.
  • the present invention provides an electronic component comprising the solder ball.
  • the technique disclosed herein maintains the shape of the core even upon reflow by providing a solder ball comprising a first metal layer comprising a metal having a high melting point on the outer surface of the core comprising a metal having a low melting point And there is an effect of providing a solder ball that can have a stable bonding reliability with the substrate.
  • the technology disclosed herein has the effect of providing a solder ball that can prevent the occurrence of bonding defects when applied to the manufacture of electronic components, semiconductor packages and electronic products.
  • the technique disclosed herein has the effect of providing a method of manufacturing the solder ball.
  • the technology disclosed herein has the effect of providing an electronic component including the solder ball.
  • 1 is a cross-sectional structure of a solder ball according to an embodiment of the present disclosure.
  • FIG. 2 is a result of a comparative example in which a void form occurs in a core because the resistance of the first metal layer is small with respect to a volume change of the core during a reflow process in an exemplary embodiment of the present specification.
  • Figure 3 shows one solder ball having (a) a core having a melting point of 300 ° C. or lower, (b) a core having a melting point of 300 ° C. to 600 ° C., (c) a core having a melting point of 800 ° C. or higher, and (d) a SAC alloy.
  • the resistance of the first metal layer to the volume change of the core during the reflow process is large enough to result in the embodiment assembled in a normal shape without a void (void) in the core.
  • FIG. 5 shows the results of (a) an example in which no copper consumption phenomenon occurred and a comparative example in which (b) copper consumption occurred after reflow in an experimental example of the present specification.
  • 1 is a cross-sectional structure of a solder ball according to an embodiment of the present disclosure.
  • Solder ball according to the present specification is a core including a metal having a low melting point (low-melting point); And a first metal layer formed on an outer surface of the core and including a metal having a high-melting point.
  • the solder ball according to the present specification has excellent thermal and electrical properties, and the core maintains a normal shape without generating voids even after reflow, and also ensures reliability between ball pitches and increases core height. There is a sustained effect.
  • the relationship between the core particle diameter and the thickness of the first metal layer, the volume of the first metal layer in the solder ball, or the thickness of the first metal layer is important.
  • the solder ball may include a core including a metal having a first melting point; And a first metal layer formed on an outer surface of the core and including a metal having a second melting point higher than the first melting point.
  • the first melting point of the core metal may be 700 ° C. or less.
  • the first melting point of the core metal may be 670 ° C or less, 640 ° C or less, 600 ° C or less, 550 ° C or less, 500 ° C or less, 450 ° C or less, 400 ° C or less, 350 ° C or less, or 300 ° C or less. More specifically, 150 to 700 ° C, or 150 to 670 ° C, or 150 to 640 ° C, or 150 to 600 ° C, or 150 to 550 ° C, or 150 to 500 ° C, or 150 to 450 ° C, or 150 to 400 ° C Or 150 to 350 ° C, or 150 to 300 ° C.
  • the first melting point of the core metal may be 300 ° C. or less or 300 to 600 ° C.
  • the second melting point of the first metal layer metal may be 400 to 4,000 ° C.
  • the metal having the first melting point of 300 ° C. or less may include tin (Sn); Or an alloy including any one or more metals selected from the group consisting of Ag, Cu, Ni, Zn, Al, and Sb and the balance Sn.
  • the core metal may be Sn, Sn—Ag—Cu alloy, Sn—Cu alloy, Sn—Sb alloy, Sn—Ag alloy, Sn—Zn alloy, Sn—Al alloy, or Sn—Ni alloy).
  • the metal having the first melting point of 300 to 600 ° C. may be Bi-X or Cu-X.
  • X is included 5 wt% or less, preferably 1 wt% or less as Sn, Cu or Zn.
  • the core may have a particle diameter of 50 to 600 ⁇ m.
  • the core has a particle size of 100 to 500 ⁇ m.
  • the first metal layer metal may include nickel or copper.
  • the first metal layer metal when the first metal layer metal is nickel (Ni), the first metal layer may have a use purpose for a substrate surface-treated with Ni / Au. At this time, the thickness (B, ⁇ m) of the first metal layer satisfies the following formula 1 with respect to the particle diameter (A, ⁇ m) of the core.
  • the core In the case of having a first metal layer including nickel that satisfies Equation 1, the core is in a normal shape without a void form because the resistance of the first metal layer is large enough to change the volume of the core during reflow of the solder ball. It can represent an assembled form.
  • the first metal layer may occupy 0.5 to 20% by volume with respect to the total volume of the solder ball. Specifically, the first metal layer is at least 0.5% by volume, at least 1% by volume, at least 2% by volume, at least 3% by volume, at least 4% by volume, or at least 5% by volume with respect to the total volume of the solder ball. Up to 18% by volume, up to 16% by volume, up to 14% by volume, up to 12% by volume, or up to 10% by volume. In another aspect, the first metal layer may have a thickness of 1 to 20 ⁇ m. Preferably it has a thickness of 1 to 10 ⁇ m.
  • the volume or the thickness of the first metal layer occupying the first metal layer including nickel in the solder ball acts as an important factor.
  • the first metal layer does not have sufficient resistance to volume change of the core, i.e. if the volume occupied by the first metal layer in the solder ball or the thickness of the first metal layer is thin, the first metal layer is broken and the core protrudes out to be void. There is a problem that a (void) form occurs.
  • the first metal layer metal when it is copper (Cu), it may have a use purpose for a substrate surface-treated with an organic solderability preservative (Cu-OSP).
  • the first metal layer may occupy 1 to 60% by volume with respect to the total volume of the solder ball.
  • the first metal layer is at least 1% by volume, at least 3% by volume, at least 5% by volume, at least 7% by volume, at least 9% by volume, or at least 10% by volume relative to the total volume of the solder ball. Up to 55% by volume, up to 50% by volume, up to 45% by volume, up to 40% by volume, up to 35% by volume, or up to 30% by volume.
  • the first metal layer may have a thickness of 2 to 20 ⁇ m. Preferably it has a thickness of 2 to 10 ⁇ m.
  • solder ball including a first metal layer made of a metal containing nickel on a substrate treated with Cu-OSP
  • solder reflow, Cu consumption, and bridge phenomenon after reflow May cause a defect.
  • Cu and Sn present in the second metal layer of the solder ball react with the pad during the reflow to form a bonding layer called Cu 6 Sn 5 , and the Cu content of the second metal layer is insufficient.
  • copper consumption occurs.
  • soldering occurs due to the influence of highly reactive Cu, which causes a bridge between the voids of the second metal layer and the second metal layer.
  • the Cu content of the copper layer is supplied to the bonding layer formed by reacting with the pad. It can play a role of preventing the copper consumption of the pad. Moreover, since the supply amount of Cu is enough, the reactivity of Cu can be delayed and the soldering phenomenon can also be prevented.
  • the solder ball may further include a second metal layer formed on an outer surface of the first metal layer and including tin or a tin alloy.
  • the metal that can be alloyed with Sn for example Ag.
  • Metals, such as Cu and Bi, are used, It is used as an alloy metal in the technical field to which this invention belongs, It can be used without a restriction.
  • the tin alloy may be a Sn—Ag—Cu alloy, a Sn—Cu alloy, a Sn—Ag alloy, or a Sn—Bi alloy.
  • the second metal layer may occupy 20 to 80% by volume with respect to the total volume of the solder ball. Specifically, the second metal layer is at least 20% by volume, at least 25% by volume, at least 30% by volume, at least 35% by volume, at least 40% by volume, at least 45% by volume, or at least 50% by volume relative to the total solder ball volume. It may also comprise up to 80% by volume, up to 75% by volume, up to 70% by volume, up to 65% by volume, up to 60% by volume, up to 55% by volume, or up to 50% by volume. In another aspect, the second metal layer may have a thickness of 2 to 40 ⁇ m. Preferably it may have a thickness of 10 to 20 ⁇ m.
  • Solder balls (1) forming a core comprising a metal having a first melting point; And (2) forming a first metal layer on the outer surface of the core including a metal having a second melting point higher than the first melting point.
  • the core in the step (1), may be manufactured to a desired diameter through a predetermined orifice hole using a vibrator in a heated state after melting the core metal material by induction heating through a high temperature high frequency induction furnace. have.
  • the desired size can be produced in various ways depending on the orifice diameter, it is possible to adjust the frequency and pressure.
  • the first metal layer may be formed by a widely known electroless plating or electroplating method.
  • the metal core is pickled, and then a palladium seed (Pd seed) is attached to the etched surface with a palladium (Pd) solution.
  • Pd seed a palladium seed
  • It may include the step of activating and charging the stirred electroless plating solution.
  • the electroless plating can be continuously stirred until all reactions are completed to form the first metal layer.
  • the first metal layer may be formed by sufficiently reacting for about 1 to 2 hours after the reaction is started.
  • the first metal layer is pickled metal core, and then the D.I.
  • the core washed with water is charged into the electrolytic plating solution, and the electroplating may be performed using a metal, for example nickel or a metal to be plated, as an anode.
  • the non-conductor is plated on the cathode.
  • the thickness of the plating layer may control the time of the applied current to implement the desired thickness of the first metal layer.
  • the thickness (B, ⁇ m) of the first metal layer is increased by using electroless plating or electroplating.
  • the first metal layer is formed to have a thickness satisfying the following formula 1 with respect to the particle diameter (A, ⁇ m) of the core.
  • Step (2) is to form a first metal layer containing copper, by mixing a dummy ball and a core having one composition or more than one composition inside the mesh barrel of the barrel plating apparatus Electroplating may be performed using an alkaline plating solution containing a CN group.
  • the thickness of the plating layer may implement a desired thickness of the first metal layer by controlling the amount of current required for electroplating and the plating time.
  • the rpm in order to increase the adhesion of the core during electroplating, the rpm may be initially maintained at a low speed and the rpm may be gradually increased after the plating is performed to some extent.
  • the organic matter or impurities on the surface may be removed as much as possible in the pre-plating step to increase the plating adhesion between the core of the plated body and the first metal layer metal such as Cu.
  • pure water of about 50 °C can be used, and it is more effective when used together with Sony.
  • the temperature of the plating bath can be maintained between 55 ⁇ 60 °C in order to increase the plating adhesion.
  • step (3) may further comprise the step of forming a second metal layer containing tin or tin alloy on the outer surface of the first metal layer.
  • step (3) may be performed by a plating method which is generally well known.
  • the solder layer which is the second metal layer, is a plating layer formed by electrolyzing a metal containing Sn on the surface of the metal core on which the first metal layer is formed. After washing with water, for example, Sn or Sn-Ag may be hung on the Anode and the subject may be plated on the Cathode. At this time, the temperature of the plating liquid may be maintained at 20 ⁇ 30 °C.
  • the current density of the electroplating is 0.5 ⁇ 1.2 A / dm to achieve a desired plating thickness by plating for 2 to 4 hours.
  • solder balls according to the present specification can be used for electronic components.
  • the solder ball according to the present disclosure is not limited to the semiconductor package use but may be used for various purposes in the electronic component.
  • the semiconductor package according to the present disclosure may be applied to a package on package (PoP) in which a top package is stacked on a bottom package in a stacked type in which a plurality of integrated circuits are mounted on one substrate.
  • PoP package on package
  • Solder balls according to Comparative Examples and Examples described in Tables 1 to 5 were prepared by the following methods and their performances were compared.
  • the core metal material was melted by induction heating through a high temperature high frequency induction furnace, and then vibrated at a high speed of 1 Khz or more using a vibrator in a heated state, and a core was manufactured to a desired diameter through a predetermined orifice hole.
  • a first metal layer was formed on an outer surface of the manufactured core.
  • the metal core is pickled, and then palladium seed (Pd seed) is attached to the etched surface with palladium (Pd) solution, activated with dilute sulfuric acid solution and charged in a bath-less electrolytic plating solution until all reactions are completed. Stirring was continued. Electroplating pickles the prepared cores and then the D.I. A core washed with water was charged into an electrolytic plating solution, and plating was performed using nickel or a metal to be plated as an anode as an anode. At this time, the non-conductor was plated on the cathode. The thickness of the plating layer was implemented by adjusting the time of the applied current to achieve the desired plating thickness.
  • the core on which the first metal layer is formed is pickled. After washing with water, for example, Sn or Sn-Ag was hung on the Anode, and the subject was plated on the Cathode. At this time, the temperature of the plating liquid was maintained at 20 ⁇ 30 °C.
  • the current density of the electroplating is 0.5 ⁇ 1.2 A / dm at 2-4 hours to achieve the desired plating thickness.
  • the first metal layer collapses after the reflow to generate voids, and the volume values of Examples 1 to 9 Since V is smaller than the volume value of Comparative Example 1, since the resistance of the first metal layer is sufficient and does not collapse, voids do not occur even after reflow.
  • the same concept is applied to Tables 2 to 5 below, and the thickness of the first metal layer also varies according to the size of the core.
  • the first metal layer containing nickel does not have sufficient resistance to volume change of the core during reflow, that is, if the volume occupied by the first metal layer in the solder ball or the thickness of the first metal layer is thin, the first metal layer is It broke and the core protruded outward to generate a void form (see FIG. 2).
  • the resistance of the first metal layer is large enough to change the volume of the core during the reflow of the solder ball, the core is assembled into a normal shape without a void shape (see FIG. 3). Accordingly, in order to maintain the shape of the core during reflow and to have the bonding reliability, it was confirmed that the volume occupied by the first metal layer or the thickness of the first metal layer acts as an important factor.
  • Solder balls according to Comparative Examples and Examples described in Tables 6 to 8 were prepared by the following method and their performances were compared.
  • the core and the second metal layer of the solder ball having the first metal layer containing copper were carried out in the same manner as in (1) the manufacturing method of the solder ball having the first metal layer containing nickel, and the first metal layer was a barrel plating apparatus.
  • a dummy ball and a core having one composition or more than one composition were mixed in a mesh barrel of an electroplating using an alkaline plating solution containing a CN group.
  • Plating thickness was controlled by adjusting the amount of current and plating time required for electroplating.
  • Cu thickness of Cu pad used for evaluation in this Example is 10 micrometers.
  • Cu is added to the core of the comparative examples and examples shown in Table 7 5% or less, Sn is added to the core of the comparative examples and examples of Table 8 5% or less.
  • Solder splash rating 5 Yield 95% or more 4 Yield 90% or more 3 Yield 85% or more 2 Yield 80% or more One Yield less than 80%
  • the yield of the copper layer is 85% or more and 70% or less than the copper consumption Cu pad. It was found that from 2 ⁇ m is appropriate, and when the thickness exceeds 20 ⁇ m, the expected effect is insufficient and the plating time is long. Accordingly, it was confirmed that the appropriate first metal layer had a thickness of 2 to 20 ⁇ m.
  • Bonding strength was measured by mounting a new solder ball and a conventional general solder ball (see FIG. 6) manufactured according to the above example method on a PCB. Bond strength was measured according to JESD22-B117.
  • the new solder ball according to the present disclosure showed a stronger strength value in terms of bonding strength than the general solder ball, it was shown that there is no significant difference between the new solder ball.
  • the new solder ball according to the present specification was found to have a greater resistance to drop impact than the general solder ball, the crack path generated during the impact of the new solder ball has a longer crack path than the normal solder ball Seemed. For this reason, the new solder ball according to the present specification was found to have a large resistance to drop impact.

Abstract

A solder ball, a manufacturing method therefor, and electronic parts comprising the same are disclosed in the present specification. More specifically, disclosed is a solder ball which is applicable in all technical fields which are based on solder ball bonding, and especially may be used in semiconductor packages using solder balls as basic contacts in the electronics industry. The solder ball maintains the shape of a core comprising a metal having a low melting point even during reflow, and has stable bonding reliability with a substrate.

Description

솔더볼, 이의 제조방법 및 이를 이용한 전자부품Solder ball, manufacturing method thereof and electronic component using the same
본 명세서에는 반도체 패키지에 사용되는 솔더볼(solder ball), 이의 제조방법 및 이를 포함하는 전자부품이 개시된다. 더욱 상세하게는 솔더볼의 접합을 기반으로 하는 모든 기술 분야에서 응용이 가능하며, 특히 전자 산업 분야 중 솔더볼 사용을 연결 기반으로 하는 반도체 패키지에 사용될 수 있는 솔더볼이 개시된다.Disclosed herein is a solder ball used in a semiconductor package, a method of manufacturing the same, and an electronic component including the same. More specifically, a solder ball is disclosed that can be applied to all technical fields based on solder ball bonding, and that can be used in semiconductor packages based on connection of solder balls in the electronic industry.
최근 휴대폰이나 전자부품 등 전자기기의 경박단소화 및 고기능화에 따라 반도체 칩에 사용되는 패키지(package)가 작아지고 있는 추세이며, 차세대 고밀도 패키지는 실장 밀도가 높아짐에 따라 칩 사이즈 패키지(Chip Scale Package)나 볼 그리드 어레이(Ball Grid array) 실장이 사용되고 있다. 또한, 더 많은 정보를 처리하기 위해 패키지들을 적층하는 형태로 변화하고 있으며, 이에 따라 칩의 무게가 점점 증가하고 있다.Recently, the package used for semiconductor chips is getting smaller due to the lighter and shorter and higher functionality of electronic devices such as mobile phones and electronic components, and the next-generation high-density package is a chip size package as the mounting density increases. A ball grid array implementation is used. In addition, packages are being stacked in order to process more information, and accordingly, the weight of the chip is increasing.
일반적으로 칩과 기판을 전기적으로 연결시키기 위해서 솔더볼(solder ball)이 사용되는데, 고밀도 파인 피치(Fine pitch)의 경우 솔더볼이 칩의 무게에 의해 가라앉게 되고 마주하고 있는 솔더볼들과 서로 붙는 브리지(Bridge) 현상이 발생하게 된다. 이에 칩의 무게를 견디고 솔더볼의 높이를 유지하면서 브리지 현상을 방지하기 위해 Cu cored solder ball(CCSB)을 적용하고 있는 추세이다. 그러나, CCSB의 코어는 고융점 재료(약 1000 ℃ 이상)이므로 제조에 어려움이 있다.In general, solder balls are used to electrically connect the chip and the substrate. In the case of the high-density fine pitch, the solder balls are submerged by the weight of the chips and bridged to the opposite solder balls. ) Phenomenon occurs. Accordingly, Cu cored solder ball (CCSB) is being applied to withstand the weight of the chip and maintain the height of the solder ball while preventing the bridge phenomenon. However, since the core of the CCSB is a high melting point material (about 1000 DEG C or more), it is difficult to manufacture.
이러한 문제를 극복하기 위해, Cu 코어 대신 SAC(Sn, Ag, Cu) 합금 및 SAC 합금보다 융점이 높은 재료(약 400 ℃ 이하)를 사용하는 방안이 있다. 그러나, SAC 합금을 코어로 사용할 경우 리플로우 온도(일반적으로 피크 온도가 약 260 ℃)에서 SAC 코어가 녹아 형상이 무너지는 문제가 있다. SAC 코어가 고상에서 액상으로 상 변화할 경우 부피 변화가 발생되는데, 약 3~5%의 변화가 발생된다.In order to overcome this problem, there is a method of using a material having a higher melting point (about 400 ° C. or lower) than the SAC (Sn, Ag, Cu) alloy and the SAC alloy instead of the Cu core. However, when the SAC alloy is used as the core, there is a problem in that the shape of the SAC core melts at the reflow temperature (normally, the peak temperature is about 260 ° C.). When the SAC core phase changes from a solid phase to a liquid phase, a volume change occurs. A change of about 3 to 5% occurs.
일 측면에서, 본 명세서는 솔더볼에 있어서, 리플로우 시에도 저융점을 갖는 금속을 포함하는 코어의 형상을 유지하고 기판과의 안정적인 접합 신뢰성을 가질 수 있는 솔더볼을 제공하는 것을 목적으로 한다.In one aspect, an object of the present specification is to provide a solder ball, which maintains the shape of a core including a metal having a low melting point even during reflow and has stable bonding reliability with a substrate.
다른 측면에서, 본 명세서는 전자부품, 반도체 패키지 및 전자제품의 제조에 적용 시 접합 불량이 발생되는 것을 방지할 수 있는 솔더볼을 제공하는 것을 목적으로 한다.In another aspect, the present disclosure aims to provide a solder ball that can prevent the occurrence of bonding defects when applied to the manufacture of electronic components, semiconductor packages and electronic products.
또 다른 측면에서, 본 명세서는 상기 솔더볼을 제조하는 방법을 제공하는 것을 목적으로 한다.In another aspect, an object of the present disclosure is to provide a method of manufacturing the solder ball.
또 다른 측면에서, 본 명세서는 상기 솔더볼을 포함하는 전자부품을 제공하는 것을 목적으로 한다.In another aspect, an object of the present disclosure is to provide an electronic component including the solder ball.
또한 본 발명은 제1 융점을 갖는 금속을 포함하는 코어; 및 상기 코어의 외면에 형성되고, 상기 제1 융점보다 높은 제2 융점을 갖는 금속을 포함하는 제1 금속층을 포함하고, 상기 제1 금속층의 두께(B, ㎛)는 상기 코어의 입경(A, ㎛)에 대하여 하기 식 1을 만족하는 솔더볼을 제공한다. In addition, the present invention is a core containing a metal having a first melting point; And a first metal layer formed on an outer surface of the core and including a metal having a second melting point higher than the first melting point, wherein the thickness (B, μm) of the first metal layer is a particle size (A, It provides a solder ball that satisfies the following formula (1).
[식 1][Equation 1]
Figure PCTKR2017004686-appb-I000001
Figure PCTKR2017004686-appb-I000001
(여기서, 50 ≤ A ≤ 600 이다.)(Where 50 ≤ A ≤ 600)
또한 상기 코어 금속의 제1 융점은 300 ℃ 이하이거나 300 내지 600 ℃이고, 상기 제1 금속층 금속의 제2 융점은 400 내지 4000 ℃ 인 솔더볼을 제공한다.In addition, the first melting point of the core metal is 300 ° C. or less, or 300 to 600 ° C., and the second melting point of the first metal layer metal provides a solder ball of 400 to 4000 ° C.
또한 상기 제1 융점이 300 ℃ 이하인 금속은, 주석(Sn); 또는 Ag, Cu, Ni, Zn, Al 및 Sb로 구성되는 군에서 선택되는 어느 하나 이상의 금속 및 잔부의 Sn을 포함하는 합금;인 솔더볼을 제공한다.Further, the metal having the first melting point of 300 ° C. or less may include tin (Sn); Or an alloy including any one or more metals selected from the group consisting of Ag, Cu, Ni, Zn, Al, and Sb and Sn in the remainder;
또한 상기 제1 융점이 300 내지 600 ℃인 금속은, Bi-X 또는 Cu-X(X는 Sn, Cu, 또는 Zn)인 솔더볼을 제공한다.In addition, the metal having the first melting point of 300 to 600 ℃ provides a solder ball of Bi-X or Cu-X (X is Sn, Cu, or Zn).
또한 상기 제1 금속층 금속은 니켈을 포함하는 솔더볼을 제공한다.In addition, the first metal layer metal provides a solder ball including nickel.
또한 Ni/Au로 표면처리된 기판에 대해 사용 용도를 갖는 솔더볼을 제공한다.It also provides a solder ball having a use for a substrate surface-treated with Ni / Au.
또한 상기 제1 금속층은 상기 솔더볼 전체 부피에 대해 0.5 내지 20 부피%를 차지하는 솔더볼을 제공한다.In addition, the first metal layer provides a solder ball occupies 0.5 to 20% by volume of the total solder ball volume.
또한 상기 솔더볼은, 상기 제1 금속층의 외면에 형성되고, 주석 또는 주석 합금을 포함하는 제2 금속층을 더 포함하는 솔더볼을 제공한다.In addition, the solder ball is provided on the outer surface of the first metal layer, and provides a solder ball further comprising a second metal layer containing tin or tin alloy.
또한 상기 주석 합금은 Ag, Cu 및 Bi로 구성되는 군에서 선택되는 어느 하나 이상의 금속을 포함하고 잔부의 주석으로 이루어지는 솔더볼을 제공한다.In addition, the tin alloy provides at least one metal selected from the group consisting of Ag, Cu and Bi, and provides a solder ball consisting of the balance of tin.
또한 상기 제2 금속층은 상기 솔더볼 전체 부피에 대해 20 내지 80 부피%를 차지하는 솔더볼을 제공한다.In addition, the second metal layer provides a solder ball that occupies 20 to 80% by volume of the total solder ball volume.
또한 본 발명은 (1) 제1 융점을 갖는 금속을 포함하는 코어를 형성하는 단계; 및 (2) 상기 코어의 외면에 상기 제1 융점보다 높은 제2 융점을 갖는 금속을 포함하는 제1 금속층을 형성하는 단계를 포함하고, 상기 (2) 단계는 무전해도금 또는 전해도금을 이용하여 상기 제1 금속층의 두께(B, ㎛)가 상기 코어의 입경(A, ㎛)에 대하여 하기 식 1을 만족하는 두께로 갖도록 형성하는 단계인 솔더볼의 제조방법을 제공한다.The present invention also provides a method of forming a core comprising: (1) forming a core comprising a metal having a first melting point; And (2) forming a first metal layer on the outer surface of the core, the first metal layer including a metal having a second melting point higher than the first melting point, wherein step (2) uses electroless plating or electroplating. It provides a method of manufacturing a solder ball to the thickness (B, μm) of the first metal layer to have a thickness satisfying the following formula 1 with respect to the particle diameter (A, μm) of the core.
[식 1][Equation 1]
Figure PCTKR2017004686-appb-I000002
Figure PCTKR2017004686-appb-I000002
(여기서, 50 ≤ A ≤ 600 이다.)(Where 50 ≤ A ≤ 600)
또한 상기 (2) 단계 이후에, (3) 상기 제1 금속층의 외면에 주석 또는 주석 합금을 포함하는 제2 금속층을 형성하는 단계를 더 포함하는 솔더볼의 제조방법을 제공한다.In addition, after the step (2), (3) provides a method for manufacturing a solder ball further comprising the step of forming a second metal layer containing tin or tin alloy on the outer surface of the first metal layer.
또한 본 발명은 상기 솔더볼을 포함하는 전자부품을 제공한다.In another aspect, the present invention provides an electronic component comprising the solder ball.
일 측면에서, 본 명세서에 개시된 기술은 솔더볼에 있어서, 저융점을 갖는 금속을 포함하는 코어의 외면에 고융점을 갖는 금속을 포함하는 제1 금속층을 구비함으로써, 리플로우 시에도 코어의 형상을 유지하고 기판과의 안정적인 접합 신뢰성을 가질 수 있는 솔더볼을 제공하는 효과가 있다.In one aspect, the technique disclosed herein maintains the shape of the core even upon reflow by providing a solder ball comprising a first metal layer comprising a metal having a high melting point on the outer surface of the core comprising a metal having a low melting point And there is an effect of providing a solder ball that can have a stable bonding reliability with the substrate.
다른 측면에서, 본 명세서에 개시된 기술은 전자부품, 반도체 패키지 및 전자제품의 제조에 적용 시 접합 불량이 발생되는 것을 방지할 수 있는 솔더볼을 제공하는 효과가 있다.In another aspect, the technology disclosed herein has the effect of providing a solder ball that can prevent the occurrence of bonding defects when applied to the manufacture of electronic components, semiconductor packages and electronic products.
또 다른 측면에서, 본 명세서에 개시된 기술은 상기 솔더볼을 제조하는 방법을 제공하는 효과가 있다.In another aspect, the technique disclosed herein has the effect of providing a method of manufacturing the solder ball.
또 다른 측면에서, 본 명세서에 개시된 기술은 상기 솔더볼을 포함하는 전자부품을 제공하는 효과가 있다.In another aspect, the technology disclosed herein has the effect of providing an electronic component including the solder ball.
도 1은 본 명세서의 일 실시예에 따른 솔더볼의 단면 구조이다.1 is a cross-sectional structure of a solder ball according to an embodiment of the present disclosure.
도 2는 본 명세서의 일 실험예에서 리플로우 과정 중 코어의 부피 변화에 대해 제1 금속층의 저항력이 작아 코어에 보이드(void) 형태가 발생한 비교예의 결과이다.FIG. 2 is a result of a comparative example in which a void form occurs in a core because the resistance of the first metal layer is small with respect to a volume change of the core during a reflow process in an exemplary embodiment of the present specification.
도 3은 본 명세서의 일 실험예에서 (a) 융점 300 ℃ 이하의 코어, (b) 융점 300 내지 600 ℃의 코어, (c) 융점 800 ℃ 이상의 코어, (d) SAC 합금을 갖는 각각의 솔더볼의 리플로우 과정 중 코어의 부피 변화에 대해 제1 금속층의 저항력이 충분히 커서 코어에 보이드(void) 형태 없이 정상적인 형상으로 어셈블리된 실시예의 결과이다.Figure 3 shows one solder ball having (a) a core having a melting point of 300 ° C. or lower, (b) a core having a melting point of 300 ° C. to 600 ° C., (c) a core having a melting point of 800 ° C. or higher, and (d) a SAC alloy. The resistance of the first metal layer to the volume change of the core during the reflow process is large enough to result in the embodiment assembled in a normal shape without a void (void) in the core.
도 4는 본 명세서의 일 실험예에서 리플로우 후 솔더튐(solder splash)으로 인해 브리지(bridge) 현상이 발생한 비교예의 결과이다.4 is a result of a comparative example in which a bridge phenomenon occurs due to solder splash after reflow in an experimental example of the present specification.
도 5는 본 명세서의 일 실험예에서 리플로우 후 (a) 구리 소모(Cu consumption) 현상이 발생되지 않은 실시예 및 (b) 구리 소모 현상이 발생된 비교예의 결과이다.FIG. 5 shows the results of (a) an example in which no copper consumption phenomenon occurred and a comparative example in which (b) copper consumption occurred after reflow in an experimental example of the present specification.
도 6은 (a) 종래 일반 솔더볼 및 (b) 본 명세서에 따른 신규 솔더볼의 파단면 비교 결과이다.6 is a result of comparing the fracture surface of the (a) conventional solder ball and (b) the new solder ball according to the present specification.
도 7은 본 명세서의 일 실험예에 따른 접합 강도 측정 결과이다.7 is a result of measuring the bond strength according to an experimental example of the present specification.
도 8은 본 명세서의 일 실험예에 따른 낙하 충격 시험 결과이다.8 is a drop impact test results according to an experimental example of the present specification.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 갖는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined herein. Do not.
솔더볼Solder ball
도 1은 본 명세서의 일 실시예에 따른 솔더볼의 단면 구조이다.1 is a cross-sectional structure of a solder ball according to an embodiment of the present disclosure.
본 명세서에 따른 솔더볼은 저융점(low-melting point)을 갖는 금속을 포함하는 코어; 및 상기 코어의 외면에 형성되고 고융점(high-melting point)을 갖는 금속을 포함하는 제1 금속층을 포함하여 이루어진다. Solder ball according to the present specification is a core including a metal having a low melting point (low-melting point); And a first metal layer formed on an outer surface of the core and including a metal having a high-melting point.
이에 따라, 본 명세서에 따른 솔더볼은 열적, 전기적 성질이 뛰어나며, 리플로우(reflow) 후에도 보이드(void) 발생 없이 코어가 정상적인 형상을 유지할 뿐만 아니라 볼 피치(ball pitch) 간의 신뢰성이 확보되며 코어 높이가 유지되는 효과가 있다. Accordingly, the solder ball according to the present specification has excellent thermal and electrical properties, and the core maintains a normal shape without generating voids even after reflow, and also ensures reliability between ball pitches and increases core height. There is a sustained effect.
한편, 이러한 효과를 구현하기 위해서는 코어 입경과 제1 금속층 두께 간의 관계, 솔더볼 내 차지하는 제1 금속층의 부피, 또는 제1 금속층의 두께가 중요한 요소로 작용한다.Meanwhile, in order to realize such an effect, the relationship between the core particle diameter and the thickness of the first metal layer, the volume of the first metal layer in the solder ball, or the thickness of the first metal layer is important.
솔더볼은, 제1 융점을 갖는 금속을 포함하는 코어; 및 상기 코어의 외면에 형성되고, 상기 제1 융점보다 높은 제2 융점을 갖는 금속을 포함하는 제1 금속층;을 포함한다. The solder ball may include a core including a metal having a first melting point; And a first metal layer formed on an outer surface of the core and including a metal having a second melting point higher than the first melting point.
예시적인 일 구현예에서, 상기 코어 금속의 제1 융점은 700 ℃ 이하일 수 있다. 구체적으로, 상기 코어 금속의 제1 융점은 670 ℃ 이하, 640 ℃ 이하, 600 ℃ 이하, 550 ℃ 이하, 500 ℃ 이하, 450 ℃ 이하, 400 ℃ 이하, 350 ℃ 이하, 또는 300 ℃ 이하일 수 있으며, 더욱 구체적으로, 150 내지 700 ℃, 또는 150 내지 670 ℃, 또는 150 내지 640 ℃, 또는 150 내지 600 ℃, 또는 150 내지 550 ℃, 또는 150 내지 500 ℃, 또는 150 내지 450 ℃, 또는 150 내지 400 ℃, 또는 150 내지 350 ℃, 또는 150 내지 300 ℃일 수 있다.In an exemplary embodiment, the first melting point of the core metal may be 700 ° C. or less. Specifically, the first melting point of the core metal may be 670 ° C or less, 640 ° C or less, 600 ° C or less, 550 ° C or less, 500 ° C or less, 450 ° C or less, 400 ° C or less, 350 ° C or less, or 300 ° C or less. More specifically, 150 to 700 ° C, or 150 to 670 ° C, or 150 to 640 ° C, or 150 to 600 ° C, or 150 to 550 ° C, or 150 to 500 ° C, or 150 to 450 ° C, or 150 to 400 ° C Or 150 to 350 ° C, or 150 to 300 ° C.
예시적인 일 구현예에서, 상기 코어 금속의 제1 융점은 300 ℃ 이하이거나 300 내지 600 ℃이고, 상기 제1 금속층 금속의 제2 융점은 400 내지 4,000 ℃일 수 있다. In an exemplary embodiment, the first melting point of the core metal may be 300 ° C. or less or 300 to 600 ° C., and the second melting point of the first metal layer metal may be 400 to 4,000 ° C.
예시적인 일 구현예에서, 상기 제1 융점이 300 ℃ 이하인 금속은, 주석(Sn); 또는 Ag, Cu, Ni, Zn, Al 및 Sb로 구성되는 군에서 선택되는 어느 하나 이상의 금속 및 잔부의 Sn을 포함하는 합금;일 수 있다. 예컨대, 코어 금속은, Sn, Sn-Ag-Cu 합금, Sn-Cu 합금, Sn-Sb 합금, Sn-Ag 합금, Sn-Zn 합금, Sn-Al 합금, 또는 Sn-Ni 합금일 수 있다. In an exemplary embodiment, the metal having the first melting point of 300 ° C. or less may include tin (Sn); Or an alloy including any one or more metals selected from the group consisting of Ag, Cu, Ni, Zn, Al, and Sb and the balance Sn. For example, the core metal may be Sn, Sn—Ag—Cu alloy, Sn—Cu alloy, Sn—Sb alloy, Sn—Ag alloy, Sn—Zn alloy, Sn—Al alloy, or Sn—Ni alloy).
예시적인 일 구현예에서, 상기 제1 융점이 300 내지 600 ℃인 금속은, Bi-X 또는 Cu-X일 수 있다. X는 Sn, Cu 또는 Zn로서 5 wt% 이하, 바람직하게는 1wt% 이하로 포함된다.In an exemplary embodiment, the metal having the first melting point of 300 to 600 ° C. may be Bi-X or Cu-X. X is included 5 wt% or less, preferably 1 wt% or less as Sn, Cu or Zn.
예시적인 일 구현예에서, 상기 코어는 50 내지 600 ㎛의 입경을 가질 수 있다. 바람직하게는 상기 코어는 100 내지 500 ㎛의 입경을 갖는 것이 좋다.In an exemplary embodiment, the core may have a particle diameter of 50 to 600 ㎛. Preferably the core has a particle size of 100 to 500 ㎛.
예시적인 일 구현예에서, 상기 제1 금속층 금속은 니켈 또는 구리를 포함할 수 있다.In an exemplary embodiment, the first metal layer metal may include nickel or copper.
예시적인 일 구현예에서, 상기 제1 금속층 금속이 니켈(Ni)인 경우, Ni/Au로 표면처리된 기판에 대해 사용 용도를 가질 수 있다. 이때 제1 금속층의 두께(B, ㎛)는 상기 코어의 입경(A, ㎛)에 대하여 하기 식 1을 만족한다.In an exemplary embodiment, when the first metal layer metal is nickel (Ni), the first metal layer may have a use purpose for a substrate surface-treated with Ni / Au. At this time, the thickness (B, μm) of the first metal layer satisfies the following formula 1 with respect to the particle diameter (A, μm) of the core.
[식 1][Equation 1]
Figure PCTKR2017004686-appb-I000003
Figure PCTKR2017004686-appb-I000003
(여기서, 50 ≤ A ≤ 600 이다.)(Where 50 ≤ A ≤ 600)
상기 식 1을 만족하는 니켈을 포함하는 제1 금속층을 갖는 경우에 솔더볼의 리플로우 과정 중 코어의 부피 변화에 대해 제1 금속층의 저항력이 충분이 크기 때문에 보이드(void) 형태 없이 코어가 정상적인 형상으로 어셈블리된 형태를 나타낼 수 있다. In the case of having a first metal layer including nickel that satisfies Equation 1, the core is in a normal shape without a void form because the resistance of the first metal layer is large enough to change the volume of the core during reflow of the solder ball. It can represent an assembled form.
또한, 상기 제1 금속층은 상기 솔더볼 전체 부피에 대해 0.5 내지 20 부피%를 차지할 수 있다. 구체적으로, 상기 제1 금속층은 상기 솔더볼 전체 부피에 대해 0.5 부피% 이상, 1 부피% 이상, 2 부피% 이상, 3 부피% 이상, 4 부피% 이상, 또는 5 부피% 이상이면서, 또한 20 부피% 이하, 18 부피% 이하, 16 부피% 이하, 14 부피% 이하, 12 부피% 이하, 또는 10 부피% 이하를 차지할 수 있다. 다른 측면에서, 상기 제1 금속층은 1 내지 20 ㎛의 두께를 가질 수 있다. 바람직하게는 1 내지 10 ㎛의 두께를 갖는 것이 좋다. In addition, the first metal layer may occupy 0.5 to 20% by volume with respect to the total volume of the solder ball. Specifically, the first metal layer is at least 0.5% by volume, at least 1% by volume, at least 2% by volume, at least 3% by volume, at least 4% by volume, or at least 5% by volume with respect to the total volume of the solder ball. Up to 18% by volume, up to 16% by volume, up to 14% by volume, up to 12% by volume, or up to 10% by volume. In another aspect, the first metal layer may have a thickness of 1 to 20 μm. Preferably it has a thickness of 1 to 10 ㎛.
후술할 실험예에 의해, 리플로우 시 코어의 형상을 유지하고 접합 신뢰성을 갖기 위해서는 솔더볼 내 니켈을 포함하는 제1 금속층이 차지하는 부피 또는 제1 금속층의 두께가 중요한 요소로 작용함을 확인할 수 있다. 리플로우 시, 코어의 부피 변화에 대해 제1 금속층이 충분한 저항력을 갖지 못하면, 즉 솔더볼 내 제1 금속층이 차지하는 부피 또는 제1 금속층의 두께가 얇으면, 제1 금속층이 깨져 코어가 밖으로 돌출되어 보이드(void) 형태가 발생하는 문제점이 있다.According to the experimental example to be described later, in order to maintain the shape of the core during reflow and have a bonding reliability, it can be seen that the volume or the thickness of the first metal layer occupying the first metal layer including nickel in the solder ball acts as an important factor. During reflow, if the first metal layer does not have sufficient resistance to volume change of the core, i.e. if the volume occupied by the first metal layer in the solder ball or the thickness of the first metal layer is thin, the first metal layer is broken and the core protrudes out to be void. There is a problem that a (void) form occurs.
예시적인 일 구현예에서, 상기 제1 금속층 금속이 구리(Cu)인 경우, Cu-OSP(Organic Solderability Preservative)로 표면처리된 기판에 대해 사용 용도를 가질 수 있다. 이때, 상기 제1 금속층은 상기 솔더볼 전체 부피에 대해 1 내지 60 부피%를 차지할 수 있다. 구체적으로, 상기 제1 금속층은 상기 솔더볼 전체 부피에 대해 1 부피% 이상, 3 부피% 이상, 5 부피% 이상, 7 부피% 이상, 9 부피% 이상, 또는 10 부피% 이상이면서, 또한 60 부피% 이하, 55 부피% 이하, 50 부피% 이하, 45 부피% 이하, 40 부피% 이하, 35 부피% 이하, 또는 30 부피% 이하를 차지할 수 있다. 다른 측면에서, 상기 제1 금속층은 2 내지 20 ㎛의 두께를 가질 수 있다. 바람직하게는 2 내지 10 ㎛의 두께를 갖는 것이 좋다.In an exemplary embodiment, when the first metal layer metal is copper (Cu), it may have a use purpose for a substrate surface-treated with an organic solderability preservative (Cu-OSP). In this case, the first metal layer may occupy 1 to 60% by volume with respect to the total volume of the solder ball. Specifically, the first metal layer is at least 1% by volume, at least 3% by volume, at least 5% by volume, at least 7% by volume, at least 9% by volume, or at least 10% by volume relative to the total volume of the solder ball. Up to 55% by volume, up to 50% by volume, up to 45% by volume, up to 40% by volume, up to 35% by volume, or up to 30% by volume. In another aspect, the first metal layer may have a thickness of 2 to 20 ㎛. Preferably it has a thickness of 2 to 10 ㎛.
Cu-OSP로 처리된 기판에 대해 니켈을 포함하는 금속으로 이루어진 제1 금속층을 포함하는 솔더볼을 사용할 경우, 리플로우 후 솔더튐(solder splash), Cu 소모(Cu consumption), 브리지(bridge) 현상 등의 불량을 야기할 수 있다.When using a solder ball including a first metal layer made of a metal containing nickel on a substrate treated with Cu-OSP, solder reflow, Cu consumption, and bridge phenomenon after reflow May cause a defect.
예컨대, 솔더볼의 제2 금속층에 존재하는 Cu와 Sn이 리플로우 중 기판(pad)과 반응을 하여 Cu6Sn5라는 접합층을 형성하며, 제2 금속층의 Cu 함량이 부족하여 기판에 있는 Cu를 소모하게 되고, 이에 따라 구리 소모 현상이 발생하게 된다. 또한, 구리 소모 현상이 발생하게 되면서, 반응성이 큰 Cu의 영향으로 인해 솔더튐 현상이 발생되며, 이로 인해 제2 금속층의 보이드(void) 및 제2 금속층 간의 브리지 현상이 유발된다.For example, Cu and Sn present in the second metal layer of the solder ball react with the pad during the reflow to form a bonding layer called Cu 6 Sn 5 , and the Cu content of the second metal layer is insufficient. As a result, copper consumption occurs. In addition, as copper consumption occurs, soldering occurs due to the influence of highly reactive Cu, which causes a bridge between the voids of the second metal layer and the second metal layer.
따라서, Cu-OSP로 처리된 기판에 대해서는 구리를 포함하는 금속으로 이루어진 제1 금속층을 포함하는 솔더볼을 사용함으로써, 구리층의 Cu 함량이, pad와 반응하여 형성되는 접합층에 Cu의 함량을 공급하는 역할을 하여 pad의 구리 소모 현상을 방지할 수 있다. 또한, Cu의 공급량이 충분하기 때문에, Cu의 반응성을 늦춰 솔더튐 현상도 방지할 수 있다.Therefore, for the substrate treated with Cu-OSP, by using a solder ball including a first metal layer made of a metal containing copper, the Cu content of the copper layer is supplied to the bonding layer formed by reacting with the pad. It can play a role of preventing the copper consumption of the pad. Moreover, since the supply amount of Cu is enough, the reactivity of Cu can be delayed and the soldering phenomenon can also be prevented.
예시적인 일 구현예에서, 상기 솔더볼은, 상기 제1 금속층의 외면에 형성되고, 주석 또는 주석 합금을 포함하는 제2 금속층을 더 포함할 수 있다.In an exemplary embodiment, the solder ball may further include a second metal layer formed on an outer surface of the first metal layer and including tin or a tin alloy.
예시적인 일 구현예에서, Sn과 합금으로 될 수 있는 금속으로는, 예컨대 Ag. Cu, Bi 등의 금속을 들 수 있으며, 본 발명이 속하는 기술 분야에서 합금 금속으로 사용되는 것이며 제한이 없이 사용 가능하다. 예컨대, 주석 합금은, Sn-Ag-Cu 합금, Sn-Cu 합금, Sn-Ag 합금, 또는 Sn-Bi 합금일 수 있다. In one exemplary embodiment, the metal that can be alloyed with Sn, for example Ag. Metals, such as Cu and Bi, are used, It is used as an alloy metal in the technical field to which this invention belongs, It can be used without a restriction. For example, the tin alloy may be a Sn—Ag—Cu alloy, a Sn—Cu alloy, a Sn—Ag alloy, or a Sn—Bi alloy.
예시적인 일 구현예에서, 상기 제2 금속층은 상기 솔더볼 전체 부피에 대해 20 내지 80 부피%를 차지할 수 있다. 구체적으로, 상기 제2 금속층은 솔더볼 전체 부피에 대해 20 부피% 이상, 25 부피% 이상, 30 부피% 이상, 35 부피% 이상, 40 부피% 이상, 45 부피% 이상, 또는 50 부피% 이상이면서, 또한 80 부피% 이하, 75 부피% 이하, 70 부피% 이하, 65 부피% 이하, 60 부피% 이하, 55 부피% 이하, 또는 50 부피% 이하를 차지할 수 있다. 다른 측면에서, 상기 제2 금속층은 2 내지 40 ㎛의 두께를 가질 수 있다. 바람직하게는 10 내지 20 ㎛의 두께를 가질 수 있다. In an exemplary embodiment, the second metal layer may occupy 20 to 80% by volume with respect to the total volume of the solder ball. Specifically, the second metal layer is at least 20% by volume, at least 25% by volume, at least 30% by volume, at least 35% by volume, at least 40% by volume, at least 45% by volume, or at least 50% by volume relative to the total solder ball volume. It may also comprise up to 80% by volume, up to 75% by volume, up to 70% by volume, up to 65% by volume, up to 60% by volume, up to 55% by volume, or up to 50% by volume. In another aspect, the second metal layer may have a thickness of 2 to 40 μm. Preferably it may have a thickness of 10 to 20 ㎛.
솔더볼의 제조방법Manufacturing method of solder ball
솔더볼은, (1) 제1 융점을 갖는 금속을 포함하는 코어를 형성하는 단계; 및 (2) 상기 코어의 외면에 상기 제1 융점보다 높은 제2 융점을 갖는 금속을 포함하는 제1 금속층을 형성하는 단계;를 포함하여 제조된다. Solder balls, (1) forming a core comprising a metal having a first melting point; And (2) forming a first metal layer on the outer surface of the core including a metal having a second melting point higher than the first melting point.
예시적인 일 구현예에서, 상기 (1) 단계에서 코어는 코어 금속 재료를 고온 고주파 유도로를 통하여 유도가열을 하여 녹인 후 가열된 상태에서 진동자를 이용하여 일정 오리피스 홀을 통하여 원하는 직경으로 제조할 수 있다. 이때, 원하는 크기는 오리피스 직경에 따라 다양하게 제조될 수 있으며, 주파수와 압력으로 조정이 가능하다.In an exemplary embodiment, in the step (1), the core may be manufactured to a desired diameter through a predetermined orifice hole using a vibrator in a heated state after melting the core metal material by induction heating through a high temperature high frequency induction furnace. have. At this time, the desired size can be produced in various ways depending on the orifice diameter, it is possible to adjust the frequency and pressure.
예시적인 일 구현예에서, 상기 (2) 단계에서 제1 금속층은 일반적으로 널리 알려진 무전해도금, 전해도금 방법으로 형성될 수 있다. In an exemplary embodiment, in the step (2), the first metal layer may be formed by a widely known electroless plating or electroplating method.
상기 (2) 단계는 니켈을 포함하는 제1 금속층을 형성하는 경우, 제조된 금속 코어를 산세한 다음, 팔라듐(Pd) 용액으로 팔라듐 시드(Pd seed)를 에칭된 표면에 부착시킨 후 묽은 황산용액으로 활성화시키고 중탕된 무전해 도금액에 장입하여 교반시키는 단계를 포함할 수 있다. 무전해도금은 모든 반응이 끝날 때까지 지속적으로 교반시켜 제1 금속층을 형성할 수 있다. 장입량과 무전해 도금액의 농도 및 양에 따라 큰 차이는 있지만 일반적으로 반응이 시작된 후 1~2시간 정도 충분히 반응시켜 제1 금속층을 형성할 수 있다. In the step (2), when the first metal layer including nickel is formed, the metal core is pickled, and then a palladium seed (Pd seed) is attached to the etched surface with a palladium (Pd) solution. It may include the step of activating and charging the stirred electroless plating solution. The electroless plating can be continuously stirred until all reactions are completed to form the first metal layer. Although there is a large difference depending on the loading amount and the concentration and amount of the electroless plating solution, the first metal layer may be formed by sufficiently reacting for about 1 to 2 hours after the reaction is started.
상기 제1 금속층은 제조된 금속 코어를 산세한 다음, D.I. water로 수세하여 수세된 코어를 전해 도금액에 장입하여 피도체에 도금할 금속인 예컨대 니켈 또는 피도금체 금속을 Anode로 하여 전해도금을 진행할 수 있다. 이때, 비도체는 음극에 걸어 도금을 진행한다. 도금층의 두께는 인가하는 전류의 시간을 컨트롤하여 원하는 제1 금속층의 두께를 구현할 수 있으며, 상기 (2) 단계는 무전해도금 또는 전해도금을 이용하여 상기 제1 금속층의 두께(B, ㎛)가 상기 코어의 입경(A, ㎛)에 대하여 하기 식 1을 만족하는 두께로 갖도록 제1 금속층을 형성한다.The first metal layer is pickled metal core, and then the D.I. The core washed with water is charged into the electrolytic plating solution, and the electroplating may be performed using a metal, for example nickel or a metal to be plated, as an anode. At this time, the non-conductor is plated on the cathode. The thickness of the plating layer may control the time of the applied current to implement the desired thickness of the first metal layer. In the step (2), the thickness (B, μm) of the first metal layer is increased by using electroless plating or electroplating. The first metal layer is formed to have a thickness satisfying the following formula 1 with respect to the particle diameter (A, μm) of the core.
[식 1][Equation 1]
Figure PCTKR2017004686-appb-I000004
Figure PCTKR2017004686-appb-I000004
(여기서, 50 ≤ A ≤ 600 이다.)(Where 50 ≤ A ≤ 600)
상기 (2) 단계는 구리를 포함하는 제1 금속층을 형성하는 경우, 바렐 도금장치의 메시 바렐(mesh barrel) 내부에 더미볼(dummy ball)과 한 개의 조성 또는 한 개 이상의 조성을 가진 코어를 혼합하여 CN기가 포함된 알칼리성 도금액을 이용해 전기도금할 수 있다. 도금층의 두께는 전해도금에 소요되는 전류량과 도금시간을 컨트롤하여 원하는 제1 금속층의 두께를 구현할 수 있다.Step (2) is to form a first metal layer containing copper, by mixing a dummy ball and a core having one composition or more than one composition inside the mesh barrel of the barrel plating apparatus Electroplating may be performed using an alkaline plating solution containing a CN group. The thickness of the plating layer may implement a desired thickness of the first metal layer by controlling the amount of current required for electroplating and the plating time.
예시적인 일 구현예에서, 전해도금 시 코어의 밀착력 피복력을 높이기 위해 초반에는 rpm을 저속으로 유지하고 어느 정도 도금이 진행된 후에는 rpm을 서서히 증가시킬 수 있다.In an exemplary embodiment, in order to increase the adhesion of the core during electroplating, the rpm may be initially maintained at a low speed and the rpm may be gradually increased after the plating is performed to some extent.
예시적인 일 구현예에서, 상기 피도금체의 코어와 제1 금속층 금속, 예컨대 Cu의 도금 밀착력을 높이기 위해 도금 전 단계에서 표면의 유기물 또는 불순물을 최대한 제거할 수 있다. 이를 제거하기 위해 약 50 ℃ 정도의 pure water를 이용할 수 있으며, 소니케이션을 함께 사용하면 더욱 효과적이다. 또한, 도금 밀착력을 높이기 위해 도금 욕조의 온도를 55~60 ℃ 사이로 유지할 수 있다.In an exemplary embodiment, the organic matter or impurities on the surface may be removed as much as possible in the pre-plating step to increase the plating adhesion between the core of the plated body and the first metal layer metal such as Cu. To remove this, pure water of about 50 ℃ can be used, and it is more effective when used together with Sony. In addition, the temperature of the plating bath can be maintained between 55 ~ 60 ℃ in order to increase the plating adhesion.
예시적인 일 구현예에서, 상기 (2) 단계 이후에, (3) 상기 제1 금속층의 외면에 주석 또는 주석 합금을 포함하는 제2 금속층을 형성하는 단계를 더 포함할 수 있다.In an exemplary embodiment, after the step (2), (3) may further comprise the step of forming a second metal layer containing tin or tin alloy on the outer surface of the first metal layer.
예시적인 일 구현예에서, 상기 (3) 단계는 일반적으로 널리 알려진 도금방법으로 수행될 수 있다. 제2 금속층인 솔더층은 제1 금속층이 형성된 금속 코어의 표면에 Sn을 포함한 금속을 전해하여 도금층을 형성한 것으로서, 제1 금속층이 형성된 코어를 산세하고 D.I. water로 수세한 후 예컨대 Sn 또는 Sn-Ag를 Anode에 걸어 두고 피도체는 Cathode에 걸어 도금을 진행할 수 있다. 이때, 도금액의 온도는 20~30 ℃를 유지할 수 있다. 전해도금의 전류밀도는 0.5~1.2 A/dm로 2~4시간 동안 도금을 진행하여 원하는 도금 두께를 구현할 수 있다.In an exemplary embodiment, step (3) may be performed by a plating method which is generally well known. The solder layer, which is the second metal layer, is a plating layer formed by electrolyzing a metal containing Sn on the surface of the metal core on which the first metal layer is formed. After washing with water, for example, Sn or Sn-Ag may be hung on the Anode and the subject may be plated on the Cathode. At this time, the temperature of the plating liquid may be maintained at 20 ~ 30 ℃. The current density of the electroplating is 0.5 ~ 1.2 A / dm to achieve a desired plating thickness by plating for 2 to 4 hours.
전자부품Electronic parts
본 명세서에 따른 솔더볼은 전자부품에 사용될 수 있다. 본 명세서에 따른 솔더볼은 반도체 패키지 용도에 제한되지 않고 전자부품에 다양한 용도로 사용될 수 있다. 또한, 본 명세서에 따른 반도체 패키지는 하나의 기판에 다수의 집적회로를 실장하는 적층형으로 하단 패키지 위에 상단 패키지를 쌓는 패키지 온 패키지(Package on Package, PoP)에도 적용될 수 있다.Solder balls according to the present specification can be used for electronic components. The solder ball according to the present disclosure is not limited to the semiconductor package use but may be used for various purposes in the electronic component. In addition, the semiconductor package according to the present disclosure may be applied to a package on package (PoP) in which a top package is stacked on a bottom package in a stacked type in which a plurality of integrated circuits are mounted on one substrate.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.
실시예Example
(1) 니켈을 포함하는 제1 금속층을 구비한 솔더볼의 제조(1) Preparation of a solder ball having a first metal layer containing nickel
하기 표 1 내지 5에 기재된 비교예 및 실시예에 따른 솔더볼을 하기와 같은 방법으로 제조하고 그 성능을 비교하였다.Solder balls according to Comparative Examples and Examples described in Tables 1 to 5 were prepared by the following methods and their performances were compared.
먼저, 코어 금속 재료를 고온 고주파 유도로를 통하여 유도가열을 하여 녹인 후 가열된 상태에서 진동자를 이용하여 1Khz 이상 고속으로 진동을 주고 일정 오리피스 홀을 통하여 원하는 직경으로 코어를 제조하였다.First, the core metal material was melted by induction heating through a high temperature high frequency induction furnace, and then vibrated at a high speed of 1 Khz or more using a vibrator in a heated state, and a core was manufactured to a desired diameter through a predetermined orifice hole.
이후, 제조된 코어의 외면에 제1 금속층을 형성하였다. 구체적으로, 금속 코어를 산세한 다음, 팔라듐(Pd)용액으로 팔라듐 시드(Pd seed)를 에칭된 표면에 부착시킨 후 묽은 황산용액으로 활성화시키고 중탕된 무전해 도금액에 장입하여 모든 반응이 끝날 때까지 지속적으로 교반시켰다. 전해도금은 제조된 코어를 산세한 다음, D.I. water로 수세하여 수세된 코어를 전해 도금액에 장입하여 피도체에 도금할 금속인 니켈 또는 피도금체 금속을 anode로 하여 도금을 진행하였다. 이때, 비도체는 음극에 걸어 도금을 진행하였다. 도금층의 두께는 인가하는 전류의 시간을 조절하여 원하는 도금 두께를 구현하였다. Thereafter, a first metal layer was formed on an outer surface of the manufactured core. Specifically, the metal core is pickled, and then palladium seed (Pd seed) is attached to the etched surface with palladium (Pd) solution, activated with dilute sulfuric acid solution and charged in a bath-less electrolytic plating solution until all reactions are completed. Stirring was continued. Electroplating pickles the prepared cores and then the D.I. A core washed with water was charged into an electrolytic plating solution, and plating was performed using nickel or a metal to be plated as an anode as an anode. At this time, the non-conductor was plated on the cathode. The thickness of the plating layer was implemented by adjusting the time of the applied current to achieve the desired plating thickness.
제2 금속층 형성단계는 제1 금속층이 형성된 코어를 산세하고 D.I. water로 수세한 후 예컨대 Sn 또는 Sn-Ag를 Anode에 걸어 두고 피도체는 Cathode에 걸어 도금을 진행하였다. 이때, 도금액의 온도는 20~30 ℃를 유지하였다. 전해도금의 전류밀도는 0.5~1.2 A/dm로 2~4시간 동안 도금을 진행하여 원하는 도금 두께를 구현하였다.In the forming of the second metal layer, the core on which the first metal layer is formed is pickled. After washing with water, for example, Sn or Sn-Ag was hung on the Anode, and the subject was plated on the Cathode. At this time, the temperature of the plating liquid was maintained at 20 ~ 30 ℃. The current density of the electroplating is 0.5 ~ 1.2 A / dm at 2-4 hours to achieve the desired plating thickness.
비교예1Comparative Example 1 비교예2Comparative Example 2 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예 5Example 5 실시예6Example 6 실시예7Example 7 실시예8Example 8 실시예9Example 9
코어(SAC)+제1금속층(Ni)지름㎛ Core (SAC) + first metal layer (Ni) diameter μm 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100
제2 금속층(SAC)㎛Second metal layer (SAC) ㎛ 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
최종 cored ball 크기㎛Final cored ball size㎛ 140140 140140 140140 140140 140140 140140 140140 140140 140140 140140 140140
제1금속층(Ni)두께㎛First metal layer (Ni) thickness μm 00 0.50.5 1One 22 33 44 55 66 77 88 99
코어 부피Core volume 523523 533.179533.179 517.185517.185 486.162486.162 456.406456.406 427.889427.889 400.586400.586 374.469374.469 349.513349.513 325.691325.691 302.977302.977
void발생유무void occurrence oo oo xx xx xx xx xx xx xx xx xx
상기 표 1에 나타나는 것과 같이 비교예 1은 제1 금속층을 포함하지 않는 경우, 즉 순수 SAC Core만 사용한 솔더볼이며, 비교예 1의 코어 부피(4/3×π×503=523)와 비교하여 제1 금속층(Ni)의 두께에 따라 비교예 2 및 실시예 1 내지 9의 코어가 5% 부피 팽창하는 경우 코어 부피를 계산한 결과를 나타내었다. 순수 SAC 코어(비교예 1)와 비교하기 위하여 비교예 2 및 실시예 1 내지 9의 코어 및 제1 금속층의 총 지름이 100인 경우의 코어 부피에 대한 5% 팽창된 부피값을 계산하였다. As shown in Table 1, Comparative Example 1 is a solder ball that does not include the first metal layer, that is, pure SAC Core, compared with the core volume of Comparative Example 1 (4/3 × π × 50 3 = 523) According to the thickness of the first metal layer (Ni), the core volume of the cores of Comparative Examples 2 and Examples 1 to 9 was expanded by 5%. In order to compare with the pure SAC core (Comparative Example 1) 5% expanded volume value for the core volume when the total diameter of the core and the first metal layer of Comparative Examples 2 and Examples 1 to 9 is 100 was calculated.
비교예 1의 부피값(523) 대비 비교예 2의 부피값(533.179)이 크기 때문에, 리플로우(Reflow) 후에 제1 금속층이 무너져 보이드(void)가 발생되며, 실시예 1 내지 9의 부피값은 비교예 1의 부피값보다 작기 때문에 제1 금속층의 저항력이 충분하여 무너지지 않으므로 리플로우(Reflow) 후에도 보이드(Void)가 발생하지 않는다. 하기 표 2 내지 5까지 동일한 개념이 적용되며, 코어(Core)의 크기에 따라 제1 금속층의 두께도 달라진다.Since the volume value 533.179 of the comparative example 2 is larger than the volume value 523 of the comparative example 1, the first metal layer collapses after the reflow to generate voids, and the volume values of Examples 1 to 9 Since V is smaller than the volume value of Comparative Example 1, since the resistance of the first metal layer is sufficient and does not collapse, voids do not occur even after reflow. The same concept is applied to Tables 2 to 5 below, and the thickness of the first metal layer also varies according to the size of the core.
비교예3Comparative Example 3 비교예4Comparative Example 4 실시예10Example 10 실시예11Example 11 실시예12Example 12 실시예13Example 13 실시예14Example 14 실시예15Example 15 실시예16Example 16 실시예17Example 17
코어(SAC)+제1금속층(Ni)지름㎛ Core (SAC) + first metal layer (Ni) diameter μm 200200 200200 200200 200200 200200 200200 200200 200200 200200 200200
제2 금속층(SAC)㎛Second metal layer (SAC) ㎛ 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020
최종 cored ball 크기㎛Final cored ball size㎛ 240240 240240 240240 240240 240240 240240 240240 240240 240240 240240
제1금속층(Ni)두께㎛First metal layer (Ni) thickness μm 00 1One 22 33 44 55 66 77 88 99
ball 부피ball volume 41874187 4265.434265.43 4137.484137.48 4012.114012.11 3889.33889.3 3769.023769.02 3651.253651.25 3535.953535.95 3423.113423.11 3312.73312.7
void발생유무void occurrence oo oo xx xx xx xx xx xx xx xx
상기 표 2에 나타나는 것과 같이 순수 SAC 코어(비교예 3)와 비교하기 위하여 비교예 4 및 실시예 10 내지 17의 코어 및 제1 금속층의 총 지름이 200인 경우의 코어 부피에 대한 5% 팽창된 부피값을 계산하였다. 5% expanded to core volume when the total diameters of the core and the first metal layer of Comparative Example 4 and Examples 10 to 17 were 200 for comparison with a pure SAC core (Comparative Example 3) as shown in Table 2 above. Volume values were calculated.
비교예 3의 부피값(4187) 대비 비교예 4의 부피값(4265.43)이 크기 때문에, 리플로우(Reflow) 후에 제1 금속층이 무너져 보이드(void)가 발생되며, 실시예 10 내지 17의 부피값은 비교예 3의 부피값보다 작기 때문에 제1 금속층의 저항력이 충분하여 무너지지 않으므로 리플로우(Reflow) 후에도 보이드(Void)가 발생하지 않는다. Since the volume value 44265.43 of Comparative Example 4 is larger than that of Comparative Example 3, the first metal layer collapses to cause voids after reflow, and thus the volume values of Examples 10 to 17. Since V is smaller than the volume value of Comparative Example 3, since the resistance of the first metal layer is sufficient and does not collapse, voids do not occur even after reflow.
비교예5Comparative Example 5 비교예6Comparative Example 6 비교예7Comparative Example 7 실시예18Example 18 실시예19Example 19 실시예20Example 20 실시예21Example 21 실시예22Example 22 실시예23Example 23 실시예24Example 24
코어(SAC)+제1금속층(Ni)지름㎛ Core (SAC) + first metal layer (Ni) diameter μm 300300 300300 300300 300300 300300 300300 300300 300300 300300 300300
제2 금속층(SAC)㎛Second metal layer (SAC) ㎛ 3030 3030 3030 3030 3030 3030 3030 3030 3030 3030
최종 cored ball 크기㎛Final cored ball size㎛ 360360 360360 360360 360360 360360 360360 360360 360360 360360 360360
제1금속층(Ni)두께㎛First metal layer (Ni) thickness μm 00 1One 22 33 44 55 66 77 88 99
ball 부피ball volume 1413714137 14549.114549.1 14258.114258.1 13971.113971.1 13687.913687.9 13408.613408.6 13133.013133.0 12861.312861.3 12593.412593.4 12329.212329.2
void발생유무void occurrence oo oo oo xx xx xx xx xx xx xx
상기 표 3에 나타나는 것과 같이 순수 SAC 코어(비교예 5)와 비교하기 위하여 비교예 6 및 7, 실시예 18 내지 24의 코어 및 제1 금속층의 총 지름이 300인 경우의 코어 부피에 대한 5% 팽창된 부피값을 계산하였다. 5% of the core volume when the total diameters of the core and the first metal layer of Comparative Examples 6 and 7, Examples 18 to 24 are 300 for comparison with pure SAC cores (Comparative Example 5) as shown in Table 3 above. The expanded volume value was calculated.
비교예 5의 부피값(14130) 대비 비교예 6 및 7의 부피값이 크기 때문에, 리플로우(Reflow) 후에 제1 금속층이 무너져 보이드(void)가 발생되며, 실시예 18 내지 24의 부피값은 비교예 5의 부피값보다 작기 때문에 제1 금속층의 저항력이 충분하여 무너지지 않으므로 리플로우(Reflow) 후에도 보이드(Void)가 발생하지 않는다. Since the volume values of Comparative Examples 6 and 7 are larger than the volume values 14130 of Comparative Example 5, the first metal layer collapses after the reflow to cause voids, and the volume values of Examples 18 to 24 are Since it is smaller than the volume value of Comparative Example 5, the resistance of the first metal layer is sufficient and does not collapse, so that voids do not occur even after reflow.
비교예8Comparative Example 8 비교예9Comparative Example 9 비교예10Comparative Example 10 비교예11Comparative Example 11 실시예25Example 25 실시예26Example 26 실시예27Example 27 실시예28Example 28 실시예29Example 29 실시예30Example 30
코어(SAC)+제1금속층(Ni)지름㎛ Core (SAC) + first metal layer (Ni) diameter μm 400400 400400 400400 400400 400400 400400 400400 400400 400400 400400
제2 금속층(SAC)㎛Second metal layer (SAC) ㎛ 3030 3030 3030 3030 3030 3030 3030 3030 3030 3030
최종 cored ball 크기㎛Final cored ball size㎛ 460460 460460 460460 460460 460460 460460 460460 460460 460460 460460
제1금속층(Ni)두께㎛First metal layer (Ni) thickness μm 00 1One 22 33 44 55 66 77 88 99
ball 부피ball volume 3349333493 34643.134643.1 34123.534123.5 33609.133609.1 33099.833099.8 32595.832595.8 32096.932096.9 31603.131603.1 31114.431114.4 30630.830630.8
void발생유무void occurrence oo oo oo oo xx xx xx xx xx xx
상기 표 4에 나타나는 것과 같이 순수 SAC 코어(비교예 8)와 비교하기 위하여 비교예 9 내지 11, 실시예 25 내지 30의 코어 및 제1 금속층의 총 지름이 400인 경우의 코어 부피에 대한 5% 팽창된 부피값을 계산하였다. 5% of the core volume when the total diameters of the cores and the first metal layers of Comparative Examples 9-11 and 25-25 are 400 in order to compare with pure SAC cores (Comparative Example 8) as shown in Table 4 above. The expanded volume value was calculated.
비교예 8의 부피값(33510) 대비 비교예 9 내지 11의 부피값이 크기 때문에, 리플로우(Reflow) 후에 제1 금속층이 무너져 보이드(void)가 발생되며, 실시예 25 내지 30의 부피값은 비교예 8의 부피값보다 작기 때문에 제1 금속층의 저항력이 충분하여 무너지지 않으므로 리플로우(Reflow) 후에도 보이드(Void)가 발생하지 않는다. Since the volume values of Comparative Examples 9 to 11 are larger than those of Comparative Example 8, the first metal layer collapses to cause voids after reflow, and the volume values of Examples 25 to 30 are Since it is smaller than the volume value of Comparative Example 8, the resistance of the first metal layer is sufficient and does not collapse, so that voids do not occur even after reflow.
비교예12Comparative Example 12 비교예13Comparative Example 13 비교예14Comparative Example 14 비교예15Comparative Example 15 비교예16Comparative Example 16 실시예31Example 31 실시예32Example 32 실시예33Example 33 실시예34Example 34 실시예35Example 35
코어(SAC)+제1금속층(Ni)지름㎛ Core (SAC) + first metal layer (Ni) diameter μm 500500 500500 500500 500500 500500 500500 500500 500500 500500 500500
제2 금속층(SAC)㎛Second metal layer (SAC) ㎛ 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040
최종 cored ball 크기㎛Final cored ball size㎛ 580580 580580 580580 580580 580580 580580 580580 580580 580580 580580
제1금속층(Ni)두께㎛First metal layer (Ni) thickness μm 00 1One 22 33 44 55 66 77 88 99
ball 부피ball volume 6541765417 67866.567866.5 67052.267052.2 66244.366244.3 6544365443 64648.164648.1 63859.763859.7 63077.863077.8 62302.362302.3 61533.161533.1
void발생유무void occurrence oo oo oo oo oo xx xx xx xx xx
상기 표 5에 나타나는 것과 같이 순수 SAC 코어(비교예 12)와 비교하기 위하여 비교예 13 내지 16, 실시예 31 내지 35의 코어 및 제1 금속층의 총 지름이 500인 경우의 코어 부피에 대한 5% 팽창된 부피값을 계산하였다. 5% of the core volume when the total diameters of the cores and the first metal layer of Comparative Examples 13 to 16 and Examples 31 to 35 were 500 for comparison with the pure SAC core (Comparative Example 12) as shown in Table 5 above. The expanded volume value was calculated.
비교예 12의 부피값(65417) 대비 비교예 13 내지 16의 부피값이 크기 때문에, 리플로우(Reflow) 후에 제1 금속층이 무너져 보이드(void)가 발생되며, 실시예 31 내지 35의 부피값은 비교예 12의 부피값보다 작기 때문에 제1 금속층의 저항력이 충분하여 무너지지 않으므로 리플로우(Reflow) 후에도 보이드(Void)가 발생하지 않는다. Since the volume values of Comparative Examples 13 to 16 are larger than those of Comparative Example 12, the first metal layer collapses to generate voids after reflow, and the volume values of Examples 31 to 35 are Since it is smaller than the volume value of Comparative Example 12, since the resistance of the first metal layer is sufficient and does not collapse, voids do not occur even after reflow.
그 결과, 리플로우 시, 코어의 부피 변화에 대해 니켈을 포함하는 제1 금속층이 충분한 저항력을 갖지 못하면, 즉 솔더볼 내 제1 금속층이 차지하는 부피 또는 제1 금속층의 두께가 얇으면, 제1 금속층이 깨져 코어가 밖으로 돌출되어 보이드(void) 형태가 발생하였다(도 2 참조). 반면, 솔더볼의 리플로우 과정 중 코어의 부피 변화에 대해 제1 금속층의 저항력이 충분이 클 경우 보이드(void) 형태 없이 코어가 정상적인 형상으로 어셈블리된 형태를 나타내었다(도 3 참조). 이에 따라, 리플로우 시 코어의 형상을 유지하고 접합 신뢰성을 갖기 위해서는 솔더볼 내 제1 금속층이 차지하는 부피 또는 제1 금속층의 두께가 중요한 요소로 작용함을 확인하였다.As a result, if the first metal layer containing nickel does not have sufficient resistance to volume change of the core during reflow, that is, if the volume occupied by the first metal layer in the solder ball or the thickness of the first metal layer is thin, the first metal layer is It broke and the core protruded outward to generate a void form (see FIG. 2). On the other hand, when the resistance of the first metal layer is large enough to change the volume of the core during the reflow of the solder ball, the core is assembled into a normal shape without a void shape (see FIG. 3). Accordingly, in order to maintain the shape of the core during reflow and to have the bonding reliability, it was confirmed that the volume occupied by the first metal layer or the thickness of the first metal layer acts as an important factor.
(2) 구리를 포함하는 제1 금속층을 구비한 솔더볼의 제조(2) Manufacture of solder balls with a first metal layer containing copper
하기 표 6 내지 8에 기재된 비교예 및 실시예에 따른 솔더볼을 하기와 같은 방법으로 제조하고 그 성능을 비교하였다.Solder balls according to Comparative Examples and Examples described in Tables 6 to 8 were prepared by the following method and their performances were compared.
구리를 포함하는 제1 금속층을 구비한 솔더볼의 코어 및 제2 금속층은, 상기 (1) 니켈을 포함하는 제1 금속층을 구비한 솔더볼의 제조방법과 동일하게 실시하였으며, 제1 금속층은 바렐 도금장치의 메시 바렐(mesh barrel) 내부에 더미볼(Dummy ball)과 한 개의 조성 또는 한 개 이상의 조성을 가진 코어를 혼합하여 CN기가 포함된 알칼리성 도금액을 이용하여 전기도금하였다. 도금 두께는 전해도금에 소요되는 전류량과 도금 시간을 조절하여 제어하였다.The core and the second metal layer of the solder ball having the first metal layer containing copper were carried out in the same manner as in (1) the manufacturing method of the solder ball having the first metal layer containing nickel, and the first metal layer was a barrel plating apparatus. A dummy ball and a core having one composition or more than one composition were mixed in a mesh barrel of an electroplating using an alkaline plating solution containing a CN group. Plating thickness was controlled by adjusting the amount of current and plating time required for electroplating.
또한, 피도금체의 코어와 Cu의 도금 밀착력을 높이기 위해 Cu 도금 전 단계에서 표면의 유기물 또는 불순물을 최대한 제거하였다. 이를 제거하기 위해 약 50 ℃ 정도의 pure water를 이용하여 소니케이션을 함께 사용하였다. 또한, 도금 밀착력을 높이기 위해 도금 욕조의 온도를 55~60 ℃ 사이로 유지하였고, 코어의 밀착력 피복력을 높이기 위해 초반에는 rpm을 저속으로 유지하고 어느 정도 도금이 진행된 후에는 rpm을 서서히 증가시켰다.In addition, in order to increase the plating adhesion between the core of the plated body and the Cu, organic substances or impurities on the surface were removed as much as possible in the pre-Cu plating step. In order to remove this, the Sony was used together with pure water of about 50 ℃. In addition, the temperature of the plating bath was maintained between 55 ~ 60 ℃ in order to increase the adhesion of the plating, the rpm was initially maintained at a low speed to increase the adhesion of the core, and the rpm was gradually increased after a certain degree of plating.
한편, 본 실시예에서 평가에 사용된 Cu pad의 Cu 두께는 10 ㎛이다. 표 7에 나타난 비교예 및 실시예의 코어에는 Cu가 5% 이하로 첨가되어 있으며, 표 8의 비교예 및 실시예의 코어에는 Sn이 5% 이하로 첨가되어 있다. On the other hand, Cu thickness of Cu pad used for evaluation in this Example is 10 micrometers. Cu is added to the core of the comparative examples and examples shown in Table 7 5% or less, Sn is added to the core of the comparative examples and examples of Table 8 5% or less.
비교예17Comparative Example 17 비교예18Comparative Example 18 실시예36Example 36 실시예337Example 337 실시예38Example 38 실시예39Example 39 실시예40Example 40 실시예41Example 41
코어(hybrid)Core SACSAC SACSAC SACSAC SACSAC SACSAC SACSAC SACSAC SACSAC
코어사이즈㎛Core size ㎛ 180180 180180 180180 180180 160160 160160 140140 140140
구리층㎛Copper layer μm 0.50.5 1One 22 55 1010 2020 2525 3030
제2 금속층(SAC)두께㎛Second metal layer (SAC) thickness μm 19.519.5 1919 1818 1515 2020 1010 1515 1010
리플로우 후 수율(yidld)%Yield% after reflow 8.46%8.46% 30.44%30.44% 86.12%86.12% 93.24%93.24% 98.70%98.70% 98.91%98.91% 92.68%92.68% 91.22%91.22%
솔더튐 평점Solder paste rating 1One 1One 33 44 55 55 44 44
구리 소모㎛Copper consumption μm 10.0010.00 8.428.42 2.962.96 1.921.92 1.441.44 1.161.16 1.021.02 1.041.04
void발생유무void occurrence oo oo xx xx xx xx xx xx
솔더튐Solder 튐 1One 1One 33 44 55 55 44 44
비교예19Comparative Example 19 비교예20Comparative Example 20 실시예42Example 42 실시예43Example 43 실시예44Example 44 실시예45Example 45 실시예46Example 46 실시예47Example 47
코어(hybrid)Core Bi-XBi-x Bi-XBi-x Bi-XBi-x Bi-XBi-x Bi-XBi-x Bi-XBi-x Bi-XBi-x Bi-XBi-x
코어사이즈㎛Core size ㎛ 180180 180180 180180 180180 160160 160160 140140 140140
구리층㎛Copper layer μm 0.50.5 1One 22 55 1010 2020 2525 3030
제2 금속층(SAC)두께㎛Second metal layer (SAC) thickness μm 19.519.5 1919 1818 1515 2020 1010 1515 1010
리플로우 후 수율(yidld)%Yield% after reflow 5.42%5.42% 28.46%28.46% 88.24%88.24% 91.18%91.18% 98.96%98.96% 93.54%93.54% 92.48%92.48% 90.88%90.88%
솔더튐 평점Solder paste rating 1One 1One 33 44 55 44 44 44
구리 소모㎛Copper consumption μm 10.0010.00 8.388.38 2.982.98 1.961.96 1.481.48 1.121.12 1.081.08 1.061.06
void발생유무void occurrence oo oo xx xx xx xx xx xx
솔더튐Solder 튐 1One 1One 33 44 55 55 55 44
비교예21Comparative Example 21 비교예22Comparative Example 22 실시예48Example 48 실시예49Example 49 실시예50Example 50 실시예51Example 51 실시예52Example 52 실시예53Example 53
코어(hybrid)Core Cu-XCu-X Cu-XCu-X Cu-XCu-X Cu-XCu-X Cu-XCu-X Cu-XCu-X Cu-XCu-X Cu-XCu-X
코어사이즈㎛Core size ㎛ 180180 180180 180180 180180 160160 160160 140140 140140
구리층㎛Copper layer μm 0.50.5 1One 22 55 1010 2020 2525 3030
제2 금속층(SAC) 두께㎛Second metal layer (SAC) thickness μm 19.519.5 1919 1818 1515 2020 1010 1515 1010
리플로우 후 수율(yidld)%Yield% after reflow 6.22%6.22% 22.68%22.68% 88.62%88.62% 94.22%94.22% 98.24%98.24% 97.88%97.88% 96.22%96.22% 92.64%92.64%
솔더튐 평점Solder paste rating 1One 1One 33 44 55 55 55 44
구리 소모㎛Copper consumption μm 10.0010.00 8.528.52 2.942.94 1.981.98 1.461.46 1.181.18 1.061.06 1.081.08
void발생유무void occurrence oo oo xx xx xx xx xx xx
솔더튐Solder 튐 1One 1One 33 44 55 44 44 44
솔더튐(solder splash) 평점Solder splash rating
55 수율 95% 이상Yield 95% or more
44 수율 90% 이상 Yield 90% or more
33 수율 85% 이상Yield 85% or more
22 수율 80% 이상 Yield 80% or more
1One 수율 80% 미만Yield less than 80%
또한, 상기 표 6 내지 8에서 보는 바와 같이 제1 금속층인 구리층의 두께에 따라 솔더튐 현상 및 구리 소모 현상을 관찰한 결과, 수율 85% 이상 및 구리 소모 Cu pad 대비 70% 이하는 구리층 두께 2 ㎛부터가 적당하며, 20 ㎛가 넘을 경우 기대 효과가 미비하고 도금 시간이 오래 걸리는 것으로 나타났다. 이에 따라, 적절한 제1 금속층의 두께는 2 내지 20 ㎛임을 확인하였다.In addition, as shown in Tables 6 to 8, as a result of observing the soldering phenomenon and the copper consumption phenomenon according to the thickness of the copper layer which is the first metal layer, the yield of the copper layer is 85% or more and 70% or less than the copper consumption Cu pad. It was found that from 2 µm is appropriate, and when the thickness exceeds 20 µm, the expected effect is insufficient and the plating time is long. Accordingly, it was confirmed that the appropriate first metal layer had a thickness of 2 to 20 μm.
신뢰성 평가Reliability evaluation
상기 실시예 방법에 따라 제조된 신규 솔더볼과 종래 일반 솔더볼(도 6 참조)을 PCB에 장착하여 접합 강도를 측정하였다. 접합 강도는 JESD22-B117 규정에 의거하여 측정하였다.Bonding strength was measured by mounting a new solder ball and a conventional general solder ball (see FIG. 6) manufactured according to the above example method on a PCB. Bond strength was measured according to JESD22-B117.
그 결과, 도 7에서 보는 바와 같이, 본 명세서에 따른 신규 솔더볼이 일반 솔더볼보다 접합 강도 측면에서 강한 강도값을 나타냈으며, 신규 솔더볼 간에는 유의적인 차이가 없는 것으로 나타났다.As a result, as shown in Figure 7, the new solder ball according to the present disclosure showed a stronger strength value in terms of bonding strength than the general solder ball, it was shown that there is no significant difference between the new solder ball.
또한, 상기 실시예 방법에 따라 제조된 신규 솔더볼과 종래 일반 솔더볼(도 6 참조)을 실장하여 낙하 충격 테스트를 실시하였다. 낙하 충격 테스트는 JESD22-B111 규정에 의거하여 측정하였다.In addition, a drop impact test was performed by mounting a new solder ball and a conventional general solder ball (see FIG. 6) manufactured according to the above-described method. Drop impact test was measured according to JESD22-B111 regulation.
그 결과, 도 8에서 보는 바와 같이, 본 명세서에 따른 신규 솔더볼이 일반 솔더볼보다 낙하 충격에 대한 저항력이 큰 것으로 나타났으며, 충격 시 발생되는 crack의 경로가 신규 솔더볼이 일반 솔더볼보다 긴 crack path를 보였다. 이로 인해 본 명세서에 따른 신규 솔더볼은 낙하 충격에 대한 저항력이 큰 것을 알 수 있었다.As a result, as shown in Figure 8, the new solder ball according to the present specification was found to have a greater resistance to drop impact than the general solder ball, the crack path generated during the impact of the new solder ball has a longer crack path than the normal solder ball Seemed. For this reason, the new solder ball according to the present specification was found to have a large resistance to drop impact.
이상, 본 명세서의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시 태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.As described above, specific portions of the present specification have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and it is obvious that the scope of the present invention is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (13)

  1. 제1 융점을 갖는 금속을 포함하는 코어; 및A core comprising a metal having a first melting point; And
    상기 코어의 외면에 형성되고, 상기 제1 융점보다 높은 제2 융점을 갖는 금속을 포함하는 제1 금속층을 포함하고,A first metal layer formed on an outer surface of the core and including a metal having a second melting point higher than the first melting point,
    상기 제1 금속층의 두께(B, ㎛)는 상기 코어의 입경(A, ㎛)에 대하여 하기 식 1을 만족하는 솔더볼.The thickness (B, μm) of the first metal layer is a solder ball that satisfies the following formula 1 with respect to the particle diameter (A, μm) of the core.
    [식 1][Equation 1]
    Figure PCTKR2017004686-appb-I000005
    Figure PCTKR2017004686-appb-I000005
    (여기서, 50 ≤ A ≤ 600 이다.)(Where 50 ≤ A ≤ 600)
  2. 제 1항에 있어서,The method of claim 1,
    상기 코어 금속의 제1 융점은 300 ℃ 이하이거나 300 내지 600 ℃이고,The first melting point of the core metal is 300 ° C. or less, or 300 to 600 ° C.,
    상기 제1 금속층 금속의 제2 융점은 400 내지 4000 ℃ 인 솔더볼.The second melting point of the first metal layer metal is 400 to 4000 ℃ solder ball.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제1 융점이 300 ℃ 이하인 금속은,The metal having the first melting point of 300 ° C. or less,
    주석(Sn); 또는Tin (Sn); or
    Ag, Cu, Ni, Zn, Al 및 Sb로 구성되는 군에서 선택되는 어느 하나 이상의 금속 및 잔부의 Sn을 포함하는 합금;인 솔더볼.Solder ball, which is an alloy containing any one or more metals selected from the group consisting of Ag, Cu, Ni, Zn, Al, and Sb and the balance Sn.
  4. 제 2항에 있어서,The method of claim 2,
    상기 제1 융점이 300 내지 600 ℃인 금속은,The metal having the first melting point of 300 to 600 ℃,
    Bi-X 또는 Cu-X(X는 Sn, Cu, 또는 Zn)인 솔더볼.Solder balls with Bi-X or Cu-X, where X is Sn, Cu, or Zn.
  5. 제 1항에 있어서,The method of claim 1,
    상기 제1 금속층 금속은 니켈을 포함하는 솔더볼.The first metal layer metal is a solder ball containing nickel.
  6. 제 5항에 있어서,The method of claim 5,
    Ni/Au로 표면처리된 기판에 대해 사용 용도를 갖는 솔더볼.Solder balls for use on substrates surfaced with Ni / Au.
  7. 제 6항에 있어서,The method of claim 6,
    상기 제1 금속층은 상기 솔더볼 전체 부피에 대해 0.5 내지 20 부피%를 차지하는 솔더볼.The first metal layer is a solder ball occupies 0.5 to 20% by volume of the total solder ball volume.
  8. 제 1항에 있어서,The method of claim 1,
    상기 솔더볼은,The solder ball,
    상기 제1 금속층의 외면에 형성되고, 주석 또는 주석 합금을 포함하는 제2 금속층을 더 포함하는 솔더볼.Solder balls are formed on the outer surface of the first metal layer, further comprising a second metal layer containing tin or tin alloy.
  9. 제 8항에 있어서,The method of claim 8,
    상기 주석 합금은 Ag, Cu 및 Bi로 구성되는 군에서 선택되는 어느 하나 이상의 금속을 포함하고 잔부의 주석으로 이루어지는 솔더볼.The tin alloy is a solder ball containing any one or more metals selected from the group consisting of Ag, Cu and Bi and the balance of tin.
  10. 제 8항에 있어서,The method of claim 8,
    상기 제2 금속층은 상기 솔더볼 전체 부피에 대해 20 내지 80 부피%를 차지하는 솔더볼.The second metal layer is a solder ball occupies 20 to 80% by volume with respect to the total volume of the solder ball.
  11. (1) 제1 융점을 갖는 금속을 포함하는 코어를 형성하는 단계; 및(1) forming a core comprising a metal having a first melting point; And
    (2) 상기 코어의 외면에 상기 제1 융점보다 높은 제2 융점을 갖는 금속을 포함하는 제1 금속층을 형성하는 단계를 포함하고,(2) forming a first metal layer on the outer surface of the core comprising a metal having a second melting point higher than the first melting point,
    상기 (2) 단계는 무전해도금 또는 전해도금을 이용하여 상기 제1 금속층의 두께(B, ㎛)가 상기 코어의 입경(A, ㎛)에 대하여 하기 식 1을 만족하는 두께로 갖도록 형성하는 단계인 솔더볼의 제조방법.In the step (2), the thickness (B, μm) of the first metal layer is formed to have a thickness satisfying the following formula 1 with respect to the particle size (A, μm) of the core using electroless plating or electroplating. Method for producing phosphorus solder ball.
    [식 1][Equation 1]
    Figure PCTKR2017004686-appb-I000006
    Figure PCTKR2017004686-appb-I000006
    (여기서, 50 ≤ A ≤ 600 이다.)(Where 50 ≤ A ≤ 600)
  12. 제 11항에 있어서,The method of claim 11,
    상기 (2) 단계 이후에,After the step (2),
    (3) 상기 제1 금속층의 외면에 주석 또는 주석 합금을 포함하는 제2 금속층을 형성하는 단계를 더 포함하는 솔더볼의 제조방법.(3) The method of manufacturing a solder ball further comprising the step of forming a second metal layer containing tin or tin alloy on the outer surface of the first metal layer.
  13. 제 1항 내지 제 10항 중 어느 한 항에 따른 솔더볼을 포함하는 전자부품.An electronic component comprising the solder ball according to any one of claims 1 to 10.
PCT/KR2017/004686 2016-05-04 2017-05-02 Solder ball, manufacturing method therefor, and electronic parts using same WO2017192003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0055445 2016-05-04
KR1020160055445A KR20170125557A (en) 2016-05-04 2016-05-04 Solder ball, method of manufacturing the same and electronic parts using the same

Publications (1)

Publication Number Publication Date
WO2017192003A1 true WO2017192003A1 (en) 2017-11-09

Family

ID=60203043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004686 WO2017192003A1 (en) 2016-05-04 2017-05-02 Solder ball, manufacturing method therefor, and electronic parts using same

Country Status (2)

Country Link
KR (1) KR20170125557A (en)
WO (1) WO2017192003A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075856A (en) * 2005-09-14 2007-03-29 Nippon Steel Materials Co Ltd Cu CORE BALL
KR20100037946A (en) * 2008-10-02 2010-04-12 삼성전기주식회사 Semiconductor package having bump ball
KR20110021618A (en) * 2010-01-08 2011-03-04 덕산하이메탈(주) Core solder balls, method of manufacturing core solder balls and electronic parts including the same
KR101284363B1 (en) * 2013-01-03 2013-07-08 덕산하이메탈(주) Metal core solder ball and heat dissipation structure of semiconductor device using the same
KR101550560B1 (en) * 2014-01-29 2015-09-04 센주긴조쿠고교 가부시키가이샤 Cu CORE BALL, SOLDER JOINT, FOAM SOLDER AND SOLDER PASTE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075856A (en) * 2005-09-14 2007-03-29 Nippon Steel Materials Co Ltd Cu CORE BALL
KR20100037946A (en) * 2008-10-02 2010-04-12 삼성전기주식회사 Semiconductor package having bump ball
KR20110021618A (en) * 2010-01-08 2011-03-04 덕산하이메탈(주) Core solder balls, method of manufacturing core solder balls and electronic parts including the same
KR101284363B1 (en) * 2013-01-03 2013-07-08 덕산하이메탈(주) Metal core solder ball and heat dissipation structure of semiconductor device using the same
KR101550560B1 (en) * 2014-01-29 2015-09-04 센주긴조쿠고교 가부시키가이샤 Cu CORE BALL, SOLDER JOINT, FOAM SOLDER AND SOLDER PASTE

Also Published As

Publication number Publication date
KR20170125557A (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP4092890B2 (en) Multi-chip module
JP4342176B2 (en) Functional alloy particles
US6841495B2 (en) Glass and conductive paste using the same
WO2014106985A1 (en) Metal core solder ball and heat dissipation structure for semiconductor device using the same
US5729893A (en) Process for producing a multilayer ceramic circuit substrate
DE69736144T2 (en) Part for aluminum nitride substrate material semiconductors and its manufacturing method
WO2011122723A1 (en) Method for manufacturing a double-sided printed circuit board
KR20050042060A (en) Solder-coated ball and method for manufacture thereof and method for forming semiconductor interconnecting structure
WO2012023440A1 (en) Solder ball for semiconductor mounting and electronic member
JP2007031826A (en) Connection terminal and substrate for mounting semiconductor having the same
KR20020063833A (en) Copper alloy foils for laminated plates
EP0198038A4 (en) Bath and process for plating tin/lead alloys on composite substrates.
JPH1075052A (en) Soldering method
JP3752064B2 (en) Solder material and electronic component using the same
WO2017192003A1 (en) Solder ball, manufacturing method therefor, and electronic parts using same
JP4175858B2 (en) Method for producing solder-coated balls
US8183463B2 (en) Plating film, printed wiring board, and module substrate
WO2017047974A1 (en) Solder alloy composition having improved missing rate and method for preparing same
KR100743190B1 (en) Lead-free solder with low boiling point and method of producing same
JP4175857B2 (en) Method for producing solder-coated balls
KR20170125572A (en) Solder ball, method of manufacturing the same and electronic parts using the same
JP2005286323A (en) Wiring substrate, wiring substrate with solder member, and manufacturing method of the same
KR102579478B1 (en) Metal pin for conductive connection
KR102579479B1 (en) Connecting Pin
JP5884513B2 (en) Pb-free solder

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792905

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792905

Country of ref document: EP

Kind code of ref document: A1