WO2017188955A1 - Digital display devices - Google Patents

Digital display devices Download PDF

Info

Publication number
WO2017188955A1
WO2017188955A1 PCT/US2016/029733 US2016029733W WO2017188955A1 WO 2017188955 A1 WO2017188955 A1 WO 2017188955A1 US 2016029733 W US2016029733 W US 2016029733W WO 2017188955 A1 WO2017188955 A1 WO 2017188955A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
super
masks
eye pixel
display device
Prior art date
Application number
PCT/US2016/029733
Other languages
French (fr)
Inventor
Keith A. Fish
John M. Fujii
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to US16/097,436 priority Critical patent/US10663755B2/en
Priority to PCT/US2016/029733 priority patent/WO2017188955A1/en
Publication of WO2017188955A1 publication Critical patent/WO2017188955A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/23Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using wavelength separation, e.g. using anaglyph techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays

Definitions

  • LCD Liquid Crystal Display
  • LED Light Emitting Diode
  • Such display devices present two dimensional (2D) information to viewers.
  • Some techniques to enable a 2D display device to display 3D information utilize a polarization mask and selectively display certain pixels to right eye of the viewer and other pixels to left eye of the viewer.
  • FIG. 1 illustrates a digital display device implementing a filtration mask, according to an example implementation of the present subject matter.
  • FIG. 2 illustrates an example structure of the filtration mask, according to an example implementation of the present subject matter.
  • FIG. 3 illustrates a super mask, according to an example implementation of the present subject matter.
  • FIG. 4 illustrates a filtration mask operated in a reduced resolution mode, according to an example implementation of the present subject matter.
  • Fig. 5 illustrates a filtration mask operated in a pseudo-interleaved mode, according to an example implementation of the present subject matter.
  • Fig. 6 illustrates a method of fabricating the filtration mask, according to an example implementation of the present subject matter.
  • the present subject matter relates to techniques of providing three dimensional (3D) view of an image for the viewers of a digital display device.
  • polarization masks in digital display devices capable of displaying 2D images to create binocular disparity and generate a stereoscopic visual effect.
  • the polarization mask polarizes light from the pixels of the digital display device, which when passed through polarized lenses can be viewed by one eye of the viewer differently than the other eye, such that two slightly differently positioned images are seen by the two eyes.
  • a simultaneous view of two differently positioned images by the viewer cause generation of the stereoscopic visual effect, which enables the viewer to experience 3D effect while viewing the digital display device.
  • the polarization masks generally vary the visibility of pixels for the left and right eye in either the horizontal direction or, in the vertical direction across the display. That is, the view of left and right eye is varied by either providing different visibility of row pixels to the left and right eye (horizontal direction), or by providing different visibility of column pixels to the left and right eye (Vertical direction).
  • the use of such polarization masks cause the left and the right eye to have squished aspect ratio, such that either the horizontal or the vertical aspect ratio is reduced. Further, the use of such techniques also cause vision fatigue and ghosting effects while displaying images in 3D.
  • the techniques of the present subject matter allow a digital display device, capable of displaying 2 D images, to display the images in 3D by utilization of a filtration mask.
  • the filtration mask may be arranged over a digital display device, such that the light being emitted by the pixels of the digital display device is filtered by the filtration mask.
  • the filtration mask may be formed by a combination of multiple super masks, arranged as per the aspect ratio of the digital display device.
  • each super mask may include multiple left eye pixel masks and multiple right eye pixel masks arranged in a predefined pattern.
  • each left eye pixel mask may polarize light such that it is visible to left eye of the viewer and each right eye pixel mask may polarize light such that it is visible to right eye of the viewer.
  • the filtration mask of the present subject matter can be understood as a combination of different super masks with different predefined pattern arrangements of the multiple right eye pixel masks and multiple left eye pixel masks.
  • the configuration of the different super masks and the left eye pixel masks and the right eye pixel masks may vary depending upon various implementations of the present subject matter to provide enhanced stereoscopic visual effect to the viewer.
  • some of the super masks within the filtration mask may include a first predefined pattern of arrangement of the right eye pixel masks and the left eye pixel masks, while other super masks within the filtration mask may include a second predefined pattern of the right eye pixel masks and the left eye pixel masks.
  • the super masks with first predefined pattern and the super mask with the second predefined pattern may be randomly arranged to form the filtration mask. Accordingly, it would be noted that the different super masks, arranged within the filtration mask, may include the left eye pixel masks and the right eye pixel masks arranged in different predefined patterns.
  • the arrangement of the super masks within the filtration mask may be such that at least two super masks within the filtration mask have the left eye pixel masks and the right eye pixel masks arranged in different predefined patterns.
  • the multiple super masks within the filtration mask may be arranged such that repeated pixels of either the left eye or the right eye are minimized in any direction.
  • the filtration mask including a configuration of the super masks may be arranged over a digital display device.
  • the digital display device may receive digital signals to display an image, and may operate the pixels of the display to project the image to the viewers. It would be noted that the pixels of the display may be operated based upon the configuration of the filtration mask being used. That is, the pixels of the display may be operated such that left eye information is displayed by pixels disposed with left eye pixel masks and the right eye right information is displayed by pixels disposed with eye pixel masks.
  • the example implementations of the described techniques not merely provide 3D view of an image to the viewers, but also provides a 3D view at unchanged aspect ratio. Further, the implementation of the described filtration mask may also provide 3D display functionality to existing 2D digital display devices at low costs.
  • Fig. 1 illustrates a digital display device 102, implementing a filtration mask 104, according to an example of the present subject matter.
  • the filtration mask 104 may include multiple super masks 106 arranged as per the aspect ratio of the digital display device 102.
  • the super mask 106 may be arranged in a manner such that the filtration mask 104, thus formed, can be arranged over the digital display device 102.
  • the digital display device 102 may include any digital display, such as Electroluminescent display (ELD), Electronic paper display, Gyricon display, Light emitting diode display (LED), Liquid-crystal display (LCD), Plasma display panel (PDP), Organic light-emitting diode (OLED) display, active- matrix OLED (AMOLED), Organic light-emitting transistor (OLET) display, Surface-conduction electron-emitter display (SED), Quantum dot display, MEMS display, Ferro liquid crystal display (FLCD), and Telescopic pixel display (TPD).
  • ELD Electroluminescent display
  • LED Light emitting diode display
  • LCD Liquid-crystal display
  • PDP Plasma display panel
  • OLED Organic light-emitting diode
  • AMOLED active- matrix OLED
  • OLET Organic light-emitting transistor
  • SED Surface-conduction electron-emitter display
  • Quantum dot display MEMS display
  • FLCD Ferro liquid crystal display
  • TPD Telescopic
  • the digital display device 102 may include a plurality of pixels depending upon the resolution of the digital display device 102.
  • a LED display may provide a 4K resolution in 3840 pixels ⁇ 2160 pixels arrangement by including about 8.3 megapixels.
  • the digital display device 102 may include the pixel distribution in any given aspect ratio, such as 4:3, 16:9, 16: 10, and 21 :9. Accordingly, the digital display device 102 may include a defined resolution and a defined aspect ratio to include a defined number of pixels.
  • the filtration mask 104 may be arranged over the digital display device 102 to filter light from the pixels of the digital display device 102 and selectively make some of the pixels visible to the left eye of the viewer, and some pixels visible to the right eye of the viewer.
  • the filtration mask 104 may be formed from multiple left eye pixel masks (now shown) and multiple right eye pixel masks (now shown).
  • Such left eye pixel masks and right eye pixel masks may be arranged in a predefined pattern to form the super masks 106, which may further be arranged, as per the aspect ratio of the digital display device 102, to form the filtration mask 104.
  • each super mask 106 may either be of same size arranged to form the filtration mask 104, or may be of different sizes, arranged to form the filtration mask 104.
  • Each of the left eye pixel mask and the right eye pixel mask may be understood as a mask covering a pixel of the digital display device 102.
  • the filtration mask 104 may include 8.3 mega left and right eye pixel masks for a digital display device 102 with 4K resolution.
  • each left eye pixel mask and the right eye pixel mask has been described to cover one pixel of the digital display device 102, it would be noted that in some examples of the present subject matter, each of the left eye pixel mask and the right eye pixel mask may cover more than one pixels of the digital display device 102. It would be noted that in such situation, the total number of right eye pixel masks and the left eye pixel masks may vary, to form the filtration mask 104.
  • each left eye pixel mask may filter light such that the pixel beneath the left eye pixel mask is visible to the left eye of the viewer.
  • the right eye pixel mask may filter light such that the pixel beneath the right eye pixel mask may be visible to the right eye of the viewer.
  • the pixels that may be visible by the left eye of the viewer have been referred to as left eye buffer, and the pixels that may be visible by the right eye of the viewer have been referred to as right eye buffer, hereinafter.
  • the pixels of the display may be based upon the configuration of the filtration mask 104 being utilized. That is, the pixels of the display may be operated such that left eye information is displayed by pixels disposed with left eye pixel masks and the right eye right information is displayed by pixels disposed with eye pixel masks.
  • the filtration mask 104 may be a polarization mask implementing polarization technique to filter light from the pixels of the digital display device 102.
  • the left eye pixel masks may polarize light such that pixels beneath the left eye pixel masks are visible by the left eye of the viewer
  • the right eye pixel masks may polarize light such that pixels beneath the right eye pixel masks are visible to the right eye of the viewer.
  • the filtration mask 104 may be implemented as an anaglyph filter where some pixels of the digital display device 102 are filtered in one color while other pixels of the digital display device 102 are filtered in another color.
  • the viewer may wear a viewing device, such as a head gear or filter glasses to enable viewing of the pixels overlaid with the left eye pixel masks by the left eye of the viewer and enable viewing of the pixels overlaid with the right eye pixel masks by the right eye of the viewer.
  • a viewing device such as a head gear or filter glasses to enable viewing of the pixels overlaid with the left eye pixel masks by the left eye of the viewer and enable viewing of the pixels overlaid with the right eye pixel masks by the right eye of the viewer.
  • This may provide passive stereo viewing of the digital display device 102.
  • Fig. 2 illustrates an example filtration mask 104 formed by multiple super masks 106, in accordance with an implementation of the present subject matter.
  • the filtration mask 104 may include super masks 106, such as super masks 106-1 and 106-2.
  • Each super mask 106 may include multiple right eye pixel masks 202-1 and 202-2, and multiple left eye pixel masks 204-1 and 204-2.
  • the right eye pixel masks 202-1 and 202-2 have been commonly referred to as right eye pixel masks 202 and the left eye pixel masks 204-1 and 204-2 have been commonly referred to as left eye pixel masks 204, hereinafter.
  • the filtration mask 104 may be arranged on a digital display device 102 including 144 pixels, evenly distributed across length and breadth of the display. Accordingly, the filtration mask 104 may include a total of 144 left eye pixel masks 204 and right eye pixel masks 202 distributed in different predefined pattern arrangement within multiple super masks 106. The filtration mask 104 may, therefore, include 12 columns and 12 rows distributed with right eye pixel masks 202 and left eye pixel masks 204.
  • the filtration mask 104 may be formed by an arrangement of 2x2 super masks 106.
  • a 2x2 super mask 106 can be understood as a super mask which includes 2 right eye pixel masks 202 and 2 left eye pixel masks 204 arranged in a form of 2x2 matrix.
  • the filtration mask 104 may include a total of 36 super masks 106, and each super mask 106 including a total of 4 right eye pixel masks 202 and left eye pixel masks 204, arranged in a predefined pattern. Therefore, the filtration mask 104 can also be understood to include 6 columns of super masks 106 and 6 rows of super masks 106, such that each row of super masks 106, or each column of super masks 106 includes 6 super masks 106.
  • the display of the digital display device 102 has been explained to include a total of 144 pixels, it would be noted that the display may include more pixels.
  • the filtration mask 104 may include a total of about 2.1 mega right eye pixel masks 202 and left eye pixel masks 204 distributed within multiple super masks 106 to form the filtration mask 104.
  • the super masks 106 within the filtration mask 104 may be arranged in different 'mxri order.
  • the Fig. 2 describes 2x2 super masks 106 arranged to form the filtration mask 104.
  • the super masks 106 may also be arranged in orders, such as 3x3, 3x4, 2x3, 4x4, 4x2, 5x5, and 5x4 in various example implementations of the present subject matter.
  • the super masks 106-1 and 106-2 may include different predefined pattern of the left eye pixel masks 204 and the right eye pixel masks 202.
  • the super mask 106-1 includes the right eye pixel masks 202 and the left eye pixel masks 204 arranged diagonally opposite to each other to form a square arrangement of 2x2.
  • the super mask 106-2 may include the right eye pixel mask 202-1 aligned in a row with another right eye pixel mask 202-2 along with two left eye pixel masks 204 to form a square arrangement of 2x2.
  • other super masks 106 within the filtration mask 104 may also include different predefined pattern of the right eye pixel masks 202 and the left eye pixel masks 204.
  • the different super masks 106 with different predefined pattern arrangement of the right eye pixel masks 202 and left eye pixel masks 204 may be distributed all across the filtration mask 104.
  • the arrangement of right eye pixel masks 202 and the left eye pixel masks 204 in the super mask 106-1 may intermittently repeated in the 1 st column of super masks 106 from amongst the 6 columns of super masks 106.
  • the same arrangement of the right eye pixel masks 202 and the left eye pixel masks 204 may also be further included in 4 th column of the super masks 106.
  • the super masks 106 within the filtration mask 104 may be arranged such that repetition of the right eye pixel masks 202 and the left eye pixel masks 204 is minimized in any direction. Such an arrangement of the super masks 106 may allow to provide enhanced stereoscopic visual effect for the viewers, thereby enhancing the viewing experience.
  • the use of the filtration mask 104 with different super masks 106 such that at least two super masks 106 include different arrangement of right eye pixel masks 202 and left eye pixel masks 204 may reduce generation of visual artifacts.
  • Fig. 3 represents a filtration mask 104, according to an implementation of the present subject matter.
  • the filtration mask 104 may include 16 pixels distributed in a 4x4 matrix arrangement. Further, the 4x4 matrix arrangement of the right eye pixel masks 202 and the left eye pixel masks 204 may include 4 super masks 106 of 2x2 arrangement.
  • the described filtration mask 104 depicts a simple arrangement of right eye pixel masks 202 and left eye pixel masks 204 within the filtration mask 104.
  • the predefined pattern of the super masks 106 may vary in the adjacent blocks to minimize visual artifacts, however the super masks 106 with similar predefined pattern of right eye pixel masks 202 and left eye pixel masks 204 may repeat to form the filtration mask 104.
  • the filtration mask 104 may be operated in two different modes, a reduced resolution mode and a pseudo-interleaved mode.
  • Fig. 4 illustrates a filtration mask 104, operating in a reduced resolution mode.
  • the filtration mask 104 as depicted in Fig. 4 may be arranged on a display of 8x8 resolution with an evenly distributed pixel arrangement. Accordingly, the filtration mask 104 may include a total of 64 right eye pixel masks 202 and left eye pixel masks 204, arranged evenly across the length and breadth of the filtration mask 104.
  • the digital display device 102 may display content such that each pixel is mapped to a super mask 106. That is, content to be displayed by each pixel of the digital display device 102, may now be displayed by a super mask 106 of the filtration mask 104.
  • the content of the pixel being mapped to a super mask 106 may be individually displayed by left eye pixel masks 204 and right eye pixel masks 202 within the super mask 106.
  • the filtration mask 104 may operate such that a 2x2 super mask 106-3 may display the value at the location '3' through the right eye pixel masks 202 and left eye pixel masks 204 arranged within the super mask 106-3.
  • the super mask 106-3 may include two left eye pixel masks 204 and two right eye pixel masks 202 arranged in a predefined pattern.
  • other information to be displayed by other pixels at different locations of the digital display device 102 may be displayed by the super masks 106 of the filtration mask 104.
  • the resolution of the display visible to each eye of the viewer may be reduced during the operation of the reduced resolution mode.
  • a reduced resolution of right eye buffer such as a right eye buffer 402, 4x4 instead of 8x8, may be visible to the left eye of the viewer.
  • a reduced left eye buffer such as a left eye buffer 404, 4x4 instead of 8x8, may be visible to the right eye of the viewer.
  • the visible resolution may become 1/4 th of the actual resolution of the digital display device 102.
  • the visible resolution may become 1/16 th of the actual resolution of the digital display device 102.
  • a digital display device 102 with a resolution of 4K (3840x2160) may be implemented with a filtration mask 104 formed by multiple 2x2 super masks 106. If in such an implementation, the filtration mask 104 is operated in the reduced resolution mode, the visible resolution may be reduced to 1920x1080. It would be noted that while the visible resolution may be reduced, the aspect ratio of the display may remain unchanged and an enhanced stereoscopic visual effect may be generated, thereby providing enhanced viewer experience.
  • the reduced resolution mode may allow generation of stereoscopic visual effect by reducing the visible resolution of the digital display device 102.
  • Fig. 5 illustrates a filtration mask 104, operating in a pseudo- interleaved mode.
  • the filtration mask 104 may be arranged on a display of 4x4 resolution with an evenly distributed pixel arrangement. Accordingly, the filtration mask 104 may include a total of 16 right eye pixel masks 202 and left eye pixel masks 204, arranged evenly across the length and breadth of the filtration mask 104.
  • the digital display device 102 may display content such that each pixel of the digital display device 102 is mapped to either a left eye pixel mask 204, or a right eye pixel mask 202. That is, content to be displayed by each pixel of the digital display device 102, may now be displayed by either a right eye pixel mask 202, or a left eye pixel mask 204.
  • the distribution of the left eye pixel masks 204 and right eye pixel masks 202 may be such that each row, or each column of the filtration mask 104 includes interleaved right eye pixel masks 202 and the left eye pixel masks 204.
  • the location ⁇ ' may be filtered by a left eye pixel mask 204 such that it is visible to the left eye of the viewer.
  • the location may be filtered by a right eye pixel mask 202 such that it is visible to the right eye of the viewer.
  • the location '4' displayed in second row and first column of the filtration mask 104 may be filtered by the left eye pixel mask 204. Therefore, the pixels visible to the right eye and the left eye of the viewer may be pseudo interleaved to display the content to the viewer.
  • the pseudo-interleaving may drop some pixels for the right eye and some pixels for the left eye of the viewer, however, the implementation of the pseudo-interleaved mode may allow display of the content at the resolution of the digital display device 102.
  • Fig. 6 illustrates a method 600 for fabricating a filtration mask, in accordance to an example implementation of the present subject matter.
  • the order in which the method 600 is described is not intended to be construed as a limitation, and any number of the described method blocks may be combined in any order to implement the method 600, or any alternative methods.
  • the method 600 may be implemented by electronic circuits, or processor(s) through any suitable hardware, or combination thereof for fabrication of the filtration mask.
  • a plurality of super masks may be formed by arranging at least one left eye pixel mask visible to a left eye of a viewer and at least one right eye pixel mask visible to a right eye of the viewer, in a predefined pattern.
  • at least two super masks from amongst the plurality of super masks include the at least one right eye pixel mask and the at least one left eye pixel mask arranged in mutually different predefined pattern.
  • the plurality of super masks may be arranged based on aspect ratio of a digital display device to form the filtration mask.
  • the filtration mask thus formed, may filter the light emitted by the pixels of the digital display device to generate two different images for the right and left eye of the viewer, to create a stereoscopic visual effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Techniques relating to providing three dimensional view of an image to the viewers of a digital display device are described. For example, a filtration mask is implemented on the digital display device, the filtration mask includes multiple super masks arranged based on an aspect ratio of the digital display device. Each of the multiple super masks includes at least one left eye pixel mask visible to left eye of a viewer and at least one right eye pixel mask visible to right eye of the viewer. Further, the at least one left eye pixel mask and at least one right eye pixel mask are arranged in a predefined pattern. Furthermore, at least two super masks from amongst the multiple super masks include the at least one left eye pixel mask and the at least one right eye pixel mask arranged in a mutually different predefined pattern.

Description

DIGITAL DISPLAY DEVICES
BACKGROUND
[0001 ] Use of display devices has phenomenally changed during the last decade where use of digital displays, as opposed to analog electronic instrumentation displays, has considerably increased. Liquid Crystal Display (LCD) displays and Light Emitting Diode (LED) displays are commonly employed as digital display means for displaying information. Such display devices present two dimensional (2D) information to viewers. Some techniques to enable a 2D display device to display 3D information utilize a polarization mask and selectively display certain pixels to right eye of the viewer and other pixels to left eye of the viewer.
BRIEF DESCRIPTION OF DRAWINGS
[0002] The detailed description is provided with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The same numbers are used throughout the drawings to reference like features and components.
[0003] Fig. 1 illustrates a digital display device implementing a filtration mask, according to an example implementation of the present subject matter.
[0004] Fig. 2 illustrates an example structure of the filtration mask, according to an example implementation of the present subject matter.
[0005] Fig. 3 illustrates a super mask, according to an example implementation of the present subject matter.
[0006] Fig. 4 illustrates a filtration mask operated in a reduced resolution mode, according to an example implementation of the present subject matter.
[0007] Fig. 5 illustrates a filtration mask operated in a pseudo-interleaved mode, according to an example implementation of the present subject matter. [0008] Fig. 6 illustrates a method of fabricating the filtration mask, according to an example implementation of the present subject matter.
DETAILED DESCRIPTION
[0009] The present subject matter relates to techniques of providing three dimensional (3D) view of an image for the viewers of a digital display device.
[001 0] Users wish to enhance their visual experience, such as that of viewing architectural designs, product designs, movies or playing games. Accordingly, demand of viewing images in three dimensions (3D) instead of in two dimensions (2 D) have been ever increasing.
[001 1 ] Generally, display panel manufacturers utilize polarization masks in digital display devices capable of displaying 2D images to create binocular disparity and generate a stereoscopic visual effect. In operation, the polarization mask polarizes light from the pixels of the digital display device, which when passed through polarized lenses can be viewed by one eye of the viewer differently than the other eye, such that two slightly differently positioned images are seen by the two eyes. A simultaneous view of two differently positioned images by the viewer cause generation of the stereoscopic visual effect, which enables the viewer to experience 3D effect while viewing the digital display device.
[0012] However, the polarization masks generally vary the visibility of pixels for the left and right eye in either the horizontal direction or, in the vertical direction across the display. That is, the view of left and right eye is varied by either providing different visibility of row pixels to the left and right eye (horizontal direction), or by providing different visibility of column pixels to the left and right eye (Vertical direction). The use of such polarization masks cause the left and the right eye to have squished aspect ratio, such that either the horizontal or the vertical aspect ratio is reduced. Further, the use of such techniques also cause vision fatigue and ghosting effects while displaying images in 3D.
[001 3] According to an implementation of the present subject matter, techniques of providing three dimensional (3D) view of an image to the viewers of a digital display device are described. The techniques of the present subject matter allow a digital display device, capable of displaying 2 D images, to display the images in 3D by utilization of a filtration mask. [0014] The filtration mask may be arranged over a digital display device, such that the light being emitted by the pixels of the digital display device is filtered by the filtration mask. In an example implementation of the present subject matter, the filtration mask may be formed by a combination of multiple super masks, arranged as per the aspect ratio of the digital display device. Further, each super mask may include multiple left eye pixel masks and multiple right eye pixel masks arranged in a predefined pattern. Furthermore, each left eye pixel mask may polarize light such that it is visible to left eye of the viewer and each right eye pixel mask may polarize light such that it is visible to right eye of the viewer.
[0015] Therefore, the filtration mask of the present subject matter can be understood as a combination of different super masks with different predefined pattern arrangements of the multiple right eye pixel masks and multiple left eye pixel masks. The configuration of the different super masks and the left eye pixel masks and the right eye pixel masks may vary depending upon various implementations of the present subject matter to provide enhanced stereoscopic visual effect to the viewer.
[0016] In an example implementation of the present subject matter, some of the super masks within the filtration mask may include a first predefined pattern of arrangement of the right eye pixel masks and the left eye pixel masks, while other super masks within the filtration mask may include a second predefined pattern of the right eye pixel masks and the left eye pixel masks. The super masks with first predefined pattern and the super mask with the second predefined pattern may be randomly arranged to form the filtration mask. Accordingly, it would be noted that the different super masks, arranged within the filtration mask, may include the left eye pixel masks and the right eye pixel masks arranged in different predefined patterns.
[0017] In an example implementation of the present subject matter, the arrangement of the super masks within the filtration mask may be such that at least two super masks within the filtration mask have the left eye pixel masks and the right eye pixel masks arranged in different predefined patterns. In another example implementation of the present subject matter, the multiple super masks within the filtration mask may be arranged such that repeated pixels of either the left eye or the right eye are minimized in any direction. Such an arrangement of the super masks with different predefined pattern of the left eye pixel masks and the right eye pixel masks provides a better stereoscopic view of the image with no reduced aspect ratio and minimum visual artifacts, thereby enhancing viewer's 3D viewing experience.
[0018] In operation, the filtration mask, including a configuration of the super masks may be arranged over a digital display device. The digital display device may receive digital signals to display an image, and may operate the pixels of the display to project the image to the viewers. It would be noted that the pixels of the display may be operated based upon the configuration of the filtration mask being used. That is, the pixels of the display may be operated such that left eye information is displayed by pixels disposed with left eye pixel masks and the right eye right information is displayed by pixels disposed with eye pixel masks.
[0019] The example implementations of the described techniques not merely provide 3D view of an image to the viewers, but also provides a 3D view at unchanged aspect ratio. Further, the implementation of the described filtration mask may also provide 3D display functionality to existing 2D digital display devices at low costs.
[0020] The above techniques are further described with reference to Fig. 1 to Fig. 6. It should be noted that the description and the figures merely illustrate the principles of the present subject matter along with examples described herein and, should not be construed as a limitation to the present subject matter. It is, thus, understood that various arrangements may be devised that, although not explicitly described or shown herein, embody the principles of the present subject matter. Moreover, all statements herein reciting principles, aspects, and implementations of the present subject matter, as well as specific examples thereof, are intended to encompass equivalents thereof.
[0021 ] Fig. 1 illustrates a digital display device 102, implementing a filtration mask 104, according to an example of the present subject matter. In an example implementation, the filtration mask 104 may include multiple super masks 106 arranged as per the aspect ratio of the digital display device 102. The super mask 106 may be arranged in a manner such that the filtration mask 104, thus formed, can be arranged over the digital display device 102.
[0022] In an example, the digital display device 102 may include any digital display, such as Electroluminescent display (ELD), Electronic paper display, Gyricon display, Light emitting diode display (LED), Liquid-crystal display (LCD), Plasma display panel (PDP), Organic light-emitting diode (OLED) display, active- matrix OLED (AMOLED), Organic light-emitting transistor (OLET) display, Surface-conduction electron-emitter display (SED), Quantum dot display, MEMS display, Ferro liquid crystal display (FLCD), and Telescopic pixel display (TPD).
[0023] According to an example of the present subject matter, the digital display device 102 may include a plurality of pixels depending upon the resolution of the digital display device 102. For example, a LED display may provide a 4K resolution in 3840 pixels χ 2160 pixels arrangement by including about 8.3 megapixels. Further, the digital display device 102 may include the pixel distribution in any given aspect ratio, such as 4:3, 16:9, 16: 10, and 21 :9. Accordingly, the digital display device 102 may include a defined resolution and a defined aspect ratio to include a defined number of pixels.
[0024] Further, the filtration mask 104 may be arranged over the digital display device 102 to filter light from the pixels of the digital display device 102 and selectively make some of the pixels visible to the left eye of the viewer, and some pixels visible to the right eye of the viewer. The filtration mask 104 may be formed from multiple left eye pixel masks (now shown) and multiple right eye pixel masks (now shown). Such left eye pixel masks and right eye pixel masks may be arranged in a predefined pattern to form the super masks 106, which may further be arranged, as per the aspect ratio of the digital display device 102, to form the filtration mask 104. In an example implementation of the present subject matter, each super mask 106 may either be of same size arranged to form the filtration mask 104, or may be of different sizes, arranged to form the filtration mask 104.
[0025] Each of the left eye pixel mask and the right eye pixel mask may be understood as a mask covering a pixel of the digital display device 102. Accordingly, the filtration mask 104 may include 8.3 mega left and right eye pixel masks for a digital display device 102 with 4K resolution. Although each left eye pixel mask and the right eye pixel mask has been described to cover one pixel of the digital display device 102, it would be noted that in some examples of the present subject matter, each of the left eye pixel mask and the right eye pixel mask may cover more than one pixels of the digital display device 102. It would be noted that in such situation, the total number of right eye pixel masks and the left eye pixel masks may vary, to form the filtration mask 104.
[0026] In operation, each left eye pixel mask may filter light such that the pixel beneath the left eye pixel mask is visible to the left eye of the viewer. Similarly, the right eye pixel mask may filter light such that the pixel beneath the right eye pixel mask may be visible to the right eye of the viewer. For the ease of explanation the pixels that may be visible by the left eye of the viewer have been referred to as left eye buffer, and the pixels that may be visible by the right eye of the viewer have been referred to as right eye buffer, hereinafter. It would be noted that the pixels of the display may be based upon the configuration of the filtration mask 104 being utilized. That is, the pixels of the display may be operated such that left eye information is displayed by pixels disposed with left eye pixel masks and the right eye right information is displayed by pixels disposed with eye pixel masks.
[0027] In an example implementation of the present subject matter, the filtration mask 104 may be a polarization mask implementing polarization technique to filter light from the pixels of the digital display device 102. For example, the left eye pixel masks may polarize light such that pixels beneath the left eye pixel masks are visible by the left eye of the viewer, and the right eye pixel masks may polarize light such that pixels beneath the right eye pixel masks are visible to the right eye of the viewer.
[0028] Similarly, in other implementations of the present subject matter, the filtration mask 104 may be implemented as an anaglyph filter where some pixels of the digital display device 102 are filtered in one color while other pixels of the digital display device 102 are filtered in another color.
[0029] It would be noted that the viewer may wear a viewing device, such as a head gear or filter glasses to enable viewing of the pixels overlaid with the left eye pixel masks by the left eye of the viewer and enable viewing of the pixels overlaid with the right eye pixel masks by the right eye of the viewer. This may provide passive stereo viewing of the digital display device 102.
[0030] The arrangement of super masks 106 to form the filtration mask 104 and the arrangement of left eye pixel masks and the right eye pixel masks within each super mask 106 has been further explained in reference to Fig. 2 and Fig.
3.
[0031 ] Fig. 2 illustrates an example filtration mask 104 formed by multiple super masks 106, in accordance with an implementation of the present subject matter. The filtration mask 104 may include super masks 106, such as super masks 106-1 and 106-2. Each super mask 106 may include multiple right eye pixel masks 202-1 and 202-2, and multiple left eye pixel masks 204-1 and 204-2. For the ease of explanation, the right eye pixel masks 202-1 and 202-2 have been commonly referred to as right eye pixel masks 202 and the left eye pixel masks 204-1 and 204-2 have been commonly referred to as left eye pixel masks 204, hereinafter.
[0032] In an example implementation of the present subject matter, the filtration mask 104 may be arranged on a digital display device 102 including 144 pixels, evenly distributed across length and breadth of the display. Accordingly, the filtration mask 104 may include a total of 144 left eye pixel masks 204 and right eye pixel masks 202 distributed in different predefined pattern arrangement within multiple super masks 106. The filtration mask 104 may, therefore, include 12 columns and 12 rows distributed with right eye pixel masks 202 and left eye pixel masks 204.
[0033] In an example implementation, the filtration mask 104 may be formed by an arrangement of 2x2 super masks 106. A 2x2 super mask 106 can be understood as a super mask which includes 2 right eye pixel masks 202 and 2 left eye pixel masks 204 arranged in a form of 2x2 matrix. Accordingly, it would be noted that the filtration mask 104 may include a total of 36 super masks 106, and each super mask 106 including a total of 4 right eye pixel masks 202 and left eye pixel masks 204, arranged in a predefined pattern. Therefore, the filtration mask 104 can also be understood to include 6 columns of super masks 106 and 6 rows of super masks 106, such that each row of super masks 106, or each column of super masks 106 includes 6 super masks 106.
[0034] Although the display of the digital display device 102 has been explained to include a total of 144 pixels, it would be noted that the display may include more pixels. For example, in a digital display device 102 of High Definition (HD) resolution, there may be a total of about 2.1 megapixels. Accordingly, the filtration mask 104 may include a total of about 2.1 mega right eye pixel masks 202 and left eye pixel masks 204 distributed within multiple super masks 106 to form the filtration mask 104.
[0035] In an example implementation of the present subject matter, the super masks 106 within the filtration mask 104 may be arranged in different 'mxri order. For example, the Fig. 2 describes 2x2 super masks 106 arranged to form the filtration mask 104. Similarly the super masks 106 may also be arranged in orders, such as 3x3, 3x4, 2x3, 4x4, 4x2, 5x5, and 5x4 in various example implementations of the present subject matter.
[0036] Referring to Fig. 2, the super masks 106-1 and 106-2 may include different predefined pattern of the left eye pixel masks 204 and the right eye pixel masks 202. For example, the super mask 106-1 includes the right eye pixel masks 202 and the left eye pixel masks 204 arranged diagonally opposite to each other to form a square arrangement of 2x2. On the other hand, the super mask 106-2 may include the right eye pixel mask 202-1 aligned in a row with another right eye pixel mask 202-2 along with two left eye pixel masks 204 to form a square arrangement of 2x2.
[0037] Similar to the super masks 106-1 and 106-2, other super masks 106 within the filtration mask 104 may also include different predefined pattern of the right eye pixel masks 202 and the left eye pixel masks 204. Also, according to an example implementation of the present subject matter, the different super masks 106 with different predefined pattern arrangement of the right eye pixel masks 202 and left eye pixel masks 204 may be distributed all across the filtration mask 104. For example, the arrangement of right eye pixel masks 202 and the left eye pixel masks 204 in the super mask 106-1 may intermittently repeated in the 1 st column of super masks 106 from amongst the 6 columns of super masks 106. The same arrangement of the right eye pixel masks 202 and the left eye pixel masks 204 may also be further included in 4th column of the super masks 106.
[0038] In an example implementation of the present subject matter, the super masks 106 within the filtration mask 104 may be arranged such that repetition of the right eye pixel masks 202 and the left eye pixel masks 204 is minimized in any direction. Such an arrangement of the super masks 106 may allow to provide enhanced stereoscopic visual effect for the viewers, thereby enhancing the viewing experience.
[0039] The use of the filtration mask 104 with different super masks 106 such that at least two super masks 106 include different arrangement of right eye pixel masks 202 and left eye pixel masks 204 may reduce generation of visual artifacts.
[0040] Fig. 3 represents a filtration mask 104, according to an implementation of the present subject matter. The filtration mask 104 may include 16 pixels distributed in a 4x4 matrix arrangement. Further, the 4x4 matrix arrangement of the right eye pixel masks 202 and the left eye pixel masks 204 may include 4 super masks 106 of 2x2 arrangement. The described filtration mask 104 depicts a simple arrangement of right eye pixel masks 202 and left eye pixel masks 204 within the filtration mask 104. As described earlier, the predefined pattern of the super masks 106 may vary in the adjacent blocks to minimize visual artifacts, however the super masks 106 with similar predefined pattern of right eye pixel masks 202 and left eye pixel masks 204 may repeat to form the filtration mask 104.
[0041 ] In an example implementation of the present subject matter, the filtration mask 104 may be operated in two different modes, a reduced resolution mode and a pseudo-interleaved mode.
[0042] Fig. 4 illustrates a filtration mask 104, operating in a reduced resolution mode. The filtration mask 104 as depicted in Fig. 4, may be arranged on a display of 8x8 resolution with an evenly distributed pixel arrangement. Accordingly, the filtration mask 104 may include a total of 64 right eye pixel masks 202 and left eye pixel masks 204, arranged evenly across the length and breadth of the filtration mask 104. [0043] In operation, according to an example implementation of the present subject matter, in a reduced resolution mode, the digital display device 102 may display content such that each pixel is mapped to a super mask 106. That is, content to be displayed by each pixel of the digital display device 102, may now be displayed by a super mask 106 of the filtration mask 104.
[0044] Further, the content of the pixel being mapped to a super mask 106 may be individually displayed by left eye pixel masks 204 and right eye pixel masks 202 within the super mask 106. For example, refer to Fig. 4 and consider location '3' to be displayed by the top right corner pixel of the digital display device 102. While operating in the reduced resolution mode, the filtration mask 104 may operate such that a 2x2 super mask 106-3 may display the value at the location '3' through the right eye pixel masks 202 and left eye pixel masks 204 arranged within the super mask 106-3. In an example, the super mask 106-3 may include two left eye pixel masks 204 and two right eye pixel masks 202 arranged in a predefined pattern. Similarly, other information to be displayed by other pixels at different locations of the digital display device 102 may be displayed by the super masks 106 of the filtration mask 104.
[0045] Accordingly, it would be noted that the resolution of the display visible to each eye of the viewer may be reduced during the operation of the reduced resolution mode. In a reduced resolution mode, a reduced resolution of right eye buffer such as a right eye buffer 402, 4x4 instead of 8x8, may be visible to the left eye of the viewer. Similarly, a reduced left eye buffer such as a left eye buffer 404, 4x4 instead of 8x8, may be visible to the right eye of the viewer.
[0046] Therefore, while the information of each pixel of the digital display device 102 is provided by a 2x2 super mask 106, the visible resolution, as viewed by the viewer, may become 1/4th of the actual resolution of the digital display device 102. Similarly, if the information of each pixel is provided by a 4x4 super mask 106, the visible resolution may become 1/16th of the actual resolution of the digital display device 102.
[0047] In an example, a digital display device 102 with a resolution of 4K (3840x2160) may be implemented with a filtration mask 104 formed by multiple 2x2 super masks 106. If in such an implementation, the filtration mask 104 is operated in the reduced resolution mode, the visible resolution may be reduced to 1920x1080. It would be noted that while the visible resolution may be reduced, the aspect ratio of the display may remain unchanged and an enhanced stereoscopic visual effect may be generated, thereby providing enhanced viewer experience.
[0048] In an example implementation of the present subject matter, the reduced resolution mode may allow generation of stereoscopic visual effect by reducing the visible resolution of the digital display device 102.
[0049] Fig. 5 illustrates a filtration mask 104, operating in a pseudo- interleaved mode. The filtration mask 104, as depicted in Fig. 5, may be arranged on a display of 4x4 resolution with an evenly distributed pixel arrangement. Accordingly, the filtration mask 104 may include a total of 16 right eye pixel masks 202 and left eye pixel masks 204, arranged evenly across the length and breadth of the filtration mask 104.
[0050] In operation, according to an example implementation of the present subject matter, in a pseudo-interleaved mode, the digital display device 102 may display content such that each pixel of the digital display device 102 is mapped to either a left eye pixel mask 204, or a right eye pixel mask 202. That is, content to be displayed by each pixel of the digital display device 102, may now be displayed by either a right eye pixel mask 202, or a left eye pixel mask 204. While the content may be displayed by the right eye pixel masks 202 and the left eye pixel masks 204, the distribution of the left eye pixel masks 204 and right eye pixel masks 202 may be such that each row, or each column of the filtration mask 104 includes interleaved right eye pixel masks 202 and the left eye pixel masks 204.
[0051 ] For example, in the filtration mask 104 depicted in Fig. 5, two pixels from each row may be visible to each eye of the viewer. Referring to the first row of the filtration mask 104, the location Ό' may be filtered by a left eye pixel mask 204 such that it is visible to the left eye of the viewer. However, the location may be filtered by a right eye pixel mask 202 such that it is visible to the right eye of the viewer. Similarly, the location '4' displayed in second row and first column of the filtration mask 104 may be filtered by the left eye pixel mask 204. Therefore, the pixels visible to the right eye and the left eye of the viewer may be pseudo interleaved to display the content to the viewer.
[0052] It would be noted that the pseudo-interleaving may drop some pixels for the right eye and some pixels for the left eye of the viewer, however, the implementation of the pseudo-interleaved mode may allow display of the content at the resolution of the digital display device 102.
[0053] Fig. 6 illustrates a method 600 for fabricating a filtration mask, in accordance to an example implementation of the present subject matter. The order in which the method 600 is described is not intended to be construed as a limitation, and any number of the described method blocks may be combined in any order to implement the method 600, or any alternative methods. Furthermore, the method 600 may be implemented by electronic circuits, or processor(s) through any suitable hardware, or combination thereof for fabrication of the filtration mask.
[0054] Referring to Fig. 6, in an example implementation of the present subject matter, at block 602, a plurality of super masks may be formed by arranging at least one left eye pixel mask visible to a left eye of a viewer and at least one right eye pixel mask visible to a right eye of the viewer, in a predefined pattern. In an example implementation of the present subject matter, at least two super masks from amongst the plurality of super masks include the at least one right eye pixel mask and the at least one left eye pixel mask arranged in mutually different predefined pattern.
[0055] Further, at block 604, the plurality of super masks may be arranged based on aspect ratio of a digital display device to form the filtration mask. The filtration mask, thus formed, may filter the light emitted by the pixels of the digital display device to generate two different images for the right and left eye of the viewer, to create a stereoscopic visual effect.

Claims

We Claim:
1 . A filtration mask for a digital display device to provide a three dimensional (3D) view of an image, the filtration mask comprising: a plurality of super masks arranged based on an aspect ratio of the digital display device, each of the plurality of super masks including at least one left eye pixel mask visible to left eye of a viewer and at least one right eye pixel mask visible to right eye of the viewer, the at least one left eye pixel mask and at least one right eye pixel mask being arranged in a predefined pattern; wherein at least two super masks from amongst the plurality of super masks include the at least one left eye pixel mask and the at least one right eye pixel mask arranged in a mutually different predefined pattern.
2. The filtration mask as claimed in claim 1 , wherein each of the plurality of super mask includes one of a m*n and a m*m arrangement of the at least one left eye pixel mask and the at least one right eye pixel mask.
3. The filtration mask as claimed in claim 1 , wherein each of the plurality of super mask displays information corresponding to a pixel of the digital display device.
4. The filtration mask as claimed in claim 1 , wherein a mask within each of the super masks corresponds to a pixel of the digital display device.
5. The filtration mask as claimed in claim 1 , wherein the at least one left eye pixel mask and the at least one right eye pixel mask are arranged within at least one super mask, from amongst the plurality of super masks, such that a left eye pixel mask is placed diagonally opposite to a right eye pixel mask.
6. The filtration mask as claimed in claim 1 , wherein the at least one left eye pixel mask and the at least one right eye pixel mask is arranged within at least one super mask, from amongst the plurality of super mask, such that a right eye pixel mask is placed diagonally opposite to another right eye pixel mask.
7. The filtration mask as claimed in claim 1 , wherein the at least one left eye pixel mask and the at least one right eye pixel mask is arranged within at least one super mask, from amongst the plurality of super masks, such that a left eye pixel mask is placed diagonally opposite to another left eye pixel mask.
8. A digital display device for providing three dimensional (3D) view of an image, the digital display device comprising: a plurality of pixels arranged based on an aspect ratio of the digital display device to display the image; and a filtration mask arranged over the plurality of pixels to filter light such that a first set of pixels from amongst the plurality of pixels are visible to left eye of a viewer and a second set of pixels from amongst the plurality of pixels are visible to right eye of the viewer, wherein the filtration mask comprises a plurality of super masks arranged based on the aspect ratio of the digital display device, each of the plurality of super masks is to filter light such that at least one pixel from the first set of pixels and at least one pixel from amongst the second set of pixels is visible in a predefined pattern within the super mask, and wherein at least two super masks from amongst the plurality of super masks are to filter light such that the at least one pixel from the first set of pixels and the at least one pixel from the second set of pixels are visible in a mutually different predefined pattern.
9. The digital display device as claimed in claim 8, wherein each of the plurality of super masks is to filter light such that one of a m*n and a m*m arrangement of the at least one pixel from the first set of pixels and the at least one pixel from amongst the second set of pixels is visible to the viewer.
10. The digital display device as claimed in claim 8, wherein at least one super mask from amongst the plurality of super masks is to filter light such that the at least one pixel from the first set of pixels is visible diagonally opposite to the at least one pixel from amongst the second set of pixels within the at least one super mask.
1 1 . The digital display device as claimed in claim 8, wherein at least one super mask from amongst the plurality of super masks is to filter light such that the at least one pixel from the first set of pixels and the at least one pixel from amongst the second set of pixels are randomly visible to the viewer within at least one super mask.
12. The digital display device as claimed in claim 8, wherein each mask within each of the super mask corresponds to a pixel of the digital display device.
13. The digital display device as claimed in claim 8, wherein each of the super mask displays information corresponding to a pixel of the digital display device.
14. A method of fabricating a filtration mask to provide three dimensional (3D) view of an image, the method comprising: forming a plurality of super masks by arranging at least one left eye pixel mask visible to a left eye of a viewer and at least one right eye pixel mask visible to a right eye of the viewer, in a predefined pattern, wherein at least two super masks from amongst the plurality of super masks include the at least one right eye pixel mask and the at least one left eye pixel mask arranged in mutually different predefined pattern; and arranging the plurality of super masks, based on aspect ratio of a digital display device, to form the filtration mask.
15. The method as claimed in claim 14, the method further comprising arranging the filtration mask onto the digital display device.
PCT/US2016/029733 2016-04-28 2016-04-28 Digital display devices WO2017188955A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/097,436 US10663755B2 (en) 2016-04-28 2016-04-28 Digital displays devices
PCT/US2016/029733 WO2017188955A1 (en) 2016-04-28 2016-04-28 Digital display devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/029733 WO2017188955A1 (en) 2016-04-28 2016-04-28 Digital display devices

Publications (1)

Publication Number Publication Date
WO2017188955A1 true WO2017188955A1 (en) 2017-11-02

Family

ID=60159896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/029733 WO2017188955A1 (en) 2016-04-28 2016-04-28 Digital display devices

Country Status (2)

Country Link
US (1) US10663755B2 (en)
WO (1) WO2017188955A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327410B2 (en) * 2003-07-29 2008-02-05 Samsung Electronics Co., Ltd. High resolution 3-D image display with liquid crystal shutter array
US20110157322A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Controlling a pixel array to support an adaptable light manipulator
US20130050817A1 (en) * 2011-08-26 2013-02-28 Chimei Innolux Corporation 3d image display device
US20130321720A1 (en) * 2012-06-04 2013-12-05 Chimei Innolux Corporation 3D Display Devices
US20130335538A1 (en) * 2011-03-04 2013-12-19 Samsung Electronics Co., Ltd. Multiple viewpoint image display device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9715397D0 (en) * 1997-07-23 1997-09-24 Philips Electronics Nv Lenticular screen adaptor
TW584815B (en) 2001-09-13 2004-04-21 Silicon Integrated Sys Corp Method for removing noise regions in a stereo 3D display system
WO2007072289A2 (en) * 2005-12-20 2007-06-28 Koninklijke Philips Electronics N.V. Autostereoscopic display device
KR101329962B1 (en) * 2007-05-07 2013-11-13 엘지디스플레이 주식회사 Three-dimensional image display
WO2010019923A1 (en) * 2008-08-14 2010-02-18 Real D Autostereoscopic display system with efficient pixel layout
US9448459B2 (en) * 2009-10-30 2016-09-20 Koninklijke Philips N.V. Multiview display device
JP4892098B1 (en) 2010-12-14 2012-03-07 株式会社東芝 3D image display apparatus and method
KR101831652B1 (en) * 2011-09-07 2018-02-26 엘지디스플레이 주식회사 Stereoscopic image display device and driving method thereof
US9648310B2 (en) 2011-11-09 2017-05-09 Qualcomm Incorporated Systems and methods for mask adjustment in 3D display
KR20130055997A (en) * 2011-11-21 2013-05-29 삼성디스플레이 주식회사 3-dimensional image display device
JP5657598B2 (en) * 2012-03-29 2015-01-21 株式会社東芝 Image display device
WO2013173786A1 (en) * 2012-05-18 2013-11-21 Reald Inc. Directional backlight
CN105074730A (en) 2012-10-10 2015-11-18 3Dtv广播有限公司 System for distributing auto-stereoscopic images
JP5804196B2 (en) * 2012-12-27 2015-11-04 凸版印刷株式会社 Liquid crystal display device and substrate for liquid crystal display device
EP3058562A4 (en) * 2013-10-14 2017-07-26 RealD Spark, LLC Control of directional display
EP3041231A1 (en) * 2014-12-30 2016-07-06 SeeFront GmbH Autostereoscopic multi-view system
US10129533B2 (en) * 2015-09-09 2018-11-13 Tint Mouse, Inc. High quality and moire-free 3D stereoscopic image rendering system using a lenticular lens
US10321123B2 (en) * 2016-01-05 2019-06-11 Reald Spark, Llc Gaze correction of multi-view images
US10534208B2 (en) * 2016-02-29 2020-01-14 Japan Display Inc. Display device comprising a separator having a plurality of first and second electrodes respectively forming first and second unit separators at different pitches from each other
CN206002779U (en) * 2016-09-14 2017-03-08 合肥鑫晟光电科技有限公司 Naked eye three-dimensional display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327410B2 (en) * 2003-07-29 2008-02-05 Samsung Electronics Co., Ltd. High resolution 3-D image display with liquid crystal shutter array
US20110157322A1 (en) * 2009-12-31 2011-06-30 Broadcom Corporation Controlling a pixel array to support an adaptable light manipulator
US20130335538A1 (en) * 2011-03-04 2013-12-19 Samsung Electronics Co., Ltd. Multiple viewpoint image display device
US20130050817A1 (en) * 2011-08-26 2013-02-28 Chimei Innolux Corporation 3d image display device
US20130321720A1 (en) * 2012-06-04 2013-12-05 Chimei Innolux Corporation 3D Display Devices

Also Published As

Publication number Publication date
US10663755B2 (en) 2020-05-26
US20190137771A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
US12003696B2 (en) Display device and display method thereof
JP5698251B2 (en) Autostereoscopic display device
US9613559B2 (en) Displays with sequential drive schemes
JP5063296B2 (en) Electronic video equipment
US10241340B2 (en) Three-dimensional display device and driving method thereof
KR20070120282A (en) Three-dimensional image display
US20120229457A1 (en) Display device
US10197830B2 (en) Display device and method for controlling grating of the display device
US20120113510A1 (en) Display device and display method
JP2013088685A (en) Display device
CN104111538A (en) Display device
CN102213837A (en) Optical-grating three-dimensional display device and optical grating sheet thereof
JP2012093503A (en) Stereoscopic image display apparatus
JP5621500B2 (en) Stereoscopic display device and stereoscopic display method
KR100938481B1 (en) Parallax barrier and three dimensional display apparatus having the same
US10663755B2 (en) Digital displays devices
US20150145976A1 (en) Three-dimensional image display device
KR101297249B1 (en) Three dimensional image display device
JP2013183438A (en) Display device
US9363505B2 (en) Pixel arrangement method that reduces color shift of pattern retarder glasses based 3D display system in large view angle and display panel using same
KR20130009118A (en) Three dimensional display apparatus and method thereof
CN112415765A (en) Naked eye stereoscopic display device and display method
KR20130015586A (en) 3d display device having ptterned retarder including black strip disposed at each multiple lines
JP2012249226A (en) Image display device and image display program

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900693

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900693

Country of ref document: EP

Kind code of ref document: A1