WO2017189898A1 - Gestion de l'interaction de sources d'énergie par l'intermédiaire d'un support adaptateur de compteur à interconnexion présentant une source/un collecteur de stockage d'énergie - Google Patents
Gestion de l'interaction de sources d'énergie par l'intermédiaire d'un support adaptateur de compteur à interconnexion présentant une source/un collecteur de stockage d'énergie Download PDFInfo
- Publication number
- WO2017189898A1 WO2017189898A1 PCT/US2017/029929 US2017029929W WO2017189898A1 WO 2017189898 A1 WO2017189898 A1 WO 2017189898A1 US 2017029929 W US2017029929 W US 2017029929W WO 2017189898 A1 WO2017189898 A1 WO 2017189898A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- power
- socket adapter
- sink
- meter socket
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R11/00—Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
- G01R11/02—Constructional details
- G01R11/04—Housings; Supporting racks; Arrangements of terminals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/061—Details of electronic electricity meters
- G01R22/065—Details of electronic electricity meters related to mechanical aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
Definitions
- This disclosure relates generally to electrical components, and more particularly, some embodiments relate to interconnection meter socket adapters for connecting various energy sources and sinks (loads) to a power system without changing an existing distribution panel.
- a distribution panel is the hub where an electrical power feed is divided into subsidiary circuits.
- distribution panels of different capacities e.g., 400 Amps and smaller
- Power carried by the electrical power feed is distributed to the loads via the distribution panel. Therefore, a contemplated increased load that results in more electrical current flowing through the distribution panel may require changing an existing distribution panel to accommodate the current change (increase).
- a user that traditionally consumes electrical power may provide electrical power into a distribution grid at certain times.
- the additional circuit capacity required to accommodate this back feed of energy may exceed the current capacity of an existing distribution panel, requiring the existing distribution panel to be upgraded to the next standard capacity.
- the need to apply energy sources and/or sinks, including energy storage, may drive the need for such work.
- a distribution panel is limited to a certain amount of electrical circuits (i.e. breaker positions). New circuits may be added if there are unused breaker positions in the existing distribution panel; otherwise, the existing distribution panel needs to be replaced by a distribution panel with a larger capacity, which will provide additional breaker positions. Even if spare breaker positions exist, the projected load calculated considering the mix of circuits and equipment already served by the panel, may dictate that an upgrade be performed.
- a system for connecting multiple electrical devices to an electrical power grid comprising an interconnection meter socket adapter having a housing enclosing a set of electrical connections.
- the interconnection meter socket adapter may be configured to be coupled to a standard distribution panel and a standard electrical meter.
- a power regulation module coupled to a connector enables a plurality of electrical sources and/or sinks to be connected to the interconnection meter socket adapter.
- the power regulation module may include one or more switches that may be disabled or enabled according to the net power consumption of the customer.
- the power regulation module may obtain data on the net power consumption (from customer loads and power sources and/or sinks connected to the power regulation module) and determine which of the plurality of connected electrical devices (sources and/or sinks) to allow to connect to the power grid.
- Figure 1 is a diagram illustrating an example installation of an interconnection meter socket adapter, in accordance with embodiments disclosed herein.
- Figure 2A illustrates an example interconnection meter socket adapter in accordance with an embodiment, in accordance with embodiments disclosed herein.
- Figure 2B illustrates an example circuit diagram of an
- interconnection meter socket adapter in a load-side configuration, in accordance with embodiments disclosed herein.
- Figure 3 A is a front view illustrating the physical electrical wiring of the interconnection meter socket adapter of Figure 2A, in accordance with embodiments disclosed herein.
- Figure 3B is a rear view illustrating the physical electrical wiring of the interconnection meter socket adapter of Figure 2A, in accordance with embodiments disclosed herein.
- Figure 4 is an one-line diagram illustrating an example installation of an interconnection meter socket adapter with a line side (source) connection at the meter, in accordance with embodiments disclosed herein.
- Figure 5 illustrates an example circuit diagram of an
- interconnection meter socket adapter with a line-side configuration, in accordance with embodiments disclosed herein.
- Figure 6 is a diagram illustrating an example installation of an interconnection meter socket adapter providing telemetered data coupled to an example of an electrical sink, in accordance with embodiments disclosed herein.
- Figure 7 is a diagram illustrating an example installation of an interconnection meter socket adapter providing telemetered data from an example of a renewable distribution resource, in accordance with embodiments disclosed herein.
- Figure 8 illustrates an example process for managing power consumption by an energy sink, along with power consumption of user loads, in accordance with embodiments disclosed herein.
- Figure 9 illustrates an example process for managing power interaction for a combined energy source/sink (e.g., a storage battery), in accordance with embodiments disclosed herein.
- a combined energy source/sink e.g., a storage battery
- Figure 10 is a diagram illustrating an example installation of an interconnection meter socket adapter coupled to an energy sink and energy source, in accordance with embodiments disclosed herein.
- Figure 11 illustrates an energy exchange system for controlling consumer-based energy consumption or production based on market supply and demand, consistent with embodiments disclosed herein.
- Figure 12 illustrates a process for determining current energy pricing based on supply and demand, consistent with embodiments disclosed herein.
- Figure 13 illustrates a process for controlling power consumption according to current price, consistent with embodiments disclosed herein.
- Figure 14 illustrates an example computing module that may be used in implementing various features of embodiments disclosed herein.
- a DC-AC inverter is needed to interface the renewable and/or distributed energy to AC energy so that the energy resource may be coupled to an electrical power system (i.e., a power grid).
- an electrical power system i.e., a power grid.
- Some existing technologies such as hard wired adapters are not allowed in many utility service areas as they do not meet service standards due to customer wiring in the utility space behind the meter.
- these hard wired adapters require a professional, qualified electrician for removal or installation, and also lack the ability to monitor bi-directional power flow in real time. Only the net amount between generation and consumption is measured, e.g., by the existing utility revenue meter.
- Interconnection meter socket adapters are provided. Various embodiments may be under utility seal and ownership. Customer (considering the distinction between customer wiring, and utility conductors) wiring (which are separate from utility conductors) behind the meter is avoided, which allows a utility company to own and maintain the connection all the way up to the customer's main disconnecting means.
- an interconnection meter socket adapter comprises a housing enclosing a set of electrical connections. The interconnection meter socket adapter may be configured to be coupled to a standard distribution panel and a standard, self-contained electrical meter.
- Various embodiments may establish connections between a distribution panel and a user such that electrical power may be delivered to the user while an electrical meter may still measure the power
- various embodiments are configured to be coupled to a DC-AC inverter, which may be coupled to various energy sources, or source/sinks.
- the energy sources are coupled to an electrical power system.
- a connector such as a flexible cable (e.g., to a length of six feet or more to allow clearance from other devices such as gas meter sets) or flexible conduit containing insulated wires may be provided. Therefore, an interconnection meter socket adapter may be installed far enough away from a gas riser thereby meeting service standards for clearance.
- Further embodiments may comprise a measurement module for monitoring the bi-directional power flow through an interconnection meter socket adapter. That is, the power consumption of the user and/or an energy sink as well as the energy generation of an energy source may be monitored.
- the real-time data may be provided by a communication module and used for electrical power system planning and/or operating purposes, and for other purposes.
- FIG. 1 is a diagram illustrating an example installation 100 of an interconnection meter socket adapter 103, in accordance with an embodiment of the disclosure.
- customer loads 109 are coupled to a power distribution grid 101.
- the interconnection meter socket adapter 103 is installed between the utility revenue meter 102 and an existing customer main breaker 104.
- the interconnection meter socket adapter 103 may allow the energy source and the energy sink to connect to the power distribution grid 101 without changing or upgrading the distribution panel.
- the interconnection meter socket adapter 103 electrically bypasses the entire breaker and buswork section of a distribution panel.
- the interconnection meter socket adapter 103 is installed electrically between existing main breaker 104 and the utility revenue meter 102.
- the interconnection meter socket adapter 103 is cylindrical.
- An interconnection meter socket adapter 103 may mimic the connector arrangement of a revenue meter on one side, and the connector arrangement of the customer main panel on the other side.
- the interconnection meter socket adapter 103 may be installed under utility seals.
- the interconnection meter socket adapter 103 comprises a buswork internal to the cylinder or other housing that couples the inverter 108 to a tap on the load side of the utility revenue meter 102, while maintaining the connectivity of existing customer loads. Continuous connectivity is thereby maintained between the power distribution grid 101 and the customer's permanent main breaker 104 and the branch circuits (loads 109) of the customer distribution panel 105.
- the interconnection meter socket adapter 103 may provide a separable connector 106.
- the connector 106 may include a flexible cable or flexible conduit containing insulated wires. The separable connector 106 couples the energy source and/or the energy sink to the power grid 101.
- a DC-AC inverter 108 is coupled to an energy source/sink (e.g., solar energy, wind energy, energy storage, fuel cells, or any other source) (not shown) and the separable connector 106, which is coupled to the interconnection meter socket adapter 103.
- an energy source/sink e.g., solar energy, wind energy, energy storage, fuel cells, or any other source
- the separable connector 106 By converting the DC energy generated by the energy source into AC energy, the DC- AC inverter 108 injects real and/or reactive power flow into the power grid 101.
- the separable connector 106 may also be coupled to an energy sink (e.g., an electric vehicle charging system, or other energy storage device), with the inverter operating as a rectifier, converting AC to DC energy.
- an interconnection meter socket adapter 103 may comprise a breaker 107, which is coupled to the separable connector 106.
- the breaker 107 may be a resettable over current or other breaker protection device.
- the breaker 107 may be sized
- an interconnection meter socket adapter 103 may comprise a measurement module and a communication module.
- the communication module may be coupled to the measurement module.
- FIG. 2A-2B illustrates an exemplary interconnection meter socket adapter as well as its circuit diagram in accordance with an embodiment.
- Figure 2A illustrates an exemplary interconnection meter socket adapter 200 in accordance with an embodiment.
- the interconnection meter socket adapter 200 may be installed physically between a meter 207 and a distribution panel 206.
- the meter 207 may be a standard electricity meter that is either analog or digital.
- the meter 207 may be installed (e.g., plugged into) the distribution panel 206 directly.
- the interconnection meter socket adapter 200 may establish physical connectivity between the distribution panel 206, the meter 207, and a customer, such that the customer (i.e. load) side of the meter 207 is tapped. During operation, the meter 207 may still measure the net energy consumption of a user.
- the meter 207 may be plugged into the interconnection meter socket adapter 200 rather than being plugged into the distribution panel 206.
- interconnection meter socket adapter 200 comprises a set of jaw blades 201-204 (shown in Figure 3B), wherein each of the jaw blades 201-204 electrically couple to a corresponding contact clip disposed on the surface of the distribution panel 206.
- the interconnection meter socket adapter 200 also comprises a set of sockets (shown in Figure 3 A), each socket contacting a corresponding clip, jaw blade or other contact of the meter 207.
- the interconnection meter socket adapter 200 is cylindrical and comprises flanges 208-209 (shown in Figure 2A).
- the flange 208 is covered by a ring, together securing the interconnection meter socket adapter 200 to the distribution panel 206, when the meter socket adapter 200 is plugged into the distribution panel 206.
- the flange 209 and the ring 210 of the meter 207 fix the meter 207 to the interconnection meter socket adapter 200.
- the interconnection meter socket adapter 200 may be utilized with "ringless" meter panels, where the meter is held in by the panel cover 206a, which is then separately secured to the remainder of the distribution panel.
- the panel cover 206a may include an embossment within the panel cover 206a, designed to secure the interconnection meter socket adapter 200 without the need for a separate securing ring (e.g., ring 210).
- the interconnection meter socket adapter 200 may include a coupler 211 to which a connector assembly 205 may be coupled.
- the coupler 211 is a receptacle to the connector assembly 205.
- the connector 205 is affixed to a flexible cable or flexible conduit of various lengths containing insulated conductors, exiting the body of the interconnection meter adapter at various positions along the exterior of the device.
- conduit/cable and connector assembly 205 is coupled to the interconnection meter socket adapter 200 and the other end is coupled to the energy source or the energy sink.
- the energy source or an energy sink is coupled to the power grid via the interconnection meter socket adapter 200 without changing or upgrading the distribution panel 206.
- FIG. 2B is an example circuit diagram of an interconnection meter socket adapter 200.
- two phase wires typically energized between 200 and 250 Volts
- the connector assembly 205 which may be coupled to an energy source or an energy sink, is coupled to the interconnection meter socket adapter 200.
- the connector assembly 205 and the user 221 are coupled in parallel, both of which may be coupled to the power grid 220.
- the meter 207 is installed to the interconnection meter socket adapter 200, the connector 205 and the user 221 are coupled to the power grid 220.
- the interconnection meter socket adapter 200 is plugged into the distribution panel 206 thereby making connections to the incoming wires from the power grid 220. In various embodiments, such connections are established by fitting a set of jaw blades of the interconnection meter socket adapter 200 into the corresponding contact clip in the distribution panel 206.
- the meter 207 is plugged into the interconnection meter socket adapter 200 thereby making
- connections to the incoming wires from a power grid 220 and the user 221 as well as the connector assembly 205 are established by fitting a set of jaw blades on meter 207 into corresponding contact clips in the interconnection meter socket adapter 200.
- the connector 205 may be a flexible cable or flexible conduit containing insulated conductors serving as an interface for an inverter output. The inverter may be disconnected in case of the need for panel or meter service.
- FIGS 3 A-3B are front and rear views, respectively, illustrating the electrical wiring of the interconnection meter socket adapter 200 in accordance with an embodiment.
- four wires enter the interconnection meter socket adapter 200 including two phase wires 240, a neutral wire 242, and a ground wire 244.
- Phase wires 240 terminate on clips 250 that connect with jaw blades 203 and 204, and busbars 270a, 270b.
- phase wires 240 are energized at 240V, but can be energized at voltages ranging from 197 to 252 V, approximately.
- Neutral wire 242 and ground wire 244 terminate on the customer's electrical panel ground bus.
- the interconnection meter socket adapter 200 can include a flexible conduit 260 that protects of the wires from weather.
- FIG 4 is a diagram illustrating an example installation of an interconnection meter socket adapter 402.
- the customer loads 109 are coupled to the power system distribution grid 101.
- the interconnection meter socket adapter 402 is electrically installed between the utility revenue meter 408 and power grid 101, in contrast to the embodiment illustrated in Figure 1 wherein the interconnection meter socket adapter is electrically installed between the utility revenue meter 102 and the customer's distribution panel main breaker 410.
- the interconnection meter socket adapter 402 may allow an energy source or an energy sink 411 to connect to the power grid 101 without changing or upgrading the distribution panel.
- the interconnection meter socket adapter 402 electrically bypasses the entire breaker and buswork section of a distribution panel.
- the interconnection meter socket adapter 402 may be cylindrical and may mechanically couple to the distribution panel on one side, and to the utility revenue meter on the other side.
- An interconnection meter socket adapter 402 may mimic the connector arrangement of a revenue meter on one side, and the connector arrangement of the customer main panel on the other side, and may be installed under utility seals.
- the interconnection meter socket adapter 402 includes a set of jaw blades configured to make contact with the distribution panel, such that the interconnection meter socket adapter may be easily coupled to contact clips in the distribution panel, and may similarly couple to the utility revenue meter 408.
- the interconnection meter socket adapter 402 may also incorporate an electrical coupler configured to accept a connector.
- the electrical coupler for example, may mechanically attach to a side collar of the interconnection meter socket adapter's housing, and in the present embodiment, may also detachably couple to a connector.
- the electrical coupler when attached to the connector, also electrically couples the connector to the line side of the interconnection meter socket adapter 402.
- Interconnection meter socket adapter 402 may also include a breaker coupled between the electrical coupler and the grid side of the meter.
- the connector may, for example, include a cable harness that may couple to an energy source or an energy sink.
- an energy source may be a renewable energy source, such as solar electric, wind or fuel cell energy production system, or an energy storage system, that couples to the connector through a DC-AC inverter or inverter/rectifier.
- the energy source may also be a conventional generator, or other non-renewable energy source.
- the interconnection meter socket adapter 402 may further include a measurement module configured to measure power flow through the interconnection meter socket adapter.
- the measurement module may include a voltage and/or current meter, and/or other electrical measurement devices.
- the measurement module may also include a processor and a memory module to store voltage, current, and other measurements, and to generate a signal if power flow reaches a
- the measurement module may further include a communications module that may transmit the signal to a receiver unit.
- the communications module may be logically coupled, via a wire or other harness, to the utility revenue meter 408.
- the communications module may transmit a wireless signal via cellular, Wi-Fi, Bluetooth®, Zigbee, or other wireless communications protocol to a remote receiver unit, and ultimately a computer server, workstation, tablet, laptop, handheld or other device.
- Figure 5 illustrates an example circuit diagram of an
- interconnection meter socket adapter with a line-side configuration.
- two phase wires (typically energized at 240 volts) couple the power grid 520 to the user 521 via a distribution service panel 506.
- the connector assembly 505 which may be coupled to an energy source or an energy sink, is coupled to the interconnection meter socket adapter 500.
- the connector 505 couples to the power grid side (i.e., the line side) of the
- interconnection meter socket adapter 500 in contrast to the embodiment illustrated in Figure 2B in which the connector 205 couples to the user (load) side of
- interconnection meter socket adapter 200 As illustrated in Figure 5, a set of electrical connections are disposed within the housing of interconnection meter socket adapter 500, wherein an input side of the set of electrical connections electrically couples an input side of the distribution service panel 506 to a utility (grid) side of the utility revenue meter 507 in parallel, and an output side of the set of electrical connections electrically couples an output side of the distribution service panel 506 to a customer side of the utility revenue meter 507 in parallel.
- interconnection meter socket adapter 500 is plugged into the distribution panel 506 thereby making connections to the incoming wires from the power grid 520.
- such connections are established by fitting a set of jaw blades of the interconnection meter socket adapter 500 into the corresponding contact clips in the distribution service panel 506.
- the utility revenue meter 507 is plugged into the interconnection meter socket adapter 500 thereby making connections to the incoming wires from a power grid 520 and the user 521 as well as the connector 505.
- such connections are established by fitting a set of jaw blades on utility revenue meter 507 into
- the connector assembly 505 may include a flexible cable or flexible conduit containing insulated conductors serving as an interface for a renewable energy source (e.g., a solar inverter, or other renewable energy source as disclosed herein), or energy sink (i.e., energy storage or other).
- a renewable energy source e.g., a solar inverter, or other renewable energy source as disclosed herein
- energy sink i.e., energy storage or other
- FIG. 6 is a diagram illustrating an example installation of an interconnection meter socket adapter for an electrical sink (e.g., Electric Vehicle Supply Equipment, or EVSE).
- the customer loads 109 are coupled to the power system distribution grid 101.
- the interconnection meter socket adapter 602 is installed between the utility revenue meter 608 and the customer loads 109, for example, by way of a distribution panel (not shown).
- the interconnection meter socket adapter 602 may include a breaker 604, and may couple through a power regulation module 606 to an energy sink 611.
- energy sink 611 may be EVSE, a stationary "whole house” battery, or other energy sink (load) as would be understood in the art.
- the power regulation module 606 may be configured to regulate power flow to the energy sink 611.
- power regulation module 606 may include a switch to disconnect power to the energy sink 611.
- power regulation module 606 may incorporate a limiter, or other power regulation means as known in the art, to selectively reduce or increase (modulate) power flow to energy sink 611.
- Power regulation module 606 may communicate with utility revenue meter 608 via a wireless or wired communications link 612.
- a similar power regulation module 406 may be included in the configuration discussed with respect to Figure 4
- power regulation module 606 may include a measurement module configured to measure net power flow through the
- the measurement module may be a voltage and current meter, or other power measurement device as known in the art.
- the measurement module may also include a processor and a memory to store power measurements, and store a predetermined threshold value (e.g., based on a maximum net power flow based on the rating of the customer's main panel).
- a predetermined threshold value e.g., based on a maximum net power flow based on the rating of the customer's main panel.
- the threshold may be between 70% and 90% of a main panel rating.
- the measurement module may further incorporate a
- the measurement module may transmit a suspend signal through the communications module.
- the suspend signal may then be received by the power regulation module 606 to reduce or suspend power flow to energy sink 611.
- power regulation module 606 may open the connection between the interconnection meter socket adapter 602 and the energy sink 611.
- the measurement module may transmit a resume signal through the communications module.
- the power regulation module 606 may then receive the resume power flow signal to the energy sink 611 (for example, by restoring the connection).
- the interconnection meter socket adapter 602 may avoid exceeding allowable NEC equipment ratings when operating electrical appliances at the same time as, for example, charging an electric vehicle battery while also running air conditioning or one or more other major appliances.
- FIG. 7 is a diagram illustrating an example installation of an interconnection meter socket adapter providing telemetered data from renewable distribution resources.
- the customer loads 109 are coupled to the power system distribution grid 101.
- the interconnection meter socket adapter 702 is electrically installed between the utility revenue meter 708 and the customer loads 109, for example, by way of a distribution panel (not shown).
- the interconnection meter socket adapter 702 may include a breaker 704, and may couple through a power regulation module 706 to a net-metering measurement module 711, which may in turn, couple to an energy source.
- the energy source may be a renewable energy source, such as a solar panel (or set of panels) and inverter(s), a net-metering measurement module electrically coupled to the connector and configured to measure power produced by the renewable energy power source.
- Power regulation module 706 may communicate with utility revenue meter 708 via a wireless or wired communications link 712.
- the net-metering measurement module may include a
- the communications module configured to transmit a data set indicating a measurement of power produced by the renewable energy power source to a receiving unit.
- the receiving unit may be installed at the utility company to facilitate measurements and energy production (generation) statistics that may be used for purchased power agreement transactions and for other purposes.
- the received measurement data may be used for resource planning, or to alert customers of power generation performance issues involving the customer's renewable energy source.
- the communication module may include a cellular, Wi-Fi, Zigbee, or Bluetooth® transmitter, or other wireless technology as known in the art.
- the power regulation module in various embodiments may be configured to manage power consumption by energy sinks.
- Figure 8 illustrates an example method of managing power consumption by an energy sink (e.g., an electric vehicle or stationary battery).
- the power consumption by user loads is measured.
- the power consumption of the user loads may be measured by the interconnection meter socket adapter, and the information communicated to the power regulation module.
- the power regulation module may obtain the power consumption of each smart load over a wired or wireless communication link.
- the power consumption of an energy sink connected to the power regulation module is measured.
- the energy sink may be an electric vehicle connected to the power regulation module.
- the power regulation module may include a measurement module configured to measure power drawn by the connected energy sink.
- a threshold power consumption value is determined.
- net power consumption at the user's location should stay below 80% of the main panel rating.
- the main panel rating may be obtained from the meter, and a threshold power consumption value may be determined.
- the power regulation module may include a memory storing a predetermined threshold based on the main panel rating. The threshold may be between 70% and 90% of a main panel rating in various embodiments.
- the overall net power consumption is compared against the threshold. If the threshold is not exceeded, no action need be taken to reduce the power consumption by the user. In such cases, the method will return to 810 and continue monitoring the overall power consumption by the user. Where the threshold is exceeded, the overall power consumption is reduced at 850. In various embodiments, the threshold is not exceeded, no action need be taken to reduce the power consumption by the user. In such cases, the method will return to 810 and continue monitoring the overall power consumption by the user. Where the threshold is exceeded, the overall power consumption is reduced at 850. In various aspects of the threshold.
- the overall power consumption may be reduced by disconnecting the energy sink coupled through the power regulation module.
- a limiter or other power regulation component may be used by the power regulation module to modulate or throttle the power consumption of the energy sink.
- the power regulation module may send a power reduction signal to the smart loads to reduce the overall power consumption.
- a device attached to the power regulation module may be both an energy source and an energy sink, depending on the situation.
- Such an example device is a storage battery, which may both store energy derived from the power grid, and also discharge the stored energy when necessary.
- the power regulation module may be configured to manage when a battery should be in a charging mode, and when the stored energy should be distributed.
- Figure 9 illustrates an example method of managing power interaction with a combined energy source/sink in accordance with embodiments of the technology disclosed herein.
- the current energy storage state of the storage battery is identified.
- the power regulation module may use an energy or power measurement device to measure and track the amount of energy stored in the storage battery in various embodiments.
- the power regulation module may determine at 930 whether a threshold of total power consumption is exceeded by charging further. The determination of whether a threshold is exceeded may be made similar to the method discussed with respect to Figure 8. If the threshold has not been exceeded, the power regulation module may couple the storage battery to the power grid for charging at 940. If the threshold has been exceeded, the power regulation module may disconnect the storage battery at 950, so that the storage battery does not overload the distribution panel.
- a battery may be coordinated with an energy sink and net consumption to allow power flow at higher values to the energy sink, while keeping net power flow below the pre-determined value.
- the power regulation module may determine whether to discharge the storage battery at 960. This determination may be made in accordance with the energy exchange method discussed with respect to Figures 11, 12, and 13.
- the power management may vary based on the size of the distribution panel in which the interconnection meter socket adapter is installed.
- the interconnection meter socket adapter is applicable to any sized, non-current transformer (i.e., self-contained meter), distribution panel.
- the interconnection meter socket adapter may be implemented in a distribution panel with ratings of 400 Amps or less.
- the interconnection meter socket adapter is not applicable, as all of the current drawn by the user does not flow through the meter.
- the power regulation module may be configured to enable multiple energy sources, energy sinks, or a combination thereof to be physically connected to the power regulation module, but only selectively connected to or servicing the power grid.
- Figure 10 is a diagram illustrating an example installation of an interconnection meter socket adapter with a power regulation module connecting multiple energy sources and sinks, in accordance with embodiments of the present disclosure.
- a modified power regulation module 1030 may include multiple connections enabling one or more energy sources, sinks, or a combination of both to be coupled to the power regulation module 1030.
- a renewable energy source and an electrical sink are coupled to the power regulation module 1030.
- each connection in the power regulation module 1030 may have a disconnect or other means disposed in the circuitry from the connected energy source or sink to the interconnect socket adapter 1002.
- the switch may be an automatic transfer switch.
- the power regulation module 1030 may include a net-metering measurement module, similar to the net-metering measurement module 711 discussed with respect to Figure 7.
- power regulation module 1030 may include a measurement module and a communication module, similar to the modules discussed above with respect to Figure 6.
- the measurement module e.g., voltage meter, current meter, or other known power measurement device
- the measurement module may measure the amount of power consumption through the power regulation module 1030 and, where a net-metering measurement module is also included, the net power consumption.
- the power regulation module 1030 may communicate with utility revenue meter 1008 via a wireless or wired communications link 1012, such that the power regulation module 1030 may know the net amount of power being consumed by the other user loads 1009. With this information, the power regulation module 1030 may determine how to manage the connected energy sources and/or sinks.
- the power regulation module 1030 may determine to disconnect each of the energy sources and/or sinks where the power regulation module 1030 determines that the total power consumption through the distribution panel (not shown) is over 80% of the rated limit of the distribution panel. For example, for an interconnect meter socket adapter 1002 installed in a 200 Amp-rated distribution panel, the power regulation module 1030 may determine to disconnect all energy sinks when the power demand rises above 160 Amps. In this way, the power regulation module 1030 may avoid a user overloading the distribution panel by drawing too much power from the power grid 1001. In various embodiments, instead of simply disconnecting energy sources or sinks, the power regulation module 1030 may modulate the power flow to ensure that an overload situation is avoided.
- a user's electric vehicle may be charged at full capacity without overloading the distribution panel, by having the power regulation module act to supply all or some of that power demand by releasing energy from a stationary battery on the premise.
- Such a scheme would provide more rapid EV charging while avoiding the need to upgrade the distribution panel.
- some or all of the user loads 1009 may be so-called “smart loads", having measurement, processing and communication components. Where such smart loads are included, the power regulation module 1030 may be further configured to communicate with the smart load subset of the user loads 1009. In this way, the power regulation module 1030 may obtain additional information about power consumption by user loads relevant for determining how to manage the connection of one or more sources or sinks through the power regulation module 1030. Power regulation module 1030 may communicate with such smart loads over wired or wireless communication link(s) 1012, or another wired or wireless communications link. In various embodiments, the power regulation module 1030 may be able to send a power consumption reduction signal to the smart loads to further ensure that the distribution panel is not overloaded. Further, the power regulation module 1030 may send a dispatch signal to the renewable energy source, to adjust the reactive power flow to help limit net current, while avoiding the need to reduce real power flow.
- FIG. 11 illustrates an energy exchange system for controlling consumer-based energy consumption or production based on market supply and demand.
- an energy exchange server (EXS) 1110 may communicate, via Internet, wireless, telephone, or other network data communication channels known in the art, with real-time energy pricing database 1118, a plurality of consumer service meters 1142, and one or more energy exchange controllers 1160.
- the EXS 1110 may include multiple components configured to evaluate energy market forces, such as supply and demand, to determine market equilibrium pricing thresholds.
- EXS 1110 may include a demand engine 1 112 configured to receive data from consumer service (utility revenue) meters 1142 and 1152 (in some cases, via an energy exchange controller 1160), or from other data metering locations on power grid 1120, to determine average aggregate electricity demand over a present time frame.
- Demand engine 1112 may also receive environmental parameters, such as current temperature, forecast temperature, forecast weather, time of day, or other environmental parameters that may affect consumer demand to estimate fluctuations in demand within the present time period, or in future time periods.
- demand engine 1112 may use empirical historical energy demand data stored in the real-time energy pricing database 1118, or available from other sources.
- EXS 1110 may also include a supply engine 1114 configured to receive data from consumer service meters 1142 and 1152 (in some cases, via an energy exchange controller 1160), from other data metering locations on power grid 1120, and from energy production facilities, to determine average aggregate electricity supply over the present time frame.
- Supply engine 1112 may also receive environmental parameters, such as time of day, weather conditions (i.e., that may affect solar or wind power production), maintenance and availability of energy production facilities, fuel availability and pricing, or other environmental parameters that may affect energy supply, and to estimate fluctuations in supply within the present time period, or in future time periods.
- supply engine 1112 may use empirical historical energy supply data stored in real-time energy pricing database 1118, or available from other sources.
- EXS 1110 may also include a pricing engine 1116 configured to calculate a current energy price for the present time period.
- pricing engine 1116 may receive a starting energy price from real-time energy pricing database 1118, an energy demand data set from demand engine 1112, and an energy supply data set from energy supply engine 1114. Pricing engine 1116 may then calculate a current energy price as a function of the starting energy price, energy demand data set, and energy supply data set by calculating an equilibrium
- EXS 1110 may further be configured to send the current energy price to energy exchange controller 1160.
- EXS 1110 may use a current energy price entered into the system manually or collected from public data sources, such as public markets and financial exchanges. In such examples, EXS 1110 would not require additional components (e.g., demand engine 1112, supply engine 1114, or pricing engine 1116) to determine the current energy price, from other data metering locations on power grid 1120, and from energy production facilities, to determine average aggregate electricity supply over the present time frame.
- Supply engine 1112 may also receive environmental parameters, such as time of day, weather conditions (i.e., that may affect solar or wind power production), maintenance and availability of energy production facilities, fuel availability and pricing, or other environmental parameters that may affect energy supply, and to estimate fluctuations in supply within the present time period, or in future time periods.
- supply engine 1112 may use empirical historical energy supply data stored in real-time energy pricing database 1118, or available from other sources.
- demand engine 1112, supply engine 1114, and pricing engine 1116 may include a computer processor and a non-transitory computer readable media with software embedded thereon, wherein the software is configured to perform the functions of the demand engine, supply engine, or pricing engine, as disclosed herein.
- consumers may receive, and in some cases, contribute energy to power grid 1120. For example, some consumers will receive energy through service meters 1142 and service panels 1144 to supply energy to loads 1146.
- load 1146 may include standard household appliances, lights, electric vehicle batteries, stationary batteries, or other energy sinks as known in the art.
- Some consumers may have equipment configured to interact with the EXS. For example, some consumers may receive power through meter 1152 and service panel 1154, wherein meter 1152 is configured to communicate with an energy exchange controller 1160.
- Energy exchange controller 1160 may include a computer processor and a non-transitory computer readable media with energy exchange control software embedded thereon, the energy exchange control software configured to receive a current energy price from EXS 1110, threshold parameters from user interface 1170, or from another data source, and regulate local power sources and sinks to manage energy exchange with power grid 1120.
- energy exchange controller 1160 may alert a user through user interface 1170, or send power consumption reduction signals to certain smart loads 1158, to reduce overall power consumption and allow power produced by the consumer via power source 1162 (e.g., solar power, wind power, geothermal power, generator, etc.) to flow out onto power grid 1120.
- power source 1162 e.g., solar power, wind power, geothermal power, generator, etc.
- the consumer may be compensated at the current energy price for each unit of energy and/or power sold back to the power grid 1120.
- smart loads 1158 may include smart appliances capable of turning off or reducing power consumption in response to a power consumption reduction signal from the energy exchange controller 1160.
- the power consumption reduction signal may be transmitted via a LAN, wireless, cellular, Ethernet-over-power, or other known communication channel.
- smart loads 1158 may include a smart power adapter located between the service panel 1154 and an appliance, or other energy load.
- a smart power adapter may plug into a wall outlet, and include a receptacle (or multiple receptacles) to accept connections from an appliance or appliances.
- the smart power adapter may turn power on or off, or otherwise regulate power, in response to power consumption reduction signals sent by energy exchange controller 1160.
- an energy storage device may also be included on a consumer power network.
- the energy storage device e.g., a stationary battery, an electric vehicle battery, or other energy storage system
- the energy storage device may be configured to respond to signals from the energy exchange controller 1160 to either enter a sink mode when energy prices are lower (e.g., to store energy and recharge), and enter a source mode when energy prices are higher (e.g., to sell power back out onto the power grid 1120, or to supplement local power demand to avoid purchasing power from power grid 1120 when prices are higher, or to avoid overloading a distribution panel).
- service panel 1154 includes an interconnect socket adapter as disclosed herein, and the interconnect socket adapter couples to disconnect 1164, which may be coupled to energy source 1162, energy storage 1166, or both.
- Figure 12 illustrates a process for determining current energy pricing based on supply and demand.
- a process for determining current energy pricing may include receiving a starting energy price at step 1205.
- the starting energy price may be received from a real-time energy pricing database, a user input, or from a public data source.
- the process may further include receiving current energy capacity (i.e., supply) and current energy load (e.g., demand) at steps 1210 and 1215 respectively.
- the current energy capacity may be an average aggregate energy supply over a present time period across a local region of the power grid
- the demand may be an average aggregate energy demand over a present time period across a plurality of consumers within the local region of the power grid.
- the process may further include receiving a set of environmental variables at step 1220.
- environmental parameters may represent the time-of-day, season, current weather, forecast weather, current market conditions or prices for fuels such as natural gas, coal, oil, or nuclear, power plant maintenance or availability data, or other parameters that could affect supply or demand.
- a process for determining current energy pricing may further include calculating an estimated near term energy supply and demand delta as a function of supply, demand, and environmental parameters at step 1225.
- the process may further include updating a current energy price in the real-time energy pricing database (1118 in Fig. 11) as a function of the near term energy supply and demand delta and transmitting the current energy price to one or more energy exchange controllers at steps 1230 and 1235, respectively.
- the process may further include estimating future energy prices based on the current energy price and environmental parameters or calculated pricing trends.
- Figure 13 illustrates a process for controlling power consumption according to current price.
- a process for controlling power consumption may include receiving the current energy price at step 1305.
- the current energy price may be calculated on an EXS according to embodiments disclosed herein, and may be set for a present time period.
- the process may further include receiving further estimated energy prices.
- a process for controlling power consumption may further include receiving an energy threshold price at step 1310.
- the energy threshold price may be manually entered by a user through a user interface, may be predefined in an energy exchange controller, or may be transmitted from a central location, such as the EXS.
- the process may then include evaluating, by the energy exchange controller, whether the current energy price exceeds the energy price threshold at step 1315. If the threshold is not exceeded, the process may repeat, either continuously, or at predefined intervals. However, if the threshold is exceeded, the process may include transmitting an energy consumption reduction signal within a local consumer power network at step 1320. For example, the energy exchange controller may transmit the demand reduction signal to one or more smart loads.
- the demand reduction signal may be sent to a user interface to alert a user to turn off appliances or generally reduce power consumption.
- the demand reduction signal may also be sent to an energy storage device to change the mode of the energy storage device to a source mode.
- a result of any of these reductions in demand or increases in production on the consumer's local power network will either be to reduce overall power demand, and thus reduce the consumer's energy costs, or may also put the consumer's production (i.e., as generated from renewable energy sources, generators, or from an energy storage device) back onto the power grid in return for compensation to the consumer at the current, relatively high energy unit price.
- a process for controlling power consumption may further include evaluating whether the current energy price has fallen below the energy price threshold at step 1325. In some cases, this may be a separately defined energy price threshold than the threshold discussed with respect to steps 1315 and 1320. If the current energy price falls below the energy price threshold at step 1325, then the process may include transmitting a demand restoration signal at step 1330.
- the demand restoration signal may be sent to a user interface to alert the user that appliances may be turned back on, EV charged, etc.
- the signal may also be sent to smart loads to re-enable demand automatically.
- the signal may also be sent to an energy storage device to configure the energy storage device to sink (recharge) mode such that the device will store energy collected from the power grid at relatively low prices, for later use.
- module might describe a given unit of functionality that can be performed in accordance with one or more embodiments of the technology disclosed herein.
- a module might be implemented utilizing any form of hardware, software, or a combination thereof.
- processors, controllers, ASICs, PLAs, PALs, CPLDs, FPGAs, logical components, software routines or other mechanisms might be implemented to make up a module.
- the various modules described herein might be implemented as discrete modules or the functions and features described can be shared in part or in total among one or more modules.
- computing module 1400 may represent, for example, computing or processing capabilities found within desktop, laptop and notebook computers; hand-held computing devices (PDA's, smart phones, cell phones, palmtops, etc.); mainframes, supercomputers, workstations or servers; or any other type of special-purpose or general-purpose computing devices as may be desirable or appropriate for a given application or environment.
- Computing module 1400 might also represent computing capabilities embedded within or otherwise available to a given device.
- a computing module might be found in other electronic devices such as, for example, digital cameras, navigation systems, cellular telephones, portable computing devices, modems, routers, WAPs, terminals and other electronic devices that might include some form of processing capability.
- Computing module 1400 might include, for example, one or more processors, controllers, control modules, or other processing devices, such as a processor 1404.
- Processor 1404 might be implemented using a general-purpose or special-purpose processing engine such as, for example, a microprocessor, controller, or other control logic.
- processor 1404 is connected to a data bus 1402, although any communication medium can be used to facilitate interaction with other components of computing module 1400 or to communicate externally.
- Computing module 1400 might also include one or more memory modules, simply referred to herein as main memory 1408. For example, preferably random access memory (RAM) or other dynamic memory, might be used for storing information and instructions to be executed by processor 1404. Main memory 1408 might also be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 1404. Computing module 1400 might likewise include a read only memory (“ROM”) or other static storage device coupled to bus 1402 for storing static information and instructions for processor 1404.
- ROM read only memory
- the computing module 1400 might also include one or more various forms of information storage mechanism 1410, which might include, for example, a media drive 1412 and a storage unit interface 1420.
- the media drive 1412 might include a drive or other mechanism to support fixed or removable storage media 1414.
- a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a CD or DVD drive (R or RW), or other removable or fixed media drive might be provided.
- storage media 1414 might include, for example, a hard disk, a floppy disk, magnetic tape, cartridge, optical disk, a CD or DVD, or other fixed or removable medium that is read by, written to or accessed by media drive 1412.
- the storage media 1414 can include a computer usable storage medium having stored therein computer software or data.
- information storage mechanism 1410 might include other similar instrumentalities for allowing computer programs or other instructions or data to be loaded into computing module 1400.
- Such instrumentalities might include, for example, a fixed or removable storage unit 1422 and an interface 1420.
- Examples of such storage units 1422 and interfaces 1420 can include a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, a PCMCIA slot and card, and other fixed or removable storage units 1422 and interfaces 1420 that allow software and data to be transferred from the storage unit 1422 to computing module 1400.
- Computing module 1400 might also include a communications interface 1424.
- Communications interface 1424 might be used to allow software and data to be transferred between computing module 1400 and external devices.
- Examples of communications interface 1424 might include a modem or softmodem, a network interface (such as an Ethernet, network interface card, WiMedia, IEEE 802. XX or other interface), a communications port (such as for example, a USB port, IR port, RS232 port Bluetooth® interface, or other port), or other communications interface.
- Software and data transferred via communications interface 1424 might typically be carried on signals, which can be electronic, electromagnetic (which includes optical) or other signals capable of being exchanged by a given communications interface 1424. These signals might be provided to communications interface 1424 via a channel 1428.
- This channel 1428 might carry signals and might be implemented using a wired or wireless communication medium.
- Some examples of a channel might include a phone line, a cellular link, an RF link, an optical link, a network interface, a local or wide area network, and other wired or wireless communications channels.
- computer program medium and “computer usable medium” are used to generally refer to media such as, for example, memory 1408, storage unit 1420, media 1414, and channel 1428.
- These and other various forms of computer program media or computer usable media may be involved in carrying one or more sequences of one or more instructions to a processing device for execution.
- Such instructions embodied on the medium are generally referred to as “computer program code” or a “computer program product” (which may be grouped in the form of computer programs or other groupings). When executed, such instructions might enable the computing module 1400 to perform features or functions of the disclosed technology as discussed herein.
- module does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. Indeed, any or all of the various components of a module, whether control logic or other components, can be combined in a single package or separately maintained and can further be distributed in multiple groupings or packages or across multiple locations.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
La présente invention concerne des supports adaptateurs de compteur à interconnexion. Un support adaptateur de compteur à interconnexion comprend un boîtier qui renferme un ensemble de connexions électriques. Le support adaptateur de compteur à interconnexion peut être conçu pour être couplé à un panneau de distribution standard et à un compteur électrique standard, établissant ainsi des connexions entre un panneau de distribution et un utilisateur de telle sorte que de l'énergie électrique puisse être fournie à l'utilisateur alors qu'un compteur électrique mesure la consommation d'énergie électrique de l'utilisateur. Un module de régulation de puissance est disposé entre le support adaptateur de compteur à interconnexion, et conçu pour connecter sélectivement une ou plusieurs sources d'énergie ou un ou plusieurs collecteurs d'énergie.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/140,393 | 2016-04-27 | ||
US15/140,393 US10132838B2 (en) | 2013-08-28 | 2016-04-27 | Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017189898A1 true WO2017189898A1 (fr) | 2017-11-02 |
Family
ID=60160118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/029929 WO2017189898A1 (fr) | 2016-04-27 | 2017-04-27 | Gestion de l'interaction de sources d'énergie par l'intermédiaire d'un support adaptateur de compteur à interconnexion présentant une source/un collecteur de stockage d'énergie |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017189898A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120097045A1 (en) * | 2009-06-22 | 2012-04-26 | Panasonic Corporation | Cooking device, control method and programme for same |
US20120191387A1 (en) * | 2011-01-25 | 2012-07-26 | Kabushiki Kaisha Toshiba | Information processing device, power consumption calculating system and program product |
US20140127935A1 (en) * | 2012-11-06 | 2014-05-08 | Solarcity Corporation | Supply side backfeed meter socket adapter |
US20140312841A1 (en) * | 2011-11-22 | 2014-10-23 | Panasonic Corporation | Electricity management device, electricity management program, and electricity distribution system |
-
2017
- 2017-04-27 WO PCT/US2017/029929 patent/WO2017189898A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120097045A1 (en) * | 2009-06-22 | 2012-04-26 | Panasonic Corporation | Cooking device, control method and programme for same |
US20120191387A1 (en) * | 2011-01-25 | 2012-07-26 | Kabushiki Kaisha Toshiba | Information processing device, power consumption calculating system and program product |
US20140312841A1 (en) * | 2011-11-22 | 2014-10-23 | Panasonic Corporation | Electricity management device, electricity management program, and electricity distribution system |
US20140127935A1 (en) * | 2012-11-06 | 2014-05-08 | Solarcity Corporation | Supply side backfeed meter socket adapter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11625734B2 (en) | Managing grid interaction with interconnect socket adapter configured for an energy storage device | |
US11086346B2 (en) | Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink | |
US10132838B2 (en) | Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink | |
US9772347B2 (en) | Interconnection meter socket adapters | |
US20230179015A1 (en) | Systems and methods for managing electrical loads | |
US11264807B2 (en) | Renewable energy metering system | |
US20150061644A1 (en) | Interconnection meter socket adapters | |
US11415598B2 (en) | Methods and systems for connecting and metering distributed energy resource devices | |
TW201320524A (zh) | 多用途功率管理系統及方法 | |
US11506693B2 (en) | Meter and socket for use with a distributed energy resource device | |
CN113439037B (zh) | 带电源管理的电动汽车充电站 | |
KR101918625B1 (ko) | 에너지 저장 장치를 이용하여 복수의 수용가를 대상으로 전력 서비스를 제공하는 시스템 및 방법 | |
WO2017011339A1 (fr) | Adaptateurs de socle de compteur d'interconnexion | |
WO2017189898A1 (fr) | Gestion de l'interaction de sources d'énergie par l'intermédiaire d'un support adaptateur de compteur à interconnexion présentant une source/un collecteur de stockage d'énergie | |
WO2017189882A1 (fr) | Gestion d'interaction de source d'alimentation par l'intermédiaire d'un support adaptateur à interconnexion conçu avec un collecteur de véhicule électrique | |
WO2017151819A1 (fr) | Support adaptateur à interconnexion pour adapter une ou plusieurs sources électriques et un ou plusieurs collecteurs électriques | |
AU2020206320B2 (en) | Methods and systems for connecting and metering distributed energy resource devices | |
JP7320795B2 (ja) | 配電システム及び設置方法 | |
WO2024220632A1 (fr) | Procédés et appareil destinés à être utilisés avec des véhicules électriques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17790461 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17790461 Country of ref document: EP Kind code of ref document: A1 |