WO2017191555A1 - Use of a mesoporous oxide film in obtaining a transparent and ultra-thin ceramic coating which inhibits the formation of bacterial biofilms on the coated surface - Google Patents

Use of a mesoporous oxide film in obtaining a transparent and ultra-thin ceramic coating which inhibits the formation of bacterial biofilms on the coated surface Download PDF

Info

Publication number
WO2017191555A1
WO2017191555A1 PCT/IB2017/052537 IB2017052537W WO2017191555A1 WO 2017191555 A1 WO2017191555 A1 WO 2017191555A1 IB 2017052537 W IB2017052537 W IB 2017052537W WO 2017191555 A1 WO2017191555 A1 WO 2017191555A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
formation
mesoporous oxide
mesoporous
bacterial biofilms
Prior art date
Application number
PCT/IB2017/052537
Other languages
Spanish (es)
French (fr)
Inventor
Paolo Nicolás CATALANO
Martin Gonzalo BELLINO
Galo Juan de Ávila Arturo SOLER ILLIA
Cristina Susana COSTA
Ramón Augusto PIZARRO
Magdalena PEZZONI
Original Assignee
Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet)
Comisión Nacional De Energía Atómica (Cnea)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet), Comisión Nacional De Energía Atómica (Cnea) filed Critical Consejo Nacional De Investigaciones Científicas Y Técnicas (Conicet)
Publication of WO2017191555A1 publication Critical patent/WO2017191555A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials

Definitions

  • the present invention relates to the use of a mesoporous oxide film, synthesized by the technique of soldering, self-assembly of surfactants and removal of the structuring agent by calcination, which has a pore diameter of between about 4 nm and about 9 nm, characterized in that it is used in obtaining a transparent and ultra-thin ceramic coating that inhibits the formation of bacterial biofilms on the coated surface, where the film is deposited on the surface by means of the dip coating or spin coating technique.
  • a biofilm is a community of microorganisms attached to a surface.
  • bacteria or other microorganisms are embedded in a matrix (composed of water and polymeric substances) that provides structural stability and protection against different stressors, such as lack of nutrients, desiccation, the presence of antibiotics or biocides, etc.
  • a matrix composed of water and polymeric substances
  • the phenomenon of bacterial adhesion on surfaces constitutes only the first stage in the formation of a biofilm. Cell proliferation and the formation of a complex matrix make up the second stage and distinguish biofilms from the simple adhesion of bacteria on surfaces.
  • Bacterial biofilms can be formed by one or multiple bacterial species, presenting between 10 and 1000 times greater resistance to antimicrobial agents such as antibiotics and other agents with respect to free or planktonic bacteria (Mah and O 'Toóle, Trends in Microbiology 2001, vol 9 ). They can develop on a wide variety of surfaces, being responsible for about 65% of hospital infections. Biofilms can be formed in medical implants such as catheters, artificial hips, heart valves and contact lenses, and their impact on medicine is relevant throughout the world for its harmful effects in health and economic terms (Nickel, et al Eur. J Clin. Microbiol 1985 4: 213-218; Willcox, et al Biomaterials 2001. 22: 3235-3247).
  • biocides represents a non-negligible part of the costs of certain industries; However, the action of these compounds is usually inefficient due to the high resistance of biofilms to eradication treatments. From all the above it is clear that to combat biofilms it is more convenient to avoid their formation than to use physical or chemical treatments once they have been installed. New alternatives are therefore required that provide industrial feasibility, low cost and high effectiveness at the time of eradicating or avoiding their formation. In this framework, from the nanotechnology, the regulation of the topography of a surface is a promising proposal in the development of strategies to avoid the formation of biofilms.
  • the present invention relates to the use of a mesoporous oxide film, synthesized by the soldering technique, self-assembly of surfactants and removal of the structuring agent by calcination, which has a pore diameter of between about 4 nm and about 9 nm, in obtaining a transparent and ultra-thin ceramic coating that inhibits the formation of bacterial biofilms on the coated surface, where the film is deposited on the surface by means of the dip coating or spin coating technique.
  • FIG. 1 Distribution of pore diameters of the silica mesoporous films used in the study, obtained by water adsorption isotherms.
  • MS-4 and MS-9 correspond to films synthesized with Si (OEt) 4 (TEOS) / CTAB and Si (OEt) 4 (TEOS) / F127, respectively.
  • the inserts represent transmission microscopy images of said films.
  • FIG. 1 Representative patterns of low-angle X-ray scattering (2D SAXS) of the silica mesoporous films used in the study.
  • the 3D hexagonal structure is shown in the case of MS-4 (pore diameter of 4 nm) and the cubic structure in the case of MS-9 (pore diameter of 9 nm).
  • FIG. 3 Anti-biofilm effect of silica mesoporous films, in submerged biofilms and in biofilms formed in the air-liquid interface (ALI). a) Average number of viable cells (colony forming units or CFUs) adhered to the NMS (non-mesoporous), MS-4 and MS-9 films after 4, 8 and 24 hours of incubation in culture medium, b) Staining with violet crystal of biofilms grown on NMS, MS-4 and MS-9 surfaces for 24 hours. The images of the biofilms stained with violet crystal, which was eluted and quantified by measuring absorbance at 575 nm.
  • CFUs colony forming units
  • FIG. 1 Scanning electron microscopy images of 24-hour biofilms grown on NMS, MS-4 and MS-9 films. The bar represents 5 ⁇ .
  • the ceramic coating disclosed herein can be applied on various surfaces producing not only the inhibition of bacterial adhesion but also the inhibition of the formation of bacterial biofilms.
  • the ceramic coating of the invention can be in the form of an ultra-thin, transparent, inert, low-cost, scalable and robust sheet without modifying the original appearance of the surface on which it is deposited, not altering the optical properties of the material.
  • the present invention relates to the use of a mesoporous oxide film, synthesized by the technique of soldering, self-assembly of surfactants and removal of the structuring agent by calcination, which has a pore diameter between about 4 nm and about 9 nm, in obtaining a transparent and ultra-thin ceramic coating that inhibits the formation of bacterial biofilms on the coated surface, where the sheet is deposited on the surface by the technique of dip coating or spin coating.
  • the dip coating technique is understood as the immersion coating process where the substrate is introduced into a precursor solution and removed at controlled speed.
  • the spin coating technique is understood as the process where an amount of precursor solution is deposited on the substrate and then it is rotated at high speed to achieve a uniform distribution of the solution by centrifugal force.
  • a silica mesoporous film synthesized by the sol-gel technique, self-assembly of surfactants and removal of the structuring agent by calcination is used, in order to provide anti-biofilm activity to the surface coated with said mesoporous film.
  • said silica mesoporous film is used to inhibit the formation of bacterial biofilms on the coated surface, when said surface is submerged in the bacterial culture medium.
  • said silica mesoporous film is used to inhibit the formation of bacterial biofilms at the air-liquid interface of the coated surface.
  • the coating with the silica mesoporous film does not modify the original appearance of the surface on which it is deposited.
  • a mesoporous silica film to inhibit the formation of bacterial biofilms.
  • it is used to inhibit the formation of bacterial biofilms produced by bacteria belonging to the Pseudomonas aeruginosa species.
  • This microorganism is a relevant opportunistic pathogen in humans characterized by the formation of robust biofilms related to processes of pathogenesis and industrial biocorrosion. It is considered as a model organism for studies with biofilms.
  • the ceramic coating of the invention can be applied commercially in health centers and other places where bacteria-free surfaces are required, for example, food or biomedical processing facilities, play areas and dining rooms.
  • the films described in the present invention could be applied on ceramic surfaces of sinks, tiles and bathrooms or glass surfaces on doors, windows and kitchen utensils.
  • the films could also be applied to metal surfaces of faucets and doorknobs, and medical equipment and instruments.
  • Mesoporous films (4 and 9 nm in pore diameter) were obtained by combining the synthesis of oxides by sol-gel chemistry, controlling the hydrolysis and condensation of inorganic precursors, with the self-assembling of surfactants or copolymers, which act as pore molds .
  • the starting compounds for the synthesis were Si (OEt) 4 (TEOS) and ionic surfactants (CTAB) and polymeric surfactants of the POE-POP-POE type (Pluronics-F127 series). After post-stabilization treatments at controlled humidity and temperature, the structuring agent was removed by calcination to obtain the porous films.
  • the transparent ceramic coating of the invention has great mechanical resistance and can be applied to ceramic or metal surfaces, without altering its optical properties.
  • Mesoporous silica films were obtained on glass slides (support), following processes reported in the literature, in which the synthesis of oxides by sol-gel chemistry (control of the hydrolysis and condensation of inorganic precursors), with the self-assembly of surfactants or copolymers (which act as pore molds).
  • the starting compounds for the synthesis were Si (OEt) 4 (TEOS) and ionic surfactants (CTAB) and polymeric surfactants of the POE-POP-POE type (Pluronics-F127 series).
  • CTAB ionic surfactants
  • polymeric surfactants of the POE-POP-POE type Pluronics-F127 series
  • MS-4 and MS-9 correspond to films synthesized with Si (OEt) 4 (TEOS) / CTAB and Si (OEt ) 4 (TEOS) / F127, respectively.
  • the numbers 4 and 9 are indicative of the average pore diameter present ( Figure 1) that depends on the type of surfactant used.
  • the hexagonal 3D structure for MS-4 films and the cubic structure for MS-9 films are shown in Figure 2.
  • the mesoporous ceramic coatings according to the present invention significantly inhibit the development of biofilms of Pseudomonas aeruginosa, both in the submerged system and ALI.
  • mesoporous films can be synthesized on various ceramic and metal surfaces (Sánchez, et al. Chem. Mater. 2011, 20: 682-737 .; Innocenzi et al., Chem. Soc. Rev. 2013, 42: 4198-4216). Therefore, any of these ceramic and metallic materials would offer the same inhibitory effect on the formation of bacterial biofilms mentioned here, as they are coated with the mesoporous films revealed in this invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Paints Or Removers (AREA)

Abstract

The invention relates to the use of a mesoporous oxide film, synthesized by the sol-gel technique, self-assembly of surfactants and removal of the structuring agent by calcination, having a pore size of between approximately 4 nm and approximately 9 nm, characterized in that it is used in obtaining a transparent and ultra-thin ceramic coating which inhibits the formation of bacterial biofilms on the coated surface, wherein the film is deposited on the surface by the dip coating or spin coating technique.

Description

USO DE UNA PELÍCULA DE ÓXIDO MESOPOROSO, EN LA OBTENCIÓN DE UN RECUBRIMIENTO CERÁMICO TRANSPARENTE Y ULTRADELGADO QUE INHIBE LA FORMACIÓN DE BIOFILMS BACTERIANOS SOBRE LA SUPERFICIE RECUBIERTA  USE OF A MESOPOROUS OXIDE FILM, IN OBTAINING A TRANSPARENT AND ULTRADELGED CERAMIC COATING THAT INHIBITS THE FORMATION OF BACTERIAL BIOFILMS ON THE COVERED SURFACE
La presente invención se refiere al uso de una película de óxido mesoporoso, sintetizada mediante la técnica de sol- gel, autoensamblado de surfactantes y eliminación del agente estructurante mediante calcinación, que presenta un diámetro de poro de entre alrededor de 4 nm y alrededor de 9 nm, caracterizada porque se la utiliza en la obtención de un recubrimiento cerámico transparente y ultradelgado que inhibe la formación de biofilms bacterianos en la superficie recubierta, en donde la película se deposita sobre la superficie mediante la técnica de dip coating o spin coating. The present invention relates to the use of a mesoporous oxide film, synthesized by the technique of soldering, self-assembly of surfactants and removal of the structuring agent by calcination, which has a pore diameter of between about 4 nm and about 9 nm, characterized in that it is used in obtaining a transparent and ultra-thin ceramic coating that inhibits the formation of bacterial biofilms on the coated surface, where the film is deposited on the surface by means of the dip coating or spin coating technique.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El campo de los materiales mesoporosos ha evolucionado en las últimas décadas, desde el descubrimiento de los primeros materiales basados en sílice y moldeados a través de la incorporación de micelas como plantillas (Kresge et al., Nature, 1992, 359:710; Beck et al., J Am Chem Soc, 1992, 114:10834; Yanagisa a et al., Bull Chem Soc Jpn, 1990, 63:988) . La posibilidad de combinar métodos de síntesis química suave con el autoensamblado molecular, ha abierto un amplio campo de investigación con aplicaciones sumamente interesantes (Soler-Illia et al. Chem. Rev. 2002, 102:4093-4138; Brinker et al., Adv. Mater. 1999, 11:579- 585) . De este modo, puede obtenerse una amplia gama de materiales inorgánicos y matrices híbridas orgánicas- inorgánicas con una variedad de composición, diámetro de poros, funciones orgánicas o biológicas situadas en el esqueleto inorgánico, en los poros o en la superficie interior de dichos poros. El procesamiento de materiales mesoporosos como películas delgadas ofrece la oportunidad de crear novedosos recubrimientos que combinan las ventajas del control de la forma, simetría y diámetro de poro junto a sus posibles modificaciones superficiales, con destacadas propiedades ópticas y la posibilidad de ser aplicados sobre diferentes sustratos metálicos o cerámicos. En los últimos años, la producción de películas delgadas mesoporosas accesibles y funcionalizables , ya sea en donde la superficie de poros o el volumen de poros pueden ser modificados por diferentes grupos funcionales, moléculas biológicas o nanopartículas , ha sido extensamente explorada (Sánchez, et al. Chem. Mater. 2011, 20:682-737.; Innocenzi et al., Chem. Soc. Rev. 2013, 42:4198-4216) . The field of mesoporous materials has evolved in recent decades, since the discovery of the first materials based on silica and molded through the incorporation of micelles as templates (Kresge et al., Nature, 1992, 359: 710; Beck et al., J Am Chem Soc, 1992, 114: 10834; Yanagisa a et al., Bull Chem Soc Jpn, 1990, 63: 988). The possibility of combining mild chemical synthesis methods with molecular self-assembly has opened a wide field of research with extremely interesting applications (Soler-Illia et al. Chem. Rev. 2002, 102: 4093-4138; Brinker et al., Adv Mater. 1999, 11: 579-585). In this way, a wide range of inorganic materials and organic-inorganic hybrid matrices with a variety of composition, pore diameter, organic or biological functions located in the inorganic skeleton, in the pores or on the inner surface of said pores. The processing of mesoporous materials such as thin films offers the opportunity to create novel coatings that combine the advantages of controlling the shape, symmetry and pore diameter together with their possible surface modifications, with outstanding optical properties and the possibility of being applied on different substrates metallic or ceramic. In recent years, the production of accessible and functionalizable thin mesoporous films, whether the surface of pores or the volume of pores can be modified by different functional groups, biological molecules or nanoparticles, has been extensively explored (Sánchez, et al Chem. Mater. 2011, 20: 682-737 .; Innocenzi et al., Chem. Soc. Rev. 2013, 42: 4198-4216).
Un biofilm es una comunidad de microorganismos adheridos a una superficie. En el mismo, las bacterias u otros microorganismos se encuentran embebidos en una matriz (compuesta por agua y sustancias poliméricas) que les provee estabilidad estructural y protección frente a diferentes factores de estrés, tales como la falta de nutrientes, la desecación, la presencia de antibióticos o biocidas, etc. (Mah, et al Nature. 2003 426:306-310; Flemming, et al Nat . Rev. Microbiol . 2010 8:623-6332010) . El fenómeno de adhesión bacteriana sobre superficies constituye sólo la primera etapa en la formación de un biofilm. La proliferación celular y la formación de una matriz compleja conforman la segunda etapa y distinguen a los biofilms de la simple adhesión de bacterias sobre superficies . Los biofilms bacterianos pueden estar formados por una o múltiples especies bacterianas, presentando entre 10 a 1000 veces mayor resistencia a agentes antimicrobianos como antibióticos y otros agentes con respecto a bacterias libres o planctónicas (Mah y O' Toóle, Trends in Microbiology 2001, vol 9) . Los mismos pueden desarrollarse en una amplia variedad de superficies, siendo responsables de alrededor del 65% de las infecciones hospitalarias. Los biofilms pueden formarse en implantes médicos tales como catéteres, caderas artificiales, válvulas cardiacas y lentes de contacto, y su impacto en la medicina es relevante en el mundo entero por sus efectos perjudiciales en términos sanitarios y económicos (Nickel, et al Eur . J. Clin. Microbiol 1985 4:213-218; Willcox, et al Biomaterials 2001. 22:3235-3247) . Por otra parte, el desarrollo de microorganismos en superficies de tipo industrial, como por ejemplo sistemas de cañerías de agua o de hidrocarburos, puede tener un efecto perjudicial sobre las mismas (Walker, J.T., Mackerness, C.W., Rogers, J. and Keevil, C.W. Microbial Biofilms. 1995. H.M. Lappin-Scott and J.W. Costerton (eds.) . Cambridge University Press, Great Britain, 196-204; Lenhart T.R., et al, Biofouling 2014. 30:823-835) . Además de generar "bioensuciamiento" , los biofilms pueden promover reacciones físico-químicas produciendo corrosión del material que compone dichas cañerías. La provisión de biocidas representa una parte no despreciable dentro de los costos de ciertas industrias; sin embargo, la acción de estos compuestos suele resultar ineficiente debido a la alta resistencia de los biofilms a los tratamientos de erradicación. De todo lo expuesto se desprende que para combatir los biofilms resulta más conveniente evitar su formación que utilizar tratamientos físicos o químicos una vez que se han instalado. Se requieren por lo tanto nuevas alternativas que provean factibilidad industrial, bajo costo y alta efectividad al momento de erradicar o evitar su formación. En este marco, a partir de la nanotecnologia, la regulación de la topografía de una superficie resulta una propuesta promisoria en el desarrollo de estrategias para evitar la formación de biofilms. Con este objetivo se ha investigado la posibilidad de utilizar materiales mesoporosos, a partir de sustratos de titanio (Varióla et al., International Journal of Nanomedicine, 2014, 9:2319-2325) y polvos microparticulados tratados químicamente (Izquierdo-Barba et al., Acta Biomaterialia, 2011, 7:2977-2985; Kinnari et al., Journal of Biomedical Materials Research Part A, 2009, 89A: 215-223) . Sin embargo, estos estudios demostraron sólo efectos sobre la adhesión bacteriana sin demostrar efectos sobre la formación de biofilms bacterianos. Además, no se han descrito hasta el momento recubrimientos mesoporosos delgados que puedan inhibir la formación de biofilms bacterianos y que puedan aplicarse sobre diversas superficies sin alterar su calidad óptica. Es por lo tanto que sigue existiendo la necesidad de desarrollar recubrimientos delgados que inhiban la formación de biofilms bacterianos y que conserven su transparencia óptica para ser aplicados sobre superficies que así lo requieran . A biofilm is a community of microorganisms attached to a surface. In it, bacteria or other microorganisms are embedded in a matrix (composed of water and polymeric substances) that provides structural stability and protection against different stressors, such as lack of nutrients, desiccation, the presence of antibiotics or biocides, etc. (Mah, et al Nature. 2003 426: 306-310; Flemming, et al Nat. Rev. Microbiol. 2010 8: 623-6332010). The phenomenon of bacterial adhesion on surfaces constitutes only the first stage in the formation of a biofilm. Cell proliferation and the formation of a complex matrix make up the second stage and distinguish biofilms from the simple adhesion of bacteria on surfaces. Bacterial biofilms can be formed by one or multiple bacterial species, presenting between 10 and 1000 times greater resistance to antimicrobial agents such as antibiotics and other agents with respect to free or planktonic bacteria (Mah and O 'Toóle, Trends in Microbiology 2001, vol 9 ). They can develop on a wide variety of surfaces, being responsible for about 65% of hospital infections. Biofilms can be formed in medical implants such as catheters, artificial hips, heart valves and contact lenses, and their impact on medicine is relevant throughout the world for its harmful effects in health and economic terms (Nickel, et al Eur. J Clin. Microbiol 1985 4: 213-218; Willcox, et al Biomaterials 2001. 22: 3235-3247). On the other hand, the development of microorganisms on industrial-type surfaces, such as water or hydrocarbon pipe systems, can have a detrimental effect on them (Walker, JT, Mackerness, CW, Rogers, J. and Keevil, CW Microbial Biofilms. 1995. HM Lappin-Scott and JW Costerton (eds.). Cambridge University Press, Great Britain, 196-204; Lenhart TR, et al, Biofouling 2014. 30: 823-835). In addition to generating "bio-fouling", biofilms can promote physical-chemical reactions producing corrosion of the material that composes said pipes. The provision of biocides represents a non-negligible part of the costs of certain industries; However, the action of these compounds is usually inefficient due to the high resistance of biofilms to eradication treatments. From all the above it is clear that to combat biofilms it is more convenient to avoid their formation than to use physical or chemical treatments once they have been installed. New alternatives are therefore required that provide industrial feasibility, low cost and high effectiveness at the time of eradicating or avoiding their formation. In this framework, from the nanotechnology, the regulation of the topography of a surface is a promising proposal in the development of strategies to avoid the formation of biofilms. With this objective, the possibility of using mesoporous materials from titanium substrates (Varióla et al., International Journal of Nanomedicine, 2014, 9: 2319-2325) and chemically treated microparticulate powders (Izquierdo-Barba et al. , Acta Biomaterialia, 2011, 7: 2977-2985; Kinnari et al., Journal of Biomedical Materials Research Part A, 2009, 89A: 215-223). However, these studies demonstrated only effects on bacterial adhesion without demonstrating effects on the formation of bacterial biofilms. In addition, thin mesoporous coatings that can inhibit the formation of bacterial biofilms and that can be applied on various surfaces without altering their optical quality have not been described so far. It is therefore that there is still a need to develop thin coatings that inhibit the formation of bacterial biofilms and retain their optical transparency to be applied on surfaces that require it.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La presente invención se refiere al uso de una película de óxido mesoporoso, sintetizada mediante la técnica de sol- gel, autoensamblado de surfactantes y eliminación del agente estructurante mediante calcinación, que presenta un diámetro de poro de entre alrededor de 4 nm y alrededor de 9 nm, en la obtención de un recubrimiento cerámico transparente y ultradelgado que inhibe la formación de biofilms bacterianos en la superficie recubierta, en donde la película se deposita sobre la superficie mediante la técnica de dip coating o spin coating. The present invention relates to the use of a mesoporous oxide film, synthesized by the soldering technique, self-assembly of surfactants and removal of the structuring agent by calcination, which has a pore diameter of between about 4 nm and about 9 nm, in obtaining a transparent and ultra-thin ceramic coating that inhibits the formation of bacterial biofilms on the coated surface, where the film is deposited on the surface by means of the dip coating or spin coating technique.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1. Distribución de diámetros de poro de las películas mesoporosas de sílice empleadas en el estudio, obtenidas por isotermas de adsorción de agua. MS-4 y MS-9 corresponden a las películas sintetizadas con Si(OEt)4 (TEOS)/CTAB y Si(OEt)4 (TEOS)/F127, respectivamente. Los insertos representan imágenes de microscopía de transmisión de dichas películas. Figure 1. Distribution of pore diameters of the silica mesoporous films used in the study, obtained by water adsorption isotherms. MS-4 and MS-9 correspond to films synthesized with Si (OEt) 4 (TEOS) / CTAB and Si (OEt) 4 (TEOS) / F127, respectively. The inserts represent transmission microscopy images of said films.
Figura 2. Patrones representativos de Dispersión de Rayos X a bajo ángulo (2D SAXS) de las películas mesoporosas de sílice empleadas en el estudio. Se muestra la estructura hexagonal 3D en el caso de MS-4 (diámetro de poro de 4 nm) y la estructura cúbica en el caso de MS-9 (diámetro de poro de 9 nm) . Figure 2. Representative patterns of low-angle X-ray scattering (2D SAXS) of the silica mesoporous films used in the study. The 3D hexagonal structure is shown in the case of MS-4 (pore diameter of 4 nm) and the cubic structure in the case of MS-9 (pore diameter of 9 nm).
Figura 3. Efecto anti-biofilm de las películas mesoporosas de sílice, en biofilms sumergidos y en biofilms formados en la interfase aire líquido (air-liquid ínterfase o ALI) . a) Número promedio de células viables (unidades formadores de colonia o CFU) adheridas a las películas NMS (no mesoporosas), MS-4 y MS-9 luego de 4, 8 y 24 hs de incubación en medio de cultivo, b) Tinción con cristal violeta de biofilms crecidos sobre superficies NMS, MS-4 y MS-9 durante 24 hs . Se observan las imágenes de los biofilms teñidos con cristal violeta, el cual fue eluido y cuantificado midiendo absorbancia a 575 nm. c) Cuantificación de sustancias poliméricas extracelulares (polisacáridos, proteínas y ADN) presentes en la matriz de biofilms de 24 hs crecidos sobre superficies NMS, MS-4 y MS-9. Los asteriscos demuestran diferencias significativas entre MS-9 y NMS (test t de Student) : * p<0,05; ** p<0,01; *** p<0,003. Figure 3. Anti-biofilm effect of silica mesoporous films, in submerged biofilms and in biofilms formed in the air-liquid interface (ALI). a) Average number of viable cells (colony forming units or CFUs) adhered to the NMS (non-mesoporous), MS-4 and MS-9 films after 4, 8 and 24 hours of incubation in culture medium, b) Staining with violet crystal of biofilms grown on NMS, MS-4 and MS-9 surfaces for 24 hours. The images of the biofilms stained with violet crystal, which was eluted and quantified by measuring absorbance at 575 nm. c) Quantification of extracellular polymeric substances (polysaccharides, proteins and DNA) present in the 24-hour biofilm matrix grown on NMS, MS-4 and MS-9 surfaces. Asterisks demonstrate significant differences between MS-9 and NMS (Student's t-test): * p <0.05; ** p <0.01; *** p <0.003.
Figura 4. Imágenes de microscopía electrónica de barrido de biofilms de 24 hs crecidos sobre películas NMS, MS-4 y MS- 9. La barra representa 5 μπι. Figure 4. Scanning electron microscopy images of 24-hour biofilms grown on NMS, MS-4 and MS-9 films. The bar represents 5 μπι.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Aunque existen reportes previos donde se describen los efectos de materiales mesoporosos sobre la adhesión bacteriana, éstos se refieren a la utilización de sustratos de titanio y polvos microparticulados , sin mostrar resultados concluyentes al respecto. Por el contrario, de acuerdo con la presente invención, el recubrimiento cerámico que aquí se revela puede ser aplicado sobre diversas superficies produciendo no sólo la inhibición de la adhesión bacteriana sino también la inhibición de la formación de biofilms bacterianos. Asimismo, el recubrimiento cerámico de la invención puede encontrarse en forma de una lámina ultradelgada, transparente, inerte, de bajo costo, escalable y robusta sin modificar la apariencia original de la superficie sobre la cual es depositado, no alterando las propiedades ópticas del material . Although there are previous reports describing the effects of mesoporous materials on bacterial adhesion, these refer to the use of titanium substrates and microparticulate powders, without showing conclusive results in this regard. On the contrary, according to the present invention, the ceramic coating disclosed herein can be applied on various surfaces producing not only the inhibition of bacterial adhesion but also the inhibition of the formation of bacterial biofilms. Likewise, the ceramic coating of the invention can be in the form of an ultra-thin, transparent, inert, low-cost, scalable and robust sheet without modifying the original appearance of the surface on which it is deposited, not altering the optical properties of the material.
La presente invención se refiere al uso de una película de óxido mesoporoso, sintetizada mediante la técnica de sol- gel, autoensamblado de surfactantes y eliminación del agente estructurante mediante calcinación, que presenta un diámetro de poro de entre alrededor de 4 nm y alrededor de 9 nm, en la obtención de un recubrimiento cerámico transparente y ultradelgado que inhibe la formación de biofilms bacterianos en la superficie recubierta, en donde la lámina se deposita sobre la superficie mediante la técnica de dip coating o spin coating. De acuerdo con la presente invención, se entiende como técnica de dip coating al proceso de recubrimiento por inmersión donde el sustrato es introducido en una solución precursora y retirado a velocidad controlada. Asimismo, se entiende como técnica de spin coating al proceso donde se deposita una cantidad de solución precursora sobre el substrato y luego éste se rota a gran velocidad para lograr una distribución uniforme de la solución por fuerza centrifuga. The present invention relates to the use of a mesoporous oxide film, synthesized by the technique of soldering, self-assembly of surfactants and removal of the structuring agent by calcination, which has a pore diameter between about 4 nm and about 9 nm, in obtaining a transparent and ultra-thin ceramic coating that inhibits the formation of bacterial biofilms on the coated surface, where the sheet is deposited on the surface by the technique of dip coating or spin coating. In accordance with the present invention, the dip coating technique is understood as the immersion coating process where the substrate is introduced into a precursor solution and removed at controlled speed. Likewise, the spin coating technique is understood as the process where an amount of precursor solution is deposited on the substrate and then it is rotated at high speed to achieve a uniform distribution of the solution by centrifugal force.
En una realización particular de la invención, se utiliza una película mesoporosa de sílice sintetizada mediante la técnica de sol-gel, autoensamblado de surfactantes y eliminación del agente estructurante mediante calcinación, con el objeto de proporcionar actividad anti-biofilm a la superficie recubierta con dicha película mesoporosa. Por un lado, dicha película mesoporosa de sílice se utiliza para inhibir la formación de biofilms bacterianos en la superficie recubierta, cuando dicha superficie se encuentra sumergida en el medio de cultivo bacteriano. Por otro lado, dicha película mesoporosa de sílice se utiliza para inhibir la formación de biofilms bacterianos en la interfase aire- líquido de la superficie recubierta. In a particular embodiment of the invention, a silica mesoporous film synthesized by the sol-gel technique, self-assembly of surfactants and removal of the structuring agent by calcination is used, in order to provide anti-biofilm activity to the surface coated with said mesoporous film. On the one hand, said silica mesoporous film is used to inhibit the formation of bacterial biofilms on the coated surface, when said surface is submerged in the bacterial culture medium. On the other hand, said silica mesoporous film is used to inhibit the formation of bacterial biofilms at the air-liquid interface of the coated surface.
De acuerdo con la invención, el recubrimiento con la película mesoporosa de sílice, no modifica la apariencia original de la superficie sobre la que es depositada. According to the invention, the coating with the silica mesoporous film does not modify the original appearance of the surface on which it is deposited.
Por otra parte, es un objeto particular de la invención el uso de una película mesoporosa de sílice para inhibir la formación de biofilms bacterianos. En realizaciones más particulares, se la utiliza para inhibir la formación de biofilms bacterianos producidos por bacterias que pertenecen a la especie Pseudomonas aeruginosa. Este microorganismo es un relevante patógeno oportunista en humanos caracterizado por la formación de robustos biofilms relacionados con procesos de patogénesis y biocorrosión industrial. Se lo considera como organismo modelo para estudios con biofilms. On the other hand, it is a particular object of the invention to use a mesoporous silica film to inhibit the formation of bacterial biofilms. In more particular embodiments, it is used to inhibit the formation of bacterial biofilms produced by bacteria belonging to the Pseudomonas aeruginosa species. This microorganism is a relevant opportunistic pathogen in humans characterized by the formation of robust biofilms related to processes of pathogenesis and industrial biocorrosion. It is considered as a model organism for studies with biofilms.
El recubrimiento cerámico de la invención puede ser aplicado comercialmente en centros de salud y otros lugares donde se requieran superficies libres de bacterias, por ejemplo, instalaciones de procesamiento de alimentos o biomédicas, áreas de juego y comedores. Las películas descriptas en la presente invención podrían aplicarse sobre superficies cerámicas de lavabos, azulejos y baños o superficies de vidrio en puertas, ventanas y utensilios de cocina. Las películas también podrían aplicarse a superficies metálicas de grifos y picaportes, y equipamiento e instrumentos médicos. The ceramic coating of the invention can be applied commercially in health centers and other places where bacteria-free surfaces are required, for example, food or biomedical processing facilities, play areas and dining rooms. The films described in the present invention could be applied on ceramic surfaces of sinks, tiles and bathrooms or glass surfaces on doors, windows and kitchen utensils. The films could also be applied to metal surfaces of faucets and doorknobs, and medical equipment and instruments.
Las películas mesoporosas (4 y 9 nm de diámetro de poro) se obtuvieron combinando la síntesis de óxidos por química sol-gel, controlando la hidrólisis y condensación de los precursores inorgánicos, con el autoensamblado de tensioactivos o copolímeros, que actúan como moldes de poro. Los compuestos de partida para la síntesis fueron Si (OEt)4 (TEOS) y surfactantes iónicos (CTAB) y tensioactivos poliméricos de tipo POE-POP-POE (serie Pluronics-F127 ) . Luego de tratamientos de post-estabilización a humedad y temperatura controladas, se eliminó el agente estructurante por calcinación obteniendo las películas porosas. El funcionamiento de la invención ha sido demostrado mediante ensayos de formación de biofilms de Pseudomonas aeruginosa, empleando superficies no porosas como control. Se ensayaron dos sistemas diferentes de formación de biofilm: sumergidos e interfase aire-liquido, y se evaluó la formación del mismo a distintos tiempos. Los resultados obtenidos demostraron una significativa inhibición de adhesión celular y formación de biofilm en las superficies recubiertas con la película mesoporosa en comparación a superficies no porosas, ya sea de sílica no porosa o de vidrio . Mesoporous films (4 and 9 nm in pore diameter) were obtained by combining the synthesis of oxides by sol-gel chemistry, controlling the hydrolysis and condensation of inorganic precursors, with the self-assembling of surfactants or copolymers, which act as pore molds . The starting compounds for the synthesis were Si (OEt) 4 (TEOS) and ionic surfactants (CTAB) and polymeric surfactants of the POE-POP-POE type (Pluronics-F127 series). After post-stabilization treatments at controlled humidity and temperature, the structuring agent was removed by calcination to obtain the porous films. The operation of the invention has been demonstrated by biofilm assays of Pseudomonas aeruginosa, using non-porous surfaces as control. Two different biofilm formation systems were tested: submerged and air-liquid interface, and their formation was evaluated at different times. The results obtained demonstrated a significant inhibition of cell adhesion and biofilm formation on the surfaces coated with the mesoporous film compared to non-porous surfaces, whether of non-porous silica or glass.
Así, mediante la presente invención, resulta posible combatir biofilms de bacterias no deseables, los cuales pueden transformarse en un peligroso foco de infección perjudicial para la salud o generar corrosión o bioensuciamiento cuando se encuentran depositados en una superficie. El recubrimiento cerámico transparente de la invención, presenta una gran resistencia mecánica y puede ser aplicado sobre superficies cerámicas o metálicas, sin alterar sus propiedades ópticas. Thus, by means of the present invention, it is possible to combat biofilms of undesirable bacteria, which can become a dangerous source of infection harmful to health or generate corrosion or bio-fouling when they are deposited on a surface. The transparent ceramic coating of the invention has great mechanical resistance and can be applied to ceramic or metal surfaces, without altering its optical properties.
Entre dichas superficies podemos mencionar aquellas destinadas a establecimientos sanitarios o alimentarios, como hospitales, restaurantes o frigoríficos; incluso hogares, enseres de utilización doméstica, incluyendo elementos sanitarios y electrodomésticos. Among these surfaces we can mention those destined to sanitary or food establishments, such as hospitals, restaurants or refrigerators; including homes, household appliances, including sanitary items and appliances.
EJEMPLOS DE REALIZACIÓN EXAMPLES OF REALIZATION
Obtención de las películas mesoporosas  Obtaining mesoporous films
Se obtuvieron películas mesoporosas de sílice sobre portaobjetos de vidrio (soporte), siguiendo procesos reportados en la bibliografía, en los cuales se combina la síntesis de óxidos por química sol-gel (control de la hidrólisis y condensación de los precursores inorgánicos) , con el autoensamblado de tensioactivos o copolímeros (que actúan como moldes de poro) . Los compuestos de partida para la síntesis fueron Si(OEt)4 (TEOS) y surfactantes iónicos (CTAB) y tensioactivos poliméricos de tipo POE-POP-POE (serie Pluronics-F127 ) . Luego de tratamientos de post¬ estabilización a humedad y temperatura controladas, se eliminó el agente estructurante por calcinación obteniendo las películas mesoporosas. (El procedimiento se describe, por ejemplo, en G. J. A. A. Soler-Illia y col., "Mesoporous hybrid and nanocomposite thin films. A sol-gel toolbox to créate nanoconfined systems with localized chemical properties", J Sol-Gel Technol, 2011, 57, 299-312, el cual se adjunta a la presente, como referencia, en su totalidad) . Mesoporous silica films were obtained on glass slides (support), following processes reported in the literature, in which the synthesis of oxides by sol-gel chemistry (control of the hydrolysis and condensation of inorganic precursors), with the self-assembly of surfactants or copolymers (which act as pore molds). The starting compounds for the synthesis were Si (OEt) 4 (TEOS) and ionic surfactants (CTAB) and polymeric surfactants of the POE-POP-POE type (Pluronics-F127 series). After post treatments ¬ stabilization controlled temperature and humidity, the structuring agent was removed by calcination obtaining mesoporous films. (The procedure is described, for example, in GJAA Soler-Illia et al., "Mesoporous hybrid and nanocomposite thin films. A sol-gel toolbox to create nanoconfined systems with localized chemical properties", J Sol-Gel Technol, 2011, 57 , 299-312, which is attached hereto, as a reference, in its entirety).
Caracterización de las películas mesoporosas Characterization of mesoporous films
La caracterización exhaustiva de los recubrimientos mesoporosos resulta fundamental, ya que las propiedades de las películas mesoporosas dependen fuertemente de su estructura de poros. Los resultados que permiten caracterizar perfectamente las películas mesoporosas descriptas se resumen en la Figura 1, Figura 2 y Tabla 1. MS-4 y MS-9 corresponden a las películas sintetizadas con Si(OEt)4 (TEOS) /CTAB y Si(OEt)4 (TEOS)/F127, respectivamente. Los números 4 y 9 son indicativos del diámetro promedio de poro presente (Figura 1) que depende del tipo de surfactante utilizado. En la Figura 2 se muestra la estructura hexagonal 3D para las películas MS-4 y la estructura cúbica para las películas MS-9. The thorough characterization of mesoporous coatings is essential, since the properties of mesoporous films strongly depend on their pore structure. The results that allow to perfectly characterize the described mesoporous films are summarized in Figure 1, Figure 2 and Table 1. MS-4 and MS-9 correspond to films synthesized with Si (OEt) 4 (TEOS) / CTAB and Si (OEt ) 4 (TEOS) / F127, respectively. The numbers 4 and 9 are indicative of the average pore diameter present (Figure 1) that depends on the type of surfactant used. The hexagonal 3D structure for MS-4 films and the cubic structure for MS-9 films are shown in Figure 2.
Por otra parte, en la Tabla 1 también se pueden observar otros datos estructurales de MS-4 y MS-9 como la porosidad y el espesor, así como el ángulo de contacto que es un indicador de hidrofobicidad de las películas utilizadas. On the other hand, other structural data of MS-4 and MS-9 such as porosity can also be observed in Table 1 and the thickness, as well as the contact angle that is an indicator of hydrophobicity of the films used.
Tabla 1. Datos estructurales y medidas del ángulo de contacto (indicador de hidrofobicidad) de las películas empleadas en este estudio. MS-4 y MS-9 corresponden a las películas con un diámetro promedio de poro de 4 o 9 nm, respectivamente. Se utilizaron además películas no mesoporosas como control (NMS), sintetizadas mediante el mismo procedimiento que las mesoporosas pero sin la incorporación del surfactante que permite la formación de los mesoporos. Table 1. Structural data and contact angle measurements (hydrophobicity indicator) of the films used in this study. MS-4 and MS-9 correspond to films with an average pore diameter of 4 or 9 nm, respectively. Non-mesoporous films were also used as control (NMS), synthesized by the same procedure as mesoporous but without the incorporation of the surfactant that allows the formation of mesopores.
Tipo de Tamaño de Porosidad Espesor Ángulo de película poro contacto Porosity Size Type Thickness Film angle contact pore
(%) (nm)  (%) (nm)
(nm) (°)  (nm) (°)
NMS 5 ± 0.5 93 ± 1 23.0 ± 1 NMS 5 ± 0.5 93 ± 1 23.0 ± 1
MS-4 4.1 ± 0.5 42 ± 2 150 ± 1 16.0 ± 1 MS-4 4.1 ± 0.5 42 ± 2 150 ± 1 16.0 ± 1
MS-9 9.2 ± 0.¡ 37 ± 2 100 ± 1 28.0 ± 2 MS-9 9.2 ± 0.¡ 37 ± 2 100 ± 1 28.0 ± 2
Inhibición de la formación de biofilms bacterianos por parte de las películas mesoporosas de acuerdo con la invención Inhibition of the formation of bacterial biofilms by mesoporous films according to the invention
Los estudios de actividad anti-biofilm de las películas de acuerdo con la invención, se llevaron a cabo empleando la cepa prototípica de Pseudomonas aeruginosa PAOl . Este microorganismo es un relevante patógeno oportunista en humanos caracterizado por la formación de robustos biofilms relacionados con procesos de patogénesis y corrosión industrial. Se lo considera como organismo modelo para estudios con biofilms. Se presentan datos cuantitativos obtenidos mediante recuento de unidades formadoras de colonias (UFC) . Se emplearon dos sistemas de formación de biofilms: sumergido y ALI . En el primer sistema los recubrimientos fueron sumergidos totalmente en el caldo de cultivo bacteriano favoreciendo la formación de biofilms sobre toda la superficie, mientras que en el segundo sistema, denominado ALI, los recubrimientos fueron colocados en forma vertical dejando una porción de la misma fuera del medio de cultivo bacteriano favoreciendo la formación de biofilm en la interfase aire-liquido. Para los recubrimientos basados en las películas mesoporosas se observó una disminución significativa de células viables luego de 8 y 24 hs de incubación con inóculos de aproximadamente 108 bacterias/mL) (Figura 3a) . Además, la cuantificación realizada por tinción con cristal violetaStudies of anti-biofilm activity of the films according to the invention were carried out using the prototypical strain of Pseudomonas aeruginosa PAOl. This microorganism is a relevant opportunistic pathogen in humans characterized by the formation of robust biofilms related to pathogenesis and industrial corrosion processes. It is considered as a model organism for studies with biofilms. Quantitative data obtained by counting training units are presented. colonies (UFC). Two biofilm formation systems were used: submerged and ALI. In the first system the coatings were completely submerged in the bacterial culture broth favoring the formation of biofilms over the entire surface, while in the second system, called ALI, the coatings were placed vertically leaving a portion of it outside the surface. Bacterial culture medium favoring the formation of biofilm at the air-liquid interface. For coatings based on mesoporous films, a significant decrease in viable cells was observed after 8 and 24 hours of incubation with inoculums of approximately 10 8 bacteria / mL) (Figure 3a). In addition, the quantification performed by staining with violet crystal
(Figura 3b) demostró claramente la inhibición en la formación de biofilm sobre las películas mesoporosas. También se observó una disminución en los niveles de sustancias poliméricas extracelulares de la matriz(Figure 3b) clearly demonstrated the inhibition in biofilm formation on mesoporous films. A decrease in the levels of extracellular polymeric substances in the matrix was also observed
(polisacáridos, proteínas y ADN) sobre las películas mesoporosas (Figura 3c) . Asimismo, las imágenes de microscopía electrónica de barrido muestran un menor número de células adheridas sobre la superficie de las películas mesoporosas (Figura 4) . En todos los casos, el efecto inhibitorio sobre la formación de biofilms bacterianos fue mayor en el caso de MS-9, en ambos sistemas estudiados(polysaccharides, proteins and DNA) on mesoporous films (Figure 3c). Likewise, scanning electron microscopy images show a smaller number of cells attached to the surface of mesoporous films (Figure 4). In all cases, the inhibitory effect on the formation of bacterial biofilms was greater in the case of MS-9, in both systems studied
(sumergido y ALI) . (submerged and ALI).
De los resultados expuestos puede observarse que los recubrimientos cerámicos mesoporosos de acuerdo con la presente invención inhiben significativamente el desarrollo de biofilms de Pseudomonas aeruginosa, tanto en sistema sumergido como ALI . From the exposed results it can be seen that the mesoporous ceramic coatings according to the present invention significantly inhibit the development of biofilms of Pseudomonas aeruginosa, both in the submerged system and ALI.
En la literatura especializada, se describe que las películas mesoporosas pueden ser sintetizadas sobre diversas superficies cerámicas y metálicas (Sánchez, et al. Chem. Mater. 2011, 20:682-737.; Innocenzi et al., Chem. Soc. Rev. 2013, 42:4198-4216) . Por lo que cualquiera de estos materiales cerámicos y metálicos, ofrecerían el mismo efecto inhibitorio sobre la formación de biofilms bacterianos que aquí se menciona, al ser recubiertos con las películas mesoporosas reveladas en esta invención. In the specialized literature, it is described that mesoporous films can be synthesized on various ceramic and metal surfaces (Sánchez, et al. Chem. Mater. 2011, 20: 682-737 .; Innocenzi et al., Chem. Soc. Rev. 2013, 42: 4198-4216). Therefore, any of these ceramic and metallic materials would offer the same inhibitory effect on the formation of bacterial biofilms mentioned here, as they are coated with the mesoporous films revealed in this invention.

Claims

REIVINDICACIONES
1. Uso de una película de óxido mesoporoso, sintetizada mediante la técnica de sol-gel, autoensamblado de surfactantes y eliminación del agente estructurante mediante calcinación, que presenta un tamaño de poro de entre alrededor de 4 nm y alrededor de 9 nm, caracterizada porque se la utiliza en la obtención de un recubrimiento cerámico transparente y ultradelgado que inhibe la formación de biofilms bacterianos en la superficie recubierta, en donde la película se deposita sobre la superficie mediante la técnica de dip coating o spin coating. 1. Use of a mesoporous oxide film, synthesized by the sol-gel technique, self-assembly of surfactants and elimination of the structuring agent by calcination, which has a pore size of between about 4 nm and about 9 nm, characterized in that it is used in obtaining a transparent and ultra-thin ceramic coating that inhibits the formation of bacterial biofilms on the coated surface, where the film is deposited on the surface by means of the dip coating or spin coating technique.
2. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación 1, caracterizada porque se la utiliza para recubrir una superficie, con el objeto de proporcionar actividad antibiofilm a dicha superficie. 2. Use of a mesoporous oxide film according to claim 1, characterized in that it is used to coat a surface, in order to provide antibiofilm activity to said surface.
3. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación 1, caracterizada porque se la utiliza para inhibir la formación de biofilms bacterianos en la superficie recubierta, cuando dicha superficie se encuentra sumergida . 3. Use of a mesoporous oxide film according to claim 1, characterized in that it is used to inhibit the formation of bacterial biofilms on the coated surface, when said surface is submerged.
4. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación 1, caracterizada porque se la utiliza para inhibir la formación de biofilms bacterianos en la interfase aire-líquido de la superficie recubierta. 4. Use of a mesoporous oxide film according to claim 1, characterized in that it is used to inhibit the formation of bacterial biofilms at the air-liquid interface of the coated surface.
5. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación 1, caracterizada porque no modifica la apariencia original de la superficie sobre la que es depositada . 5. Use of a mesoporous oxide film, according to claim 1, characterized in that it does not modify the original appearance of the surface on which it is deposited.
6. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación 1, caracterizada porque se la utiliza para inhibir la formación de biofilms bacterianos producidos por bacterias que pertenecen a la especie Pseudomonas aeruginosa . 6. Use of a mesoporous oxide film according to claim 1, characterized in that it is used to inhibit the formation of bacterial biofilms produced by bacteria belonging to the Pseudomonas aeruginosa species.
7. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación 1, caracterizada porque los óxidos utilizados son por ejemplo Si02, Ti02, Zr02 o sus combinaciones . 7. Use of a film of mesoporous oxide according to claim 1, characterized in that the oxides used are , for example Si0 2, Ti0 2, Zr0 2 or combinations thereof.
8. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación 1, caracterizada porque los surfactantes utilizados para su síntesis pertenecen al grupo de tensioactivos poliméricos no iónicos o tensioactivos iónicos . 8. Use of a mesoporous oxide film according to claim 1, characterized in that the surfactants used for their synthesis belong to the group of non-ionic polymeric surfactants or ionic surfactants.
9. Uso de una película de óxido mesoporoso, de acuerdo con la reivindicación anterior, caracterizada porque los tensioactivos poliméricos no iónicos corresponden al tipo POE-POP-POE y los tensioactivos iónicos al tipo sal de amonio cuaternario. 9. Use of a mesoporous oxide film, according to the preceding claim, characterized in that the non-ionic polymeric surfactants correspond to the POE-POP-POE type and the ionic surfactants to the quaternary ammonium salt type.
PCT/IB2017/052537 2016-05-03 2017-05-02 Use of a mesoporous oxide film in obtaining a transparent and ultra-thin ceramic coating which inhibits the formation of bacterial biofilms on the coated surface WO2017191555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ARP20160101253 2016-05-03
ARP160101253A AR104508A1 (en) 2016-05-03 2016-05-03 USE OF A MESOPOROUS OXIDE FILM, IN OBTAINING A TRANSPARENT AND ULTRADELGED CERAMIC COATING THAT INHIBITS THE FORMATION OF BACTERIAL BIOFILMS ON THE COVERED SURFACE

Publications (1)

Publication Number Publication Date
WO2017191555A1 true WO2017191555A1 (en) 2017-11-09

Family

ID=59485526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/052537 WO2017191555A1 (en) 2016-05-03 2017-05-02 Use of a mesoporous oxide film in obtaining a transparent and ultra-thin ceramic coating which inhibits the formation of bacterial biofilms on the coated surface

Country Status (2)

Country Link
AR (1) AR104508A1 (en)
WO (1) WO2017191555A1 (en)

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
BECK ET AL., J AM CHEM SOC, vol. 114, 1992, pages 10834
BRINKER ET AL., ADV. MATER., vol. 11, 1999, pages 579 - 585
FLEMMING ET AL., NAT. REV. MICROBIOL., vol. 8, 2010, pages 623 - 6332010
G. J. A. A. SOLER-ILLIA: "Mesoporous hybrid and nanocomposite thin films. A sol-gel toolbox to create nanoconfined systems with localized chemical properties", J SOL-GEL TECHNOL, vol. 57, 2011, pages 299 - 312
INNOCENZI ET AL., CHEM. SOC. REV., vol. 42, 2013, pages 4198 - 4216
IZQUIERDO-BARBA ET AL., ACTA BIOMATERIALIA, vol. 7, 2011, pages 2977 - 2985
KINNARI ET AL., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 89A, 2009, pages 215 - 223
KRESGE ET AL., NATURE, vol. 359, 1992, pages 710
LENHART T.R. ET AL., BIOFOULING, vol. 30, 2014, pages 823 - 835
MAH ET AL., NATURE, vol. 426, 2003, pages 306 - 310
MAH Y O'TOOLE, TRENDS IN MICROBIOLOGY, vol. 9, 2001
MARTIN ANDERSSON ET AL: "Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release", INTERNATIONAL JOURNAL OF NANOMEDICINE, 1 March 2016 (2016-03-01), pages 977, XP055414391, DOI: 10.2147/IJN.S95375 *
NICKEL ET AL., EUR. J. CLIN. MICROBIOL, vol. 4, 1985, pages 213 - 218
PEZZONI MAGDALENA ET AL: "Antibiofilm effect of supramolecularly templated mesoporous silica coatings", MATERIALS SCIENCE AND ENGINEERING C, ELSEVIER SCIENCE S.A, CH, vol. 77, 7 April 2017 (2017-04-07), pages 1044 - 1049, XP085028616, ISSN: 0928-4931, DOI: 10.1016/J.MSEC.2017.04.022 *
SANCHEZ ET AL., CHEM. MATER., vol. 20, 2011, pages 682 - 737
SOLER-ILLIA ET AL., CHEM. REV., vol. 102, 2002, pages 4093 - 4138
VARIOLA ET AL., INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 9, 2014, pages 2319 - 2325
WALKER, J.T.; MACKERNESS, C.W.; ROGERS, J.; KEEVIL, C.W.: "Mícrobíal Biofilms.", 1995, CAMBRIDGE UNIVERSITY PRESS, pages: 196 - 204
WILLCOX ET AL., BIOMATERIALS, vol. 22, 2001, pages 3235 - 3247
YANAGISAWA ET AL., BULL CHEM SOC JPN, vol. 63, 1990, pages 988

Also Published As

Publication number Publication date
AR104508A1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
Choi et al. Superhydrophilic coatings with intricate nanostructure based on biotic materials for antifogging and antibiofouling applications
Ni et al. Synthesis of silver nanoparticle-decorated hydroxyapatite (HA@ Ag) poriferous nanocomposites and the study of their antibacterial activities
Zhu et al. Preparation and antibacterial property of silver-containing mesoporous 58S bioactive glass
Manabe et al. Porous surface structure fabricated by breath figures that suppresses Pseudomonas aeruginosa biofilm formation
Rivero et al. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles
Boinovich et al. Effective antibacterial nanotextured surfaces based on extreme wettability and bacteriophage seeding
Maayan et al. Fluorine-free superhydrophobic coating with antibiofilm properties based on pickering emulsion templating
Noorisafa et al. Surface modification of polyurethane via creating a biocompatible superhydrophilic nanostructured layer: role of surface chemistry and structure
England et al. Transparent gel composite films with multiple functionalities: Long-lasting anti-fogging, underwater superoleophobicity and anti-bacterial activity
Pezzoni et al. Antibiofilm effect of supramolecularly templated mesoporous silica coatings
Oh et al. Hydrophobically-modified silica aerogels: Novel food-contact surfaces with bacterial anti-adhesion properties
Hwangbo et al. Antibacterial nanofilm coatings based on organosilicate and nanoparticles
Agbe et al. Silver–polymethylhydrosiloxane nanocomposite coating on anodized aluminum with superhydrophobic and antibacterial properties
Wiedmer et al. Antibacterial surface coating for bone scaffolds based on the dark catalytic effect of titanium dioxide
CN103997890B (en) Antimicrobial material of argentiferous and application thereof
Du et al. Structure-element surface modification strategy enhances the antibacterial performance of Zr-BMGs
Zhang et al. Silver nanoparticle antimicrobials and related materials
Boguslavsky et al. Eliminating the need for biocidal agents in anti-biofouling polymers by applying grafted nanosilica instead
Meng et al. A wettability-transformable superhydrophobic composite coating of hydroxyapatite/bismuth sulfide/lauric acid on AZ31B Mg alloy with dual-function of antibacterial and osteogenic properties
Oopath et al. Rose Petal Mimetic Surfaces with Antibacterial Properties Produced Using Nanoimprint Lithography
Zhang et al. Preparation of WPU-based super-amphiphobic coatings functionalized by in situ modified SiO x particles and their anti-biofilm mechanism
Wang et al. Performance optimization of biomimetic ant-nest silver nanoparticle coatings for antibacterial and osseointegration of implant surfaces
WO2017191555A1 (en) Use of a mesoporous oxide film in obtaining a transparent and ultra-thin ceramic coating which inhibits the formation of bacterial biofilms on the coated surface
Garg et al. Hydrophobic Coating of Polymethylmetha-Crylate (PMMA) on Glass Substrate for Reduced Bacterial Adhesion.
US20190106354A1 (en) Antimicrobial materials including exchanged and infused antimicrobial agents

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17749511

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17749511

Country of ref document: EP

Kind code of ref document: A1