WO2017190505A1 - Dispositif de génération d'énergie par différentiel de concentration de sel renforcé par une pompe à chaleur utilisant un procédé d'énergie de pression différentielle de vapeur sous une différence de température positive - Google Patents

Dispositif de génération d'énergie par différentiel de concentration de sel renforcé par une pompe à chaleur utilisant un procédé d'énergie de pression différentielle de vapeur sous une différence de température positive Download PDF

Info

Publication number
WO2017190505A1
WO2017190505A1 PCT/CN2016/109365 CN2016109365W WO2017190505A1 WO 2017190505 A1 WO2017190505 A1 WO 2017190505A1 CN 2016109365 W CN2016109365 W CN 2016109365W WO 2017190505 A1 WO2017190505 A1 WO 2017190505A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
power generation
concentrated solution
solution
differential
Prior art date
Application number
PCT/CN2016/109365
Other languages
English (en)
Chinese (zh)
Inventor
王焕光
闫文杰
辛毅
吴迪
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2016405486A priority Critical patent/AU2016405486B9/en
Priority to CA3000629A priority patent/CA3000629C/fr
Publication of WO2017190505A1 publication Critical patent/WO2017190505A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/047Environmental heat plants or OTEC plants using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G2007/007Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the field of salt difference power generation, and particularly relates to a steam pressure difference energy salt difference power generation device under positive temperature difference of heat pump strengthening.
  • the ocean is an inexhaustible treasure house, which contains abundant marine energy resources.
  • the ocean energy resources usually refer to the renewable natural energy contained in the ocean, and the salt water difference is the most important one. .
  • the salt difference energy is the chemical potential difference energy between seawater and fresh water or between two seawaters with different salt concentrations.
  • Salt difference energy is the most energy-renewable energy source in ocean energy.
  • seawater 3.5% salinity
  • river water is equivalent to the water level drop of 240m.
  • the salt in the ocean is rich in energy resources. It is estimated that there is a salt energy difference of 2.6 TW available on the earth, and its energy is even larger than the temperature difference.
  • the annual runoff of coastal rivers is about 1.7 ⁇ 10 12 -1.8 ⁇ 10 12 m 3
  • the annual runoff of the main rivers is about 1.5 ⁇ 10 12 -1.6 ⁇ 10 12 m 3
  • the coastal salt energy resource reserves are about 3.9 ⁇ 10 18 J
  • the theoretical power is about 1.25 ⁇ 10 11 W.
  • the resources along the Yangtze River estuary and the south of the Dajiang River estuary account for 92.5% of the national total, and the theoretical power is estimated to be 0.86 ⁇ 10 11 KW.
  • the flow rate of the Yangtze River estuary is 2.2 ⁇ 10 4 m 3 /s, which can generate 5.2 ⁇ 10 10 W.
  • many inland salt lakes are available in Qinghai province and other places in China.
  • the forms of salt difference power generation mainly include: pressure delay infiltration method, reverse electrodialysis method, vapor pressure difference method, electrochemical capacitance method and the like.
  • the most studied are the pressure delay infiltration method and the reverse electrodialysis method, and the principle of the vapor pressure difference energy method is to drive the turbine to generate electricity by using the vapor pressure difference between different concentration salt solutions.
  • the biggest advantage of this method is that it avoids the dependence on the permeable membrane, but because of the low temperature, the evaporation is small, the pressure difference is too small, and the vapor pressure difference between seawater and fresh water with a concentration of 3.45% at normal temperature is only 10-20mmHg.
  • the turbine diameter needs to be made very large to ensure sufficient power generation, and the upper surface of the dilute solution is due to moisture. Evaporation will gradually lower the temperature on the side, and when the moisture reaches the upper surface of the concentrated solution, the temperature rises due to condensation and exothermic heat, and a reverse temperature difference is gradually formed, which hinders the forward pressure difference, and if the concentrated solution is condensed by water vapor, When the temperature rise of 0.5 °C, the pressure difference will be offset, so the steam pressure difference method salt difference power generation is difficult to use.
  • the object of the present invention is to solve the deficiencies in the prior art, and to provide a method of eliminating a reverse temperature difference, increasing a positive temperature difference, increasing a pressure difference, increasing an expander's work, high energy utilization efficiency, and low loss.
  • the steam differential pressure energy salt difference power generation device under the positive temperature difference of the heat pump of the present invention comprises a heat pump heating cycle device and a vapor pressure difference energy salt difference power generation device;
  • the heat pump heating circulation device includes a condenser, a heat pump pipe, a throttle valve, an evaporator, a compressor, and the condenser, the throttle valve, the evaporator, and the compressor are sequentially connected through the heat pump pipe and form a circulation device;
  • the vapor pressure difference energy salt difference power generation device comprises a low pressure vessel, a high pressure vessel, an expander, a differential pressure gauge, an expander pipeline; the low pressure vessel and the high pressure vessel are connected through the expander pipeline, the expander Provided in the expander duct, the differential pressure gauge is disposed between the expander outlet and the inlet;
  • the evaporator is disposed in the low pressure vessel, the low pressure vessel is filled with a concentrated solution; the condenser is disposed in the high pressure vessel, and the high pressure vessel is filled with a dilute solution;
  • the concentrated solution is a saturated lithium bromide or a saturated sodium chloride solution; the diluted solution is a solution having a concentration of less than 10%.
  • the vapor pressure difference energy salt difference power generation device further comprises a dilute solution container, a dilute solution replenishing solution, a dilute solution pump, a dilute solution pump pipe, a concentrated solution container, a concentrated solution replenishing solution, a concentrated solution pump, a concentrated solution pump. pipeline;
  • the dilute solution container Disposing the dilute solution replenishing liquid in the dilute solution container, the dilute solution container is connected to the high-pressure container through the dilute solution pump pipeline, and the dilute solution pump is disposed on the dilute solution pump pipeline;
  • the concentrated solution replenishing liquid is placed in the concentrated solution container, and the concentrated solution container is connected to the low pressure container through the concentrated solution pump pipe, and the concentrated solution pump is disposed on the concentrated solution pump pipe.
  • the vapor differential energy salt differential power generating device further comprises a vacuum pump connected to the low pressure vessel through a vacuum pump pipe.
  • the bottom of the low-pressure vessel is provided with a drain pipe, and the drain pipe is provided with a valve.
  • the heat pump pipe connected to the evaporator and the evaporator is provided with a throttle valve.
  • the heat pump enhanced positive pressure difference of the present invention is a vapor pressure difference energy salt difference power generation device, which is heated by a heat pump to absorb heat in a concentrated solution to lower the temperature of the concentrated solution, and the exothermic heat in the dilute solution causes the temperature of the diluted solution to rise.
  • High effectively offsets the evaporation of heat in the dilute solution, the inverse temperature difference caused by the condensation of water vapor in the concentrated solution, maintains and expands the positive temperature difference, thereby maintaining and expanding the positive saturated vapor pressure difference, and doing work on the expander It has a promoting effect; high energy utilization efficiency, low loss, low cost, good applicability, and simple and convenient processing.
  • Figure 1 is a schematic view of the structure of the present invention.
  • the heat pump enhanced positive temperature difference steam differential pressure energy salt difference power generation device of the present invention comprises a heat pump heating cycle device and a vapor pressure difference energy salt difference power generation device; mainly composed of an expander pipe 1.
  • Dilute solution pump pipe 2 dilute solution pump 3, dilute solution container 4, dilute solution replenishing liquid 5, dilute solution 6, condenser 7, high pressure container 8, heat pump pipe 9, throttle valve 10, low pressure container 11, evaporator 12 , valve 13, drain pipe 14, concentrated solution 15, concentrated solution container 16, concentrated solution replenishing liquid 17, concentrated solution pump pipe 18, concentrated solution pump 19, vacuum pump 20, vacuum pump pipe 21, compressor 22, expander 23,
  • the differential pressure gauge 24 is composed.
  • the heat pump heating circulation device comprises a condenser 7, a heat pump pipe 9, a throttle valve 10, an evaporator 12, a compressor 22, a condenser 7, a throttle valve 10, an evaporator 12, and a compressor 22 which are sequentially connected through a heat pump pipe 9. And form a circulation device.
  • the vapor pressure difference energy salt difference power generation device comprises a low pressure vessel 11, a high pressure vessel 8, an expander 23, a differential pressure gauge 24, an expander pipe 1; the low pressure vessel 11 and the high pressure vessel 8 are connected through an expander pipe 1, and the expander 23 is arranged In the expander pipe 1, a differential pressure gauge 24 is disposed on the expander pipe 1, and a differential pressure gauge 24 is disposed between the outlet of the expander 23 and the inlet.
  • the evaporator 12 is disposed in the low pressure vessel 11, and the low pressure vessel 11 is provided with a concentrated solution 15; the condenser 7 is disposed in the high pressure vessel 8, and the high pressure vessel 8 is installed therein.
  • the concentrated solution 15 is a saturated lithium bromide or a saturated sodium chloride solution; the diluted solution 6 is a solution having a concentration lower than 10%.
  • the condenser 7 is placed in the dilute solution 6 to heat the dilute solution 6, and the evaporator 12 is placed in the concentrated solution 15 to cool the concentrated solution 15.
  • the compressor 22 is driven by an external motor, and the heat pump pipe sequentially turns the compressor 22, the condenser 7, and the throttling.
  • Valve 10 and evaporator 12 are connected to form a heat pump heating cycle.
  • the steam pressure difference energy salt difference power generation device further comprises a dilute solution container 4, a dilute solution replenishing liquid 5, a dilute solution pump 3, a dilute solution pump pipe 2, a concentrated solution container 16, a concentrated solution replenishing liquid 17, a concentrated solution pump 19, and a rich Solution pump line 18.
  • a dilute solution replenishing liquid 5 is disposed in the dilute solution container 4, and the dilute solution container 4 is connected to the high pressure container 8 through the dilute solution pump line 2, and the dilute solution pump 3 is disposed on the dilute solution pump line 2.
  • the concentrated solution container 16 is provided with a concentrated solution replenishing liquid 17, and the concentrated solution container 16 is connected to the low pressure container 11 through the concentrated solution pump line 18, and the concentrated solution pump line 18 is provided with a concentrated solution pump 19.
  • the vapor pressure difference method salt difference power generation device further includes a vacuum pump 20 that is connected to the low pressure vessel 11 through a vacuum pump line 21.
  • the bottom of the low pressure vessel 11 is provided with a drain conduit 14 on which a valve 13 is provided.
  • a throttle valve 10 is disposed on the heat pump conduit 9 to which the condenser 7 is connected to the evaporator 12.
  • the high pressure container 8 contains a dilute solution 6, the dilute solution container 4 is filled with a dilute solution replenishing liquid 5, and the dilute solution pump 3 is a dilute solution replenishing liquid in the dilute solution container 4.
  • the low-pressure vessel 11 is connected to the vacuum pump 20 through the vacuum pump pipe 21 to maintain the internal vacuum condition, and the bottom of the low-pressure vessel 11 is connected to the drain pipe 14 through the valve 13, and the high-pressure vessel 8 and the low-pressure vessel 11 are expanded.
  • the machine pipe 1 is connected to the expander 23, the expander 23 is located between the low pressure vessel 11 and the high pressure vessel 8, and the differential pressure gauge 24 is located on both sides of the expander 23, thereby constituting the entire vapor pressure difference energy salt difference power generation circuit.
  • the dilute solution 6 contained in the high pressure vessel 8 is more easily evaporated than the concentrated solution 15 contained in the low pressure vessel 11, and the vacuum pump 20 creates a vacuum condition for the low pressure vessel 11, so that the pressure in the high pressure vessel 8 is high.
  • the water vapor in the high-pressure vessel 8 is driven by the expander pipe 1 to generate electricity due to the pressure difference, and the water vapor then enters the low-pressure vessel 11 and the concentrated solution in the low-pressure vessel 11
  • the surface condensation is exothermic.
  • the dilute solution 6 in the high pressure vessel 8 is reduced by the evaporation of water, and the dilute solution pump 3 replenishes the dilute solution through the dilute solution pump pipe 2.
  • the liquid 5 is replenished into the high pressure container 8 to maintain the liquid level of the dilute solution 6 in the high pressure container 8, and the surface of the concentrated solution 15 in the low pressure container 11 is also condensed by the water vapor, so that the concentrated solution 15 is diluted and the concentration is lowered.
  • the pipe 14 timely discharges the diluted concentrated solution 15 into the low-pressure vessel 11 , and the concentrated solution pump 19 quantitatively replenishes the concentrated solution replenishing liquid 17 into the low-pressure vessel 11 through the concentrated solution pump pipe 18 to maintain the concentration of the concentrated solution 15 in the low-pressure vessel 11 change.
  • the temperature in the high pressure vessel 8 is gradually lowered, and the water vapor in the concentrated solution 15 is condensed and released, so that the temperature in the low pressure vessel 11 is gradually increased, thereby generating a low temperature of the high pressure vessel 8.
  • the reverse temperature difference of the high pressure vessel 8 weakens the effect of the forward pressure difference to reduce the work of the expander 23, and the evaporator 12 is disposed in the concentrated solution 15 of the low pressure vessel 11, and the dilute solution in the high pressure vessel 8
  • the condenser 7 is disposed in the sixth stage, and is connected to the compressor 22 and the throttle valve 10 through the heat pump pipe 9, and constitutes a heat pump heating cycle.
  • the medium in the heat pump heating cycle absorbs heat in the evaporator 12 to evaporate, so that the temperature of the concentrated solution 15 is lowered.
  • the condensation of water vapor on the surface of the concentrated solution 15 is promoted, so that the pressure in the low pressure vessel 11 is further lowered, and the working medium in the heat pump heating cycle is cooled and released in the condenser 7, so that the temperature of the diluted solution 6 is raised, and the water is promoted.
  • the evaporation of the surface of the solution 6 causes the pressure in the high pressure vessel 8 to further increase, not only counteracting the inverse temperature difference caused by the condensation of the water vapor in the concentrated solution 15 due to the evaporation of the water in the dilute solution 6, and To produce a positive temperature differential, further expansion pressure, acting to promote the expander 23, the vapor pressure difference can strengthen the difference of salt generation, increase system power.
  • the heat pump enhanced positive temperature difference steam differential pressure energy salt difference power generation device of the present invention is heated by a heat pump to absorb heat in a concentrated solution to lower the temperature of the concentrated solution, and the exothermic heat in the dilute solution causes the temperature of the diluted solution to rise, effectively It counteracts the inverse temperature difference caused by the evaporation of water in the dilute solution and the condensation and exotherm of water vapor in the concentrated solution, maintaining and expanding the positive temperature difference, thereby maintaining and expanding the positive saturated vapor pressure difference, which promotes the work of the expander.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'invention concerne un dispositif de génération d'énergie par différentiel de concentration de sel renforcé par une pompe à chaleur utilisant un procédé d'énergie de pression différentielle de vapeur sous une différence de température positive. Le dispositif de génération d'énergie comprend un dispositif de chauffage et de circulation à pompe à chaleur et un dispositif de génération d'énergie par différentiel de concentration de sel utilisant le procédé d'énergie de pression différentielle de vapeur. Le dispositif de chauffage et de circulation à pompe à chaleur comprend un condenseur (7), une conduite de pompe à chaleur (9), une vanne papillon (10), un évaporateur (12) et un compresseur (22). Le dispositif de génération d'énergie par différentiel de concentration de sel utilisant le procédé d'énergie de pression différentielle de vapeur comprend un récipient basse pression (11), un récipient haute pression (8), un détendeur (23), un manomètre différentiel (24) et une conduite de détente (11). Par le chauffage et la circulation effectués par la pompe à chaleur, de la chaleur est absorbée à partir d'une solution concentrée de manière à abaisser la température de la solution concentrée, la chaleur est relâchée dans une solution diluée de manière à augmenter la température de la solution diluée, de telle sorte que la différence de température inverse générée par l'absorption de chaleur par évaporation d'eau à partir de la solution diluée et le relâchement de chaleur par condensation de vapeur dans la solution concentrée est efficacement décalée. La différence de température positive est maintenue et augmentée, une pression différentielle de vapeur saturée positive est elle-même maintenue et augmentée, ce qui permet au dispositif de détente (23) de réaliser du travail. Le rendement d'utilisation d'énergie est élevé, la perte est faible, le coût est faible, l'applicabilité est bonne, et l'usinage est simple et pratique.
PCT/CN2016/109365 2016-05-06 2016-12-12 Dispositif de génération d'énergie par différentiel de concentration de sel renforcé par une pompe à chaleur utilisant un procédé d'énergie de pression différentielle de vapeur sous une différence de température positive WO2017190505A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2016405486A AU2016405486B9 (en) 2016-05-06 2016-12-12 Heat pump-reinforced salt-concentration-differential power generation device using vapour differential pressure energy method under positive temperature difference
CA3000629A CA3000629C (fr) 2016-05-06 2016-12-12 Appareil de generation de puissance a gradient de salinite renforce par une pompe thermique employant la methode d'energie de differentiel vapeur-pression en condition de difference thermique positive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610299058.XA CN105736269B (zh) 2016-05-06 2016-05-06 一种热泵强化的正温差下蒸汽压差能法盐差发电装置
CN201610299058.X 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017190505A1 true WO2017190505A1 (fr) 2017-11-09

Family

ID=56288903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109365 WO2017190505A1 (fr) 2016-05-06 2016-12-12 Dispositif de génération d'énergie par différentiel de concentration de sel renforcé par une pompe à chaleur utilisant un procédé d'énergie de pression différentielle de vapeur sous une différence de température positive

Country Status (4)

Country Link
CN (1) CN105736269B (fr)
AU (1) AU2016405486B9 (fr)
CA (1) CA3000629C (fr)
WO (1) WO2017190505A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109538430A (zh) * 2018-12-29 2019-03-29 河钢股份有限公司 一种利用浓盐水进行发电的装置和方法
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105736269B (zh) * 2016-05-06 2018-04-06 中国矿业大学 一种热泵强化的正温差下蒸汽压差能法盐差发电装置
CN112922799B (zh) * 2021-04-07 2022-10-14 浙江海洋大学 一种盐差发电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054959A (zh) * 2007-05-18 2007-10-17 李国新 低温热能增量发电方法及装置
AU2007203507A1 (en) * 2007-07-30 2009-02-19 Westlake, Don A means and method for producing potable water and electricity
CN201301785Y (zh) * 2008-11-05 2009-09-02 上海海事大学 高效海洋温差能发电装置
WO2010008275A1 (fr) * 2008-07-14 2010-01-21 Eneco New Energy B.V. Système d’accumulation et de production d’énergie et procédé utilisant une production d’énergie par gradient de salinité
CN102678493A (zh) * 2012-05-25 2012-09-19 罗良宜 直接传热式海水温差发电装置
CN202811240U (zh) * 2012-09-24 2013-03-20 浙江海洋学院 蒸压法盐差能发电装置
CN105736269A (zh) * 2016-05-06 2016-07-06 中国矿业大学 一种热泵强化的正温差下蒸汽压差能法盐差发电装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324983A (en) * 1977-09-15 1982-04-13 Humiston Gerald F Binary vapor cycle method of electrical power generation
DE69121916T2 (de) * 1991-06-28 1997-04-03 Gabor Gode Anlage zur meerwasserentsalzung mittels sonnenenergie, vorzugsweise im zusammenhang mit elektrizitätserzeugung
KR20120125120A (ko) * 2011-05-06 2012-11-14 이상하 저온열을 고온으로 상승회수하는 방식
CN202474102U (zh) * 2012-03-19 2012-10-03 上海海事大学 一种利用盐差能反电渗析的发电装置
WO2014181898A1 (fr) * 2013-05-08 2014-11-13 한국에너지기술연구원 Système d'accumulation de courant électrique de grande capacité faisant appel à de l'énergie thermique/un potentiel chimique
US9920749B2 (en) * 2013-07-05 2018-03-20 Ormat Technologies, Inc. Method and apparatus for producing power from two geothermal heat sources
CN104601042A (zh) * 2015-01-21 2015-05-06 中国石油大学(华东) 利用太阳能和盐差能反电渗析法结合发电的装置
CN204755205U (zh) * 2015-03-20 2015-11-11 苏州翔天装饰设计有限公司 温差发电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054959A (zh) * 2007-05-18 2007-10-17 李国新 低温热能增量发电方法及装置
AU2007203507A1 (en) * 2007-07-30 2009-02-19 Westlake, Don A means and method for producing potable water and electricity
WO2010008275A1 (fr) * 2008-07-14 2010-01-21 Eneco New Energy B.V. Système d’accumulation et de production d’énergie et procédé utilisant une production d’énergie par gradient de salinité
CN201301785Y (zh) * 2008-11-05 2009-09-02 上海海事大学 高效海洋温差能发电装置
CN102678493A (zh) * 2012-05-25 2012-09-19 罗良宜 直接传热式海水温差发电装置
CN202811240U (zh) * 2012-09-24 2013-03-20 浙江海洋学院 蒸压法盐差能发电装置
CN105736269A (zh) * 2016-05-06 2016-07-06 中国矿业大学 一种热泵强化的正温差下蒸汽压差能法盐差发电装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109538430A (zh) * 2018-12-29 2019-03-29 河钢股份有限公司 一种利用浓盐水进行发电的装置和方法
CN109538430B (zh) * 2018-12-29 2024-03-22 河钢股份有限公司 一种利用浓盐水进行发电的装置和方法
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11563229B1 (en) 2022-05-09 2023-01-24 Rahul S Nana Reverse electrodialysis cell with heat pump
US11611099B1 (en) 2022-05-09 2023-03-21 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11699803B1 (en) 2022-05-09 2023-07-11 Rahul S Nana Reverse electrodialysis cell with heat pump
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump

Also Published As

Publication number Publication date
CN105736269A (zh) 2016-07-06
AU2016405486B2 (en) 2020-01-30
AU2016405486B9 (en) 2020-06-11
AU2016405486A1 (en) 2018-04-19
CA3000629C (fr) 2019-04-30
CN105736269B (zh) 2018-04-06
CA3000629A1 (fr) 2017-11-09

Similar Documents

Publication Publication Date Title
WO2017190505A1 (fr) Dispositif de génération d'énergie par différentiel de concentration de sel renforcé par une pompe à chaleur utilisant un procédé d'énergie de pression différentielle de vapeur sous une différence de température positive
CN101737282B (zh) 一种高效混合式海洋温差发电系统
CN106915789B (zh) 太阳光热水电联产系统及其工作方法
CN201301785Y (zh) 高效海洋温差能发电装置
KR101188335B1 (ko) 다단 재열 랭킨 사이클을 이용한 해양 지열 발전시스템
CN102213199A (zh) 一种利用海洋温差发电的方法及装置
CN112664418B (zh) 一种闭式海洋温差能发电系统
CN203655547U (zh) 一种低温型有机朗肯循环沙漠温差发电装置
CN202579063U (zh) Tr有机郎肯循环地热发电装置
CN103993922B (zh) 一种低温余热co2朗肯循环系统
CN103742291B (zh) 一种余热回收式分布式能源与海洋温差能耦合发电系统
CN104445481A (zh) 一种余热电水联产系统
CN108412716A (zh) 一种海洋能温差发电系统
CN106949002A (zh) 一种新型水电联产海洋能综合利用系统
CN103727000A (zh) 一种温差发电的方法及实现本方法的深井水温差发电机
CN201634527U (zh) 利用海上核电站废热的吸收式海水淡化装置
CN102491440A (zh) 一种太阳能喷射制冷式海水淡化装置
WO2022033074A1 (fr) Plateforme de production d'énergie à différence de température de l'océan et d'utilisation profonde d'eau de mer appropriée pour des îlots en mer
CN107200372B (zh) 一种海水淡化系统与方法
CN206278947U (zh) 热泵式低温高效海水淡化装置
CN111023623B (zh) 一种低温热源吸收式热泵循环系统
KR20100125830A (ko) 저온 냉매 증발 활성화에 의한 폐열 발전시스템
CN203515701U (zh) 一种低温型有机朗肯循环海洋温差能和空气能联合发电装置
CN103726975B (zh) 低品位热源驱动的两级渗透浓差做功装置及方法
CN106931681B (zh) 一种太阳能制冷系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3000629

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016405486

Country of ref document: AU

Date of ref document: 20161212

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901026

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901026

Country of ref document: EP

Kind code of ref document: A1