WO2017188614A1 - 미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법 - Google Patents

미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법 Download PDF

Info

Publication number
WO2017188614A1
WO2017188614A1 PCT/KR2017/003469 KR2017003469W WO2017188614A1 WO 2017188614 A1 WO2017188614 A1 WO 2017188614A1 KR 2017003469 W KR2017003469 W KR 2017003469W WO 2017188614 A1 WO2017188614 A1 WO 2017188614A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
mesenchymal stem
bdnf
cells
cerebrovascular disease
Prior art date
Application number
PCT/KR2017/003469
Other languages
English (en)
French (fr)
Other versions
WO2017188614A9 (ko
Inventor
장윤실
박원순
안소윤
성동경
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170040158A external-priority patent/KR20170122650A/ko
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to US16/086,781 priority Critical patent/US20190070223A1/en
Publication of WO2017188614A1 publication Critical patent/WO2017188614A1/ko
Publication of WO2017188614A9 publication Critical patent/WO2017188614A9/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/50Placenta; Placental stem cells; Amniotic fluid; Amnion; Amniotic stem cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a high-efficacy stem cell selection method for the treatment of cerebrovascular disease, comprising measuring the level of nerve growth factor, and high-efficacy stem cells selected by the method.
  • IVH intraventricular hemorrhage
  • the neuroprotective effect of these mesenchymal stem cells is proportional to time, and the earlier the cells are transplanted, the better the effect, and the intraventricular local administration compared to intravenous administration showed a better therapeutic effect.
  • the present inventors have found that the transplantation of mesenchymal stem cells is more effective in inhibiting paracrine anti-inflammatory and apoptosis than regeneration mechanisms, such as bronchopulmonary dysplasia, acute respiratory distress syndrome, and neonatal stroke. It has been reported that there is a significant therapeutic effect in various diseases such as).
  • BDNF brain-derived neurotrophic factor
  • NNF nerve growth factor
  • VEGF vascular endothelial growth factor
  • IGF insulin-like growth Insulin-like growth factor
  • the present invention has been made to solve the above problems, the present inventors have identified a specific factor that mediates the neuroprotective effect of mesenchymal stem cell transplantation after severe intraventricular bleeding and its exact mechanism of action. That is, mesenchymal stem cells were treated with thrombin and DNA and antibody microarray analysis was performed to screen for genes and proteins with increased expression in cells. As a result, BDNF genes and proteins are commonly expressed in mesenchymal stem cells. It was confirmed that the increase, and in vitro and in vivo experiments confirmed the neuroprotective effect exhibited by mesenchymal stem cells when the presence of BDNF or inhibited the expression using siRNA, to complete the present invention based on this It was.
  • an object of the present invention is to provide a high-efficiency stem cell selection method for the treatment of cerebrovascular disease, comprising measuring the level of nerve growth factor.
  • the present invention provides a method for determining the cerebrovascular disease therapeutic activity of the stem cells in vitro, including the step of measuring and comparing the expression level of the nerve growth factor gene or protein of the stem cells. It is done.
  • the present invention provides a high-efficiency stem cell selection method for the treatment of cerebrovascular disease, comprising measuring the level of nerve growth factor.
  • the method is characterized in that it comprises the following steps.
  • the confirmation of the neuronal cell protective ability is characterized in that the determined high efficiency when the concentration of the nerve growth factor is 20pg / ml or more.
  • the confirmation of the neuronal cell protective ability characterized in that it is determined that the high efficiency when the concentration of the measured nerve growth factor is 40pg / ml or more.
  • the thrombin of step (a) is characterized in that contained in the medium at a concentration of 1-1000 unit / ml.
  • the nerve growth factor is characterized in that the brain-derived neurotrophic factor (BDNF).
  • BDNF brain-derived neurotrophic factor
  • the cerebrovascular disease is characterized in that neonatal intraventricular hemorrhage (IVH).
  • IVH neonatal intraventricular hemorrhage
  • the high potency is characterized in that the neuronal protective ability.
  • the stem cells are composed of mesenchymal stem cells, human tissue-derived mesenchymal stromal cells, human tissue-derived mesenchymal stem cells, multipotent stem cells and amniotic epithelial cells It is characterized in that the stem cells selected from the group.
  • the mesenchymal stem cells are characterized in that derived from the umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerves, skin, amniotic membrane or placenta.
  • the present invention also provides a method for determining in vitro ex vivo the therapeutic activity of the cerebrovascular disease of the stem cells, including the step of measuring and comparing the expression level of the neural growth factor gene or protein of the stem cells.
  • the present invention also provides a high-efficacy stem cell for the treatment of cerebrovascular disease, selected by the above method.
  • the present invention also provides a pharmaceutical composition for treating cerebrovascular disease containing the high-efficacy stem cells.
  • BDNF secreted by mesenchymal stem cells mediates the effect of inhibiting apoptosis, inflammation, astrocytosis, and hydrocephalus generation after bleeding, and plays an important role in improving myelination after intraventricular bleeding.
  • the present invention provides a high-efficiency stem cell screening method for the treatment of cerebrovascular disease, comprising measuring the level of nerve growth factors such as BDNF, thereby providing a method for the treatment of various cerebrovascular diseases including neoventricular hemorrhage. It can be usefully used for treatment.
  • FIG. 1 is a result of analyzing the changes in gene and protein expression profiles of mesenchymal stem cells after thrombin treatment
  • FIG. 1A is a result of increased gene and protein
  • FIG. 1B is a result of confirming cell viability in each group
  • FIG. 1C Is the result of confirming BDNF expression in mesenchymal stem cells.
  • Figure 2 shows the inhibition of expression of control group (IC), normal mesenchymal stem cell transplant group (IM), mesenchymal stem cell transplant group (IM-cont) transfected with scrambled siRNA, BDNF
  • IC control group
  • IM normal mesenchymal stem cell transplant group
  • IM-cont mesenchymal stem cell transplant group
  • BDNF mesenchymal stem cell transplant group
  • Figure 3 shows the inhibition of the expression of control group (IC), normal mesenchymal stem cell transplant group (IM), mesenchymal stem cell transplant group (IM-cont) transfected with scrambled siRNA, BDNF
  • IC control group
  • IM normal mesenchymal stem cell transplant group
  • IM-cont mesenchymal stem cell transplant group
  • Figure 4 shows the inhibition of the expression of control group (IC), normal mesenchymal stem cell transplant group (IM), mesenchymal stem cell transplant group (IM-cont) transfected with scrambled siRNA, BDNF Compared to the group transplanted with the mesenchymal stem cells (IM-bdnf-kd), BDNF expression levels in humans and white paper.
  • IC control group
  • IM normal mesenchymal stem cell transplant group
  • IM-cont mesenchymal stem cell transplant group
  • BDNF BDNF expression levels in humans and white paper.
  • FIG. 5A is a micrograph of immunofluorescence staining
  • FIG. 5B is a Western blot. 5c shows the results of immunofluorescence staining
  • 5d shows the western blot results.
  • FIG. 6 shows that the expression of control group (IC), normal mesenchymal stem cell transplantation group (IM), mesenchymal stem cell transplantation group (IM-cont) transfected with scrambled siRNA, BDNF was inhibited.
  • FIG. 6A is an immunofluorescence staining micrograph
  • FIG. 6B is ED-1-positive. It is a cell number measurement result
  • FIG. 6C is a result confirming the level of IL-1 (alpha), IL-1 (beta), IL-6, and TNF- (alpha).
  • the present invention provides a high-efficiency stem cell selection method for the treatment of cerebrovascular disease, comprising measuring the level of nerve growth factor.
  • the high-efficacy stem cell selection method comprises the steps of: (a) treating the thrombin after stem cell culture; (b) measuring the concentration of nerve growth factor in the culture medium of step (a); And (c) confirming neuroprotective ability based on the measured concentration.
  • cerebrovascular disease is a neurological deficit caused by a disorder of normal blood supply to the brain.
  • the cerebrovascular disease preferably means intraventricular hemorrhage (IVH). do.
  • the term “high potency” includes both the activity of the stem cells or the therapeutic activity against diseases is significantly superior, and preferably means that the nerve cell protection is significantly superior.
  • the selection of high-efficiency stem cells may be determined to be high-efficiency when the concentration of nerve growth factor is 20 pg / ml or more, more preferably 40 pg / ml or more.
  • the growth factor is preferably a brain-derived neurotrophic factor (BDNF).
  • BDNF brain-derived neurotrophic factor
  • the stem cells are stem cells selected from the group consisting of mesenchymal stem cells, human tissue-derived mesenchymal stromal cells, human tissue-derived mesenchymal stem cells, multipotent stem cells and amniotic epithelial cells
  • the mesenchymal stem cells may be derived from umbilical cord, umbilical cord blood, bone marrow, fat, muscle, nerve, skin, amniotic membrane or placenta, but is not limited thereto.
  • MSC Mesenchymal stem cell transplantation protects brain injury from severe intraventricular hemorrhage (IVH) through paracrine rather than regeneration in newborns.
  • IVH intraventricular hemorrhage
  • the inventors of the present invention have identified specific factors that mediate the neuroprotective effect of mesenchymal stem cell transplantation after severe intraventricular hemorrhage and their exact mechanism of action, suggesting that the expression of BDNF genes and proteins in mesenchymal stem cells is increased in common.
  • In vitro and in vivo experiments confirmed the difference in neuroprotective effects caused by mesenchymal stem cells when BDNF was present or expression was inhibited using siRNA.
  • DNA and antibody microarrays resulted in brain-derived nerve growth factors in mesenchymal stem cells compared to fibroblasts ( A significant increase in expression of brain-derived neurotrophic factor (BDNF) was confirmed (see Example 2).
  • BDNF brain-derived neurotrophic factor
  • siRNA specific for human BDNF was transfected into mesenchymal stem cells to inhibit the expression of BDNF in the cells.
  • In vitro experiments using neurons from thrombin-treated rats were performed to verify the therapeutic effect of mesenchymal stem cells in the presence or presence of BDNF.
  • newborn SD rats Sprague-Dawley rats
  • Intraventricular hemorrhage was induced by administering 200 ⁇ L of blood to the white paper at day 4, and 1 ⁇ 10 5 cells of mesenchymal stem cells were implanted into the ventricle at day 6.
  • the degree of secretion of BDNF for each source has a different form, the cell survival rate according to the secreted BDNF level It was confirmed to increase (see Example 8).
  • BDNF secreted by the transplanted mesenchymal stem cells is a very important near-secretory factor that shows a neuroprotective effect, and that BDNF has the best neuroprotective effect in intraventricular hemorrhage. It can be used as a biomarker for the present invention.
  • the present invention comprising the step of measuring and comparing the expression level of the nerve growth factor gene or protein of the stem cells, can determine the cerebrovascular disease therapeutic activity of the stem cells in vitro Provide a method.
  • the present invention provides a high-efficacy stem cell selected by the method and a pharmaceutical composition for treating cerebrovascular disease containing the stem cell.
  • the present invention provides a method for treating cerebrovascular disease by transplanting a high-efficiency stem cell selected by the method into a subject.
  • the term "individual” means a subject in need of treatment for a disease, and more specifically, a human or non-human primate, mouse, rat, dog, cat, horse, cow, and the like. Means mammals.
  • Cord blood-derived mesenchymal stem cells were provided by Medipost Co., Ltd., Seoul, Korea, and MRC-5 (Korean Cell Line Bank No. 10171) cell line, which is human fibroblasts, Korean CellLine Bank, Seoul, Korea).
  • MRC-5 cells which are mesenchymal stem cells and fibroblasts, were treated with thrombin for 6 hours, followed by RNA analysis using anIllumina HumanHT-12 v4 Expression BeadChip, and protein analysis with antibody array chip. ) was used.
  • BDNF siRNA (sc-42121) and scrambled siRNA (sc-37007) were purchased from Santa Cruz Biotechnology, respectively.
  • Mesenchymal stem cells were prepared using Oligofectamine (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's protocol. Was transfected. All assays or mesenchymal stem cell transplants were performed after transfecting siRNA into mesenchymal stem cells for 24 hours.
  • culture medium of mesenchymal stem cells was collected and measured for BDNF expression level. As a result, BDNF expression decreased to 27% of untransfected mesenchymal stem cells 24 hours after transfection.
  • Cell cultures were primarily cultured brain neurons isolated from E18.5 embryonic mice, seeded 5 ⁇ 10 3 cells / well of neurons in 96-well plates, and B-27 supplements per well (GIBCO, Gaithersburg, MD, USA) was incubated for 24 hours at 37 °C using 100 ⁇ l of Nerurobasal medium.
  • thrombin Reyon pharm. Co. Ltd, Seoul, South Korea
  • cord blood-derived mesenchymal stem cells (1 ⁇ 10 3 ), mesenchymal stem cells transfected with scrambled siRNA, or mesenchymal stem cells transfected with BDNF siRNA Co-cultures were seeded in the upper chamber for 24 hours.
  • BDNF-blocking antibody Abcam, Cambridge, MA, USA
  • control immunoglobulin control immunoglobulin
  • neurons co-cultured with mesenchymal stem cells transfected with BDNF siRNA contained low (100 pg / ml) or high (1 ng / ml) recombinant human BDNF (R & D Systems, Minneapolis, MN, USA). Added.
  • colorimetric MTT [3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium] assay (Dojindo Molecular Technologies Inc., Gaithersburg, MD, USA). Relative cell viability was corrected by 0% for the absence of cells and 100% for the cells without any treatment. In addition, gene and protein expression between mesenchymal stem cells and fibroblasts was compared by DNA and antibody microarrays.
  • Mesenchymal stem cells transfected with normal mesenchymal stem cells, scrambled siRNAs, or mesenchymals transfected with BDNF siRNAs, respectively, to the white papers of the IM, IM-cont, and IM-kd groups for mesenchymal stem cell transplantation Stem cells were administered into the right ventricle 1 ⁇ 10 5 each with 10 ⁇ l of normal saline. The same volume of saline was administered to the IC group rats that did not transplant mesenchymal stem cells. Afterwards, brain MRI images of each group were obtained on P11 and P32 days, and brain tissue samples were collected after euthanizing all the white papers on P32 days.
  • GFAP neuronal specific fibrillary acidic protein
  • ED-1 neuronal specific fibrillary acidic protein
  • MBP myelin basic protein
  • ELISA was performed using a homogeneous suspension of periventricular tissue.
  • frozen samples of brain tissue secured from the periventricular region were homogenized and centrifuged at 8,000 ⁇ g for 20 minutes at 4 ° C. Protein content in the supernatant was measured using the Bradford method using bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA) as a standard solution. Levels of inflammatory cytokines including IL-1 ⁇ , IL-1 ⁇ , IL-6, and TNF- ⁇ were measured with a Milliplex MAP ELISA Kit using a homogeneous suspension of periventricular tissue. Human and white paper-specific BDNFs were measured with an ELISA kit (Quantikine ELISA Kit, R & D Systems) according to the manufacturer's protocol.
  • Microarray data were analyzed using ANOVA (GeneSpring, Agilent Technologies, Santa Clara, CA, USA) program with Benjamini-Hochberg correction for multiple comparisons. For continuous variability, statistical comparisons between each group were performed using one-way ANOVA and Tukey's post hoc analysis. For analysis of changes over time, Tukey's post hoc comparison was performed using a univariate general linear model for repeated measurements. All data were analyzed using SPSS version 18.0 (IBM, Chicago, IL, USA), and statistically significant differences were found for P ⁇ 0.05.
  • ANOVA GeneSpring, Agilent Technologies, Santa Clara, CA, USA
  • DNA and antibody microarray analysis was performed to confirm the expression changes of genes and proteins associated with neuroprotective effects of mesenchymal stem cells.
  • Example 3 verification of neuroprotective effect of mesenchymal stem cells in vitro
  • IM mesenchymal stem cell transplant group
  • IM-cont mesenchymal stem cell transplant group
  • Example 6 BDNF Expression Levels, Myelination, Apoptosis, Reactive Gluation Assay
  • Human BDNF was measured in brain homogeneous suspensions of each group of white paper at P7, one day after mesenchymal stem cell transplantation.
  • human BDNF was measured in the normal mesenchymal stem cell transplant group (IM) and the group in which the mesenchymal stem cell transfected with scrambled siRNA (IM-cont) were measured, whereas the ventricle BDNF was not measured in the control group (IC) in which the bleeding was induced and in the group transplanted with the mesenchymal stem cells in which BDNF expression was inhibited (IM-bdnf-kd).
  • BDNF levels in rats were significantly higher than those of control group (IC) induced intraventricular hemorrhage and the group transplanted with mesenchymal stem cells with BDNF expression inhibition (IM-bdnf-kd). It was confirmed.
  • P11 which was 5 days after mesenchymal stem cell transplantation, did not measure human BDNF in any group, and the BDNF level of the white paper was normal in the group transplanted with normal mesenchymal stem cells and mesenchymal stem cells transfected with scrambled siRNA. It was confirmed that it is significantly increased compared to the control.
  • TUNEL analysis was performed on the periventricular tissue at P32 to measure the number of TUNEL-positive cells stained with TUNEL reagent, and the degree of caspase-3 expression was measured by Western blot. Confirmed.
  • Reactive collagen in periventricular tissues was assessed by GFAP staining cells by immunohistochemical staining, and by Western blot to measure the expression level of GFAP protein.
  • IL-1 ⁇ , IL-1 ⁇ , IL-6, and TNF- ⁇ levels were measured and analyzed by measuring ED-1-positive cell numbers in coronal sections.
  • Example 8 Prediction / Selection of High Efficacy Stem Cells by BDNF Level Analysis
  • Umbilical cord blood-derived mesenchymal stem cells (UCB), umbilical cord-derived mesenchymal stem cells (WJ), and adipose derived mesenchymal stem cells (AD) were incubated in two lots, respectively. As shown in the top of Figure 7, it was confirmed that the degree of secretion of BDNF in each lot by each source shows a different form.
  • in vitro model of intraventricular hemorrhage was made by treating thrombin (40 units) for 4 hours in neurons obtained after primary neuronal culture from mouse embryo brain.
  • thrombin 40 units
  • the BDNF level is 20pg / ml or more, preferably 40pg / ml or more, more preferably 60pg / ml or more, it can be evaluated as high potency stem cells for neuronal cell protection.
  • the present invention provides a high-efficiency stem cell screening method for the treatment of cerebrovascular disease, comprising measuring the level of nerve growth factors such as BDNF, thereby treating various cerebrovascular diseases including intraventricular hemorrhage in neonates. It can be usefully used.
  • nerve growth factors such as BDNF

Abstract

본 발명은, 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법, 및 이의 방법에 의해 선별된 고효능 줄기세포에 관한 것이다. 본 발명에 의하면, 중간엽 줄기세포에 의해 분비된 BDNF는 세포사멸, 염증, 성상교세포증, 및 출혈 후 뇌수종 생성 억제효과를 매개하고, 뇌실 내 출혈 후 수초화 개선에 매우 중요한 역할을 하는바, 본 발명에 따른 방법은 신생아 뇌실내 출혈을 포함하는 다양한 뇌혈관 질환의 치료에 유용하게 이용될 수 있다.

Description

미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법
본 발명은, 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법, 및 이의 방법에 의해 선별된 고효능 줄기세포에 관한 것이다.
최근 신생아에 대한 치료약물 개발이 이루어지고 있음에도 불구하고, 뇌실 내 출혈(intraventricular hemorrhage; IVH)은 미숙아들에서 사망 및 신경학적 장애를 야기하는 주요 질환이며, 효과적인 치료법이 거의 없는 실정이다. 그러므로 상기 질환에 대한 새로운 치료법의 개발은 이러한 심각한 질환의 예후를 개선시키기 위한 매우 시급한 과제이다. 최근, 본 발명자들은 갓 출생한 백서에서 인간 제대혈 유래 중간엽줄기세포의 뇌실 내 이식이 심각한 뇌실 내 출혈에 의한 출혈 후 뇌수종(posthemorrhagic hydrocephalus) 및 뇌손상을 현저히 감소시키는 것을 확인하였다.
또한, 이러한 중간엽줄기세포의 신경 보호효과는 시간에 비례하고, 세포를 초기에 이식할수록 더 좋은 효과를 나타내며, 정맥 내 투여에 비해 뇌실 내 국소투여가 더 좋은 치료효과를 나타냄을 알 수 있었다. 또한, 본 발명자들은 중간엽줄기세포의 이식이 재생 기작 보다는 paracrine 항염증 및 세포사멸 억제효과를 통해 기관지폐이형성증(bronchopulmonary dysplasia), 급성 호흡곤란 증후군(acute respiratory distress syndrome), 및 신생아 뇌졸중(neonatal stroke)과 같은 다양한 질환에도 현저한 치료효과가 있음을 보고한바 있다.
한편, 다양한 성장 인자들 예컨대, 뇌 유래 신경 성장인자(brain-derived neurotrophic factor; BDNF), 신경 성장인자(nerve growth factor; NGF), 혈관 내피 성장인자(vascular endothelial growth factor; VEGF), 인슐린 유사 성장인자(insulin-like growth factor; IGF), 및 인터류킨(interleukins) 등은 저산소증(hypoxia) 및/또는 허혈(ischemia) 후의 뇌 손상 복구 능력을 향상시킨다고 알려져 있다(Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, Chen X, Chopp M. Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 2007;27(4): 355-63.). 그러나 심각한 뇌실 내 출혈시 중간엽 줄기세포의 이식에 의한 신경보호 효과를 나타내는 특정 근거리분비 인자(paracrine factor) 및 이의 작용기전은 아직까지 규명되지 않았다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명자들은, 심각한 뇌실 내 출혈 이후 중간엽줄기세포 이식에 의한 신경보호 효과를 매개하는 특정 인자 및 이의 정확한 작용 기전을 확인하였다. 즉, 중간엽줄기세포에 트롬빈을 처리하고, DNA 및 항체 마이크로어레이 분석을 실시하여 세포에서 발현이 증가하는 유전자 및 단백질을 스크리닝한 결과, 중간엽 줄기세포에서 BDNF의 유전자 및 단백질의 발현이 공통적으로 증가하는 것을 확인하고, in vitro 및 in vivo 실험을 통해 BDNF가 존재하거나 또는 siRNA를 이용하여 발현을 저해시켰을 때 중간엽 줄기세포에 의해 나타나는 신경 보호효과를 확인하였는바, 이에 기초하여 본 발명을 완성하였다.
이에, 본 발명은 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 줄기세포의 신경성장인자 유전자 또는 단백질의 발현 정도를 측정하여 비교하는 단계를 포함하는, 줄기세포의 뇌혈관 질환 치료 활성능을 생체외에서 판별할 수 있는 방법을 제공하는 것을 다른 목적으로 한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은, 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법을 제공한다.
본 발명의 일 구현예에 있어서, 상기 방법은 하기의 단계를 포함하는 것을 특징으로 한다.
(a) 줄기세포 배양 후 트롬빈을 처리하는 단계;
(b) 상기 단계 (a)의 배양액에서 신경성장인자의 농도를 측정하는 단계; 및
(c) 상기 측정된 농도에 근거하여 신경세포 보호능력을 확인하는 단계.
본 발명의 다른 구현예에 있어서, 상기 신경세포 보호능력의 확인은, 상기 측정된 신경성장인자의 농도가 20pg/ml 이상일 경우 고효능인 것으로 판정하는 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 신경세포 보호능력의 확인은, 상기 측정된 신경성장인자의 농도가 40pg/ml 이상일 경우 고효능인 것으로 판정하는 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 단계 (a)의 트롬빈은 배지 내에 1-1000 unit/ml 농도로 포함되는 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 신경성장인자는 BDNF(brain-derived neurotrophic factor)인 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 뇌혈관 질환은 신생아 뇌실내 출혈(IVH)인 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 고효능은 신경세포 보호능인 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 줄기세포는 중간엽 줄기세포, 인간 조직 유래 중간엽 기질세포(mesenchymal stromal cell), 인간 조직 유래 중간엽 줄기세포, 다분화능 줄기세포 및 양막상피세포로 구성된 군에서 선택되는 줄기세포인 것을 특징으로 한다.
본 발명의 또 다른 구현예에 있어서, 상기 중간엽 줄기세포는 제대, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 또는 태반에서 유래된 것임을 특징으로 한다.
또한, 본 발명은 줄기세포의 신경성장인자 유전자 또는 단백질의 발현 정도를 측정하여 비교하는 단계를 포함하는, 줄기세포의 뇌혈관 질환 치료 활성능을 생체외에서 판별할 수 있는 방법을 제공한다.
또한, 본 발명은 상기 방법에 의해 선별된, 뇌혈관 질환의 치료를 위한 고효능 줄기세포를 제공한다.
또한, 본 발명은 상기 고효능 줄기세포를 함유하는, 뇌혈관 질환 치료용 약학 조성물을 제공한다.
본 발명에 의하면, 중간엽 줄기세포에 의해 분비된 BDNF는 세포사멸, 염증, 성상교세포증, 및 출혈 후 뇌수종 생성 억제효과를 매개하고, 뇌실 내 출혈 후 수초화 개선에 매우 중요한 역할을 한다.
따라서, 본 발명은 BDNF와 같은 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법을 제공함으로써, 신생아 뇌실내 출혈을 포함하는 다양한 뇌혈관 질환의 치료에 유용하게 이용될 수 있다.
도 1은, 트롬빈 처리 후 중간엽 줄기세포의 유전자 및 단백질 발현 프로파일 변화를 분석한 결과로서, 도 1a는 증가된 유전자 및 단백질 결과이고, 도 1b는 각 그룹에서의 세포 생존율 확인 결과이며, 도 1c는 중간엽 줄기세포에서 BDNF 발현을 확인한 결과이다.
도 2는, 뇌실내 출혈이 유발된 대조군(IC), 일반 중간엽 줄기세포 이식 그룹(IM), scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont), BDNF의 발현이 저해된 중간엽 줄기세포가 이식된 그룹(IM-bdnf-kd)에 대하여, 뇌실 확장 정도를 비교 분석한 결과로서, 도 2a는 뇌 MRI 결과이고, 도 2b는 volume/전체 뇌 volume 비율로 계산한 결과이다.
도 3은, 뇌실내 출혈이 유발된 대조군(IC), 일반 중간엽 줄기세포 이식 그룹(IM), scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont), BDNF의 발현이 저해된 중간엽 줄기세포가 이식된 그룹(IM-bdnf-kd)에 대하여, 감각운동 기능을 비교평가한 결과로서, 도 3a는 음성 주지성(negative geotaxis) 평가 결과이고, 도 3b는 로타로드(rotarod) 평가결과이다.
도 4는, 뇌실내 출혈이 유발된 대조군(IC), 일반 중간엽 줄기세포 이식 그룹(IM), scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont), BDNF의 발현이 저해된 중간엽 줄기세포가 이식된 그룹(IM-bdnf-kd)에 대하여, 인간 및 백서의 BDNF 발현수준을 비교분석한 결과이다.
도 5는, 뇌실내 출혈이 유발된 대조군(IC), 일반 중간엽 줄기세포 이식 그룹(IM), scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont), BDNF의 발현이 저해된 중간엽 줄기세포가 이식된 그룹(IM-bdnf-kd)에 대하여, 수초화, 세포사멸, 반응성 아교화를 비교분석한 결과로서, 도 5a는 면역형광염색의 현미경 사진이고, 도 5b는 웨스턴 블롯 결과이고, 도 5c는 면역형광염색 결과를 그래프로 나타낸 것이고, 5d는 웨스턴 블롯 결과를 그래프로 나타낸 것이다.
도 6은, 뇌실내 출혈이 유발된 대조군(IC), 일반 중간엽 줄기세포 이식 그룹(IM), scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont), BDNF의 발현이 저해된 중간엽 줄기세포가 이식된 그룹(IM-bdnf-kd)에 대하여, 뇌실 주변 조직의 염증화를 비교분석한 결과로서, 도 6a는 면역형광염색 현미경 사진이고, 도 6b는 ED-1-positive 세포 수 측정 결과이고, 도 6c는 IL-1α, IL-1β, IL-6, 및 TNF-α의 수준을 확인한 결과이다.
도 7은, 줄기세포 source 별/ lot 별 BDNF level 분석 결과이다.
본 발명은 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법을 제공한다. 본 발명에서, 상기 고효능 줄기세포 선별방법은 (a) 줄기세포 배양 후 트롬빈을 처리하는 단계; (b) 상기 단계 (a)의 배양액에서 신경성장인자의 농도를 측정하는 단계; 및 (c) 상기 측정된 농도에 근거하여 신경세포 보호능력을 확인하는 단계를 포함할 수 있다.
본 발명에서 사용되는 용어, "뇌혈관 질환"은 뇌의 정상적인 혈액공급 장애에 의해 발생하는 신경 질환(neurologic deficit)으로서, 본 발명에 있어서 뇌혈관 질환은 바람직하게는 뇌실내 출혈(IVH)을 의미한다.
본 발명에서 사용되는 용어, "고효능"이란 줄기세포의 활성 또는 질환에 대한 치료 활성이 유의적으로 뛰어남을 모두 포함하는 것으로서, 바람직하게는 신경세포 보호능이 유의적으로 뛰어난 것을 의미한다.
본 발명에서, 고효능 줄기세포의 선별은 신경성장인자의 농도가 20pg/ml 이상일 경우, 보다 바람직하게는 40pg/ml 이상일 경우 고효능인 것으로 판정할 수 있다.
본 발명에서, 성장인자는 바람직하게는 BDNF(brain-derived neurotrophic factor)이다.
본 발명에서, 줄기세포는 중간엽 줄기세포, 인간 조직 유래 중간엽 기질세포(mesenchymal stromal cell), 인간 조직 유래 중간엽 줄기세포, 다분화능 줄기세포 및 양막상피세포로 구성된 군에서 선택되는 줄기세포일 수 있으며, 중간엽 줄기세포는 제대, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 또는 태반에서 유래된 것일 수 있으나, 이것으로 제한되는 것은 아니다.
중간엽 줄기세포(Mesenchymal stem cell; MSC) 이식은 신생아에서 재생에 의한 기작 보다는 근거리분비(paracrine)를 통해 심각한 뇌실 내 출혈(intraventricular hemorrhage; IVH)에 의한 뇌손상을 보호한다. 그러나 상기 근거리분비가 어떠한 작용을 하는지에 대해서는 명확하게 알려진 바가 없다.
본 발명자들은 심각한 뇌실 내 출혈 이후 중간엽 줄기세포 이식에 의한 신경보호 효과를 매개하는 특정 인자 및 이의 정확한 작용 기전을 확인한 결과, 중간엽 줄기세포에서 BDNF의 유전자 및 단백질의 발현이 공통적으로 증가하는 것을 확인하고, in vitro 및 in vivo 실험을 통해 BDNF가 존재하거나 또는 siRNA를 이용하여 발현을 저해시켰을 때 중간엽 줄기세포에 의해 나타나는 신경 보호효과의 차이를 확인하였다.
구체적으로, 본 발명의 일 실시예에서는, 섬유아세포(fibroblasts) 및 중간엽 줄기세포에 트롬빈을 처리한 후 DNA 및 항체 마이크로어레이를 실시한 결과 섬유아세포에 비하여 중간엽 줄기세포에서 뇌 유래 신경 성장인자(brain-derived neurotrophic factor; BDNF)의 현저한 발현 증가를 확인하였다(실시예 2 참조).
본 발명의 다른 실시예에서는, 인간 BDNF에 특이적인 siRNA를 중간엽 줄기세포에 트랜스펙션하여 세포 내 BDNF의 발현을 저해시켰다. BDNF가 존재하거나 또는 발현이 저해된 상태에서 중간엽 줄기세포의 치료효과를 검증하기 위하여 트롬빈이 처리된 백서의 신경세포를 이용한 in vitro 실험을 진행하였고, 또한 갓 태어난 SD 백서(Sprague-Dawley rats)를 이용하여 in vivo 실험을 실시하였다. 출생 4일째의 백서에 200 μL 혈액을 투여하여 뇌실 내 출혈을 유도하고, 출생 6일째에 뇌실 내로 1×105 cells의 중간엽 줄기세포를 이식하였다.
in vitro 실험 결과, BDNF siRNA를 이용해 BDNF의 발현을 저해시킨 경우에는 트롬빈에 의해 유도된 신경세포 사멸에 대한 중간엽 줄기세포의 사멸 억제효과가 나타나지 않는 것을 확인하였다. in vivo 실험 결과를 통해서도 BDNF 발현이 저해된 경우에는 출혈 후 뇌수종 완화, 행동 테스트 수행능력 손상 완화, 성상교세포증(astrogliosis) 증가의 감소, TUNEL, ED-1 염색세포 수, 및 염증성 사이토카인 증가 억제, 및 수초 단백질 발현감소 증가와 같은 뇌실 내 출혈에 의한 뇌손상 치료효과가 나타나지 않음을 확인하였다(실시예 3 내지 7 참조).
본 발명의 또 다른 실시예에서는, 각 source 별 BDNF level 차이 및 이에 따른 세포 생존율 차이를 확인한 결과, 각 source 별로 lot 별로 BDNF의 분비 정도가 각기 다른 형태를 보이며, 분비하는 BDNF level에 따라서 세포 생존율이 증가함을 확인하였다(실시예 8 참조).
상기 실시예의 결과들은 이식된 중간엽 줄기세포에 의해 분비되는 BDNF가 신경 보호효과를 나타내는 매우 중요한 근거리분비 인자이며, BDNF가 뇌실 내 출혈에 있어서 가장 좋은 신경보호 효과를 가지는 중간엽 줄기세포를 선별하기 위한 바이오마커로써 이용될 수 있음을 제시한다.
이에, 본 발명의 다른 양태로서, 본 발명은 줄기세포의 신경성장인자 유전자 또는 단백질의 발현 정도를 측정하여 비교하는 단계를 포함하는, 줄기세포의 뇌혈관 질환 치료 활성능을 생체외에서 판별할 수 있는 방법을 제공한다.
본 발명의 또 다른 양태로서, 본 발명은 상기 방법에 의하여 선별된 고효능 줄기세포 및 상기 줄기세포를 함유하는 뇌혈관 질환 치료용 약학 조성물을 제공한다.
본 발명의 또 다른 양태로서, 본 발명은 상기 방법에 의하여 선별된 고효능 줄기세포를 개체에 이식함으로써 뇌혈관 질환을 치료하는 방법을 제공한다.
본 발명에서 "개체"란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는 인간 또는 비-인간인 영장류, 생쥐(mouse), 쥐(rat), 개, 고양이, 말, 및 소 등의 포유류를 의미한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[ 실시예 ]
실시예 1: 실험방법
1-1. 세포 준비
제대혈 유래 중간엽 줄기세포는 메디포스트(Medipost Co., Ltd., Seoul, Korea)에서 제공받았고, 인간 섬유아세포(fibroblasts)인 MRC-5(Korean Cell Line Bank No.10171) 세포주는 한국세포주은행(Korean CellLine Bank, Seoul, Korea)에서 구입하여 사용하였다.
1-2. DNA 및 항체 마이크로어레이 분석(DNA and antibody microarray analyses)
전사 및 번역 수준에서 신경 보호효과를 나타내는 인자를 찾기 위해, 중간엽 줄기세포 내의 유전자 및 단백질의 발현 변화를 확인하고자 하였다. 중간엽 줄기세포 및 섬유아세포인 MRC-5 세포에 트롬빈을 6시간 동안 처리한 후 분석을 실시하였고, RNA 분석은 anIllumina HumanHT-12 v4 Expression BeadChip을 이용하였으며, 단백질 분석은 항체 어레이 칩(antibody array chip)을 이용하였다.
1-3. BDNF siRNA 트랜스펙션(Transfection)
BDNF siRNA(sc-42121) 및 scrambled siRNA(sc-37007)는 각각 Santa Cruz Biotechnology에서 구입하였으며, 제조사의 프로토콜에 준하여 상기 각각의 siRNA를 Oligofectamine(Invitrogen, Carlsbad, CA, USA)을 이용해 중간엽 줄기세포에 트랜스펙션하였다. 모든 분석 또는 중간엽 줄기세포 이식은 siRNA를 중간엽 줄기세포에 24시간 동안 트랜스펙션 한 후 실시하였다. 트랜스펙션 후 BDNF siRNA에 의해 BDNF의 발현이 저해되었는지 확인하기 위하여, 중간엽 줄기세포의 배양배지를 회수하여 BDNF 발현 수준을 측정하였다. 그 결과, 트랜스펙션 후 24시간에 BDNF 발현이 트랜스펙션하지 않은 중간엽 줄기세포의 27%까지 감소하였다.
1-4. 트롬빈 처리 및 세포 배양(Thrombin exposure in vitro cell culture)
세포배양은 E18.5의 미발달 마우스로부터 분리한 뇌 신경세포를 일차배양하고, 5×103 cells/well의 신경세포를 96웰 플레이트에 씨딩한 후 각 웰 당 B-27 보충제(GIBCO, Gaithersburg, MD, USA)가 포함된 100 μl의 Nerurobasal medium을 이용해 37℃에서 24시간 동안 배양하였다.
이후 in vitro에서 출혈로 인한 신경손상을 유도하기 위하여, 세포에 40 U의 트롬빈(Reyon pharm. Co. Ltd, Seoul, South Korea)을 처리하였으며, 트롬빈이 처리된 신경세포를 완전배지(complete medium)에서 단독으로 배양하거나, 또는 트랜스펙션하지 않은 제대혈 유래 중간엽 줄기세포(1×103), scrambled siRNA를 트랜스펙션한 중간엽 줄기세포, 또는 BDNF siRNA를 트랜스펙션한 중간엽 줄기세포를 24시간 동안 위쪽 챔버에 씨딩하여 공동 배양하였다. 이후 트롬빈이 처리된 신경세포와 트랜스펙션하지 않은 중간엽 줄기세포를 공동 배양한 웰에 BDNF 차단 항체(BDNF-blocking antibody)(Abcam, Cambridge, MA, USA) 또는 조절 면역글로불린(control immunoglobulin)을 첨가하였다. 또한, BDNF siRNA를 트랜스펙션한 중간엽 줄기세포와 공동 배양한 신경세포에는 저농도(100 pg/ml) 또는 고농도(1 ng/ml)의 재조합 인간 BDNF(R&D Systems, Minneapolis, MN, USA)를 첨가하였다.
한편, 세포 생존능을 측정하기 위해, 제조사의 프로토콜에 따라 colorimetric MTT [3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium] assay (Dojindo Molecular Technologies Inc., Gaithersburg, MD, USA)를 수행하였다. 상대적인 세포 생존능은 세포가 없는 경우의 결과를 0%, 아무것도 처리하지 않은 세포의 결과 값을 100%로 하여 보정하였다. 또한, DNA 및 항체 마이크로어레이를 통해 중간엽 줄기세포 및 섬유아세포 사이의 유전자 및 단백질 발현을 비교분석하였다.
1-5. 동물모델
모든 실험 프로토콜은 삼성생명과학연구소의 동물실험윤리위원회에 승인을 받은 후 진행하였다. 실험동물로는 갓 출생한 SD 백서(Sprague-Dawley rats)를 이용하였으며, 출생 후 4일째(P4)부터 32일(P32)까지 실험을 진행하였다. P4의 백서에서 뇌실 내 출혈을 유도하기 위하여, 할로탄(halothane)과 2:1 비율의 아산화질소(nitrous oxide):산소를 혼합한 마취제로 백서를 마취시킨 후 어미 백서로부터 혈액 200 μl를 채취하여 100 μl씩 양측 뇌실에 주입하였다. 뇌실 내 출혈을 유도하고 1일 후인 P5 백서에서 뇌실 내 출혈 정도를 확인하기 위해 뇌 MRI(magnetic resonance imaging)를 실시하였으며, 뇌실 내 출혈이 거의 유도되지 않거나 육안으로 관찰되지 않는 백서는 분석에서 제외하였다.
이후 P6에 뇌실 내 출혈이 유발된 백서를 무작위로 선정하여 다음과 같은 5개 그룹으로 분류하였다: 정상 대조군(NC, n=16), 뇌실 내 출혈이 유발된 대조군(IC, n=18), 일반 중간엽 줄기세포 이식 그룹(IM, n=16), scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont, n= 17), 및 BDNF siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-kd, n=17). 실험을 진행하는 동안, 뇌실 내 출혈을 유도하지 않은 정상 대조군 그룹(NC=16)의 백서들은 실험 마지막 날인 P32까지 모두 생존한 반면, 뇌실 내 출혈을 유발시킨 각 그룹에서는 일부 백서들이 사망하여 이들을 제외시키고 실험을 진행하였다(IC=4, IM=1, IM-cont=2, IM-kd=5). 중간엽 줄기세포 이식을 위해 IM, IM-cont, 및 IM-kd 그룹의 백서에게 각각 일반 중간엽 줄기세포, scrambled siRNA를 트랜스펙션한 중간엽 줄기세포, 또는 BDNF siRNA를 트랜스펙션한 중간엽 줄기세포를 10 μl의 일반 식염수와 함께 1×105개씩 오른쪽 뇌실 내로 투여하였다. 중간엽 줄기세포를 이식하지 않는 IC 그룹의 백서에게는 동일한 부피의 식염수를 투여하였다. 이후 P11 및 P32일 째에 각 그룹에 대한 뇌 MRI 이미지 결과를 얻었으며, P32일에 모든 그룹의 백서들을 안락사 시킨 후 뇌 조직샘플을 회수하였다.
한편, 백서의 감각운동 신경을 평가하기 위한 행동평가로서, 종래 공지된 방법(Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 2013;44(2):497-504; Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS One 2015;10(7):e0132919)에 따라 음성 주지성(negative geotaxis) 평가, 및 로타로드(rotarod) 평가를 실시하였다.
1-6. TUNEL assay
세포사멸 여부를 분석하기 위해 뇌실 주변 백질 조직을 이용해 종래 공지된 방법(Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 2013;44(2):497-504; Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats. PLoS One 2015;10(7):e0132919)에 따라 TUNEL 분석을 실시하였다.
1-7. 면역조직화학염색법(Immunohistochemistry)
반응성 아교화(reactive gliosis), 반응성 미아교세포(reactive microglia), 및 수초화(myelination) 정도를 분석하기 위해, 조직화학염색법을 통해 뇌실 주변 조직에서 신경 특이적인 GFAP(glial fibrillary acidic protein), ED-1, 및 MBP(myelin basic protein)의 발현수준을 각각 평가하였다.
보다 구체적으로, 탈파라핀화된 4μm 두께의 뇌 관상부분(coronal sections)을 1차 항체와 배양하였고, 이때 사용된 1차 항체는 다음과 같다: GFAP (rabbit polyclonal; 1:1,000 dilution, Dako, Glostrup, Denmark), MBP (rabbit polyclonal; 1:1,000 dilution; Abcam), ED-1 (mouse monoclonal; 1:100 dilution; Millipore)
이후, 각 뇌에서 3개의 관상부분(coronal sections)(+0.95 mm to -0.11 mm/bregma)을 염색하고, 각 부분에서 뇌량과 미상핵을 포함한 뇌실 주위 영역에서 3 개의 무작위 중첩되지 않은 필드를 평가하였다. GFAP 또는 MBP 염색의 면역 형광 강도는 ImageJ 소프트웨어 [National Institutes of Health (NIH), Bethesda, MD, USA]를 사용하여 무작위로 선택된 필드에서 측정하였고, ED-1+ 세포의 수도 무작위로 선택된 필드에서 계수되었다.
1-8. 효소 결합 면역 흡착법(Enzyme-linked immunosorbent assay; ELISA)
염증성 사이토카인인 IL-1α, IL-1β, IL-6, 및 TNF-α의 발현수준을 측정하기 위해, 뇌실 주변 조직의 균질 현탁액을 이용해 ELISA를 수행하였다.
보다 구체적으로, 뇌실 주위 영역에서 확보한 뇌 조직의 냉동 샘플을 균질화하고 4℃에서 20 분간 8,000 × g으로 원심 분리 하였다. 상등액에서 단백질 함량은 소 혈청 알부민 (BSA, Sigma-Aldrich, St. Louis, MO, USA)을 표준 용액으로 사용하여 Bradford 방법을 사용하여 측정 하였다. IL-1α, IL-1β, IL-6, 및 TNF-α를 포함하는 염증성 사이토카인의 수준은 뇌실 주변 조직의 균질 현탁액을 이용해 Milliplex MAP ELISA Kit로 측정을 하였다. 인간 및 백서-특이적 BDNF는 제조자의 프로토콜에 따라 ELISA 키트 (Quantikine ELISA Kit, R & D Systems)로 측정 하였다.
1-9. 통계분석(Statistical analyses)
샘플 크기 측정은 이전 연구 결과인 power 0.8 및 Type I error probability 0.05에 따라 P32에 뇌실 부피차이를 기반으로 하였다. 실험데이터는 평균 ± 표준편차로 표현하였다.
마이크로어레이 데이터는 다중 비교를 위해 Benjamini-Hochberg correction을 가지는 ANOVA(GeneSpring, Agilent Technologies, Santa Clara, CA, USA) 프로그램을 이용하여 분석하였다. 연속적인 가변성을 위해, 각 그룹들 사이의 통계적 비교는 one-way ANOVA 및 Tukey's post hoc 분석을 사용하여 수행하였다. 시간에 따른 변화 분석을 위해서는 반복적 측정을 위해 univariate general linear model을 이용해 Tukey's post hoc 비교를 수행하였다. 모든 데이터는 SPSS version 18.0(IBM, Chicago, IL, USA)을 이용해 분석하였고, P < 0.05의 경우 통계적으로 유의한 차이가 존재하는 것으로 판단하였다.
실시예 2: 트롬빈 처리 후 중간엽 줄기세포의 유전자 및 단백질 발현 프로파일 변화 분석
트롬빈을 처리한 후 중간엽 줄기세포의 신경 보호효과와 관련된 유전자 및 단백질의 발현 변화를 확인하기 위하여 DNA 및 항체 마이크로어레이 분석을 실시하였다.
그 결과, 도 1a에 나타낸 바와 같이, 인간 섬유아세포와 비교하였을 때 중간엽 줄기세포에서 DNA 마이크로어레이 분석결과 46개의 유전자, 및 항체 마이크로어레이 분석 결과 12개 단백질의 발현수준이 현저히 증가함을 확인하였다. 그 중에서도 발현수준이 가장 많이 증가한 상위 10개의 유전자 및 단백질을 각각 분석한 결과, BDNF가 유전자 및 단백질 수준에서 발현이 공통적으로 증가한 것을 확인하였다.
실시예 3: in vitro에서 중간엽 줄기세포의 신경 보호효과 검증
중간엽 줄기세포에 의한 신경 보호효과를 in vitro에서 검증하기 위해, 백서에서 분리하여 일차 배양한 신경세포에 트롬빈을 처리한 후 각각의 중간엽 줄기세포에 의한 보호효과를 평가하였다.
그 결과, 도 1b에 나타낸 바와 같이, 40 U의 트롬빈을 처리한 신경세포를 24시간 동안 단독으로 배양한 경우 및 섬유아세포와 공동배양한 경우에는 세포 생존율이 현저히 감소하는 것을 확인하였다. 이에 반하여, 트롬빈을 처리한 신경세포를 인간 제대혈 중간엽 줄기세포와 공동배양한 경우에는 신경세포 사멸이 현저히 감소하였다. 이러한 결과는 신경세포에 대한 보호효과가 중간엽 줄기세포에 의한 특이적인 효과임을 의미한다.
더욱이, 중간엽 줄기세포에 의한 신경세포 사멸 억제효과는 일반 중간엽 줄기세포(Naive MSC) 또는 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포와 공동배양한 경우에는 관찰되었으나, BDNF siRNA를 이용하여 BDNF의 발현을 저해시킨 중간엽 줄기세포와 공동배양한 경우에는 세포 사멸 억제효과가 나타나지 않았다. 또한, 트롬빈 매개 신경세포 사멸에 대한 중간엽 줄기세포의 세포 보호효과는 BDNF 중화 항체(BDNF-neutralizing antibody)를 처리한 경우에도 나타나지 않는 것을 확인하였다. 상기 결과들은 이식된 중간엽 줄기세포에 의해 분비되는 BDNF가 뇌실 내 출혈 후 중간엽 줄기세포에 의한 신경 보호효과를 매개하는데 중요한 역할을 한다는 것을 의미한다.
이에 더하여, 트롬빈이 처리된 신경세포를 BDNF의 발현이 저해된 중간엽 줄기세포와 공동배양하는 경우에 인간 재조합 BDNF를 다양한 농도(25, 50, 100, 150, 200 pg)로 처리한 결과, 100 pg 이상의 농도로 처리한 경우 중간엽 줄기세포의 신경 보호효과가 복구되는 것을 확인하였고, 이러한 농도 의존적 결과는 원래의 중간엽 줄기세포 내에서 발현되는 BDNF 농도(125 ± 16 pg/ml)와 상응하는 결과임을 알 수 있었다(도 1c).
실시예 4: 뇌 MRI 분석
뇌실 내 출혈을 유발시킨 후 1, 7, 및 28일(P5, P11, 및 P32) 째의 각 그룹 백서의 뇌 MRI 촬영을 하였고, 그 결과를 도 2a에 나타내었다.
P5, P11, 및 P32에 각각 전체 뇌실의 volume/전체 뇌 volume 비율을 계산하여 뇌실 확장 정도를 측정한 결과, 도 2b에 나타낸 바와 같이, P5에는 모든 그룹에서 별다른 차이가 나타나지 않은 반면, P11 및 P32에는 뇌실 내 출혈이 유발된 대조군(IC) 및 BDNF의 발현이 저해된 중간엽 줄기세포가 이식된 그룹(IM-bdnf-kd)의 경우 뇌실 확장 정도가 현저히 증가하였다. 이에 반하여, 일반 중간엽 줄기세포 이식 그룹(IM) 또는 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont)의 경우에는 뇌실 확장 정도가 유의하게 감소하는 것을 확인하였다.
실시예 5: 감각 운동 행동평가 분석
감각운동 기능을 평가하기 위해, 음성 주지성(negative geotaxis) 평가 및 로타로드(rotarod) 평가를 수행하였다.
먼저, P25 및 P32에 음성 주지성 평가를 수행하였으며, 이는 종래 공지된 방법에 따라 경사판 위에 백서의 머리가 하방을 향하도록 놓아두고, 상기 머리가 경사면 뒤쪽을 향하게 되는데 소요되는 시간을 기록함으로써 분석되었다. 그 결과, 도 3a에 나타낸 바와 같이, 뇌실 내 출혈이 유발된 대조군(IC)의 경우, 정상 대조군에 비해 심각한 운동 기능 손상이 관찰된 반면, 일반 중간엽 줄기세포 이식 그룹(IM) 또는 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont)의 경우에는 손상된 운동능력이 현저히 개선된 것을 확인하였다. 또한, BDNF의 발현을 저해시킨 중간엽 줄기세포를 이식한 그룹(IM-bdnf-kd)에서는 운동능력의 개선 효과가 나타나지 않는 것을 확인하였다.
다음으로, P30, P31, 및 P32에 각각 로타로드 평가를 수행하였다. 그 결과, 도 3b에 나타낸 바와 같이, P30에 처음 로타로드 평가를 수행하였을 때는 각 그룹 간의 현저한 차이가 나타나지 않았으나, 정상 대조군(NC)의 경우 P31 및 P32에는 학습 효과로 인해 떨어지는데 걸리는 시간이 현저히 증가한 반면, 뇌실 내 출혈이 유발된 대조군(IC)의 경우에는 P31 및 P32에 막대에서 떨어지는데 걸리는 시간이 정상 대조군에 비해 현저히 짧게 측정되었다. 그러나 일반 중간엽 줄기세포 이식 그룹(IM) 또는 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포 이식 그룹(IM-cont)의 경우에는 손상된 운동기능이 현저히 개선된 것을 확인하였으며, BDNF의 발현을 저해시킨 중간엽 줄기세포를 이식한 그룹(IM-bdnf-kd)에서는 상기와 같은 개선 효과가 나타나지 않는 것을 확인하였다.
실시예 6: BDNF 발현수준, 수초화, 세포사멸, 반응성 아교화 분석
6-1. BDNF 발현수준 분석
중간엽 줄기세포 이식 1일 후인 P7에 각 그룹 백서의 뇌 균질 현탁액에서 인간 BDNF를 측정하였다. 그 결과, 도 4에 나타낸 바와 같이, 일반 중간엽 줄기세포 이식 그룹(IM) 및 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포를 이식한 그룹(IM-cont)에서는 인간 BDNF가 측정된 반면, 뇌실 내 출혈이 유발된 대조군(IC) 및 BDNF의 발현이 저해된 중간엽 줄기세포를 이식한 그룹(IM-bdnf-kd)에서는 BDNF가 측정되지 않았다.
또한, P7에 백서의 BDNF 수준을 측정한 결과, 도 4에 나타낸 바와 같이, 일반 중간엽 줄기세포 이식 그룹(IM) 및 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포를 이식한 그룹(IM-cont)에서는 백서의 BDNF 수준이 뇌실 내 출혈이 유발된 대조군(IC) 및 BDNF 발현이 저해된 중간엽 줄기세포를 이식한 그룹(IM-bdnf-kd)에 비하여 현저히 높게 측정되었으며, 정상 대조군에 비해서도 높은 것을 확인하였다. 이후 중간엽 줄기세포 이식 5일 후인 P11에는 어떠한 그룹에서도 인간 BDNF가 측정되지 않았으며, 일반 중간엽 줄기세포 및 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포를 이식한 그룹에서는 백서의 BDNF 수준이 정상 대조군에 비하여 현저히 증가되어 있음을 확인하였다.
6-2. 수초화 분석
뇌실 주변 조직에서 수초화 정도를 평가하기 위하여, MBP 항체를 이용한 면역염색 및 웨스턴 블롯을 수행하였다.
그 결과, 도 5a 및 도 5b에 나타낸 바와 같이, 뇌실 내 출혈이 유발된 대조군(IC)의 경우 정상 대조군(NC)에 비해 MBP 단백질의 발현이 현저히 감소한 것으로 나타났다. 그러나 이러한 수초화 손상은 일반 중간엽 줄기세포 및 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포를 이식한 그룹(IM 및 IM-cont)의 경우 상당히 개선되어 MBP 발현수준이 증가한 것을 확인하였다. 이에 반하여 BDNF의 발현이 저해된 중간엽 줄기세포를 이식한 경우(IM-bdnf-kd)에는 개선 효과가 나타나지 않는 것을 확인하였다.
6-3. 세포사멸 분석
뇌실 내 출혈 후 세포사멸 정도를 확인하기 위하여, P32에 뇌실 주변 조직을 이용해 TUNEL 분석을 실시하여 TUNEL 시약에 의해 염색된 TUNEL-positive 세포의 수를 측정하였고, 웨스턴 블롯을 통해 caspase-3 발현 정도를 확인하였다.
그 결과, 도 5a 내지 도 5c에 나타낸 바와 같이, 뇌실 내 출혈이 유발된 대조군(IC)의 경우 TUNEL-positive 세포 수 및 caspase-3의 발현이 현저히 증가하였다. 그러나 일반 중간엽 줄기세포 및 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포를 이식한 경우(IM 및 IM-cont)에는 TUNEL-positive 세포 수 및 caspase-3의 발현이 현저히 감소된 것을 확인하였다. 이에 반하여 BDNF의 발현이 저해된 중간엽 줄기세포를 이식한 경우(IM-bdnf-kd)에는 상기와 같은 세포사멸 억제효과가 나타나지 않는 것을 확인하였다.
6-4. 반응성 아교화 분석
뇌실 주변 조직에서의 반응성 아교화는 면역조직화학염색법을 통해 GFAP가 염색된 세포들을 관찰하고, 웨스턴 블롯으로 GFAP 단백질의 발현수준을 측정하여 평가하였다.
그 결과, 도 5a 내지 도 5c에 나타낸 바와 같이, 뇌실 내 출혈이 유발된 대조군(IC)의 경우 GFAP의 염색 정도 및 단백질 발현이 증가하였으나, 일반 중간엽 줄기세포 및 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포를 이식한 경우(IM 및 IM-cont) GFAP의 염색 정도 및 단백질 발현이 감소하는 결과를 확인하였다. 반면 BDNF의 발현이 저해된 중간엽 줄기세포를 이식한 경우(IM-bdnf-kd)에는 상기와 같은 감소효과가 나타나지 않는 것을 확인하였다.
실시예 7: 뇌실 주변 조직의 염증 분석
이식된 중간엽 줄기세포가 뇌실 내 출혈에 의해 유발되는 뇌 염증을 개선시키는지 검증하기 위하여, P32에 뇌실 주변 조직의 균질 현탁액으로부터 염증성 사이토카인인 IL-1α, IL-1β, IL-6, 및 TNF-α의 수준을 측정하였으며, 뇌 관상부분(coronal sections)에서 ED-1-positive 세포 수를 측정하여 분석하였다.
그 결과, 도 6a 내지 도 6c에 나타낸 바와 같이, 뇌실 내 출혈이 유발된 대조군(IC)의 경우 정상 대조군에 비하여 뇌실 주변 뇌 조직에서 ED-1-positive 세포 및 염증성 사이토카인 수준이 현저히 증가함을 확인하였다 그러나, 일반 중간엽 줄기세포 및 scrambled siRNA를 트랜스펙션한 중간엽 줄기세포를 이식한 경우(IM 및 IM-cont)에는 ED-1-positive 세포 및 염증성 사이토카인 수준이 감소하였으며, BDNF의 발현이 저해된 중간엽 줄기세포를 이식한 경우(IM-bdnf-kd)에는 이러한 감소효과가 나타나지 않은 것을 확인하였다.
실시예 8: BDNF level 분석에 의한 고효능 줄기세포 예측/선별
제대혈 유래 중간엽 줄기세포(UCB), 제대 유래 중간엽 줄기세포 (WJ), 지방유래 중간엽 줄기세포(AD)를 각각 lot 2개씩 배양하고 배양액에서 BDNF level을 ELISA로 측정하여 비교한 결과, 도 7의 상단에 나타낸 바와 같이, 각 source 별로 lot 별로 BDNF의 분비 정도가 각기 다른 형태를 보임을 확인하였다.
또한, 마우스 embryo brain으로부터 1차 neuronal culture를 시행한 후 얻어진 신경세포에 트롬빈(40unit)을 4시간 처리하여, 뇌실내 출혈의 in vitro model을 만들었다. 여기에, 각기 다른 BDNF level의 발현을 보이는 중간엽 줄기세포들을 lot별로 처리한 후 세포 생존율(cell survival rate)을 확인한 결과, 도 7의 하단에 나타낸 바와 같이, 각 lot별로 분비하는 BDNF level에 따라서 세포 생존율이 증가함을 확인하였다.
특히, BDNF level이 20pg/ml 이상, 바람직하게는 40pg/ml 이상, 더욱 바람직하게는 60pg/ml 이상일 경우, 신경세포 보호에 대한 고효능 줄기세포로 평가될 수 있다.
이러한 결과는, 줄기세포가 분비하는 BDNF의 특정 수준이, 그 줄기세포의 신경세포 보호능력을 예측하는 지표가 될 수 있음을 의미하는 것이다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명은 BDNF와 같은 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법을 제공함으로써, 신생아 뇌실내 출혈을 포함하는 다양한 뇌혈관 질환의 치료에 유용하게 이용될 수 있다.

Claims (20)

  1. 신경성장인자의 수준을 측정하는 단계를 포함하는, 뇌혈관 질환의 치료를 위한 고효능 줄기세포 선별방법.
  2. 제 1 항에 있어서, 상기 방법은 하기의 단계를 포함하는 것을 특징으로 하는, 선별방법:
    (a) 줄기세포 배양 후 트롬빈을 처리하는 단계;
    (b) 상기 단계 (a)의 배양액에서 신경성장인자의 농도를 측정하는 단계; 및
    (c) 상기 측정된 농도에 근거하여 신경세포 보호능력을 확인하는 단계.
  3. 제 2 항에 있어서, 상기 신경세포 보호능력의 확인은, 상기 측정된 신경성장인자의 농도가 20pg/ml 이상일 경우 고효능인 것으로 판정하는 것을 특징으로 하는, 선별방법.
  4. 제 3 항에 있어서, 상기 신경세포 보호능력의 확인은, 상기 측정된 신경성장인자의 농도가 40pg/ml 이상일 경우 고효능인 것으로 판정하는 것을 특징으로 하는, 선별방법.
  5. 제 2 항에 있어서, 상기 단계 (a)의 트롬빈은 배지내에 1-1000 unit/ml 농도로 포함되는 것을 특징으로 하는, 선별방법.
  6. 제 1 항에 있어서, 상기 신경성장인자는 BDNF(brain-derived neurotrophic factor)인 것을 특징으로 하는, 선별방법.
  7. 제 1 항에 있어서, 상기 뇌혈관 질환은 신생아 뇌실내 출혈(IVH)인 것을 특징으로 하는, 선별방법.
  8. 제 1 항에 있어서, 상기 고효능은 신경세포 보호능인 것을 특징으로 하는, 선별방법.
  9. 제 1 항에 있어서, 상기 줄기세포는 중간엽 줄기세포, 인간 조직 유래 중간엽 기질세포(mesenchymal stromal cell), 인간 조직 유래 중간엽 줄기세포, 다분화능 줄기세포 및 양막상피세포로 구성된 군에서 선택되는 줄기세포인 것을 특징으로 하는, 선별방법.
  10. 제 9 항에 있어서, 상기 중간엽 줄기세포는 제대, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 또는 태반에서 유래된 것임을 특징으로 하는, 선별방법.
  11. 줄기세포의 뇌혈관 질환 치료 활성능을 생체외에서 판별할 수 있는 방법으로, 상기 줄기세포의 신경성장인자 유전자 또는 단백질의 발현 정도를 측정하여 비교하는 단계를 포함하는 것을 특징으로 하는, 방법.
  12. 제 11 항에 있어서, 상기 줄기세포는 트롬빈이 처리된 줄기세포인 것을 특징으로 하는, 방법.
  13. 제 11 항에 있어서, 상기 신경성장인자는 BDNF(brain-derived neurotrophic factor)인 것을 특징으로 하는, 방법.
  14. 제 11 항에 있어서, 상기 뇌혈관 질환은 신생아 뇌실내 출혈(IVH)인 것을 특징으로 하는, 방법.
  15. 제 11 항에 있어서, 상기 줄기세포는 중간엽 줄기세포, 인간 조직 유래 중간엽 기질세포(mesenchymal stromal cell), 인간 조직 유래 중간엽 줄기세포, 다분화능 줄기세포 및 양막상피세포로 구성된 군에서 선택되는 줄기세포인 것을 특징으로 하는, 방법.
  16. 제 15 항에 있어서, 상기 중간엽 줄기세포는 제대, 제대혈, 골수, 지방, 근육, 신경, 피부, 양막 또는 태반에서 유래된 것임을 특징으로 하는, 방법.
  17. 제 1 항의 방법에 의해 선별된, 뇌혈관 질환의 치료를 위한 고효능 줄기세포.
  18. 제 17 항에 있어서, 상기 뇌혈관 질환은 신생아 뇌실내 출혈(IVH)인 것을 특징으로 하는, 고효능 줄기세포.
  19. 제 18 항의 고효능 줄기세포를 함유하는, 뇌혈관 질환 치료용 약학 조성물.
  20. 제 19 항에 있어서, 상기 뇌혈관 질환은 신생아 뇌실내 출혈(IVH)인 것을 특징으로 하는, 약학 조성물.
PCT/KR2017/003469 2016-04-27 2017-03-30 미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법 WO2017188614A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/086,781 US20190070223A1 (en) 2016-04-27 2017-03-30 Selection Method Of Highly Active Stem Cell For Treatment Of Intraventricular Hemorrhage In Preterm Infant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0051654 2016-04-27
KR20160051654 2016-04-27
KR1020170040158A KR20170122650A (ko) 2016-04-27 2017-03-29 미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법
KR10-2017-0040158 2017-03-29

Publications (2)

Publication Number Publication Date
WO2017188614A1 true WO2017188614A1 (ko) 2017-11-02
WO2017188614A9 WO2017188614A9 (ko) 2018-03-08

Family

ID=60159887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003469 WO2017188614A1 (ko) 2016-04-27 2017-03-30 미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법

Country Status (1)

Country Link
WO (1) WO2017188614A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110125469A (ko) * 2010-05-13 2011-11-21 사회복지법인 삼성생명공익재단 신경성장인자 전처리를 통한 줄기세포의 신경성장인자 분비 촉진 방법
KR20140032745A (ko) * 2012-09-07 2014-03-17 사회복지법인 삼성생명공익재단 중간엽 줄기세포를 포함하는 미숙아 뇌실 내 출혈 치료용 조성물
KR20150069554A (ko) * 2013-12-12 2015-06-23 사회복지법인 삼성생명공익재단 줄기세포 유래 엑소좀을 유효성분으로 포함하는 뇌혈관 질환 치료용 약학적 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110125469A (ko) * 2010-05-13 2011-11-21 사회복지법인 삼성생명공익재단 신경성장인자 전처리를 통한 줄기세포의 신경성장인자 분비 촉진 방법
KR20140032745A (ko) * 2012-09-07 2014-03-17 사회복지법인 삼성생명공익재단 중간엽 줄기세포를 포함하는 미숙아 뇌실 내 출혈 치료용 조성물
KR20150069554A (ko) * 2013-12-12 2015-06-23 사회복지법인 삼성생명공익재단 줄기세포 유래 엑소좀을 유효성분으로 포함하는 뇌혈관 질환 치료용 약학적 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AHN, SO YOON ET AL.: "Pivotal Role of Brain-derived Neurotrophic Factor Secreted by Mesenchymal Stem Cells in Severe Intraventricular Hemorrhage in Newborn Rats", CELL TRANSPLANTATION, (E-PUB., vol. 26, no. 1, 16 August 2016 (2016-08-16), pages 145 - 156, XP055446856 *
AN, SO YOON: "Brain-derived Neurotrophic Factor Mediates the Protective Effect of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells on Intraventricular Hemorrhage in Rat Pups", 2015 PEDIATRICS, 65TH FALL CONFERENCE AND 78TH TRAINING LECTURE, 23 October 2015 (2015-10-23), XP055487331 *
WANG, SU-PING ET AL.: "Therapeutic Effect of Mesenchymal Stem Cells in Rats with Intracerebral Hemorrhage: Reduced Apoptosis and Enhanced Neuroprotection (O-047)", MOLECULAR MEDICINE REPORTS, vol. 6, no. 4, October 2012 (2012-10-01), pages 848 - 854, XP055446848 *

Also Published As

Publication number Publication date
WO2017188614A9 (ko) 2018-03-08

Similar Documents

Publication Publication Date Title
Kelley et al. Kir4. 1-dependent astrocyte-fast motor neuron interactions are required for peak strength
Priya et al. Activity regulates cell death within cortical interneurons through a calcineurin-dependent mechanism
Danchuk et al. Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-α-induced protein 6
Hatanaka et al. Distinct migratory behavior of early‐and late‐born neurons derived from the cortical ventricular zone
KR20190016526A (ko) 미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법
Paw et al. Responsiveness of human bronchial fibroblasts and epithelial cells from asthmatic and non-asthmatic donors to the transforming growth factor-β 1 in epithelial-mesenchymal trophic unit model
Kunda et al. Lipopolysaccharides and trophic factors regulate the LPS receptor complex in nodose and trigeminal neurons
Lacmann et al. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro
Habibi et al. Expression and function of FGF9 in the hypertrophied ligamentum flavum of lumbar spinal stenosis patients
WO2017188614A1 (ko) 미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법
Barnea et al. Evidence for regulated expression of neuropeptide Y gene by rat and human cultured astrocytes
Corvaglia et al. ProNGF is a cell-type-specific mitogen for adult hippocampal and for induced neural stem cells
WO2011065661A2 (ko) 중간엽 줄기세포를 dkk-1 또는 sfrp-1을 이용하여 연골세포로 분화시키는 방법
Zeng et al. TNFα/TNFR1 signal induces excessive senescence of decidua stromal cells in recurrent pregnancy loss
Brady et al. Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids
US20040115808A1 (en) Enteric nervous system derived stem and progenitor cells and uses thereof
Zou et al. The function of FUS in neurodevelopment revealed by the brain and spinal cord organoids
KR20200132797A (ko) 미숙아 뇌실내 출혈 치료를 위한 고효능 줄기세포 선별법
White et al. Proliferation of guinea pig tracheal epithelial cells in coculture with rat dorsal root ganglion neural cells
Horvath et al. Cognitive rejuvenation in old rats by hippocampal oskm gene therapy
WO2016117765A1 (ko) 아토피 피부염 유사 3차원 피부조직 모델 및 이를 이용한 아토피 피부염 치료제의 스크리닝 방법
WO2021006707A1 (ko) 염증성 신경 질환의 치료제로서 sgk1 저해제의 용도
Wang et al. Proteomic profiles and the function of RBP4 in endometrium during embryo implantation phases in pigs
WO2020231221A1 (ko) G-CSF 및 IL-1β를 이용한 호중구성 폐 염증질환의 진단, 예방 또는 치료용 조성물
WO2022139442A1 (ko) 고품질의 줄기세포 선별용 마커, 및 이를 이용한 고품질 줄기세포 선별 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789799

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789799

Country of ref document: EP

Kind code of ref document: A1