WO2017190672A1 - 报文转发方法及装置 - Google Patents

报文转发方法及装置 Download PDF

Info

Publication number
WO2017190672A1
WO2017190672A1 PCT/CN2017/083091 CN2017083091W WO2017190672A1 WO 2017190672 A1 WO2017190672 A1 WO 2017190672A1 CN 2017083091 W CN2017083091 W CN 2017083091W WO 2017190672 A1 WO2017190672 A1 WO 2017190672A1
Authority
WO
WIPO (PCT)
Prior art keywords
next hop
forwarding
primary
packet
standby
Prior art date
Application number
PCT/CN2017/083091
Other languages
English (en)
French (fr)
Inventor
马嫄
房海霞
党盛雄
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17792498.2A priority Critical patent/EP3454510B1/en
Publication of WO2017190672A1 publication Critical patent/WO2017190672A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • H04L45/507Label distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/68Pseudowire emulation, e.g. IETF WG PWE3

Definitions

  • the present invention relates to the field of communications, and in particular to a packet forwarding method and apparatus.
  • IP-based Internet Protocol Radio Access Network (IPRAN) bearer solution for the packet transmission network of the domestic mobile backhaul service
  • the network topology is usually a ring network in the access layer.
  • the layer uses a word-type networking, and the simplified networking diagram is shown in Figure 1.
  • A1-A3 are access layer devices
  • PE1-PE4 are aggregation layer devices.
  • the base station backhaul service usually adopts a Pseudo Wire (PW) + Layer 3 Virtual Private Network (L3VPN) bridging solution.
  • PW Pseudo Wire
  • L3VPN Layer 3 Virtual Private Network
  • the access layer mainly deploys PW Fast Re-Route (FRR), and the aggregation layer mainly deploys L3VPN FRR.
  • the outer layer protection may deploy Label Distribution Protocol (LDP) FRR or traffic engineering. (Traffic Engineering, referred to as TE) Hot Standby (HB).
  • LDP Label Distribution Protocol
  • HB Hot Standby
  • the Provider Edge Device forms the L3VPN FRR of PE1 and PE2.
  • the primary route is PE3-PE1 and the backup route is PE3-PE2.
  • LDP FRR is enabled on the outer layers of all PEs.
  • LDP FRR is generated based on the Interior Gateway Protocol (IGP) routing protocol.
  • IGP Interior Gateway Protocol
  • One of the principles of the IGP routing protocol to calculate the FRR backup path is to hop by default based on the minimum metric of the total metric of the link to the destination device. The next hop device is selected, and the backup path formed by the links of all the next hop devices is not allowed to have a coincident link.
  • IGP FRR Interior Gateway Protocol
  • PE3 calculates the IGP FRR that reaches PE1 according to the link metric value shown in Figure 2.
  • the primary path is PE3-PE1.
  • the backup path calculation process is as follows:
  • the standby path first selects the next hop as PE4.
  • the total metric of the link to the two paths of PE1 is calculated on PE4.
  • One of the paths is PE4-PE2-PE1
  • the total metric of the link is 1520
  • the other path is PE4-PE3-PE1.
  • the value is 1600, so the next hop is preferred as PE2.
  • the total metric of the link to the two paths of PE1 is calculated on PE2.
  • One path is PE2-PE1
  • the total metric of the link is 20, and the other path is PE2-PE4-PE3-PE1.
  • the value is 3100, so the next hop is preferred as PE1.
  • the IGP FRR backup path from PE3 to PE1 is calculated as PE3-PE4-PE2-PE1.
  • PE1 calculates the IGP FRR that reaches PE3.
  • the primary path is PE1-PE3.
  • the backup path calculation process is as follows:
  • the standby path first selects the next hop as PE2.
  • the total metric of the link to the two paths of PE3 is calculated on PE2.
  • One path is PE2-PE4-PE3
  • the total metric of the link is 1600
  • the other path is PE2-PE1-PE3.
  • the value is 1520, so the next hop is preferred as PE1.
  • the route from PE1 to PE2 to PE1 has a coincident link and does not meet the IGP FRR calculation principle. Therefore, the route from PE1 to PE3 cannot form IGP FRR.
  • the FRR calculation process of other device routes is the same as above.
  • the final result is that the L3VPN FRR active and standby routes of PE3 to PE1 and PE2 can form LDP FRR, but the primary LSP path of the primary and backup routes passes through the PE3-PE1 link. Partial path common link.
  • the route from PE1 to PE3 cannot form LDP FRR.
  • the route from PE2 to PE3 can form LDP FRR on PE2.
  • the IP route is hop-by-hop.
  • the next hop of the primary route from PE2 to PE3 is PE1.
  • the route from PE1 to PE3 cannot form LDP FRR. Therefore, FRR protection cannot be formed from PE2 to PE3.
  • the MPLS protection is performed on the LDP FRR in the PE3 ⁇ PE1/PE2 direction, and the PE1 is in the PE3 ⁇ PE1/PE2 direction, and the PE1 is in the PE3 ⁇ PE1/PE2 direction.
  • the outer layer has no LDP FRR and cannot be protected.
  • the PEER BFD session is bidirectional, packet loss in any direction will cause PEER BFD to be interrupted. Therefore, when the PE3-PE1 link fails, the active and standby PEER BFDs are interrupted. PE3 to PE1 and PE2.
  • the L3VPN FRR active/standby route forwarding layer is invalidated, causing black hole routing, which causes service interruption.
  • the embodiment of the invention provides a packet forwarding method and device, so as to at least solve the routing black hole problem existing in the related art.
  • a packet forwarding method including: a first service provider edge device PE determines that a link between a primary next hop and a backup next hop common path that reaches a user edge device CE occurs. After the fault, the PE that detects the fault is detected after the primary next hop and the standby next hop; the first PE forwards the packet to be sent to the CE through the PE that detects the fault after the fault is detected. Give the CE.
  • the first PE the packet that is to be sent to the CE, is forwarded to the CE by the PE that detects the fault, and the first PE determines that the PE that detects the fault after detecting the fault Forwarding the packet to the forwarding table of the CE; the first PE forwarding the packet to the CE according to the forwarding table.
  • the first PE determines, by the PE that detects the fault, the forwarding table that forwards the packet to the CE, where the first PE determines a multi-protocol label switching MPLS service table, and a label distribution protocol LDP label table of the primary next hop and the backup next hop; the first PE according to the fault detection situation of the primary next hop and the backup next hop, and the MPSL service table and the The LDP label table determines the forwarding table.
  • the first PE determines, according to the fault detection situation of the primary next hop and the standby next hop, and the MPLS service table and the LDP label table, the forwarding table includes: when the first When the PE determines that the BFD detection state of the primary next hop is changed to down, it is determined whether the primary next hop is the PE that detects the fault after the fault; if the judgment result is not, the The next hop index in the forwarding table is set to the standby next hop, and the forwarding state of the primary next hop is set to be invalid; if the determination result is yes, the forwarding table is One-hop index is set to the primary next hop, and the primary next hop is forwarded The state is set to be valid; and/or, when the first PE determines that the bidirectional forwarding detection BFD detection state of the standby next hop changes to down, determining whether the standby next hop is the fault detected after the detection If the result of the determination is not, the next hop index in the forwarding table is set to the primary next hop, and the forwarding state of the standby
  • the method further includes: when the first PE determines that the BFD detection status of the primary next hop changes to up Updating the next hop index in the forwarding table to the primary next hop; setting the forwarding state of the primary next hop to be valid; and/or, when the first PE determines the standby
  • the method further includes: determining, by the first PE, that the BFD detection state of the primary next hop is up, When the judgment result is not up, the next hop index in the forwarding table is updated to the standby next hop, and the forwarding state of the standby next hop is updated to be valid; The next hop index in the forwarding table is maintained as the primary next hop, and the forwarding state of the standby next hop is set to be valid.
  • the first PE forwarding the packet to the CE according to the forwarding table includes: determining, by the first PE, a next hop PE device that actually performs packet forwarding according to the forwarding table, and actual The outbound interface sends the packet to the determined next hop PE through the actual outbound interface, and instructs the determined next hop PE to forward the packet to the CE .
  • a message forwarding device the device being applied to a first service provider edge device PE, comprising: a determining module, configured to be determined to reach a user edge device CE After the link of the one-hop and the next-hop common path fails, the PE that detects the failure after the primary next hop and the standby next hop is determined; the forwarding module is set to be sent to the CE The packet is forwarded to the CE by the PE that detects the fault.
  • the forwarding module includes: a determining unit, configured to determine to pass the post detection The packet is forwarded to the forwarding table of the CE by the faulty PE, and the forwarding unit is configured to forward the packet to the CE according to the forwarding table.
  • the determining unit includes: a first determining subunit, configured to determine a multi-protocol label switching MPLS service table, and a label distribution protocol LDP label table of the primary next hop and the standby next hop; second determining And the subunit is configured to determine the forwarding table according to the fault detection situation of the primary next hop and the standby next hop, and the MPLS service table and the LDP label table.
  • the second determining subunit includes: a first processing sub-subunit, configured to determine, when the first PE determines that the bidirectional forwarding detection BFD detection status of the primary next hop changes to down Whether the primary next hop is the PE that detects the fault after the determination; if the determination result is not, the next hop index in the forwarding table is set to the backup next hop, and the primary hop is The forwarding state of one hop is set to be invalid. If the result of the determination is yes, the next hop index in the forwarding table is set to the primary next hop, and the forwarding state of the primary next hop is set.
  • the second sub-unit is configured to determine whether the standby next hop is when the first PE determines that the bidirectional forwarding detection BFD detection status of the backup next hop changes to down.
  • next hop index in the forwarding table is set to the primary next hop, and the forwarding state of the standby next hop is set. Invalid; if the judgment result is yes, the forwarding is performed
  • the next hop index is set to the next-hop backup, while the standby state of the next hop forwarding is set to be valid.
  • the first processing sub-subunit is further configured to: when the first PE determines that the BFD detection status of the primary next hop becomes down, when the first PE determines the primary next hop When the BFD detection status changes to up, the next hop index in the forwarding table is updated to the primary next hop; and the forwarding status of the primary next hop is set to be valid; and/or,
  • the second processing sub-subunit is further configured to: after the first PE determines that the BFD detection status of the backup next hop becomes down, when the first PE determines that the BFD detection status of the backup next hop becomes When the up state is determined, the BFD detection status of the primary next hop is up; if the determination result is not up, the next hop index in the forwarding table is updated to the backup next hop, and the standby is The forwarding state of the next hop is updated to be valid; when the result of the determination is YES, the next hop index in the forwarding table is maintained as the primary next hop, and the forwarding state of the standby next hop is set to Have effect.
  • the forwarding unit includes: a third determining subunit, configured to determine, according to the forwarding table, a next hop PE device that actually forwards the packet and an actual outgoing interface; and the forwarding subunit is configured to pass the actual The outbound interface sends the packet to the determined next hop PE, and instructs the determined next hop PE to forward the packet to the CE.
  • a third determining subunit configured to determine, according to the forwarding table, a next hop PE device that actually forwards the packet and an actual outgoing interface
  • the forwarding subunit is configured to pass the actual The outbound interface sends the packet to the determined next hop PE, and instructs the determined next hop PE to forward the packet to the CE.
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the packet is forwarded to the faulty PE, thereby ensuring that the packet can be successfully forwarded to the CE.
  • a routing black hole problem has occurred. Therefore, the routing black hole problem existing in the related art can be solved, and the effect of ensuring successful packet forwarding is achieved.
  • FIG. 1 is a schematic diagram of a network topology structure of an IPRAN in the related art
  • FIG. 2 is a schematic diagram of a topology of a convergence layer port type network in the related art
  • FIG. 3 is a flowchart of a packet forwarding method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for MPLS service escape protection according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of networking of MPLS service escape protection according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a message forwarding apparatus according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a forwarding module 64 in a message forwarding device according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram of a determining unit 72 in a message forwarding apparatus according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a second determining subunit 84 in a message forwarding apparatus according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a forwarding unit 74 in a message forwarding apparatus according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of an MPLS service escape protection apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a packet forwarding method according to an embodiment of the present invention. As shown in FIG. 3, the process includes the following steps:
  • Step S302 After determining that the link between the primary next hop and the backup next hop common path of the user edge device CE is faulty, the first service provider edge device PE determines the primary next hop and the backup next hop. A faulty PE is detected;
  • Step S304 The first PE forwards the packet to be sent to the CE and then forwards the faulty PE to the CE.
  • the packet is forwarded to the faulty PE. This ensures that packets can be forwarded to the CE and avoid blackholes. problem. Therefore, the routing black hole problem existing in the related art can be solved, and the service interruption is avoided, so as to ensure the successful forwarding of the packet.
  • the first PE may forward the packet to be sent to the CE after the packet is sent to the CE, and the first PE determines that the fault is detected after passing the packet.
  • the PE forwards the packet to the forwarding table of the CE.
  • the first PE forwards the packet to the CE according to the forwarding table.
  • the first PE determines that the failed PE is detected after the pass.
  • the forwarding table for forwarding the packet to the CE includes: the first PE determines a Multi-Protocol Label Switching (MPLS) service table, and the label distribution protocol LDP of the primary next hop and the backup next hop.
  • the label table the first PE determines the forwarding table according to the fault detection situation of the primary next hop and the backup next hop, and the MPLS service table and the LDP label table.
  • the first PE device may first form an MPLS service table, and the MPLS label reaches the LDP label table of the primary next hop and the backup next hop route, and generates the traffic forwarding according to the MPLS service table and the LDP label table.
  • the MPLS service forwarding table (corresponding to the forwarding table described above), wherein the main information includes the next hop PE device currently forwarded by the MPLS service, and the actual outgoing interface and forwarding state of the active and standby next hops (forwarding status) Including valid or invalid).
  • the MPLS service forwarding table is updated immediately.
  • the determining, by the first PE, the forwarding table according to the fault detection situation of the primary next hop and the standby next hop, and the MPLS service table and the LDP label table includes: when the first PE determines the primary When the BFD detection status of the hop is changed to down, it is determined whether the primary next hop is the PE that detected the fault. If the judgment result is not, the next hop index in the forwarding table is set to the standby.
  • the forwarding state of the primary next hop is set to be invalid; if the judgment result is yes, the next hop index in the forwarding table is set as the primary next hop (ie, the primary next hop is taken as If the first PE determines that the BFD detection status of the secondary hop of the backup next hop changes to down, the status of the primary hop is set to be valid.
  • the method further includes: when the first PE determines that the BFD detection status of the primary next hop changes to up Updating the next hop index in the forwarding table to be the primary next hop; setting the forwarding state of the primary next hop to be valid; and/or, when the first PE determines the next hop
  • the method further includes: when the first PE determines that the BFD detection state of the next hop becomes the up state, determining whether the BFD detection state of the primary next hop is up; The next hop index in the forwarding table is updated to the backup next hop, and the forwarding state of the standby next hop is updated to be valid.
  • the next hop index in the forwarding table is maintained as the primary hop. One hop, while setting the forwarding state of the standby next hop to be valid.
  • the first PE forwards the packet to the CE according to the forwarding table, and the first PE determines, according to the forwarding table, the next hop PE device that actually forwards the packet and the actual outgoing interface.
  • the first PE sends the packet to the determined next hop PE through the actual outbound interface, and instructs the determined next hop PE to forward the packet to the CE.
  • the link of the MPLS service (corresponding to the foregoing packet) to the common path of the primary and secondary next-hop PEs fails, the BFD detection status of the primary next hop or the backup next hop changes successively. Down.
  • the backup next hop of the MPLS service is kept as the escape path and continues to be forwarded.
  • the PE receives the data stream, retrieves the MPLS service forwarding table, and obtains the valid standby next-hop PE device and the actual outgoing interface information, and forwards the data stream from the outbound interface to the next-hop PE. device.
  • the primary hop of the MPLS service is kept as the escape path and the forwarding is continued. In this way, the PE receives the data stream, retrieves the MPLS service forwarding table, obtains the valid primary next hop PE device and the actual outgoing interface information, and forwards the data stream from the outbound interface, and finally reaches the primary next hop. PE equipment.
  • the MPLS L3VPN FRR service is taken as a specific embodiment, and the method in the embodiment of the present invention is further described in detail with reference to the accompanying drawings.
  • the service areas involved in the embodiments of the present invention are not limited to the MPLS L3VPN FRR service.
  • An embodiment of the present invention provides a method for MPLS service escape protection.
  • the specific implementation process is as shown in FIG. 4, and includes:
  • Step S401 The PE (corresponding to the first PE described above) forms a VPN FRR routing table (or the MPLS service table described above), and the VPN primary and secondary hop routes of the VPN FRR route. LDP label table.
  • Step S402. Generate a VPN FRR route forwarding table for traffic forwarding and a primary and a next next call release according to the VPN FRR routing table and the LDP label table of the VPN FRR routing primary next hop and the standby next hop route (corresponding to The above forwarding table).
  • the information about the VPN FRR route forwarding table is shown in Table 1:
  • Step S403 Detecting the status change of the primary PEER BFD (ie, the primary next hop) and the standby PEER BFD (that is, the backup next hop). If the detection status changes to down, step S404 is performed; if the detection status changes to up Then, step S411 is performed.
  • step S404 it is determined whether the faulty PEER BFD (ie, the next hop) is the master or the backup. If yes, step S405 is performed; if it is the standby, step S408 is performed.
  • Step S405. Determine whether the failed primary PEER is the last next hop of the VPN FRR route (that is, whether it is the PE that detected the fault later), if not, proceed to step S406; If yes, step S407 is performed.
  • Step S406 The next hop index in the VPN FRR route forwarding table is updated to be the backup next hop in the next-hop hop of the active and standby hops;
  • the outbound interface is updated to the outbound interface of the standby LSP, and the forwarding status bit is updated to be invalid.
  • Step S407 The VPN FRR route forwarding table is not updated, and the next hop index continues to point to the primary next hop in the active and standby next hop publication, that is, the route is kept as an escape route;
  • the forwarding entry corresponding to the PE does not update the forwarding status bit.
  • the forwarding interface is updated to be the outbound interface.
  • Step S408 Determine whether the failed standby PEER is the last next hop of the VPN FRR route (that is, whether it is the PE that detected the fault later), if not, execute step S409; if yes, execute step S410.
  • Step S409 The VPN FRR route forwarding table is not updated, and the next hop index continues to point to the primary next hop in the active and standby next hops.
  • the interface is updated to the outbound interface of the standby LSP, and the forwarding status bit is updated to be invalid.
  • Step S410 The VPN FRR route forwarding table is not updated, and the next hop index continues to point to the backup next hop in the active/standby next hop publication, that is, the route is kept as an escape route;
  • the corresponding forwarding entry, the forwarding status bit is not updated, and the forwarding is continued, but the forwarding outbound interface is updated to the standby LSP outbound interface.
  • step S411 it is determined whether the PEER BFD of the fault recovery is the master or the standby. If yes, step S412 is performed; if it is standby, step S413 is performed.
  • Step S412 Update the next hop index in the VPN FRR route forwarding table to point to the primary next hop in the primary and backup next hop publications, and forward the forwarding entries corresponding to the primary PE in the primary and backup next hops.
  • the outbound interface is updated to the actual outgoing interface of the current LSP, and the forwarding status bit is updated to be valid.
  • Step S413. It is determined whether the detection status of the current primary PEER BFD is up. If not, step S414 is performed; if yes, step S415 is performed.
  • Step S414. Update the next hop index in the VPN FRR route forwarding table to point to the primary and secondary devices. The next hop of the next hop is published. At the same time, the forwarding entry corresponding to the standby PE is forwarded by the active and standby hops, and the forwarding interface is updated to the actual outgoing interface of the current LSP, and the forwarding status bit is updated to be valid.
  • Step S415. The VPN FRR route forwarding table is not updated, and the next hop index continues to point to the primary next hop in the active/standby next hop publication; the primary and secondary hops publish the forwarding entry corresponding to the standby PE, and forward the outbound interface update.
  • the forwarding status bit is updated to be valid for the actual outgoing interface of the current LSP.
  • Step S416 When receiving the data flow, the PE retrieves the VPN FRR routing forwarding table according to the destination IP address in the packet, obtains the next hop index from the next hop index, and then retrieves the primary and secondary next hops according to the next hop index. The valid outbound interface information is forwarded from the outbound interface to the next hop PE.
  • the network model is shown in Figure 5.
  • the PE3 forms a VPN FRR routing table to the Customer Edge Device (CE) and the LDP label table of the VPN FRR route primary next hop and the backup next hop route.
  • the primary next hop of the VPN FRR route is PE1, and the next hop of the VPN FRR route is PE2.
  • the primary LSP of the VPN FRR main route is PE3-PE1, and the backup LSP is PE3-PE4-PE2-PE1.
  • the primary LSP of the VPN FRR backup route is PE3-PE1-PE2, and the backup LSP is PE3-PE4-PE2.
  • the link of the common path of the active and standby LSPs of the VPN FRR is PE1-PE3.
  • the VPN FRR routing forwarding table and the active and standby next-hop publications for traffic forwarding are generated according to the VPN FRR routing table and the LDP label table.
  • the information of the VPN FRR route forwarding table is as shown in Table 3:
  • the information about the preceding and next jumps is as shown in Table 4, in which the status bit field is forwarded. A value of 1 indicates that the outbound interface is valid. A value of 0 indicates that the outbound interface is invalid.
  • the PE receives the data stream sent to the CE, and retrieves the VPN FRR route forwarding table according to the destination IP address 10.1.1.1 in the packet, and obtains the next hop index from the middle to the main Preparing a forwarding entry corresponding to 1.1.1.1 in the next jump publication, and then retrieving the forwarding entry corresponding to 1.1.1.1 in the next-hop jump publication according to the next hop index, and obtaining a valid outgoing interface from The gei_0/0/0/1 forwards the data stream from the outbound interface to the next hop PE1, and then forwards the data stream to the CE.
  • the detection status of the primary and secondary PEERs is down. If the primary PEER BFD detects the down state and the backup PEER BFD detects the down state, the backup route of the VPN FRR route is the escape route. That is, the next hop index of the VPN FRR route forwarding table points to the next and next jumps. Prepare PE.
  • the information of the VPN FRR route forwarding table is shown in Table 5:
  • IP address prefix 10.1.1.0/24 2.2.2.2
  • the PE receives the data stream sent to the CE, and retrieves the VPN FRR route forwarding table according to the destination IP address 10.1.1.1 in the packet, and obtains the next hop index from the middle to the next backup.
  • 2.2.2.2 Corresponding forwarding entry, and then retrieving the forwarding entry corresponding to 2.2.2.2 in the next-hop jump publication according to the next hop index, and obtaining a valid outgoing interface as gei_0/0/0/4
  • the data stream is forwarded from the outbound interface, and after PE4, the next hop PE2 is reached, and then the data flow is forwarded by the PE2 to the CE.
  • the primary route of the VPN FRR route is the escape route. That is, the next hop index of the VPN FRR route forwarding table points to the next jump. Primary PE.
  • the information of the VPN FRR route forwarding table is shown in Table 7:
  • the PE receives the data stream sent to the CE, and retrieves the VPN FRR route forwarding table according to the destination IP address 10.1.1.1 in the packet, and obtains the next hop index from the middle to the next backup.
  • the forwarding entry corresponding to 1.1.1.1 is retrieved according to the next hop index, and the forwarding entry corresponding to 1.1.1.1 in the next-hop jump publication of the active/standby is retrieved, and the valid outgoing interface is obtained as gei_0/0/0/4
  • the data stream is forwarded out from the outbound interface, and then passes through PE4 and PE2, and finally reaches the next hop PE1, and then the data flow is forwarded by the PE1 to the CE.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a message forwarding device is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 6 is a structural block diagram of a message forwarding apparatus according to an embodiment of the present invention.
  • the apparatus may be applied to a first PE.
  • the apparatus includes a determining module 62 and a forwarding module 64. Description.
  • the determining module 62 is configured to: after determining that the link of the primary next hop and the backup next hop common path of the user edge device CE is faulty, determine that the failed primary PE is detected after the primary next hop and the standby next hop are detected.
  • the forwarding module 64 is connected to the determining module 62, and is configured to forward the packet to be sent to the CE after the packet to be sent to the CE is forwarded to the CE.
  • FIG. 7 is a structural block diagram of a forwarding module 64 in a packet forwarding apparatus according to an embodiment of the present invention. As shown in FIG. 7, the forwarding module 64 includes a determining unit 72 and a forwarding unit 74. The forwarding module 64 is described below:
  • the determining unit 72 is configured to determine a forwarding table that forwards the packet to the CE by the PE that detects the fault after the foregoing, and the forwarding unit 74 is connected to the determining unit 72, and is configured to forward the packet to the CE according to the forwarding table.
  • FIG. 8 is a structural block diagram of a determining unit 72 in a message forwarding apparatus according to an embodiment of the present invention. As shown in FIG. 8, the determining unit 72 includes a first determining subunit 82 and a second determining subunit 84, which are described below:
  • the first determining subunit 82 is configured to determine a multi-protocol label switching MPLS service table, and a label distribution protocol LDP label table of the primary next hop and the backup next hop; and a second determining subunit 84 connected to the first determining unit The unit 82 is configured to determine the forwarding table according to the fault detection situation of the primary next hop and the standby next hop, and the MPLS service table and the LDP label table.
  • FIG. 9 is a structural block diagram of a second determining sub-unit 84 in a message forwarding apparatus according to an embodiment of the present invention.
  • the second determining sub-unit 84 includes a first processing sub-sub-unit 92 and/or a second.
  • the secondary subunit 94 is processed, and the second determining subunit 84 will be described below.
  • the first processing sub-sub-unit 92 is configured to determine, when the first PE determines that the bi-directional forwarding detection BFD detection status of the primary next hop becomes Down, whether the primary next hop is a post-detected fault PE; If not, set the next hop index in the forwarding table to the standby next hop, and set the forwarding state of the primary next hop to invalid. If the result of the determination is yes, the forwarding table is The next hop index is set as the primary next hop, and the forwarding state of the primary next hop is set to be valid;
  • the second processing sub-sub-unit 94 is configured to determine, when the first PE determines that the bi-directional forwarding detection BFD detection status of the next-hop is changed to down, whether the standby next-hop is a post-detected PE; If not, the next hop index in the forwarding table is set as the primary next hop, and the forwarding state of the standby next hop is set to be invalid; if the determination result is yes, the forwarding table is The next hop index is set to prepare the next hop, and the forwarding state of the standby next hop is set to be valid.
  • the first processing sub-sub-unit 92 is further configured to determine, when the first PE determines that the BFD detection status of the primary next hop becomes Down, when the first PE determines the BFD detection of the primary next hop.
  • the next hop index in the forwarding table is updated to the above primary next hop; and the forwarding state of the primary next hop is set to be valid; and/or,
  • the second processing sub-sub-unit 94 is further configured to: after the first PE determines that the BFD detection status of the next-hop becomes the down state, the first PE determines that the BFD detection status of the backup next hop becomes If it is up, it is determined whether the BFD detection status of the primary next hop is up; when the determination result is not up, the next hop index in the forwarding table is updated to the backup next hop, and the forwarding status of the backup next hop is updated. If the result is YES, the next hop index in the forwarding table is maintained as the primary next hop, and the forwarding state of the standby next hop is set to be valid.
  • FIG. 10 is a structural block diagram of a forwarding unit 74 in a packet forwarding apparatus according to an embodiment of the present invention. As shown in FIG. 10, the forwarding unit 74 includes a third determining subunit 102 and a forwarding subunit 104, and the forwarding unit is 74 for explanation.
  • the third determining sub-unit 102 is configured to determine, according to the forwarding table, a next hop PE device that actually forwards the packet and the actual outgoing interface; the forwarding sub-unit 104 is connected to the third determining sub-unit 102, and is configured to pass the foregoing actual The outbound interface sends the packet to the determined next hop PE, and instructs the determined next hop PE to forward the packet to the CE.
  • the apparatus includes a BFD detection module 112 (corresponding to the determining module 62 described above) and a route management module 114 (corresponding to the first Determining subunit 82), LDP management module 116 (corresponding to first determining subunit 82 described above), forwarding table management module 118 (corresponding to second determining subunit 84 described above), traffic forwarding module 1110 (corresponding to the above Forwarding unit 74) wherein:
  • the routing management module 114 is configured to create a VPN FRR routing table on the PE device.
  • the LDP management module 116 is configured to create an LDP label table of the VPN primary and secondary hop routes of the VPN FRR route.
  • the routing management module 114 and the LDP management module 116 are both connected to the forwarding table management module 118, so that the forwarding table management module 118 generates a VPN FRR routing forwarding table and active/standby for traffic forwarding according to the VPN FRR routing table created by the routing management module 114.
  • the next hop is published.
  • the next hop index in the VPN FRR route forwarding table points to the primary or standby PE in the active/standby next-hop publication, and identifies the next hop actually forwarded by the current VPN FRR route.
  • the actual forwarding outbound interface of the VPN FRR route primary next hop and the backup next hop route in the active and standby next hop publications is generated according to the LDP label table created by the LDP management module 116.
  • the detection status of the primary PEER BFD and the standby next-hop route in the active/standby next-hop publication is set to be valid or invalid.
  • the BFD detection module 112 detects the status of the primary PEER BFD or the secondary backup BFD. When the BFD status changes, the VPN FRR routing forwarding table and the primary and secondary next-hop publications of the forwarding table management module 118 are updated.
  • the traffic forwarding module 1110 is connected to the forwarding table management module 118.
  • the PE forwards the VPN FRR routing forwarding table of the forwarding table management module 118 according to the destination IP address in the packet, and obtains the next hop index. Then, according to the next hop index, the primary and secondary jumps of the forwarding table management module 118 are retrieved, the valid outbound interface information is obtained, the data stream is forwarded from the outbound interface, and finally reaches the next hop PE.
  • the method and device for MPLS service escape protection implemented in the embodiments of the present invention can solve the problem that the MPLS service reaches the common path of the primary and next hop PE devices in the specific implementation process.
  • the path is faulty, the BFD of the active and standby next hops is interrupted, the next hop forwarding plane of the MPLS service is invalidated, and the black hole phenomenon of the forwarding route is generated, which causes service interruption and greatly enhances the reliability of the network.
  • Sexuality also increases the viability of the IPRAN bearer solution.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the first service provider edge device PE determines that the primary next hop and the backup next hop are detected. To the faulty PE;
  • S2 The first PE forwards the faulty PE to the CE after the packet is sent to the CE.
  • the foregoing storage medium may include, but is not limited to: a USB flash drive, only Read-Only Memory (ROM), Random Access Memory (RAM), mobile hard disk, disk or optical disk, and other media that can store program code.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk disk or optical disk, and other media that can store program code.
  • the processor executes the steps in the foregoing method embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the packet forwarding method and apparatus provided by the embodiments of the present invention have the following beneficial effects: solving the routing black hole problem existing in the related art and avoiding service interruption, thereby achieving the effect of ensuring successful packet forwarding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例中提供了一种报文转发方法及装置,其中,该方法包括:第一服务提供商边缘设备PE在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定上述主下一跳和备下一跳中后检测到故障的PE;第一PE将待发送到CE的报文通过后检测到故障的PE转发给CE。通过本发明实施例,可以解决相关技术中存在的路由黑洞问题,避免业务中断,从而达到保证报文成功转发的效果。

Description

报文转发方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种报文转发方法及装置。
背景技术
目前针对国内移动回传业务的分组传送网络采用的基于IP协议的无线接入网络(Internet Protocol Radio Access Network,简称为IPRAN)承载解决方案中,网络拓扑通常是接入层采用环形组网,汇聚层采用口字型组网,简化的组网图如图1所示。其中,A1-A3是接入层设备,PE1-PE4是汇聚层设备。业务部署上,基站回传业务通常采用伪线(Pseudo Wire,简称为PW)+三层虚拟专用网(Layer 3Virtual Private Network,简称为L3VPN)桥接方案。接入层主要部署PW快速重路由(Fast Re-Route,简称为FRR),汇聚核心层主要部署L3VPN FRR,外层保护有可能部署标签分发协议(Label Distribution Protocol,简称为LDP)FRR或流量工程(Traffic Engineering,简称为TE)热备份保护(Hot Standby,简称为HSB)。
如图1所示,服务提供商边缘设备PE3(Provider Edge Device)形成到PE1和PE2的L3VPN FRR,主路由为PE3-PE1,备路由为PE3-PE2。同时,所有PE设备外层都开启LDP FRR功能。LDP FRR是基于内部网关协议(Interior Gateway Protocol,简称为IGP)路由协议生成的,IGP路由协议计算FRR备路径的其中一个原则是,以到达目的设备的链路总度量metric值最小为原则逐跳的选择下一跳设备,经过所有下一跳设备的链路组成的备路径不允许存在重合的链路。在口字型组网中,按照IGP FRR计算的这个原则,会存在某些设备的某些路由无法形成FRR。
如图2所示,按照图2中标示的链路metric值,PE3计算到达PE1的IGP FRR,主路径为PE3-PE1,备路径计算过程如下:
为了不和主路径的链路重合,备路径首先选择下一跳为PE4;
然后在PE4上计算达到PE1的两条路径的链路总metric值,其中一条路径是PE4-PE2-PE1,链路总metric值为1520,另外一条路径是PE4-PE3-PE1,链路总metric值为1600,所以优先选择下一跳为PE2;
接着在PE2上计算达到PE1的两条路径的链路总metric值,其中一条路径是PE2-PE1,链路总metric值为20,另外一条路径是PE2-PE4-PE3-PE1,链路总metric值为3100,所以优先选择下一跳为PE1。这样就算出了PE3到PE1的IGP FRR备路径为PE3-PE4-PE2-PE1。
同理,PE1计算到达PE3的IGP FRR,主路径为PE1-PE3,备路径计算过程如下:
为了不和主路径的链路重合,备路径首先选择下一跳为PE2;
然后在PE2上计算达到PE3的两条路径的链路总metric值,其中一条路径是PE2-PE4-PE3,链路总metric值为1600,另外一条路径是PE2-PE1-PE3,链路总metric值为1520,所以优先选择下一跳为PE1。这样,备路径从PE1到PE2再到PE1,存在重合的链路,不符合IGP FRR的算路原则,所以PE1到PE3的路由无法形成IGP FRR。
其它设备路由的FRR计算过程同上,最终结果是,PE3到PE1和PE2的L3VPN FRR主备路由都可以形成LDP FRR,但是主备路由的主LSP路径都经过PE3-PE1链路,即存在主备部分路径共链路。反方向,PE1到PE3的路由无法形成LDP FRR,PE2到PE3的路由在PE2上虽然可以形成LDP FRR,但是由于IP路由是逐跳转发,PE2到PE3的主路由下一跳是PE1,而PE1到PE3的路由无法形成LDP FRR,所以PE2到PE3端到端还是无法形成FRR保护。这样,检测PE3到PE1和PE2的L3VPN FRR主备路由连通性的双向转发检测(Bidirectional Forwarding Detection,简称为PEER BFD),在PE3→PE1/PE2方向,有外层LDP FRR进行LSP保护,而PE1/PE2→PE3方向,外层无LDP FRR,无法进行保护。由于PEER BFD会话是双向的,任何一个方向的丢包都会导致PEER BFD中断。所以,当PE3-PE1链路发生故障时,主备PEER BFD都会中断,PE3到PE1和PE2 的L3VPN FRR主备路由转发层面都会被置为无效,产生路由黑洞现象,从而导致业务中断。
针对相关技术中存在的路由黑洞问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种报文转发方法及装置,以至少解决相关技术中存在的路由黑洞问题。
根据本发明的一个实施例,提供了一种报文转发方法,包括:第一服务提供商边缘设备PE在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定所述主下一跳和所述备下一跳中后检测到故障的PE;所述第一PE将待发送到所述CE的报文通过所述后检测到故障的PE转发给所述CE。
可选地,所述第一PE将待发送到所述CE的报文通过所述后检测到故障的PE转发给所述CE包括:所述第一PE确定通过所述后检测到故障的PE将所述报文转发给所述CE的转发表;所述第一PE根据所述转发表将所述报文转发给所述CE。
可选地,所述第一PE确定通过所述后检测到故障的PE将所述报文转发给所述CE的转发表包括:所述第一PE确定多协议标签交换MPLS业务表,以及所述主下一跳和备下一跳的标签分发协议LDP标签表;所述第一PE根据所述主下一跳和所述备下一跳的故障检测情况以及所述MPSL业务表和所述LDP标签表确定所述转发表。
可选地,所述第一PE根据所述主下一跳和所述备下一跳的故障检测情况以及所述MPLS业务表和所述LDP标签表确定所述转发表包括:当所述第一PE确定所述主下一跳的双向转发检测BFD检测状态变为down时,判断所述主下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述主下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳,同时将所述主下一跳的转发 状态设置为有效;和/或,当所述第一PE确定所述备下一跳的双向转发检测BFD检测状态变为down时,判断所述备下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳,同时将所述备下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述备下一跳的转发状态设置为有效。
可选地,当所述第一PE确定所述主下一跳的BFD检测状态变为down之后,还包括:当所述第一PE确定所述主下一跳的BFD检测状态变为up时,将所述转发表中的下一跳索引更新为所述主下一跳;同时将所述主下一跳的转发状态设置为有效;和/或,当所述第一PE确定所述备下一跳的BFD检测状态变为down之后,还包括:当所述第一PE确定所述备下一跳的BFD检测状态变为up时,判断所述主下一跳的BFD检测状态是否up;在判断结果为不是up时,将所述转发表中的下一跳索引更新为所述备下一跳,同时将所述备下一跳的转发状态更新为有效;在判断结果为是up时,维持所述转发表中的下一跳索引为所述主下一跳,同时将所述备下一跳的转发状态设置为有效。
可选地,所述第一PE根据所述转发表将所述报文转发给所述CE包括:所述第一PE根据所述转发表确定实际进行报文转发的下一跳PE设备和实际出接口;所述第一PE通过所述实际出接口将所述报文发送给确定的所述下一跳PE,并指示确定的所述下一跳PE将所述报文转发给所述CE。
根据本发明的另一个实施例,提供了一种报文转发装置,所述装置应用于第一服务提供商边缘设备PE中,包括:确定模块,设置为在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定所述主下一跳和所述备下一跳中后检测到故障的PE;转发模块,设置为将待发送到所述CE的报文通过所述后检测到故障的PE转发给所述CE。
可选地,所述转发模块包括:确定单元,设置为确定通过所述后检测 到故障的PE将所述报文转发给所述CE的转发表;转发单元,设置为根据所述转发表将所述报文转发给所述CE。
可选地,所述确定单元包括:第一确定子单元,设置为确定多协议标签交换MPLS业务表,以及所述主下一跳和备下一跳的标签分发协议LDP标签表;第二确定子单元,设置为根据所述主下一跳和所述备下一跳的故障检测情况以及所述MPLS业务表和所述LDP标签表确定所述转发表。
可选地,所述第二确定子单元包括:第一处理次子单元,设置为当所述第一PE确定所述主下一跳的双向转发检测BFD检测状态变为down时,判断所述主下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述主下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳,同时将所述主下一跳的转发状态设置为有效;和/或,第二处理次子单元,设置为当所述第一PE确定所述备下一跳的双向转发检测BFD检测状态变为down时,判断所述备下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳,同时将所述备下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述备下一跳的转发状态设置为有效。
可选地,所述第一处理次子单元还设置为当所述第一PE确定所述主下一跳的BFD检测状态变为down之后,当所述第一PE确定所述主下一跳的BFD检测状态变为up时,将所述转发表中的下一跳索引更新为所述主下一跳;同时将所述主下一跳的转发状态设置为有效;和/或,所述第二处理次子单元还设置为当所述第一PE确定所述备下一跳的BFD检测状态变为down之后,当所述第一PE确定所述备下一跳的BFD检测状态变为up时,判断所述主下一跳的BFD检测状态是否up;在判断结果为不是up时,将所述转发表中的下一跳索引更新为所述备下一跳,同时将所述备下一跳的转发状态更新为有效;在判断结果为是up时,维持所述转发表中的下一跳索引为所述主下一跳,同时将所述备下一跳的转发状态设置为有 效。
可选地,所述转发单元包括:第三确定子单元,设置为根据所述转发表确定实际进行报文转发的下一跳PE设备和实际出接口;转发子单元,设置为通过所述实际出接口将所述报文发送给确定的所述下一跳PE,并指示确定的所述下一跳PE将所述报文转发给所述CE。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本发明实施例,由于在主下一跳和备下一跳共路径的链路发生故障后会通过后检测到故障的PE进行报文转发,从而保证了报文能够成功转发到CE,避免出现路由黑洞问题。因此,可以解决相关技术中存在的路由黑洞问题,达到保证报文成功转发的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中的IPRAN的网络拓扑结构示意图;
图2是相关技术中的汇聚层口字型组网拓扑示意图;
图3是根据本发明实施例的报文转发方法的流程图;
图4是根据本发明实施例的MPLS业务逃生保护的方法的流程图;
图5是根据本发明实施例的MPLS业务逃生保护的组网示意图;
图6是根据本发明实施例的报文转发装置的结构框图;
图7是根据本发明实施例的报文转发装置中转发模块64的结构框图;
图8是根据本发明实施例的报文转发装置中确定单元72的结构框图;
图9是根据本发明实施例的报文转发装置中第二确定子单元84的结构框图;
图10是根据本发明实施例的报文转发装置中转发单元74的结构框图;
图11是根据本发明实施例的MPLS业务逃生保护装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种报文转发方法,图3是根据本发明实施例的报文转发方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,第一服务提供商边缘设备PE在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定上述主下一跳和备下一跳中后检测到故障的PE;
步骤S304,第一PE将待发送到CE的报文通过后检测到故障的PE转发给CE。
通过上述步骤,在主下一跳和备下一跳共路径的链路发生故障后会通过后检测到故障的PE进行报文转发,从而保证了报文能够成功转发到CE,避免出现路由黑洞问题。因此,可以解决相关技术中存在的路由黑洞问题,避免业务中断,从而达到保证报文成功转发的效果。
在一个可选的实施例中,上述步骤S304中,第一PE可以通过如下方式将待发送到CE的报文通过后检测到故障的PE转发给CE:第一PE确定通过后检测到故障的PE将所述报文转发给CE的转发表;该第一PE根据上述转发表将报文转发给CE。
在一个可选的实施例中,上述第一PE确定通过后检测到故障的PE 将报文转发给所述CE的转发表包括:第一PE确定多协议标签交换(Multi-Protocol Label Switching,简称为MPLS)业务表,以及主下一跳和备下一跳的标签分发协议LDP标签表;第一PE根据上述主下一跳和备下一跳的故障检测情况以及MPLS业务表和LDP标签表确定上述转发表。在本实施例中,第一PE设备可以先形成MPLS业务表,以及MPLS业务到达主下一跳和备下一跳路由的LDP标签表,并根据MPLS业务表和LDP标签表生成用于流量转发的MPLS业务转发表(对应于上述的转发表),其中的主要信息包括,MPLS业务当前实际转发的下一跳PE设备,以及主备两个下一跳的实际出接口和转发状态(转发状态包括有效或无效)。当主下一跳或备下一跳的BFD检测状态发生变化时,则立即更新上述的MPLS业务转发表。
在一个可选的实施例中,上述第一PE根据上述主下一跳和备下一跳的故障检测情况以及MPLS业务表和LDP标签表确定上述转发表包括:当第一PE确定上述主下一跳的双向转发检测BFD检测状态变为down时,判断主下一跳是否是后检测到故障的PE;在判断结果为不是的情况下,将上述转发表中的下一跳索引设置为备下一跳,同时将主下一跳的转发状态设置为无效;在判断结果为是的情况下,将转发表中的下一跳索引设置为主下一跳(即,将主下一跳作为逃生路径,继续保持报文的转发),同时将主下一跳的转发状态设置为有效;和/或,当上述第一PE确定备下一跳的双向转发检测BFD检测状态变为down时,判断备下一跳是否是后检测到故障的PE;在判断结果为不是的情况下,将转发表中的下一跳索引设置为主下一跳,同时将备下一跳的转发状态设置为无效;在判断结果为是的情况下,将转发表中的下一跳索引设置为备下一跳,同时将备下一跳的转发状态设置为有效。
在一个可选的实施例中,当上述第一PE确定主下一跳的BFD检测状态变为down之后,上述方法还包括:当上述第一PE确定主下一跳的BFD检测状态变为up时,将转发表中的下一跳索引更新为主下一跳;同时将主下一跳的转发状态设置为有效;和/或,当上述第一PE确定备下一跳的 BFD检测状态变为down之后,上述方法还包括:当第一PE确定备下一跳的BFD检测状态变为up时,判断主下一跳的BFD检测状态是否up;在判断结果为不是up时,将转发表中的下一跳索引更新为备下一跳,同时将备下一跳的转发状态更新为有效;在判断结果为是up时,维持转发表中的下一跳索引为主下一跳,同时将备下一跳的转发状态设置为有效。
在一个可选的实施例中,上述第一PE根据转发表将报文转发给所述CE包括:第一PE根据所述转发表确定实际进行报文转发的下一跳PE设备和实际出接口;上述第一PE通过实际出接口将报文发送给确定的下一跳PE,并指示确定的上述下一跳PE将报文转发给CE。在本实施例中,当MPLS业务(对应于上述的报文)到达主备下一跳PE设备共路径的链路发生故障时,主下一跳或备下一跳的BFD检测状态会先后变down。如果主下一跳的BFD先检测down,备下一跳的BFD后检测down,则保持MPLS业务的备下一跳为逃生路径,继续保持转发。这样,PE收到数据流,检索上述MPLS业务转发表,从中获取到有效的备下一跳PE设备和实际出接口信息,将数据流从所述出接口转发出去,最终到达备下一跳PE设备。如果备下一跳的BFD先检测down,主下一跳的BFD后检测down,则保持MPLS业务的主下一跳为逃生路径,继续保持转发。这样,PE收到数据流,检索所述MPLS业务转发表,从中获取到有效的主下一跳PE设备和实际出接口信息,将数据流从所述出接口转发出去,最终到达主下一跳PE设备。
下面以MPLS L3VPN FRR业务作为具体的实施例,结合附图对本发明实施例中的方法作进一步的详细描述。当然本发明实施例中涉及的业务领域不仅仅局限于MPLS L3VPN FRR业务。
本发明实施例中提供了一种MPLS业务逃生保护的方法,具体的实施过程如图4所示,包括:
步骤S401.PE(对应于上述的第一PE)形成VPN FRR路由表(或者,上述的MPLS业务表),以及VPN FRR路由主下一跳和备下一跳路由的 LDP标签表。
步骤S402.根据上述VPN FRR路由表,以及VPN FRR路由主下一跳和备下一跳路由的LDP标签表生成用于流量转发的VPN FRR路由转发表和主备下一跳转发表(对应于上述的转发表)。在组网中所有链路状态都up的情况下,上述VPN FRR路由转发表的信息如表1所示:
表1
Figure PCTCN2017083091-appb-000001
上述主备下一跳转发表的信息如表2所示:
表2
Figure PCTCN2017083091-appb-000002
步骤S403.检测主PEER BFD(即,主下一跳)和备PEER BFD(即,备下一跳)的状态变化情况,如果检测状态变为down,则执行步骤S404;如果检测状态变为up,则执行步骤S411。
步骤S404.判断发生故障的PEER BFD(即,下一跳)是主还是备,如果是主,则执行步骤S405;如果是备,则执行步骤S408。
步骤S405.判断发生故障的主PEER是否是VPN FRR路由的最后一个下一跳(即,是否是后检测到故障的PE),如果不是,则执行步骤S406; 如果是,则执行步骤S407。
步骤S406.将VPN FRR路由转发表中的下一跳索引更新为指向主备下一跳转发表中的备下一跳;同时将主备下一跳转发表中主PE对应的转发条目,转发出接口更新为备LSP出接口,转发状态位更新为无效。
步骤S407.将VPN FRR路由转发表不更新,下一跳索引继续指向主备下一跳转发表中的主下一跳,即保持该路由为逃生路由;同时主备下一跳转发表中主PE对应的转发条目,转发状态位也不更新,继续保持有效转发,但是转发出接口更新为备LSP出接口。
步骤S408.判断发生故障的备PEER是否是VPN FRR路由的最后一个下一跳(即,是否是后检测到故障的PE),如果不是,则执行步骤S409;如果是,则执行步骤S410。
步骤S409.VPN FRR路由转发表不更新,下一跳索引继续指向主备下一跳转发表中的主下一跳;同时将主备下一跳转发表中备PE对应的转发条目,转发出接口更新为备LSP出接口,转发状态位更新为无效。
步骤S410.VPN FRR路由转发表不更新,下一跳索引继续指向主备下一跳转发表中的备下一跳,即保持该路由为逃生路由;同时主备下一跳转发表中备PE对应的转发条目,转发状态位也不更新,继续保持有效转发,但是转发出接口更新为备LSP出接口。
步骤S411.判断故障恢复的PEER BFD是主还是备,如果是主,则执行步骤S412;如果是备,则执行步骤S413。
步骤S412.将VPN FRR路由转发表中的下一跳索引更新为指向主备下一跳转发表中的主下一跳;同时将主备下一跳转发表中主PE对应的转发条目,转发出接口更新为当前LSP的实际出接口,转发状态位更新为有效。
步骤S413.判断当前主PEER BFD的检测状态是否up,如果不是,则执行步骤S414;如果是,则执行步骤S415。
步骤S414.将VPN FRR路由转发表中的下一跳索引更新为指向主备 下一跳转发表中的备下一跳;同时将主备下一跳转发表中备PE对应的转发条目,转发出接口更新为当前LSP的实际出接口,转发状态位更新为有效。
步骤S415.VPN FRR路由转发表不更新,下一跳索引继续指向主备下一跳转发表中的主下一跳;主备下一跳转发表中备PE对应的转发条目,转发出接口更新为当前LSP的实际出接口,转发状态位更新为有效。
步骤S416.PE收到数据流时,根据报文中的目的IP地址检索VPN FRR路由转发表,从中获取到下一跳索引,再根据下一跳索引检索主备下一跳转发表,从中获取到有效的出接口信息,将数据流从出接口转发出去,最终到达下一跳PE。
为了描述更加清楚,下面结合具体的实例,对如何实现MPLS业务逃生保护的方法加以详细说明。网络模型如图5所示,PE3形成到用户边缘设备(Customer Edge Device,简称为CE)的VPN FRR路由表,以及VPN FRR路由主下一跳和备下一跳路由的LDP标签表。其中,VPN FRR路由的主下一跳为PE1,备下一跳为PE2。VPN FRR主路由的主LSP为PE3-PE1,备LSP为PE3-PE4-PE2-PE1;VPN FRR备路由的主LSP为PE3-PE1-PE2,备LSP为PE3-PE4-PE2。VPN FRR主备路由主LSP共路径的链路为PE1-PE3。
根据上述VPN FRR路由表和LDP标签表生成用于流量转发的VPN FRR路由转发表和主备下一跳转发表。在图5所示的组网中,所有链路状态都up的情况下,所述VPN FRR路由转发表的信息如表3所示:
表3
IP地址前缀 下一跳索引
10.1.1.0/24 1.1.1.1
上述主备下一跳转发表的信息如表4所示,其中转发状态位字段,取值为1表示该出接口有效,取值为0表示该出接口无效。
表4
Figure PCTCN2017083091-appb-000003
此时,PE(即,上述的PE3)收到发往CE的数据流,根据报文中的目的IP地址10.1.1.1检索到所述VPN FRR路由转发表,从中获取到下一跳索引指向主备下一跳转发表中1.1.1.1对应的转发条目,再根据所述下一跳索引检索所述主备下一跳转发表中1.1.1.1对应的转发条目,从中获取到有效的出接口为gei_0/0/0/1,将数据流从所述出接口转发出去,到达下一跳PE1,再由PE1将数据流转发给CE。
当VPN FRR主备路由主LSP共路径的链路PE1-PE3发生故障时,主备PEER BFD的检测状态会先后变down。如果主PEER BFD先检测down,备PEER BFD后检测down,则保持VPN FRR路由的备路由为逃生路由,即所述VPN FRR路由转发表的下一跳索引指向主备下一跳转发表中的备PE。所述VPN FRR路由转发表的信息如表5所示:
表5
IP地址前缀 下一跳索引
10.1.1.0/24 2.2.2.2
上述主备下一跳转发表的信息如表6所示:
表6
Figure PCTCN2017083091-appb-000004
此时,PE收到发往CE的数据流,根据报文中的目的IP地址10.1.1.1检索到所述VPN FRR路由转发表,从中获取到下一跳索引指向主备下一跳转发表中2.2.2.2对应的转发条目,再根据所述下一跳索引检索所述主备下一跳转发表中2.2.2.2对应的转发条目,从中获取到有效的出接口为gei_0/0/0/4,将数据流从所述出接口转发出去,经过PE4,最终到达下一跳PE2,再由PE2将数据流转发给CE。
如果备PEER BFD先检测down,主PEER BFD后检测down,则保持VPN FRR路由的主路由为逃生路由,即所述VPN FRR路由转发表的下一跳索引指向主备下一跳转发表中的主PE。所述VPN FRR路由转发表的信息如表7所示:
表7
IP地址前缀 下一跳索引
10.1.1.0/24 1.1.1.1
主备下一跳转发表的信息如表8所示:
表8
Figure PCTCN2017083091-appb-000005
此时,PE收到发往CE的数据流,根据报文中的目的IP地址10.1.1.1检索到所述VPN FRR路由转发表,从中获取到下一跳索引指向主备下一跳转发表中1.1.1.1对应的转发条目,再根据所述下一跳索引检索所述主备下一跳转发表中1.1.1.1对应的转发条目,从中获取到有效的出接口为gei_0/0/0/4,将数据流从所述出接口转发出去,经过PE4和PE2,最终到达下一跳PE1,再由PE1将数据流转发给CE。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种报文转发装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的报文转发装置的结构框图,该装置可以应用于第一PE中,如图6所示,该装置包括确定模块62和转发模块64,下面对该装置进行说明。
确定模块62,设置为在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定上述主下一跳和备下一跳中后检测到故障的PE;转发模块64,连接至上述确定模块62,设置为将待发送到CE的报文通过后检测到故障的PE转发给CE。
图7是根据本发明实施例的报文转发装置中转发模块64的结构框图,如图7所示,该转发模块64包括确定单元72和转发单元74,下面对该转发模块64进行说明:
确定单元72,设置为确定通过上述后检测到故障的PE将报文转发给CE的转发表;转发单元74,连接至上述确定单元72,设置为根据上述转发表将报文转发给CE。
图8是根据本发明实施例的报文转发装置中确定单元72的结构框图, 如图8所示,该确定单元72包括第一确定子单元82和第二确定子单元84,下面对该确定单元72进行说明:
第一确定子单元82,设置为确定多协议标签交换MPLS业务表,以及主下一跳和备下一跳的标签分发协议LDP标签表;第二确定子单元84,连接至上述第一确定子单元82,设置为根据上述主下一跳和备下一跳的故障检测情况以及MPLS业务表和LDP标签表确定上述转发表。
图9是根据本发明实施例的报文转发装置中第二确定子单元84的结构框图,如图9所示,该第二确定子单元84包括第一处理次子单元92和/或第二处理次子单元94,下面对该第二确定子单元84进行说明。
第一处理次子单元92,设置为当上述第一PE确定主下一跳的双向转发检测BFD检测状态变为down时,判断上述主下一跳是否是后检测到故障的PE;在判断结果为不是的情况下,将上述转发表中的下一跳索引设置为备下一跳,同时将主下一跳的转发状态设置为无效;在判断结果为是的情况下,将上述转发表中的下一跳索引设置为主下一跳,同时将主下一跳的转发状态设置为有效;
第二处理次子单元94,设置为当上述第一PE确定备下一跳的双向转发检测BFD检测状态变为down时,判断上述备下一跳是否是后检测到故障的PE;在判断结果为不是的情况下,将上述转发表中的下一跳索引设置为主下一跳,同时将备下一跳的转发状态设置为无效;在判断结果为是的情况下,将上述转发表中的下一跳索引设置为备下一跳,同时将备下一跳的转发状态设置为有效。
在一个可选的实施例中,上述第一处理次子单元92还设置为当第一PE确定主下一跳的BFD检测状态变为down之后,当第一PE确定主下一跳的BFD检测状态变为up时,将转发表中的下一跳索引更新为上述主下一跳;同时将主下一跳的转发状态设置为有效;和/或,
上述第二处理次子单元94还设置为当第一PE确定备下一跳的BFD检测状态变为down之后,当第一PE确定备下一跳的BFD检测状态变为 up时,判断上述主下一跳的BFD检测状态是否up;在判断结果为不是up时,将转发表中的下一跳索引更新为备下一跳,同时将备下一跳的转发状态更新为有效;在判断结果为是up时,维持上述转发表中的下一跳索引为主下一跳,同时将上述备下一跳的转发状态设置为有效。
图10是根据本发明实施例的报文转发装置中转发单元74的结构框图,如图10所示,该转发单元74包括第三确定子单元102和转发子单元104,下面对该转发单元74进行说明。
第三确定子单元102,设置为根据上述转发表确定实际进行报文转发的下一跳PE设备和实际出接口;转发子单元104,连接至上述第三确定子单元102,设置为通过上述实际出接口将报文发送给确定的上述下一跳PE,并指示确定的上述下一跳PE将报文转发给CE。
下面结合附图对本发明实施例中的装置作进一步的详细描述。
本发明实施例中提供了一种MPLS业务逃生保护的装置,如图11所示,该装置包括BFD检测模块112(对应于上述的确定模块62)、路由管理模块114(对应于上述的第一确定子单元82)、LDP管理模块116(对应于上述的第一确定子单元82)、转发表管理模块118(对应于上述的第二确定子单元84)、流量转发模块1110(对应于上述的转发单元74)其中:
路由管理模块114,设置为创建PE设备上的VPN FRR路由表。
LDP管理模块116,设置为创建VPN FRR路由主下一跳和备下一跳路由的LDP标签表。
路由管理模块114和LDP管理模块116都连接至转发表管理模块118,这样转发表管理模块118就根据路由管理模块114创建的VPN FRR路由表生成用于流量转发的VPN FRR路由转发表和主备下一跳转发表,VPN FRR路由转发表中的下一跳索引指向主备下一跳转发表中的主PE或备PE,标识当前VPN FRR路由实际转发的下一跳。另外,根据上述LDP管理模块116创建的LDP标签表生成主备下一跳转发表中VPN FRR路由主下一跳和备下一跳路由的实际转发出接口。同时,根据BFD检测模块112检 测到的主PEER BFD和备PEER BFD的检测状态将主备下一跳转发表中VPN FRR路由主下一跳和备下一跳路由的转发状态位设置为有效或无效。
上述的BFD检测模块112检测主PEER BFD或备PEER BFD的状态,一旦检测到BFD状态发生变化,立即对上述转发表管理模块118的VPN FRR路由转发表和主备下一跳转发表进行更新。
流量转发模块1110连接至转发表管理模块118,设置为PE收到数据流时,根据报文中的目的IP地址检索转发表管理模块118的VPN FRR路由转发表,从中获取到下一跳索引,再根据该下一跳索引检索转发表管理模块118的主备下一跳转发表,从中获取到有效的出接口信息,将数据流从所述出接口转发出去,最终到达下一跳PE。
由上述本发明提供的实施例的具体实施过程可以看到,本发明实施例中实现的MPLS业务逃生保护的方法和装置,能够解决了当MPLS业务到达主备下一跳PE设备共路径的链路发生故障,主备下一跳BFD都中断时,MPLS业务主备下一跳转发层面都会被置为无效,从而产生的转发路由黑洞现象,导致业务中断的问题,大大增强了网络的可靠性,同时也提高了IPRAN承载解决方案的可行性。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,第一服务提供商边缘设备PE在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定上述主下一跳和备下一跳中后检测到故障的PE;
S2,第一PE将待发送到CE的报文通过后检测到故障的PE转发给CE。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只 读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述各方法实施例中的步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种报文转发方法及装置具有以下有益效果:解决相关技术中存在的路由黑洞问题,避免业务中断,从而达到保证报文成功转发的效果。

Claims (12)

  1. 一种报文转发方法,包括:
    第一服务提供商边缘设备PE在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定所述主下一跳和所述备下一跳中后检测到故障的PE;
    所述第一PE将待发送到所述CE的报文通过所述后检测到故障的PE转发给所述CE。
  2. 根据权利要求1所述的方法,其中,所述第一PE将待发送到所述CE的报文通过所述后检测到故障的PE转发给所述CE包括:
    所述第一PE确定通过所述后检测到故障的PE将所述报文转发给所述CE的转发表;
    所述第一PE根据所述转发表将所述报文转发给所述CE。
  3. 根据权利要求2所述的方法,其中,所述第一PE确定通过所述后检测到故障的PE将所述报文转发给所述CE的转发表包括:
    所述第一PE确定多协议标签交换MPLS业务表,以及所述主下一跳和备下一跳的标签分发协议LDP标签表;
    所述第一PE根据所述主下一跳和所述备下一跳的故障检测情况以及所述MPLS业务表和所述LDP标签表确定所述转发表。
  4. 根据权利要求3所述的方法,其中,所述第一PE根据所述主下一跳和所述备下一跳的故障检测情况以及所述MPLS业务表和所述LDP标签表确定所述转发表包括:
    当所述第一PE确定所述主下一跳的双向转发检测BFD检测状态变为down时,判断所述主下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述主下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳, 同时将所述主下一跳的转发状态设置为有效;和/或,
    当所述第一PE确定所述备下一跳的双向转发检测BFD检测状态变为down时,判断所述备下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳,同时将所述备下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述备下一跳的转发状态设置为有效。
  5. 根据权利要求4所述的方法,其中,
    当所述第一PE确定所述主下一跳的BFD检测状态变为down之后,还包括:当所述第一PE确定所述主下一跳的BFD检测状态变为up时,将所述转发表中的下一跳索引更新为所述主下一跳;同时将所述主下一跳的转发状态设置为有效;和/或,
    当所述第一PE确定所述备下一跳的BFD检测状态变为down之后,还包括:当所述第一PE确定所述备下一跳的BFD检测状态变为up时,判断所述主下一跳的BFD检测状态是否up;在判断结果为不是up时,将所述转发表中的下一跳索引更新为所述备下一跳,同时将所述备下一跳的转发状态更新为有效;在判断结果为是up时,维持所述转发表中的下一跳索引为所述主下一跳,同时将所述备下一跳的转发状态设置为有效。
  6. 根据权利要求2所述的方法,其中,所述第一PE根据所述转发表将所述报文转发给所述CE包括:
    所述第一PE根据所述转发表确定实际进行报文转发的下一跳PE设备和实际出接口;
    所述第一PE通过所述实际出接口将所述报文发送给确定的所述下一跳PE,并指示确定的所述下一跳PE将所述报文转发给所述CE。
  7. 一种报文转发装置,应用于第一服务提供商边缘设备PE中, 包括:
    确定模块,设置为在确定到达用户边缘设备CE的主下一跳和备下一跳共路径的链路发生故障后,确定所述主下一跳和所述备下一跳中后检测到故障的PE;
    转发模块,设置为将待发送到所述CE的报文通过所述后检测到故障的PE转发给所述CE。
  8. 根据权利要求7所述的装置,其中,所述转发模块包括:
    确定单元,设置为确定通过所述后检测到故障的PE将所述报文转发给所述CE的转发表;
    转发单元,设置为根据所述转发表将所述报文转发给所述CE。
  9. 根据权利要求8所述的装置,其中,所述确定单元包括:
    第一确定子单元,设置为确定多协议标签交换MPLS业务表,以及所述主下一跳和备下一跳的标签分发协议LDP标签表;
    第二确定子单元,设置为根据所述主下一跳和所述备下一跳的故障检测情况以及所述MPLS业务表和所述LDP标签表确定所述转发表。
  10. 根据权利要求9所述的装置,其中,所述第二确定子单元包括:
    第一处理次子单元,设置为当所述第一PE确定所述主下一跳的双向转发检测BFD检测状态变为down时,判断所述主下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述主下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳,同时将所述主下一跳的转发状态设置为有效;和/或,
    第二处理次子单元,设置为当所述第一PE确定所述备下一跳的双 向转发检测BFD检测状态变为down时,判断所述备下一跳是否是所述后检测到故障的PE;在判断结果为不是的情况下,将所述转发表中的下一跳索引设置为所述主下一跳,同时将所述备下一跳的转发状态设置为无效;在判断结果为是的情况下,将所述转发表中的下一跳索引设置为所述备下一跳,同时将所述备下一跳的转发状态设置为有效。
  11. 根据权利要求10所述的装置,其中,
    所述第一处理次子单元还设置为当所述第一PE确定所述主下一跳的BFD检测状态变为down之后,当所述第一PE确定所述主下一跳的BFD检测状态变为up时,将所述转发表中的下一跳索引更新为所述主下一跳;同时将所述主下一跳的转发状态设置为有效;和/或,
    所述第二处理次子单元还设置为当所述第一PE确定所述备下一跳的BFD检测状态变为down之后,当所述第一PE确定所述备下一跳的BFD检测状态变为up时,判断所述主下一跳的BFD检测状态是否up;在判断结果为不是up时,将所述转发表中的下一跳索引更新为所述备下一跳,同时将所述备下一跳的转发状态更新为有效;在判断结果为是up时,维持所述转发表中的下一跳索引为所述主下一跳,同时将所述备下一跳的转发状态设置为有效。
  12. 根据权利要求8所述的装置,其中,所述转发单元包括:
    第三确定子单元,设置为根据所述转发表确定实际进行报文转发的下一跳PE设备和实际出接口;
    转发子单元,设置为通过所述实际出接口将所述报文发送给确定的所述下一跳PE,并指示确定的所述下一跳PE将所述报文转发给所述CE。
PCT/CN2017/083091 2016-05-05 2017-05-04 报文转发方法及装置 WO2017190672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17792498.2A EP3454510B1 (en) 2016-05-05 2017-05-04 Message forwarding method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610296706.6A CN107347032B (zh) 2016-05-05 2016-05-05 报文转发方法及装置
CN201610296706.6 2016-05-05

Publications (1)

Publication Number Publication Date
WO2017190672A1 true WO2017190672A1 (zh) 2017-11-09

Family

ID=60202756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083091 WO2017190672A1 (zh) 2016-05-05 2017-05-04 报文转发方法及装置

Country Status (3)

Country Link
EP (1) EP3454510B1 (zh)
CN (1) CN107347032B (zh)
WO (1) WO2017190672A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111683086A (zh) * 2020-06-05 2020-09-18 北京百度网讯科技有限公司 网络数据处理方法、装置、电子设备和存储介质
CN111885630A (zh) * 2020-07-01 2020-11-03 中国联合网络通信集团有限公司 数据传输方法及通信装置
CN112840625A (zh) * 2018-08-23 2021-05-25 阿尔库斯有限公司 网络计算环境中的第一跳迁网关冗余

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011917B (zh) * 2019-03-21 2021-05-07 新华三技术有限公司 一种报文转发方法、装置、电子设备及存储介质
CN110224886B (zh) * 2019-05-31 2021-02-09 新华三技术有限公司 隧道连通性检测方法、装置及网络边缘设备
CN110493129B (zh) * 2019-07-25 2021-11-09 新华三大数据技术有限公司 备份标签路径的更新方法、报文转发方法及装置
CN116782336B (zh) 2019-10-22 2024-07-19 华为技术有限公司 一种通信方法及装置
CN111614554B (zh) * 2020-05-20 2022-02-01 中国联合网络通信集团有限公司 路由切换方法、控制设备、多路由网络系统及存储介质
CN112769601B (zh) * 2020-12-29 2022-05-24 新华三技术有限公司 一种链路切换方法及设备
CN113852548A (zh) * 2021-09-15 2021-12-28 新华三信息安全技术有限公司 一种报文处理方法及装置
CN114090313B (zh) * 2021-10-31 2024-04-12 新华三技术有限公司合肥分公司 一种转发表生成方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132304A (zh) * 2006-08-24 2008-02-27 华为技术有限公司 故障保护方法和系统
CN101330424A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 一种虚拟专用网服务故障处理的方法、系统及装置
CN102238138A (zh) * 2010-04-23 2011-11-09 中兴通讯股份有限公司 一种伪线业务的处理方法和系统
US20110299551A1 (en) * 2008-12-18 2011-12-08 Raoul Fiorone Method and Apparatus for Transferring Data Packets Between a First Network and a Second Network
CN104468347A (zh) * 2013-09-18 2015-03-25 中兴通讯股份有限公司 网络数据自环回的控制方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107363B1 (en) * 2004-05-21 2012-01-31 Rockstar Bidco, LP Method and apparatus for accelerating failover of VPN traffic in an MPLS provider network
CN100450039C (zh) * 2007-01-12 2009-01-07 华为技术有限公司 快速收敛端到端业务的方法和装置
WO2008120267A1 (ja) * 2007-03-28 2008-10-09 Fujitsu Limited エッジノード冗長システム
CN100531144C (zh) * 2007-04-25 2009-08-19 华为技术有限公司 一种路由器及路由转发方法
CN101984596B (zh) * 2010-11-04 2012-05-30 北京星网锐捷网络技术有限公司 一种避免路由黑洞的方法、装置及路由设备
CN102420767B (zh) * 2011-12-15 2014-07-02 北京星网锐捷网络技术有限公司 转发路径切换方法、装置及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132304A (zh) * 2006-08-24 2008-02-27 华为技术有限公司 故障保护方法和系统
CN101330424A (zh) * 2007-06-18 2008-12-24 华为技术有限公司 一种虚拟专用网服务故障处理的方法、系统及装置
US20110299551A1 (en) * 2008-12-18 2011-12-08 Raoul Fiorone Method and Apparatus for Transferring Data Packets Between a First Network and a Second Network
CN102238138A (zh) * 2010-04-23 2011-11-09 中兴通讯股份有限公司 一种伪线业务的处理方法和系统
CN104468347A (zh) * 2013-09-18 2015-03-25 中兴通讯股份有限公司 网络数据自环回的控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3454510A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840625A (zh) * 2018-08-23 2021-05-25 阿尔库斯有限公司 网络计算环境中的第一跳迁网关冗余
CN112840625B (zh) * 2018-08-23 2024-02-20 阿尔库斯有限公司 网络计算环境中的第一跳迁网关冗余
CN111683086A (zh) * 2020-06-05 2020-09-18 北京百度网讯科技有限公司 网络数据处理方法、装置、电子设备和存储介质
CN111683086B (zh) * 2020-06-05 2022-11-01 北京百度网讯科技有限公司 网络数据处理方法、装置、电子设备和存储介质
CN111885630A (zh) * 2020-07-01 2020-11-03 中国联合网络通信集团有限公司 数据传输方法及通信装置
CN111885630B (zh) * 2020-07-01 2023-06-30 中国联合网络通信集团有限公司 数据传输方法及通信装置

Also Published As

Publication number Publication date
CN107347032B (zh) 2019-09-10
EP3454510B1 (en) 2020-12-30
EP3454510A1 (en) 2019-03-13
CN107347032A (zh) 2017-11-14
EP3454510A4 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017190672A1 (zh) 报文转发方法及装置
US9954769B2 (en) Inter-domain fast reroute methods and network devices
US9264302B2 (en) Methods and systems with enhanced robustness for multi-chassis link aggregation group
JP5934724B2 (ja) Ldpを用いたmpls高速再ルーティング(ldp−frr)
EP2335384B1 (en) Rsvp-te graceful restart under fast re-route conditions
US8780696B2 (en) System and method of implementing lightweight not-via IP fast reroutes in a telecommunications network
EP2730069B1 (en) Mpls fast re-route using ldp (ldp-frr)
US11700195B2 (en) Locally protecting service in a label switched path network
WO2016123904A1 (zh) 路由收敛方法、装置及虚拟专用网vpn系统
CN113615132A (zh) 快速泛洪拓扑保护
US9781030B1 (en) Fast re-route protection using GRE over MPLS
US10735252B2 (en) Outside router fault detection
CN115499369A (zh) 路径保护方法及装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017792498

Country of ref document: EP

Effective date: 20181205