WO2017188355A1 - Establishment of synthesis method for cysteine with isotopically labeled sulfur atom and cysteine derivative - Google Patents

Establishment of synthesis method for cysteine with isotopically labeled sulfur atom and cysteine derivative Download PDF

Info

Publication number
WO2017188355A1
WO2017188355A1 PCT/JP2017/016654 JP2017016654W WO2017188355A1 WO 2017188355 A1 WO2017188355 A1 WO 2017188355A1 JP 2017016654 W JP2017016654 W JP 2017016654W WO 2017188355 A1 WO2017188355 A1 WO 2017188355A1
Authority
WO
WIPO (PCT)
Prior art keywords
cysteine
sulfur atom
isotope
labeled
serine
Prior art date
Application number
PCT/JP2017/016654
Other languages
French (fr)
Japanese (ja)
Inventor
澤 智裕
勝彦 小野
Original Assignee
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 熊本大学 filed Critical 国立大学法人 熊本大学
Priority to JP2018514686A priority Critical patent/JP7092278B2/en
Publication of WO2017188355A1 publication Critical patent/WO2017188355A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)

Definitions

  • the present invention relates to a method for synthesizing cysteine and cysteine derivatives in which a sulfur atom is labeled with an isotope.
  • the present invention also relates to a kit for use in the synthesis method.
  • the method known so far as a method for synthesizing an amino acid in which a sulfur atom is labeled with an isotope is based on organic chemical synthesis or biosynthesis.
  • the biosynthetic technique is a technique in which a microorganism such as Escherichia coli is cultured in a medium containing an isotope-labeled sulfur-containing substrate as a sole sulfur source, and cysteine or methionine produced by the microorganism is recovered (non-native).
  • Patent Document 2 The yield of cysteine labeled with an isotope-labeled sulfur atom obtained by a biosynthetic technique is about 10%, which is not a sufficiently high yield.
  • the present invention provides a method for efficiently synthesizing cysteine and a cysteine derivative in which a sulfur atom is isotopically labeled and a kit used in the method.
  • cysteine synthase As a result of intensive studies, it was found that cysteine and cysteine derivatives in which sulfur atoms are isotopically labeled can be efficiently synthesized by an enzymatic reaction using cysteine synthase. Based on this finding, the present invention has been completed.
  • the present invention may be as follows.
  • a method for synthesizing cysteine in which a sulfur atom is isotopically labeled, wherein O-acetyl-L-serine and a sulfur atom are isotopically labeled in the presence of cysteine synthase (EC: 2.5.1.47) Reacting the substrate, wherein the isotopically labeled substrate for the sulfur atom is sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), or hydrogen sulfide (H 2 S); and Wherein said sulfur atom isotope label is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S.
  • cysteine synthase is cysteine synthase A (CysK) or cysteine synthase B (CysM).
  • cysteine synthase is a recombinant protein containing a histidine tag.
  • a method for synthesizing cystine in which a sulfur atom is isotopically labeled comprising synthesizing a cysteine labeled with an isotopically sulfur atom in accordance with the method described in [1] or [2] above, and using the cysteine as an oxidizing agent. Said method comprising the step of obtaining cystine by oxidation in the presence.
  • a method for synthesizing a cysteine derivative (I) the cysteine derivative is a sulfocysteine in which a sulfur atom is isotope-labeled, and comprises reacting O-acetyl-L serine and sodium sulfite (Na 2 SO 3 ) in the presence of cysteine synthase,
  • the sulfur atom is selected from the group consisting of a stable isotope 32 S, a stable isotope 34 S, a radioactive isotope 33 S and a radioactive isotope 35 S;
  • the cysteine derivative is S-sulfocysteine in which a sulfur atom is isotopically labeled, and O-acetyl-L-serine and sodium thiosulfate (Na 2 S 2 O 3 ) are reacted in the presence of cysteine synthase B.
  • the sulfur atom is selected from the group consisting of a stable isotope 32 S, a stable isotope 34 S, a radioactive isotope 33 S and a radioactive isotope 35 S;
  • the cysteine derivative is a cysteine persulfide in which a sulfur atom is isotope-labeled, and includes a step of reacting O-acetyl-L-serine and sodium disulfide (Na 2 S 2 ) in the presence of cysteine synthase.
  • the cysteine derivative is a cysteine persulfide in which a sulfur atom is isotopically labeled.
  • A In the presence of cysteine synthase, an O-acetyl-L-serine and a substrate that is isotopically labeled with a sulfur atom are reacted.
  • a cysteine having an isotope-labeled sulfur atom wherein the substrate isotope-labeled for the sulfur atom is sodium hydrogen sulfide (NaHS) or sodium sulfide (Na 2 S), wherein the sulfur atom Isotope label is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S, and (b) the sulfur atom obtained in step (a) Reacting isotope-labeled cysteine with sodium disulfide; or (v) a cysteine derivative is seleno A stain in the presence of a cysteine synthase, comprising the step of reacting O- acetyl -L- serine and sodium selenide (Na 2 Se); Said method.
  • NaHS sodium hydrogen sulfide
  • Na 2 S sodium sulfide
  • cysteine synthase is cysteine synthase A (CysK) or cysteine synthase B (CysM).
  • cysteine synthase is a recombinant protein containing a histidine tag.
  • NaHS sodium hydrogen sulfide
  • Na 2 S sodium sulfide
  • Na 2 SO 3 sodium sulfite
  • Na 2 S 2 O 3 sodium thios
  • a method for synthesizing a cysteine derivative (I) the cysteine derivative is a cystine polysulfide in which a sulfur atom is isotopically labeled, and (a) a step of synthesizing a cysteine in which a sulfur atom is isotopically labeled according to the method described in [1] or [2] above, b) reacting the cysteine labeled with an isotope-labeled sulfur atom obtained in step (a) with an oxidizing agent, and (c) further reacting by adding sodium sulfide (Na 2 S); or ( ii) the cysteine derivative is N-acetylcysteine obtained by isotopically labeling a sulfur atom, and (a) a step of synthesizing a cysteine labeled with an isotopically labeled sulfur atom according to the method described in [1] or [2] above, And (b) reacting cysteine labeled with an is
  • the present invention is useful in that cysteine and cysteine derivatives labeled with a sulfur atom isotope-labeled can be synthesized with few steps and high yield.
  • Cysteine Synthase Cysteine synthase (EC: 2.5.1.47) is an enzyme involved in cysteine biosynthesis in vivo, and has the following chemical reaction: It is an enzyme that catalyzes. That is, this enzyme produces L-cysteine and acetic acid using O3-acetyl-L-serine and hydrogen sulfide as substrates. Cysteine transferase belongs to the family of transferases, and there are two types, cysteine synthase A (CysK) and cysteine synthase B (CysM), based on differences in substrate specificity for sulfur sources such as hydrogen sulfide.
  • CysK cysteine synthase A
  • CysM cysteine synthase B
  • the cysteine synthase used in the present invention is not particularly limited as long as it is an enzyme that catalyzes the above reaction. Cysteine synthase A or cysteine synthase B is preferable, and cysteine synthase A is more preferable.
  • the origin of cysteine synthase is not particularly limited, but examples include those derived from Gram-negative bacteria such as Escherichia coli and Salmonella, and Gram-positive bacteria such as Staphylococcus and Streptococcus. Preferably, it is cysteine synthase A derived from Salmonella enterica serover Typhimurium.
  • the cysteine synthase used in the present invention may be extracted from a microorganism or may be prepared by genetic recombination.
  • cysteine synthase prepared by gene recombination one modified with a histidine tag (a tag comprising 6 to 11 consecutive histidine residues) or the like may be used. Since the histidine tag has a high affinity for metal ions such as nickel, a recombinant protein modified with a histidine tag can be supported on a resin on which a metal such as nickel is immobilized.
  • the enzyme By supporting a cysteine synthase containing a histidine tag on a resin in which a metal such as nickel is immobilized, the enzyme can be easily recovered from the reaction system, so that it can be easily separated from the product. It can be reused. In this regard, it is advantageous to use a recombinant cysteine synthase containing a histidine tag.
  • cysteine synthase A When cysteine synthase A (CysK) is used, it is known that the enzyme activity of CysK requires pyridoxal phosphate (PLP), which is a coenzyme.
  • PLP pyridoxal phosphate
  • CysK is produced from recombinant E. coli, PLP is purified while bound to CysK. Therefore, in the present invention, when recombinant cysteine synthase A is used, it is not always necessary to add PLP to the reaction system during the enzymatic reaction.
  • Serine-O-acetyltransferase (EC: 2.3.3.10) is a reaction that produces O-acetyl-L-serine and CoA using L-serine and acetyl CoA as substrates.
  • the serine-O-acetyltransferase used in the present invention is not particularly limited as long as it is an enzyme that catalyzes the above-mentioned reaction.
  • the thing derived from a microbe is mentioned.
  • Serine-O-acetyltransferase may be extracted from microorganisms or may be prepared by genetic recombination. When serine-O-acetyltransferase prepared by gene recombination is used, it is modified with a histidine tag (a tag comprising 6 to 11 consecutive histidine residues) or the like for the reason described in (1) cysteine synthase above. A thing may be used.
  • isotope-labeled isotope refers to a relationship between nuclides having the same atomic number but different numbers of neutrons.
  • isotopically labeled means a state in which a specific nuclide of a compound is substituted with an isotope other than the isotope having the highest natural abundance ratio.
  • isotope labeling means an isotope other than the isotope having the highest natural abundance ratio for a specific nuclide of a compound.
  • the isotope label may be a stable isotope or a radioisotope.
  • the radioisotope has a radioactivity for emitting radiation by decay, and the stable isotope is a stable isotope that does not cause decay.
  • Isotope label used for sulfur atoms in the present invention is not particularly limited as long as the isotope of sulfur, preferably, stable isotopes 32 S, stable isotope 34 S, radioisotope 33 S and radioactive isotopes 35 S Selected from the group consisting of More preferably, the isotope label used for sulfur atoms in the present invention are stable isotope 34 S.
  • the isotope label used for the selenium atom in the present invention is not particularly limited as long as it is an isotope of selenium, but is preferably selected from the group consisting of stable isotope 78 Se, stable isotope 77 Se and stable isotope 76 Se.
  • the More preferably, the isotope label used for the selenium atom is the stable isotope 78 Se.
  • Cysteine and cysteine derivatives Cysteine is a kind of natural amino acid and is L-cysteine unless otherwise specified.
  • cysteine in which a sulfur atom is isotopically labeled means a cysteine in which the sulfur atom of the mercapto group (—SH) of cysteine is isotopically labeled.
  • cysteine derivatives include the following: (I) a compound that is cystine (Cys-SS-Cys), wherein at least one sulfur atom in the molecule is isotopically labeled; (Ii) a compound having sulfocysteine (Cys-SO 3 H) or S-sulfocysteine (Cys-SSO 3 H), in which a sulfur atom in the molecule is isotopically labeled; (Iii) Cysteine persulfide (Cys-SSH), a compound in which at least one sulfur atom in the molecule is isotopically labeled; (Iv) selenocysteine (Cys-SeH), wherein the selenium atom may or may not be isotopically labeled; (V) a cystine polysulfide (Cys-SS ( 1-3) -S-Cys), wherein at least one sulfur atom in the molecule is isotopically labeled
  • the method for synthesizing cysteine labeled with an isotopically labeled sulfur atom comprising the step of reacting O-acetyl-L-serine and a substrate labeled with an isotope labeled with a sulfur atom in the presence of cysteine synthase. ,I will provide a.
  • the isotopically labeled substrate for the sulfur atom is sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), or hydrogen sulfide (H 2 S), which may be derived from sodium sulfide.
  • NaHS sodium hydrogen sulfide
  • Na 2 S sodium sulfide
  • H 2 S hydrogen sulfide
  • the types of isotope labeling of sulfur atoms are as described above in the section “Isotope labeling”.
  • the reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained.
  • 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
  • the following steps (I) reacting isotope-labeled substrates for O-acetyl-L-serine and sulfur atoms in the presence of cysteine synthase; (Ii) Cystine is obtained by oxidizing the cysteine labeled with the isotope-labeled sulfur atom obtained in step (i) with an oxidizing agent; A method for synthesizing a cystine labeled with an isotope of a sulfur atom is provided.
  • Cystine is 3,3′-dithiobis (2-aminopropionic acid) and has a structure in which two molecules of cysteine in the cysteine are linked by forming a disulfide bond.
  • cystine is sometimes referred to as Cys-SS-Cys for convenience.
  • the step (i) can be performed as described in the above item “Method for synthesizing cysteine”.
  • the oxidizing agent used in the step (ii) is not particularly limited as long as it is a reagent that can promote the formation of a disulfide bond by oxidizing a mercapto group.
  • iodine (I 2 ) heavy metal, hydrogen peroxide ( H 2 O 2) or the like can be preferably used.
  • the oxidizing agent is iodine.
  • reaction conditions in the above step (ii) are not particularly limited as long as they are suitable for the formation of disulfide bonds, and examples include conditions such as 25 ° C. to 37 ° C. and pH 7 to 8.
  • a sulfur atom is reacted with O-acetyl-L-serine and sodium sulfite (Na 2 SO 3 ) isotopically labeled for sulfur atom in the presence of cysteine synthase.
  • a method of synthesizing isotopically labeled sulfocysteine is provided.
  • the type of isotope labeling of the sulfur atom is as described above in the section “Isotope labeling”.
  • sulfocysteine can be represented by the following formula: H 2 N—CH (CH 2 —SO 3 H) —COOH.
  • sulfocysteine is sometimes referred to as Cys-SO 3 H for convenience.
  • the reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained.
  • 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
  • S-sulfocysteine can be represented by the following formula: H 2 N—CH (CH 2 —SSO 3 H) —COOH.
  • S-sulfocysteine is sometimes referred to as Cys-SSO 3 H for convenience.
  • the reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase B is maintained.
  • 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
  • sulfur comprising the step of reacting O-acetyl-L-serine and isotopically labeled sodium disulfide (Na 2 S 2 ) with respect to a sulfur atom in the presence of cysteine synthase.
  • a method for synthesizing cysteine persulfide having an isotope-labeled atom is as described above in the section “Isotope labeling”.
  • cysteine persulfide can be represented by the following formula: H 2 N—CH (CH 2 —SSH) —COOH.
  • cysteine persulfide may be referred to as Cys-SSH for convenience.
  • the reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained. Examples thereof include 30 to 42 ° C., pH 7 to 8 and the like.
  • a sulfur atom isotope-labeled cysteine par comprising the step of reacting a sulfur atom isotopically labeled with a sulfur atom obtained by the method described in the above-mentioned section of “Method for synthesizing cysteine” and sodium disulfide.
  • a method for the synthesis of sulfides is provided.
  • the sulfur atom bonded to the ⁇ carbon of cysteine is isotopically labeled, but the terminal SH group may be an isotope having the highest natural abundance ratio.
  • the conditions for reacting cysteine labeled with an isotope with sulfur atoms and sodium disulfide are not particularly limited as long as they allow persulfide to be formed. An example is 30 to 42 ° C.
  • a method for synthesizing selenocysteine comprises the step of reacting O-acetyl-L-serine and sodium selenide (Na 2 Se) in the presence of cysteine synthase.
  • Sodium selenide may or may not be isotopically labeled.
  • selenocysteine in which the selenium atom is isotopically labeled is obtained.
  • the type of isotope labeling of the selenium atom is as described above in the section “Isotope labeling”.
  • selenocysteine can be represented by the following formula: H 2 N—CH (CH 2 —SeH) —COOH. That is, selenocysteine has a structure in which the sulfur atom of cysteine is substituted with selenium. In the present specification, selenocysteine is sometimes expressed as Cys-SeH for convenience.
  • the reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained.
  • 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
  • cystine polysulfide in one embodiment, (I) reacting isotope-labeled substrates for O-acetyl-L-serine and sulfur atoms in the presence of cysteine synthase; (Ii) reacting the cysteine labeled with an isotope of the sulfur atom obtained in step (i) with an oxidizing agent sodium nitrite (NaNO 2 ); (Iii) A method for synthesizing a cystine polysulfide in which a sulfur atom is isotopically labeled is provided, which further comprises adding sodium sulfide (Na 2 S) to react to obtain a cystine polysulfide.
  • Na 2 S sodium sulfide
  • cystine polysulfide can be represented by the following formula: HN 2 —CH (COOH) —CH 2 —SS (1-3) —S—CH 2 —CH (COOH) —NH 2 .
  • the cystine polysulfide is sometimes referred to as Cys-SS (1-3) -S-Cys for convenience.
  • the step (i) can be carried out as described in the item “Method for synthesizing cysteine” above.
  • the oxidizing agent used in the above step (ii) is not particularly limited as long as it is a reagent that can promote the reaction of extracting a hydrogen atom from a mercapto group.
  • the oxidizing agent is sodium nitrite (NaNO 2 ).
  • the sodium sulfide (Na 2 S) used in the above step (iii) may be an isotope-labeled sulfur atom or an unisotopically labeled sulfur atom.
  • reaction conditions (ii) and (iii) are not particularly limited as long as they are suitable for forming a polysulfide bond, and examples thereof include 25 to 37 ° C.
  • the following steps (I) reacting isotope-labeled substrates for O-acetyl-L-serine and sulfur atoms in the presence of cysteine synthase; (Ii) N-acetylcysteine is obtained by reacting the cysteine labeled with an isotopically labeled sulfur atom obtained in step (i) with an acetylating agent; A method for synthesizing N-acetylcysteine labeled with an isotope of a sulfur atom is provided.
  • N-acetylcysteine can be represented by the following formula: CH 3 —CONH—C (CH 2 —SH) —COOH.
  • the step (i) can be carried out as described in the item “Method for synthesizing cysteine” above.
  • the acetylating agent used in the above step (ii) is not particularly limited as long as it is a reagent capable of acetylating the amino group of cysteine.
  • acetyl CoA acetic anhydride and the like can be preferably used.
  • the acetylating agent is acetyl CoA.
  • reaction conditions in the above step (ii) are not particularly limited as long as they are suitable for the acetylation reaction, and examples include conditions such as 25 ° C. to 37 ° C. and pH 7 to 8.
  • O-acetyl-L-serine is isotopically labeled for nitrogen and / or carbon atoms in the presence of the following steps: serine-O-acetyltransferase.
  • a method further comprising: Isotope labels for nitrogen and / or carbon atoms may be stable isotopes 15 N and / or 13 C, respectively.
  • cysteine and cysteine derivatives labeled with a sulfur atom, or cysteine labeled with nitrogen and / or carbon and sulfur, obtained by the above synthesis method or the above reaction
  • the cysteine derivative can be recovered and purified by techniques known to those skilled in the art such as chromatography.
  • kits for synthesizing cysteine or cystine or a cysteine derivative isotopically labeled with a sulfur atom includes a cysteine synthase; and a substrate that is isotopically labeled for a sulfur atom, or sodium selenide (Na 2 Se), wherein the selenium atom of sodium selenide may or may not be isotopically labeled. May be).
  • the cysteine synthase included in the kit is as described in the item “Cysteine synthase” above.
  • a substrate that is isotopically labeled with a sulfur atom may be sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), or sodium sulfite (Na 2 SO) that is isotopically labeled with a sulfur atom.
  • NaHS sodium hydrogen sulfide
  • Na 2 S sodium sulfide
  • Na 2 SO sodium sulfite
  • the types of isotope labeling of sulfur atoms are as described above in the section of “isotope labeling”.
  • isotope labeling of selenium atoms are as described in the “Isotope labeling” section above.
  • Example 1 34 S-labeled cysteine (Cys- 34 SH) in the synthesis 100mM phosphate buffer (pH 7.6) in, so that 20 mM O-acetyl -L- serine, 20 mM sodium hydrogen sulfide (Na 2 34 S) Dissolved.
  • 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 1 hour.
  • methanol and an excess amount of monobromobiman (MBB) were added to the reaction solution after the above reaction and incubated at 37 ° C. for 15 minutes.
  • the reaction product was analyzed by high performance liquid chromatography (column: YMC Triat C18 plus (4.6 mm ⁇ 150 mm) (YMC Co., Ltd.); column temperature: 35 ° C; injection volume: 10 ⁇ l; moving bed: solution A / 0.1 % Formic acid and B solution / acetonitrile; Gradient: 5% B solution (0 min)-80% B solution (22 min)-80% B solution (23 min)-5% B solution (24 min)-5% B Liquid (30 minutes); flow rate 0.8 ml / min).
  • the peak of the target product (cysteine-biman) was confirmed at an elution time of 9 to 10 minutes. From the peak area, it was confirmed that a product of 15 mM was generated. Since 20 mM O-acetylserine and sodium hydrogen sulfide were used as starting materials, this means a reaction yield of 75%.
  • Example 2 34 S-labeled cystine synthesis 100mM phosphate buffer (pH 7.6) in (Cys- 34 S- 34 S-Cys ), 20mM O- acetyl -L- serine, 20 mM sodium hydrogen sulfide (Na 2 34 S ) was dissolved. To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 1 hour.
  • cysteine synthase cysteine synthase
  • iodine (I 2 ) was added to the reaction solution to 40 mM and incubated at 37 ° C. for 10 minutes.
  • the reaction product was analyzed by high performance liquid chromatography (column: Intrada Amino Acid (100 ⁇ 3 mm) (Intact Corporation); column temperature: 35 ° C .; injection volume: 10 ⁇ l; moving bed: solution A / acetonitrile and solution B / 20 mM ammonium formate; Gradient: 14% solution B (0 minutes)-14% solution B (3 minutes)-100% solution B (20 minutes)-14% solution B (20.5 minutes)-14% solution B ( 30 minutes); flow rate 0.6 ml / min). The peak of the target product (cystine) was confirmed at an elution time of about 18 minutes. The reaction yield was almost 100%.
  • Example 3 Synthesis of 15 N-labeled / 34 S-labeled cysteine ([ 15 N] Cys- 34 SH) 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM hydrogen sulfide in 100 mM phosphate buffer (pH 7.6) It was dissolved at a sodium (Na 2 34 S). To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 5 minutes. I let you. In order to facilitate confirmation of cysteine production, methanol and an excess amount of monobromobiman (MBB) were added to the reaction solution after the above reaction, and the mixture was incubated at 37 ° C. for 15 minutes.
  • MMBB monobromobiman
  • the reaction product was analyzed by high performance liquid chromatography (column: YMC Triat C18 plus (4.6 mm ⁇ 150 mm) (YMC Co., Ltd.); column temperature: 35 ° C .; injection volume: 10 ⁇ l; moving bed: solution A / 0.1 % Formic acid and B solution / acetonitrile; Gradient: 5% B solution (0 min)-80% B solution (22 min)-80% B solution (23 min)-5% B solution (24 min)-5% B Liquid (30 minutes); flow rate 0.8 ml / min). The peak of the target product (cysteine-biman) was confirmed at an elution time of 9 to 10 minutes.
  • Example 4 Synthesis of 15 N-labeled sulfocysteine ([ 15 N] Cys-SO 3 H) In 100 mM phosphate buffer (pH 7.6), 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM sodium sulfite ( Na 2 SO 3 ) was dissolved. To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 30 minutes. I let you.
  • reaction product was analyzed by a mass spectrometer (column: Imtakt Scherzo SS-C18 (2.0 mm ⁇ 150 mm) (Intact Corporation); column temperature: 45 ° C .; injection volume: 3 ⁇ l; moving bed: solution A / 0.2 % Formic acid, 0.2% acetic acid, and B solution / 100 mM ammonium acetate, 50% methanol; Gradient: 0% solution B (0 minutes)-0% solution B (1 minute)-2% solution B (4 minutes)- 45% solution B (15 minutes)-0% solution B (15.1 minutes)-0% solution B (20 minutes); flow rate 0.3 ml / min); mass analysis conditions: precursor ion 168, product ion 81, flag Mentor voltage 90V, collision energy 21, polarity negative.
  • mass analysis conditions precursor ion 168, product ion 81, flag Mentor voltage 90V, collision energy 21, polarity negative.
  • a peak of the target product (sulfocysteine) was confirmed at an elution time of 3 to 4 minutes.
  • the product detected a peak at m / z: 169, while a peak at m / z: 168 was detected for the product of this product which was not isotopically labeled with sulfocysteine. This indicates that the product is a compound isotopically labeled with 15 N.
  • Example 5 Synthesis of 15 N-labeled S-sulfocysteine ([ 15 N] Cys-SSO 3 H) In 100 mM phosphate buffer (pH 7.6), 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM thio It was dissolved at a sodium sulphate (Na 2 S 2 O 3) . To this solution, 0.05 mg / ml of cysteine synthase (CysM) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 30 minutes. I let you.
  • cysteine synthase CysM
  • CysE serine-O-acetyltransferase
  • reaction product was analyzed by a mass spectrometer (column: Imtakt Scherzo SS-C18 (2.0 mm ⁇ 150 mm) (Intact Corporation); column temperature: 45 ° C .; injection volume: 3 ⁇ l; moving bed: solution A / 0.2 % Formic acid, 0.2% acetic acid, and B solution / 100 mM ammonium acetate, 50% methanol; Gradient: 0% solution B (0 minutes)-0% solution B (1 minute)-2% solution B (4 minutes)- 45% solution B (15 minutes)-0% solution B (15.1 minutes)-0% solution B (20 minutes); flow rate 0.3 ml / min); mass analysis conditions: precursor ion 201, product ion 136, flag Mentor voltage 90V, collision energy 9, polarity negative.
  • mass analysis conditions precursor ion 201, product ion 136, flag Mentor voltage 90V, collision energy 9, polarity negative.
  • a peak of the target product (S-sulfocysteine) was confirmed at an elution time of 4 to 5 minutes. Further, for this product, a peak at m / z: 200 was detected for the sample not labeled with S-sulfocysteine, while the product detected a peak at m / z: 201. This indicates that the product is a compound isotopically labeled with 15 N.
  • Example 6 Synthesis of 15 N-labeled selenocysteine ([ 15 N] Cys-SeH) In 100 mM phosphate buffer (pH 7.6), 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM sodium selenide (Na 2 Se). To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 30 minutes. I let you.
  • reaction product was analyzed by a mass spectrometer (column: Imtakt Scherzo SS-C18 (2.0 mm ⁇ 150 mm) (Intact Corporation); column temperature: 45 ° C .; injection volume: 3 ⁇ l; moving bed: solution A / 0.2 % Formic acid, 0.2% acetic acid, and B solution / 100 mM ammonium acetate, 50% methanol; Gradient: 0% solution B (0 minutes)-0% solution B (1 minute)-2% solution B (4 minutes)- 45% solution B (15 minutes) ⁇ 0% solution B (15.1 minutes) ⁇ 0% solution B (20 minutes); flow rate 0.3 ml / min); mass analysis conditions: precursor ion 336.9, product ion 247 .8, fragmentor voltage 90V, collision energy 9, polarity positive.
  • mass analysis conditions precursor ion 336.9, product ion 247 .8, fragmentor voltage 90V, collision energy 9, polarity positive.
  • Selenocysteine was detected because almost all selenocysteine was oxidized in the reaction solution to form selenocystine (Cys-Se-Se-Cys) in which the molecules were linked by a disulfide bond.
  • a peak of selenocystine, an oxidant of the target product was confirmed at an elution time of 4 to 5 minutes. Further, for this product, a peak at m / z: 336.9 was detected for the sample not labeled with selenocystine, whereas the product detected a peak at m / z: 338.9. This indicates that the product is a compound isotopically labeled with 15 N.
  • Example 7 Synthesis of 34 S-labeled cysteine persulfide (Cys- 34 SSH) 0.1 mM 34 S-labeled cysteine and 0.1 mM disulfide prepared by the procedure of Example 1 in 100 mM phosphate buffer (pH 7.6) Sodium (Na 2 S 2 ) was mixed and reacted at 37 ° C. for 30 minutes.
  • Cys- 34 SSH 34 S-labeled cysteine persulfide
  • the reaction product was analyzed by a mass spectrometer (column: YMC Triat C18 plus (2.1 mm ⁇ 150 mm) (YMC Co., Ltd.); column temperature: 45 ° C .; injection volume: 1 ⁇ l; moving bed: solution A / 0.1% Formic acid and B solution / acetonitrile; 0.2% B solution isocratic; flow rate 0.2 ml / min); mass analysis conditions: precursor ion 153.9, product ion 73.1, fragmentor voltage 50 V, collision energy 10 Positive polarity. A peak of the target product (cysteine persulfide) was confirmed at an elution time of 3 to 4 minutes.
  • the product detected a peak at m / z: 155.9, whereas the product detected a peak at m / z: 153.9 for an unlabeled sample of cysteine persulfide. . This indicates that the product is a compound isotopically labeled with 34 S.
  • Example 8 34 S labeled-sulfocysteine during the synthesis 100mM phosphate buffer (pH 7.6) in (Cys- 34 SO 3 H), 1mM O- acetyl -L- serine, 1 mM 34 S labeled sodium sulfite (Na 2 34 SO 3 ).
  • 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 30 minutes. Under the same conditions as described in Example 4, the reactants were analyzed with a mass spectrometer. A peak of the target product (sulfocysteine) was confirmed at an elution time of 3 to 4 minutes.
  • the product detected a peak at m / z: 170, whereas a peak at m / z: 168 was detected for the product of the product, which was not isotopically labeled with sulfocysteine. This indicates that the product is a compound isotopically labeled with 34 S.
  • Example 9 Synthesis of 34 S-labeled S-sulfocysteine (Cys-S 34 SO 3 H) 1 mM O-acetyl-L-serine, 1 mM 34 S-labeled thiosulfate in 100 mM phosphate buffer (pH 7.6) was dissolved at a sodium (Na 2 S 34 sO 3) . To this solution, 0.05 mg / ml of cysteine synthase (CysM) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 30 minutes. Under the same conditions as described in Example 5, the reactants were analyzed with a mass spectrometer.
  • a peak of the target product (S-sulfocysteine) was confirmed at an elution time of 4 to 5 minutes.
  • a peak at m / z: 200 was detected for the sample not labeled with an isotope of S-sulfocysteine, whereas the product detected a peak at m / z: 202. This indicates that the product is a compound isotopically labeled with 34 S label.
  • Example 10 34 S-labeled-cystine polysulfide (Cys 34 S- 34 S (1-3 ) - 34 SCys) during synthesis 5% formic acid, 5 mM 34 S-labeled L- cysteine, and 25mM sodium nitrite (NaNO 2) And dissolved at 37 ° C. for 15 minutes. To this solution, 6 mM Na 2 34 S was added and further reacted at 37 ° C. for 15 minutes.
  • reaction product was analyzed by a mass spectrometer (column: YMC Triat C18 plus (2.1 mm ⁇ 50 mm) (YMC Co., Ltd.); column temperature: 45 ° C .; injection volume: 3 ⁇ l; moving bed: solution A / 0.1% Formic acid, and B solution / acetonitrile; isocratic: 0.2% B solution; flow rate 0.2 ml / min; mass analysis conditions: MS2 scan (m / z: 200-400), fragmentor voltage 90 V, polarity positive. elution time 2-3 minutes, 4-5 minutes, each product of interest 12-13 minutes.
  • MS2 scan m / z: 200-400
  • Example 11 Synthesis of 34 S-labeled N-acetylcysteine It was dissolved in 100 mM phosphate buffer (pH 7.6) to give 5 mM 34 S-labeled L-cysteine, 5 mM acetyl CoA, and reacted at 37 ° C for 30 minutes. It was.
  • the reaction product was analyzed by a mass spectrometer (column: YMC Triat C18 plus (2.1 mm ⁇ 50 mm) (YMC Co., Ltd.); column temperature: 45 ° C .; injection volume: 3 ⁇ l; moving bed: solution A / 0.1% Formic acid and solution B / acetonitrile; Gradient: 0.2% solution B (0 minutes) ⁇ 10% solution B (10 minutes) ⁇ 0.2% solution B (10.1 minutes) ⁇ 0.2% solution B ( Flow rate: 0.2 ml / min Mass spectrometry conditions: Precursor ion 166.2, Product ion 99.5, Fragmenter voltage 50V, Collision Energy 21, Polarity positive, target product at elution time 2-3 minutes A peak of (N-acetylcysteine) was confirmed, and a peak at m / z: 164 was detected for the product with no N-acetylcysteine isotopically labeled, whereas the product was A peak at m
  • coli was recovered by centrifugation and resuspended in lysis buffer (50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole 1 mg / ml lysozyme, 0.1 ⁇ g / ml DNase I pH 7.8). After standing on ice for 30 minutes, Escherichia coli was crushed with an ultrasonic crusher, centrifuged, and the supernatant was collected.
  • lysis buffer 50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole 1 mg / ml lysozyme, 0.1 ⁇ g / ml DNase I pH 7.8.
  • coli was recovered by centrifugation and resuspended in lysis buffer (50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole 1 mg / ml lysozyme, 0.1 ⁇ g / ml DNase I pH 7.8). After standing on ice for 30 minutes, Escherichia coli was crushed with an ultrasonic crusher, centrifuged, and the supernatant was collected.
  • lysis buffer 50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole 1 mg / ml lysozyme, 0.1 ⁇ g / ml DNase I pH 7.8.
  • cysteine and a cysteine derivative in which a sulfur atom is isotope-labeled can be efficiently synthesized, and this is useful in that the cysteine and the cysteine derivative can be stably supplied.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to synthesis methods for cysteine with an isotopically labeled sulfur atom and a cysteine derivative. The present invention also relates to a kit for use in the synthesis methods. The present invention makes it possible to easily and efficiently synthesize cysteine with an isotopically labeled sulfur atom and a cysteine derivative.

Description

イオウ原子を同位体標識したシステイン及びシステイン誘導体の合成法の確立Establishment of synthetic methods for cysteine and cysteine derivatives isotopically labeled with sulfur atoms
 本発明は、イオウ原子を同位体標識したシステイン及びシステイン誘導体の合成方法に関する。本発明はまた、当該合成方法に使用するためのキットに関する。 The present invention relates to a method for synthesizing cysteine and cysteine derivatives in which a sulfur atom is labeled with an isotope. The present invention also relates to a kit for use in the synthesis method.
 近年の質量分析技術の発展により、プロテオミクスやメタボロミクスなどの分析が盛んに行われている。質量分析による精密定量には安定同位体標識された化合物を内部標準として用いることが必要である。しかしながら、炭素原子や窒素原子の安定同位体は市販品が多種多様に存在する一方、イオウ原子の安定同位体は特注品を除きほとんど市販されていない。 With recent developments in mass spectrometry technology, proteomics and metabolomics have been actively analyzed. For precise quantification by mass spectrometry, it is necessary to use a compound labeled with a stable isotope as an internal standard. However, there are a wide variety of commercially available stable isotopes of carbon atoms and nitrogen atoms, while stable isotopes of sulfur atoms are hardly commercially available except for custom-made products.
 イオウ原子を同位体標識したアミノ酸の合成方法としてこれまでに知られている手法は、有機化学合成又は生合成によるものであった。有機化学合成によってイオウ原子を同位体標識したアミノ酸を合成する場合は、多段階の煩雑な工程を経る必要があり(非特許文献1)、収率についても0.01%程度といった低いものであった。生合成による手法は、大腸菌等の微生物を、同位体標識されたイオウを含む基質を唯一のイオウ源として含む培地で培養し、当該微生物が産生したシステイン又はメチオニンを回収するという手法である(非特許文献2)。生合成による手法によって得られるイオウ原子が同位体標識されたシステインの収率は10%程度であり、十分に高い収率とはいえない。 The method known so far as a method for synthesizing an amino acid in which a sulfur atom is labeled with an isotope is based on organic chemical synthesis or biosynthesis. In the case of synthesizing an isotope-labeled amino acid by organic chemical synthesis, it is necessary to go through many complicated steps (Non-Patent Document 1), and the yield is as low as about 0.01%. It was. The biosynthetic technique is a technique in which a microorganism such as Escherichia coli is cultured in a medium containing an isotope-labeled sulfur-containing substrate as a sole sulfur source, and cysteine or methionine produced by the microorganism is recovered (non-native). Patent Document 2). The yield of cysteine labeled with an isotope-labeled sulfur atom obtained by a biosynthetic technique is about 10%, which is not a sufficiently high yield.
 上記のように、質量分析による精密定量を行うにあたっては安定同位体標識された化合物が必要である。このため、効率よく、高い収量でイオウ原子を同位体標識したシステイン及びシステイン誘導体を得る手法の確立が求められていた。 As described above, a stable isotope-labeled compound is required for precise quantification by mass spectrometry. Therefore, establishment of a technique for obtaining cysteine and cysteine derivatives in which sulfur atoms are isotopically labeled with high yields has been demanded.
 本発明は、効率よくイオウ原子を同位体標識したシステイン及びシステイン誘導体を合成する方法および当該方法に使用するキットを提供する。 The present invention provides a method for efficiently synthesizing cysteine and a cysteine derivative in which a sulfur atom is isotopically labeled and a kit used in the method.
 以上に鑑み、本件の発明者らは、システインシンターゼに着目し、研究を開始した。鋭意検討の結果、システインシンターゼを用いる酵素反応により、イオウ原子を同位体標識したシステインおよびシステイン誘導体を効率よく合成できることを見出した。当該知見に基づいて、本発明は完成された。 In view of the above, the inventors of the present case have started paying attention to cysteine synthase. As a result of intensive studies, it was found that cysteine and cysteine derivatives in which sulfur atoms are isotopically labeled can be efficiently synthesized by an enzymatic reaction using cysteine synthase. Based on this finding, the present invention has been completed.
 すなわち、一態様において、本発明は以下の通りであってよい。 That is, in one aspect, the present invention may be as follows.
 [1]イオウ原子を同位体標識したシステインの合成方法であって、システインシンターゼ(EC:2.5.1.47)の存在下で、O-アセチル-L-セリン及びイオウ原子について同位体標識された基質を反応させる工程を含み、ここで当該イオウ原子について同位体標識された基質は硫化水素ナトリウム(NaHS)、硫化ナトリウム(NaS)、又は硫化水素(HS)であり、そしてここで当該イオウ原子の同位体標識は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される、前記方法。 [1] A method for synthesizing cysteine in which a sulfur atom is isotopically labeled, wherein O-acetyl-L-serine and a sulfur atom are isotopically labeled in the presence of cysteine synthase (EC: 2.5.1.47) Reacting the substrate, wherein the isotopically labeled substrate for the sulfur atom is sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), or hydrogen sulfide (H 2 S); and Wherein said sulfur atom isotope label is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S.
 [2]O-アセチル-L-セリンを、以下の工程:セリン-O-アセチルトランスフェラーゼ(EC:2.3.1.30)の存在下で、窒素および/または炭素原子について同位体標識されたセリンを反応させる;により得ることをさらに含む、上記[1]に記載の方法。 [2] O-acetyl-L-serine was isotopically labeled for nitrogen and / or carbon atoms in the presence of the following steps: serine-O-acetyltransferase (EC: 2.3.1.30) The method according to [1] above, further comprising obtaining serine.
 [3]システインシンターゼが、システインシンターゼA(CysK)又はシステインシンターゼB(CysM)である、上記[1]又は[2]に記載の方法。 [3] The method according to [1] or [2] above, wherein the cysteine synthase is cysteine synthase A (CysK) or cysteine synthase B (CysM).
 [4]システインシンターゼAが、サルモネラ属に属する微生物由来である、上記[3]に記載の方法。 [4] The method according to [3] above, wherein the cysteine synthase A is derived from a microorganism belonging to the genus Salmonella.
 [5]システインシンターゼが、ヒスチジンタグを含む組換えタンパク質である、上記[1]~[4]のいずれか1項に記載の方法。 [5] The method according to any one of [1] to [4] above, wherein the cysteine synthase is a recombinant protein containing a histidine tag.
 [6]イオウ原子を同位体標識したシスチンの合成方法であって、上記[1]又は[2]に記載の方法にしたがってイオウ原子を同位体標識したシステインを合成し、当該システインを酸化剤の存在下で酸化することによりシスチンを得る工程を含む、前記方法。 [6] A method for synthesizing cystine in which a sulfur atom is isotopically labeled, comprising synthesizing a cysteine labeled with an isotopically sulfur atom in accordance with the method described in [1] or [2] above, and using the cysteine as an oxidizing agent. Said method comprising the step of obtaining cystine by oxidation in the presence.
 [7]酸化剤がヨウ素(I)である、上記[6]に記載の方法。 [7] The method according to [6] above, wherein the oxidizing agent is iodine (I 2 ).
 [8]システイン誘導体の合成方法であって、
(i)システイン誘導体が、イオウ原子を同位体標識したスルホシステインであり、システインシンターゼの存在下で、O-アセチル-Lセリン及び亜硫酸ナトリウム(NaSO)を反応させる工程を含み、ここでイオウ原子は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される;
(ii)システイン誘導体が、イオウ原子を同位体標識したS-スルホシステインであり、システインシンターゼBの存在下で、O-アセチル-L-セリン及びチオ硫酸ナトリウム(Na)を反応させる工程を含み、ここでイオウ原子は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される;
(iii)システイン誘導体が、イオウ原子を同位体標識したシステインパースルフィドであり、システインシンターゼの存在下で、O-アセチル-L-セリン及び二硫化ナトリウム(Na)を反応させる工程を含み、ここでイオウ原子は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される;
(iv)システイン誘導体が、イオウ原子を同位体標識したシステインパースルフィドであり、(a)システインシンターゼの存在下で、O-アセチル-L-セリン及びイオウ原子について同位体標識された基質を反応させてイオウ原子を同位体標識したシステインを得る工程、ここで当該イオウ原子について同位体標識された基質は硫化水素ナトリウム(NaHS)、又は硫化ナトリウム(NaS)であり、そしてここで当該イオウ原子の同位体標識は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される、および(b)工程(a)で得たイオウ原子を同位体標識したシステインと、二硫化ナトリウムを反応させる工程、を含む;または
(v)システイン誘導体が、セレノシステインであり、システインシンターゼの存在下で、O-アセチル-L-セリン及びセレン化ナトリウム(NaSe)を反応させる工程を含む;
前記方法。
[8] A method for synthesizing a cysteine derivative,
(I) the cysteine derivative is a sulfocysteine in which a sulfur atom is isotope-labeled, and comprises reacting O-acetyl-L serine and sodium sulfite (Na 2 SO 3 ) in the presence of cysteine synthase, The sulfur atom is selected from the group consisting of a stable isotope 32 S, a stable isotope 34 S, a radioactive isotope 33 S and a radioactive isotope 35 S;
(Ii) The cysteine derivative is S-sulfocysteine in which a sulfur atom is isotopically labeled, and O-acetyl-L-serine and sodium thiosulfate (Na 2 S 2 O 3 ) are reacted in the presence of cysteine synthase B. Wherein the sulfur atom is selected from the group consisting of a stable isotope 32 S, a stable isotope 34 S, a radioactive isotope 33 S and a radioactive isotope 35 S;
(Iii) The cysteine derivative is a cysteine persulfide in which a sulfur atom is isotope-labeled, and includes a step of reacting O-acetyl-L-serine and sodium disulfide (Na 2 S 2 ) in the presence of cysteine synthase. Where the sulfur atom is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S;
(Iv) The cysteine derivative is a cysteine persulfide in which a sulfur atom is isotopically labeled. (A) In the presence of cysteine synthase, an O-acetyl-L-serine and a substrate that is isotopically labeled with a sulfur atom are reacted. Obtaining a cysteine having an isotope-labeled sulfur atom, wherein the substrate isotope-labeled for the sulfur atom is sodium hydrogen sulfide (NaHS) or sodium sulfide (Na 2 S), wherein the sulfur atom Isotope label is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S, and (b) the sulfur atom obtained in step (a) Reacting isotope-labeled cysteine with sodium disulfide; or (v) a cysteine derivative is seleno A stain in the presence of a cysteine synthase, comprising the step of reacting O- acetyl -L- serine and sodium selenide (Na 2 Se);
Said method.
 [9]O-アセチル-L-セリンを、セリン-O-アセチルトランスフェラーゼ(EC:2.3.1.30)の存在下で、窒素および/または炭素原子について同位体標識されたセリンを反応させる;により得ることをさらに含む、上記[8]に記載の方法。 [9] O-acetyl-L-serine is reacted with isotope-labelled serine for nitrogen and / or carbon atoms in the presence of serine-O-acetyltransferase (EC: 2.3.3.10) The method according to [8] above, further comprising:
 [10]システインシンターゼが、システインシンターゼA(CysK)又はシステインシンターゼB(CysM)である、上記[8]又は[9]に記載の方法。 [10] The method according to [8] or [9] above, wherein the cysteine synthase is cysteine synthase A (CysK) or cysteine synthase B (CysM).
 [11]システインシンターゼAが、サルモネラ属に属する微生物由来である、上記[10]に記載の方法。 [11] The method according to [10] above, wherein the cysteine synthase A is derived from a microorganism belonging to the genus Salmonella.
 [12]システインシンターゼが、ヒスチジンタグを含む組換えタンパク質である、上記[8]~[11]のいずれか1項に記載の方法。 [12] The method according to any one of [8] to [11] above, wherein the cysteine synthase is a recombinant protein containing a histidine tag.
 [13]イオウ原子を同位体標識したシステインもしくはシスチン、またはシステイン誘導体を合成するためのキットであって、
システインシンターゼ;及び
イオウ原子について同位体標識された硫化水素ナトリウム(NaHS)、硫化ナトリウム(NaS)、亜硫酸ナトリウム(NaSO)、チオ硫酸ナトリウム(Na)、及び二硫化ナトリウム(Na)からなる群より選択される少なくとも一つのイオウを含む基質、ここで当該イオウ原子の同位体標識は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される、またはセレン化ナトリウム(NaSe);
を含む、前記キット。
[13] A kit for synthesizing cysteine or cystine, or a cysteine derivative, wherein a sulfur atom is isotopically labeled,
Cysteine synthase; and sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), sodium sulfite (Na 2 SO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), and A substrate containing at least one sulfur selected from the group consisting of sodium sulfide (Na 2 S 2 ), wherein the isotope label of the sulfur atom is a stable isotope 32 S, a stable isotope 34 S, a radioactive isotope 33 Selected from the group consisting of S and radioisotope 35 S, or sodium selenide (Na 2 Se);
The kit.
 [14]システイン誘導体の合成方法であって、
(i)システイン誘導体が、イオウ原子を同位体標識したシスチンポリスルフィドであり、(a)上記[1]または[2]に記載の方法にしたがってイオウ原子を同位体標識したシステインを合成する工程、(b)工程(a)で得たイオウ原子を同位体標識したシステインを酸化剤と反応させる工程、および(c)さらに硫化ナトリウム(NaS)を添加して反応させる工程、を含む;または
(ii)システイン誘導体が、イオウ原子を同位体標識したN-アセチルシステインであり、(a)上記[1]または[2]に記載の方法にしたがってイオウ原子を同位体標識したシステインを合成する工程、および(b)工程(a)で得たイオウ原子を同位体標識したシステインをアセチル化剤と反応させる工程、を含む;
前記方法。
[14] A method for synthesizing a cysteine derivative,
(I) the cysteine derivative is a cystine polysulfide in which a sulfur atom is isotopically labeled, and (a) a step of synthesizing a cysteine in which a sulfur atom is isotopically labeled according to the method described in [1] or [2] above, b) reacting the cysteine labeled with an isotope-labeled sulfur atom obtained in step (a) with an oxidizing agent, and (c) further reacting by adding sodium sulfide (Na 2 S); or ( ii) the cysteine derivative is N-acetylcysteine obtained by isotopically labeling a sulfur atom, and (a) a step of synthesizing a cysteine labeled with an isotopically labeled sulfur atom according to the method described in [1] or [2] above, And (b) reacting cysteine labeled with an isotopically labeled sulfur atom obtained in step (a) with an acetylating agent;
Said method.
 本発明は、イオウ原子を同位体標識したシステイン及びシステイン誘導体を少ない工程かつ高収率で合成できる点で有用である。 The present invention is useful in that cysteine and cysteine derivatives labeled with a sulfur atom isotope-labeled can be synthesized with few steps and high yield.
 以下に本発明を具体的に説明するが、本発明はこれらに限定されるものではない。本明細書で特段に定義されない限り、本発明に関連して用いられる科学用語及び技術用語は、当業者によって一般に理解される意味を有するものとする。 The present invention will be specifically described below, but the present invention is not limited to these. Unless defined otherwise herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art.
 酵素
(1)システインシンターゼ
 システインシンターゼ(EC:2.5.1.47)は、生体内においてはシステインの生合成に関わる酵素であり、以下の化学反応:
Figure JPOXMLDOC01-appb-C000001
を触媒する酵素である。すなわち、この酵素はO3-アセチル-L-セリンと硫化水素等を基質として、L-システインと酢酸を生成する。システイントランスフェラーゼは、トランスフェラーゼのファミリーに属しており、硫化水素等の硫黄源に対する基質特異性の差に基づき、システインシンターゼA(CysK)及びシステインシンターゼB(CysM)の2つの型が存在する。
Enzyme (1) Cysteine Synthase Cysteine synthase (EC: 2.5.1.47) is an enzyme involved in cysteine biosynthesis in vivo, and has the following chemical reaction:
Figure JPOXMLDOC01-appb-C000001
It is an enzyme that catalyzes. That is, this enzyme produces L-cysteine and acetic acid using O3-acetyl-L-serine and hydrogen sulfide as substrates. Cysteine transferase belongs to the family of transferases, and there are two types, cysteine synthase A (CysK) and cysteine synthase B (CysM), based on differences in substrate specificity for sulfur sources such as hydrogen sulfide.
 本発明に用いるシステインシンターゼは、上記の反応を触媒する酵素であれば、特に限定されない。好ましくはシステインシンターゼA又はシステインシンターゼBであり、さらに好ましくはシステインシンターゼAである。システインシンターゼの由来は特に限定されないが、例えば大腸菌やサルモネラ属などのグラム陰性菌、またスタフィロコッカス属やストレプトコッカス属などのグラム陽性菌由来のものが挙げられる。好ましくは、ネズミチフス菌(Salmonella enterica serover Typhimurium)由来のシステインシンターゼAである。 The cysteine synthase used in the present invention is not particularly limited as long as it is an enzyme that catalyzes the above reaction. Cysteine synthase A or cysteine synthase B is preferable, and cysteine synthase A is more preferable. The origin of cysteine synthase is not particularly limited, but examples include those derived from Gram-negative bacteria such as Escherichia coli and Salmonella, and Gram-positive bacteria such as Staphylococcus and Streptococcus. Preferably, it is cysteine synthase A derived from Salmonella enterica serover Typhimurium.
 本発明に用いるシステインシンターゼは、微生物より抽出したものを用いてもよく、または遺伝子組換えにより調製したものであってもよい。遺伝子組換えにより調製したシステインシンターゼを用いる場合、ヒスチジンタグ(6~11個の連続するヒスチジン残基からなるタグ)等で修飾されたものを用いてもよい。ヒスチジンタグは、ニッケル等の金属イオンへ高い親和性を有しているため、ヒスチジンタグで修飾された組換えタンパク質をニッケル等の金属を固定化した樹脂に担持させることができる。ヒスチジンタグを含むシステインシンターゼをニッケル等の金属を固定化した樹脂に担持させることにより、反応系から酵素を容易に回収することができるため、生成物との分離が容易であり、回収した酵素を再利用することも可能となる。この点において、ヒスチジンタグを含む組換えシステインシンターゼを用いることは好都合である。 The cysteine synthase used in the present invention may be extracted from a microorganism or may be prepared by genetic recombination. When cysteine synthase prepared by gene recombination is used, one modified with a histidine tag (a tag comprising 6 to 11 consecutive histidine residues) or the like may be used. Since the histidine tag has a high affinity for metal ions such as nickel, a recombinant protein modified with a histidine tag can be supported on a resin on which a metal such as nickel is immobilized. By supporting a cysteine synthase containing a histidine tag on a resin in which a metal such as nickel is immobilized, the enzyme can be easily recovered from the reaction system, so that it can be easily separated from the product. It can be reused. In this regard, it is advantageous to use a recombinant cysteine synthase containing a histidine tag.
 システインシンターゼA(CysK)を用いる場合、CysKの酵素活性には補酵素であるピリドキサールリン酸(PLP)が必要であることが知られている。CysKを組換え大腸菌から生成した場合、PLPはCysKに結合した状態で精製される。したがって、本発明において、組換えシステインシンターゼAを用いる場合は、必ずしも酵素反応の際にPLPを反応系に加える必要はない。 When cysteine synthase A (CysK) is used, it is known that the enzyme activity of CysK requires pyridoxal phosphate (PLP), which is a coenzyme. When CysK is produced from recombinant E. coli, PLP is purified while bound to CysK. Therefore, in the present invention, when recombinant cysteine synthase A is used, it is not always necessary to add PLP to the reaction system during the enzymatic reaction.
 (2)セリン-O-アセチルトランスフェラーゼ
 セリン-O-アセチルトランスフェラーゼ(EC:2.3.1.30)は、L-セリンとアセチルCoAを基質としてO-アセチル-L-セリンとCoAを生成する反応を触媒する酵素であり、以下の化学反応:
Figure JPOXMLDOC01-appb-C000002
を触媒する酵素である。
(2) Serine-O-acetyltransferase Serine-O-acetyltransferase (EC: 2.3.3.10) is a reaction that produces O-acetyl-L-serine and CoA using L-serine and acetyl CoA as substrates. An enzyme that catalyzes the following chemical reactions:
Figure JPOXMLDOC01-appb-C000002
It is an enzyme that catalyzes.
 本発明に用いるセリン-O-アセチルトランスフェラーゼは、上記の反応を触媒する酵素であれば特に限定されないが、例えば大腸菌やサルモネラ属などのグラム陰性菌、またスタフィロコッカス属やストレプトコッカス属などのグラム陽性菌由来のものが挙げられる。セリン-O-アセチルトランスフェラーゼは、微生物より抽出したものを用いてもよく、また遺伝子組換えにより調製したものであってもよい。遺伝子組換えにより調製したセリン-O-アセチルトランスフェラーゼを用いる場合、上記(1)システインシンターゼについて述べた理由から、ヒスチジンタグ(6~11個の連続するヒスチジン残基からなるタグ)等で修飾されたものを用いてもよい。 The serine-O-acetyltransferase used in the present invention is not particularly limited as long as it is an enzyme that catalyzes the above-mentioned reaction. The thing derived from a microbe is mentioned. Serine-O-acetyltransferase may be extracted from microorganisms or may be prepared by genetic recombination. When serine-O-acetyltransferase prepared by gene recombination is used, it is modified with a histidine tag (a tag comprising 6 to 11 consecutive histidine residues) or the like for the reason described in (1) cysteine synthase above. A thing may be used.
 同位体標識
 同位体とは、同一の原子番号を持つものの中性子数が異なる核種の関係をいう。本明細書において「同位体標識された」とは、ある化合物の特定の核種について、天然存在比が最も高い同位体以外の同位体に置換された状態を意味する。また、「同位体標識」は、ある化合物の特定の核種について、置換された天然存在比が最も高い同位体以外の同位体を意味する。同位体標識は、安定同位体であってもよく、放射性同位体であってもよい。ここで、放射性同位体は、崩壊により放射線を出す放射能を有するものであり、安定同位体は崩壊を起こさず安定な同位体である。
An isotope-labeled isotope refers to a relationship between nuclides having the same atomic number but different numbers of neutrons. As used herein, “isotopically labeled” means a state in which a specific nuclide of a compound is substituted with an isotope other than the isotope having the highest natural abundance ratio. “Isotope labeling” means an isotope other than the isotope having the highest natural abundance ratio for a specific nuclide of a compound. The isotope label may be a stable isotope or a radioisotope. Here, the radioisotope has a radioactivity for emitting radiation by decay, and the stable isotope is a stable isotope that does not cause decay.
 本発明においてイオウ原子について用いる同位体標識は、イオウの同位体である限り特に限定されないが、好ましくは、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される。より好ましくは、本発明においてイオウ原子について用いる同位体標識は安定同位体34Sである。 Isotope label used for sulfur atoms in the present invention is not particularly limited as long as the isotope of sulfur, preferably, stable isotopes 32 S, stable isotope 34 S, radioisotope 33 S and radioactive isotopes 35 S Selected from the group consisting of More preferably, the isotope label used for sulfur atoms in the present invention are stable isotope 34 S.
 本発明においてセレン原子について用いる同位体標識は、セレンの同位体である限り特に限定されないが、好ましくは、安定同位体78Se、安定同位体77Se及び安定同位体76Seからなる群より選択される。より好ましくはセレン原子について用いる同位体標識は安定同位体78Seである。 The isotope label used for the selenium atom in the present invention is not particularly limited as long as it is an isotope of selenium, but is preferably selected from the group consisting of stable isotope 78 Se, stable isotope 77 Se and stable isotope 76 Se. The More preferably, the isotope label used for the selenium atom is the stable isotope 78 Se.
 システイン及びシステイン誘導体
 システインは、天然アミノ酸の一種であり、特に明記しない限り、L-システインである。
Cysteine and cysteine derivatives Cysteine is a kind of natural amino acid and is L-cysteine unless otherwise specified.
 本明細書においてイオウ原子を同位体標識したシステイン、とは、システインのメルカプト基(-SH)のイオウ原子が同位体標識されたシステインを意味する。 In the present specification, the cysteine in which a sulfur atom is isotopically labeled means a cysteine in which the sulfur atom of the mercapto group (—SH) of cysteine is isotopically labeled.
 本明細書においてシステイン誘導体には、以下のものが含まれる:
(i)シスチン(Cys-S-S-Cys)であって、当該分子内のイオウ原子の少なくとも1つが同位体標識されている化合物;
(ii)スルホシステイン(Cys-SOH)、またはS-スルホシステイン(Cys-SSOH)であって、当該分子内のイオウ原子が同位体標識されている化合物;
(iii)システインパースルフィド(Cys-SSH)であって、当該分子内のイオウ原子の少なくとも1つが同位体標識されている化合物;
(iv)セレノシステイン(Cys-SeH)、ここでセレン原子は同位体標識されていなくてもよく、または同位体標識されていてもよい;
(v)シスチンポリスルフィド(Cys-S-S(1-3)-S-Cys)であって、当該分子内のイオウ原子の少なくとも1つが同位体標識されている化合物;
(vi)N-アセチルシステインであって、当該分子内のイオウ原子が同位体標識されている化合物。
As used herein, cysteine derivatives include the following:
(I) a compound that is cystine (Cys-SS-Cys), wherein at least one sulfur atom in the molecule is isotopically labeled;
(Ii) a compound having sulfocysteine (Cys-SO 3 H) or S-sulfocysteine (Cys-SSO 3 H), in which a sulfur atom in the molecule is isotopically labeled;
(Iii) Cysteine persulfide (Cys-SSH), a compound in which at least one sulfur atom in the molecule is isotopically labeled;
(Iv) selenocysteine (Cys-SeH), wherein the selenium atom may or may not be isotopically labeled;
(V) a cystine polysulfide (Cys-SS ( 1-3) -S-Cys), wherein at least one sulfur atom in the molecule is isotopically labeled;
(Vi) N-acetylcysteine, which is an isotope-labeled sulfur atom in the molecule.
 システインの合成方法
 一態様において、システインシンターゼの存在下で、O-アセチル-L-セリン及びイオウ原子について同位体標識された基質を反応させる工程を含む、イオウ原子を同位体標識したシステインの合成方法、を提供する。
In one embodiment of the method for synthesizing cysteine, the method for synthesizing cysteine labeled with an isotopically labeled sulfur atom, comprising the step of reacting O-acetyl-L-serine and a substrate labeled with an isotope labeled with a sulfur atom in the presence of cysteine synthase. ,I will provide a.
 イオウ原子について同位体標識された基質は、硫化水素ナトリウム(NaHS)、硫化ナトリウム(NaS)、又は硫化ナトリウムにより派生されるものであってもよい硫化水素(HS)である。イオウ原子の同位体標識の種類いついては、先に「同位体標識」の項目において記載したとおりである。 The isotopically labeled substrate for the sulfur atom is sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), or hydrogen sulfide (H 2 S), which may be derived from sodium sulfide. The types of isotope labeling of sulfur atoms are as described above in the section “Isotope labeling”.
 反応条件は、システインシンターゼの酵素活性が保持される条件であれば特に限定されない。例えば、25~37℃、pH7~8等が挙げられる。 The reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained. For example, 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
 シスチンの合成方法
 一態様において、以下の工程:
(i)システインシンターゼの存在下で、O-アセチル-L-セリン及びイオウ原子について同位体標識された基質を反応させる;
(ii)工程(i)で得られたイオウ原子を同位体標識したシステインを酸化剤により酸化させることによりシスチンを得る;
を含む、イオウ原子を同位体標識したシスチンの合成方法を提供する。
In one embodiment of the method for synthesizing cystine , the following steps:
(I) reacting isotope-labeled substrates for O-acetyl-L-serine and sulfur atoms in the presence of cysteine synthase;
(Ii) Cystine is obtained by oxidizing the cysteine labeled with the isotope-labeled sulfur atom obtained in step (i) with an oxidizing agent;
A method for synthesizing a cystine labeled with an isotope of a sulfur atom is provided.
 シスチンは、3,3’-ジチオビス(2-アミノプロピオン酸)であり、2分子のシステインにおけるメルカプト基(-SH)がジスルフィド結合を形成することにより連結された構造を有する。本明細書において、シスチンを便宜上、Cys-S-S-Cysと表記することがある。 Cystine is 3,3′-dithiobis (2-aminopropionic acid) and has a structure in which two molecules of cysteine in the cysteine are linked by forming a disulfide bond. In the present specification, cystine is sometimes referred to as Cys-SS-Cys for convenience.
 上記工程(i)は、上記「システインの合成方法」の項目において説明したとおりに行うことができる。 The step (i) can be performed as described in the above item “Method for synthesizing cysteine”.
 上記工程(ii)に用いる酸化剤は、メルカプト基を酸化することによりジスルフィド結合の形成を促進することができる試薬であれば特に限定されないが、例えばヨウ素(I)、重金属、過酸化水素(H)等を好適に使用できる。好ましい態様において、酸化剤はヨウ素である。 The oxidizing agent used in the step (ii) is not particularly limited as long as it is a reagent that can promote the formation of a disulfide bond by oxidizing a mercapto group. For example, iodine (I 2 ), heavy metal, hydrogen peroxide ( H 2 O 2) or the like can be preferably used. In a preferred embodiment, the oxidizing agent is iodine.
 上記工程(ii)の反応条件は、ジスルフィド結合の形成に適した条件であれば、特に限定されないが、例えば、25℃~37℃、pH7~8などの条件が挙げられる。 The reaction conditions in the above step (ii) are not particularly limited as long as they are suitable for the formation of disulfide bonds, and examples include conditions such as 25 ° C. to 37 ° C. and pH 7 to 8.
 スルホシステインの合成方法
 一態様において、システインシンターゼの存在下で、O-アセチル-L-セリンおよびイオウ原子について同位体標識された亜硫酸ナトリウム(NaSO)を反応させる工程を含む、イオウ原子を同位体標識したスルホシステインの合成方法、を提供する。イオウ原子の同位体標識の種類については、先に「同位体標識」の項目において記載したとおりである。
In one embodiment of the method for synthesizing sulfocysteine, a sulfur atom is reacted with O-acetyl-L-serine and sodium sulfite (Na 2 SO 3 ) isotopically labeled for sulfur atom in the presence of cysteine synthase. A method of synthesizing isotopically labeled sulfocysteine is provided. The type of isotope labeling of the sulfur atom is as described above in the section “Isotope labeling”.
 スルホシステインの構造は次式:HN-CH(CH-SOH)-COOH、で表すことができる。本明細書において、スルホシステインを便宜上、Cys-SOHと表記することがある。 The structure of sulfocysteine can be represented by the following formula: H 2 N—CH (CH 2 —SO 3 H) —COOH. In the present specification, sulfocysteine is sometimes referred to as Cys-SO 3 H for convenience.
 反応条件は、システインシンターゼの酵素活性が保持される条件であれば特に限定されない。例えば、25~37℃、pH7~8等が挙げられる。 The reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained. For example, 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
 S-スルホシステインの合成方法
 一態様において、システインシンターゼBの存在下で、O-アセチル-L-セリンおよびイオウ原子について同位体標識されたチオ硫酸ナトリウム(Na)を反応させる工程を含む、イオウ原子を同位体標識したS-スルホシステインの合成方法、を提供する。イオウ原子の同位体標識の種類については、先に「同位体標識」の項目において記載したとおりである。
In one embodiment of the method for synthesizing S-sulfocysteine, in the presence of cysteine synthase B, reacting sodium thiosulfate (Na 2 S 2 O 3 ) isotopically labeled with O-acetyl-L-serine and a sulfur atom And a method for synthesizing S-sulfocysteine, wherein the sulfur atom is isotopically labeled. The type of isotope labeling of the sulfur atom is as described above in the section “Isotope labeling”.
 S-スルホシステインの構造は次式:HN-CH(CH-SSOH)-COOH、で表すことができる。本明細書において、S-スルホシステインを便宜上、Cys-SSOHと表記することがある。 The structure of S-sulfocysteine can be represented by the following formula: H 2 N—CH (CH 2 —SSO 3 H) —COOH. In the present specification, S-sulfocysteine is sometimes referred to as Cys-SSO 3 H for convenience.
 反応条件は、システインシンターゼBの酵素活性が保持される条件であれば特に限定されない。例えば、25~37℃、pH7~8等が挙げられる。 The reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase B is maintained. For example, 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
 システインパースルフィドの合成方法
 一態様において、システインシンターゼの存在下で、O-アセチル-L-セリンおよびイオウ原子について同位体標識された二硫化ナトリウム(Na)を反応させる工程を含む、イオウ原子を同位体標識したシステインパースルフィドの合成方法、を提供する。イオウ原子の同位体標識の種類については、先に「同位体標識」の項目において記載したとおりである。
In one embodiment of the method for synthesizing cysteine persulfide, sulfur comprising the step of reacting O-acetyl-L-serine and isotopically labeled sodium disulfide (Na 2 S 2 ) with respect to a sulfur atom in the presence of cysteine synthase. Provided is a method for synthesizing cysteine persulfide having an isotope-labeled atom. The type of isotope labeling of the sulfur atom is as described above in the section “Isotope labeling”.
 システインパースルフィドの構造は次式:HN-CH(CH-SSH)-COOH、で表すことができる。本明細書において、システインパースルフィドを便宜上、Cys-SSHと表記することがある。 The structure of cysteine persulfide can be represented by the following formula: H 2 N—CH (CH 2 —SSH) —COOH. In this specification, cysteine persulfide may be referred to as Cys-SSH for convenience.
 反応条件は、システインシンターゼの酵素活性が保持される条件であれば特に限定されない。例えば、30~42℃、pH7~8等が挙げられる。 The reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained. Examples thereof include 30 to 42 ° C., pH 7 to 8 and the like.
 別の態様において、上記「システインの合成方法」の項目に記載した方法により得たイオウ原子を同位体標識したシステインと、二硫化ナトリウムを反応させる工程を含む、イオウ原子を同位体標識したシステインパースルフィドの合成方法を提供する。この場合は特に、システインのβ炭素に結合しているイオウ原子は同位体標識されているが、末端のSH基は天然存在比が最も高い同位体であってもよい。イオウ原子を同位体標識したシステインと、二硫化ナトリウムを反応させる条件は、パースルフィドが形成される条件であれば特に限定されない。例えば、30~42℃が挙げられる。 In another embodiment, a sulfur atom isotope-labeled cysteine par comprising the step of reacting a sulfur atom isotopically labeled with a sulfur atom obtained by the method described in the above-mentioned section of “Method for synthesizing cysteine” and sodium disulfide. A method for the synthesis of sulfides is provided. In this case, in particular, the sulfur atom bonded to the β carbon of cysteine is isotopically labeled, but the terminal SH group may be an isotope having the highest natural abundance ratio. The conditions for reacting cysteine labeled with an isotope with sulfur atoms and sodium disulfide are not particularly limited as long as they allow persulfide to be formed. An example is 30 to 42 ° C.
 セレノシステインの合成方法
 一態様において、システインシンターゼの存在下で、O-アセチル-L-セリンおよびセレン化ナトリウム(NaSe)を反応させる工程を含む、セレノシステインの合成方法、を提供する。セレン化ナトリウムは、同位体標識されていてもよく、同位体標識されていなくてもよい。セレン化ナトリウムが同位体標識されている場合、セレン原子が同位体標識されたセレノシステインが得られる。セレン原子の同位体標識の種類については、先に「同位体標識」の項目において記載したとおりである。
In one embodiment of the method for synthesizing selenocysteine, a method for synthesizing selenocysteine is provided, which comprises the step of reacting O-acetyl-L-serine and sodium selenide (Na 2 Se) in the presence of cysteine synthase. Sodium selenide may or may not be isotopically labeled. When sodium selenide is isotopically labeled, selenocysteine in which the selenium atom is isotopically labeled is obtained. The type of isotope labeling of the selenium atom is as described above in the section “Isotope labeling”.
 セレノシステインの構造は次式:HN-CH(CH-SeH)-COOH、で表すことができる。すなわち、セレノシステインは、システインのイオウ原子がセレンに置換された構造を有する。本明細書において、セレノシステインを便宜上、Cys-SeHと表記することがある。 The structure of selenocysteine can be represented by the following formula: H 2 N—CH (CH 2 —SeH) —COOH. That is, selenocysteine has a structure in which the sulfur atom of cysteine is substituted with selenium. In the present specification, selenocysteine is sometimes expressed as Cys-SeH for convenience.
 反応条件は、システインシンターゼの酵素活性が保持される条件であれば特に限定されない。例えば、25~37℃、pH7~8等が挙げられる。 The reaction conditions are not particularly limited as long as the enzyme activity of cysteine synthase is maintained. For example, 25 to 37 ° C., pH 7 to 8 and the like can be mentioned.
 シスチンポリスルフィドの合成方法
 一態様において、
(i)システインシンターゼの存在下で、O-アセチル-L-セリンおよびイオウ原子について同位体標識された基質を反応させる;
(ii)工程(i)で得たイオウ原子を同位体標識したシステインを酸化剤亜硝酸ナトリウム(NaNO)と反応させる;
(iii)さらに硫化ナトリウム(NaS)を添加して反応させることにより、シスチンポリスルフィドを得る;を含む、イオウ原子を同位体標識したシスチンポリスルフィドの合成方法を提供する。
In one embodiment of the method for synthesizing cystine polysulfide ,
(I) reacting isotope-labeled substrates for O-acetyl-L-serine and sulfur atoms in the presence of cysteine synthase;
(Ii) reacting the cysteine labeled with an isotope of the sulfur atom obtained in step (i) with an oxidizing agent sodium nitrite (NaNO 2 );
(Iii) A method for synthesizing a cystine polysulfide in which a sulfur atom is isotopically labeled is provided, which further comprises adding sodium sulfide (Na 2 S) to react to obtain a cystine polysulfide.
 シスチンポリスルフィドの構造は次式:HN-CH(COOH)-CH-S-S(1-3)-S-CH-CH(COOH)-NH、で表すことができる。本明細書においてシスチンポリスルフィドを便宜上、Cys-S-S(1-3)-S-Cysと表記することがある。 The structure of cystine polysulfide can be represented by the following formula: HN 2 —CH (COOH) —CH 2 —SS (1-3) —S—CH 2 —CH (COOH) —NH 2 . In the present specification, the cystine polysulfide is sometimes referred to as Cys-SS (1-3) -S-Cys for convenience.
 上記工程(i)は、上記「システインの合成方法」の項目において説明した通りに行うことができる。 The step (i) can be carried out as described in the item “Method for synthesizing cysteine” above.
 上記工程(ii)に用いる酸化剤は、メルカプト基から水素原子を引き抜く反応を促進することができる試薬であれば特に限定されないが、例えば亜硝酸ナトリウム(NaNO)、ヨウ素(I)、金属塩(例えば、硫化鉄(II)(FeSO)、塩化鉄(II)(FeCl)、塩化マンガン(II)(MnCl)、酢酸マンガン(III)(Mn(OCOCH、硫化銅(II)(CuSO)、塩化亜鉛(ZnCl))、金属を含む酵素(例えば、ヘミン、スーパーオキシドディスムターゼ(SOD)、カタラーゼ、セイヨウワサビペルオキシダーゼ(HRP))等を好適に使用できる。好ましい態様において、酸化剤は亜硝酸ナトリウム(NaNO)である。 The oxidizing agent used in the above step (ii) is not particularly limited as long as it is a reagent that can promote the reaction of extracting a hydrogen atom from a mercapto group. For example, sodium nitrite (NaNO 2 ), iodine (I 2 ), metal Salts (eg, iron (II) sulfide (FeSO 4 ), iron (II) chloride (FeCl 2 ), manganese (II) chloride (MnCl 2 ), manganese (III) acetate (Mn (OCOCH 3 ) 3 , copper sulfide ( II) (CuSO 4 ), zinc chloride (ZnCl 2 )), metal-containing enzymes (eg, hemin, superoxide dismutase (SOD), catalase, horseradish peroxidase (HRP)), etc. can be suitably used. The oxidizing agent is sodium nitrite (NaNO 2 ).
 上記工程(iii)に用いる硫化ナトリウム(NaS)は、イオウ原子について同位体標識されたものであってもよく、イオウ原子について同位体標識されていないものであってもよい。 The sodium sulfide (Na 2 S) used in the above step (iii) may be an isotope-labeled sulfur atom or an unisotopically labeled sulfur atom.
 上記(ii)および(iii)の反応条件は、ポリスルフィド結合の形成に適した条件であれば特に限定されないが、例えば、25~37℃が挙げられる。 The reaction conditions (ii) and (iii) are not particularly limited as long as they are suitable for forming a polysulfide bond, and examples thereof include 25 to 37 ° C.
 N-アセチルシステインの合成方法
 一態様において、以下の工程:
(i)システインシンターゼの存在下で、O-アセチル-L-セリンおよびイオウ原子について同位体標識された基質を反応させる;
(ii)工程(i)で得たイオウ原子を同位体標識したシステインをアセチル化剤と反応させることにより、N-アセチルシステインを得る;
を含む、イオウ原子を同位体標識したN-アセチルシステインの合成方法を提供する。
In one embodiment of the method for synthesizing N-acetylcysteine , the following steps:
(I) reacting isotope-labeled substrates for O-acetyl-L-serine and sulfur atoms in the presence of cysteine synthase;
(Ii) N-acetylcysteine is obtained by reacting the cysteine labeled with an isotopically labeled sulfur atom obtained in step (i) with an acetylating agent;
A method for synthesizing N-acetylcysteine labeled with an isotope of a sulfur atom is provided.
 N-アセチルシステインの構造は次式:CH-CONH-C(CH-SH)-COOHで表すことができる。 The structure of N-acetylcysteine can be represented by the following formula: CH 3 —CONH—C (CH 2 —SH) —COOH.
 上記工程(i)は、上記「システインの合成方法」の項目において説明した通りに行うことができる。 The step (i) can be carried out as described in the item “Method for synthesizing cysteine” above.
 上記工程(ii)に用いるアセチル化剤は、システインのアミノ基をアセチル化することができる試薬であれば特に限定されない。例えば、アセチルCoA、無水酢酸等を好適に使用できる。好ましい態様において、アセチル化剤はアセチルCoAである。 The acetylating agent used in the above step (ii) is not particularly limited as long as it is a reagent capable of acetylating the amino group of cysteine. For example, acetyl CoA, acetic anhydride and the like can be preferably used. In a preferred embodiment, the acetylating agent is acetyl CoA.
 上記工程(ii)の反応条件は、アセチル化反応に適した条件であれば特に限定されないが、例えば25℃~37℃、pH7~8などの条件が挙げられる。 The reaction conditions in the above step (ii) are not particularly limited as long as they are suitable for the acetylation reaction, and examples include conditions such as 25 ° C. to 37 ° C. and pH 7 to 8.
 窒素及び/又は炭素原子が同位体標識されているO-アセチル-L-セリンの提供
 上記のシステイン、シスチン、スルホシステイン、S-スルホシステイン、システインパースルフィド、シスチンポリスルフィド、N-アセチルシステインまたはセレノシステインの合成方法において、窒素および/または炭素原子が同位体標識されているO-アセチル-L-セリンを、システインシンターゼによる反応に用いることにより、窒素および/または炭素ならびにイオウが同位体標識された(すなわち、窒素およびイオウが同位体標識された、炭素およびイオウが同位体標識された、窒素、炭素及びイオウが同位体標識された)システイン、シスチン、スルホシステイン、S-スルホシステイン、システインパースルフィド、シスチンポリスルフィド、N-アセチルシステインまたはセレノシステインを得ることができる。
Provision of O-acetyl-L-serine in which nitrogen and / or carbon atoms are isotopically labeled The above cysteine, cystine, sulfocysteine, S-sulfocysteine, cysteine persulfide, cystine polysulfide, N-acetylcysteine or selenocysteine In this synthesis method, nitrogen and / or carbon and sulfur are isotopically labeled by using O-acetyl-L-serine in which nitrogen and / or carbon atoms are isotopically labeled for the reaction with cysteine synthase ( Ie, nitrogen and sulfur isotope labeled, carbon and sulfur isotope labeled, nitrogen, carbon and sulfur isotope labeled) cysteine, cystine, sulfocysteine, S-sulfocysteine, cysteine persulfide, Cystine polysulf De, can be obtained N- acetyl cysteine or selenocysteine.
 この目的のため、別の態様において、上記の方法において、O-アセチル-L-セリンを、以下の工程:セリン-O-アセチルトランスフェラーゼの存在下で、窒素および/または炭素原子について同位体標識されたセリンを反応させる;により得ることをさらに含む方法を提供する。窒素および/または炭素原子についての同位体標識は、それぞれ、安定同位体15Nおよび/または13Cであってよい。 To this end, in another embodiment, in the above method, O-acetyl-L-serine is isotopically labeled for nitrogen and / or carbon atoms in the presence of the following steps: serine-O-acetyltransferase. A method further comprising: Isotope labels for nitrogen and / or carbon atoms may be stable isotopes 15 N and / or 13 C, respectively.
 システインおよびシステイン誘導体の回収および精製
 上記の合成方法または上記の反応により得られた、イオウ原子が同位体標識されたシステインまたはシステイン誘導体、あるいは、窒素および/または炭素ならびにイオウが同位体標識されたシステインまたはシステイン誘導体は、クロマトグラフィーなど当業者に公知の手法により回収・精製することができる。
Recovery and purification of cysteine and cysteine derivatives Cysteine or cysteine derivatives labeled with a sulfur atom, or cysteine labeled with nitrogen and / or carbon and sulfur, obtained by the above synthesis method or the above reaction Alternatively, the cysteine derivative can be recovered and purified by techniques known to those skilled in the art such as chromatography.
 キット
 一態様において、イオウ原子を同位体標識したシステインもしくはシスチン、又はシステイン誘導体を合成するためのキットを提供する。当該キットは、システインシンターゼ;及びイオウ原子について同位体標識された基質、又はセレン化ナトリウム(NaSe)(ここで、セレン化ナトリウムのセレン原子は同位体標識されていてもよく、されていなくてもよい);を含む。
In one embodiment of the kit, a kit for synthesizing cysteine or cystine or a cysteine derivative isotopically labeled with a sulfur atom is provided. The kit includes a cysteine synthase; and a substrate that is isotopically labeled for a sulfur atom, or sodium selenide (Na 2 Se), wherein the selenium atom of sodium selenide may or may not be isotopically labeled. May be).
 キットに含まれるシステインシンターゼは、先に「システインシンターゼ」の項目において記載したとおりである。 The cysteine synthase included in the kit is as described in the item “Cysteine synthase” above.
 イオウ原子について同位体標識された基質は、合成目的の化合物の種類に応じて、イオウ原子について同位体標識された硫化水素ナトリウム(NaHS)、硫化ナトリウム(NaS)、亜硫酸ナトリウム(NaSO)、チオ硫酸ナトリウム(Na)、及び二硫化ナトリウム(Na)からなる群より選択される少なくとも一つの基質である。ここでイオウ原子の同位体標識の種類については、先に「同位体標識」の項目において記載したとおりである。 Depending on the type of compound to be synthesized, a substrate that is isotopically labeled with a sulfur atom may be sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), or sodium sulfite (Na 2 SO) that is isotopically labeled with a sulfur atom. 3 ), at least one substrate selected from the group consisting of sodium thiosulfate (Na 2 S 2 O 3 ) and sodium disulfide (Na 2 S 2 ). Here, the types of isotope labeling of sulfur atoms are as described above in the section of “isotope labeling”.
 セレン原子を同位体標識する場合の種類については、先に「同位体標識」の項目において記載した通りである。 The types of isotope labeling of selenium atoms are as described in the “Isotope labeling” section above.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
 実施例1: 34 S標識システイン(Cys- 34 SH)の合成
 100mM リン酸バッファー(pH7.6)中、20mM O-アセチル-L-セリン、20mM 硫化水素ナトリウム(Na 34S)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysK) 0.05mg/mlを添加し、37℃で1時間反応させた。
Example 1: 34 S-labeled cysteine (Cys- 34 SH) in the synthesis 100mM phosphate buffer (pH 7.6) in, so that 20 mM O-acetyl -L- serine, 20 mM sodium hydrogen sulfide (Na 2 34 S) Dissolved. To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 1 hour.
 システイン生成の確認を容易にする目的で、上記の反応後、反応液中にメタノール及び過剰量のモノブロモビマン(MBB)を添加し、37℃で15分間インキュベートした。 For the purpose of facilitating confirmation of cysteine production, methanol and an excess amount of monobromobiman (MBB) were added to the reaction solution after the above reaction and incubated at 37 ° C. for 15 minutes.
 反応物を高速液体クロマトグラフィーにより分析した(カラム:YMC Triat C18 plus(4.6 mm×150 mm)(株式会社ワイエムシィ);カラム温度:35℃;インジェクション容量:10μl;移動層:A液/0.1%ギ酸、及びB液/アセトニトリル;グラジエント:5%B液(0分)-80%B液(22分)-80%B液(23分)-5%B液(24分)-5%B液(30分);流速0.8ml/分)。溶出時間9~10分に目的の生成物(システイン-ビマン)のピークが確認できた。ピーク面積から、15mMの生成物が生じていることが確認された。20mMのO-アセチルセリン及び硫化水素ナトリウムを出発原料として用いたので、これは、反応収率75%であることを意味する。 The reaction product was analyzed by high performance liquid chromatography (column: YMC Triat C18 plus (4.6 mm × 150 mm) (YMC Co., Ltd.); column temperature: 35 ° C; injection volume: 10 μl; moving bed: solution A / 0.1 % Formic acid and B solution / acetonitrile; Gradient: 5% B solution (0 min)-80% B solution (22 min)-80% B solution (23 min)-5% B solution (24 min)-5% B Liquid (30 minutes); flow rate 0.8 ml / min). The peak of the target product (cysteine-biman) was confirmed at an elution time of 9 to 10 minutes. From the peak area, it was confirmed that a product of 15 mM was generated. Since 20 mM O-acetylserine and sodium hydrogen sulfide were used as starting materials, this means a reaction yield of 75%.
 また、この生成物について質量分析を行ったところ、システイン-ビマンの同位体標識されていない標品についてm/z:312.1のピークを検出したのに対し、生成物はm/z:314.1のピークを検出した。このことは、生成物が、安定同位体34Sで同位体標識された化合物であることを示している。 Further, when mass analysis was performed on this product, a peak at m / z: 312.1 was detected in a sample not labeled with cysteine-biman, and in the product, m / z: 314 A peak of .1 was detected. This product, indicates that it is isotopically labeled compounds with a stable isotope 34 S.
 実施例2: 34 S標識シスチン(Cys- 34 S- 34 S-Cys)の合成
 100mM リン酸バッファー(pH7.6)中、20mM O-アセチル-L-セリン、20mM 硫化水素ナトリウム(Na 34S)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysK) 0.05mg/mlを添加し、37℃で1時間反応させた。
Example 2: 34 S-labeled cystine synthesis 100mM phosphate buffer (pH 7.6) in (Cys- 34 S- 34 S-Cys ), 20mM O- acetyl -L- serine, 20 mM sodium hydrogen sulfide (Na 2 34 S ) Was dissolved. To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 1 hour.
 上記の反応後、ヨウ素(I)を40mMになるように反応液に添加し、37℃で10分間インキュベートした。 After the above reaction, iodine (I 2 ) was added to the reaction solution to 40 mM and incubated at 37 ° C. for 10 minutes.
 反応物を高速液体クロマトグラフィーにより分析した(カラム:Intrada Amino Acid(100×3 mm)(インタクト株式会社);カラム温度:35℃;インジェクション容量:10μl;移動層:A液/アセトニトリル、及びB液/20mM ギ酸アンモニウム;グラジエント:14%B液(0分)-14%B液(3分)-100%B液(20分)-14%B液(20.5分)-14%B液(30分);流速0.6ml/分)。溶出時間約18分に、目的の生成物(シスチン)のピークが確認できた。反応収率はほぼ100%であった。 The reaction product was analyzed by high performance liquid chromatography (column: Intrada Amino Acid (100 × 3 mm) (Intact Corporation); column temperature: 35 ° C .; injection volume: 10 μl; moving bed: solution A / acetonitrile and solution B / 20 mM ammonium formate; Gradient: 14% solution B (0 minutes)-14% solution B (3 minutes)-100% solution B (20 minutes)-14% solution B (20.5 minutes)-14% solution B ( 30 minutes); flow rate 0.6 ml / min). The peak of the target product (cystine) was confirmed at an elution time of about 18 minutes. The reaction yield was almost 100%.
 また、この生成物について質量分析を行ったところ、シスチンの同位体標識されていない標品についてm/z:240.9のピークを検出したのに対し、生成物はm/z:244.9のピークを検出した。このことは、生成物が安定同位体34Sで同位体標識された化合物であることを示している。 In addition, when mass analysis was performed on this product, a peak at m / z: 240.9 was detected for a sample not labeled with cystine, whereas the product had an m / z: 244.9. The peak was detected. This product indicates that the compound is isotopically labeled with stable isotopes 34 S.
 実施例3: 15 N標識・ 34 S標識システイン([ 15 N]Cys- 34 SH)の合成
100mM リン酸バッファー(pH7.6)中、1mM 15N標識L-セリン、1mM アセチルCoA、1mM 硫化水素ナトリウム(Na 34S)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysK) 0.05mg/mlと参考例2の手法で調製したセリン-O-アセチルトランスフェラーゼ(CysE)を添加し、37℃で5分反応させた。システイン生成の確認を容易にする目的で、上記の反応後、反応液中にメタノール及び過剰量のモノブロモビマン(MBB)を添加し、37℃で15分間インキュベートした。
Example 3: Synthesis of 15 N-labeled / 34 S-labeled cysteine ([ 15 N] Cys- 34 SH) 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM hydrogen sulfide in 100 mM phosphate buffer (pH 7.6) It was dissolved at a sodium (Na 2 34 S). To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 5 minutes. I let you. In order to facilitate confirmation of cysteine production, methanol and an excess amount of monobromobiman (MBB) were added to the reaction solution after the above reaction, and the mixture was incubated at 37 ° C. for 15 minutes.
 反応物を高速液体クロマトグラフィーにより分析した(カラム:YMC Triat C18 plus(4.6 mm×150 mm)(株式会社ワイエムシィ);カラム温度:35℃;インジェクション容量:10μl;移動層:A液/0.1%ギ酸、及びB液/アセトニトリル;グラジエント:5%B液(0分)-80%B液(22分)-80%B液(23分)-5%B液(24分)-5%B液(30分);流速0.8ml/分)。溶出時間9~10分に目的の生成物(システイン-ビマン)のピークが確認できた。また、この生成物について質量分析を行ったところ、システイン-ビマンの同位体標識されていない標品についてm/z:312.1のピークを検出したのに対し、生成物はm/z:315.1のピークを検出した。このことは、生成物が、安定同位体34Sと15Nで同位体標識された化合物であることを示している。 The reaction product was analyzed by high performance liquid chromatography (column: YMC Triat C18 plus (4.6 mm × 150 mm) (YMC Co., Ltd.); column temperature: 35 ° C .; injection volume: 10 μl; moving bed: solution A / 0.1 % Formic acid and B solution / acetonitrile; Gradient: 5% B solution (0 min)-80% B solution (22 min)-80% B solution (23 min)-5% B solution (24 min)-5% B Liquid (30 minutes); flow rate 0.8 ml / min). The peak of the target product (cysteine-biman) was confirmed at an elution time of 9 to 10 minutes. Further, when mass analysis was performed on this product, a peak at m / z: 312.1 was detected for a sample not labeled with a cysteine-biman isotope, whereas the product had an m / z: 315 A peak of .1 was detected. This indicates that the product is a compound isotopically labeled with stable isotopes 34 S and 15 N.
 実施例4: 15 N標識・スルホシステイン([ 15 N]Cys-SO H)の合成
100mM リン酸バッファー(pH7.6)中、1mM 15N標識L-セリン、1mM アセチルCoA、1mM 亜硫酸ナトリウム(NaSO)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysK) 0.05mg/mlと参考例2の手法で調製したセリン-O-アセチルトランスフェラーゼ(CysE)を添加し、37℃で30分反応させた。反応物を質量分析機により分析した(カラム:Imtakt Scherzo SS-C18(2.0 mm×150 mm)(インタクト株式会社);カラム温度:45℃;インジェクション容量:3μl;移動層:A液/0.2%ギ酸、0.2%酢酸、及びB液/100mM酢酸アンモニウム、50%メタノール;グラジエント:0%B液(0分)-0%B液(1分)-2%B液(4分)-45%B液(15分)-0%B液(15.1分)-0%B液(20分);流速0.3ml/分);質量分析条件:プレカーサーイオン168、プロダクトイオン81、フラグメンター電圧90V、コリジョンエナジー21、極性ネガティブ。溶出時間3~4分に目的の生成物(スルホシステイン)のピークが確認できた。また、この生成物のスルホシステインの同位体標識されていない標品についてm/z:168のピークを検出したのに対し、生成物はm/z:169のピークを検出した。このことは、生成物が、15Nで同位体標識された化合物であることを示している。
Example 4: Synthesis of 15 N-labeled sulfocysteine ([ 15 N] Cys-SO 3 H) In 100 mM phosphate buffer (pH 7.6), 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM sodium sulfite ( Na 2 SO 3 ) was dissolved. To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 30 minutes. I let you. The reaction product was analyzed by a mass spectrometer (column: Imtakt Scherzo SS-C18 (2.0 mm × 150 mm) (Intact Corporation); column temperature: 45 ° C .; injection volume: 3 μl; moving bed: solution A / 0.2 % Formic acid, 0.2% acetic acid, and B solution / 100 mM ammonium acetate, 50% methanol; Gradient: 0% solution B (0 minutes)-0% solution B (1 minute)-2% solution B (4 minutes)- 45% solution B (15 minutes)-0% solution B (15.1 minutes)-0% solution B (20 minutes); flow rate 0.3 ml / min); mass analysis conditions: precursor ion 168, product ion 81, flag Mentor voltage 90V, collision energy 21, polarity negative. A peak of the target product (sulfocysteine) was confirmed at an elution time of 3 to 4 minutes. In addition, the product detected a peak at m / z: 169, while a peak at m / z: 168 was detected for the product of this product which was not isotopically labeled with sulfocysteine. This indicates that the product is a compound isotopically labeled with 15 N.
 実施例5: 15 N標識・S-スルホシステイン([ 15 N]Cys-SSO H)の合成
100mM リン酸バッファー(pH7.6)中、1mM 15N標識L-セリン、1mM アセチルCoA、1mM チオ硫酸ナトリウム(Na)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysM) 0.05mg/mlと参考例2の手法で調製したセリン-O-アセチルトランスフェラーゼ(CysE)を添加し、37℃で30分反応させた。反応物を質量分析機により分析した(カラム:Imtakt Scherzo SS-C18(2.0 mm×150 mm)(インタクト株式会社);カラム温度:45℃;インジェクション容量:3μl;移動層:A液/0.2%ギ酸、0.2%酢酸、及びB液/100mM酢酸アンモニウム、50%メタノール;グラジエント:0%B液(0分)-0%B液(1分)-2%B液(4分)-45%B液(15分)-0%B液(15.1分)-0%B液(20分);流速0.3ml/分);質量分析条件:プレカーサーイオン201、プロダクトイオン136、フラグメンター電圧90V、コリジョンエナジー9、極性ネガティブ。溶出時間4~5分に目的の生成物(S-スルホシステイン)のピークが確認できた。また、この生成物についてS-スルホシステインの同位体標識されていない標品についてm/z:200のピークを検出したのに対し、生成物はm/z:201のピークを検出した。このことは、生成物が、15Nで同位体標識された化合物であることを示している。
Example 5: Synthesis of 15 N-labeled S-sulfocysteine ([ 15 N] Cys-SSO 3 H) In 100 mM phosphate buffer (pH 7.6), 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM thio It was dissolved at a sodium sulphate (Na 2 S 2 O 3) . To this solution, 0.05 mg / ml of cysteine synthase (CysM) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 30 minutes. I let you. The reaction product was analyzed by a mass spectrometer (column: Imtakt Scherzo SS-C18 (2.0 mm × 150 mm) (Intact Corporation); column temperature: 45 ° C .; injection volume: 3 μl; moving bed: solution A / 0.2 % Formic acid, 0.2% acetic acid, and B solution / 100 mM ammonium acetate, 50% methanol; Gradient: 0% solution B (0 minutes)-0% solution B (1 minute)-2% solution B (4 minutes)- 45% solution B (15 minutes)-0% solution B (15.1 minutes)-0% solution B (20 minutes); flow rate 0.3 ml / min); mass analysis conditions: precursor ion 201, product ion 136, flag Mentor voltage 90V, collision energy 9, polarity negative. A peak of the target product (S-sulfocysteine) was confirmed at an elution time of 4 to 5 minutes. Further, for this product, a peak at m / z: 200 was detected for the sample not labeled with S-sulfocysteine, while the product detected a peak at m / z: 201. This indicates that the product is a compound isotopically labeled with 15 N.
 実施例6: 15 N標識・セレノシステイン([ 15 N]Cys-SeH)の合成
100mM リン酸バッファー(pH7.6)中、1mM 15N標識L-セリン、1mM アセチルCoA、1mM セレン化ナトリウム(NaSe)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysK) 0.05mg/mlと参考例2の手法で調製したセリン-O-アセチルトランスフェラーゼ(CysE)を添加し、37℃で30分反応させた。反応物を質量分析機により分析した(カラム:Imtakt Scherzo SS-C18(2.0 mm×150 mm)(インタクト株式会社);カラム温度:45℃;インジェクション容量:3μl;移動層:A液/0.2%ギ酸、0.2%酢酸、及びB液/100mM酢酸アンモニウム、50%メタノール;グラジエント:0%B液(0分)-0%B液(1分)-2%B液(4分)-45%B液(15分)-0%B液(15.1分)-0%B液(20分);流速0.3ml/分);質量分析条件:プレカーサーイオン336.9、プロダクトイオン247.8、フラグメンター電圧90V、コリジョンエナジー9、極性ポジティブ。なお、セレノシステインはほぼ全てが反応液中で酸化され、分子同士がジスルフィド結合で連結したセレノシスチン(Cys-Se-Se-Cys)を形成するため、セレノシスチンを検出した。溶出時間4~5分に目的の産物の酸化体であるセレノシスチンのピークが確認できた。また、この生成物についてセレノシスチンの同位体標識されていない標品についてm/z:336.9のピークを検出したのに対し、生成物はm/z:338.9のピークを検出した。このことは、生成物が、15Nで同位体標識された化合物であることを示している。
Example 6: Synthesis of 15 N-labeled selenocysteine ([ 15 N] Cys-SeH) In 100 mM phosphate buffer (pH 7.6), 1 mM 15 N-labeled L-serine, 1 mM acetyl CoA, 1 mM sodium selenide (Na 2 Se). To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 and serine-O-acetyltransferase (CysE) prepared by the method of Reference Example 2 were added and reacted at 37 ° C. for 30 minutes. I let you. The reaction product was analyzed by a mass spectrometer (column: Imtakt Scherzo SS-C18 (2.0 mm × 150 mm) (Intact Corporation); column temperature: 45 ° C .; injection volume: 3 μl; moving bed: solution A / 0.2 % Formic acid, 0.2% acetic acid, and B solution / 100 mM ammonium acetate, 50% methanol; Gradient: 0% solution B (0 minutes)-0% solution B (1 minute)-2% solution B (4 minutes)- 45% solution B (15 minutes) −0% solution B (15.1 minutes) −0% solution B (20 minutes); flow rate 0.3 ml / min); mass analysis conditions: precursor ion 336.9, product ion 247 .8, fragmentor voltage 90V, collision energy 9, polarity positive. Selenocysteine was detected because almost all selenocysteine was oxidized in the reaction solution to form selenocystine (Cys-Se-Se-Cys) in which the molecules were linked by a disulfide bond. A peak of selenocystine, an oxidant of the target product, was confirmed at an elution time of 4 to 5 minutes. Further, for this product, a peak at m / z: 336.9 was detected for the sample not labeled with selenocystine, whereas the product detected a peak at m / z: 338.9. This indicates that the product is a compound isotopically labeled with 15 N.
 実施例7: 34 S標識システインパースルフィド(Cys- 34 SSH)の合成
 100mM リン酸バッファー(pH7.6)中、実施例1の手法で調製した0.1mM 34S標識システインと0.1mM 二硫化ナトリウム(Na22)を混合し、37℃で30分反応させた。
Example 7: Synthesis of 34 S-labeled cysteine persulfide (Cys- 34 SSH) 0.1 mM 34 S-labeled cysteine and 0.1 mM disulfide prepared by the procedure of Example 1 in 100 mM phosphate buffer (pH 7.6) Sodium (Na 2 S 2 ) was mixed and reacted at 37 ° C. for 30 minutes.
 反応物を質量分析機により分析した(カラム:YMC Triat C18 plus(2.1 mm×150 mm)(株式会社ワイエムシィ);カラム温度:45℃;インジェクション容量:1μl;移動層:A液/0.1%ギ酸、及びB液/アセトニトリル;0.2%B液イソクラティック;流速0.2ml/分);質量分析条件:プレカーサーイオン153.9、プロダクトイオン73.1、フラグメンター電圧50V、コリジョンエナジー10、極性ポジティブ。溶出時間3~4分に目的の生成物(システインパースルフィド)のピークが確認できた。また、この生成物についてシステインパースルフィドの同位体標識されていない標品についてm/z:153.9のピークを検出したのに対し、生成物はm/z:155.9のピークを検出した。このことは、生成物が、34Sで同位体標識された化合物であることを示している。 The reaction product was analyzed by a mass spectrometer (column: YMC Triat C18 plus (2.1 mm × 150 mm) (YMC Co., Ltd.); column temperature: 45 ° C .; injection volume: 1 μl; moving bed: solution A / 0.1% Formic acid and B solution / acetonitrile; 0.2% B solution isocratic; flow rate 0.2 ml / min); mass analysis conditions: precursor ion 153.9, product ion 73.1, fragmentor voltage 50 V, collision energy 10 Positive polarity. A peak of the target product (cysteine persulfide) was confirmed at an elution time of 3 to 4 minutes. In addition, the product detected a peak at m / z: 155.9, whereas the product detected a peak at m / z: 153.9 for an unlabeled sample of cysteine persulfide. . This indicates that the product is a compound isotopically labeled with 34 S.
 実施例8: 34 S標識・スルホシステイン(Cys- 34 SO H)の合成
 100mM リン酸バッファー(pH7.6)中、1mM O-アセチル-L-セリン、1mM 34S標識・亜硫酸ナトリウム(Na 34SO)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysK) 0.05mg/mlを添加し、37℃で30分反応させた。実施例4に記載したものと同じ条件で、反応物を質量分析機により分析した。溶出時間3~4分に目的の生成物(スルホシステイン)のピークが確認できた。また、この生成物のスルホシステインの同位体標識されていない標品についてm/z:168のピークを検出したのに対し、生成物はm/z:170のピークを検出した。このことは、生成物が、34Sで同位体標識された化合物であることを示している。
Example 8: 34 S labeled-sulfocysteine during the synthesis 100mM phosphate buffer (pH 7.6) in (Cys- 34 SO 3 H), 1mM O- acetyl -L- serine, 1 mM 34 S labeled sodium sulfite (Na 2 34 SO 3 ). To this solution, 0.05 mg / ml of cysteine synthase (CysK) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 30 minutes. Under the same conditions as described in Example 4, the reactants were analyzed with a mass spectrometer. A peak of the target product (sulfocysteine) was confirmed at an elution time of 3 to 4 minutes. The product detected a peak at m / z: 170, whereas a peak at m / z: 168 was detected for the product of the product, which was not isotopically labeled with sulfocysteine. This indicates that the product is a compound isotopically labeled with 34 S.
 実施例9: 34 S標識・S-スルホシステイン(Cys-S 34 SO H)の合成
100mM リン酸バッファー(pH7.6)中、1mM O-アセチル-L-セリン、1mM 34S標識・チオ硫酸ナトリウム(Na34SO)となるように溶解した。この溶液に、参考例1の手法で調製したシステインシンターゼ(CysM) 0.05mg/mlを添加し、37℃で30分反応させた。実施例5に記載したものと同じ条件で、反応物を質量分析機により分析した。溶出時間4~5分に目的の生成物(S-スルホシステイン)のピークが確認できた。また、この生成物についてS-スルホシステインの同位体標識されていない標品についてm/z:200のピークを検出したのに対し、生成物はm/z:202のピークを検出した。このことは、生成物が、34S標識で同位体標識された化合物であることを示している。
Example 9: Synthesis of 34 S-labeled S-sulfocysteine (Cys-S 34 SO 3 H) 1 mM O-acetyl-L-serine, 1 mM 34 S-labeled thiosulfate in 100 mM phosphate buffer (pH 7.6) was dissolved at a sodium (Na 2 S 34 sO 3) . To this solution, 0.05 mg / ml of cysteine synthase (CysM) prepared by the method of Reference Example 1 was added and reacted at 37 ° C. for 30 minutes. Under the same conditions as described in Example 5, the reactants were analyzed with a mass spectrometer. A peak of the target product (S-sulfocysteine) was confirmed at an elution time of 4 to 5 minutes. In addition, for this product, a peak at m / z: 200 was detected for the sample not labeled with an isotope of S-sulfocysteine, whereas the product detected a peak at m / z: 202. This indicates that the product is a compound isotopically labeled with 34 S label.
 実施例10: 34 S標識・シスチンポリスルフィド(Cys 34 S- 34 (1-3) 34 SCys)の合成
5%ギ酸中、5mM 34S標識L-システイン、25mM 亜硝酸ナトリウム(NaNO)となるように溶解し、37℃で15分反応させた。この溶液に、6mM Na 34Sを添加し、さらに37℃で15分反応させた。反応物を質量分析機により分析した(カラム:YMC Triat C18 plus(2.1 mm×50 mm)(株式会社ワイエムシィ);カラム温度:45℃;インジェクション容量:3μl;移動層:A液/0.1%ギ酸、及びB液/アセトニトリル;イソクラティック:0.2%B液;流速0.2ml/分;質量分析条件:MS2スキャン(m/z:200-400)、フラグメンター電圧90V、極性ポジティブ。溶出時間2~3分、4~5分、12~13分にそれぞれ目的の生成物(シスチンポリスルフィド:Cys34S-34(1-3)34SCys)のピークが確認できた。また、この生成物についてシスチンポリスルフィドの同位体標識されていない標品についてm/z:273.0、305.0、337.0のピークをそれぞれ検出したのに対し、生成物はm/z:278.9、312.9、346.8のピークをそれぞれ検出した。このことは、生成物が、34Sで同位体標識された化合物であることを示している。
Example 10: 34 S-labeled-cystine polysulfide (Cys 34 S- 34 S (1-3 ) - 34 SCys) during synthesis 5% formic acid, 5 mM 34 S-labeled L- cysteine, and 25mM sodium nitrite (NaNO 2) And dissolved at 37 ° C. for 15 minutes. To this solution, 6 mM Na 2 34 S was added and further reacted at 37 ° C. for 15 minutes. The reaction product was analyzed by a mass spectrometer (column: YMC Triat C18 plus (2.1 mm × 50 mm) (YMC Co., Ltd.); column temperature: 45 ° C .; injection volume: 3 μl; moving bed: solution A / 0.1% Formic acid, and B solution / acetonitrile; isocratic: 0.2% B solution; flow rate 0.2 ml / min; mass analysis conditions: MS2 scan (m / z: 200-400), fragmentor voltage 90 V, polarity positive. elution time 2-3 minutes, 4-5 minutes, each product of interest 12-13 minutes. (cystine polysulfide: Cys 34 S- 34 S (1-3 ) - 34 SCys) peak of was confirmed also For this product, peaks of m / z: 273.0, 305.0, 337.0 were detected for the cystine polysulfide unisotopically labeled preparation, The m / z:. Detects respective peaks of 278.9,312.9,346.8 This product, it indicates that it is isotopically labeled compounds 34 S.
 実施例11: 34 S標識 N-アセチルシステインの合成
100mM リン酸バッファー(pH7.6)中、5mM 34S標識L-システイン、5mM アセチルCoA、となるように溶解し、37℃で30分反応させた。反応物を質量分析機により分析した(カラム:YMC Triat C18 plus(2.1 mm×50 mm)(株式会社ワイエムシィ);カラム温度:45℃;インジェクション容量:3μl;移動層:A液/0.1%ギ酸、及びB液/アセトニトリル;グラジエント:0.2%B液(0分)-10%B液(10分)-0.2%B液(10.1分)-0.2%B液(15分);流速0.2ml/分。質量分析条件:プレカーサーイオン166.2、プロダクトイオン99.5、フラグメンター電圧50V、コリジョンエナジー21、極性ポジティブ。溶出時間2~3分に目的の生成物(N-アセチルシステイン)のピークが確認できた。また、この生成物についてN-アセチルシステインの同位体標識されていない標品についてm/z:164のピークを検出したのに対し、生成物はm/z:166のピークを検出した。このことは、生成物が、34Sで同位体標識された化合物であることを示している。
Example 11: Synthesis of 34 S-labeled N-acetylcysteine It was dissolved in 100 mM phosphate buffer (pH 7.6) to give 5 mM 34 S-labeled L-cysteine, 5 mM acetyl CoA, and reacted at 37 ° C for 30 minutes. It was. The reaction product was analyzed by a mass spectrometer (column: YMC Triat C18 plus (2.1 mm × 50 mm) (YMC Co., Ltd.); column temperature: 45 ° C .; injection volume: 3 μl; moving bed: solution A / 0.1% Formic acid and solution B / acetonitrile; Gradient: 0.2% solution B (0 minutes) −10% solution B (10 minutes) −0.2% solution B (10.1 minutes) −0.2% solution B ( Flow rate: 0.2 ml / min Mass spectrometry conditions: Precursor ion 166.2, Product ion 99.5, Fragmenter voltage 50V, Collision Energy 21, Polarity positive, target product at elution time 2-3 minutes A peak of (N-acetylcysteine) was confirmed, and a peak at m / z: 164 was detected for the product with no N-acetylcysteine isotopically labeled, whereas the product was A peak at m / z: 166 was detected, indicating that the product is a compound isotopically labeled with 34 S.
 参考例1:システインシンターゼ(CysK、CysM)の調製
ネズミチフス菌由来のヒスチジンタグ融合CysKおよびCysMを発現する大腸菌をLB培地にて37℃で振盪培養した。大腸菌の濁度がOD.600=0.5になってから0.5mM IPTGを添加し、さらに30℃で2時間振盪培養した。大腸菌を遠心分離で回収し、リシスバッファー(50mM リン酸バッファー、300mM 塩化ナトリウム、10mM イミダゾール 1mg/ml リゾチーム、0.1μg/ml DNアーゼI pH7.8)で再懸濁した。氷上で30分静置後、超音波破砕機にて大腸菌を破砕し、遠心分離し、上清を回収した。上清をニッケル固相化アガロース充填カラムに通した後、洗浄バッファー(50mM リン酸バッファー、300mM 塩化ナトリウム、20mM イミダゾール pH7.8)にてカラムを2回洗浄した後、溶出バッファー(50mM リン酸バッファー、300mM 塩化ナトリウム、300mM イミダゾール pH7.8)でヒスチジンタグ融合CysKを溶出した。溶出したヒスチジンタグ融合CysKを50mM リン酸バッファー pH7.8で平衡化した脱塩カラムに通し、得られた溶液をシステインシンターゼ(CysK、CysM)として使用した。
Reference Example 1: Preparation of cysteine synthase (CysK, CysM) Escherichia coli expressing histidine tag-fused CysK and CysM derived from Salmonella typhimurium was cultured with shaking in LB medium at 37C. After the turbidity of E. coli reached OD.600 = 0.5, 0.5 mM IPTG was added, and the mixture was further cultured with shaking at 30 ° C. for 2 hours. E. coli was recovered by centrifugation and resuspended in lysis buffer (50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole 1 mg / ml lysozyme, 0.1 μg / ml DNase I pH 7.8). After standing on ice for 30 minutes, Escherichia coli was crushed with an ultrasonic crusher, centrifuged, and the supernatant was collected. After passing the supernatant through a nickel-immobilized agarose-packed column, the column was washed twice with a washing buffer (50 mM phosphate buffer, 300 mM sodium chloride, 20 mM imidazole pH 7.8), and then an elution buffer (50 mM phosphate buffer). The histidine tag-fused CysK was eluted with 300 mM sodium chloride, 300 mM imidazole pH 7.8). The eluted histidine tag-fused CysK was passed through a desalting column equilibrated with 50 mM phosphate buffer pH 7.8, and the resulting solution was used as cysteine synthase (CysK, CysM).
 参考例2:セリン-O-アセチルトランスフェラーゼ(CysE)の調製
ネズミチフス菌由来のヒスチジンタグ融合CysEを発現する大腸菌をLB培地にて37℃で振盪培養した。大腸菌の濁度がOD.600=0.5になってから0.5mM IPTGを添加し、さらに30℃で2時間振盪培養した。大腸菌を遠心分離で回収し、リシスバッファー(50mM リン酸バッファー、300mM 塩化ナトリウム、10mM イミダゾール 1mg/ml リゾチーム、0.1μg/ml DNアーゼI pH7.8)で再懸濁した。氷上で30分静置後、超音波破砕機にて大腸菌を破砕し、遠心分離し、上清を回収した。上清をニッケル固相化アガロース充填カラムに通した後、洗浄バッファー(50mM リン酸バッファー、300mM 塩化ナトリウム、20mM イミダゾール pH7.8)にてカラムを2回洗浄した後、溶出バッファー(50mM リン酸バッファー、300mM 塩化ナトリウム、300mM イミダゾール pH7.8)でヒスチジンタグ融合CysEを溶出した。溶出したヒスチジンタグ融合CysEを50mM リン酸バッファー pH7.8で平衡化した脱塩カラムに通し、得られた溶液をセリン-O-アセチルトランスフェラーゼ(CysE)として使用した。
Reference Example 2: Preparation of serine-O-acetyltransferase (CysE) Escherichia coli expressing histidine-tagged CysE derived from Salmonella typhimurium was cultured at 37 ° C with shaking in LB medium. After the turbidity of E. coli reached OD.600 = 0.5, 0.5 mM IPTG was added, and the mixture was further cultured with shaking at 30 ° C. for 2 hours. E. coli was recovered by centrifugation and resuspended in lysis buffer (50 mM phosphate buffer, 300 mM sodium chloride, 10 mM imidazole 1 mg / ml lysozyme, 0.1 μg / ml DNase I pH 7.8). After standing on ice for 30 minutes, Escherichia coli was crushed with an ultrasonic crusher, centrifuged, and the supernatant was collected. After passing the supernatant through a nickel-immobilized agarose-packed column, the column was washed twice with a washing buffer (50 mM phosphate buffer, 300 mM sodium chloride, 20 mM imidazole pH 7.8), and then an elution buffer (50 mM phosphate buffer). The histidine tag-fused CysE was eluted with 300 mM sodium chloride, 300 mM imidazole pH 7.8). The eluted histidine tag-fused CysE was passed through a desalting column equilibrated with 50 mM phosphate buffer pH 7.8, and the resulting solution was used as serine-O-acetyltransferase (CysE).
 本発明により、イオウ原子を同位体標識したシステイン及びシステイン誘導体を効率よく合成することができ、ひいては当該システインおよびシステイン誘導体を安定して供給することが可能となる点において有用である。 According to the present invention, cysteine and a cysteine derivative in which a sulfur atom is isotope-labeled can be efficiently synthesized, and this is useful in that the cysteine and the cysteine derivative can be stably supplied.

Claims (14)

  1.  イオウ原子を同位体標識したシステインの合成方法であって、システインシンターゼ(EC:2.5.1.47)の存在下で、O-アセチル-L-セリン及びイオウ原子について同位体標識された基質を反応させる工程を含み、ここで当該イオウ原子について同位体標識された基質は硫化水素ナトリウム(NaHS)、硫化ナトリウム(NaS)、又は硫化水素(HS)であり、そしてここで当該イオウ原子の同位体標識は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される、前記方法。 A method for synthesizing cysteine labeled with an isotope of a sulfur atom, wherein the substrate is isotopically labeled for O-acetyl-L-serine and a sulfur atom in the presence of cysteine synthase (EC: 2.5.1.47). Wherein the substrate that is isotopically labeled for the sulfur atom is sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), or hydrogen sulfide (H 2 S), and wherein The method, wherein the isotope labeling of the sulfur atom is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S.
  2.  O-アセチル-L-セリンを、以下の工程:セリン-O-アセチルトランスフェラーゼ(EC:2.3.1.30)の存在下で、窒素および/または炭素原子について同位体標識されたセリンを反応させる;により得ることをさらに含む、請求項1に記載の方法。 O-acetyl-L-serine is reacted with isotopically labeled serine for nitrogen and / or carbon atoms in the presence of the following steps: serine-O-acetyltransferase (EC: 2.3.3.10) The method of claim 1, further comprising: obtaining.
  3.  システインシンターゼが、システインシンターゼA(CysK)又はシステインシンターゼB(CysM)である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the cysteine synthase is cysteine synthase A (CysK) or cysteine synthase B (CysM).
  4.  システインシンターゼAが、サルモネラ属に属する微生物由来である、請求項3に記載の方法。 The method according to claim 3, wherein the cysteine synthase A is derived from a microorganism belonging to the genus Salmonella.
  5.  システインシンターゼが、ヒスチジンタグを含む組換えタンパク質である、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the cysteine synthase is a recombinant protein containing a histidine tag.
  6.  イオウ原子を同位体標識したシスチンの合成方法であって、請求項1又は2に記載の方法にしたがってイオウ原子を同位体標識したシステインを合成し、当該システインを酸化剤の存在下で酸化することによりシスチンを得る工程を含む、前記方法。 A method for synthesizing a cystine labeled with an isotope of a sulfur atom, comprising synthesizing a cysteine labeled with an isotope labeled with a sulfur atom according to the method according to claim 1 or 2, and oxidizing the cysteine in the presence of an oxidizing agent. Said method comprising the step of obtaining cystine by
  7.  酸化剤がヨウ素(I)である、請求項6に記載の方法。 The method of claim 6, wherein the oxidizing agent is iodine (I 2 ).
  8.  システイン誘導体の合成方法であって、
     (i)システイン誘導体が、イオウ原子を同位体標識したスルホシステインであり、システインシンターゼの存在下で、O-アセチル-Lセリン及び亜硫酸ナトリウム(NaSO)を反応させる工程を含み、ここでイオウ原子は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される;
     (ii)システイン誘導体が、イオウ原子を同位体標識したS-スルホシステインであり、システインシンターゼBの存在下で、O-アセチル-L-セリン及びチオ硫酸ナトリウム(Na)を反応させる工程を含み、ここでイオウ原子は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される;
     (iii)システイン誘導体が、イオウ原子を同位体標識したシステインパースルフィドであり、システインシンターゼの存在下で、O-アセチル-L-セリン及び二硫化ナトリウム(Na)を反応させる工程を含み、ここでイオウ原子は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される;
     (iv)システイン誘導体が、イオウ原子を同位体標識したシステインパースルフィドであり、(a)システインシンターゼの存在下で、O-アセチル-L-セリン及びイオウ原子について同位体標識された基質を反応させてイオウ原子を同位体標識したシステインを得る工程、ここで当該イオウ原子について同位体標識された基質は硫化水素ナトリウム(NaHS)、又は硫化ナトリウム(NaS)であり、そしてここで当該イオウ原子の同位体標識は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される、および(b)工程(a)で得たイオウ原子を同位体標識したシステインと、二硫化ナトリウムを反応させる工程、を含む;
    または
     (v)システイン誘導体が、セレノシステインであり、システインシンターゼの存在下で、O-アセチル-L-セリン及びセレン化ナトリウム(NaSe)を反応させる工程を含む;
    前記方法。
    A method for synthesizing a cysteine derivative,
    (I) the cysteine derivative is a sulfocysteine in which a sulfur atom is isotope-labeled, and comprises reacting O-acetyl-L serine and sodium sulfite (Na 2 SO 3 ) in the presence of cysteine synthase, The sulfur atom is selected from the group consisting of a stable isotope 32 S, a stable isotope 34 S, a radioactive isotope 33 S and a radioactive isotope 35 S;
    (Ii) The cysteine derivative is S-sulfocysteine in which a sulfur atom is isotopically labeled, and O-acetyl-L-serine and sodium thiosulfate (Na 2 S 2 O 3 ) are reacted in the presence of cysteine synthase B. Wherein the sulfur atom is selected from the group consisting of a stable isotope 32 S, a stable isotope 34 S, a radioactive isotope 33 S and a radioactive isotope 35 S;
    (Iii) The cysteine derivative is a cysteine persulfide in which a sulfur atom is isotope-labeled, and includes a step of reacting O-acetyl-L-serine and sodium disulfide (Na 2 S 2 ) in the presence of cysteine synthase. Where the sulfur atom is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S;
    (Iv) The cysteine derivative is a cysteine persulfide in which a sulfur atom is isotopically labeled. (A) In the presence of cysteine synthase, an O-acetyl-L-serine and a substrate that is isotopically labeled with a sulfur atom are reacted. Obtaining a cysteine having an isotope-labeled sulfur atom, wherein the substrate isotope-labeled for the sulfur atom is sodium hydrogen sulfide (NaHS) or sodium sulfide (Na 2 S), wherein the sulfur atom Isotope label is selected from the group consisting of stable isotope 32 S, stable isotope 34 S, radioactive isotope 33 S and radioactive isotope 35 S, and (b) the sulfur atom obtained in step (a) Reacting isotopically labeled cysteine with sodium disulfide;
    Or (v) the cysteine derivative is selenocysteine, comprising reacting O-acetyl-L-serine and sodium selenide (Na 2 Se) in the presence of cysteine synthase;
    Said method.
  9.  O-アセチル-L-セリンを、セリン-O-アセチルトランスフェラーゼ(EC:2.3.1.30)の存在下で、窒素および/または炭素原子について同位体標識されたセリンを反応させる;により得ることをさらに含む、請求項8に記載の方法。 O-acetyl-L-serine is reacted with serine labeled isotopically for nitrogen and / or carbon atoms in the presence of serine-O-acetyltransferase (EC: 2.3.3.10). 9. The method of claim 8, further comprising:
  10.  システインシンターゼが、システインシンターゼA(CysK)又はシステインシンターゼB(CysM)である、請求項8又は9に記載の方法。 The method according to claim 8 or 9, wherein the cysteine synthase is cysteine synthase A (CysK) or cysteine synthase B (CysM).
  11.  システインシンターゼAが、サルモネラ属に属する微生物由来である、請求項10に記載の方法。 The method according to claim 10, wherein the cysteine synthase A is derived from a microorganism belonging to the genus Salmonella.
  12.  システインシンターゼが、ヒスチジンタグを含む組換えタンパク質である、請求項8~11のいずれか1項に記載の方法。 The method according to any one of claims 8 to 11, wherein the cysteine synthase is a recombinant protein containing a histidine tag.
  13.  イオウ原子を同位体標識したシステインもしくはシスチン、またはシステイン誘導体を合成するためのキットであって、
     システインシンターゼ;及び
     イオウ原子について同位体標識された硫化水素ナトリウム(NaHS)、硫化ナトリウム(NaS)、亜硫酸ナトリウム(NaSO)、チオ硫酸ナトリウム(Na)、及び二硫化ナトリウム(Na)からなる群より選択される少なくとも一つのイオウを含む基質、ここで当該イオウ原子の同位体標識は、安定同位体32S、安定同位体34S、放射性同位体33S及び放射性同位体35Sからなる群より選択される、またはセレン化ナトリウム(NaSe);
    を含む、前記キット。
    A kit for synthesizing cysteine or cystine, or a cysteine derivative, isotopically labeled with a sulfur atom,
    Cysteine synthase; and sodium hydrogen sulfide (NaHS), sodium sulfide (Na 2 S), sodium sulfite (Na 2 SO 3 ), sodium thiosulfate (Na 2 S 2 O 3 ), and substrate comprising at least one sulfur selected from the group consisting of sodium sulfide (Na 2 S 2), wherein isotopic labeling of the sulfur atoms, a stable isotope 32 S, stable isotope 34 S, radioisotope 33 Selected from the group consisting of S and radioisotope 35 S, or sodium selenide (Na 2 Se);
    The kit.
  14.  システイン誘導体の合成方法であって、
     (i)システイン誘導体が、イオウ原子を同位体標識したシスチンポリスルフィドであり、(a)請求項1または2に記載の方法にしたがってイオウ原子を同位体標識したシステインを合成する工程、(b)工程(a)で得たイオウ原子を同位体標識したシステインを酸化剤と反応させる工程、および(c)さらに硫化ナトリウム(NaS)を添加して反応させる工程、を含む;または
     (ii)システイン誘導体が、イオウ原子を同位体標識したN-アセチルシステインであり、(a)請求項1または2に記載の方法にしたがってイオウ原子を同位体標識したシステインを合成する工程、および(b)工程(a)で得たイオウ原子を同位体標識したシステインをアセチル化剤と反応させる工程、を含む;
    前記方法。
     
    A method for synthesizing a cysteine derivative,
    (I) the cysteine derivative is a cystine polysulfide in which a sulfur atom is isotopically labeled, and (a) a step of synthesizing a cysteine labeled with an isotopically sulfur atom in accordance with the method according to claim 1 or 2, step (b) (Ii) comprising reacting cysteine labeled with an isotope-labeled sulfur atom obtained in (a) with an oxidizing agent, and (c) further reacting by adding sodium sulfide (Na 2 S); or (ii) cysteine The derivative is N-acetylcysteine having an isotopically labeled sulfur atom, and (a) a step of synthesizing a cysteine labeled with an isotopically sulfur atom according to the method of claim 1 or 2, and (b) step ( reacting cysteine labeled with an isotopically labeled sulfur atom obtained in a) with an acetylating agent;
    Said method.
PCT/JP2017/016654 2016-04-28 2017-04-27 Establishment of synthesis method for cysteine with isotopically labeled sulfur atom and cysteine derivative WO2017188355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018514686A JP7092278B2 (en) 2016-04-28 2017-04-27 Establishment of a method for synthesizing cysteine and cysteine derivatives that are isotope-labeled with sulfur atoms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016090864 2016-04-28
JP2016-090864 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188355A1 true WO2017188355A1 (en) 2017-11-02

Family

ID=60160817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016654 WO2017188355A1 (en) 2016-04-28 2017-04-27 Establishment of synthesis method for cysteine with isotopically labeled sulfur atom and cysteine derivative

Country Status (2)

Country Link
JP (1) JP7092278B2 (en)
WO (1) WO2017188355A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240243A1 (en) * 2018-06-15 2019-12-19 キッコーマン株式会社 Selenoneine production method
JP2020503050A (en) * 2016-12-29 2020-01-30 アルケマ フランス Functionalized polysulfide synthesis

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130988A (en) * 1976-04-26 1977-11-02 Ajinomoto Co Inc Preparation of l-sulfur-containing amino acids
JPH01281094A (en) * 1987-12-14 1989-11-13 Kent Scient & Ind Projects Ltd Enzymatic formation of carbon-carbon bond
JPH05229964A (en) * 1991-07-01 1993-09-07 Commiss Energ Atom Sulfide labeled with 35 s and production of amino acid
JP2001061489A (en) * 1999-08-24 2001-03-13 Dai Ichi Pure Chem Co Ltd Production of l-selenocysteine
JP2002315595A (en) * 2001-04-04 2002-10-29 Consortium Elektrochem Ind Gmbh Method for manufacturing non-protein l-amino acid
JP2007246481A (en) * 2006-03-17 2007-09-27 Japan Science & Technology Agency Synthetic methods of serine, cystine, and alanine regio- and stereoselectively labeled with stable isotope
JP2008529477A (en) * 2005-08-22 2008-08-07 サントリー株式会社 Cysteine synthase gene and uses thereof
JP2010252650A (en) * 2009-04-22 2010-11-11 Ajinomoto Co Inc Method for producing l-cysteine
JP2012125170A (en) * 2010-12-14 2012-07-05 National Institute Of Advanced Industrial Science & Technology Microorganism highly producing thiol compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130988A (en) * 1976-04-26 1977-11-02 Ajinomoto Co Inc Preparation of l-sulfur-containing amino acids
JPH01281094A (en) * 1987-12-14 1989-11-13 Kent Scient & Ind Projects Ltd Enzymatic formation of carbon-carbon bond
JPH05229964A (en) * 1991-07-01 1993-09-07 Commiss Energ Atom Sulfide labeled with 35 s and production of amino acid
JP2001061489A (en) * 1999-08-24 2001-03-13 Dai Ichi Pure Chem Co Ltd Production of l-selenocysteine
JP2002315595A (en) * 2001-04-04 2002-10-29 Consortium Elektrochem Ind Gmbh Method for manufacturing non-protein l-amino acid
JP2008529477A (en) * 2005-08-22 2008-08-07 サントリー株式会社 Cysteine synthase gene and uses thereof
JP2007246481A (en) * 2006-03-17 2007-09-27 Japan Science & Technology Agency Synthetic methods of serine, cystine, and alanine regio- and stereoselectively labeled with stable isotope
JP2010252650A (en) * 2009-04-22 2010-11-11 Ajinomoto Co Inc Method for producing l-cysteine
JP2012125170A (en) * 2010-12-14 2012-07-05 National Institute Of Advanced Industrial Science & Technology Microorganism highly producing thiol compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONO KATSUHIKO ET AL.: "Synthesis of L-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome", FREE RADICAL BIOLOGY AND MEDICINE, vol. 106, 2017, pages 67 - 79 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503050A (en) * 2016-12-29 2020-01-30 アルケマ フランス Functionalized polysulfide synthesis
JP7022755B2 (en) 2016-12-29 2022-02-18 アルケマ フランス Functionalized polysulfide synthesis method
WO2019240243A1 (en) * 2018-06-15 2019-12-19 キッコーマン株式会社 Selenoneine production method
CN112513283A (en) * 2018-06-15 2021-03-16 龟甲万株式会社 Method for preparing ergodiselenine
JPWO2019240243A1 (en) * 2018-06-15 2021-06-24 キッコーマン株式会社 How to make selenoneine
JP7210577B2 (en) 2018-06-15 2023-01-23 キッコーマン株式会社 Method for producing selenoneine
CN112513283B (en) * 2018-06-15 2024-02-06 龟甲万株式会社 Method for preparing ergoselen

Also Published As

Publication number Publication date
JPWO2017188355A1 (en) 2019-02-28
JP7092278B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
Parker et al. Prebiotic synthesis of methionine and other sulfur-containing organic compounds on the primitive Earth: a contemporary reassessment based on an unpublished 1958 Stanley Miller experiment
Nicolet Structure–function relationships of radical SAM enzymes
Rohac et al. Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE
Gaston et al. The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine
Bouvier et al. TtcA a new tRNA-thioltransferase with an Fe-S cluster
Forouhar et al. Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases
Ichiyama et al. Enzymic studies on the biosynthesis of serotonin in mammalian brain
Peeler et al. Chemical biology approaches to interrogate the selenoproteome
Reichle et al. NAIL-MS reveals the repair of 2-methylthiocytidine by AlkB in E. coli
Garberg et al. Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase
Allen et al. Discovery of multiple modified F430 coenzymes in methanogens and anaerobic methanotrophic archaea suggests possible new roles for F430 in nature
Radle et al. Methanogenesis marker protein 10 (Mmp10) from Methanosarcina acetivorans is a radical S-adenosylmethionine methylase that unexpectedly requires cobalamin
Sengupta et al. An efficient metal-free synthesis of organic disulfides from thiocyanates using poly-ionic resin hydroxide in aqueous medium
JP7092278B2 (en) Establishment of a method for synthesizing cysteine and cysteine derivatives that are isotope-labeled with sulfur atoms
Ono et al. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome
da Silva et al. Efficient enzymatic preparation of 13N‐labelled amino acids: towards multipurpose synthetic systems
Cheng et al. Implications for an Imidazole-2-yl Carbene Intermediate in the Rhodanase-Catalyzed C–S Bond Formation Reaction of Anaerobic Ergothioneine Biosynthesis
Kang et al. A synthetic cell-free 36-enzyme reaction system for vitamin B12 production
Ogra et al. In vitro translation with [34 S]-labeled methionine, selenomethionine, and telluromethionine
Crack et al. Generation of 34S-substituted protein-bound [4Fe-4S] clusters using 34S-L-cysteine
Noll et al. The role of 7-mercaptoheptanoylthreonine phosphate in the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum
Plaga et al. Modification of Cys‐418 of pyruvate formate‐lyase by methacrylic acid, based on its radical mechanism
Li et al. Optimized procedure to generate heavy isotope and selenomethionine-labeled proteins for structure determination using Escherichia coli-based expression systems
Ko et al. Genetic incorporation of recycled unnatural amino acids
Wang et al. Iterative methylations resulting in the biosynthesis of the t-butyl group catalyzed by a B12-dependent radical SAM enzyme in cystobactamid biosynthesis

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789637

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789637

Country of ref document: EP

Kind code of ref document: A1