WO2017188251A1 - Transparent screen and image display system - Google Patents
Transparent screen and image display system Download PDFInfo
- Publication number
- WO2017188251A1 WO2017188251A1 PCT/JP2017/016379 JP2017016379W WO2017188251A1 WO 2017188251 A1 WO2017188251 A1 WO 2017188251A1 JP 2017016379 W JP2017016379 W JP 2017016379W WO 2017188251 A1 WO2017188251 A1 WO 2017188251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dot
- circularly polarized
- light
- transparent screen
- reflective
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/54—Accessories
- G03B21/56—Projection screens
- G03B21/60—Projection screens characterised by the nature of the surface
- G03B21/62—Translucent screens
Definitions
- the present invention relates to a transparent screen and an image display system using the transparent screen.
- a transparent screen that displays an image by diffusing and / or reflecting projection light from a projector and transmits light from the front and back surfaces is known as one of the screens constituting a projection display device. .
- Patent Document 1 as a projection-type liquid crystal projection system, a transparent screen using cholesteric liquid crystal that reflects right- or left-circularly polarized red light, green light, and blue light is used, and red light projected onto the transparent screen is used.
- the green light and the blue light are polarized to the right circularly polarized light or the left circularly polarized light by the ⁇ / 4 plate so that the right circularly polarized component or the left circularly polarized component of the external light irradiated on the transparent screen is transmitted.
- a projection type liquid crystal projection system is described.
- the hot spot is the side opposite to the projector of the transparent screen, and the light source of the projector observes in the straight direction of the light emitted from the projector. It is a phenomenon. When such a hot spot is generated by the transmitted light that has passed through the transparent screen, it feels dazzling when observed from the side opposite to the projector of the transparent screen.
- the hot spot is very dazzling.
- the hot spot is extremely dazzling.
- a concavo-convex structure is provided on the outermost surface of the screen to diffuse light and reduce hot spots caused by specularly reflected light.
- a transparent screen as shown in Patent Document 1 if a concavo-convex structure is imparted to the outermost surface, the transparency is significantly reduced, and this countermeasure cannot be used.
- An object of the present invention is to solve such problems of the prior art, a transparent screen having good transparency and capable of reducing hot spots caused by transmitted light, and an image using the transparent screen To provide a display system.
- the transparent screen of the present invention has a plurality of dot films in which dots formed by fixing a cholesteric liquid crystal phase are two-dimensionally arranged on the surface of a support, and A transparent screen characterized in that, in a plurality of dot films, the selective reflection center wavelength of the dots of at least two dot films and the rotation direction of the reflected circularly polarized light are equal to each other.
- a dot film in which dots reflect right circularly polarized light a dot film in which dots reflect left circularly polarized light, and a dot in which dots reflect right circularly polarized light, And it is preferable to have a plurality of dot films in which the dots reflect left circularly polarized light.
- the in-plane retardation Re (550) at a wavelength of 550 nm of the support is preferably 0 to 20 nm
- the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the support is preferably 0 to 50 nm.
- the in-plane retardation Re (550) of the ⁇ / 4 plate at a wavelength of 550 nm is 120 to 150 nm
- the retardation Rth (550) in the thickness direction of the ⁇ / 4 plate at a wavelength of 550 nm is ⁇ 50 to 50 nm. Is preferred.
- an image display system comprising: a projector in which outgoing light is non-polarized and a peak wavelength of the outgoing light is equal to a selective reflection center wavelength of a dot.
- the second aspect of the image display system of the present invention includes a transparent screen of the present invention having a ⁇ / 4 plate,
- an image display system comprising: a projector, wherein the emitted light is polarized light, and a peak wavelength of the emitted light is equal to a selective reflection center wavelength of a dot.
- the projector is preferably a laser projector. Furthermore, it is preferable that the dot film of a transparent screen is arrange
- the present invention it is possible to realize a transparent screen having good transparency and capable of reducing hot spots caused by transmitted light, and an image display system using this transparent screen and reduced hot spots caused by transmitted light.
- FIG. 1 is a diagram conceptually illustrating an example of an image display system of the present invention.
- FIG. 2 is a conceptual diagram for explaining the operation of the transparent screen of the present invention.
- FIG. 3 is a conceptual diagram for explaining the operation of the transparent screen of the present invention.
- FIG. 4 is a diagram conceptually showing another example of the image display system of the present invention.
- FIG. 5 is a conceptual diagram for explaining an evaluation method in an embodiment of the present invention.
- FIG. 6 is a conceptual diagram for explaining an evaluation method in an embodiment of the present invention.
- FIG. 7 is a conceptual diagram for explaining a measurement method in an embodiment of the present invention.
- a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- an angle such as “45 °”, “parallel”, “vertical” or “orthogonal” is within a range where the difference from the exact angle is less than 5 ° unless otherwise specified. Means. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
- “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
- “same” includes an error range generally allowed in the technical field.
- visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and indicates light having a wavelength range of 380 to 780 nm.
- Invisible light is light having a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
- light in the wavelength region of 420 to 490 nm is blue light
- light in the wavelength region of 495 to 570 nm is green light
- wavelength of 620 to 750 nm is red light.
- retroreflection means reflection in which incident light is reflected in the incident direction.
- haze means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd. Theoretically, haze means a value represented by the following equation. (Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) ⁇ 100%
- the scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit.
- the direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
- Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at a wavelength ⁇ , respectively. Unless otherwise specified, the wavelength ⁇ is 550 nm.
- Re ( ⁇ ) and Rth ( ⁇ ) are values measured at a wavelength ⁇ in AxoScan OPMF-1 (manufactured by Optoscience).
- the average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
- the selective reflection center wavelength is a half-value transmittance represented by the following formula: T1 / 2 (%), where Tmin (%) is a minimum value of transmittance of a target object (member). ) Means the average value of two wavelengths.
- T1 / 2 100 ⁇ (100 ⁇ Tmin) ⁇ 2
- “equal” for the selective reflection center wavelengths of a plurality of objects does not mean that they are strictly equal, and an error in a range that is not optically affected is allowed.
- the phrase “selective reflection center wavelengths of a plurality of objects are equal” means that the difference between the selective reflection center wavelengths of the respective objects is 20 nm or less, and the difference is 15 nm or less. Preferably, it is 10 nm or less.
- the phrase “the peak wavelength of the light emitted from the projector is“ equal ”to the dot selective reflection center wavelength” does not mean that it is strictly equal, and an error in a range that is not optically affected is acceptable. Is done. Specifically, the peak wavelength of the light emitted from the projector is “equal” to the selective reflection center wavelength of the dot, which means that the difference between the two wavelengths is 50 nm or less, and this difference is 25 nm or less. And is more preferably 15 nm or less.
- the transparent screen of the present invention has a plurality of dot films formed by two-dimensionally arranging dots formed by fixing a cholesteric liquid crystal phase on a support, and the plurality of dot films have a dot selective reflection center.
- the wavelength and the rotation direction of the reflected circularly polarized light have the same configuration.
- the image display system of the present invention includes such a transparent screen of the present invention and a monochromatic projector whose emitted light is polarized or non-polarized.
- Such a transparent screen and image display system of the present invention is compatible with the display of a single color image such as a green image.
- FIG. 1 conceptually shows an example of the image display system of the present invention using an example of the transparent screen of the present invention.
- An image display system 10 illustrated in FIG. 1 includes the transparent screen 12 according to the present invention and a projector 14 that projects a green single-color image with non-polarized emitted light. That is, the image display system 10 is an image display system that displays a green single-color image on the transparent screen 12.
- the transparent screen 12 has a configuration in which a right circular polarization laminate 20 and a left circular polarization laminate 24 are laminated.
- the support 32 described later is hatched, and the interface between the right circularly polarized laminate 20 and the left circularly polarized laminate 24 is indicated by a thick line. .
- the transparent screen of the image display system 10 shown in FIG. 1 but also various transparent screens of the present invention used in various image display systems of the present invention described later. The same is true.
- the bonding layer can be made of various known materials as long as the target plate-shaped material (sheet-shaped material) can be bonded. That is, the bonding layer may be a layer made of an adhesive or a layer made of an adhesive. An adhesive has fluidity when bonded and then becomes a solid. The adhesive is a gel-like (rubber-like) soft solid when pasted, and the gel-like state does not change thereafter. Moreover, the layer which consists of a material with the characteristic of both an adhesive agent and an adhesive may be sufficient as a bonding layer.
- the bonding layer is a known material used for bonding sheet-like materials in optical devices and optical elements, such as optical transparent adhesive (OCA (Optical Clear Adhesive)), optical transparent double-sided tape, and ultraviolet curable resin. What is necessary is just to use.
- OCA optical Clear Adhesive
- the right circularly polarizing laminate 20 and the left circularly polarizing laminate 24 are laminated and held by a frame or a jig instead of being bonded together by the bonding layer to constitute the transparent screen of the present invention. May be.
- the right circularly polarized laminate 20 is formed by laminating three right circularly polarized dot films 30R.
- the right circularly polarized light dot film 30R embeds the support 32, the right circularly polarized light reflective dot 34R that is two-dimensionally arranged on one surface of the support 32, and the right circularly polarized light reflective dot 34R. And an overcoat layer 36 laminated on the substrate.
- the left circularly polarized laminate 24 is formed by laminating three left circularly polarized dot films 30L.
- the left circularly polarized light dot film 30L embeds the support 32, the left circularly polarized light reflective dot 34L that is two-dimensionally arranged on one surface of the support 32, and the left circularly polarized light reflective dot 34L. And an overcoat layer 36 laminated on the substrate.
- Each of the dot film supports 32 supports reflective dots which are dots formed by fixing a cholesteric liquid crystal phase to be described later.
- the support 32 preferably has a low light reflectance at the wavelength of light reflected by the reflective dots, and preferably does not include a material that reflects light at the wavelength of light reflected by the reflective dots.
- the support 32 is preferably transparent in the visible light region. Further, the support 32 may be colored, but is preferably not colored or less colored. Further, the support 32 preferably has a refractive index of about 1.2 to 2.0, more preferably about 1.4 to 1.8. In the present specification, when it is transparent, specifically, the non-polarized light transmittance (omnidirectional transmittance) at a wavelength of 380 to 780 nm may be 50% or more, preferably 70% or more, and preferably 85% or more. It is more preferable that
- the haze value of the support 32 is preferably 30% or less, more preferably 0.1 to 25%, and further preferably 0.1 to 10%. Further, by using the support 32 having a high haze like an AG (anti-glare) support, it is possible to make adjustments that deteriorate the transparency and improve the front luminance and viewing angle characteristics.
- the thickness of the support 32 may be selected according to the use and is not particularly limited, but may be about 5 to 1000 ⁇ m, preferably 10 to 250 ⁇ m, and more preferably 15 to 150 ⁇ m.
- the support 32 preferably has a low Re ( ⁇ ) and Rth ( ⁇ ). Specifically, the support 32 preferably has Re (550) of 0 to 20 nm, and more preferably 0 to 10 nm. In addition, the support 32 preferably has Rth (550) of 0 to 50 nm, more preferably 0 to 40 nm.
- the support 32 may be a single layer or multiple layers.
- Examples of the support 32 in the case of a single layer include a support made of glass, triacetyl cellulose (TAC), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like.
- TAC triacetyl cellulose
- PET polyethylene terephthalate
- PC polycarbonate
- polyvinyl chloride acrylic
- acrylic polyolefin
- the underlayer is preferably a resin layer, and more preferably a transparent resin layer.
- the underlayer include a layer for adjusting the shape of the reflective dots when forming the reflective dots, a layer for improving the adhesion characteristics between the support 32 and the reflective dots, and the polymerizability when forming the reflective dots. Examples thereof include an alignment film for adjusting the alignment of the liquid crystal compound.
- the base layer preferably has a low light reflectance at the wavelength of light reflected by the reflective dots, and preferably does not include a material that reflects light at the wavelength of light reflected by the reflective dots.
- the underlayer is preferably transparent.
- the base layer preferably has a refractive index of about 1.2 to 2.0, more preferably about 1.4 to 1.8.
- the underlayer is also preferably a layer containing a resin obtained by curing a composition containing a polymerizable compound applied directly to the support surface.
- the polymerizable compound include non-liquid crystalline compounds such as (meth) acrylate monomers and urethane monomers.
- the thickness of the underlayer is not particularly limited, but is preferably 0.01 to 50 ⁇ m, and more preferably 0.05 to 20 ⁇ m.
- the reflective dot is a dot formed by fixing the cholesteric liquid crystal phase.
- the right circularly polarized light reflecting dots 34R that are two-dimensionally arranged on the right circularly polarized dot film 30R are dots that reflect green right circularly polarized light and transmit other light.
- the left circularly polarized light reflecting dot 34L arranged two-dimensionally on the left circularly polarized dot film 30L reflects the green left circularly polarized light and transmits the other light. It is.
- the selective reflection center wavelength of the arranged right circular polarization reflection dots 34R and the rotation direction of the reflected circular polarization are equal to each other.
- the selective reflection center wavelength of the arranged left circularly polarized reflective dots 34L and the rotation direction of the reflected circularly polarized light are equal to each other.
- the right circularly polarized light reflecting dot 34R of the right circularly polarized light dot film 30R and the left circularly polarized light reflecting dot 34L of the left circularly polarized light dot film 30L have the same selective reflection center wavelength, and the rotational direction of the circularly polarized light of the reflected light is the same. Different.
- Each reflective dot is a dot formed by fixing a cholesteric liquid crystal phase. That is, the reflective dot is a dot made of a liquid crystal material having a cholesteric structure.
- the cholesteric liquid crystal phase that becomes a reflective dot gives a stripe pattern of a bright part and a dark part in the cross section of the reflective dot observed with a scanning electron microscope, and is maximum in the direction from the end of the reflective dot toward the center.
- An angle formed between the normal of the line formed by the first dark part from the surface of the reflective dot opposite to the support 32 and the surface of the reflective dot. Is preferably in the range of 70 to 90 °. This point will be described in detail later.
- the reflective dots may be arranged regularly or irregularly as long as they are arranged two-dimensionally.
- the arrangement pattern of the reflective dots in each dot film constituting the right circularly polarized laminate 20 and the left circularly polarized laminate 24 may be the same or different from each other.
- the positions in the surface direction of the reflective dots in each dot film are all dots. Even if it is the same position on the film, it may be a position shifted by two or more dot films.
- the arrangement density of the reflective dots in each dot film may be uniform over the entire surface, or may have regions with different arrangement densities.
- the arrangement density of the reflective dots in the dot film is not particularly limited, and may be appropriately set according to the diffusibility (viewing angle) required for the transparent screen, transparency, and the like. From the viewpoints of suppressing hot spots, obtaining a wide viewing angle, obtaining high transparency, and appropriate density that can be produced without defects such as coalescence or defect of reflective dots during production, the support 32 is provided.
- the area ratio of the reflective dots to the support 32 when viewed from the normal direction of the main surface is preferably 1 to 90.6%, more preferably 2 to 50%, and 4 to 30 % Is more preferable.
- the area ratio of the reflective dots was measured in a 1 ⁇ 1 mm area in an image obtained with a microscope such as a laser microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). For example, an average value of five locations may be used as the dot area ratio.
- the pitch of adjacent reflective dots is preferably 20 to 500 ⁇ m, more preferably 20 to 300 ⁇ m, in that hot spots can be suppressed, a wide viewing angle can be obtained, and high transparency can be obtained. More preferably, it is 20 to 150 ⁇ m.
- the pitch of the reflective dots is the distance between the centers of the reflective dots.
- the diameters and / or shapes of the reflective dots may all be the same or may include different ones, but are preferably the same.
- reflecting dots formed under the same conditions with the intention of forming dots having the same diameter and shape are preferable.
- the description is applicable to all the reflective dots in the transparent screen of the present invention.
- the transparent screen of the present invention including the reflection dots described includes dots not corresponding to the description due to an error or an error allowed in this technical field.
- the reflective dots are preferably circular when viewed from the normal direction of the main surface of the support 32, for example, hemispherical (substantially hemispherical), It is a dot having a spherical shape (substantially spherical shape), a truncated cone shape, a conical shape, a truncated cone shape, or the like.
- the normal direction of the main surface of the support 32 is also referred to as “support normal direction”.
- the circular shape does not have to be a perfect circle and may be a substantially circular shape.
- the center of the reflective dot means the center or the center of gravity of the circle.
- the reflective dots only need to have a circular average shape, and some of the reflective dots may have a shape that does not correspond to a circle.
- the reflective dots preferably have an average diameter of 10 to 200 ⁇ m, more preferably 20 to 120 ⁇ m, when viewed from the normal direction of the support.
- the diameter of the reflective dot is a straight line from the edge (edge or boundary of the reflective dot) to the edge in an image obtained with a microscope such as a laser microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). Thus, it can be obtained by measuring the length of a straight line passing through the center of the reflective dot.
- the number of reflection dots and the distance between the reflection dots can also be confirmed by a microscope image such as a laser microscope, a scanning electron microscope, or a transmission electron microscope.
- the diameter of the circle having the same circular area as the projected area of the reflective dot is defined as the diameter of the reflective dot.
- the average diameter is obtained by measuring the diameter of 10 randomly selected reflective dots by the above method and arithmetically averaging them.
- the height of the reflective dot can be confirmed from a cross-sectional view of the dot obtained using a focus position scan with a laser microscope or a microscope such as SEM or TEM.
- the average maximum height of the reflective dots is preferably 1 to 40 ⁇ m, more preferably 3 to 30 ⁇ m, and even more preferably 5 to 20 ⁇ m.
- the reflective dot has wavelength selective reflectivity.
- the right circularly polarized light reflecting dot 34R and the left circularly polarized light reflecting dot 34L reflect green circularly polarized light.
- the transparent screen 12 of the present invention is basically used as a screen that can be observed by superimposing an image of image light emitted from a single-color (green in the illustrated example) projector 14 and a background on the back side of the transparent screen 12. Therefore, it is preferable that the light whose reflective dots exhibit selective reflectivity is visible light.
- the reflection wavelength of the reflection dot is preferably selected according to the wavelength of light emitted from the projector 14.
- the reflective dot is a dot formed by fixing the cholesteric liquid crystal phase.
- the wavelength of light at which the reflective dot exhibits selective reflectivity can be adjusted (selected) by adjusting the helical pitch of the cholesteric liquid crystal phase forming the reflective dot.
- the spiral axis direction of the cholesteric liquid crystal phase forming the reflective dots in the transparent screen of the present invention is controlled as will be described later. Therefore, the light incident on the reflective dots is reflected not only in regular reflection but also in various directions.
- the reflective dots may be colored, but are preferably not colored or less colored. Thereby, the transparency of a transparent screen can be improved.
- ⁇ Cholesteric liquid crystal phase ⁇ Cholesteric liquid crystal phase
- the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent when forming dots, a desired pitch can be obtained by adjusting these.
- Fujifilm Research Report No. 50 (2005) p. There is a detailed description in 60-63.
- the cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in a sectional view of a reflective dot observed by a scanning electron microscope.
- the two bright parts and the dark part 2 in the repetition of the bright part and the dark part correspond to one pitch of the spiral. From this, the pitch can be measured from the SEM sectional view.
- the normal line of each line of the striped pattern is the spiral axis direction of the cholesteric liquid crystal phase.
- the reflected light of the cholesteric liquid crystal phase is circularly polarized light. That is, in the transparent screen 12 of the present invention, the reflective dots of each dot film reflect circularly polarized light. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the spiral in the cholesteric liquid crystal phase.
- the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
- the right circularly polarized reflective dot 34R of the right circularly polarized dot film 30R is a dot formed by fixing a right-twisted cholesteric liquid crystal phase
- the left circularly polarized dot film 30L has a left circle.
- the polarization reflection dot 34L is a dot formed by fixing a left twisted cholesteric liquid crystal phase.
- the direction of rotation of the cholesteric liquid crystal phase can be adjusted depending on the type of liquid crystal compound forming the reflective dots (reflective layer) or the type of chiral agent added.
- the half-value width of the reflection wavelength band is adjusted according to the application of the transparent screen 12, and may be, for example, 50 to 500 nm, and preferably 100 to 300 nm.
- a reflective dot formed by fixing a cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in a cross section.
- the reflection dot formed by fixing such a cholesteric liquid crystal phase is a line formed by the first dark portion from the surface of the reflection dot opposite to the support 32 when confirmed by a cross-sectional view observed with a scanning electron microscope.
- the angle formed between the normal line and the surface of the reflective dot opposite to the support 32 is preferably in the range of 70 to 90 °.
- “the surface of the reflective dot opposite to the support 32” is also simply referred to as “the surface of the reflective dot”.
- FIG. 2 shows a schematic diagram of a cross section of the reflective dot. In FIG.
- the line formed by the dark part is indicated by a bold line.
- the angle ⁇ 1 formed by the normal line (broken line) of the line Ld 1 formed by the first dark portion and the surface of the reflective dot (its tangent line) is 70 to 90 °.
- the angle ⁇ 1 is at a position of 30 ° and a position of 60 °.
- the angle between the normal of the line Ld 1 formed by the first dark portion from the surface of the reflective dot and the surface of the reflective dot is preferably in the range of 70 to 90 °, and at all positions on the surface of the reflective dot, More preferably, the angle formed by the normal of the line Ld 1 formed by the first dark portion from the surface of the reflective dot and the surface of the reflective dot is in the range of 70 to 90 °.
- the reflective dot does not satisfy the above angle at a part of the surface of the reflective dot, for example, does not intermittently satisfy the above angle at a part of the surface of the reflective dot, but continuously satisfies the above angle. It is preferable.
- the angle formed between the normal line of the dark line and the surface of the reflective dot means the angle formed between the tangent line and the normal line of the reflective dot surface. To do.
- the angle is shown as an acute angle, which means a range of 70 to 110 ° when the angle formed between the normal line and the surface of the reflective dot is expressed as an angle of 0 to 180 °.
- the reflection dot preferably has an angle ⁇ 2 formed by the normal of the line Ld 2 formed by the second dark portion from the surface of the reflection dot and the surface of the reflection dot in the range of 70 to 90 °. It is more preferable that the angle formed between the normal line and the surface of the reflective dot is in the range of 70 to 90 ° with respect to the line formed by the third to fourth dark portions from the surface of the dot. More preferably, any of the lines formed by the 5th to 12th dark parts is in the range of 70 to 90 ° between the normal line and the reflective dot.
- the angle formed between the normal line of the dark part and the surface of the reflective dot is more preferably 80 to 90 °, and further preferably 85 to 90 °.
- Such a cross-sectional view of the reflective dot by SEM shows that on the surface of the reflective dot, the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot (its tangent). .
- the light incident on the reflective dot is parallel to the spiral axis direction of the cholesteric liquid crystal phase on the surface of the reflective dot when the light incident from the direction having an angle with respect to the normal direction of the support 32 is used. It can be incident at a close angle. Therefore, the light incident on the reflective dots can be reflected in various directions.
- the reflective dots regularly reflect incident light on the basis of the helical axis of the cholesteric liquid crystal phase. Therefore, as conceptually shown in FIG. 3, the reflected light Ir reflected near the center of the reflective dot is parallel to the normal direction of the support with respect to the incident light In incident from the normal direction of the support 32. Is reflected.
- the reflected light Ir is a direction different from the normal direction of the support 32. Is reflected. Therefore, the light incident on the reflective dots can be reflected in various directions, and the viewing angle can be increased.
- the reflective dot can reflect light incident from the normal direction of the support 32 in all directions.
- the reflection dot preferably has an angle (half-value angle) that is half the front luminance (peak luminance) of 35 ° or more and has high reflectivity.
- the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot, so that the angle formed between the normal direction of the first dark line from the surface and the normal direction of the support
- the height continuously decreases as the height increases continuously.
- the cross-sectional view is a cross-sectional view in an arbitrary direction including a portion having a height that continuously increases to the maximum height in the direction from the end of the dot toward the center, and typically includes and supports the center of the dot. Any cross-sectional view perpendicular to the body may be used.
- the reflective dots (the right circularly polarized reflective dot 34R and the left circularly polarized reflective dot 34L) can be obtained by fixing the cholesteric liquid crystal phase in a dot shape.
- the structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
- any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force.
- the liquid crystal compound may not exhibit liquid crystallinity.
- the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
- a liquid crystal composition containing a liquid crystal compound can be given.
- the liquid crystal compound is preferably a polymerizable liquid crystal compound.
- the liquid crystal composition containing the liquid crystal compound used for forming the reflective dots preferably further contains a surfactant.
- the liquid crystal composition used for forming the reflective dots may further contain a chiral agent and a polymerization initiator.
- the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
- Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound.
- rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
- Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
- the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
- the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group.
- the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
- the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. , 190, 2255 (1989), Advanced Materials, Volume 5, 107 (1993), US Pat. Nos.
- polymerizable liquid crystal compound examples include compounds represented by the following formulas (1) to (11).
- cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used.
- the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both positions of the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain.
- a liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
- the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
- the surfactant when a surfactant is used, dots having an angle formed by the surface of the reflective dot and the support 32 of 40 ° or more are formed at the end of the reflective dot. That is, by adding a surfactant when forming the reflective dots, the contact angle between the reflective dots and the support 32 is formed in an angle range that can achieve both a wide viewing angle and high transparency. Can do.
- the surfactant is preferably a compound capable of functioning as an alignment control agent that contributes to stably or rapidly forming a planar cholesteric liquid crystal phase.
- the surfactant include a silicone-based surfactant and a fluorine-based surfactant, and a fluorine-based surfactant is preferably exemplified.
- the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A-2012-203237. , Compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A 2002-129162 And compounds exemplified therein, and fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and the like.
- 1 type may be used independently and 2 or more types may be used together.
- fluorine-based surfactant compounds represented by the following general formula (I) described in paragraphs [0082] to [0090] of JP-A-2014-119605 are preferable.
- L 11 , L 12 , L 13 , L 14 , L 15 , and L 16 are each independently a single bond, —O—, —S—, —CO—, —COO. —, —OCO—, —COS—, —SCO—, —NRCO—, —CONR—
- R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
- NRCO- and -CONR- have the effect of reducing the solubility, and more preferably -O-, -S-, -CO-, -COO-, -OCO- —COS— and —SCO—, and —O—, —CO—, —COO—, and —OCO— are more preferable from the viewpoint of the stability of the compound.
- the alkyl group that R can take may be linear or branched.
- the number of carbon atoms is more preferably 1 to 3, and examples thereof include a
- Sp 11 , Sp 12 , Sp 13 and Sp 14 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms. More preferably, it is a single bond or an alkylene group having 1 to 4 carbon atoms.
- the hydrogen atom of the alkylene group may be substituted with a fluorine atom.
- the alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred. From the viewpoint of synthesis, it is preferable that Sp 11 and Sp 14 are the same, and Sp 12 and Sp 13 are the same.
- a 11 and A 12 are monovalent to tetravalent aromatic hydrocarbon groups.
- the aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, still more preferably 6 to 10 carbon atoms, and still more preferably 6.
- the aromatic hydrocarbon groups represented by A 11 and A 12 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to.
- Examples of the substituent for the aromatic hydrocarbon group represented by A 11 and A 12 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group.
- a molecule having a large number of perfluoroalkyl moieties in the molecule can align the liquid crystal with a small amount of addition, leading to a decrease in haze. Therefore, A 11 and A 12 have a large number of perfluoroalkyl groups in the molecule. It is preferably tetravalent. From the viewpoint of synthesis, A 11 and A 12 are preferably the same.
- T 11 is the following (X in T 11 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group, and a divalent group or a divalent heterocyclic group represented by: Ya, Yb, Yc and Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably
- the alkyl group that X contained in T 11 can have 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
- the alkyl group may be linear, branched or cyclic, and is preferably linear or branched. Examples of preferable alkyl groups include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and among them, a methyl group is preferable.
- the alkyl moiety of the alkoxy group X contained in the T 11 can be taken, it is possible to refer to the description and the preferred range of the alkyl group X contained in the T 11 can take.
- Examples of the halogen atom that X contained in T 11 can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
- Examples of the ester group that X contained in T 11 can take include a group represented by R′COO—.
- Examples of R ′ include an alkyl group having 1 to 8 carbon atoms.
- Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—.
- the alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched.
- a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified.
- the divalent heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring.
- a 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is more preferable.
- As the hetero atom constituting the heterocyclic ring a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
- the heterocyclic group is preferably an aromatic heterocyclic group.
- heterocyclic rings examples include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included.
- the divalent heterocyclic group may have a substituent.
- substituents that can be taken by the above-described monovalent to tetravalent aromatic hydrocarbons of A 1 and A 2 .
- Hb 11 represents a perfluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group having 3 to 20 carbon atoms, and still more preferably a perfluoroalkyl group having 3 to 10 carbon atoms.
- the perfluoroalkyl group may be linear, branched, or cyclic, but is preferably linear or branched, and more preferably linear.
- m11 and n11 are each independently 0 to 3, and m11 + n11 ⁇ 1.
- a plurality of structures in parentheses may be the same or different from each other, but are preferably the same.
- M11 and n11 in the general formula (I) are determined by the valences of A 11 and A 12 , and the preferable range is also determined by the preferable ranges of the valences of A 11 and A 12 .
- O and p contained in T 11 are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of X may be the same or different from each other.
- O contained in T 11 is preferably 1 or 2.
- P contained in T 11 is preferably an integer of 1 to 4, and more preferably 1 or 2.
- the compound represented by the general formula (I) may have a symmetrical molecular structure or may have no symmetry.
- the symmetry means at least one of point symmetry, line symmetry, and rotational symmetry
- asymmetry means any of point symmetry, line symmetry, and rotational symmetry. Means not applicable.
- the compound represented by the general formula (I) includes the perfluoroalkyl group (Hb 11 ) and the linking group — (— Sp 11 —L 11 —Sp 12 —L 12 ) m 11 —A 11 —L 13 —. and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect.
- the two perfluoroalkyl groups (Hb 11 ) present in the molecule are preferably the same as each other, and the linking group present in the molecule — (— Sp 11 -L 11 -Sp 12 -L 12 ) m 11 -A 11 -L 13 - and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 - preferably also the same.
- the terminal Hb 11 -Sp 11 -L 11 -Sp 12 -and -Sp 13 -L 16 -Sp 14 -Hb 11 are preferably groups represented by any one of the following general formulas.
- a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10.
- b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5.
- a + b is 3 to 30.
- r is preferably from 1 to 10, and more preferably from 1 to 4.
- Hb 11 -Sp 11 -L 11 -Sp 12 -L 12 -and -L 15 -Sp 13 -L 16 -Sp 14 -Hb 11 at the terminal of the general formula (I) are any of the following general formulas: It is preferable that it is group represented by these.
- the addition amount of the surfactant in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.02 to 1% with respect to the total mass of the polymerizable liquid crystal compound. More preferred is mass%.
- the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
- the chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
- the chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, chapter 3-4-3, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) 142), 1989), isosorbide and isomannide derivatives can be used.
- a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral agent.
- the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
- the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
- the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Accordingly, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
- the chiral agent may be a liquid crystal compound.
- the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by photomask irradiation such as actinic rays after coating and orientation.
- the photoisomerization group an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group is preferable.
- Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002.
- chiral agent examples include compounds represented by the following formula (12).
- X is 2 to 5 (integer).
- the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
- the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
- the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
- photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
- Group acyloin compounds described in US Pat. No.
- the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
- the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
- a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
- polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
- Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
- a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
- the content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. If content of a crosslinking agent is in the said range, the effect of a crosslinking density improvement will be easy to be acquired, and stability of a cholesteric liquid crystal phase will improve more.
- the liquid crystal composition may contain a monofunctional polymerizable monomer in order to obtain generally required ink properties.
- the monofunctional polymerizable monomer include 2-methoxyethyl acrylate, isobutyl acrylate, isooctyl acrylate, isodecyl acrylate, octyl / decyl acrylate, and the like.
- a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc. in a range that does not deteriorate the optical performance and the like. Can be added.
- the liquid crystal composition is preferably used as a liquid when forming reflective dots.
- the liquid crystal composition may contain a solvent.
- a solvent There is no restriction
- the organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons , Esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load.
- the above-described components such as the above-mentioned monofunctional polymerizable monomer may function as a solvent.
- the liquid crystal composition is applied in the form of dots on the support 32 and then cured to form reflective dots.
- the liquid crystal composition is applied onto the support 32 by, for example, a printing method, and preferably by droplet ejection.
- the printing method is not particularly limited, and an inkjet method, a gravure printing method, a flexographic printing method, or the like can be used, but an inkjet method is preferable.
- Reflective dot patterns can also be formed by applying known printing techniques.
- the liquid crystal composition coated on the support 32 is dried or heated as necessary, and then cured to form reflective dots. It is sufficient that the polymerizable liquid crystal compound in the liquid crystal composition is aligned in the drying and / or heating step.
- the heating temperature is preferably 200 ° C. or lower, more preferably 130 ° C. or lower.
- the aligned liquid crystal compound may be further polymerized.
- the polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
- the irradiation energy is preferably 20 to 50 J / cm 2 and more preferably 100 to 1,500 mJ / cm 2 .
- light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
- the irradiation ultraviolet wavelength is preferably 250 to 430 nm.
- the polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
- the polymerization reaction rate can determine the consumption rate of a polymerizable functional group using an IR (infrared) absorption spectrum.
- the dot films (the right circularly polarized dot film 30 ⁇ / b> R and the left circularly polarized dot film 30 ⁇ / b> L) have an overcoat layer 36 that embeds the reflective dots and is laminated on the support 32.
- the overcoat layer 36 may be provided on the surface side of the support 32 where the reflective dots are formed, and it is preferable to flatten the surface of the dot film.
- the dot films are bonded to each other by the overcoat layer 36 to produce the right circular polarization laminate 20 and the left circular polarization laminate 24.
- the laminate 24 may be produced.
- the overcoat layer 36 is not particularly limited, but the smaller the difference from the refractive index of the reflective dots, the better, and the difference in refractive index is preferably 0.04 or less. Since the reflective dot has a refractive index of about 1.6, a resin layer having a refractive index of about 1.4 to 1.8 is preferable. By using the overcoat layer 36 having a refractive index close to the refractive index of the reflective dot, the angle (polar angle) from the normal of the light incident on the reflective dot can be reduced. For example, when the overcoat layer 36 having a refractive index of 1.6 is used and light is incident on the transparent screen at a polar angle of 45 °, the polar angle actually incident on the reflective dot can be about 27 °.
- the transparent screen 12 can widen the polar angle of light exhibiting retroreflectivity, and the angle formed between the surface of the reflective dot and the support 32 is small.
- high retroreflectivity is obtained in a wider range.
- the overcoat layer 36 may have a function as an antireflection layer or a hard coat layer.
- the overcoat layer 36 examples include a resin layer obtained by applying a composition containing a monomer to the surface side of the support 32 on which the reflective dots are formed, and then curing the coating film.
- the resin used for the overcoat layer 36 is not particularly limited, and may be selected in consideration of the adhesion to the support 32 and the reflective dots.
- a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. From the viewpoint of durability, solvent resistance, etc., a resin of a type that is cured by crosslinking is preferable, and an ultraviolet curable resin that can be cured in a short time is particularly preferable.
- Monomers that can be used to form the overcoat layer 36 include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, polymethylolpropane tri (meth) acrylate, hexanediol (meta ) Acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl Examples include glycol di (meth) acrylate.
- the thickness of the overcoat layer 36 is not particularly limited and may be determined in consideration of the maximum height of the reflective dots, may be about 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m, and more preferably 20 ⁇ 40 ⁇ m. The thickness is the distance from the dot-forming surface of the support where there are no dots to the surface of the overcoat layer on the opposite surface.
- the image display system 10 includes the transparent screen 12 formed by laminating the right circularly polarizing laminate 20 and the left circularly polarizing laminate 24 and the projector 14.
- the projector 14 is a known projector that displays a picture on the transparent screen 12 by performing trapezoidal correction (distortion correction) as necessary and projecting projection light carrying the image onto the transparent screen 12.
- the projector 14 projects a monochrome image, and in the illustrated example, projects a green monochrome image. That is, the projector 14 is a projector in which the peak wavelength of the emitted light is equal to the selective reflection center wavelength of the reflective dots.
- the projector 14 is configured such that the emitted light is unpolarized. It is a projector.
- the emitted light is non-polarized light
- all known projectors that are not polarized light such as a DLP (Digital Light Processing) projector can be used.
- the projector 14 is preferably a so-called short focus projector having a short focal length. Further, the image display system 10 of the present invention is preferably a so-called front projection type in which the convex side of the reflective dot of the dot film is arranged toward the projector 14 side and the image is observed on the projector 14 side. Is preferred. Furthermore, in the image display system 10 of the present invention, the projector 14 is arranged so that the incident angle of the light emitted from the projector 14 is 30 to 70 °, particularly 40 to 60 ° with respect to the normal line of the transparent screen 12. It is preferable to do this.
- the outgoing light is P wave with respect to the transparent screen, and the incident angle of the light from the projector 14 with respect to the normal line of the transparent screen 12 is set. 56 ° ⁇ 10 ° is also preferable.
- the transparent screen 12 of the present invention reflects light by the reflective dots formed by fixing the cholesteric liquid crystal phase.
- the spiral axis of the cholesteric liquid crystal phase is An angle in the range of 70 to 90 ° is formed with the surface of the reflective dot.
- the transparent screen 12 can reflect not only retroreflection but also various directions on the light incident side, that is, the projector side, as well as retroreflection.
- the image display system 10 of the present invention is not projected from the normal direction of the transparent screen, but is disposed below the transparent screen, like a short focus projector, so that the image display system 10 is larger than the normal line of the transparent screen.
- the image display system 10 of the present invention is a front projection type, and the projector 14 is arranged near the transparent screen by setting the incident angle of the projector 14 to the normal line of the transparent screen 12 to 30 to 70 °.
- the image display system can be reduced in size.
- the optical path from the projector 14 to the observer can be a folded optical path by a transparent screen, so that the overall optical distance can be shortened and the image display system can be further miniaturized.
- the green projection light carrying the image emitted by the projector 14 first enters the right circularly polarized dot film 30 ⁇ / b> R of the first sheet (most projector 14 side) of the right circularly polarized laminate 20.
- the green right circularly polarized light of the light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R.
- the light incident on the portion other than the right circularly polarized light reflecting dot 34R passes through the first right circularly polarized light dot film 30R as it is.
- the second right circularly polarized dot film 30R of the right circularly polarized laminate 20 only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R.
- the light other than the green right circularly polarized light incident on the right circularly polarized reflective dot 34R and the light incident on the portion other than the right circularly polarized reflective dot 34R pass through the second right circularly polarized dot film 30R. .
- the light that has passed through the second right circularly polarized dot film 30R of the right circularly polarized laminate 20 is then incident on the third (third from the projector 14 side) right circularly polarized dot film 30R.
- the third right circularly polarized dot film 30R of the right circularly polarized laminate 20 only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R.
- the light other than the green right circularly polarized light incident on the right circularly polarized light reflecting dot 34R and the light incident on the portion other than the right circularly polarized light reflecting dot 34R are the third right circularly polarized dot film 30R, that is, the right circle. It passes through the polarizing laminate 20.
- the light that has passed through the right circular polarization laminate 20 (the third right circular polarization dot film 30R) then enters the left circular polarization laminate 24.
- the light incident on the left circularly polarizing laminate 24 first enters only the left circularly polarized light incident on the left circularly polarized light reflecting dot 34L after entering the first circularly polarized dot film 30L (most projector 14 side). Is reflected by the left circularly polarized light reflecting dot 34L and the light other than the green left circularly polarized light incident on the left circularly polarized light reflecting dot 34L and the light incident on the portion other than the left circularly polarized light reflecting dot 34L are It passes through the left circularly polarized dot film 30L.
- the second left circularly polarized dot film 30L of the left circularly polarized laminate 24 only the green left circularly polarized light incident on the left circularly polarized reflective dot 34L is reflected by the left circularly polarized reflective dot 34L.
- the light other than the green left circularly polarized light incident on the left circularly polarized reflective dot 34L and the light incident on the portion other than the left circularly polarized reflective dot 34L pass through the second left circularly polarized dot film 30L. .
- the third left circularly polarized dot film 30L of the left circularly polarized laminate 24 only the green left circularly polarized light incident on the left circularly polarized reflective dot 34L is reflected by the left circularly polarized reflective dot 34L.
- the light other than the green left circularly polarized light incident on the left circularly polarized reflective dot 34L and the light incident on the part other than the left circularly polarized reflective dot 34L pass through the third left circularly polarized dot film 30L. Then, it passes through the left circularly polarizing laminate 24, that is, the transparent screen 12.
- the green right circularly polarized light reflected by the right circularly polarized light reflecting dots 34R arranged on the three right circularly polarized dot films 30R of the right circularly polarized light laminated body 20, and the left circularly polarized light laminated body A green monochromatic image is displayed (projected) on the transparent screen 12 by the green left circularly polarized light reflected by the left circularly polarized reflective dots 34L arranged on the 24 left circularly polarized dot films 30L.
- an image is displayed by light reflected by the reflective dots arranged on the dot film.
- the light that has not been used for displaying an image passes through the transparent screen. That is, in the case of a transparent screen that displays an image with dots that reflect or diffuse light, the light that has not entered the dot and the light that has passed through the dot pass through the transparent screen as it is with the projector of the transparent screen. Is observed from the opposite side.
- the surface of the transparent screen opposite to the projector is also referred to as “back surface”.
- Hot spots are very dazzling.
- the hot spots are extremely dazzling.
- the transparent screen of the present invention has a plurality of dot films in which reflective dots formed by fixing the stick liquid crystal phase are two-dimensionally arranged, and among the plurality of dot films, 2 In the above dot film, the selective reflection center wavelength of the reflective dot and the rotation direction of the reflected circularly polarized light are equal to each other.
- the transparent screen 12 in the illustrated example has a right circularly polarized laminate in which three right circularly polarized dot films 30R in which right circularly polarized reflective dots 34R that reflect green right circularly polarized light are two-dimensionally arranged are laminated on the support surface.
- the second left circularly polarized dot film 30L Even if the green left circularly polarized light is reflected and passes through the second left circularly polarized dot film 30L, it is reflected by the third left circularly polarized dot film 30L.
- the transparent screen 12 of the present invention the three right circularly polarized dot films 30R that reflect green right circularly polarized light and the three left circularly polarized dot films 30L that reflect green left circularly polarized light are used. Since most of the non-polarized green light projected from the projector 14 can be reflected, hot spots can be significantly suppressed. Moreover, since the light passes through the gaps between the reflective dots and the reflective dots reflect only green light, the transparent screen 12 of the present invention can ensure good transparency while suppressing hot spots. Furthermore, as described above, the light passing through the dot film is not scattered but is transmitted as it is, so that the haze is small.
- an image is displayed on the transparent screen 12 by reflecting light with the reflective dots in which the cholesteric liquid crystal phase is fixed.
- the spiral axis of the cholesteric liquid crystal phase reflects light by the reflective dots that form an angle in the range of 70 to 90 ° with the surface of the reflective dots, whereby an image is displayed on the transparent screen 12. indicate. Therefore, as shown in FIG. 3, the reflective dots of the transparent screen 12 reflect the incident light not only in retroreflection but also in various directions on the light incident side.
- FIG. 4 conceptually shows another example of the image display system of the present invention using another example of the transparent screen of the present invention.
- the image display system 50 shown in FIG. 4 uses many the same members as the image display system 10 shown in FIG. 1 described above, the same members are denoted by the same reference numerals, and the following description mainly focuses on different parts. .
- An image display system 50 shown in FIG. 4 includes the transparent screen 52 of the present invention and a projector 54.
- the image display system 50 is also an image display system that displays a green single-color image.
- the transparent screen 52 includes a ⁇ / 4 plate 56 and the right circularly polarizing laminate 20.
- illustration is abbreviate
- the ⁇ / 4 plate 56 converts linearly polarized light into right circularly polarized light. That is, the ⁇ / 4 plate 56 has a slow axis so that the emitted light becomes right circular polarization corresponding to the right circular polarization reflection dot 34R of the right circular polarization dot film 30R constituting the right circular polarization laminate 20. Arranged together.
- a ⁇ / 4 plate (a plate having a ⁇ / 4 function) is a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
- This expression only needs to be achieved at any wavelength in the visible light range (for example, 550 nm).
- the ⁇ / 4 plate 56 has a configuration in which an optically anisotropic layer having a ⁇ / 4 function is formed on a support, even though the optically anisotropic layer has only a ⁇ / 4 function.
- the combination of the support and the optically anisotropic layer is intended to be a ⁇ / 4 plate.
- the in-plane retardation Re (550) at a wavelength of 550 nm is not particularly limited, but is preferably 120 to 150 nm, and more preferably 125 to 145 nm. Note that, even when the ⁇ / 4 plate 56 includes a layer other than the optically anisotropic layer such as a support, the ⁇ / 4 plate 56 preferably exhibits this in-plane retardation range. .
- the ⁇ / 4 plate 56 preferably has a small Rth (550) which is retardation in the thickness direction.
- Rth (550) is preferably ⁇ 50 to 50 nm, more preferably ⁇ 30 to 30 nm, and even more preferably Rth (550) is zero.
- an image display system 50 in the illustrated example includes a transparent screen 52 having a ⁇ / 4 plate 56 and a right circularly polarized laminate 20 that reflects right circularly polarized light, and a projector 54 whose emitted light is linearly polarized light.
- the linearly polarized outgoing light emitted from the projector 54 is converted into right circularly polarized light by the ⁇ / 4 plate 56, and this right circularly polarized light is incident on the right circularly polarized laminate 20 and reflected, thereby obtaining an image. Is displayed.
- a projector 54 whose output light is linearly polarized light is used.
- a ⁇ / 4 plate that makes the output light of the projector 54 circularly polarized, and a dot that reflects right or left circularly polarized light.
- a transparent screen is comprised with the laminated body comprised with a film.
- the ⁇ / 4 plate is not used, and preferably right-circularly polarized light as in the transparent screen 12 shown in FIG.
- a transparent screen is composed of a laminate composed of a dot film that reflects light and a laminate composed of a dot film that reflects left polarized light.
- various known projectors such as an LCOS (Liquid crystal on silicon) projector and a laser projector can be used as long as the emitted light is linearly polarized light.
- LCOS Liquid crystal on silicon
- laser projector is illustrated suitably for the reason mentioned later.
- the light emitted from the projector 54 and incident on the transparent screen 52 is P wave with respect to the transparent screen 52, and the projector 54 transmits the transparent screen 52.
- the incident angle of light is 56 ° ⁇ 10 ° with respect to the normal line of the transparent screen 52. That is, when using a projector 54 with linearly polarized light, the light emitted from the projector 54 and incident on the transparent screen 52 is P wave with respect to the transparent screen 52, and the optical axis of the projector 54 is The angle is preferably 56 ° ⁇ 10 ° with respect to the normal line of the transparent screen 52.
- a hot spot in an image display system using a transparent screen is not only a hot spot in which the light source of the projector is observed through the transparent screen in the straight traveling direction of the light emitted from the projector, but also the straight traveling direction of the light emitted from the projector.
- the light source of the projector is indirectly observed even at a position where the emitted light is regularly reflected on the surface of the screen, and becomes a hot spot.
- the reflectance of linearly polarized light varies depending on the angle of incidence on the reflecting surface.
- the reflectance of light becomes substantially zero.
- the light emitted from the linearly polarized projector 54 and incident on the transparent screen 52 is set as a P wave with respect to the transparent screen 52, and the incident angle of the light from the projector 54, that is, the optical axis of the projector 54 is set.
- the angle By setting the angle to 56 ° ⁇ 10 ° with respect to the normal line of the transparent screen 52, hot spots generated when the light from the projector 54 is regularly reflected by the transparent screen 52 can be greatly reduced.
- Various known methods such as a method of rotating the light source of the projector 54 around the optical axis can be used as the method of making the linearly polarized light emitted from the projector 54 P wave with respect to the transparent screen 52.
- the light emitted from the projector 54 is linearly polarized light and is a single green color.
- the linearly polarized green light carrying the image emitted from the projector 54 is first made right circularly polarized by the ⁇ / 4 plate 56.
- the light that has been right-circularly polarized by the ⁇ / 4 plate 56 enters the right-circularly polarized laminate 20.
- the light incident on the right circularly polarized laminate 20 is incident on the first right circularly polarized dot film 30R, and only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is on the right.
- the light other than the green right circularly polarized light reflected by the circularly polarized reflective dot 34R and incident on the right circularly polarized reflective dot 34R and the light incident on the portion other than the right circularly polarized reflective dot 34R are the first right circle. It passes through the polarizing dot film 30R.
- the second right circularly polarized dot film 30R of the right circularly polarized laminate 20 only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R.
- the light other than the green right circularly polarized light incident on the right circularly polarized reflective dot 34R and the light incident on the portion other than the right circularly polarized reflective dot 34R pass through the second right circularly polarized dot film 30R. .
- the light that has passed through the second right circularly polarized dot film 30R of the right circularly polarized laminate 20 is then incident on the third right circularly polarized dot film 30R.
- the third right circularly polarized dot film 30R of the right circularly polarized laminate 20 only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R.
- the light other than the green right circularly polarized light that has entered the right circularly polarized reflective dot 34R and the light that has entered the portion other than the right circularly polarized reflective dot 34R are supplied to the third right circularly polarized dot film 30R (right circle). It passes through the polarizing laminate 20), that is, the transparent screen 52.
- an image is displayed (projected) on the transparent screen 52 by the green right circularly polarized light reflected by the right circularly polarized reflective dots 34R of the three right circularly polarized dot films 30R.
- the light emitted from the projector 54 and incident on the right circularly polarized laminate 20 is green right circularly polarized light, and most of the green circularly polarized light is divided into three right circles. Since it can reflect with the polarizing dot film 30R, a hot spot can be suppressed significantly similarly to the previous example. Furthermore, as in the previous example, an image with a wide viewing angle can be displayed by light reflection with high diffusibility by the reflective dots. Further, since the transparent screen 52 has a smaller number of films than the transparent screen 12 shown in FIG. 1, it can have higher light transmittance and lower haze.
- the projector 54 whose outgoing light is polarized light is used.
- a projector having a narrow wavelength band of emitted light is used, such as a laser projector, and selection by a reflective dot is performed.
- the wavelength band of the reflection center wavelength is matched with the wavelength band of the light emitted from the projector, the transparency of the transparent screen can be further improved, and the light that becomes the display image can be reliably reflected by the reflective dots.
- a laser projector is preferably used as the projector 54.
- the transparent screen of the present invention reflects the light so as to diffuse by the reflective dots and displays an image.
- the cholesteric liquid crystal phase spiral axis reflects the light with a high diffusivity by the reflective dot having an angle in the range of 70 to 90 ° with the surface of the reflective dot, thereby displaying an image.
- the transparent screen of the present invention has a structure in which a plurality of dot films in which such reflective dots are two-dimensionally arranged are stacked, and the light diffused by the reflective dots of each dot film is applied to the transparent screen.
- the image is displayed, and the dot reflection films have the same selective reflection center wavelength of the reflection dots and the rotation direction of the reflected circularly polarized light. Therefore, according to the present invention, when a laser projector is used, fine light and dark portions generated in the display image can be made inconspicuous due to the diffusion of light by the reflective dots, and speckle can be reduced.
- a transparent screen using a reflective dot in which the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot can greatly reduce speckle due to its good light diffusibility.
- the liquid crystal constituting the cholesteric liquid crystal phase that forms the right circularly polarized reflection dot 34R.
- the right circularly polarized light reflecting dot 34R reflects only circularly polarized light in a narrow wavelength band corresponding to the wavelength band of the emitted light of the laser projector. It is preferable to do this.
- the wavelength range of light that can be transmitted through the right circularly polarizing laminate 20 can be widened, the transparency of the transparent screen can be further increased, and the wavelength emitted by the projector 54 that has entered the reflective dot is emitted.
- An appropriate image can be displayed by reliably reflecting the light in the band.
- ⁇ n of the liquid crystal compound constituting the reflective dot is preferably 0.02 to 0.1, and preferably 0.04 to 0.06. More preferred.
- the transparent screen 52 shown in FIG. 4 uses the right circularly polarized laminate 20 that reflects green right circularly polarized light, and the light is converted to right circularly polarized light by the ⁇ / 4 plate 56.
- the same transparent screen and image can be obtained by using the left circularly polarized light laminate 24 that converts the linearly polarized light into the left circularly polarized light by the ⁇ / 4 plate 56 and reflects the green left circularly polarized light instead of the right circularly polarized light laminate 20.
- a display system can be configured.
- the linearly polarized light is incident on the ⁇ / 4 plate 56 using the projector 54 that emits linearly polarized light.
- the present invention is not limited to this.
- light emitted from the projector using a non-polarized projector as in the projector 14 described above. May be incident on the linearly polarizing plate to obtain linearly polarized light, and light that has been linearly polarized by the linearly polarizing plate may be incident on the ⁇ / 4 plate 56.
- the transparent screen of the present invention is not limited to the configuration shown in FIGS. That is, the transparent screen of the present invention has a plurality of dot films in which reflective dots formed by fixing a cholesteric liquid crystal phase on a support are two-dimensionally arranged, and the selective reflection center wavelength of the reflective dots and the circularly polarized light that reflects.
- Various configurations can be used as long as the rotation directions of the plurality of dot films include a plurality of dot films having the same rotation direction.
- the transparent screen shown in FIGS. 1 and 4 displays a green single-color image having reflective dots that reflect green circularly polarized light
- the transparent screen of the present invention displays a red single-color image having a configuration in which a plurality of dot films in which reflective dots that reflect red circularly polarized light are two-dimensionally arranged are laminated on the support surface.
- a blue monochromatic image having a configuration in which a plurality of dot films in which two-dimensionally arranged reflective dots that reflect blue circularly polarized light are two-dimensionally arranged are laminated on the support surface.
- the projector used in the image display system of the present invention uses a projector that emits projection light that carries a red single-color image or a projector that emits projection light that carries a blue single-color image.
- each of the right circularly polarizing laminate 20 and the left circularly polarizing laminate 24 has three dot films, but the present invention is not limited to this.
- the right circularly polarizing laminate and / or the left circularly polarizing laminate may have two dot films, or four or more dot films. It may be a thing.
- the transparent screen has a right circular polarization laminate and a left circular polarization laminate, the number of dot films may be different between the right circular polarization laminate and the left circular polarization laminate.
- one of the right-circular polarizing laminate and the left-circular polarizing laminate reflects the selective reflection center wavelength of the reflective dot. If there are a plurality of dot films having the same rotational direction of circularly polarized light, the other may have only one dot film.
- the transparent screen in the configuration without the ⁇ / 4 plate 56, may be configured only by the right circularly polarized laminate 20, or the transparent screen is configured only by the left circularly polarized laminate 24. May be. That is, the transparent screen of the present invention may have a configuration having only two right circularly polarized dot films 30R, or may have a configuration having only two left circularly polarized dot films 30L.
- a cellulose acetate film was prepared with reference to Examples ([0267] to [0270]) of JP2012-18396A. This is designated as a protective film 01. Re (550) and Rth (550) of the protective film 01 were 2 nm and 35 nm, respectively. This protective film 01 was used as the support 32. The prepared underlayer solution was applied to the support 32 (protective film 01) using a # 2.6 bar coater.
- the coating film was heated so that the coating film surface temperature became 50 ° C., dried for 60 seconds, and then irradiated with 500 mJ / cm 2 of ultraviolet rays by an ultraviolet irradiation device under a nitrogen purge with an oxygen concentration of 100 ppm or less. Irradiation was performed to advance the cross-linking reaction, and an underlayer was prepared. In addition, it was 0.8% when the haze value of the support body 32 in which the base layer was formed was measured.
- cholesteric liquid crystal ink liquid R liquid crystal composition
- cholesteric liquid crystal ink liquid R liquid crystal composition
- Cyclopentanone 139.6 parts by mass Mixture A of the above-described rod-shaped liquid crystal compound 100 parts by mass IRGACURE 907 (manufactured by BASF) 3.0 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass
- the following chiral agent A 5. 78 parts by mass The following surfactant 0.08 parts by mass
- the cholesteric liquid crystal ink liquid R is a material that forms dots that reflect light having a selective reflection center wavelength of 550 nm.
- the cholesteric liquid crystal ink liquid R is a material for forming dots that reflect right circularly polarized light. That is, the cholesteric liquid crystal ink liquid R is a material for forming the right circularly polarized light reflecting dot 34R.
- the prepared cholesteric liquid crystal ink liquid R was placed on the base layer of the support 32 on which the base layer was prepared with an inkjet printer (DMP-2831, manufactured by FUJIFILM Dimatix Co., Ltd.) in which the platen was heated to 60 ° C. Drops were deposited on the entire surface of a 100 ⁇ 100 mm area with a distance (pitch) of 60 ⁇ m. After drying on the platen at 60 ° C. for 30 seconds or longer, the substrate 32 was cured by irradiating with ultraviolet rays of 500 mJ / cm 2 at room temperature with an ultraviolet irradiation device to obtain the right circularly polarized reflecting dots 34R on the surface. .
- DMP-2831 manufactured by FUJIFILM Dimatix Co., Ltd.
- ⁇ Dot shape and cholesteric structure evaluation> Ten of the right circularly polarized light reflecting dots 34R were selected at random, and the shape of the dots was observed with a laser microscope (manufactured by Keyence Corporation). As a result, the dots have an average diameter of 30 ⁇ m, an average maximum height of 6 ⁇ m, and the angle (contact angle) formed by the contact surface between the dot surface at the dot end and the surface of the base layer is an average of 44 °, and is centered from the dot end. The height continuously increased in the direction toward.
- One right circularly polarized light reflecting dot 34R located at the center of the support 32 was cut perpendicularly to the support 32 on the surface including the center of the dot, and the cross section was observed with a scanning electron microscope. As a result, a bright and dark stripe pattern as shown in FIGS. 2 and 3 was confirmed inside the dot. Further, as shown in FIG. 2 from the cross-sectional view, the dark portion of the dot is formed at the position where the angle ⁇ 1 with respect to the perpendicular (one-dot chain line) of the surface of the support 32 passing through the center of the dot is 30 ° and 60 °. The angles ⁇ 1 and ⁇ 2 formed by the normal direction of the line and the surface of the dot were measured.
- the line formed by the outermost dark portion of the dot (the line Ld 1 formed by the first dark portion in FIG. 2 (dot end portion)) and the innermost dark portion of the dot are formed.
- the angle between the normal direction of the line formed by the dark part of the dot and the surface of the dot is almost the same whether the dot is near the dot surface, in the center of the dot (innermost), or in the middle part of the dot. Met.
- the prepared coating liquid for overcoat was applied onto the support 32 (underlayer) on which the right circularly polarized reflective dots 34R were formed, using a # 8 bar coater. Then, after heating the coating film so that the coating surface temperature becomes 50 ° C. and drying for 60 seconds, the coating film is irradiated with UV light of 500 mJ / cm 2 by an UV irradiation device to allow the crosslinking reaction to proceed.
- the coat layer 36 was produced to obtain a right circularly polarized dot film 30R. In this example, three sheets of the same right circularly polarized dot film 30R were produced.
- cholesteric liquid crystal ink liquid L was prepared in the same manner as the cholesteric liquid crystal ink liquid R except that the chiral agent A was changed to the chiral agent B and the addition amount of the chiral agent B was 8.09 parts by mass.
- the cholesteric liquid crystal ink liquid L is a material for forming the left circularly polarized light reflecting dot 34L that reflects left circularly polarized light having a selective reflection center wavelength of 550 nm.
- a left circularly polarized dot film 30L was produced in the same manner as the right circularly polarized dot film 30R except that the prepared cholesteric liquid crystal ink liquid L was used instead of the cholesteric liquid crystal ink liquid R. In this example, three same left circularly polarized dot films 30L were produced.
- Example 1 A transparent screen was prepared in the same manner as in Example 1 except that one piece of the right circularly polarized dot film 30R and one piece of the left circularly polarized dot film 30L were used. That is, this transparent screen is a transparent screen having one right circularly polarized dot film 30R and one left circularly polarized dot film 30L.
- the projector used PJWX4141 (manufactured by Ricoh Co., Ltd.) to irradiate an image from the lower part of the transparent screen so that white of 5 cm square was displayed at the center of the produced transparent screen.
- This projector is a DLP projector, and the emitted light is non-polarized light.
- FIGS. 5 and 6 a full diffusion plate D made of barium sulfate is arranged on the extended line of the light emitted from the projector P and the center of the transparent screen S, and a color luminance meter is viewed from the normal direction of the complete diffusion plate D.
- the luminance was measured using B (Topcon, BM-5). 5 is a top view and FIG. 6 is a side view.
- Example 2 A transparent screen was produced in the same manner as in Example 2 except that the right circularly polarized dot film 30R was one. That is, this transparent screen is a transparent screen composed of the ⁇ / 4 plate 56 and one piece of the right circularly polarized dot film 30R.
- the projector used LSPX-P1 (manufactured by SONY) to irradiate an image from the lower part of the transparent screen so that white of 5 cm square was displayed on the center of the transparent screen.
- This projector is a laser projector, and the emitted light is linearly polarized light.
- Example 1 ⁇ Evaluation of hot spot (transmission straight light)> As in Example 1 and Comparative Example 1, the luminance was measured with a luminance meter B as shown in FIGS. When the luminance measurement result using the transparent screen of Comparative Example 2 was normalized as 100, the luminance measurement result of the transparent screen of Example 2 was 10, and it was found that hot spots were significantly suppressed. From the above results, the effects of the present invention are clear.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Polarising Elements (AREA)
- Optical Filters (AREA)
Abstract
The objective of the invention is to provide: a transparent screen having excellent transparency and capable of reducing hot spots; and an image display system wherein, by using said transparent screen, visibility through the screen is excellent and hot spots are reduced. The objective is achieved by a transparent screen comprising a plurality of dot films in each of which dots made by fixing a cholesteric liquid crystal phase are arranged two-dimensionally on a support, wherein the dots in each of the dot films have the same selective reflection center wavelength.
Description
本発明は、透明スクリーン、および、この透明スクリーンを用いる画像表示システムに関する。
The present invention relates to a transparent screen and an image display system using the transparent screen.
近年、投影型の表示装置を構成するスクリーンの一つとして、プロジェクターからの投影光を拡散および/または反射して画像を表示すると共に、表裏面からの光を透過する透明スクリーンが知られている。
2. Description of the Related Art In recent years, a transparent screen that displays an image by diffusing and / or reflecting projection light from a projector and transmits light from the front and back surfaces is known as one of the screens constituting a projection display device. .
例えば、特許文献1には、投影型の液晶プロジェクションシステムとして、右または左円偏光の赤色光、緑色光および青色光を反射するコレステリック液晶を用いる透明スクリーンを用い、この透明スクリーンに投影する赤色光、緑色光および青色光をλ/4板によって右円偏光あるいは左円偏光に偏光することにより、透明スクリーンに照射される外部光の右円偏光成分または左円偏光成分を透過するようにした、投影型液晶プロジェクションシステムが記載されている。
For example, in Patent Document 1, as a projection-type liquid crystal projection system, a transparent screen using cholesteric liquid crystal that reflects right- or left-circularly polarized red light, green light, and blue light is used, and red light projected onto the transparent screen is used. The green light and the blue light are polarized to the right circularly polarized light or the left circularly polarized light by the λ / 4 plate so that the right circularly polarized component or the left circularly polarized component of the external light irradiated on the transparent screen is transmitted. A projection type liquid crystal projection system is described.
ところで、プロジェクターを用いる画像表示では、ホットスポットが生じるという問題が有る。ホットスポットとは、例えば、特許文献1に記載されるような透明スクリーンを用いる画像表示システムでは、透明スクリーンのプロジェクターとは逆側で、プロジェクターからの出射光の直進方向において、プロジェクターの光源が観察される現象である。このような透明スクリーンを透過した透過光によるホットスポットが生じると、透明スクリーンのプロジェクターとは逆側から観察した際に、眩しく感じる。
By the way, in the image display using the projector, there is a problem that a hot spot occurs. For example, in an image display system using a transparent screen as described in Patent Document 1, the hot spot is the side opposite to the projector of the transparent screen, and the light source of the projector observes in the straight direction of the light emitted from the projector. It is a phenomenon. When such a hot spot is generated by the transmitted light that has passed through the transparent screen, it feels dazzling when observed from the side opposite to the projector of the transparent screen.
特許文献1に示されるような透明スクリーンでは、スクリーンの透明性が高い場合には、ホットスポットは非常に眩しい。特に、透明スクリーンを用い、レーザーを光源として用いるレーザープロジェクターでは、ホットスポットは極めて眩しい。
In the transparent screen as shown in Patent Document 1, when the transparency of the screen is high, the hot spot is very dazzling. In particular, in a laser projector using a transparent screen and using a laser as a light source, the hot spot is extremely dazzling.
通常の非透明なスクリーンでは、プロジェクターの出射光の直進方向の正反射光がホットスポットとなる。このような非透明のスクリーンでは、スクリーンの最表面に凹凸構造を付与することで、光を拡散させて、正反射光によるホットスポットを低減させている。
しかしながら、特許文献1に示されるような透明スクリーンでは、最表面に凹凸構造を付与すると、透明性が著しく低下するため、この対応策は利用できない。 In a normal non-transparent screen, the regular reflected light in the straight traveling direction of the light emitted from the projector becomes a hot spot. In such a non-transparent screen, a concavo-convex structure is provided on the outermost surface of the screen to diffuse light and reduce hot spots caused by specularly reflected light.
However, in a transparent screen as shown in Patent Document 1, if a concavo-convex structure is imparted to the outermost surface, the transparency is significantly reduced, and this countermeasure cannot be used.
しかしながら、特許文献1に示されるような透明スクリーンでは、最表面に凹凸構造を付与すると、透明性が著しく低下するため、この対応策は利用できない。 In a normal non-transparent screen, the regular reflected light in the straight traveling direction of the light emitted from the projector becomes a hot spot. In such a non-transparent screen, a concavo-convex structure is provided on the outermost surface of the screen to diffuse light and reduce hot spots caused by specularly reflected light.
However, in a transparent screen as shown in Patent Document 1, if a concavo-convex structure is imparted to the outermost surface, the transparency is significantly reduced, and this countermeasure cannot be used.
すなわち、透明スクリーンを用いる画像表示システムでは、良好な透明性を確保し、かつ、透過光によるホットスポットを低減した透明スクリーンの出現が望まれている。
That is, in an image display system using a transparent screen, the appearance of a transparent screen that ensures good transparency and reduces hot spots caused by transmitted light is desired.
本発明の目的は、このような従来技術の問題点を解決することにあり、良好な透明性を有し、かつ、透過光によるホットスポットも低減できる透明スクリーン、および、この透明スクリーンを用いる画像表示システムを提供することにある。
An object of the present invention is to solve such problems of the prior art, a transparent screen having good transparency and capable of reducing hot spots caused by transmitted light, and an image using the transparent screen To provide a display system.
この課題を解決するために、本発明の透明スクリーンは、支持体の表面に、コレステリック液晶相を固定してなるドットを二次元的に配列したドットフィルムを、複数、有し、かつ、
複数のドットフィルムにおいて、少なくとも2つのドットフィルムのドットの選択反射中心波長および反射する円偏光の回転方向が互いに等しいことを特徴とする透明スクリーンを提供する。 In order to solve this problem, the transparent screen of the present invention has a plurality of dot films in which dots formed by fixing a cholesteric liquid crystal phase are two-dimensionally arranged on the surface of a support, and
A transparent screen characterized in that, in a plurality of dot films, the selective reflection center wavelength of the dots of at least two dot films and the rotation direction of the reflected circularly polarized light are equal to each other.
複数のドットフィルムにおいて、少なくとも2つのドットフィルムのドットの選択反射中心波長および反射する円偏光の回転方向が互いに等しいことを特徴とする透明スクリーンを提供する。 In order to solve this problem, the transparent screen of the present invention has a plurality of dot films in which dots formed by fixing a cholesteric liquid crystal phase are two-dimensionally arranged on the surface of a support, and
A transparent screen characterized in that, in a plurality of dot films, the selective reflection center wavelength of the dots of at least two dot films and the rotation direction of the reflected circularly polarized light are equal to each other.
このような本発明の透明スクリーンにおいて、ドットが右円偏光を反射するドットフィルムと、ドットが左円偏光を反射するドットフィルムとを有し、かつ、ドットが右円偏光を反射するドットフィルム、および、ドットが左円偏光を反射するドットフィルムの、少なくとも一方を、複数、有するのが好ましい。
また、支持体の波長550nmにおける面内レターデーションRe(550)が0~20nmで、支持体の波長550nmにおける厚さ方向のレターデーションRth(550)が0~50nmであるのが好ましい。
また、λ/4板を有するのが好ましい。
さらに、λ/4板の波長550nmにおける面内レターデーションRe(550)が120~150nmで、λ/4板の波長550nmにおける厚さ方向のレターデーションRth(550)が-50~50nmであるのが好ましい。 In such a transparent screen of the present invention, a dot film in which dots reflect right circularly polarized light, a dot film in which dots reflect left circularly polarized light, and a dot in which dots reflect right circularly polarized light, And it is preferable to have a plurality of dot films in which the dots reflect left circularly polarized light.
The in-plane retardation Re (550) at a wavelength of 550 nm of the support is preferably 0 to 20 nm, and the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the support is preferably 0 to 50 nm.
Moreover, it is preferable to have a λ / 4 plate.
Further, the in-plane retardation Re (550) of the λ / 4 plate at a wavelength of 550 nm is 120 to 150 nm, and the retardation Rth (550) in the thickness direction of the λ / 4 plate at a wavelength of 550 nm is −50 to 50 nm. Is preferred.
また、支持体の波長550nmにおける面内レターデーションRe(550)が0~20nmで、支持体の波長550nmにおける厚さ方向のレターデーションRth(550)が0~50nmであるのが好ましい。
また、λ/4板を有するのが好ましい。
さらに、λ/4板の波長550nmにおける面内レターデーションRe(550)が120~150nmで、λ/4板の波長550nmにおける厚さ方向のレターデーションRth(550)が-50~50nmであるのが好ましい。 In such a transparent screen of the present invention, a dot film in which dots reflect right circularly polarized light, a dot film in which dots reflect left circularly polarized light, and a dot in which dots reflect right circularly polarized light, And it is preferable to have a plurality of dot films in which the dots reflect left circularly polarized light.
The in-plane retardation Re (550) at a wavelength of 550 nm of the support is preferably 0 to 20 nm, and the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the support is preferably 0 to 50 nm.
Moreover, it is preferable to have a λ / 4 plate.
Further, the in-plane retardation Re (550) of the λ / 4 plate at a wavelength of 550 nm is 120 to 150 nm, and the retardation Rth (550) in the thickness direction of the λ / 4 plate at a wavelength of 550 nm is −50 to 50 nm. Is preferred.
また、本発明の画像表示システムの第1の態様は、本発明の透明スクリーンと、
出射光が無偏光で、出射光のピーク波長がドットの選択反射中心波長と等しいプロジェクターと、を有することを特徴とする画像表示システムを提供する。 Moreover, the 1st aspect of the image display system of this invention is the transparent screen of this invention,
There is provided an image display system comprising: a projector in which outgoing light is non-polarized and a peak wavelength of the outgoing light is equal to a selective reflection center wavelength of a dot.
出射光が無偏光で、出射光のピーク波長がドットの選択反射中心波長と等しいプロジェクターと、を有することを特徴とする画像表示システムを提供する。 Moreover, the 1st aspect of the image display system of this invention is the transparent screen of this invention,
There is provided an image display system comprising: a projector in which outgoing light is non-polarized and a peak wavelength of the outgoing light is equal to a selective reflection center wavelength of a dot.
さらに、本発明の画像表示システムの第2の態様は、λ/4板を有する本発明の透明スクリーンと、
出射光が偏光で、出射光のピーク波長がドットの選択反射中心波長と等しいプロジェクターと、を有することを特徴とする画像表示システムを提供する。 Furthermore, the second aspect of the image display system of the present invention includes a transparent screen of the present invention having a λ / 4 plate,
There is provided an image display system comprising: a projector, wherein the emitted light is polarized light, and a peak wavelength of the emitted light is equal to a selective reflection center wavelength of a dot.
出射光が偏光で、出射光のピーク波長がドットの選択反射中心波長と等しいプロジェクターと、を有することを特徴とする画像表示システムを提供する。 Furthermore, the second aspect of the image display system of the present invention includes a transparent screen of the present invention having a λ / 4 plate,
There is provided an image display system comprising: a projector, wherein the emitted light is polarized light, and a peak wavelength of the emitted light is equal to a selective reflection center wavelength of a dot.
このような本発明の画像表示システムにおいて、プロジェクターが、レーザープロジェクターであるのが好ましい。
さらに、透明スクリーンのドットフィルムは、ドットの凸をプロジェクターに向けて配置されるのが好ましい。 In such an image display system of the present invention, the projector is preferably a laser projector.
Furthermore, it is preferable that the dot film of a transparent screen is arrange | positioned with the convex of a dot facing a projector.
さらに、透明スクリーンのドットフィルムは、ドットの凸をプロジェクターに向けて配置されるのが好ましい。 In such an image display system of the present invention, the projector is preferably a laser projector.
Furthermore, it is preferable that the dot film of a transparent screen is arrange | positioned with the convex of a dot facing a projector.
本発明によれば、良好な透明性を有し、透過光によるホットスポットを低減できる透明スクリーン、および、この透明スクリーンを用いる、透過光によるホットスポットを低減した画像表示システムを実現できる。
According to the present invention, it is possible to realize a transparent screen having good transparency and capable of reducing hot spots caused by transmitted light, and an image display system using this transparent screen and reduced hot spots caused by transmitted light.
以下、本発明の透明スクリーンおよび画像表示システムについて、添付の図面に示される好適実施例を基に詳細に説明する。
Hereinafter, the transparent screen and image display system of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本明細書において、例えば、「45°」、「平行」、「垂直」あるいは「直交」等の角度は、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であるのが好ましく、3°未満であるのがより好ましい。
本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。 In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, for example, an angle such as “45 °”, “parallel”, “vertical” or “orthogonal” is within a range where the difference from the exact angle is less than 5 ° unless otherwise specified. Means. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
In this specification, “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
In this specification, “same” includes an error range generally allowed in the technical field. In addition, in the present specification, when “all”, “any” or “entire surface” is used, it includes an error range generally allowed in the technical field in addition to the case of 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
本明細書において、例えば、「45°」、「平行」、「垂直」あるいは「直交」等の角度は、特に記載がなければ、厳密な角度との差異が5°未満の範囲内であることを意味する。厳密な角度との差異は、4°未満であるのが好ましく、3°未満であるのがより好ましい。
本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。 In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, for example, an angle such as “45 °”, “parallel”, “vertical” or “orthogonal” is within a range where the difference from the exact angle is less than 5 ° unless otherwise specified. Means. The difference from the exact angle is preferably less than 4 °, more preferably less than 3 °.
In this specification, “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
In this specification, “same” includes an error range generally allowed in the technical field. In addition, in the present specification, when “all”, “any” or “entire surface” is used, it includes an error range generally allowed in the technical field in addition to the case of 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
本明細書において、可視光は、電磁波のうち、ヒトの目で見える波長の光であり、380~780nmの波長域の光を示す。非可視光は、380nm未満の波長域または780nmを超える波長域の光である。
また、これに限定されるものではないが、可視光のうち、420~490nmの波長域の光は青色光であり、495~570nmの波長域の光は緑色光であり、620~750nmの波長域の光は赤色光である。 In this specification, visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and indicates light having a wavelength range of 380 to 780 nm. Invisible light is light having a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
Although not limited to this, among visible light, light in the wavelength region of 420 to 490 nm is blue light, light in the wavelength region of 495 to 570 nm is green light, and wavelength of 620 to 750 nm. The light in the area is red light.
また、これに限定されるものではないが、可視光のうち、420~490nmの波長域の光は青色光であり、495~570nmの波長域の光は緑色光であり、620~750nmの波長域の光は赤色光である。 In this specification, visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and indicates light having a wavelength range of 380 to 780 nm. Invisible light is light having a wavelength range of less than 380 nm or a wavelength range of more than 780 nm.
Although not limited to this, among visible light, light in the wavelength region of 420 to 490 nm is blue light, light in the wavelength region of 495 to 570 nm is green light, and wavelength of 620 to 750 nm. The light in the area is red light.
本明細書において、再帰反射は、入射した光が入射方向に反射される反射を意味する。
In this specification, retroreflection means reflection in which incident light is reflected in the incident direction.
本明細書において、「ヘイズ」は、日本電色工業株式会社製のヘーズメーターNDH-2000を用いて測定される値を意味する。
理論上は、ヘイズは、以下式で表される値を意味する。
(380~780nmの自然光の散乱透過率)/(380~780nmの自然光の散乱透過率+自然光の直透過率)×100%
散乱透過率は分光光度計と積分球ユニットを用いて、得られる全方位透過率から直透過率を差し引いて算出することができる値である。直透過率は、積分球ユニットを用いて測定した値に基づく場合、0°での透過率である。つまり、ヘイズが低いということは、全透過光量のうち、直透過光量が多いことを意味する。 In the present specification, “haze” means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
Theoretically, haze means a value represented by the following equation.
(Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) × 100%
The scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit. The direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
理論上は、ヘイズは、以下式で表される値を意味する。
(380~780nmの自然光の散乱透過率)/(380~780nmの自然光の散乱透過率+自然光の直透過率)×100%
散乱透過率は分光光度計と積分球ユニットを用いて、得られる全方位透過率から直透過率を差し引いて算出することができる値である。直透過率は、積分球ユニットを用いて測定した値に基づく場合、0°での透過率である。つまり、ヘイズが低いということは、全透過光量のうち、直透過光量が多いことを意味する。 In the present specification, “haze” means a value measured using a haze meter NDH-2000 manufactured by Nippon Denshoku Industries Co., Ltd.
Theoretically, haze means a value represented by the following equation.
(Scattering transmittance of natural light of 380 to 780 nm) / (scattering transmittance of natural light of 380 to 780 nm + direct transmittance of natural light) × 100%
The scattering transmittance is a value that can be calculated by subtracting the direct transmittance from the obtained omnidirectional transmittance using a spectrophotometer and an integrating sphere unit. The direct transmittance is a transmittance at 0 ° based on a value measured using an integrating sphere unit. That is, the low haze means that the direct transmitted light amount is large in the total transmitted light amount.
本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。特に記載がないときは、波長λは、550nmとする。
本明細書において、Re(λ)、Rth(λ)はAxoScan OPMF-1(オプトサイエンス社製)において、波長λで測定した値である。AxoScanにて平均屈折率((Nx+Ny+Nz)/3)と膜厚(d(μm))とを入力することにより、
遅相軸方向(°)
Re(λ)=R0(λ)
Rth(λ)=((Nx+Ny)/2ーNz)×d
が算出される。
なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。 In this specification, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at a wavelength λ, respectively. Unless otherwise specified, the wavelength λ is 550 nm.
In this specification, Re (λ) and Rth (λ) are values measured at a wavelength λ in AxoScan OPMF-1 (manufactured by Optoscience). By inputting the average refractive index ((Nx + Ny + Nz) / 3) and film thickness (d (μm)) in AxoScan,
Slow axis direction (°)
Re (λ) = R0 (λ)
Rth (λ) = ((Nx + Ny) / 2−Nz) × d
Is calculated.
Note that R0 (λ) is displayed as a numerical value calculated by AxoScan, and means Re (λ).
本明細書において、Re(λ)、Rth(λ)はAxoScan OPMF-1(オプトサイエンス社製)において、波長λで測定した値である。AxoScanにて平均屈折率((Nx+Ny+Nz)/3)と膜厚(d(μm))とを入力することにより、
遅相軸方向(°)
Re(λ)=R0(λ)
Rth(λ)=((Nx+Ny)/2ーNz)×d
が算出される。
なお、R0(λ)は、AxoScanで算出される数値として表示されるものであるが、Re(λ)を意味している。 In this specification, Re (λ) and Rth (λ) represent in-plane retardation and retardation in the thickness direction at a wavelength λ, respectively. Unless otherwise specified, the wavelength λ is 550 nm.
In this specification, Re (λ) and Rth (λ) are values measured at a wavelength λ in AxoScan OPMF-1 (manufactured by Optoscience). By inputting the average refractive index ((Nx + Ny + Nz) / 3) and film thickness (d (μm)) in AxoScan,
Slow axis direction (°)
Re (λ) = R0 (λ)
Rth (λ) = ((Nx + Ny) / 2−Nz) × d
Is calculated.
Note that R0 (λ) is displayed as a numerical value calculated by AxoScan, and means Re (λ).
本明細書において、屈折率Nx、Ny、Nzは、アッベ屈折計(NAR-4T、アタゴ社製)を使用し、光源にナトリウムランプ(λ=589nm)を用いて測定する。また、波長依存性を測定する場合は、多波長アッベ屈折計DR-M2(アタゴ社製)にて、干渉フィルタとの組合せで測定できる。
また、屈折率は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することもできる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。 In this specification, the refractive indexes Nx, Ny, and Nz are measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) and a sodium lamp (λ = 589 nm) as a light source. Further, when measuring the wavelength dependency, it can be measured in combination with an interference filter using a multi-wavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.).
In addition, as the refractive index, values in polymer handbooks (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. The average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
また、屈折率は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することもできる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。 In this specification, the refractive indexes Nx, Ny, and Nz are measured using an Abbe refractometer (NAR-4T, manufactured by Atago Co., Ltd.) and a sodium lamp (λ = 589 nm) as a light source. Further, when measuring the wavelength dependency, it can be measured in combination with an interference filter using a multi-wavelength Abbe refractometer DR-M2 (manufactured by Atago Co., Ltd.).
In addition, as the refractive index, values in polymer handbooks (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. The average refractive index values of the main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
本明細書において、選択反射中心波長とは、対象となる物(部材)における透過率の極小値をTmin(%)とした場合、下記の式で表される半値透過率:T1/2(%)を示す2つの波長の平均値のことを言う。
半値透過率を求める式: T1/2=100-(100-Tmin)÷2
また、複数の物の選択反射中心波長が「等しい」とは、厳密に等しいことを意味するものではなく、光学的に影響のない範囲の誤差は許容される。具体的には、複数の物の選択反射中心波長が「等しい」とは、それぞれの物同士における選択反射中心波長の差が20nm以下であることを意図し、この差は15nm以下であることが好ましく、10nm以下であることがより好ましい。 In this specification, the selective reflection center wavelength is a half-value transmittance represented by the following formula: T1 / 2 (%), where Tmin (%) is a minimum value of transmittance of a target object (member). ) Means the average value of two wavelengths.
Formula for calculating half-value transmittance: T1 / 2 = 100− (100−Tmin) ÷ 2
Further, “equal” for the selective reflection center wavelengths of a plurality of objects does not mean that they are strictly equal, and an error in a range that is not optically affected is allowed. Specifically, the phrase “selective reflection center wavelengths of a plurality of objects are equal” means that the difference between the selective reflection center wavelengths of the respective objects is 20 nm or less, and the difference is 15 nm or less. Preferably, it is 10 nm or less.
半値透過率を求める式: T1/2=100-(100-Tmin)÷2
また、複数の物の選択反射中心波長が「等しい」とは、厳密に等しいことを意味するものではなく、光学的に影響のない範囲の誤差は許容される。具体的には、複数の物の選択反射中心波長が「等しい」とは、それぞれの物同士における選択反射中心波長の差が20nm以下であることを意図し、この差は15nm以下であることが好ましく、10nm以下であることがより好ましい。 In this specification, the selective reflection center wavelength is a half-value transmittance represented by the following formula: T1 / 2 (%), where Tmin (%) is a minimum value of transmittance of a target object (member). ) Means the average value of two wavelengths.
Formula for calculating half-value transmittance: T1 / 2 = 100− (100−Tmin) ÷ 2
Further, “equal” for the selective reflection center wavelengths of a plurality of objects does not mean that they are strictly equal, and an error in a range that is not optically affected is allowed. Specifically, the phrase “selective reflection center wavelengths of a plurality of objects are equal” means that the difference between the selective reflection center wavelengths of the respective objects is 20 nm or less, and the difference is 15 nm or less. Preferably, it is 10 nm or less.
本明細書において、プロジェクターからの出射光のピーク波長が、ドットの選択反射中心波長と「等しい」とは、厳密に等しいことを意味するものではなく、光学的に影響のない範囲の誤差は許容される。具体的には、プロジェクターからの出射光のピーク波長が、ドットの選択反射中心波長と「等しい」とは、両者の波長の差が50nm以下であることを意図し、この差は25nm以下であるのが好ましく、15nm以下であるのがより好ましい。
In this specification, the phrase “the peak wavelength of the light emitted from the projector is“ equal ”to the dot selective reflection center wavelength” does not mean that it is strictly equal, and an error in a range that is not optically affected is acceptable. Is done. Specifically, the peak wavelength of the light emitted from the projector is “equal” to the selective reflection center wavelength of the dot, which means that the difference between the two wavelengths is 50 nm or less, and this difference is 25 nm or less. And is more preferably 15 nm or less.
本発明の透明スクリーンは、支持体にコレステリック液晶相を固定してなるドットを二次元的に配列してなるドットフィルムを、複数、有し、かつ、複数のドットフィルムで、ドットの選択反射中心波長および反射する円偏光の回転方向が、互いに等しい構成を有するものである。また、本発明の画像表示システムは、このような本発明の透明スクリーンと、出射光が偏光または無偏光の単色のプロジェクターとを有するものである。
このような本発明の透明スクリーンおよび画像表示システムは、緑色の画像など、単色の画像の表示に対応するものである。 The transparent screen of the present invention has a plurality of dot films formed by two-dimensionally arranging dots formed by fixing a cholesteric liquid crystal phase on a support, and the plurality of dot films have a dot selective reflection center. The wavelength and the rotation direction of the reflected circularly polarized light have the same configuration. The image display system of the present invention includes such a transparent screen of the present invention and a monochromatic projector whose emitted light is polarized or non-polarized.
Such a transparent screen and image display system of the present invention is compatible with the display of a single color image such as a green image.
このような本発明の透明スクリーンおよび画像表示システムは、緑色の画像など、単色の画像の表示に対応するものである。 The transparent screen of the present invention has a plurality of dot films formed by two-dimensionally arranging dots formed by fixing a cholesteric liquid crystal phase on a support, and the plurality of dot films have a dot selective reflection center. The wavelength and the rotation direction of the reflected circularly polarized light have the same configuration. The image display system of the present invention includes such a transparent screen of the present invention and a monochromatic projector whose emitted light is polarized or non-polarized.
Such a transparent screen and image display system of the present invention is compatible with the display of a single color image such as a green image.
図1に、本発明の透明スクリーンの一例を用いる、本発明の画像表示システムの一例を概念的に示す。
図1に示す画像表示システム10は、本発明の透明スクリーン12と、出射光が無偏光で緑色の単色画像を投影するプロジェクター14とを有する。すなわち、画像表示システム10は、緑色の単色画像を透明スクリーン12に表示する画像表示システムである。 FIG. 1 conceptually shows an example of the image display system of the present invention using an example of the transparent screen of the present invention.
Animage display system 10 illustrated in FIG. 1 includes the transparent screen 12 according to the present invention and a projector 14 that projects a green single-color image with non-polarized emitted light. That is, the image display system 10 is an image display system that displays a green single-color image on the transparent screen 12.
図1に示す画像表示システム10は、本発明の透明スクリーン12と、出射光が無偏光で緑色の単色画像を投影するプロジェクター14とを有する。すなわち、画像表示システム10は、緑色の単色画像を透明スクリーン12に表示する画像表示システムである。 FIG. 1 conceptually shows an example of the image display system of the present invention using an example of the transparent screen of the present invention.
An
画像表示システム10において、透明スクリーン12は、右円偏光積層体20と左円偏光積層体24とを積層した構成を有する。図1においては、透明スクリーン12の構成を明確に示すために、後述する支持体32には斜線を付し、右円偏光積層体20と左円偏光積層体24との界面を太い線で示す。
なお、以下の説明は、特に断りが無い場合には、図1に示す画像表示システム10の透明スクリーンのみならず、後述する各種の本発明の画像表示システムに用いられる各種の本発明の透明スクリーンも、同様である。 In theimage display system 10, the transparent screen 12 has a configuration in which a right circular polarization laminate 20 and a left circular polarization laminate 24 are laminated. In FIG. 1, in order to clearly show the configuration of the transparent screen 12, the support 32 described later is hatched, and the interface between the right circularly polarized laminate 20 and the left circularly polarized laminate 24 is indicated by a thick line. .
In the following description, unless otherwise specified, not only the transparent screen of theimage display system 10 shown in FIG. 1 but also various transparent screens of the present invention used in various image display systems of the present invention described later. The same is true.
なお、以下の説明は、特に断りが無い場合には、図1に示す画像表示システム10の透明スクリーンのみならず、後述する各種の本発明の画像表示システムに用いられる各種の本発明の透明スクリーンも、同様である。 In the
In the following description, unless otherwise specified, not only the transparent screen of the
また、図示は省略するが、右円偏光積層体20と左円偏光積層体24とは、両者の間に設けられた貼合層によって貼り合わされている。
本発明において、貼合層は、対象となる板状物(シート状物)を貼り合わせられる物であれば、公知の各種の材料からなるものが利用可能である。すなわち、貼合層は、接着剤からなる層でも、粘着剤からなる層でもよい。接着剤とは、貼り合わせる際には流動性を有し、その後、固体になるものである。粘着剤とは、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しないものである。また、貼合層は、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。従って、貼合層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、および、紫外線硬化型樹脂等の、光学装置および光学素子でシート状物の貼り合わせに用いられる公知のものを用いればよい。
あるいは、貼合層で貼り合わせるのではなく、右円偏光積層体20と左円偏光積層体24とを積層して、枠体または治具等で保持して、本発明の透明スクリーンを構成してもよい。 Moreover, although illustration is abbreviate | omitted, the right circular polarization laminatedbody 20 and the left circular polarization laminated body 24 are bonded together by the bonding layer provided between both.
In the present invention, the bonding layer can be made of various known materials as long as the target plate-shaped material (sheet-shaped material) can be bonded. That is, the bonding layer may be a layer made of an adhesive or a layer made of an adhesive. An adhesive has fluidity when bonded and then becomes a solid. The adhesive is a gel-like (rubber-like) soft solid when pasted, and the gel-like state does not change thereafter. Moreover, the layer which consists of a material with the characteristic of both an adhesive agent and an adhesive may be sufficient as a bonding layer. Therefore, the bonding layer is a known material used for bonding sheet-like materials in optical devices and optical elements, such as optical transparent adhesive (OCA (Optical Clear Adhesive)), optical transparent double-sided tape, and ultraviolet curable resin. What is necessary is just to use.
Alternatively, the right circularly polarizinglaminate 20 and the left circularly polarizing laminate 24 are laminated and held by a frame or a jig instead of being bonded together by the bonding layer to constitute the transparent screen of the present invention. May be.
本発明において、貼合層は、対象となる板状物(シート状物)を貼り合わせられる物であれば、公知の各種の材料からなるものが利用可能である。すなわち、貼合層は、接着剤からなる層でも、粘着剤からなる層でもよい。接着剤とは、貼り合わせる際には流動性を有し、その後、固体になるものである。粘着剤とは、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しないものである。また、貼合層は、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。従って、貼合層は、光学透明接着剤(OCA(Optical Clear Adhesive))、光学透明両面テープ、および、紫外線硬化型樹脂等の、光学装置および光学素子でシート状物の貼り合わせに用いられる公知のものを用いればよい。
あるいは、貼合層で貼り合わせるのではなく、右円偏光積層体20と左円偏光積層体24とを積層して、枠体または治具等で保持して、本発明の透明スクリーンを構成してもよい。 Moreover, although illustration is abbreviate | omitted, the right circular polarization laminated
In the present invention, the bonding layer can be made of various known materials as long as the target plate-shaped material (sheet-shaped material) can be bonded. That is, the bonding layer may be a layer made of an adhesive or a layer made of an adhesive. An adhesive has fluidity when bonded and then becomes a solid. The adhesive is a gel-like (rubber-like) soft solid when pasted, and the gel-like state does not change thereafter. Moreover, the layer which consists of a material with the characteristic of both an adhesive agent and an adhesive may be sufficient as a bonding layer. Therefore, the bonding layer is a known material used for bonding sheet-like materials in optical devices and optical elements, such as optical transparent adhesive (OCA (Optical Clear Adhesive)), optical transparent double-sided tape, and ultraviolet curable resin. What is necessary is just to use.
Alternatively, the right circularly polarizing
透明スクリーン12において、右円偏光積層体20は、3枚の右円偏光ドットフィルム30Rを積層してなるものである。
右円偏光ドットフィルム30Rは、支持体32と、支持体32の一方の表面に二次元的に配列される右円偏光反射ドット34Rと、右円偏光反射ドット34Rを包埋して支持体32に積層されるオーバーコート層36と、を有する。
一方、左円偏光積層体24は、3枚の左円偏光ドットフィルム30Lを積層してなるものである。
左円偏光ドットフィルム30Lは、支持体32と、支持体32の一方の表面に二次元的に配列される左円偏光反射ドット34Lと、左円偏光反射ドット34Lを包埋して支持体32に積層されるオーバーコート層36と、を有する。 In thetransparent screen 12, the right circularly polarized laminate 20 is formed by laminating three right circularly polarized dot films 30R.
The right circularly polarizedlight dot film 30R embeds the support 32, the right circularly polarized light reflective dot 34R that is two-dimensionally arranged on one surface of the support 32, and the right circularly polarized light reflective dot 34R. And an overcoat layer 36 laminated on the substrate.
On the other hand, the left circularly polarizedlaminate 24 is formed by laminating three left circularly polarized dot films 30L.
The left circularly polarizedlight dot film 30L embeds the support 32, the left circularly polarized light reflective dot 34L that is two-dimensionally arranged on one surface of the support 32, and the left circularly polarized light reflective dot 34L. And an overcoat layer 36 laminated on the substrate.
右円偏光ドットフィルム30Rは、支持体32と、支持体32の一方の表面に二次元的に配列される右円偏光反射ドット34Rと、右円偏光反射ドット34Rを包埋して支持体32に積層されるオーバーコート層36と、を有する。
一方、左円偏光積層体24は、3枚の左円偏光ドットフィルム30Lを積層してなるものである。
左円偏光ドットフィルム30Lは、支持体32と、支持体32の一方の表面に二次元的に配列される左円偏光反射ドット34Lと、左円偏光反射ドット34Lを包埋して支持体32に積層されるオーバーコート層36と、を有する。 In the
The right circularly polarized
On the other hand, the left circularly polarized
The left circularly polarized
以下、右円偏光ドットフィルム30Rおよび左円偏光ドットフィルム30Lの構成部材を説明する。
なお、以下の説明では、右円偏光ドットフィルム30Rと左円偏光ドットフィルム30Lとを区別する必要が無い場合には、両者をまとめて『ドットフィルム』とも言う。
また、以下の説明では、右円偏光反射ドット34Rと左円偏光反射ドット34Lとを区別する必要がない場合には、両者をまとめて『反射ドット』とも言う。 Hereinafter, components of the right circularly polarizeddot film 30R and the left circularly polarized dot film 30L will be described.
In the following description, when there is no need to distinguish between the right circularly polarizeddot film 30R and the left circularly polarized dot film 30L, both are collectively referred to as “dot film”.
In the following description, when there is no need to distinguish between the right circularly polarizedlight reflecting dot 34R and the left circularly polarized light reflecting dot 34L, they are collectively referred to as “reflective dots”.
なお、以下の説明では、右円偏光ドットフィルム30Rと左円偏光ドットフィルム30Lとを区別する必要が無い場合には、両者をまとめて『ドットフィルム』とも言う。
また、以下の説明では、右円偏光反射ドット34Rと左円偏光反射ドット34Lとを区別する必要がない場合には、両者をまとめて『反射ドット』とも言う。 Hereinafter, components of the right circularly polarized
In the following description, when there is no need to distinguish between the right circularly polarized
In the following description, when there is no need to distinguish between the right circularly polarized
<支持体>
ドットフィルムの支持体32は、いずれも、後述するコレステリック液晶相を固定してなるドットである反射ドットを支持するものである。 <Support>
Each of the dot film supports 32 supports reflective dots which are dots formed by fixing a cholesteric liquid crystal phase to be described later.
ドットフィルムの支持体32は、いずれも、後述するコレステリック液晶相を固定してなるドットである反射ドットを支持するものである。 <Support>
Each of the dot film supports 32 supports reflective dots which are dots formed by fixing a cholesteric liquid crystal phase to be described later.
支持体32は、反射ドットが反射する光の波長において、光の反射率が低いのが好ましく、反射ドットが反射する光の波長において光を反射する材料を含んでいないのが好ましい。
また、支持体32は可視光領域において、透明であるのが好ましい。また、支持体32は、着色していてもよいが、着色していないか、着色が少ないのが好ましい。さらに支持体32は屈折率が1.2~2.0程度であるのが好ましく、1.4~1.8程度であるのがより好ましい。
なお、本明細書において透明というとき、具体的には波長380~780nmの非偏光透過率(全方位透過率)が50%以上であればよく、70%以上であるのが好ましく、85%以上であるのがより好ましい。 Thesupport 32 preferably has a low light reflectance at the wavelength of light reflected by the reflective dots, and preferably does not include a material that reflects light at the wavelength of light reflected by the reflective dots.
Thesupport 32 is preferably transparent in the visible light region. Further, the support 32 may be colored, but is preferably not colored or less colored. Further, the support 32 preferably has a refractive index of about 1.2 to 2.0, more preferably about 1.4 to 1.8.
In the present specification, when it is transparent, specifically, the non-polarized light transmittance (omnidirectional transmittance) at a wavelength of 380 to 780 nm may be 50% or more, preferably 70% or more, and preferably 85% or more. It is more preferable that
また、支持体32は可視光領域において、透明であるのが好ましい。また、支持体32は、着色していてもよいが、着色していないか、着色が少ないのが好ましい。さらに支持体32は屈折率が1.2~2.0程度であるのが好ましく、1.4~1.8程度であるのがより好ましい。
なお、本明細書において透明というとき、具体的には波長380~780nmの非偏光透過率(全方位透過率)が50%以上であればよく、70%以上であるのが好ましく、85%以上であるのがより好ましい。 The
The
In the present specification, when it is transparent, specifically, the non-polarized light transmittance (omnidirectional transmittance) at a wavelength of 380 to 780 nm may be 50% or more, preferably 70% or more, and preferably 85% or more. It is more preferable that
また、支持体32のヘイズ値は、30%以下が好ましく、0.1~25%がより好ましく、0.1~10%がさらに好ましい。さらに、AG(アンチグレア)支持体のようにヘイズの高い支持体32を用いることで、透明性を悪化させ、正面輝度および視野角特性を良化させるような調節も可能となる。
支持体32の厚さは、用途に応じて選択すればよく、特に限定されないが、5~1000μm程度であればよく、好ましくは10~250μmであり、より好ましくは15~150μmである。 The haze value of thesupport 32 is preferably 30% or less, more preferably 0.1 to 25%, and further preferably 0.1 to 10%. Further, by using the support 32 having a high haze like an AG (anti-glare) support, it is possible to make adjustments that deteriorate the transparency and improve the front luminance and viewing angle characteristics.
The thickness of thesupport 32 may be selected according to the use and is not particularly limited, but may be about 5 to 1000 μm, preferably 10 to 250 μm, and more preferably 15 to 150 μm.
支持体32の厚さは、用途に応じて選択すればよく、特に限定されないが、5~1000μm程度であればよく、好ましくは10~250μmであり、より好ましくは15~150μmである。 The haze value of the
The thickness of the
支持体32は、Re(λ)およびRth(λ)が低い方が好ましい。
具体的には、支持体32は、Re(550)が0~20nmであるのが好ましく、0~10nmであるのがより好ましい。また、支持体32は、Rth(550)が0~50nmであるのが好ましく、0~40nmであるのがより好ましい。 Thesupport 32 preferably has a low Re (λ) and Rth (λ).
Specifically, thesupport 32 preferably has Re (550) of 0 to 20 nm, and more preferably 0 to 10 nm. In addition, the support 32 preferably has Rth (550) of 0 to 50 nm, more preferably 0 to 40 nm.
具体的には、支持体32は、Re(550)が0~20nmであるのが好ましく、0~10nmであるのがより好ましい。また、支持体32は、Rth(550)が0~50nmであるのが好ましく、0~40nmであるのがより好ましい。 The
Specifically, the
支持体32は単層であっても、多層であってもよい。単層である場合の支持体32としては、ガラス、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリ塩化ビニル、アクリル、ポリオレフィン等からなる支持体が挙げられる。多層である場合の支持体32の例としては、前述の単層の支持体のいずれかなどを基板として含み、この基板の表面に他の層を設けたものなどが挙げられる。
The support 32 may be a single layer or multiple layers. Examples of the support 32 in the case of a single layer include a support made of glass, triacetyl cellulose (TAC), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like. As an example of the support body 32 in the case of a multilayer structure, a support body including any of the above-described single-layer support bodies as a substrate and another layer provided on the surface of the substrate can be cited.
なお、支持体32と後述する反射ドットとの間には、下地層を設けてもよい。下地層は樹脂層であるのが好ましく、透明樹脂層であるのがより好ましい。下地層の例としては、反射ドットを形成する際の反射ドットの形状を調節するための層、支持体32と反射ドットとの接着特性を改善するための層、反射ドット形成の際の重合性液晶化合物の配向を調節するための配向膜などが挙げられる。
また、下地層は、反射ドットが反射する光の波長において、光の反射率が低いのが好ましく、反射ドットが反射する光の波長において光を反射する材料を含んでいないのが好ましい。また、下地層は透明であるのが好ましい。さらに下地層は屈折率が1.2~2.0程度であるのが好ましく、1.4~1.8程度であるのがより好ましい。下地層は、支持体表面に直接塗布された重合性化合物を含む組成物の硬化により得られた樹脂を含む層であることも好ましい。重合性化合物の例としては、(メタ)アクリレートモノマー、ウレタンモノマーなどの非液晶性の化合物が挙げられる。
下地層の厚さは、特に限定されないが、0.01~50μmであるのが好ましく、0.05~20μmであるのがより好ましい。 In addition, you may provide a base layer between thesupport body 32 and the reflective dot mentioned later. The underlayer is preferably a resin layer, and more preferably a transparent resin layer. Examples of the underlayer include a layer for adjusting the shape of the reflective dots when forming the reflective dots, a layer for improving the adhesion characteristics between the support 32 and the reflective dots, and the polymerizability when forming the reflective dots. Examples thereof include an alignment film for adjusting the alignment of the liquid crystal compound.
Further, the base layer preferably has a low light reflectance at the wavelength of light reflected by the reflective dots, and preferably does not include a material that reflects light at the wavelength of light reflected by the reflective dots. The underlayer is preferably transparent. Further, the base layer preferably has a refractive index of about 1.2 to 2.0, more preferably about 1.4 to 1.8. The underlayer is also preferably a layer containing a resin obtained by curing a composition containing a polymerizable compound applied directly to the support surface. Examples of the polymerizable compound include non-liquid crystalline compounds such as (meth) acrylate monomers and urethane monomers.
The thickness of the underlayer is not particularly limited, but is preferably 0.01 to 50 μm, and more preferably 0.05 to 20 μm.
また、下地層は、反射ドットが反射する光の波長において、光の反射率が低いのが好ましく、反射ドットが反射する光の波長において光を反射する材料を含んでいないのが好ましい。また、下地層は透明であるのが好ましい。さらに下地層は屈折率が1.2~2.0程度であるのが好ましく、1.4~1.8程度であるのがより好ましい。下地層は、支持体表面に直接塗布された重合性化合物を含む組成物の硬化により得られた樹脂を含む層であることも好ましい。重合性化合物の例としては、(メタ)アクリレートモノマー、ウレタンモノマーなどの非液晶性の化合物が挙げられる。
下地層の厚さは、特に限定されないが、0.01~50μmであるのが好ましく、0.05~20μmであるのがより好ましい。 In addition, you may provide a base layer between the
Further, the base layer preferably has a low light reflectance at the wavelength of light reflected by the reflective dots, and preferably does not include a material that reflects light at the wavelength of light reflected by the reflective dots. The underlayer is preferably transparent. Further, the base layer preferably has a refractive index of about 1.2 to 2.0, more preferably about 1.4 to 1.8. The underlayer is also preferably a layer containing a resin obtained by curing a composition containing a polymerizable compound applied directly to the support surface. Examples of the polymerizable compound include non-liquid crystalline compounds such as (meth) acrylate monomers and urethane monomers.
The thickness of the underlayer is not particularly limited, but is preferably 0.01 to 50 μm, and more preferably 0.05 to 20 μm.
<反射ドット>
前述のように、反射ドットは、コレステリック液晶相を固定してなるドットである。
右円偏光積層体20において、右円偏光ドットフィルム30Rに二次元的に配列される右円偏光反射ドット34Rは、緑色の右円偏光を反射して、それ以外の光を透過するドットである。
他方、左円偏光積層体24において、左円偏光ドットフィルム30Lに二次元的に配列される左円偏光反射ドット34Lは、緑色の左円偏光を反射して、それ以外の光を透過するドットである。 <Reflective dots>
As described above, the reflective dot is a dot formed by fixing the cholesteric liquid crystal phase.
In the right circularlypolarized light laminate 20, the right circularly polarized light reflecting dots 34R that are two-dimensionally arranged on the right circularly polarized dot film 30R are dots that reflect green right circularly polarized light and transmit other light. .
On the other hand, in the left circularly polarizedlaminate 24, the left circularly polarized light reflecting dot 34L arranged two-dimensionally on the left circularly polarized dot film 30L reflects the green left circularly polarized light and transmits the other light. It is.
前述のように、反射ドットは、コレステリック液晶相を固定してなるドットである。
右円偏光積層体20において、右円偏光ドットフィルム30Rに二次元的に配列される右円偏光反射ドット34Rは、緑色の右円偏光を反射して、それ以外の光を透過するドットである。
他方、左円偏光積層体24において、左円偏光ドットフィルム30Lに二次元的に配列される左円偏光反射ドット34Lは、緑色の左円偏光を反射して、それ以外の光を透過するドットである。 <Reflective dots>
As described above, the reflective dot is a dot formed by fixing the cholesteric liquid crystal phase.
In the right circularly
On the other hand, in the left circularly polarized
すなわち、右円偏光積層体20を構成する3枚の右円偏光ドットフィルム30Rは、配列される右円偏光反射ドット34Rの選択反射中心波長および反射する円偏光の回転方向が、互いに等しい。また、左円偏光積層体24を構成する3枚の左円偏光ドットフィルム30Lは、配列される左円偏光反射ドット34Lの選択反射中心波長および反射する円偏光の回転方向が、互いに等しい。
さらに、右円偏光ドットフィルム30Rの右円偏光反射ドット34Rと、左円偏光ドットフィルム30Lの左円偏光反射ドット34Lとは、選択反射中心波長が等しく、反射する光の円偏光の回転方向が異なる。 That is, in the three right circularpolarization dot films 30R constituting the right circular polarization laminate 20, the selective reflection center wavelength of the arranged right circular polarization reflection dots 34R and the rotation direction of the reflected circular polarization are equal to each other. Further, in the three left circularly polarized dot films 30L constituting the left circularly polarized laminate 24, the selective reflection center wavelength of the arranged left circularly polarized reflective dots 34L and the rotation direction of the reflected circularly polarized light are equal to each other.
Further, the right circularly polarizedlight reflecting dot 34R of the right circularly polarized light dot film 30R and the left circularly polarized light reflecting dot 34L of the left circularly polarized light dot film 30L have the same selective reflection center wavelength, and the rotational direction of the circularly polarized light of the reflected light is the same. Different.
さらに、右円偏光ドットフィルム30Rの右円偏光反射ドット34Rと、左円偏光ドットフィルム30Lの左円偏光反射ドット34Lとは、選択反射中心波長が等しく、反射する光の円偏光の回転方向が異なる。 That is, in the three right circular
Further, the right circularly polarized
反射ドットは、いずれも、コレステリック液晶相を固定してなるドットである。すなわち、反射ドットは、コレステリック構造を有する液晶材料からなるドットである。
ここで、反射ドットとなるコレステリック液晶相は、走査型電子顕微鏡にて観測される反射ドットの断面において、明部と暗部との縞模様を与え、反射ドットの端部から中心に向かう方向で最大高さまで連続的に増加する高さを有する部位を含み、この部位において、支持体32と反対側の反射ドットの表面から1本目の暗部が成す線の法線と反射ドットの表面との成す角度は70~90°の範囲であるのが好ましい。
この点については後に詳述する。 Each reflective dot is a dot formed by fixing a cholesteric liquid crystal phase. That is, the reflective dot is a dot made of a liquid crystal material having a cholesteric structure.
Here, the cholesteric liquid crystal phase that becomes a reflective dot gives a stripe pattern of a bright part and a dark part in the cross section of the reflective dot observed with a scanning electron microscope, and is maximum in the direction from the end of the reflective dot toward the center. An angle formed between the normal of the line formed by the first dark part from the surface of the reflective dot opposite to thesupport 32 and the surface of the reflective dot. Is preferably in the range of 70 to 90 °.
This point will be described in detail later.
ここで、反射ドットとなるコレステリック液晶相は、走査型電子顕微鏡にて観測される反射ドットの断面において、明部と暗部との縞模様を与え、反射ドットの端部から中心に向かう方向で最大高さまで連続的に増加する高さを有する部位を含み、この部位において、支持体32と反対側の反射ドットの表面から1本目の暗部が成す線の法線と反射ドットの表面との成す角度は70~90°の範囲であるのが好ましい。
この点については後に詳述する。 Each reflective dot is a dot formed by fixing a cholesteric liquid crystal phase. That is, the reflective dot is a dot made of a liquid crystal material having a cholesteric structure.
Here, the cholesteric liquid crystal phase that becomes a reflective dot gives a stripe pattern of a bright part and a dark part in the cross section of the reflective dot observed with a scanning electron microscope, and is maximum in the direction from the end of the reflective dot toward the center. An angle formed between the normal of the line formed by the first dark part from the surface of the reflective dot opposite to the
This point will be described in detail later.
各ドットフィルムにおいて、反射ドットは、二次元的に配列されていれば、規則的に配列されても、不規則に配列されてもよい。
なお、反射ドットが規則的に配列される場合、右円偏光積層体20および左円偏光積層体24を構成する各ドットフィルムにおける反射ドットの配列パターンは、同じでも互いに異なってもよい。ここで、右円偏光積層体20および左円偏光積層体24を構成する各ドットフィルムにおける反射ドットの配列パターンが同じである場合、各ドットフィルムにおける反射ドットの面方向の位置は、全てのドットフィルムで同じ位置であっても、2以上のドットフィルムで互いにズレた位置であってもよい。
また、各ドットフィルムにおける反射ドットの配列密度は、全面的に均一でも、配列密度が異なる領域を有してもよい。 In each dot film, the reflective dots may be arranged regularly or irregularly as long as they are arranged two-dimensionally.
When the reflective dots are regularly arranged, the arrangement pattern of the reflective dots in each dot film constituting the right circularlypolarized laminate 20 and the left circularly polarized laminate 24 may be the same or different from each other. Here, when the arrangement pattern of the reflective dots in the respective dot films constituting the right circularly polarized laminate 20 and the left circularly polarized laminate 24 is the same, the positions in the surface direction of the reflective dots in each dot film are all dots. Even if it is the same position on the film, it may be a position shifted by two or more dot films.
Moreover, the arrangement density of the reflective dots in each dot film may be uniform over the entire surface, or may have regions with different arrangement densities.
なお、反射ドットが規則的に配列される場合、右円偏光積層体20および左円偏光積層体24を構成する各ドットフィルムにおける反射ドットの配列パターンは、同じでも互いに異なってもよい。ここで、右円偏光積層体20および左円偏光積層体24を構成する各ドットフィルムにおける反射ドットの配列パターンが同じである場合、各ドットフィルムにおける反射ドットの面方向の位置は、全てのドットフィルムで同じ位置であっても、2以上のドットフィルムで互いにズレた位置であってもよい。
また、各ドットフィルムにおける反射ドットの配列密度は、全面的に均一でも、配列密度が異なる領域を有してもよい。 In each dot film, the reflective dots may be arranged regularly or irregularly as long as they are arranged two-dimensionally.
When the reflective dots are regularly arranged, the arrangement pattern of the reflective dots in each dot film constituting the right circularly
Moreover, the arrangement density of the reflective dots in each dot film may be uniform over the entire surface, or may have regions with different arrangement densities.
ドットフィルムにおける反射ドットの配置密度には特に限定はなく、透明スクリーンに求められる拡散性(視野角)、および、透明性等に応じて適宜設定すればよい。
ホットスポットが抑制できる、広い視野角が得られる、高い透明性を得られる等の観点と、製造時に反射ドットの合一または欠損などの欠陥なく製造できる適切な密度等の観点から、支持体32の主面の法線方向から見た際の、支持体32に対する反射ドットの面積率は、1~90.6%であるのが好ましく、2~50%であるのがより好ましく、4~30%であるのがさらに好ましい。
なお、反射ドットの面積率は、レーザー顕微鏡、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)などの顕微鏡で得られる画像において、1×1mmの大きさの領域で面積率を測定し、例えば5箇所の平均値をドットの面積率とすればよい。 The arrangement density of the reflective dots in the dot film is not particularly limited, and may be appropriately set according to the diffusibility (viewing angle) required for the transparent screen, transparency, and the like.
From the viewpoints of suppressing hot spots, obtaining a wide viewing angle, obtaining high transparency, and appropriate density that can be produced without defects such as coalescence or defect of reflective dots during production, thesupport 32 is provided. The area ratio of the reflective dots to the support 32 when viewed from the normal direction of the main surface is preferably 1 to 90.6%, more preferably 2 to 50%, and 4 to 30 % Is more preferable.
Note that the area ratio of the reflective dots was measured in a 1 × 1 mm area in an image obtained with a microscope such as a laser microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). For example, an average value of five locations may be used as the dot area ratio.
ホットスポットが抑制できる、広い視野角が得られる、高い透明性を得られる等の観点と、製造時に反射ドットの合一または欠損などの欠陥なく製造できる適切な密度等の観点から、支持体32の主面の法線方向から見た際の、支持体32に対する反射ドットの面積率は、1~90.6%であるのが好ましく、2~50%であるのがより好ましく、4~30%であるのがさらに好ましい。
なお、反射ドットの面積率は、レーザー顕微鏡、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)などの顕微鏡で得られる画像において、1×1mmの大きさの領域で面積率を測定し、例えば5箇所の平均値をドットの面積率とすればよい。 The arrangement density of the reflective dots in the dot film is not particularly limited, and may be appropriately set according to the diffusibility (viewing angle) required for the transparent screen, transparency, and the like.
From the viewpoints of suppressing hot spots, obtaining a wide viewing angle, obtaining high transparency, and appropriate density that can be produced without defects such as coalescence or defect of reflective dots during production, the
Note that the area ratio of the reflective dots was measured in a 1 × 1 mm area in an image obtained with a microscope such as a laser microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). For example, an average value of five locations may be used as the dot area ratio.
同様に、ホットスポットを抑制できる点、広い視野角が得られる点、および、高い透明性が得られる点で、隣接する反射ドットのピッチは、20~500μmが好ましく、20~300μmがより好ましく、20~150μmがさらに好ましい。反射ドットのピッチとは、反射ドットの中心と中心との距離である。
Similarly, the pitch of adjacent reflective dots is preferably 20 to 500 μm, more preferably 20 to 300 μm, in that hot spots can be suppressed, a wide viewing angle can be obtained, and high transparency can be obtained. More preferably, it is 20 to 150 μm. The pitch of the reflective dots is the distance between the centers of the reflective dots.
ドットフィルムにおいて、反射ドットの直径および/または形状はすべて同一であってもよく、互いに異なるものが含まれていてもよいが、同一であるのが好ましい。例えば、同一の直径および形状のドット形成を意図して、同条件で形成された反射ドットであるのが好ましい。
In the dot film, the diameters and / or shapes of the reflective dots may all be the same or may include different ones, but are preferably the same. For example, reflecting dots formed under the same conditions with the intention of forming dots having the same diameter and shape are preferable.
本明細書において、反射ドットについて説明されるとき、その説明は、本発明の透明スクリーン中のすべての反射ドットについて適用できる。また、説明される反射ドットを含む本発明の透明スクリーンが、本技術分野で許容される誤差またはエラーなどにより同説明に該当しないドットを含むことを許容するものとする。
In this specification, when a reflective dot is described, the description is applicable to all the reflective dots in the transparent screen of the present invention. In addition, it is allowed that the transparent screen of the present invention including the reflection dots described includes dots not corresponding to the description due to an error or an error allowed in this technical field.
反射ドット(右円偏光反射ドット34Rおよび左円偏光反射ドット34L)は、支持体32の主面の法線方向から見たとき円形であるのが好ましく、例えば、半球状(略半球状)、球欠状(略球欠状)、球台形状、円錐状、円錐台状等の形状を有するドットである。以下の説明では、支持体32の主面の法線方向を『支持体法線方向』とも言う。
円形は正円でなくてもよく、略円形であればよい。反射ドットについて中心というときは、この円形の中心または重心を意味する。反射ドットは、平均的形状が円形であればよく、一部に円形に該当しない形状の反射ドットが含まれていてもよい。 The reflective dots (the right circularly polarizedreflective dot 34R and the left circularly polarized reflective dot 34L) are preferably circular when viewed from the normal direction of the main surface of the support 32, for example, hemispherical (substantially hemispherical), It is a dot having a spherical shape (substantially spherical shape), a truncated cone shape, a conical shape, a truncated cone shape, or the like. In the following description, the normal direction of the main surface of the support 32 is also referred to as “support normal direction”.
The circular shape does not have to be a perfect circle and may be a substantially circular shape. The center of the reflective dot means the center or the center of gravity of the circle. The reflective dots only need to have a circular average shape, and some of the reflective dots may have a shape that does not correspond to a circle.
円形は正円でなくてもよく、略円形であればよい。反射ドットについて中心というときは、この円形の中心または重心を意味する。反射ドットは、平均的形状が円形であればよく、一部に円形に該当しない形状の反射ドットが含まれていてもよい。 The reflective dots (the right circularly polarized
The circular shape does not have to be a perfect circle and may be a substantially circular shape. The center of the reflective dot means the center or the center of gravity of the circle. The reflective dots only need to have a circular average shape, and some of the reflective dots may have a shape that does not correspond to a circle.
反射ドットは支持体法線方向から見たときの平均直径が10~200μmであるのが好ましく、20~120μmであるのがより好ましい。
反射ドットの直径は、レーザー顕微鏡、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)などの顕微鏡で得られる画像において、端部(反射ドットのへりまたは境界部)から端部までの直線であって、反射ドットの中心を通る直線の長さを測定することにより得ることができる。なお、反射ドットの数、反射ドット間距離もレーザー顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡画像で確認できる。
支持体法線方向から見た際の反射ドットの形状が円形以外の場合には、この反射ドットの投影面積と等しい円面積を持つ円の直径(円相当径)を反射ドットの直径とする。
上記平均直径は、無作為に選択した10個の反射ドットの直径を上記方法により測定し、それらを算術平均して求める。 The reflective dots preferably have an average diameter of 10 to 200 μm, more preferably 20 to 120 μm, when viewed from the normal direction of the support.
The diameter of the reflective dot is a straight line from the edge (edge or boundary of the reflective dot) to the edge in an image obtained with a microscope such as a laser microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). Thus, it can be obtained by measuring the length of a straight line passing through the center of the reflective dot. The number of reflection dots and the distance between the reflection dots can also be confirmed by a microscope image such as a laser microscope, a scanning electron microscope, or a transmission electron microscope.
When the shape of the reflective dot when viewed from the normal direction of the support is other than a circle, the diameter of the circle having the same circular area as the projected area of the reflective dot (equivalent circle diameter) is defined as the diameter of the reflective dot.
The average diameter is obtained by measuring the diameter of 10 randomly selected reflective dots by the above method and arithmetically averaging them.
反射ドットの直径は、レーザー顕微鏡、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)などの顕微鏡で得られる画像において、端部(反射ドットのへりまたは境界部)から端部までの直線であって、反射ドットの中心を通る直線の長さを測定することにより得ることができる。なお、反射ドットの数、反射ドット間距離もレーザー顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡などの顕微鏡画像で確認できる。
支持体法線方向から見た際の反射ドットの形状が円形以外の場合には、この反射ドットの投影面積と等しい円面積を持つ円の直径(円相当径)を反射ドットの直径とする。
上記平均直径は、無作為に選択した10個の反射ドットの直径を上記方法により測定し、それらを算術平均して求める。 The reflective dots preferably have an average diameter of 10 to 200 μm, more preferably 20 to 120 μm, when viewed from the normal direction of the support.
The diameter of the reflective dot is a straight line from the edge (edge or boundary of the reflective dot) to the edge in an image obtained with a microscope such as a laser microscope, a scanning electron microscope (SEM), or a transmission electron microscope (TEM). Thus, it can be obtained by measuring the length of a straight line passing through the center of the reflective dot. The number of reflection dots and the distance between the reflection dots can also be confirmed by a microscope image such as a laser microscope, a scanning electron microscope, or a transmission electron microscope.
When the shape of the reflective dot when viewed from the normal direction of the support is other than a circle, the diameter of the circle having the same circular area as the projected area of the reflective dot (equivalent circle diameter) is defined as the diameter of the reflective dot.
The average diameter is obtained by measuring the diameter of 10 randomly selected reflective dots by the above method and arithmetically averaging them.
反射ドットの高さは、レーザー顕微鏡による焦点位置スキャン、またはSEMもしくはTEMなどの顕微鏡を用いて得られるドットの断面図から確認することができる。
反射ドットの平均最大高さは、1~40μmが好ましく、3~30μmがより好ましく、5~20μmがさらに好ましい。 The height of the reflective dot can be confirmed from a cross-sectional view of the dot obtained using a focus position scan with a laser microscope or a microscope such as SEM or TEM.
The average maximum height of the reflective dots is preferably 1 to 40 μm, more preferably 3 to 30 μm, and even more preferably 5 to 20 μm.
反射ドットの平均最大高さは、1~40μmが好ましく、3~30μmがより好ましく、5~20μmがさらに好ましい。 The height of the reflective dot can be confirmed from a cross-sectional view of the dot obtained using a focus position scan with a laser microscope or a microscope such as SEM or TEM.
The average maximum height of the reflective dots is preferably 1 to 40 μm, more preferably 3 to 30 μm, and even more preferably 5 to 20 μm.
<<反射ドットの光学的性質>>
反射ドットは波長選択反射性を有する。前述のように、右円偏光反射ドット34Rおよび左円偏光反射ドット34Lは緑色の円偏光を反射する。
本発明の透明スクリーン12は、基本的に、単色(図示例は緑色)のプロジェクター14から出射される映像光による画像と、透明スクリーン12の裏面側の背景とを重畳して観察できるスクリーンとして使用されるので、反射ドットが選択反射性を示す光は、可視光であるのが好ましい。
あるいは、反射ドットの反射波長は、プロジェクター14から出射される光の波長に従って選択されるのも好ましい。 << Optical properties of reflective dots >>
The reflective dot has wavelength selective reflectivity. As described above, the right circularly polarizedlight reflecting dot 34R and the left circularly polarized light reflecting dot 34L reflect green circularly polarized light.
Thetransparent screen 12 of the present invention is basically used as a screen that can be observed by superimposing an image of image light emitted from a single-color (green in the illustrated example) projector 14 and a background on the back side of the transparent screen 12. Therefore, it is preferable that the light whose reflective dots exhibit selective reflectivity is visible light.
Alternatively, the reflection wavelength of the reflection dot is preferably selected according to the wavelength of light emitted from theprojector 14.
反射ドットは波長選択反射性を有する。前述のように、右円偏光反射ドット34Rおよび左円偏光反射ドット34Lは緑色の円偏光を反射する。
本発明の透明スクリーン12は、基本的に、単色(図示例は緑色)のプロジェクター14から出射される映像光による画像と、透明スクリーン12の裏面側の背景とを重畳して観察できるスクリーンとして使用されるので、反射ドットが選択反射性を示す光は、可視光であるのが好ましい。
あるいは、反射ドットの反射波長は、プロジェクター14から出射される光の波長に従って選択されるのも好ましい。 << Optical properties of reflective dots >>
The reflective dot has wavelength selective reflectivity. As described above, the right circularly polarized
The
Alternatively, the reflection wavelength of the reflection dot is preferably selected according to the wavelength of light emitted from the
前述のように、反射ドットは、コレステリック液晶相を固定してなるドットである。
反射ドットが選択反射性を示す光の波長は、反射ドットを形成するコレステリック液晶相の螺旋ピッチを調節することにより調節(選択)できる。
また、本発明の透明スクリーンにおいて反射ドットを形成するコレステリック液晶相は、後述するように螺旋軸方向が制御されている。そのため、反射ドットに入射した光は、正反射だけでなく、種々の方向に反射される。 As described above, the reflective dot is a dot formed by fixing the cholesteric liquid crystal phase.
The wavelength of light at which the reflective dot exhibits selective reflectivity can be adjusted (selected) by adjusting the helical pitch of the cholesteric liquid crystal phase forming the reflective dot.
Further, the spiral axis direction of the cholesteric liquid crystal phase forming the reflective dots in the transparent screen of the present invention is controlled as will be described later. Therefore, the light incident on the reflective dots is reflected not only in regular reflection but also in various directions.
反射ドットが選択反射性を示す光の波長は、反射ドットを形成するコレステリック液晶相の螺旋ピッチを調節することにより調節(選択)できる。
また、本発明の透明スクリーンにおいて反射ドットを形成するコレステリック液晶相は、後述するように螺旋軸方向が制御されている。そのため、反射ドットに入射した光は、正反射だけでなく、種々の方向に反射される。 As described above, the reflective dot is a dot formed by fixing the cholesteric liquid crystal phase.
The wavelength of light at which the reflective dot exhibits selective reflectivity can be adjusted (selected) by adjusting the helical pitch of the cholesteric liquid crystal phase forming the reflective dot.
Further, the spiral axis direction of the cholesteric liquid crystal phase forming the reflective dots in the transparent screen of the present invention is controlled as will be described later. Therefore, the light incident on the reflective dots is reflected not only in regular reflection but also in various directions.
反射ドットは着色していてもよいが、着色していないか、着色が少ないのが好ましい。これにより、透明スクリーンの透明性を向上できる。
The reflective dots may be colored, but are preferably not colored or less colored. Thereby, the transparency of a transparent screen can be improved.
<<コレステリック液晶相>>
コレステリック液晶相は、特定の波長において選択反射性を示すことが知られている。選択反射の中心波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、選択反射中心波長を調節することができる。従って、図示例においては、緑色の光を反射するように、反射ドットを形成するコレステリック液晶相の螺旋ピッチが調節される。
コレステリック液晶相のピッチは、ドットの形成の際、重合性液晶化合物と共に用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。 << Cholesteric liquid crystal phase >>
It is known that the cholesteric liquid crystal phase exhibits selective reflectivity at a specific wavelength. The central wavelength λ of selective reflection depends on the pitch P (= spiral period) of the helical structure in the cholesteric liquid crystal phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal phase and λ = n × P. Therefore, the selective reflection center wavelength can be adjusted by adjusting the pitch of the spiral structure. Accordingly, in the illustrated example, the helical pitch of the cholesteric liquid crystal phase forming the reflective dots is adjusted so as to reflect green light.
Since the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent when forming dots, a desired pitch can be obtained by adjusting these.
Regarding the pitch adjustment, Fujifilm Research Report No. 50 (2005) p. There is a detailed description in 60-63. For the measurement of spiral sense and pitch, it is possible to use the method described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, p. it can.
コレステリック液晶相は、特定の波長において選択反射性を示すことが知られている。選択反射の中心波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、選択反射中心波長を調節することができる。従って、図示例においては、緑色の光を反射するように、反射ドットを形成するコレステリック液晶相の螺旋ピッチが調節される。
コレステリック液晶相のピッチは、ドットの形成の際、重合性液晶化合物と共に用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。 << Cholesteric liquid crystal phase >>
It is known that the cholesteric liquid crystal phase exhibits selective reflectivity at a specific wavelength. The central wavelength λ of selective reflection depends on the pitch P (= spiral period) of the helical structure in the cholesteric liquid crystal phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal phase and λ = n × P. Therefore, the selective reflection center wavelength can be adjusted by adjusting the pitch of the spiral structure. Accordingly, in the illustrated example, the helical pitch of the cholesteric liquid crystal phase forming the reflective dots is adjusted so as to reflect green light.
Since the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent when forming dots, a desired pitch can be obtained by adjusting these.
Regarding the pitch adjustment, Fujifilm Research Report No. 50 (2005) p. There is a detailed description in 60-63. For the measurement of spiral sense and pitch, it is possible to use the method described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, p. it can.
コレステリック液晶相は走査型電子顕微鏡によって観測される反射ドットの断面図において、明部と暗部との縞模様を与える。この明部と暗部の繰り返しの、明部2つおよび暗部2が、螺旋1ピッチに相当する。このことから、ピッチは、SEM断面図から測定することができる。反射ドットにおいては、上記縞模様の各線の法線がコレステリック液晶相の螺旋軸方向となる。
The cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in a sectional view of a reflective dot observed by a scanning electron microscope. The two bright parts and the dark part 2 in the repetition of the bright part and the dark part correspond to one pitch of the spiral. From this, the pitch can be measured from the SEM sectional view. In the reflective dot, the normal line of each line of the striped pattern is the spiral axis direction of the cholesteric liquid crystal phase.
なお、コレステリック液晶相の反射光は円偏光である。すなわち、本発明の透明スクリーン12において、各ドットフィルムの反射ドットは、円偏光を反射する。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相は螺旋の捩れ方向による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
従って、図示例の透明スクリーン12においては、右円偏光ドットフィルム30Rの右円偏光反射ドット34Rは、右捩れのコレステリック液晶相を固定してなるドットであり、左円偏光ドットフィルム30Lの左円偏光反射ドット34Lは、左捩れのコレステリック液晶相を固定してなるドットである。
なお、コレステリック液晶相の旋回の方向は、反射ドット(反射層)を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。 The reflected light of the cholesteric liquid crystal phase is circularly polarized light. That is, in thetransparent screen 12 of the present invention, the reflective dots of each dot film reflect circularly polarized light. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the spiral in the cholesteric liquid crystal phase. The selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
Accordingly, in the illustratedtransparent screen 12, the right circularly polarized reflective dot 34R of the right circularly polarized dot film 30R is a dot formed by fixing a right-twisted cholesteric liquid crystal phase, and the left circularly polarized dot film 30L has a left circle. The polarization reflection dot 34L is a dot formed by fixing a left twisted cholesteric liquid crystal phase.
The direction of rotation of the cholesteric liquid crystal phase can be adjusted depending on the type of liquid crystal compound forming the reflective dots (reflective layer) or the type of chiral agent added.
従って、図示例の透明スクリーン12においては、右円偏光ドットフィルム30Rの右円偏光反射ドット34Rは、右捩れのコレステリック液晶相を固定してなるドットであり、左円偏光ドットフィルム30Lの左円偏光反射ドット34Lは、左捩れのコレステリック液晶相を固定してなるドットである。
なお、コレステリック液晶相の旋回の方向は、反射ドット(反射層)を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。 The reflected light of the cholesteric liquid crystal phase is circularly polarized light. That is, in the
Accordingly, in the illustrated
The direction of rotation of the cholesteric liquid crystal phase can be adjusted depending on the type of liquid crystal compound forming the reflective dots (reflective layer) or the type of chiral agent added.
また、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相のΔnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、反射ドット(ベタ膜)を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。反射波長帯域の半値幅は透明スクリーン12の用途に応じて調節され、例えば50~500nmであればよく、好ましくは100~300nmであればよい。
The half-value width Δλ (nm) of the selective reflection band (circular polarization reflection band) indicating selective reflection depends on Δn of the cholesteric liquid crystal phase and the pitch P of the helix, and follows the relationship of Δλ = Δn × P. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by the type and mixing ratio of the liquid crystal compounds forming the reflective dots (solid film), and the temperature at the time of fixing the orientation. The half-value width of the reflection wavelength band is adjusted according to the application of the transparent screen 12, and may be, for example, 50 to 500 nm, and preferably 100 to 300 nm.
コレステリック液晶相を固定してなる反射ドットは、断面において、明部と暗部との縞模様を与える。このようなコレステリック液晶相を固定してなる反射ドットは、走査型電子顕微鏡で観察される断面図で確認した際、支持体32と反対側の反射ドットの表面から1本目の暗部が成す線の法線と、支持体32と反対側の反射ドットの表面とが成す角度が70~90°の範囲であるのが好ましい。
以下の説明では、『支持体32と反対側の反射ドットの表面』を、単に『反射ドットの表面』とも言う。
図2に反射ドットの断面の概略図を示す。図2では、暗部が成す線を太線で示す。図2に示すように、1本目の暗部が成す線Ld1の法線(破線)と、反射ドットの表面(その接線)とが成す角度θ1が、70~90°であるのが好ましい。 A reflective dot formed by fixing a cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in a cross section. The reflection dot formed by fixing such a cholesteric liquid crystal phase is a line formed by the first dark portion from the surface of the reflection dot opposite to thesupport 32 when confirmed by a cross-sectional view observed with a scanning electron microscope. The angle formed between the normal line and the surface of the reflective dot opposite to the support 32 is preferably in the range of 70 to 90 °.
In the following description, “the surface of the reflective dot opposite to thesupport 32” is also simply referred to as “the surface of the reflective dot”.
FIG. 2 shows a schematic diagram of a cross section of the reflective dot. In FIG. 2, the line formed by the dark part is indicated by a bold line. As shown in FIG. 2, it is preferable that the angle θ 1 formed by the normal line (broken line) of the line Ld 1 formed by the first dark portion and the surface of the reflective dot (its tangent line) is 70 to 90 °.
以下の説明では、『支持体32と反対側の反射ドットの表面』を、単に『反射ドットの表面』とも言う。
図2に反射ドットの断面の概略図を示す。図2では、暗部が成す線を太線で示す。図2に示すように、1本目の暗部が成す線Ld1の法線(破線)と、反射ドットの表面(その接線)とが成す角度θ1が、70~90°であるのが好ましい。 A reflective dot formed by fixing a cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in a cross section. The reflection dot formed by fixing such a cholesteric liquid crystal phase is a line formed by the first dark portion from the surface of the reflection dot opposite to the
In the following description, “the surface of the reflective dot opposite to the
FIG. 2 shows a schematic diagram of a cross section of the reflective dot. In FIG. 2, the line formed by the dark part is indicated by a bold line. As shown in FIG. 2, it is preferable that the angle θ 1 formed by the normal line (broken line) of the line Ld 1 formed by the first dark portion and the surface of the reflective dot (its tangent line) is 70 to 90 °.
ここで、反射ドットの表面の位置を、反射ドットの中心を通る支持体32表面の垂線(一点鎖線)に対する角度α1で表したとき、角度α1が30°の位置および60°の位置において、反射ドットの表面から1本目の暗部が成す線Ld1の法線と反射ドットの表面とが成す角度が70~90°の範囲であるのが好ましく、反射ドットの表面の全ての位置において、反射ドットの表面から1本目の暗部が成す線Ld1の法線と反射ドットの表面とが成す角度が70~90°の範囲であるのがより好ましい。
すなわち、反射ドットは、反射ドットの表面の一部において上記角度を満たすもの、例えば、反射ドットの表面の一部において断続的に上記角度を満たすものでなはく、連続的に上記角度を満たすものであるのが好ましい。なお、断面図において、反射ドットの表面が曲線であるときは、暗部が成す線の法線と反射ドットの表面とが成す角度は、反射ドットの表面の接線と法線とが成す角度を意味する。また、上記角度は鋭角で示されており、法線と反射ドットの表面とが成す角度を0~180°の角度で表すときの、70~110°の範囲を意味する。 Here, when the position of the surface of the reflective dot is expressed by an angle α 1 with respect to the perpendicular (dotted line) of the surface of thesupport 32 passing through the center of the reflective dot, the angle α 1 is at a position of 30 ° and a position of 60 °. The angle between the normal of the line Ld 1 formed by the first dark portion from the surface of the reflective dot and the surface of the reflective dot is preferably in the range of 70 to 90 °, and at all positions on the surface of the reflective dot, More preferably, the angle formed by the normal of the line Ld 1 formed by the first dark portion from the surface of the reflective dot and the surface of the reflective dot is in the range of 70 to 90 °.
That is, the reflective dot does not satisfy the above angle at a part of the surface of the reflective dot, for example, does not intermittently satisfy the above angle at a part of the surface of the reflective dot, but continuously satisfies the above angle. It is preferable. In the sectional view, when the surface of the reflective dot is a curve, the angle formed between the normal line of the dark line and the surface of the reflective dot means the angle formed between the tangent line and the normal line of the reflective dot surface. To do. The angle is shown as an acute angle, which means a range of 70 to 110 ° when the angle formed between the normal line and the surface of the reflective dot is expressed as an angle of 0 to 180 °.
すなわち、反射ドットは、反射ドットの表面の一部において上記角度を満たすもの、例えば、反射ドットの表面の一部において断続的に上記角度を満たすものでなはく、連続的に上記角度を満たすものであるのが好ましい。なお、断面図において、反射ドットの表面が曲線であるときは、暗部が成す線の法線と反射ドットの表面とが成す角度は、反射ドットの表面の接線と法線とが成す角度を意味する。また、上記角度は鋭角で示されており、法線と反射ドットの表面とが成す角度を0~180°の角度で表すときの、70~110°の範囲を意味する。 Here, when the position of the surface of the reflective dot is expressed by an angle α 1 with respect to the perpendicular (dotted line) of the surface of the
That is, the reflective dot does not satisfy the above angle at a part of the surface of the reflective dot, for example, does not intermittently satisfy the above angle at a part of the surface of the reflective dot, but continuously satisfies the above angle. It is preferable. In the sectional view, when the surface of the reflective dot is a curve, the angle formed between the normal line of the dark line and the surface of the reflective dot means the angle formed between the tangent line and the normal line of the reflective dot surface. To do. The angle is shown as an acute angle, which means a range of 70 to 110 ° when the angle formed between the normal line and the surface of the reflective dot is expressed as an angle of 0 to 180 °.
反射ドットは、断面図において、反射ドットの表面から2本目の暗部が成す線Ld2の法線と反射ドットの表面とが成す角度θ2が70~90°の範囲であるのが好ましく、反射ドットの表面から3~4本目までの暗部が成す線が、いずれも、その法線と反射ドットの表面とが成す角度が70~90°の範囲であるのがより好ましく、反射ドットの表面から5~12本目以上の暗部が成す線が、いずれも、その法線と反射ドットとが成す角度が70~90°の範囲であるのがさらに好ましい。
In the cross-sectional view, the reflection dot preferably has an angle θ 2 formed by the normal of the line Ld 2 formed by the second dark portion from the surface of the reflection dot and the surface of the reflection dot in the range of 70 to 90 °. It is more preferable that the angle formed between the normal line and the surface of the reflective dot is in the range of 70 to 90 ° with respect to the line formed by the third to fourth dark portions from the surface of the dot. More preferably, any of the lines formed by the 5th to 12th dark parts is in the range of 70 to 90 ° between the normal line and the reflective dot.
さらに、この暗部が成す線の法線と、反射ドットの表面とが成す角度は、80~90°であるのがより好ましく、85~90°であるのがさらに好ましい。
Furthermore, the angle formed between the normal line of the dark part and the surface of the reflective dot is more preferably 80 to 90 °, and further preferably 85 to 90 °.
このようなSEMによる反射ドットの断面図は、反射ドットの表面において、コレステリック液晶相の螺旋軸が、反射ドットの表面(その接線)と70~90°の範囲の角度を成すことを示している。
このような構造により、反射ドットに入射する光は、支持体32の法線方向に対して角度を有する方向から入射する光を、反射ドットの表面において、コレステリック液晶相の螺旋軸方向と平行に近い角度で入射させることができる。そのため、反射ドットに入射する光を様々な方向に反射させることができる。 Such a cross-sectional view of the reflective dot by SEM shows that on the surface of the reflective dot, the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot (its tangent). .
With such a structure, the light incident on the reflective dot is parallel to the spiral axis direction of the cholesteric liquid crystal phase on the surface of the reflective dot when the light incident from the direction having an angle with respect to the normal direction of thesupport 32 is used. It can be incident at a close angle. Therefore, the light incident on the reflective dots can be reflected in various directions.
このような構造により、反射ドットに入射する光は、支持体32の法線方向に対して角度を有する方向から入射する光を、反射ドットの表面において、コレステリック液晶相の螺旋軸方向と平行に近い角度で入射させることができる。そのため、反射ドットに入射する光を様々な方向に反射させることができる。 Such a cross-sectional view of the reflective dot by SEM shows that on the surface of the reflective dot, the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot (its tangent). .
With such a structure, the light incident on the reflective dot is parallel to the spiral axis direction of the cholesteric liquid crystal phase on the surface of the reflective dot when the light incident from the direction having an angle with respect to the normal direction of the
また、反射ドットはコレステリック液晶相の螺旋軸を基準として、入射光を正反射させる。そのため、図3に概念的に示すように、支持体32の法線方向から入射する入射光Inに対して、反射ドットの中心付近で反射される反射光Irは支持体の法線方向に平行に反射される。一方、反射ドットの中心からずれた位置(コレステリック液晶相の螺旋軸が支持体32の法線方向に対して傾いている位置)では、反射光Irは支持体32の法線方向とは異なる方向に反射される。したがって、反射ドットに入射する光を様々な方向に反射させることができ、広視野角化することができる。また、反射ドットを透過する光Ipは、入射光Inと同方向に透過するので、透過光が散乱されることを抑制してヘイズを小さくすることができ、透明性を高くすることができる。
また、反射ドットは、支持体32の法線方向から入射する光を、全方位に反射できるのが好ましい。反射ドットは、特に、正面輝度(ピーク輝度)の半分の輝度となる角度(半値角)が35°以上にでき、高い反射性を有することが好ましい。 In addition, the reflective dots regularly reflect incident light on the basis of the helical axis of the cholesteric liquid crystal phase. Therefore, as conceptually shown in FIG. 3, the reflected light Ir reflected near the center of the reflective dot is parallel to the normal direction of the support with respect to the incident light In incident from the normal direction of thesupport 32. Is reflected. On the other hand, at a position deviated from the center of the reflective dot (a position where the helical axis of the cholesteric liquid crystal phase is inclined with respect to the normal direction of the support 32), the reflected light Ir is a direction different from the normal direction of the support 32. Is reflected. Therefore, the light incident on the reflective dots can be reflected in various directions, and the viewing angle can be increased. Further, since the light Ip that passes through the reflective dots is transmitted in the same direction as the incident light In, the scattered light can be suppressed from being scattered, haze can be reduced, and transparency can be increased.
Moreover, it is preferable that the reflective dot can reflect light incident from the normal direction of thesupport 32 in all directions. In particular, the reflection dot preferably has an angle (half-value angle) that is half the front luminance (peak luminance) of 35 ° or more and has high reflectivity.
また、反射ドットは、支持体32の法線方向から入射する光を、全方位に反射できるのが好ましい。反射ドットは、特に、正面輝度(ピーク輝度)の半分の輝度となる角度(半値角)が35°以上にでき、高い反射性を有することが好ましい。 In addition, the reflective dots regularly reflect incident light on the basis of the helical axis of the cholesteric liquid crystal phase. Therefore, as conceptually shown in FIG. 3, the reflected light Ir reflected near the center of the reflective dot is parallel to the normal direction of the support with respect to the incident light In incident from the normal direction of the
Moreover, it is preferable that the reflective dot can reflect light incident from the normal direction of the
コレステリック液晶相の螺旋軸が、反射ドットの表面と70~90°の範囲の角度を成すことにより、表面から1本目の暗部が成す線の法線方向と支持体の法線方向との成す角度は、上記高さが連続的に増加するにしたがって連続的に減少していることが好ましい。
なお、断面図は、ドットの端部から中心に向かう方向で最大高さまで連続的に増加する高さを有する部位を含む任意の方向の断面図であり、典型的にはドットの中心を含み支持体に垂直な任意の面の断面図であればよい。 The spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot, so that the angle formed between the normal direction of the first dark line from the surface and the normal direction of the support Preferably, the height continuously decreases as the height increases continuously.
The cross-sectional view is a cross-sectional view in an arbitrary direction including a portion having a height that continuously increases to the maximum height in the direction from the end of the dot toward the center, and typically includes and supports the center of the dot. Any cross-sectional view perpendicular to the body may be used.
なお、断面図は、ドットの端部から中心に向かう方向で最大高さまで連続的に増加する高さを有する部位を含む任意の方向の断面図であり、典型的にはドットの中心を含み支持体に垂直な任意の面の断面図であればよい。 The spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot, so that the angle formed between the normal direction of the first dark line from the surface and the normal direction of the support Preferably, the height continuously decreases as the height increases continuously.
The cross-sectional view is a cross-sectional view in an arbitrary direction including a portion having a height that continuously increases to the maximum height in the direction from the end of the dot toward the center, and typically includes and supports the center of the dot. Any cross-sectional view perpendicular to the body may be used.
<<反射ドットの作製方法>>
反射ドット(右円偏光反射ドット34Rおよび左円偏光反射ドット34L)は、コレステリック液晶相をドット状に固定して得ることができる。
コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造であればよい。
なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、液晶化合物は、液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。 << Method for producing reflective dots >>
The reflective dots (the right circularly polarizedreflective dot 34R and the left circularly polarized reflective dot 34L) can be obtained by fixing the cholesteric liquid crystal phase in a dot shape.
The structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. Thus, any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force.
In the structure in which the cholesteric liquid crystal phase is fixed, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound may not exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
反射ドット(右円偏光反射ドット34Rおよび左円偏光反射ドット34L)は、コレステリック液晶相をドット状に固定して得ることができる。
コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射、加熱等によって重合、硬化し、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造であればよい。
なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、液晶化合物は、液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。 << Method for producing reflective dots >>
The reflective dots (the right circularly polarized
The structure in which the cholesteric liquid crystal phase is fixed may be any structure as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. Thus, any structure may be used as long as it is polymerized and cured by ultraviolet irradiation, heating, or the like to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force.
In the structure in which the cholesteric liquid crystal phase is fixed, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound may not exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
コレステリック液晶相を固定してなる反射ドットの形成に用いる材料としては、一例として、液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
反射ドットの形成に用いる液晶化合物を含む液晶組成物は、さらに界面活性剤を含むのが好ましい。また、反射ドットの形成に用いる液晶組成物は、さらにキラル剤、重合開始剤を含んでいてもよい。 As an example of a material used for forming a reflective dot formed by fixing a cholesteric liquid crystal phase, a liquid crystal composition containing a liquid crystal compound can be given. The liquid crystal compound is preferably a polymerizable liquid crystal compound.
The liquid crystal composition containing the liquid crystal compound used for forming the reflective dots preferably further contains a surfactant. Moreover, the liquid crystal composition used for forming the reflective dots may further contain a chiral agent and a polymerization initiator.
反射ドットの形成に用いる液晶化合物を含む液晶組成物は、さらに界面活性剤を含むのが好ましい。また、反射ドットの形成に用いる液晶組成物は、さらにキラル剤、重合開始剤を含んでいてもよい。 As an example of a material used for forming a reflective dot formed by fixing a cholesteric liquid crystal phase, a liquid crystal composition containing a liquid crystal compound can be given. The liquid crystal compound is preferably a polymerizable liquid crystal compound.
The liquid crystal composition containing the liquid crystal compound used for forming the reflective dots preferably further contains a surfactant. Moreover, the liquid crystal composition used for forming the reflective dots may further contain a chiral agent and a polymerization initiator.
--重合性液晶化合物--
重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であるのが好ましい。
コレステリック液晶相を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。 --Polymerizable liquid crystal compound--
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であるのが好ましい。
コレステリック液晶相を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。 --Polymerizable liquid crystal compound--
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基、およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基がより好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
The polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods. The number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. , 190, 2255 (1989), Advanced Materials, Volume 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, and 5770107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, and JP-A-7-110469. 11-80081 and JP-A-2001-328773, and the like. Two or more kinds of polymerizable liquid crystal compounds may be used in combination. When two or more kinds of polymerizable liquid crystal compounds are used in combination, the alignment temperature can be lowered.
重合性液晶化合物の具体例としては、下記式(1)~(11)に示す化合物が挙げられる。
Specific examples of the polymerizable liquid crystal compound include compounds represented by the following formulas (1) to (11).
また、上記以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。
Further, as polymerizable liquid crystal compounds other than the above, cyclic organopolysiloxane compounds having a cholesteric phase as disclosed in JP-A-57-165480 can be used. Further, the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both positions of the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain. A liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, or the like can be used.
また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶媒を除いた質量)に対して、75~99.9質量%であるのが好ましく、80~99質量%であるのがより好ましく、85~90質量%であるのがさらに好ましい。
The addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition, and preferably 80 to 99. More preferably, it is more preferably 85% to 90% by weight.
--界面活性剤--
本発明者らは、反射ドットを形成する際に用いる液晶組成物に界面活性剤を加えることにより、反射ドット形成時に重合性液晶化合物が空気界面側で水平に配向し、螺旋軸方向が上述のように制御された反射ドットが得られることを見出した。
一般的に、ドットの形成のためには、印刷の際の液滴形状を保つため、表面張力を低下させない必要がある。そのため界面活性剤を加えても反射ドットの形成が可能であり、かつ、多方向からの再帰反射性の高い反射ドットが得られたことは驚くべきことであった。本発明者らの検討によれば、界面活性剤を用いた場合、反射ドットの端部で、反射ドットの表面と支持体32とが成す角度が40°以上のドットが形成されている。すなわち、反射ドットを形成する際に界面活性剤を加えることにより、反射ドットと支持体32との接触角を、広い視野角と、高い透明性とを両立することができる角度範囲に形成することができる。
界面活性剤は、安定的にまたは迅速にプレーナー配向のコレステリック液晶相とするために寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましく例示される。 --Surfactant--
By adding a surfactant to the liquid crystal composition used when forming the reflective dots, the present inventors align the polymerizable liquid crystal compound horizontally on the air interface side when forming the reflective dots, and the helical axis direction is as described above. It was found that reflective dots controlled in this way were obtained.
In general, in order to form dots, it is necessary to prevent the surface tension from being lowered in order to maintain the droplet shape during printing. Therefore, it was surprising that a reflective dot can be formed even when a surfactant is added, and a reflective dot having high retroreflectivity from multiple directions was obtained. According to the study by the present inventors, when a surfactant is used, dots having an angle formed by the surface of the reflective dot and thesupport 32 of 40 ° or more are formed at the end of the reflective dot. That is, by adding a surfactant when forming the reflective dots, the contact angle between the reflective dots and the support 32 is formed in an angle range that can achieve both a wide viewing angle and high transparency. Can do.
The surfactant is preferably a compound capable of functioning as an alignment control agent that contributes to stably or rapidly forming a planar cholesteric liquid crystal phase. Examples of the surfactant include a silicone-based surfactant and a fluorine-based surfactant, and a fluorine-based surfactant is preferably exemplified.
本発明者らは、反射ドットを形成する際に用いる液晶組成物に界面活性剤を加えることにより、反射ドット形成時に重合性液晶化合物が空気界面側で水平に配向し、螺旋軸方向が上述のように制御された反射ドットが得られることを見出した。
一般的に、ドットの形成のためには、印刷の際の液滴形状を保つため、表面張力を低下させない必要がある。そのため界面活性剤を加えても反射ドットの形成が可能であり、かつ、多方向からの再帰反射性の高い反射ドットが得られたことは驚くべきことであった。本発明者らの検討によれば、界面活性剤を用いた場合、反射ドットの端部で、反射ドットの表面と支持体32とが成す角度が40°以上のドットが形成されている。すなわち、反射ドットを形成する際に界面活性剤を加えることにより、反射ドットと支持体32との接触角を、広い視野角と、高い透明性とを両立することができる角度範囲に形成することができる。
界面活性剤は、安定的にまたは迅速にプレーナー配向のコレステリック液晶相とするために寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましく例示される。 --Surfactant--
By adding a surfactant to the liquid crystal composition used when forming the reflective dots, the present inventors align the polymerizable liquid crystal compound horizontally on the air interface side when forming the reflective dots, and the helical axis direction is as described above. It was found that reflective dots controlled in this way were obtained.
In general, in order to form dots, it is necessary to prevent the surface tension from being lowered in order to maintain the droplet shape during printing. Therefore, it was surprising that a reflective dot can be formed even when a surfactant is added, and a reflective dot having high retroreflectivity from multiple directions was obtained. According to the study by the present inventors, when a surfactant is used, dots having an angle formed by the surface of the reflective dot and the
The surfactant is preferably a compound capable of functioning as an alignment control agent that contributes to stably or rapidly forming a planar cholesteric liquid crystal phase. Examples of the surfactant include a silicone-based surfactant and a fluorine-based surfactant, and a fluorine-based surfactant is preferably exemplified.
界面活性剤の具体例としては、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物、特開2012-203237号公報の段落〔0031〕~〔0034〕に記載の化合物、特開2005-99248号公報の段落[0092]および[0093]中に例示されている化合物、特開2002-129162号公報の段落[0076]~[0078]および段落[0082]~[0085]中に例示されている化合物、特開2007-272185号公報の段落〔0018〕~〔0043〕等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
なお、水平配向剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
フッ素系界面活性剤として、特開2014-119605号公報の段落[0082]~[0090]に記載の下記一般式(I)で表される化合物が好ましい。 Specific examples of the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A-2012-203237. , Compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A 2002-129162 And compounds exemplified therein, and fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and the like.
In addition, as a horizontal alignment agent, 1 type may be used independently and 2 or more types may be used together.
As the fluorine-based surfactant, compounds represented by the following general formula (I) described in paragraphs [0082] to [0090] of JP-A-2014-119605 are preferable.
なお、水平配向剤としては1種を単独で用いてもよいし、2種以上を併用してもよい。
フッ素系界面活性剤として、特開2014-119605号公報の段落[0082]~[0090]に記載の下記一般式(I)で表される化合物が好ましい。 Specific examples of the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A-2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A-2012-203237. , Compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A 2002-129162 And compounds exemplified therein, and fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and the like.
In addition, as a horizontal alignment agent, 1 type may be used independently and 2 or more types may be used together.
As the fluorine-based surfactant, compounds represented by the following general formula (I) described in paragraphs [0082] to [0090] of JP-A-2014-119605 are preferable.
一般式(I)において、L11、L12、L13、L14、L15、および、L16は、それぞれ独立して、単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRは水素原子または炭素数が1~6のアルキル基を表す)を表し、-NRCO-、-CONR-は溶解性を減ずる効果があり、ドット作製時にヘイズが上昇する傾向があることからより好ましくは-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-であり、化合物の安定性の観点からさらに好ましくは-O-、-CO-、-COO-、-OCO-である。上記のRがとりうるアルキル基は、直鎖状であっても分枝状であってもよい。炭素数は1~3であるのがより好ましく、メチル基、エチル基、n-プロピル基を例示することができる。
In the general formula (I), L 11 , L 12 , L 13 , L 14 , L 15 , and L 16 are each independently a single bond, —O—, —S—, —CO—, —COO. —, —OCO—, —COS—, —SCO—, —NRCO—, —CONR— (in the general formula (I), R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), NRCO- and -CONR- have the effect of reducing the solubility, and more preferably -O-, -S-, -CO-, -COO-, -OCO- —COS— and —SCO—, and —O—, —CO—, —COO—, and —OCO— are more preferable from the viewpoint of the stability of the compound. The alkyl group that R can take may be linear or branched. The number of carbon atoms is more preferably 1 to 3, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
Sp11、Sp12、Sp13、および、Sp14は、それぞれ独立して、単結合または炭素数1~10のアルキレン基を表し、より好ましくは単結合または炭素数1~7のアルキレン基であり、さらに好ましくは単結合または炭素数1~4のアルキレン基である。ただし、アルキレン基の水素原子はフッ素原子で置換されていてもよい。アルキレン基には、分枝があっても無くてもよいが、好ましいのは分枝がない直鎖のアルキレン基である。合成上の観点からは、Sp11とSp14が同一であり、かつ、Sp12とSp13が同一であるのが好ましい。
Sp 11 , Sp 12 , Sp 13 and Sp 14 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms. More preferably, it is a single bond or an alkylene group having 1 to 4 carbon atoms. However, the hydrogen atom of the alkylene group may be substituted with a fluorine atom. The alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred. From the viewpoint of synthesis, it is preferable that Sp 11 and Sp 14 are the same, and Sp 12 and Sp 13 are the same.
A11、A12は1~4価の芳香族炭化水素基である。芳香族炭化水素基の炭素数は6~22であるのが好ましく、6~14であるのがより好ましく、6~10であるのがさらに好ましく、6であるのがさらにより好ましい。A11、A12で表される芳香族炭化水素基は置換基を有していてもよい。そのような置換基の例として、炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を挙げることができる。これらの基の説明と好ましい範囲については、下記のTの対応する記載を参照することができる。A11、A12で表される芳香族炭化水素基に対する置換基としては、例えばメチル基、エチル基、メトキシ基、エトキシ基、臭素原子、塩素原子、および、シアノ基などを挙げることができる。パーフルオロアルキル部分を分子内に多く有する分子は、少ない添加量で液晶を配向させることができ、ヘイズ低下につながることから、分子内にパーフルオロアルキル基を多く有するようにA11、A12は4価であるのが好ましい。合成上の観点からは、A11とA12は同一であるのが好ましい。
A 11 and A 12 are monovalent to tetravalent aromatic hydrocarbon groups. The aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, still more preferably 6 to 10 carbon atoms, and still more preferably 6. The aromatic hydrocarbon groups represented by A 11 and A 12 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to. Examples of the substituent for the aromatic hydrocarbon group represented by A 11 and A 12 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group. A molecule having a large number of perfluoroalkyl moieties in the molecule can align the liquid crystal with a small amount of addition, leading to a decrease in haze. Therefore, A 11 and A 12 have a large number of perfluoroalkyl groups in the molecule. It is preferably tetravalent. From the viewpoint of synthesis, A 11 and A 12 are preferably the same.
T11は、下記の
で表される二価の基または二価の複素環基を表す(上記T11中に含まれるXは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を表し、Ya、Yb、Yc、Ydはそれぞれ独立して水素原子または炭素数1~4のアルキル基を表す)のが好ましく、より好ましくは、 T 11 is the following
(X in T 11 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group, and a divalent group or a divalent heterocyclic group represented by: Ya, Yb, Yc and Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably
で表される二価の基または二価の複素環基を表す(上記T11中に含まれるXは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を表し、Ya、Yb、Yc、Ydはそれぞれ独立して水素原子または炭素数1~4のアルキル基を表す)のが好ましく、より好ましくは、 T 11 is the following
(X in T 11 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group, and a divalent group or a divalent heterocyclic group represented by: Ya, Yb, Yc and Yd each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and more preferably
上記T11中に含まれるXがとりうるアルキル基の炭素数は1~8であり、1~5であるのが好ましく、1~3であるのがより好ましい。アルキル基は、直鎖状、分枝状、および、環状のいずれであってもよく、直鎖状または分枝状であるのが好ましい。好ましいアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができ、その中でもメチル基が好ましい。上記T11中に含まれるXがとりうるアルコキシ基のアルキル部分については、上記T11中に含まれるXがとりうるアルキル基の説明と好ましい範囲を参照することができる。上記T11中に含まれるXがとりうるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子が好ましい。上記T11中に含まれるXがとりうるエステル基としては、R’COO-で表される基を例示することができる。R’としては炭素数1~8のアルキル基を挙げることができる。R’がとりうるアルキル基の説明と好ましい範囲については、上記T11中に含まれるXがとりうるアルキル基の説明と好ましい範囲を参照することができる。エステルの具体例として、CH3COO-、C2H5COO-を挙げることができる。Ya、Yb、Yc、Ydがとりうる炭素数1~4のアルキル基は、直鎖状であっても分枝状であってもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができる。
The alkyl group that X contained in T 11 can have 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. The alkyl group may be linear, branched or cyclic, and is preferably linear or branched. Examples of preferable alkyl groups include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and among them, a methyl group is preferable. The alkyl moiety of the alkoxy group X contained in the T 11 can be taken, it is possible to refer to the description and the preferred range of the alkyl group X contained in the T 11 can take. Examples of the halogen atom that X contained in T 11 can take include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable. Examples of the ester group that X contained in T 11 can take include a group represented by R′COO—. Examples of R ′ include an alkyl group having 1 to 8 carbon atoms. For the explanation and preferred range of the alkyl group that R ′ can take, reference can be made to the explanation and preferred range of the alkyl group that X contained in T 11 can take. Specific examples of the ester include CH 3 COO— and C 2 H 5 COO—. The alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like can be exemplified.
二価の複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がより好ましく、6員環がさらに好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環基は、芳香族複素環基であるのが好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。二価の複素環基は置換基を有していてもよい。そのような置換基の例の説明と好ましい範囲については、上記のA1とA2の1~4価の芳香族炭化水素が取り得る置換基に関する説明と記載を参照することができる。
The divalent heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring. A 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is more preferable. As the hetero atom constituting the heterocyclic ring, a nitrogen atom, an oxygen atom and a sulfur atom are preferable. The heterocyclic group is preferably an aromatic heterocyclic group. Examples of heterocyclic rings include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included. The divalent heterocyclic group may have a substituent. For explanations and preferred ranges of examples of such substituents, reference can be made to the explanations and descriptions regarding the substituents that can be taken by the above-described monovalent to tetravalent aromatic hydrocarbons of A 1 and A 2 .
Hb11は炭素数2~30のパーフルオロアルキル基を表し、より好ましくは炭素数3~20のパーフルオロアルキル基であり、さらに好ましくは3~10のパーフルオロアルキル基である。パーフルオロアルキル基は、直鎖状、分枝状、および、環状のいずれであってもよいが、直鎖状または分枝状であるのが好ましく、直鎖状であるのがより好ましい。
Hb 11 represents a perfluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group having 3 to 20 carbon atoms, and still more preferably a perfluoroalkyl group having 3 to 10 carbon atoms. The perfluoroalkyl group may be linear, branched, or cyclic, but is preferably linear or branched, and more preferably linear.
m11、n11はそれぞれ独立に0から3であり、かつm11+n11≧1である。このとき複数存在する括弧内の構造は互いに同一であっても異なっていてもよいが、互いに同一であるのが好ましい。一般式(I)のm11、n11は、A11、A12の価数によって定まり、好ましい範囲もA11、A12の価数の好ましい範囲によって定まる。
T11中に含まれるoおよびpはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。T11中に含まれるoは1または2であるのが好ましい。T11中に含まれるpは1~4のいずれかの整数であるのが好ましく、1または2であるのがより好ましい。 m11 and n11 are each independently 0 to 3, and m11 + n11 ≧ 1. In this case, a plurality of structures in parentheses may be the same or different from each other, but are preferably the same. M11 and n11 in the general formula (I) are determined by the valences of A 11 and A 12 , and the preferable range is also determined by the preferable ranges of the valences of A 11 and A 12 .
O and p contained in T 11 are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of X may be the same or different from each other. O contained in T 11 is preferably 1 or 2. P contained in T 11 is preferably an integer of 1 to 4, and more preferably 1 or 2.
T11中に含まれるoおよびpはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。T11中に含まれるoは1または2であるのが好ましい。T11中に含まれるpは1~4のいずれかの整数であるのが好ましく、1または2であるのがより好ましい。 m11 and n11 are each independently 0 to 3, and m11 + n11 ≧ 1. In this case, a plurality of structures in parentheses may be the same or different from each other, but are preferably the same. M11 and n11 in the general formula (I) are determined by the valences of A 11 and A 12 , and the preferable range is also determined by the preferable ranges of the valences of A 11 and A 12 .
O and p contained in T 11 are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of X may be the same or different from each other. O contained in T 11 is preferably 1 or 2. P contained in T 11 is preferably an integer of 1 to 4, and more preferably 1 or 2.
一般式(I)で表される化合物は、分子構造が対称性を有するものであってもよいし、対称性を有しないものであってもよい。なお、ここでいう対称性とは、点対称、線対称、および、回転対称のいずれかひとつに少なくとも該当するものを意味し、非対称とは点対称、線対称、および、回転対称のいずれにも該当しないものを意味する。
The compound represented by the general formula (I) may have a symmetrical molecular structure or may have no symmetry. Here, the symmetry means at least one of point symmetry, line symmetry, and rotational symmetry, and asymmetry means any of point symmetry, line symmetry, and rotational symmetry. Means not applicable.
一般式(I)で表される化合物は、以上述べたパーフルオロアルキル基(Hb11)、連結基-(-Sp11-L11-Sp12-L12)m11-A11-L13-および-L14-A12-(L15-Sp13-L16-Sp14-)n11-、ならびに好ましくは排除体積効果を持つ2価の基であるTを組み合わせた化合物である。分子内に2つ存在するパーフルオロアルキル基(Hb11)は互いに同一であるのが好ましく、分子内に存在する連結基-(-Sp11-L11-Sp12-L12)m11-A11-L13-および-L14-A12-(L15-Sp13-L16-Sp14-)n11-も互いに同一であるのが好ましい。末端のHb11-Sp11-L11-Sp12-および-Sp13-L16-Sp14-Hb11は、以下のいずれかの一般式で表される基であるのが好ましい。
(CaF2a+1)-(CbH2b)-
(CaF2a+1)-(CbH2b)-O-(CrH2r)-
(CaF2a+1)-(CbH2b)-COO-(CrH2r)-
(CaF2a+1)-(CbH2b)-OCO-(CrH2r)- The compound represented by the general formula (I) includes the perfluoroalkyl group (Hb 11 ) and the linking group — (— Sp 11 —L 11 —Sp 12 —L 12 ) m 11 —A 11 —L 13 —. and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect. The two perfluoroalkyl groups (Hb 11 ) present in the molecule are preferably the same as each other, and the linking group present in the molecule — (— Sp 11 -L 11 -Sp 12 -L 12 ) m 11 -A 11 -L 13 - and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 - preferably also the same. The terminal Hb 11 -Sp 11 -L 11 -Sp 12 -and -Sp 13 -L 16 -Sp 14 -Hb 11 are preferably groups represented by any one of the following general formulas.
(C a F 2a + 1 )-(C b H 2b )-
(C a F 2a + 1 ) — (C b H 2b ) —O— (C r H 2r ) —
(C a F 2a + 1 ) — (C b H 2b ) —COO— (C r H 2r ) —
(C a F 2a + 1 )-(C b H 2b ) -OCO- (C r H 2r )-
(CaF2a+1)-(CbH2b)-
(CaF2a+1)-(CbH2b)-O-(CrH2r)-
(CaF2a+1)-(CbH2b)-COO-(CrH2r)-
(CaF2a+1)-(CbH2b)-OCO-(CrH2r)- The compound represented by the general formula (I) includes the perfluoroalkyl group (Hb 11 ) and the linking group — (— Sp 11 —L 11 —Sp 12 —L 12 ) m 11 —A 11 —L 13 —. and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect. The two perfluoroalkyl groups (Hb 11 ) present in the molecule are preferably the same as each other, and the linking group present in the molecule — (— Sp 11 -L 11 -Sp 12 -L 12 ) m 11 -A 11 -L 13 - and -L 14 -A 12 - (L 15 -Sp 13 -L 16 -Sp 14 -) n 11 - preferably also the same. The terminal Hb 11 -Sp 11 -L 11 -Sp 12 -and -Sp 13 -L 16 -Sp 14 -Hb 11 are preferably groups represented by any one of the following general formulas.
(C a F 2a + 1 )-(C b H 2b )-
(C a F 2a + 1 ) — (C b H 2b ) —O— (C r H 2r ) —
(C a F 2a + 1 ) — (C b H 2b ) —COO— (C r H 2r ) —
(C a F 2a + 1 )-(C b H 2b ) -OCO- (C r H 2r )-
上式において、aは2~30であるのが好ましく、3~20であるのがより好ましく、3~10であるのがさらに好ましい。bは0~20であるのが好ましく、0~10であるのがより好ましく、0~5であるのがさらに好ましい。a+bは3~30である。rは1~10であるのが好ましく、1~4であるのがより好ましい。
また、一般式(I)の末端のHb11-Sp11-L11-Sp12-L12-および-L15-Sp13-L16-Sp14-Hb11は、以下のいずれかの一般式で表される基であるのが好ましい。
(CaF2a+1)-(CbH2b)-O-
(CaF2a+1)-(CbH2b)-COO-
(CaF2a+1)-(CbH2b)-O-(CrH2r)-O-
(CaF2a+1)-(CbH2b)-COO-(CrH2r)-COO-
(CaF2a+1)-(CbH2b)-OCO-(CrH2r)-COO-
上式におけるa、bおよびrの定義は直上の定義と同じである。 In the above formula, a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10. b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5. a + b is 3 to 30. r is preferably from 1 to 10, and more preferably from 1 to 4.
Further, Hb 11 -Sp 11 -L 11 -Sp 12 -L 12 -and -L 15 -Sp 13 -L 16 -Sp 14 -Hb 11 at the terminal of the general formula (I) are any of the following general formulas: It is preferable that it is group represented by these.
(C a F 2a + 1 )-(C b H 2b ) —O—
(C a F 2a + 1 )-(C b H 2b ) —COO—
(C a F 2a + 1 )-(C b H 2b ) —O— (C r H 2r ) —O—
(C a F 2a + 1 )-(C b H 2b ) —COO— (C r H 2r ) —COO—
(C a F 2a + 1 )-(C b H 2b ) —OCO— (C r H 2r ) —COO—
The definitions of a, b and r in the above formula are the same as the definitions immediately above.
また、一般式(I)の末端のHb11-Sp11-L11-Sp12-L12-および-L15-Sp13-L16-Sp14-Hb11は、以下のいずれかの一般式で表される基であるのが好ましい。
(CaF2a+1)-(CbH2b)-O-
(CaF2a+1)-(CbH2b)-COO-
(CaF2a+1)-(CbH2b)-O-(CrH2r)-O-
(CaF2a+1)-(CbH2b)-COO-(CrH2r)-COO-
(CaF2a+1)-(CbH2b)-OCO-(CrH2r)-COO-
上式におけるa、bおよびrの定義は直上の定義と同じである。 In the above formula, a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10. b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5. a + b is 3 to 30. r is preferably from 1 to 10, and more preferably from 1 to 4.
Further, Hb 11 -Sp 11 -L 11 -Sp 12 -L 12 -and -L 15 -Sp 13 -L 16 -Sp 14 -Hb 11 at the terminal of the general formula (I) are any of the following general formulas: It is preferable that it is group represented by these.
(C a F 2a + 1 )-(C b H 2b ) —O—
(C a F 2a + 1 )-(C b H 2b ) —COO—
(C a F 2a + 1 )-(C b H 2b ) —O— (C r H 2r ) —O—
(C a F 2a + 1 )-(C b H 2b ) —COO— (C r H 2r ) —COO—
(C a F 2a + 1 )-(C b H 2b ) —OCO— (C r H 2r ) —COO—
The definitions of a, b and r in the above formula are the same as the definitions immediately above.
液晶組成物中における、界面活性剤の添加量は、重合性液晶化合物の全質量に対して0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%がさらに好ましい。
The addition amount of the surfactant in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.02 to 1% with respect to the total mass of the polymerizable liquid crystal compound. More preferred is mass%.
--キラル剤(光学活性化合物)--
キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
また、キラル剤は、液晶化合物であってもよい。 --Chiral agent (optically active compound)-
The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
The chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, chapter 3-4-3, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) 142), 1989), isosorbide and isomannide derivatives can be used.
A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this embodiment, the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Accordingly, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
The chiral agent may be a liquid crystal compound.
キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
キラル剤としては、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(twisted nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、イソマンニド誘導体を用いることができる。
キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
また、キラル剤は、液晶化合物であってもよい。 --Chiral agent (optically active compound)-
The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
The chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, chapter 3-4-3, chiral agent for TN (twisted nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) 142), 1989), isosorbide and isomannide derivatives can be used.
A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound that does not contain an asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this embodiment, the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Accordingly, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
The chiral agent may be a liquid crystal compound.
キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、特開2003-313292号公報に記載の化合物を用いることができる。
It is preferable that the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by photomask irradiation such as actinic rays after coating and orientation. As the photoisomerization group, an isomerization site of a compound exhibiting photochromic properties, an azo group, an azoxy group, or a cinnamoyl group is preferable. Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002. Use the compounds described in JP-A No. 179681, JP-A No. 2002-179682, JP-A No. 2002-338575, JP-A No. 2002-338668, JP-A No. 2003-313189, and JP-A No. 2003-313292. Can do.
キラル剤の具体例としては以下の式(12)で表される化合物が挙げられる。
式中、Xは2~5(整数)である。 Specific examples of the chiral agent include compounds represented by the following formula (12).
In the formula, X is 2 to 5 (integer).
式中、Xは2~5(整数)である。 Specific examples of the chiral agent include compounds represented by the following formula (12).
In the formula, X is 2 to 5 (integer).
液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01~200モル%が好ましく、1~30モル%がより好ましい。
The content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
--重合開始剤--
液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であるのが好ましく、0.5~12質量%であるのがさらに好ましい。 --Polymerization initiator--
When the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970), and the like. .
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であるのが好ましく、0.5~12質量%であるのがさらに好ましい。 --Polymerization initiator--
When the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970), and the like. .
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
--架橋剤--
液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が上記範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。 -Crosslinking agent-
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; Glycidyl (meth) acrylate , Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. If content of a crosslinking agent is in the said range, the effect of a crosslinking density improvement will be easy to be acquired, and stability of a cholesteric liquid crystal phase will improve more.
液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が上記範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。 -Crosslinking agent-
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; Glycidyl (meth) acrylate , Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. If content of a crosslinking agent is in the said range, the effect of a crosslinking density improvement will be easy to be acquired, and stability of a cholesteric liquid crystal phase will improve more.
--その他の添加剤--
反射ドットの形成に、後述するインクジェット法を用いる場合には、一般的に求められるインク物性を得るために、液晶組成物には単官能重合性モノマーが含まれていてもよい。単官能重合性モノマーとしては、2-メトキシエチルアクリレート、イソブチルアクリレート、イソオクチルアクリレート、イソデシルアクリレート、オクチル/デシルアクリレート等が挙げられる。
また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。 -Other additives-
When the inkjet method described later is used for forming the reflective dots, the liquid crystal composition may contain a monofunctional polymerizable monomer in order to obtain generally required ink properties. Examples of the monofunctional polymerizable monomer include 2-methoxyethyl acrylate, isobutyl acrylate, isooctyl acrylate, isodecyl acrylate, octyl / decyl acrylate, and the like.
Further, in the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc., in a range that does not deteriorate the optical performance and the like. Can be added.
反射ドットの形成に、後述するインクジェット法を用いる場合には、一般的に求められるインク物性を得るために、液晶組成物には単官能重合性モノマーが含まれていてもよい。単官能重合性モノマーとしては、2-メトキシエチルアクリレート、イソブチルアクリレート、イソオクチルアクリレート、イソデシルアクリレート、オクチル/デシルアクリレート等が挙げられる。
また、液晶組成物中には、必要に応じて、さらに重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。 -Other additives-
When the inkjet method described later is used for forming the reflective dots, the liquid crystal composition may contain a monofunctional polymerizable monomer in order to obtain generally required ink properties. Examples of the monofunctional polymerizable monomer include 2-methoxyethyl acrylate, isobutyl acrylate, isooctyl acrylate, isodecyl acrylate, octyl / decyl acrylate, and the like.
Further, in the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a colorant, metal oxide fine particles, etc., in a range that does not deteriorate the optical performance and the like. Can be added.
液晶組成物は、反射ドットを形成する際には、液体として用いられることが好ましい。
液晶組成物は溶媒を含んでいてもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。上述の単官能重合性モノマーなどの上述の成分が溶媒として機能していてもよい。 The liquid crystal composition is preferably used as a liquid when forming reflective dots.
The liquid crystal composition may contain a solvent. There is no restriction | limiting in particular as a solvent, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons , Esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load. The above-described components such as the above-mentioned monofunctional polymerizable monomer may function as a solvent.
液晶組成物は溶媒を含んでいてもよい。溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶媒が好ましく用いられる。
有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。上述の単官能重合性モノマーなどの上述の成分が溶媒として機能していてもよい。 The liquid crystal composition is preferably used as a liquid when forming reflective dots.
The liquid crystal composition may contain a solvent. There is no restriction | limiting in particular as a solvent, Although it can select suitably according to the objective, An organic solvent is used preferably.
The organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons , Esters, ethers and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load. The above-described components such as the above-mentioned monofunctional polymerizable monomer may function as a solvent.
液晶組成物は、支持体32上にドット状に塗布されて、その後、硬化され反射ドットを形成する。
反射ドットを形成する際には、支持体32上への液晶組成物の塗布は、一例として印刷法によって行われ、好ましくは打滴により行われる。印刷法は特に限定はされず、インクジェット法、グラビア印刷法、フレキソ印刷法などを用いることができるが、インクジェット法が好ましい。反射ドットのパターン形成も、公知の印刷技術を応用して形成することができる。 The liquid crystal composition is applied in the form of dots on thesupport 32 and then cured to form reflective dots.
When forming the reflective dots, the liquid crystal composition is applied onto thesupport 32 by, for example, a printing method, and preferably by droplet ejection. The printing method is not particularly limited, and an inkjet method, a gravure printing method, a flexographic printing method, or the like can be used, but an inkjet method is preferable. Reflective dot patterns can also be formed by applying known printing techniques.
反射ドットを形成する際には、支持体32上への液晶組成物の塗布は、一例として印刷法によって行われ、好ましくは打滴により行われる。印刷法は特に限定はされず、インクジェット法、グラビア印刷法、フレキソ印刷法などを用いることができるが、インクジェット法が好ましい。反射ドットのパターン形成も、公知の印刷技術を応用して形成することができる。 The liquid crystal composition is applied in the form of dots on the
When forming the reflective dots, the liquid crystal composition is applied onto the
支持体32上に塗布された液晶組成物は、必要に応じて乾燥または加熱され、その後、硬化され、反射ドットを形成する。この乾燥および/または加熱の工程で、液晶組成物中の重合性液晶化合物が配向していればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。
The liquid crystal composition coated on the support 32 is dried or heated as necessary, and then cured to form reflective dots. It is sufficient that the polymerizable liquid crystal compound in the liquid crystal composition is aligned in the drying and / or heating step. When heating, the heating temperature is preferably 200 ° C. or lower, more preferably 130 ° C. or lower.
配向させた液晶化合物は、さらに重合させればよい。重合は、熱重合、および、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いることが好ましい。照射エネルギーは、20~50J/cm2が好ましく、100~1,500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は250~430nmが好ましい。重合反応率は安定性の観点から、高いのが好ましく70%以上が好ましく、80%以上がより好ましい。
重合反応率は、重合性の官能基の消費割合を、IR(赤外線)吸収スペクトルを用いて決定することができる。 The aligned liquid crystal compound may be further polymerized. The polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation. The irradiation energy is preferably 20 to 50 J / cm 2 and more preferably 100 to 1,500 mJ / cm 2 . In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions or in a nitrogen atmosphere. The irradiation ultraviolet wavelength is preferably 250 to 430 nm. The polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
The polymerization reaction rate can determine the consumption rate of a polymerizable functional group using an IR (infrared) absorption spectrum.
重合反応率は、重合性の官能基の消費割合を、IR(赤外線)吸収スペクトルを用いて決定することができる。 The aligned liquid crystal compound may be further polymerized. The polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation. The irradiation energy is preferably 20 to 50 J / cm 2 and more preferably 100 to 1,500 mJ / cm 2 . In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions or in a nitrogen atmosphere. The irradiation ultraviolet wavelength is preferably 250 to 430 nm. The polymerization reaction rate is preferably high from the viewpoint of stability, preferably 70% or more, and more preferably 80% or more.
The polymerization reaction rate can determine the consumption rate of a polymerizable functional group using an IR (infrared) absorption spectrum.
<オーバーコート層>
ドットフィルム(右円偏光ドットフィルム30Rおよび左円偏光ドットフィルム30L)は、反射ドットを包埋して支持体32に積層されるオーバーコート層36を有する。
オーバーコート層36は、支持体32の反射ドットが形成された面側に設けられていればよく、ドットフィルムの表面を平坦化しているのが好ましい。
図示例においては、オーバーコート層36によって、ドットフィルム同士を貼り合わせて、右円偏光積層体20および左円偏光積層体24を作製している。あるいは、前述の右円偏光積層体20と左円偏光積層体24とを貼合する貼合層と同様に、貼合層によってドットフィルムを貼り合わせて、右円偏光積層体20および左円偏光積層体24を作製してもよい。 <Overcoat layer>
The dot films (the right circularly polarized dot film 30 </ b> R and the left circularly polarized dot film 30 </ b> L) have anovercoat layer 36 that embeds the reflective dots and is laminated on the support 32.
Theovercoat layer 36 may be provided on the surface side of the support 32 where the reflective dots are formed, and it is preferable to flatten the surface of the dot film.
In the illustrated example, the dot films are bonded to each other by theovercoat layer 36 to produce the right circular polarization laminate 20 and the left circular polarization laminate 24. Or similarly to the bonding layer which bonds the above-mentioned right circular polarization laminated body 20 and the left circular polarization laminated body 24, a dot film is bonded together by the bonding layer, and the right circular polarization laminated body 20 and the left circular polarization are combined. The laminate 24 may be produced.
ドットフィルム(右円偏光ドットフィルム30Rおよび左円偏光ドットフィルム30L)は、反射ドットを包埋して支持体32に積層されるオーバーコート層36を有する。
オーバーコート層36は、支持体32の反射ドットが形成された面側に設けられていればよく、ドットフィルムの表面を平坦化しているのが好ましい。
図示例においては、オーバーコート層36によって、ドットフィルム同士を貼り合わせて、右円偏光積層体20および左円偏光積層体24を作製している。あるいは、前述の右円偏光積層体20と左円偏光積層体24とを貼合する貼合層と同様に、貼合層によってドットフィルムを貼り合わせて、右円偏光積層体20および左円偏光積層体24を作製してもよい。 <Overcoat layer>
The dot films (the right circularly polarized dot film 30 </ b> R and the left circularly polarized dot film 30 </ b> L) have an
The
In the illustrated example, the dot films are bonded to each other by the
オーバーコート層36は、特に限定されないが、反射ドットの屈折率との差が小さいほど好ましく、屈折率の差が0.04以下であるのが好ましい。反射ドットの屈折率は1.6程度であるので、屈折率が1.4~1.8程度の樹脂層であるのが好ましい。
反射ドットの屈折率に近い屈折率を有するオーバーコート層36を用いることによって、反射ドットに入射する光の法線からの角度(極角)を小さくすることができる。例えば、屈折率が1.6のオーバーコート層36を用い、極角45°で透明スクリーンに光を入射させたとき、反射ドットに実際に入射する極角は27°程度とすることができる。そのため、オーバーコート層36を用いることによっては透明スクリーン12が再帰反射性を示す光の極角を広げることが可能であり、反射ドットの表面と支持体32とが成す角度が小さい場合であっても、より広い範囲で、高い再帰反射性が得られる。また、オーバーコート層36は、反射防止層、ハードコート層としての機能を有していてもよい。 Theovercoat layer 36 is not particularly limited, but the smaller the difference from the refractive index of the reflective dots, the better, and the difference in refractive index is preferably 0.04 or less. Since the reflective dot has a refractive index of about 1.6, a resin layer having a refractive index of about 1.4 to 1.8 is preferable.
By using theovercoat layer 36 having a refractive index close to the refractive index of the reflective dot, the angle (polar angle) from the normal of the light incident on the reflective dot can be reduced. For example, when the overcoat layer 36 having a refractive index of 1.6 is used and light is incident on the transparent screen at a polar angle of 45 °, the polar angle actually incident on the reflective dot can be about 27 °. Therefore, by using the overcoat layer 36, the transparent screen 12 can widen the polar angle of light exhibiting retroreflectivity, and the angle formed between the surface of the reflective dot and the support 32 is small. However, high retroreflectivity is obtained in a wider range. The overcoat layer 36 may have a function as an antireflection layer or a hard coat layer.
反射ドットの屈折率に近い屈折率を有するオーバーコート層36を用いることによって、反射ドットに入射する光の法線からの角度(極角)を小さくすることができる。例えば、屈折率が1.6のオーバーコート層36を用い、極角45°で透明スクリーンに光を入射させたとき、反射ドットに実際に入射する極角は27°程度とすることができる。そのため、オーバーコート層36を用いることによっては透明スクリーン12が再帰反射性を示す光の極角を広げることが可能であり、反射ドットの表面と支持体32とが成す角度が小さい場合であっても、より広い範囲で、高い再帰反射性が得られる。また、オーバーコート層36は、反射防止層、ハードコート層としての機能を有していてもよい。 The
By using the
オーバーコート層36の例としては、モノマーを含む組成物を、支持体32の反射ドットが形成された面側に塗布し、その後、塗布膜を硬化して得られる樹脂層などが挙げられる。
オーバーコート層36に利用される樹脂は、特に限定されず、支持体32や反射ドットとの密着性などを考慮して選択すればよい。例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等を用いることができる。耐久性、耐溶剤性等の点からは、架橋により硬化するタイプの樹脂が好ましく、特に、短時間での硬化が可能である紫外線硬化性樹脂が好ましい。オーバーコート層36の形成に用いることができるモノマーとしては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。 Examples of theovercoat layer 36 include a resin layer obtained by applying a composition containing a monomer to the surface side of the support 32 on which the reflective dots are formed, and then curing the coating film.
The resin used for theovercoat layer 36 is not particularly limited, and may be selected in consideration of the adhesion to the support 32 and the reflective dots. For example, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, or the like can be used. From the viewpoint of durability, solvent resistance, etc., a resin of a type that is cured by crosslinking is preferable, and an ultraviolet curable resin that can be cured in a short time is particularly preferable. Monomers that can be used to form the overcoat layer 36 include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone, polymethylolpropane tri (meth) acrylate, hexanediol (meta ) Acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl Examples include glycol di (meth) acrylate.
オーバーコート層36に利用される樹脂は、特に限定されず、支持体32や反射ドットとの密着性などを考慮して選択すればよい。例えば、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂等を用いることができる。耐久性、耐溶剤性等の点からは、架橋により硬化するタイプの樹脂が好ましく、特に、短時間での硬化が可能である紫外線硬化性樹脂が好ましい。オーバーコート層36の形成に用いることができるモノマーとしては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。 Examples of the
The resin used for the
オーバーコート層36の厚さは、特に限定されず、反射ドットの最大高さを考慮して決定すればよく、5~100μm程度であればよく、好ましくは10~50μmであり、より好ましくは20~40μmである。厚さは、ドットが無い部分の支持体のドット形成表面から対向する面にあるオーバーコート層表面までの距離である。
The thickness of the overcoat layer 36 is not particularly limited and may be determined in consideration of the maximum height of the reflective dots, may be about 5 to 100 μm, preferably 10 to 50 μm, and more preferably 20 ~ 40 μm. The thickness is the distance from the dot-forming surface of the support where there are no dots to the surface of the overcoat layer on the opposite surface.
本発明の画像表示システム10は、このような右円偏光積層体20と左円偏光積層体24とを積層してなる透明スクリーン12と、プロジェクター14とを有する。
The image display system 10 according to the present invention includes the transparent screen 12 formed by laminating the right circularly polarizing laminate 20 and the left circularly polarizing laminate 24 and the projector 14.
プロジェクター14は、必要に応じて台形補正(歪み補正)を行って、画像を担持する投影光を透明スクリーン12に投影することにより、透明スクリーン12に画像を表示させる、公知のプロジェクターである。
また、本発明の画像表示システム10において、プロジェクター14は、単色の画像を投影するものであり、図示例においては、緑色の単色画像を投影する。すなわち、プロジェクター14は、出射光のピーク波長が、反射ドットの選択反射中心波長と等しいプロジェクターである。
ここで、透明スクリーン12が、右円偏光に対応するドットフィルムと左円偏光に対応するドットフィルムとの両者を有する図1に示す画像表示システム10では、プロジェクター14は、出射光が無偏光のプロジェクターである。画像表示システム10においては、出射光が無偏光であれば、DLP(Digital Light Processing)プロジェクターなど、公知の出射光が無偏光のプロジェクターが、全て利用可能である。 Theprojector 14 is a known projector that displays a picture on the transparent screen 12 by performing trapezoidal correction (distortion correction) as necessary and projecting projection light carrying the image onto the transparent screen 12.
In theimage display system 10 of the present invention, the projector 14 projects a monochrome image, and in the illustrated example, projects a green monochrome image. That is, the projector 14 is a projector in which the peak wavelength of the emitted light is equal to the selective reflection center wavelength of the reflective dots.
Here, in theimage display system 10 shown in FIG. 1 in which the transparent screen 12 has both a dot film corresponding to right circularly polarized light and a dot film corresponding to left circularly polarized light, the projector 14 is configured such that the emitted light is unpolarized. It is a projector. In the image display system 10, if the emitted light is non-polarized light, all known projectors that are not polarized light such as a DLP (Digital Light Processing) projector can be used.
また、本発明の画像表示システム10において、プロジェクター14は、単色の画像を投影するものであり、図示例においては、緑色の単色画像を投影する。すなわち、プロジェクター14は、出射光のピーク波長が、反射ドットの選択反射中心波長と等しいプロジェクターである。
ここで、透明スクリーン12が、右円偏光に対応するドットフィルムと左円偏光に対応するドットフィルムとの両者を有する図1に示す画像表示システム10では、プロジェクター14は、出射光が無偏光のプロジェクターである。画像表示システム10においては、出射光が無偏光であれば、DLP(Digital Light Processing)プロジェクターなど、公知の出射光が無偏光のプロジェクターが、全て利用可能である。 The
In the
Here, in the
本発明の画像表示システム10においては、プロジェクター14は、焦点距離が短い、いわゆる短焦点プロジェクターを用いるのが好ましい。
また、本発明の画像表示システム10は、ドットフィルムの反射ドットの凸側をプロジェクター14側に向けて配置するのが好ましく、かつ、プロジェクター14側で画像を観察する、いわゆるフロント投影型であるのが好ましい。
さらに、本発明の画像表示システム10は、透明スクリーン12の法線に対して、プロジェクター14からの出射光の入射角度が30~70°、特に40~60°となるように、プロジェクター14を配置するのが好ましい。
なお、以上の点に関しては、後述する、出射光が直線偏光であるプロジェクター54を用いる画像表示システム50等も同様である。また、後述するが、出射光が直線偏光であるプロジェクター54は、出射光を透明スクリーンに対してP波とし、かつ、透明スクリーン12の法線に対して、プロジェクター14からの光の入射角度を56°±10°とするのも好ましい。 In theimage display system 10 of the present invention, the projector 14 is preferably a so-called short focus projector having a short focal length.
Further, theimage display system 10 of the present invention is preferably a so-called front projection type in which the convex side of the reflective dot of the dot film is arranged toward the projector 14 side and the image is observed on the projector 14 side. Is preferred.
Furthermore, in theimage display system 10 of the present invention, the projector 14 is arranged so that the incident angle of the light emitted from the projector 14 is 30 to 70 °, particularly 40 to 60 ° with respect to the normal line of the transparent screen 12. It is preferable to do this.
In addition, regarding the above points, the same applies to animage display system 50 using a projector 54 whose outgoing light is linearly polarized light, which will be described later. As will be described later, in the projector 54 in which the outgoing light is linearly polarized light, the outgoing light is P wave with respect to the transparent screen, and the incident angle of the light from the projector 14 with respect to the normal line of the transparent screen 12 is set. 56 ° ± 10 ° is also preferable.
また、本発明の画像表示システム10は、ドットフィルムの反射ドットの凸側をプロジェクター14側に向けて配置するのが好ましく、かつ、プロジェクター14側で画像を観察する、いわゆるフロント投影型であるのが好ましい。
さらに、本発明の画像表示システム10は、透明スクリーン12の法線に対して、プロジェクター14からの出射光の入射角度が30~70°、特に40~60°となるように、プロジェクター14を配置するのが好ましい。
なお、以上の点に関しては、後述する、出射光が直線偏光であるプロジェクター54を用いる画像表示システム50等も同様である。また、後述するが、出射光が直線偏光であるプロジェクター54は、出射光を透明スクリーンに対してP波とし、かつ、透明スクリーン12の法線に対して、プロジェクター14からの光の入射角度を56°±10°とするのも好ましい。 In the
Further, the
Furthermore, in the
In addition, regarding the above points, the same applies to an
前述のように、本発明の透明スクリーン12は、コレステリック液晶相を固定してなる反射ドットによって光を反射するものであり、好ましくは、図2に示すように、コレステリック液晶相の螺旋軸が、反射ドットの表面と70~90°の範囲の角度を成す。これにより、透明スクリーン12は、図3に示すように、反射ドットに入射した光を、再帰反射のみならず、光の入射側すなわちプロジェクター側の様々な方向に反射できる。
そのため、本発明の画像表示システム10は、透明スクリーンの法線方向からの投影ではなく、短焦点プロジェクターのように、透明スクリーンの下方にプロジェクターを配置して、透明スクリーンの法線に対して大きな角度で光を投影しても、プロジェクター側から、広い視野角で好適に画像を視認できる。
従って、本発明の画像表示システム10は、フロント投影型にして、かつ、透明スクリーン12の法線に対するプロジェクター14の入射角度を30~70°とすることにより、プロジェクター14を透明スクリーンの近くに配置して、画像表示システムを小型化できる。加えて、フロント投影型とすることにより、プロジェクター14から観察者までの光路を透明スクリーンによる折り返しの光路にできるので、全体的な光学距離を短くして、さらに画像表示システムを小型化できる。 As described above, thetransparent screen 12 of the present invention reflects light by the reflective dots formed by fixing the cholesteric liquid crystal phase. Preferably, as shown in FIG. 2, the spiral axis of the cholesteric liquid crystal phase is An angle in the range of 70 to 90 ° is formed with the surface of the reflective dot. Thereby, as shown in FIG. 3, the transparent screen 12 can reflect not only retroreflection but also various directions on the light incident side, that is, the projector side, as well as retroreflection.
For this reason, theimage display system 10 of the present invention is not projected from the normal direction of the transparent screen, but is disposed below the transparent screen, like a short focus projector, so that the image display system 10 is larger than the normal line of the transparent screen. Even when light is projected at an angle, an image can be suitably viewed from the projector side with a wide viewing angle.
Therefore, theimage display system 10 of the present invention is a front projection type, and the projector 14 is arranged near the transparent screen by setting the incident angle of the projector 14 to the normal line of the transparent screen 12 to 30 to 70 °. Thus, the image display system can be reduced in size. In addition, by adopting the front projection type, the optical path from the projector 14 to the observer can be a folded optical path by a transparent screen, so that the overall optical distance can be shortened and the image display system can be further miniaturized.
そのため、本発明の画像表示システム10は、透明スクリーンの法線方向からの投影ではなく、短焦点プロジェクターのように、透明スクリーンの下方にプロジェクターを配置して、透明スクリーンの法線に対して大きな角度で光を投影しても、プロジェクター側から、広い視野角で好適に画像を視認できる。
従って、本発明の画像表示システム10は、フロント投影型にして、かつ、透明スクリーン12の法線に対するプロジェクター14の入射角度を30~70°とすることにより、プロジェクター14を透明スクリーンの近くに配置して、画像表示システムを小型化できる。加えて、フロント投影型とすることにより、プロジェクター14から観察者までの光路を透明スクリーンによる折り返しの光路にできるので、全体的な光学距離を短くして、さらに画像表示システムを小型化できる。 As described above, the
For this reason, the
Therefore, the
以下、画像表示システム10の作用を説明することにより、本発明の透明スクリーン12および画像表示システム10について、より詳細に説明する。
Hereinafter, the operation of the image display system 10 will be described to describe the transparent screen 12 and the image display system 10 of the present invention in more detail.
画像表示システム10において、プロジェクター14が出射した画像を担持する緑色の投影光は、まず、右円偏光積層体20の1枚目(最もプロジェクター14側)の右円偏光ドットフィルム30Rに入射する。
1枚目の右円偏光ドットフィルム30Rに入射した光の内、右円偏光反射ドット34Rに入射した光は、緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、それ以外の光は、右円偏光反射ドット34Rを通過して、1枚目の右円偏光ドットフィルム30Rを通過する。また、右円偏光反射ドット34R以外の部分に入射した光は、そのまま、1枚目の右円偏光ドットフィルム30Rを通過する。 In theimage display system 10, the green projection light carrying the image emitted by the projector 14 first enters the right circularly polarized dot film 30 </ b> R of the first sheet (most projector 14 side) of the right circularly polarized laminate 20.
Of the light incident on the first right circularlypolarized dot film 30R, only the green right circularly polarized light of the light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R. Passes through the right circularly polarized light reflecting dot 34R and passes through the first right circularly polarized light dot film 30R. Further, the light incident on the portion other than the right circularly polarized light reflecting dot 34R passes through the first right circularly polarized light dot film 30R as it is.
1枚目の右円偏光ドットフィルム30Rに入射した光の内、右円偏光反射ドット34Rに入射した光は、緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、それ以外の光は、右円偏光反射ドット34Rを通過して、1枚目の右円偏光ドットフィルム30Rを通過する。また、右円偏光反射ドット34R以外の部分に入射した光は、そのまま、1枚目の右円偏光ドットフィルム30Rを通過する。 In the
Of the light incident on the first right circularly
右円偏光積層体20の1枚目の右円偏光ドットフィルム30Rを通過した光は、次いで、2枚目(プロジェクター14側から2番目)の右円偏光ドットフィルム30Rに入射する。
右円偏光積層体20の2枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、2枚目の右円偏光ドットフィルム30Rを通過する。 The light that has passed through the first right circularlypolarized dot film 30R of the right circularly polarized laminate 20 then enters the second (second from the projector 14 side) right circularly polarized dot film 30R.
Similarly, in the light incident on the second right circularlypolarized dot film 30R of the right circularly polarized laminate 20, only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R. The light other than the green right circularly polarized light incident on the right circularly polarized reflective dot 34R and the light incident on the portion other than the right circularly polarized reflective dot 34R pass through the second right circularly polarized dot film 30R. .
右円偏光積層体20の2枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、2枚目の右円偏光ドットフィルム30Rを通過する。 The light that has passed through the first right circularly
Similarly, in the light incident on the second right circularly
右円偏光積層体20の2枚目の右円偏光ドットフィルム30Rを通過した光は、次いで、3枚目(プロジェクター14側から3番目)の右円偏光ドットフィルム30Rに入射する。
右円偏光積層体20の3枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、3枚目の右円偏光ドットフィルム30Rすなわち右円偏光積層体20を通過する。 The light that has passed through the second right circularlypolarized dot film 30R of the right circularly polarized laminate 20 is then incident on the third (third from the projector 14 side) right circularly polarized dot film 30R.
Similarly, in the light incident on the third right circularlypolarized dot film 30R of the right circularly polarized laminate 20, only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R. The light other than the green right circularly polarized light incident on the right circularly polarized light reflecting dot 34R and the light incident on the portion other than the right circularly polarized light reflecting dot 34R are the third right circularly polarized dot film 30R, that is, the right circle. It passes through the polarizing laminate 20.
右円偏光積層体20の3枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、3枚目の右円偏光ドットフィルム30Rすなわち右円偏光積層体20を通過する。 The light that has passed through the second right circularly
Similarly, in the light incident on the third right circularly
右円偏光積層体20(3枚目の右円偏光ドットフィルム30R)を通過した光は、次いで、左円偏光積層体24に入射する。
左円偏光積層体24に入射した光は、まず、1枚目(最もプロジェクター14側)の左円偏光ドットフィルム30Lに入射して、左円偏光反射ドット34Lに入射した緑色の左円偏光のみが左円偏光反射ドット34Lによって反射され、左円偏光反射ドット34Lに入射した緑色の左円偏光以外の光、および、左円偏光反射ドット34L以外の部分に入射した光は、1枚目の左円偏光ドットフィルム30Lを通過する。 The light that has passed through the right circular polarization laminate 20 (the third right circularpolarization dot film 30R) then enters the left circular polarization laminate 24.
The light incident on the leftcircularly polarizing laminate 24 first enters only the left circularly polarized light incident on the left circularly polarized light reflecting dot 34L after entering the first circularly polarized dot film 30L (most projector 14 side). Is reflected by the left circularly polarized light reflecting dot 34L and the light other than the green left circularly polarized light incident on the left circularly polarized light reflecting dot 34L and the light incident on the portion other than the left circularly polarized light reflecting dot 34L are It passes through the left circularly polarized dot film 30L.
左円偏光積層体24に入射した光は、まず、1枚目(最もプロジェクター14側)の左円偏光ドットフィルム30Lに入射して、左円偏光反射ドット34Lに入射した緑色の左円偏光のみが左円偏光反射ドット34Lによって反射され、左円偏光反射ドット34Lに入射した緑色の左円偏光以外の光、および、左円偏光反射ドット34L以外の部分に入射した光は、1枚目の左円偏光ドットフィルム30Lを通過する。 The light that has passed through the right circular polarization laminate 20 (the third right circular
The light incident on the left
左円偏光積層体24の1枚目の左円偏光ドットフィルム30Lを通過した光は、次いで、2枚目(プロジェクター14側から2番目)の左円偏光ドットフィルム30Lに入射する。
左円偏光積層体24の2枚目の左円偏光ドットフィルム30Lに入射した光は、同様に、左円偏光反射ドット34Lに入射した緑色の左円偏光のみが左円偏光反射ドット34Lによって反射され、左円偏光反射ドット34Lに入射した緑色の左円偏光以外の光、および、左円偏光反射ドット34L以外の部分に入射した光は、2枚目の左円偏光ドットフィルム30Lを通過する。 The light that has passed through the first left circularlypolarized dot film 30L of the left circularly polarized laminate 24 then enters the second left circularly polarized dot film 30L (second from the projector 14 side).
Similarly, in the light incident on the second left circularlypolarized dot film 30L of the left circularly polarized laminate 24, only the green left circularly polarized light incident on the left circularly polarized reflective dot 34L is reflected by the left circularly polarized reflective dot 34L. The light other than the green left circularly polarized light incident on the left circularly polarized reflective dot 34L and the light incident on the portion other than the left circularly polarized reflective dot 34L pass through the second left circularly polarized dot film 30L. .
左円偏光積層体24の2枚目の左円偏光ドットフィルム30Lに入射した光は、同様に、左円偏光反射ドット34Lに入射した緑色の左円偏光のみが左円偏光反射ドット34Lによって反射され、左円偏光反射ドット34Lに入射した緑色の左円偏光以外の光、および、左円偏光反射ドット34L以外の部分に入射した光は、2枚目の左円偏光ドットフィルム30Lを通過する。 The light that has passed through the first left circularly
Similarly, in the light incident on the second left circularly
左円偏光積層体24の2枚目の左円偏光ドットフィルム30Lを通過した光は、次いで、3枚目(プロジェクター14側から3番目)の左円偏光ドットフィルム30Lに入射する。
左円偏光積層体24の3枚目の左円偏光ドットフィルム30Lに入射した光は、同様に、左円偏光反射ドット34Lに入射した緑色の左円偏光のみが左円偏光反射ドット34Lによって反射され、左円偏光反射ドット34Lに入射した緑色の左円偏光以外の光、および、左円偏光反射ドット34L以外の部分に入射した光は、3枚目の左円偏光ドットフィルム30Lを通過して、左円偏光積層体24すなわち透明スクリーン12を通過する。 The light that has passed through the second left circularlypolarized dot film 30L of the left circularly polarized laminate 24 then enters the third (third from the projector 14 side) left circularly polarized dot film 30L.
Similarly, in the light incident on the third left circularlypolarized dot film 30L of the left circularly polarized laminate 24, only the green left circularly polarized light incident on the left circularly polarized reflective dot 34L is reflected by the left circularly polarized reflective dot 34L. The light other than the green left circularly polarized light incident on the left circularly polarized reflective dot 34L and the light incident on the part other than the left circularly polarized reflective dot 34L pass through the third left circularly polarized dot film 30L. Then, it passes through the left circularly polarizing laminate 24, that is, the transparent screen 12.
左円偏光積層体24の3枚目の左円偏光ドットフィルム30Lに入射した光は、同様に、左円偏光反射ドット34Lに入射した緑色の左円偏光のみが左円偏光反射ドット34Lによって反射され、左円偏光反射ドット34Lに入射した緑色の左円偏光以外の光、および、左円偏光反射ドット34L以外の部分に入射した光は、3枚目の左円偏光ドットフィルム30Lを通過して、左円偏光積層体24すなわち透明スクリーン12を通過する。 The light that has passed through the second left circularly
Similarly, in the light incident on the third left circularly
画像表示システム10においては、右円偏光積層体20の3枚の右円偏光ドットフィルム30Rに配列された右円偏光反射ドット34Rによって反射された緑色の右円偏光、および、左円偏光積層体24の3枚の左円偏光ドットフィルム30Lに配列された左円偏光反射ドット34Lによって反射された緑色の左円偏光によって、透明スクリーン12に緑色の単色画像が表示(投影)される。
In the image display system 10, the green right circularly polarized light reflected by the right circularly polarized light reflecting dots 34R arranged on the three right circularly polarized dot films 30R of the right circularly polarized light laminated body 20, and the left circularly polarized light laminated body A green monochromatic image is displayed (projected) on the transparent screen 12 by the green left circularly polarized light reflected by the left circularly polarized reflective dots 34L arranged on the 24 left circularly polarized dot films 30L.
このように、図示例の透明スクリーン12においては、ドットフィルムに配列された反射ドットで反射された光によって画像が表示される。また、図示例の透明スクリーン12においては、画像の表示に供されなかった光は、透明スクリーンを通過する。
すなわち、光を反射または拡散するドットによって画像を表示する透明スクリーンの場合には、ドットに入射しなかった光およびドットを通過した光は、透明スクリーンを通過して、そのまま、透明スクリーンのプロジェクターとは逆側の面から観察される。以下の説明では、透明スクリーンにおける、プロジェクターとは逆側の面を『裏面』とも言う。
そのため、裏面側において、透明スクリーンを介してプロジェクターの出射光を直進方向から見た場合に、プロジェクター14の光源が観察され、ホットスポットが生じる。ホットスポットは、非常に眩しく、特に、後述するような光源としてレーザーを用いるレーザープロジェクターの場合には、ホットスポットは、極めて眩しい。 Thus, on thetransparent screen 12 in the illustrated example, an image is displayed by light reflected by the reflective dots arranged on the dot film. Further, in the illustrated transparent screen 12, the light that has not been used for displaying an image passes through the transparent screen.
That is, in the case of a transparent screen that displays an image with dots that reflect or diffuse light, the light that has not entered the dot and the light that has passed through the dot pass through the transparent screen as it is with the projector of the transparent screen. Is observed from the opposite side. In the following description, the surface of the transparent screen opposite to the projector is also referred to as “back surface”.
Therefore, on the back side, when the emitted light of the projector is viewed from the straight direction through the transparent screen, the light source of theprojector 14 is observed and a hot spot is generated. Hot spots are very dazzling. In particular, in the case of a laser projector using a laser as a light source as described later, the hot spots are extremely dazzling.
すなわち、光を反射または拡散するドットによって画像を表示する透明スクリーンの場合には、ドットに入射しなかった光およびドットを通過した光は、透明スクリーンを通過して、そのまま、透明スクリーンのプロジェクターとは逆側の面から観察される。以下の説明では、透明スクリーンにおける、プロジェクターとは逆側の面を『裏面』とも言う。
そのため、裏面側において、透明スクリーンを介してプロジェクターの出射光を直進方向から見た場合に、プロジェクター14の光源が観察され、ホットスポットが生じる。ホットスポットは、非常に眩しく、特に、後述するような光源としてレーザーを用いるレーザープロジェクターの場合には、ホットスポットは、極めて眩しい。 Thus, on the
That is, in the case of a transparent screen that displays an image with dots that reflect or diffuse light, the light that has not entered the dot and the light that has passed through the dot pass through the transparent screen as it is with the projector of the transparent screen. Is observed from the opposite side. In the following description, the surface of the transparent screen opposite to the projector is also referred to as “back surface”.
Therefore, on the back side, when the emitted light of the projector is viewed from the straight direction through the transparent screen, the light source of the
これに対して、本発明の透明スクリーンは、これスティック液晶相を固定してなる反射ドットを二次元的に配列したドットフィルムを、複数、有し、かつ、複数枚のドットフィルムのうち、2以上のドットフィルムが、反射ドットの選択反射中心波長および反射する円偏光の回転方向が互いに等しい。図示例の透明スクリーン12は、支持体表面に緑色の右円偏光を反射する右円偏光反射ドット34Rが二次元的に配列された右円偏光ドットフィルム30Rを3枚積層した右円偏光積層体20と、支持体表面に緑色の左円偏光を反射する左円偏光反射ドット34Lが二次元的に配列された左円偏光ドットフィルム30Lを3枚積層した左円偏光積層体24とを有する。
従って、プロジェクター14から投影された緑色の右円偏光が、右円偏光積層体20の1枚目の右円偏光ドットフィルム30Rを通過しても、2枚目の右円偏光ドットフィルム30Rで反射され、緑色の右円偏光が2枚目の右円偏光ドットフィルム30Rを通過しても、3枚目の右円偏光ドットフィルム30Rで反射される。同様に、プロジェクター14から投影された緑色の左円偏光が、左円偏光積層体24の1枚目の左円偏光ドットフィルム30Lを通過しても、2枚目の左円偏光ドットフィルム30Lで反射され、緑色の左円偏光が2枚目の左円偏光ドットフィルム30Lを通過しても、3枚目の左円偏光ドットフィルム30Lで反射される。 On the other hand, the transparent screen of the present invention has a plurality of dot films in which reflective dots formed by fixing the stick liquid crystal phase are two-dimensionally arranged, and among the plurality of dot films, 2 In the above dot film, the selective reflection center wavelength of the reflective dot and the rotation direction of the reflected circularly polarized light are equal to each other. Thetransparent screen 12 in the illustrated example has a right circularly polarized laminate in which three right circularly polarized dot films 30R in which right circularly polarized reflective dots 34R that reflect green right circularly polarized light are two-dimensionally arranged are laminated on the support surface. 20 and a left circularly polarized laminate 24 in which three left circularly polarized dot films 30L in which left circularly polarized reflective dots 34L that reflect green left circularly polarized light are two-dimensionally arranged are laminated on the support surface.
Therefore, even if the green right circularly polarized light projected from theprojector 14 passes through the first right circularly polarized dot film 30R of the right circularly polarized laminate 20, it is reflected by the second right circularly polarized dot film 30R. Even when the green right circularly polarized light passes through the second right circularly polarized dot film 30R, it is reflected by the third right circularly polarized dot film 30R. Similarly, even if the green left circularly polarized light projected from the projector 14 passes through the first left circularly polarized dot film 30L of the left circularly polarized laminate 24, the second left circularly polarized dot film 30L Even if the green left circularly polarized light is reflected and passes through the second left circularly polarized dot film 30L, it is reflected by the third left circularly polarized dot film 30L.
従って、プロジェクター14から投影された緑色の右円偏光が、右円偏光積層体20の1枚目の右円偏光ドットフィルム30Rを通過しても、2枚目の右円偏光ドットフィルム30Rで反射され、緑色の右円偏光が2枚目の右円偏光ドットフィルム30Rを通過しても、3枚目の右円偏光ドットフィルム30Rで反射される。同様に、プロジェクター14から投影された緑色の左円偏光が、左円偏光積層体24の1枚目の左円偏光ドットフィルム30Lを通過しても、2枚目の左円偏光ドットフィルム30Lで反射され、緑色の左円偏光が2枚目の左円偏光ドットフィルム30Lを通過しても、3枚目の左円偏光ドットフィルム30Lで反射される。 On the other hand, the transparent screen of the present invention has a plurality of dot films in which reflective dots formed by fixing the stick liquid crystal phase are two-dimensionally arranged, and among the plurality of dot films, 2 In the above dot film, the selective reflection center wavelength of the reflective dot and the rotation direction of the reflected circularly polarized light are equal to each other. The
Therefore, even if the green right circularly polarized light projected from the
そのため、本発明の透明スクリーン12によれば、緑色の右円偏光を反射する3枚の右円偏光ドットフィルム30Rと、緑色の左円偏光を反射する3枚の左円偏光ドットフィルム30Lとによって、プロジェクター14から投影された無偏光の緑色の光の大部分を反射できるので、ホットスポットを大幅に抑制することができる。
しかも、光は、反射ドットの間隙は通過し、かつ、反射ドットは緑色の光のみを反射するので、本発明の透明スクリーン12は、ホットスポットを抑制しつつ、良好な透明性も確保できる。さらに、前述のように、ドットフィルムを通過する光は、散乱しないで、そのまま透過するので、ヘイズも小さい。 Therefore, according to thetransparent screen 12 of the present invention, the three right circularly polarized dot films 30R that reflect green right circularly polarized light and the three left circularly polarized dot films 30L that reflect green left circularly polarized light are used. Since most of the non-polarized green light projected from the projector 14 can be reflected, hot spots can be significantly suppressed.
Moreover, since the light passes through the gaps between the reflective dots and the reflective dots reflect only green light, thetransparent screen 12 of the present invention can ensure good transparency while suppressing hot spots. Furthermore, as described above, the light passing through the dot film is not scattered but is transmitted as it is, so that the haze is small.
しかも、光は、反射ドットの間隙は通過し、かつ、反射ドットは緑色の光のみを反射するので、本発明の透明スクリーン12は、ホットスポットを抑制しつつ、良好な透明性も確保できる。さらに、前述のように、ドットフィルムを通過する光は、散乱しないで、そのまま透過するので、ヘイズも小さい。 Therefore, according to the
Moreover, since the light passes through the gaps between the reflective dots and the reflective dots reflect only green light, the
また、前述のように、本発明においては、コレステリック液晶相を固定した反射ドットによって光を反射することにより、透明スクリーン12に画像を表示する。好ましくは、図2に示すように、コレステリック液晶相の螺旋軸が、反射ドットの表面と70~90°の範囲の角度を成す反射ドットによって、光を反射することにより、透明スクリーン12に画像を表示する。
そのため、透明スクリーン12の反射ドットは、図3に示すように、入射した光を、再帰反射のみならず、光の入射側の様々な方向に反射する。従って、短焦点プロジェクターを透明スクリーン12に近接して配置して、透明スクリーンの法線に対して大きな角度で投影光を透明スクリーンに入射した場合でも、広視野角化を図れる。
これにより、本発明によれば、フロント投影型の小型の画像表示システムによって、広い視野角で、十分な光量の反射光で、高画質な単色の画像を観察することが可能である。 Further, as described above, in the present invention, an image is displayed on thetransparent screen 12 by reflecting light with the reflective dots in which the cholesteric liquid crystal phase is fixed. Preferably, as shown in FIG. 2, the spiral axis of the cholesteric liquid crystal phase reflects light by the reflective dots that form an angle in the range of 70 to 90 ° with the surface of the reflective dots, whereby an image is displayed on the transparent screen 12. indicate.
Therefore, as shown in FIG. 3, the reflective dots of thetransparent screen 12 reflect the incident light not only in retroreflection but also in various directions on the light incident side. Therefore, even when the short focus projector is disposed close to the transparent screen 12 and the projection light is incident on the transparent screen at a large angle with respect to the normal line of the transparent screen, a wide viewing angle can be achieved.
As a result, according to the present invention, it is possible to observe a high-quality monochromatic image with a sufficient amount of reflected light with a wide viewing angle by using a small image display system of the front projection type.
そのため、透明スクリーン12の反射ドットは、図3に示すように、入射した光を、再帰反射のみならず、光の入射側の様々な方向に反射する。従って、短焦点プロジェクターを透明スクリーン12に近接して配置して、透明スクリーンの法線に対して大きな角度で投影光を透明スクリーンに入射した場合でも、広視野角化を図れる。
これにより、本発明によれば、フロント投影型の小型の画像表示システムによって、広い視野角で、十分な光量の反射光で、高画質な単色の画像を観察することが可能である。 Further, as described above, in the present invention, an image is displayed on the
Therefore, as shown in FIG. 3, the reflective dots of the
As a result, according to the present invention, it is possible to observe a high-quality monochromatic image with a sufficient amount of reflected light with a wide viewing angle by using a small image display system of the front projection type.
図4に、本発明の透明スクリーンの別の例を用いる、本発明の画像表示システムの別の例を概念的に示す。
なお、図4に示す画像表示システム50は、前述の図1に示す画像表示システム10と同じ部材を多用するので、同じ部材には同じ符号を付し、以下の説明は異なる部位を主に行う。 FIG. 4 conceptually shows another example of the image display system of the present invention using another example of the transparent screen of the present invention.
In addition, since theimage display system 50 shown in FIG. 4 uses many the same members as the image display system 10 shown in FIG. 1 described above, the same members are denoted by the same reference numerals, and the following description mainly focuses on different parts. .
なお、図4に示す画像表示システム50は、前述の図1に示す画像表示システム10と同じ部材を多用するので、同じ部材には同じ符号を付し、以下の説明は異なる部位を主に行う。 FIG. 4 conceptually shows another example of the image display system of the present invention using another example of the transparent screen of the present invention.
In addition, since the
図4に示す画像表示システム50は、本発明の透明スクリーン52と、プロジェクター54とを有する。この画像表示システム50も、緑色の単色画像を表示する画像表示システムである。
また、透明スクリーン52は、λ/4板56と、右円偏光積層体20とを有する。なお、先の例と同様、図示は省略するが、λ/4板56と右円偏光積層体20とは、貼合層によって貼り合わされている。 Animage display system 50 shown in FIG. 4 includes the transparent screen 52 of the present invention and a projector 54. The image display system 50 is also an image display system that displays a green single-color image.
Thetransparent screen 52 includes a λ / 4 plate 56 and the right circularly polarizing laminate 20. In addition, although illustration is abbreviate | omitted like the previous example, (lambda) / 4 board 56 and the right circularly-polarized-light laminated body 20 are bonded together by the bonding layer.
また、透明スクリーン52は、λ/4板56と、右円偏光積層体20とを有する。なお、先の例と同様、図示は省略するが、λ/4板56と右円偏光積層体20とは、貼合層によって貼り合わされている。 An
The
λ/4板56は、直線偏光を右円偏光にするものである。すなわち、λ/4板56は、出射光が、右円偏光積層体20を構成する右円偏光ドットフィルム30Rの右円偏光反射ドット34Rに対応する右円偏光になるように、遅相軸を合わせて配置される。
λ/4板(λ/4機能を有する板)とは、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板である。より具体的には、所定の波長λnmにおける面内レターデーション値がRe(λ)=λ/4(または、この奇数倍)を示す板である。この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよい。
なお、λ/4板56は、λ/4機能を有する光学異方性層のみからなる構成であっても、支持体にλ/4機能を有する光学異方性層を形成した構成であってもよいが、λ/4板56が支持体を有する場合には、支持体と光学異方性層との組み合わせが、λ/4板であることを意図する。 The λ / 4plate 56 converts linearly polarized light into right circularly polarized light. That is, the λ / 4 plate 56 has a slow axis so that the emitted light becomes right circular polarization corresponding to the right circular polarization reflection dot 34R of the right circular polarization dot film 30R constituting the right circular polarization laminate 20. Arranged together.
A λ / 4 plate (a plate having a λ / 4 function) is a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, the plate has an in-plane retardation value of Re (λ) = λ / 4 (or an odd multiple thereof) at a predetermined wavelength λnm. This expression only needs to be achieved at any wavelength in the visible light range (for example, 550 nm).
Note that the λ / 4plate 56 has a configuration in which an optically anisotropic layer having a λ / 4 function is formed on a support, even though the optically anisotropic layer has only a λ / 4 function. However, when the λ / 4 plate 56 has a support, the combination of the support and the optically anisotropic layer is intended to be a λ / 4 plate.
λ/4板(λ/4機能を有する板)とは、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板である。より具体的には、所定の波長λnmにおける面内レターデーション値がRe(λ)=λ/4(または、この奇数倍)を示す板である。この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよい。
なお、λ/4板56は、λ/4機能を有する光学異方性層のみからなる構成であっても、支持体にλ/4機能を有する光学異方性層を形成した構成であってもよいが、λ/4板56が支持体を有する場合には、支持体と光学異方性層との組み合わせが、λ/4板であることを意図する。 The λ / 4
A λ / 4 plate (a plate having a λ / 4 function) is a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, the plate has an in-plane retardation value of Re (λ) = λ / 4 (or an odd multiple thereof) at a predetermined wavelength λnm. This expression only needs to be achieved at any wavelength in the visible light range (for example, 550 nm).
Note that the λ / 4
λ/4板56は、公知のλ/4板が利用可能である。従って、波長550nmの面内レターデーションRe(550)は特に限定はないが、120~150nmが好ましく、125~145nmがより好ましい。なお、λ/4板56が、支持体等の光学異方性層以外の層を含んでいる場合であっても、λ/4板56は、この面内レターデーションの範囲を示すのが好ましい。
As the λ / 4 plate 56, a known λ / 4 plate can be used. Accordingly, the in-plane retardation Re (550) at a wavelength of 550 nm is not particularly limited, but is preferably 120 to 150 nm, and more preferably 125 to 145 nm. Note that, even when the λ / 4 plate 56 includes a layer other than the optically anisotropic layer such as a support, the λ / 4 plate 56 preferably exhibits this in-plane retardation range. .
また、図示例の透明スクリーン52においては、λ/4板56は、厚さ方向のレターデーションであるRth(550)が少ないのが好ましい。
具体的には、Rth(550)が-50~50nmであるのが好ましく、-30~30nmであるのがより好ましく、Rth(550)がゼロであるのがさらに好ましい。
これにより、λ/4板56に対して斜めに入射する直線偏光を円偏光に変換できる点で好ましい結果を得る。 In the illustratedtransparent screen 52, the λ / 4 plate 56 preferably has a small Rth (550) which is retardation in the thickness direction.
Specifically, Rth (550) is preferably −50 to 50 nm, more preferably −30 to 30 nm, and even more preferably Rth (550) is zero.
Thereby, a preferable result is obtained in that linearly polarized light incident obliquely on the λ / 4plate 56 can be converted into circularly polarized light.
具体的には、Rth(550)が-50~50nmであるのが好ましく、-30~30nmであるのがより好ましく、Rth(550)がゼロであるのがさらに好ましい。
これにより、λ/4板56に対して斜めに入射する直線偏光を円偏光に変換できる点で好ましい結果を得る。 In the illustrated
Specifically, Rth (550) is preferably −50 to 50 nm, more preferably −30 to 30 nm, and even more preferably Rth (550) is zero.
Thereby, a preferable result is obtained in that linearly polarized light incident obliquely on the λ / 4
ここで、後述するが、図示例の画像表示システム50は、λ/4板56および右円偏光を反射する右円偏光積層体20を有する透明スクリーン52と、出射光が直線偏光のプロジェクター54とを有し、プロジェクター54が出射した直線偏光の出射光を、λ/4板56で右円偏光にして、この右円偏光を右円偏光積層体20に入射して、反射することによって、画像を表示する。
Here, as will be described later, an image display system 50 in the illustrated example includes a transparent screen 52 having a λ / 4 plate 56 and a right circularly polarized laminate 20 that reflects right circularly polarized light, and a projector 54 whose emitted light is linearly polarized light. The linearly polarized outgoing light emitted from the projector 54 is converted into right circularly polarized light by the λ / 4 plate 56, and this right circularly polarized light is incident on the right circularly polarized laminate 20 and reflected, thereby obtaining an image. Is displayed.
本発明の画像表示システムにおいては、透明スクリーン52が、一方向の円偏光のみで画像を表示する場合には、出射光が直線偏光のプロジェクター54を用いる。言い換えれば、本発明においては、出射光が直線偏光であるプロジェクター54を、用いる場合には、プロジェクター54の出射光を円偏光にするλ/4板と、右または左の円偏光を反射するドットフィルムで構成される積層体とで、透明スクリーンを構成する。
なお、本発明においては、前述のように、プロジェクターの出射光が無偏光の場合には、λ/4板は用いず、好ましくは、図1に示される透明スクリーン12のように、右円偏光を反射するドットフィルムで構成される積層体と、左偏光を反射するドットフィルムと構成される積層体とで、透明スクリーンを構成する。 In the image display system of the present invention, when thetransparent screen 52 displays an image with only one direction of circularly polarized light, a projector 54 whose output light is linearly polarized light is used. In other words, in the present invention, when a projector 54 whose output light is linearly polarized light is used, a λ / 4 plate that makes the output light of the projector 54 circularly polarized, and a dot that reflects right or left circularly polarized light. A transparent screen is comprised with the laminated body comprised with a film.
In the present invention, as described above, when the light emitted from the projector is non-polarized light, the λ / 4 plate is not used, and preferably right-circularly polarized light as in thetransparent screen 12 shown in FIG. A transparent screen is composed of a laminate composed of a dot film that reflects light and a laminate composed of a dot film that reflects left polarized light.
なお、本発明においては、前述のように、プロジェクターの出射光が無偏光の場合には、λ/4板は用いず、好ましくは、図1に示される透明スクリーン12のように、右円偏光を反射するドットフィルムで構成される積層体と、左偏光を反射するドットフィルムと構成される積層体とで、透明スクリーンを構成する。 In the image display system of the present invention, when the
In the present invention, as described above, when the light emitted from the projector is non-polarized light, the λ / 4 plate is not used, and preferably right-circularly polarized light as in the
プロジェクター54は、出射光が直線偏光のものであれば、LCOS(Liquid crystal on silicon)プロジェクターおよびレーザープロジェクター等、公知の各種のプロジェクターが利用可能である。
なかでも、後述する理由で、レーザープロジェクターは好適に例示される。 As theprojector 54, various known projectors such as an LCOS (Liquid crystal on silicon) projector and a laser projector can be used as long as the emitted light is linearly polarized light.
Especially, a laser projector is illustrated suitably for the reason mentioned later.
なかでも、後述する理由で、レーザープロジェクターは好適に例示される。 As the
Especially, a laser projector is illustrated suitably for the reason mentioned later.
ここで、出射光が直線偏光のプロジェクター54を用いる場合には、プロジェクター54から出射して透明スクリーン52に入射する光を、透明スクリーン52に対してP波とし、かつ、プロジェクター54から透明スクリーン52への光の入射角度を、透明スクリーン52の法線に対して56°±10°とするのが好ましい。
すなわち、出射光が直線偏光のプロジェクター54を用いる場合には、プロジェクター54から出射して透明スクリーン52に入射する光を、透明スクリーン52に対してP波とし、かつ、プロジェクター54の光軸が、透明スクリーン52の法線に対して56°±10°の角度となるようにするのが好ましい。 Here, in the case of using a linearlypolarized projector 54, the light emitted from the projector 54 and incident on the transparent screen 52 is P wave with respect to the transparent screen 52, and the projector 54 transmits the transparent screen 52. It is preferable that the incident angle of light is 56 ° ± 10 ° with respect to the normal line of the transparent screen 52.
That is, when using aprojector 54 with linearly polarized light, the light emitted from the projector 54 and incident on the transparent screen 52 is P wave with respect to the transparent screen 52, and the optical axis of the projector 54 is The angle is preferably 56 ° ± 10 ° with respect to the normal line of the transparent screen 52.
すなわち、出射光が直線偏光のプロジェクター54を用いる場合には、プロジェクター54から出射して透明スクリーン52に入射する光を、透明スクリーン52に対してP波とし、かつ、プロジェクター54の光軸が、透明スクリーン52の法線に対して56°±10°の角度となるようにするのが好ましい。 Here, in the case of using a linearly
That is, when using a
透明スクリーンを用いた画像表示システムにおけるホットスポットは、プロジェクターからの出射光の直進方向において、透明スクリーンを透過してプロジェクターの光源が観察されるホットスポットのみならず、プロジェクターからの出射光の直進方向において、出射光がスクリーンの表面で正反射される位置でも、プロジェクターの光源が間接的に観察され、ホットスポットとなる。
A hot spot in an image display system using a transparent screen is not only a hot spot in which the light source of the projector is observed through the transparent screen in the straight traveling direction of the light emitted from the projector, but also the straight traveling direction of the light emitted from the projector. The light source of the projector is indirectly observed even at a position where the emitted light is regularly reflected on the surface of the screen, and becomes a hot spot.
ここで、周知のように、直線偏光の反射率は、反射面への入射角度によって異なり、反射面への入射光が、反射面に対してP波の場合には、反射面の法線に対して56°の角度で光が入射すると、光の反射率が、ほぼ、ゼロになる。
従って、出射光が直線偏光のプロジェクター54から出射して透明スクリーン52に入射する光を、透明スクリーン52に対してP波とし、かつ、プロジェクター54からの光の入射角度すなわちプロジェクター54の光軸を、透明スクリーン52の法線に対して56°±10°とすることにより、プロジェクター54からの光が透明スクリーン52によって正反射されて生じるホットスポットを大幅に低減できる。
なお、プロジェクター54から出射する直線偏光を透明スクリーン52に対してP波とする方法は、プロジェクター54の光源を光軸を中心に回転する方法等、公知の方法が、各種、利用可能である。 Here, as is well known, the reflectance of linearly polarized light varies depending on the angle of incidence on the reflecting surface. On the other hand, when light is incident at an angle of 56 °, the reflectance of light becomes substantially zero.
Accordingly, the light emitted from the linearlypolarized projector 54 and incident on the transparent screen 52 is set as a P wave with respect to the transparent screen 52, and the incident angle of the light from the projector 54, that is, the optical axis of the projector 54 is set. By setting the angle to 56 ° ± 10 ° with respect to the normal line of the transparent screen 52, hot spots generated when the light from the projector 54 is regularly reflected by the transparent screen 52 can be greatly reduced.
Various known methods such as a method of rotating the light source of theprojector 54 around the optical axis can be used as the method of making the linearly polarized light emitted from the projector 54 P wave with respect to the transparent screen 52.
従って、出射光が直線偏光のプロジェクター54から出射して透明スクリーン52に入射する光を、透明スクリーン52に対してP波とし、かつ、プロジェクター54からの光の入射角度すなわちプロジェクター54の光軸を、透明スクリーン52の法線に対して56°±10°とすることにより、プロジェクター54からの光が透明スクリーン52によって正反射されて生じるホットスポットを大幅に低減できる。
なお、プロジェクター54から出射する直線偏光を透明スクリーン52に対してP波とする方法は、プロジェクター54の光源を光軸を中心に回転する方法等、公知の方法が、各種、利用可能である。 Here, as is well known, the reflectance of linearly polarized light varies depending on the angle of incidence on the reflecting surface. On the other hand, when light is incident at an angle of 56 °, the reflectance of light becomes substantially zero.
Accordingly, the light emitted from the linearly
Various known methods such as a method of rotating the light source of the
以下、画像表示システム50の作用を説明することにより、本発明の透明スクリーン52および画像表示システム50について、より詳細に説明する。
Hereinafter, the operation of the image display system 50 will be described to describe the transparent screen 52 and the image display system 50 of the present invention in more detail.
前述のように、プロジェクター54の出射光は、直線偏光で、緑色単色である。
プロジェクター54から出射された画像を担持する直線偏光の緑色光は、まず、λ/4板56によって、右円偏光にされる。 As described above, the light emitted from theprojector 54 is linearly polarized light and is a single green color.
The linearly polarized green light carrying the image emitted from theprojector 54 is first made right circularly polarized by the λ / 4 plate 56.
プロジェクター54から出射された画像を担持する直線偏光の緑色光は、まず、λ/4板56によって、右円偏光にされる。 As described above, the light emitted from the
The linearly polarized green light carrying the image emitted from the
λ/4板56によって右円偏光にされた光は、右円偏光積層体20に入射する。
右円偏光積層体20に入射した光は、先と同様、まず、1枚目の右円偏光ドットフィルム30Rに入射して、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、1枚目の右円偏光ドットフィルム30Rを通過する。 The light that has been right-circularly polarized by the λ / 4plate 56 enters the right-circularly polarized laminate 20.
As before, the light incident on the right circularlypolarized laminate 20 is incident on the first right circularly polarized dot film 30R, and only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is on the right. The light other than the green right circularly polarized light reflected by the circularly polarized reflective dot 34R and incident on the right circularly polarized reflective dot 34R and the light incident on the portion other than the right circularly polarized reflective dot 34R are the first right circle. It passes through the polarizing dot film 30R.
右円偏光積層体20に入射した光は、先と同様、まず、1枚目の右円偏光ドットフィルム30Rに入射して、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、1枚目の右円偏光ドットフィルム30Rを通過する。 The light that has been right-circularly polarized by the λ / 4
As before, the light incident on the right circularly
右円偏光積層体20の1枚目の右円偏光ドットフィルム30Rを通過した光は、次いで、2枚目の右円偏光ドットフィルム30Rに入射する。
右円偏光積層体20の2枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、2枚目の右円偏光ドットフィルム30Rを通過する。 The light that has passed through the first right circularlypolarized dot film 30R of the right circularly polarized laminate 20 then enters the second right circularly polarized dot film 30R.
Similarly, in the light incident on the second right circularlypolarized dot film 30R of the right circularly polarized laminate 20, only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R. The light other than the green right circularly polarized light incident on the right circularly polarized reflective dot 34R and the light incident on the portion other than the right circularly polarized reflective dot 34R pass through the second right circularly polarized dot film 30R. .
右円偏光積層体20の2枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、2枚目の右円偏光ドットフィルム30Rを通過する。 The light that has passed through the first right circularly
Similarly, in the light incident on the second right circularly
右円偏光積層体20の2枚目の右円偏光ドットフィルム30Rを通過した光は、次いで、3枚目の右円偏光ドットフィルム30Rに入射する。
右円偏光積層体20の3枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、3枚目の右円偏光ドットフィルム30R(右円偏光積層体20)すなわち透明スクリーン52を通過する。 The light that has passed through the second right circularlypolarized dot film 30R of the right circularly polarized laminate 20 is then incident on the third right circularly polarized dot film 30R.
Similarly, in the light incident on the third right circularlypolarized dot film 30R of the right circularly polarized laminate 20, only the green right circularly polarized light incident on the right circularly polarized reflective dot 34R is reflected by the right circularly polarized reflective dot 34R. The light other than the green right circularly polarized light that has entered the right circularly polarized reflective dot 34R and the light that has entered the portion other than the right circularly polarized reflective dot 34R are supplied to the third right circularly polarized dot film 30R (right circle). It passes through the polarizing laminate 20), that is, the transparent screen 52.
右円偏光積層体20の3枚目の右円偏光ドットフィルム30Rに入射した光は、同様に、右円偏光反射ドット34Rに入射した緑色の右円偏光のみが右円偏光反射ドット34Rによって反射され、右円偏光反射ドット34Rに入射した緑色の右円偏光以外の光、および、右円偏光反射ドット34R以外の部分に入射した光は、3枚目の右円偏光ドットフィルム30R(右円偏光積層体20)すなわち透明スクリーン52を通過する。 The light that has passed through the second right circularly
Similarly, in the light incident on the third right circularly
先の例と同様、画像表示システム50においても、3枚の右円偏光ドットフィルム30Rの右円偏光反射ドット34Rによって反射された緑色の右円偏光によって透明スクリーン52に画像が表示(投影)される。
また、プロジェクター54から出射され、λ/4板56によって変換された緑色の右円が、右円偏光積層体20の1枚目の右円偏光ドットフィルム30Rを通過しても、2枚目の右円偏光ドットフィルム30Rで反射され、緑色の右円偏光が2枚目の右円偏光ドットフィルム30Rを通過しても、3枚目の右円偏光ドットフィルム30Rで反射される。 As in the previous example, also in theimage display system 50, an image is displayed (projected) on the transparent screen 52 by the green right circularly polarized light reflected by the right circularly polarized reflective dots 34R of the three right circularly polarized dot films 30R. The
Even if the green right circle emitted from theprojector 54 and converted by the λ / 4 plate 56 passes through the first right circularly polarized dot film 30R of the right circularly polarized laminate 20, Even if green right circularly polarized light passes through the second right circularly polarized dot film 30R, it is reflected by the third right circularly polarized dot film 30R.
また、プロジェクター54から出射され、λ/4板56によって変換された緑色の右円が、右円偏光積層体20の1枚目の右円偏光ドットフィルム30Rを通過しても、2枚目の右円偏光ドットフィルム30Rで反射され、緑色の右円偏光が2枚目の右円偏光ドットフィルム30Rを通過しても、3枚目の右円偏光ドットフィルム30Rで反射される。 As in the previous example, also in the
Even if the green right circle emitted from the
以上のように、画像表示システム50においては、プロジェクター54から出射されて右円偏光積層体20に入射する光は緑色の右円偏光であり、緑色の円偏光の大部分を3枚の右円偏光ドットフィルム30Rによって反射できるので、先の例と同様、ホットスポットを大幅に抑制することができる。さらに、反射ドットによる拡散性の高い光反射によって、広視野角の画像を表示できるのも、先の例と同様である。
また、透明スクリーン52は、図1に示す透明スクリーン12よりも、フィルムの数が少ないので、より光透過性が高くでき、かつ、ヘイズも低くできる。 As described above, in theimage display system 50, the light emitted from the projector 54 and incident on the right circularly polarized laminate 20 is green right circularly polarized light, and most of the green circularly polarized light is divided into three right circles. Since it can reflect with the polarizing dot film 30R, a hot spot can be suppressed significantly similarly to the previous example. Furthermore, as in the previous example, an image with a wide viewing angle can be displayed by light reflection with high diffusibility by the reflective dots.
Further, since thetransparent screen 52 has a smaller number of films than the transparent screen 12 shown in FIG. 1, it can have higher light transmittance and lower haze.
また、透明スクリーン52は、図1に示す透明スクリーン12よりも、フィルムの数が少ないので、より光透過性が高くでき、かつ、ヘイズも低くできる。 As described above, in the
Further, since the
前述のように、本例では、出射光が偏光であるプロジェクター54を用いる。
ここで、後述するが、コレステリック液晶層を固定してなる反射ドットによる反射光で画像を表示する本発明においては、レーザープロジェクターのように出射光の波長帯域が狭いプロジェクターを用い、反射ドットによる選択反射中心波長の波長帯域をプロジェクターの出射光の波長帯域に合わせることにより、透明スクリーンの透明性を、より向上でき、かつ、表示画像となる光は、反射ドットによって確実に反射できる。
この点を考慮すると、プロジェクター54としては、レーザープロジェクターが好ましく利用される。 As described above, in this example, theprojector 54 whose outgoing light is polarized light is used.
Here, as will be described later, in the present invention in which an image is displayed with light reflected by a reflective dot formed by fixing a cholesteric liquid crystal layer, a projector having a narrow wavelength band of emitted light is used, such as a laser projector, and selection by a reflective dot is performed. By matching the wavelength band of the reflection center wavelength with the wavelength band of the light emitted from the projector, the transparency of the transparent screen can be further improved, and the light that becomes the display image can be reliably reflected by the reflective dots.
Considering this point, a laser projector is preferably used as theprojector 54.
ここで、後述するが、コレステリック液晶層を固定してなる反射ドットによる反射光で画像を表示する本発明においては、レーザープロジェクターのように出射光の波長帯域が狭いプロジェクターを用い、反射ドットによる選択反射中心波長の波長帯域をプロジェクターの出射光の波長帯域に合わせることにより、透明スクリーンの透明性を、より向上でき、かつ、表示画像となる光は、反射ドットによって確実に反射できる。
この点を考慮すると、プロジェクター54としては、レーザープロジェクターが好ましく利用される。 As described above, in this example, the
Here, as will be described later, in the present invention in which an image is displayed with light reflected by a reflective dot formed by fixing a cholesteric liquid crystal layer, a projector having a narrow wavelength band of emitted light is used, such as a laser projector, and selection by a reflective dot is performed. By matching the wavelength band of the reflection center wavelength with the wavelength band of the light emitted from the projector, the transparency of the transparent screen can be further improved, and the light that becomes the display image can be reliably reflected by the reflective dots.
Considering this point, a laser projector is preferably used as the
ところが、周知のように、レーザー光は、干渉性が高い。
そのためプロジェクター54として、レーザープロジェクターを用いる画像表示システムでは、凹凸等に起因するレーザー光の乱れ等が生じると、レーザー光の高い干渉性に起因して、光同士が強め合ったり弱め合ったりして、表示画像に、微細な明暗部が、多数、形成され、表示画像にギラギラした感じの画像のチラつきを生じる、スペックルという現象が問題になる場合がある。 However, as is well known, laser light has high coherence.
For this reason, in an image display system using a laser projector as theprojector 54, when the laser beam is disturbed due to unevenness or the like, the light is strengthened or weakened due to the high coherence of the laser beam. A phenomenon called speckle, in which a large number of fine bright and dark portions are formed in the display image, causing the display image to flicker, may be a problem.
そのためプロジェクター54として、レーザープロジェクターを用いる画像表示システムでは、凹凸等に起因するレーザー光の乱れ等が生じると、レーザー光の高い干渉性に起因して、光同士が強め合ったり弱め合ったりして、表示画像に、微細な明暗部が、多数、形成され、表示画像にギラギラした感じの画像のチラつきを生じる、スペックルという現象が問題になる場合がある。 However, as is well known, laser light has high coherence.
For this reason, in an image display system using a laser projector as the
これに対し、本発明の透明スクリーンは、反射ドットによって光を拡散するように反射して、画像を表示する。好ましくは、図2に示すように、コレステリック液晶相の螺旋軸が、反射ドットの表面と70~90°の範囲の角度を成す反射ドットによって、光を高い拡散性で反射して、画像を表示する。しかも、本発明の透明スクリーンは、このような反射ドットを二次元的に配列したドットフィルムを、複数層、積層した構成を有し、各ドットフィルムの反射ドットによって拡散した光で、透明スクリーンに画像を表示するものであり、しかも、ドットフィルム同士で、反射ドットの選択反射中心波長および反射する円偏光の回転方向が等しい。
そのため、本発明によれば、レーザープロジェクターを用いた場合に、反射ドットによる光の拡散によって、表示画像に生じた微細な明暗部を目立たなくすることができ、スペックルを低減できる。特に、コレステリック液晶相の螺旋軸が、反射ドットの表面と70~90°の範囲の角度を成す反射ドットを用いる透明スクリーンは、その良好な光拡散性によって、スペックルを大幅に低減できる。 On the other hand, the transparent screen of the present invention reflects the light so as to diffuse by the reflective dots and displays an image. Preferably, as shown in FIG. 2, the cholesteric liquid crystal phase spiral axis reflects the light with a high diffusivity by the reflective dot having an angle in the range of 70 to 90 ° with the surface of the reflective dot, thereby displaying an image. To do. In addition, the transparent screen of the present invention has a structure in which a plurality of dot films in which such reflective dots are two-dimensionally arranged are stacked, and the light diffused by the reflective dots of each dot film is applied to the transparent screen. The image is displayed, and the dot reflection films have the same selective reflection center wavelength of the reflection dots and the rotation direction of the reflected circularly polarized light.
Therefore, according to the present invention, when a laser projector is used, fine light and dark portions generated in the display image can be made inconspicuous due to the diffusion of light by the reflective dots, and speckle can be reduced. In particular, a transparent screen using a reflective dot in which the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot can greatly reduce speckle due to its good light diffusibility.
そのため、本発明によれば、レーザープロジェクターを用いた場合に、反射ドットによる光の拡散によって、表示画像に生じた微細な明暗部を目立たなくすることができ、スペックルを低減できる。特に、コレステリック液晶相の螺旋軸が、反射ドットの表面と70~90°の範囲の角度を成す反射ドットを用いる透明スクリーンは、その良好な光拡散性によって、スペックルを大幅に低減できる。 On the other hand, the transparent screen of the present invention reflects the light so as to diffuse by the reflective dots and displays an image. Preferably, as shown in FIG. 2, the cholesteric liquid crystal phase spiral axis reflects the light with a high diffusivity by the reflective dot having an angle in the range of 70 to 90 ° with the surface of the reflective dot, thereby displaying an image. To do. In addition, the transparent screen of the present invention has a structure in which a plurality of dot films in which such reflective dots are two-dimensionally arranged are stacked, and the light diffused by the reflective dots of each dot film is applied to the transparent screen. The image is displayed, and the dot reflection films have the same selective reflection center wavelength of the reflection dots and the rotation direction of the reflected circularly polarized light.
Therefore, according to the present invention, when a laser projector is used, fine light and dark portions generated in the display image can be made inconspicuous due to the diffusion of light by the reflective dots, and speckle can be reduced. In particular, a transparent screen using a reflective dot in which the spiral axis of the cholesteric liquid crystal phase forms an angle in the range of 70 to 90 ° with the surface of the reflective dot can greatly reduce speckle due to its good light diffusibility.
図4に示す画像表示システム50においては、プロジェクター54としてレーザープロジェクターのように出射光の波長帯域が狭いプロジェクターを用いた場合には、右円偏光反射ドット34Rを形成するコレステリック液晶相を構成する液晶として、Δnが低い液晶化合物(低ΔnLC(liquid crystal))を用いて、右円偏光反射ドット34Rが、レーザープロジェクターの出射光の波長帯域に対応する狭い波長帯域の円偏光のみを反射するようにするのが好ましい。
このような構成とすることにより、右円偏光積層体20を透過できる光の波長域を広くして、透明スクリーンの透明性を、より高くできると共に、反射ドットに入射したプロジェクター54が出射する波長帯域の光を、確実に反射して適正な画像を表示できる。 In theimage display system 50 shown in FIG. 4, when a projector with a narrow wavelength band of emitted light is used as the projector 54, such as a laser projector, the liquid crystal constituting the cholesteric liquid crystal phase that forms the right circularly polarized reflection dot 34R. As described above, using a liquid crystal compound having a low Δn (low ΔnLC (liquid crystal)), the right circularly polarized light reflecting dot 34R reflects only circularly polarized light in a narrow wavelength band corresponding to the wavelength band of the emitted light of the laser projector. It is preferable to do this.
By adopting such a configuration, the wavelength range of light that can be transmitted through the rightcircularly polarizing laminate 20 can be widened, the transparency of the transparent screen can be further increased, and the wavelength emitted by the projector 54 that has entered the reflective dot is emitted. An appropriate image can be displayed by reliably reflecting the light in the band.
このような構成とすることにより、右円偏光積層体20を透過できる光の波長域を広くして、透明スクリーンの透明性を、より高くできると共に、反射ドットに入射したプロジェクター54が出射する波長帯域の光を、確実に反射して適正な画像を表示できる。 In the
By adopting such a configuration, the wavelength range of light that can be transmitted through the right
具体的には、プロジェクターとしてレーザープロジェクターを用いる場合には、反射ドットを構成する液晶化合物のΔnは、0.02~0.1であるのが好ましく、0.04~0.06であるのがより好ましい。
Specifically, when a laser projector is used as the projector, Δn of the liquid crystal compound constituting the reflective dot is preferably 0.02 to 0.1, and preferably 0.04 to 0.06. More preferred.
なお、図4に示す透明スクリーン52は、緑色の右円偏光を反射する右円偏光積層体20を用い、λ/4板56によって光を右円偏光にしているが、本発明は、これに限定はされない。
すなわち、λ/4板56によって直線偏光を左円偏光とし、右円偏光積層体20に変えて緑色の左円偏光を反射する左円偏光積層体24を用いても、同様の透明スクリーンおよび画像表示システムを構成できる。 Note that thetransparent screen 52 shown in FIG. 4 uses the right circularly polarized laminate 20 that reflects green right circularly polarized light, and the light is converted to right circularly polarized light by the λ / 4 plate 56. There is no limitation.
That is, the same transparent screen and image can be obtained by using the left circularlypolarized light laminate 24 that converts the linearly polarized light into the left circularly polarized light by the λ / 4 plate 56 and reflects the green left circularly polarized light instead of the right circularly polarized light laminate 20. A display system can be configured.
すなわち、λ/4板56によって直線偏光を左円偏光とし、右円偏光積層体20に変えて緑色の左円偏光を反射する左円偏光積層体24を用いても、同様の透明スクリーンおよび画像表示システムを構成できる。 Note that the
That is, the same transparent screen and image can be obtained by using the left circularly
また、図示例の画像表示システム50は、直線偏光を出射するプロジェクター54を用いて、直線偏光をλ/4板56に入射しているが、本発明は、これに限定はされない。
例えば、右円偏光のみ(あるいは左円偏光のみ)を反射するドットフィルムを用いる本発明の画像表示システムにおいて、前述のプロジェクター14と同様、出射光が無偏光のプロジェクターを用い、プロジェクターが出射した光を直線偏光板に入射して直線偏光とし、直線偏光板によって直線偏光にした光をλ/4板56に入射してもよい。 In the illustratedimage display system 50, the linearly polarized light is incident on the λ / 4 plate 56 using the projector 54 that emits linearly polarized light. However, the present invention is not limited to this.
For example, in the image display system of the present invention that uses a dot film that reflects only right-handed circularly polarized light (or left-handed circularly polarized light only), light emitted from the projector using a non-polarized projector as in theprojector 14 described above. May be incident on the linearly polarizing plate to obtain linearly polarized light, and light that has been linearly polarized by the linearly polarizing plate may be incident on the λ / 4 plate 56.
例えば、右円偏光のみ(あるいは左円偏光のみ)を反射するドットフィルムを用いる本発明の画像表示システムにおいて、前述のプロジェクター14と同様、出射光が無偏光のプロジェクターを用い、プロジェクターが出射した光を直線偏光板に入射して直線偏光とし、直線偏光板によって直線偏光にした光をλ/4板56に入射してもよい。 In the illustrated
For example, in the image display system of the present invention that uses a dot film that reflects only right-handed circularly polarized light (or left-handed circularly polarized light only), light emitted from the projector using a non-polarized projector as in the
本発明の透明スクリーンは、図1および図4に示される構成に限定はされない。すなわち、本発明の透明スクリーンは、支持体にコレステリック液晶相を固定してなる反射ドットを二次元配列したドットフィルムを、複数、有し、かつ、反射ドットの選択反射中心波長および反射する円偏光の回転方向が、互いに等しいドットフィルムを、複数枚、有する構成であれば、各種の構成が利用可能である。
The transparent screen of the present invention is not limited to the configuration shown in FIGS. That is, the transparent screen of the present invention has a plurality of dot films in which reflective dots formed by fixing a cholesteric liquid crystal phase on a support are two-dimensionally arranged, and the selective reflection center wavelength of the reflective dots and the circularly polarized light that reflects. Various configurations can be used as long as the rotation directions of the plurality of dot films include a plurality of dot films having the same rotation direction.
例えば、図1および図4に示す透明スクリーンは、緑色の円偏光を反射する反射ドットを有する、緑色の単色画像を表示するものであるが、本発明は、これに限定はされない。
すなわち、本発明の透明スクリーンは、支持体表面に赤色の円偏光を反射する反射ドットを二次元的に配列したドットフィルムを、複数、積層した構成を有する、赤色の単色画像を表示するものであってもよく、あるいは、支持体表面に青色の円偏光を反射する反射ドットを二次元的に配列したドットフィルムを、複数、積層した構成を有する、青色の単色画像を表示するものであってもよい。
この場合、本発明の画像表示システムで用いるプロジェクターは、赤色の単色の画像を担持する投影光を出射するプロジェクター、あるいは、青色の単色の画像を担持する投影光を出射するプロジェクターを用いる。 For example, the transparent screen shown in FIGS. 1 and 4 displays a green single-color image having reflective dots that reflect green circularly polarized light, but the present invention is not limited to this.
That is, the transparent screen of the present invention displays a red single-color image having a configuration in which a plurality of dot films in which reflective dots that reflect red circularly polarized light are two-dimensionally arranged are laminated on the support surface. Or a blue monochromatic image having a configuration in which a plurality of dot films in which two-dimensionally arranged reflective dots that reflect blue circularly polarized light are two-dimensionally arranged are laminated on the support surface. Also good.
In this case, the projector used in the image display system of the present invention uses a projector that emits projection light that carries a red single-color image or a projector that emits projection light that carries a blue single-color image.
すなわち、本発明の透明スクリーンは、支持体表面に赤色の円偏光を反射する反射ドットを二次元的に配列したドットフィルムを、複数、積層した構成を有する、赤色の単色画像を表示するものであってもよく、あるいは、支持体表面に青色の円偏光を反射する反射ドットを二次元的に配列したドットフィルムを、複数、積層した構成を有する、青色の単色画像を表示するものであってもよい。
この場合、本発明の画像表示システムで用いるプロジェクターは、赤色の単色の画像を担持する投影光を出射するプロジェクター、あるいは、青色の単色の画像を担持する投影光を出射するプロジェクターを用いる。 For example, the transparent screen shown in FIGS. 1 and 4 displays a green single-color image having reflective dots that reflect green circularly polarized light, but the present invention is not limited to this.
That is, the transparent screen of the present invention displays a red single-color image having a configuration in which a plurality of dot films in which reflective dots that reflect red circularly polarized light are two-dimensionally arranged are laminated on the support surface. Or a blue monochromatic image having a configuration in which a plurality of dot films in which two-dimensionally arranged reflective dots that reflect blue circularly polarized light are two-dimensionally arranged are laminated on the support surface. Also good.
In this case, the projector used in the image display system of the present invention uses a projector that emits projection light that carries a red single-color image or a projector that emits projection light that carries a blue single-color image.
また、図1および図4に示される例では、右円偏光積層体20および左円偏光積層体24は、いずれも、ドットフィルムを3枚有するものであるが、本発明は、これに限定はされない。
例えば、透明スクリーンにおけるλ/4板56の有無に関わらず、右円偏光積層体および/または左円偏光積層体は、ドットフィルムを2枚有するものでもよく、あるいは、ドットフィルムを4枚以上有するものでもよい。
また、透明スクリーンが、右円偏光積層体および左円偏光積層体を有する構成の場合には、右円偏光積層体と左円偏光積層体とで、ドットフィルムの枚数が異なってもよい。加えて、透明スクリーンが右円偏光積層体および左円偏光積層体を有する構成の場合には、右円偏光積層体および左円偏光積層体の一方が、反射ドットの選択反射中心波長および反射する円偏光の回転方向が等しいドットフィルムを、複数枚、有するものであれば、他方はドットフィルムを1枚のみ有する構成でもよい。 Further, in the example shown in FIGS. 1 and 4, each of the rightcircularly polarizing laminate 20 and the left circularly polarizing laminate 24 has three dot films, but the present invention is not limited to this. Not.
For example, regardless of the presence or absence of the λ / 4plate 56 on the transparent screen, the right circularly polarizing laminate and / or the left circularly polarizing laminate may have two dot films, or four or more dot films. It may be a thing.
Further, in the case where the transparent screen has a right circular polarization laminate and a left circular polarization laminate, the number of dot films may be different between the right circular polarization laminate and the left circular polarization laminate. In addition, when the transparent screen has a right-circular polarizing laminate and a left-circular polarizing laminate, one of the right-circular polarizing laminate and the left-circular polarizing laminate reflects the selective reflection center wavelength of the reflective dot. If there are a plurality of dot films having the same rotational direction of circularly polarized light, the other may have only one dot film.
例えば、透明スクリーンにおけるλ/4板56の有無に関わらず、右円偏光積層体および/または左円偏光積層体は、ドットフィルムを2枚有するものでもよく、あるいは、ドットフィルムを4枚以上有するものでもよい。
また、透明スクリーンが、右円偏光積層体および左円偏光積層体を有する構成の場合には、右円偏光積層体と左円偏光積層体とで、ドットフィルムの枚数が異なってもよい。加えて、透明スクリーンが右円偏光積層体および左円偏光積層体を有する構成の場合には、右円偏光積層体および左円偏光積層体の一方が、反射ドットの選択反射中心波長および反射する円偏光の回転方向が等しいドットフィルムを、複数枚、有するものであれば、他方はドットフィルムを1枚のみ有する構成でもよい。 Further, in the example shown in FIGS. 1 and 4, each of the right
For example, regardless of the presence or absence of the λ / 4
Further, in the case where the transparent screen has a right circular polarization laminate and a left circular polarization laminate, the number of dot films may be different between the right circular polarization laminate and the left circular polarization laminate. In addition, when the transparent screen has a right-circular polarizing laminate and a left-circular polarizing laminate, one of the right-circular polarizing laminate and the left-circular polarizing laminate reflects the selective reflection center wavelength of the reflective dot. If there are a plurality of dot films having the same rotational direction of circularly polarized light, the other may have only one dot film.
また、本発明においては、λ/4板56を有さない構成において、右円偏光積層体20のみで透明スクリーンを構成してもよく、あるいは、左円偏光積層体24のみで透明スクリーンを構成してもよい。
すなわち、本発明の透明スクリーンは、右円偏光ドットフィルム30Rを2枚のみ有する構成でもよく、あるいは、左円偏光ドットフィルム30Lを2枚のみ有する構成でもよい。 Further, in the present invention, in the configuration without the λ / 4plate 56, the transparent screen may be configured only by the right circularly polarized laminate 20, or the transparent screen is configured only by the left circularly polarized laminate 24. May be.
That is, the transparent screen of the present invention may have a configuration having only two right circularlypolarized dot films 30R, or may have a configuration having only two left circularly polarized dot films 30L.
すなわち、本発明の透明スクリーンは、右円偏光ドットフィルム30Rを2枚のみ有する構成でもよく、あるいは、左円偏光ドットフィルム30Lを2枚のみ有する構成でもよい。 Further, in the present invention, in the configuration without the λ / 4
That is, the transparent screen of the present invention may have a configuration having only two right circularly
以上、本発明の透明スクリーンおよび画像表示システムについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
The transparent screen and the image display system of the present invention have been described in detail above. However, the present invention is not limited to the above-described examples, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.
以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
Hereinafter, the features of the present invention will be described more specifically with reference to examples. The materials, reagents, used amounts, substance amounts, ratios, processing details, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1]
<下地層の作製>
下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、下地層溶液を調製した。
(下地層溶液)
下記の棒状液晶化合物の混合物A 100質量部
IRGACURE 819 (BASF社製) 3質量部
下記の化合物A 0.6質量部
メチルエチルケトン 932.4質量部 [Example 1]
<Preparation of underlayer>
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare a base layer solution.
(Underlayer solution)
Mixture A of the following rod-like liquid crystal compound A 100 parts by mass IRGACURE 819 (manufactured by BASF) 3 parts by mass The following compound A 0.6 parts by mass Methyl ethyl ketone 932.4 parts by mass
<下地層の作製>
下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、下地層溶液を調製した。
(下地層溶液)
下記の棒状液晶化合物の混合物A 100質量部
IRGACURE 819 (BASF社製) 3質量部
下記の化合物A 0.6質量部
メチルエチルケトン 932.4質量部 [Example 1]
<Preparation of underlayer>
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare a base layer solution.
(Underlayer solution)
Mixture A of the following rod-like liquid crystal compound A 100 parts by mass IRGACURE 819 (manufactured by BASF) 3 parts by mass The following compound A 0.6 parts by mass Methyl ethyl ketone 932.4 parts by mass
棒状液晶化合物の混合物A
数値は質量%である。また、Rは酸素で結合する基である。
化合物A
Mixture A of rod-like liquid crystal compounds
The numerical value is mass%. R is a group bonded with oxygen.
Compound A
数値は質量%である。また、Rは酸素で結合する基である。
化合物A
The numerical value is mass%. R is a group bonded with oxygen.
Compound A
<保護フィルム01の作製>
特開2012-18396号公報の実施例([0267]~[0270])を参考に、セルロースアセテートフィルムを作製した。これを保護フィルム01とする。保護フィルム01のRe(550)およびRth(550)は、それぞれ、2nmおよび35nmであった。
この保護フィルム01を、支持体32として用いた。
この支持体32(保護フィルム01)に、調製した下地層溶液を#2.6のバーコーターを用いて塗布した。その後、塗膜面温度が50℃になるように塗膜を加熱し、60秒間乾燥した後に、酸素濃度100ppm以下の窒素パージ下で、紫外線照射装置により、500mJ/cm2の紫外線を塗膜に照射して、架橋反応を進行させ、下地層を作製した。
なお、下地層を形成した支持体32のヘイズ値を測定したところ、0.8%であった。 <Preparation of protective film 01>
A cellulose acetate film was prepared with reference to Examples ([0267] to [0270]) of JP2012-18396A. This is designated as a protective film 01. Re (550) and Rth (550) of the protective film 01 were 2 nm and 35 nm, respectively.
This protective film 01 was used as thesupport 32.
The prepared underlayer solution was applied to the support 32 (protective film 01) using a # 2.6 bar coater. Thereafter, the coating film was heated so that the coating film surface temperature became 50 ° C., dried for 60 seconds, and then irradiated with 500 mJ / cm 2 of ultraviolet rays by an ultraviolet irradiation device under a nitrogen purge with an oxygen concentration of 100 ppm or less. Irradiation was performed to advance the cross-linking reaction, and an underlayer was prepared.
In addition, it was 0.8% when the haze value of thesupport body 32 in which the base layer was formed was measured.
特開2012-18396号公報の実施例([0267]~[0270])を参考に、セルロースアセテートフィルムを作製した。これを保護フィルム01とする。保護フィルム01のRe(550)およびRth(550)は、それぞれ、2nmおよび35nmであった。
この保護フィルム01を、支持体32として用いた。
この支持体32(保護フィルム01)に、調製した下地層溶液を#2.6のバーコーターを用いて塗布した。その後、塗膜面温度が50℃になるように塗膜を加熱し、60秒間乾燥した後に、酸素濃度100ppm以下の窒素パージ下で、紫外線照射装置により、500mJ/cm2の紫外線を塗膜に照射して、架橋反応を進行させ、下地層を作製した。
なお、下地層を形成した支持体32のヘイズ値を測定したところ、0.8%であった。 <Preparation of protective film 01>
A cellulose acetate film was prepared with reference to Examples ([0267] to [0270]) of JP2012-18396A. This is designated as a protective film 01. Re (550) and Rth (550) of the protective film 01 were 2 nm and 35 nm, respectively.
This protective film 01 was used as the
The prepared underlayer solution was applied to the support 32 (protective film 01) using a # 2.6 bar coater. Thereafter, the coating film was heated so that the coating film surface temperature became 50 ° C., dried for 60 seconds, and then irradiated with 500 mJ / cm 2 of ultraviolet rays by an ultraviolet irradiation device under a nitrogen purge with an oxygen concentration of 100 ppm or less. Irradiation was performed to advance the cross-linking reaction, and an underlayer was prepared.
In addition, it was 0.8% when the haze value of the
<コレステリック液晶ドットの形成>
下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶インク液R(液晶組成物)を調製した。
(コレステリック液晶インク液R)
シクロペンタノン 139.6質量部
前述の棒状液晶化合物の混合物A 100質量部
IRGACURE 907 (BASF社製) 3.0質量部
カヤキュアーDETX(日本化薬社製) 1質量部
下記のキラル剤A 5.78質量部
下記の界面活性剤 0.08質量部 <Formation of cholesteric liquid crystal dots>
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare a cholesteric liquid crystal ink liquid R (liquid crystal composition).
(Cholesteric liquid crystal ink R)
Cyclopentanone 139.6 parts by mass Mixture A of the above-described rod-shaped liquid crystal compound 100 parts by mass IRGACURE 907 (manufactured by BASF) 3.0 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass The following chiral agent A 5. 78 parts by mass The following surfactant 0.08 parts by mass
下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶インク液R(液晶組成物)を調製した。
(コレステリック液晶インク液R)
シクロペンタノン 139.6質量部
前述の棒状液晶化合物の混合物A 100質量部
IRGACURE 907 (BASF社製) 3.0質量部
カヤキュアーDETX(日本化薬社製) 1質量部
下記のキラル剤A 5.78質量部
下記の界面活性剤 0.08質量部 <Formation of cholesteric liquid crystal dots>
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare a cholesteric liquid crystal ink liquid R (liquid crystal composition).
(Cholesteric liquid crystal ink R)
Cyclopentanone 139.6 parts by mass Mixture A of the above-described rod-shaped liquid crystal compound 100 parts by mass IRGACURE 907 (manufactured by BASF) 3.0 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass The following chiral agent A 5. 78 parts by mass The following surfactant 0.08 parts by mass
キラル剤A
界面活性剤
コレステリック液晶インク液Rは、選択反射中心波長550nmの光を反射するドットを形成する材料である。また、コレステリック液晶インク液Rは、右円偏光を反射するドットを形成する材料である。すなわち、コレステリック液晶インク液Rは、右円偏光反射ドット34Rを形成するための材料である。 Chiral agent A
Surfactant
The cholesteric liquid crystal ink liquid R is a material that forms dots that reflect light having a selective reflection center wavelength of 550 nm. The cholesteric liquid crystal ink liquid R is a material for forming dots that reflect right circularly polarized light. That is, the cholesteric liquid crystal ink liquid R is a material for forming the right circularly polarizedlight reflecting dot 34R.
界面活性剤
コレステリック液晶インク液Rは、選択反射中心波長550nmの光を反射するドットを形成する材料である。また、コレステリック液晶インク液Rは、右円偏光を反射するドットを形成する材料である。すなわち、コレステリック液晶インク液Rは、右円偏光反射ドット34Rを形成するための材料である。 Chiral agent A
Surfactant
The cholesteric liquid crystal ink liquid R is a material that forms dots that reflect light having a selective reflection center wavelength of 550 nm. The cholesteric liquid crystal ink liquid R is a material for forming dots that reflect right circularly polarized light. That is, the cholesteric liquid crystal ink liquid R is a material for forming the right circularly polarized
調製したコレステリック液晶インク液Rを、プラテンを60℃に加熱しておいたインクジェットプリンター(FUJIFILM Dimatix社製、DMP-2831)にて、下地層を作製した支持体32の下地層上に、ドット中心間距離(ピッチ)60μmで100×100mmの領域全面に打滴した。プラテン上で60℃、30秒以上乾燥した後に、紫外線照射装置により、室温で500mJ/cm2の紫外線を照射して硬化させ、表面に右円偏光反射ドット34Rを形成した支持体32を得た。
The prepared cholesteric liquid crystal ink liquid R was placed on the base layer of the support 32 on which the base layer was prepared with an inkjet printer (DMP-2831, manufactured by FUJIFILM Dimatix Co., Ltd.) in which the platen was heated to 60 ° C. Drops were deposited on the entire surface of a 100 × 100 mm area with a distance (pitch) of 60 μm. After drying on the platen at 60 ° C. for 30 seconds or longer, the substrate 32 was cured by irradiating with ultraviolet rays of 500 mJ / cm 2 at room temperature with an ultraviolet irradiation device to obtain the right circularly polarized reflecting dots 34R on the surface. .
<ドット形状、コレステリック構造評価>
作製した右円偏光反射ドット34Rのうち、無作為に10個を選択して、ドットの形状をレーザー顕微鏡(キーエンス社製)にて観察した。その結果、ドットは平均直径30μm、平均最大高さ6μm、ドット端部のドット表面と下地層表面とが両者の接触部でなす角度(接触角)は平均44°であり、ドット端部から中心に向かう方向で、連続的に高さが増加していた。
支持体32の中央に位置する1つの右円偏光反射ドット34Rについて、ドット中心を含む面で、支持体32に垂直に切削し、断面を走査型電子顕微鏡で観察した。その結果、ドット内部に図2および図3に示すような明部と暗部の縞模様が確認された。
さらに、断面図から、図2に示すように、ドットの中心を通る支持体32の表面の垂線(一点鎖線)に対する角度α1が30°の位置および60°の位置において、ドットの暗部が成す線の法線方向と、ドットの表面とが成す角度θ1およびθ2を測定した。測定は、図7に概念的に示すように、ドットの最も外側の暗部が成す線(図2における1本目の暗部が成す線Ld1(ドット端部))、ドットの最も内側の暗部が成す線(ドット中央)、および、ドット端部とドット中央との中間の暗部が成す線(ドット端部と中央の間)の、3本の暗部が成す線に対して行った。
その結果、ドット端部、ドット端部と中央の間、ドット中央の順に、90°、89°および90°であった。すなわち、このドットは、ドットの暗部が成す線の法線方向と、ドットの表面とが成す角度が、ドットの表面近傍でも、ドットの中央(最内部)でも、ドットの中間部でも、ほぼ同じであった。 <Dot shape and cholesteric structure evaluation>
Ten of the right circularly polarizedlight reflecting dots 34R were selected at random, and the shape of the dots was observed with a laser microscope (manufactured by Keyence Corporation). As a result, the dots have an average diameter of 30 μm, an average maximum height of 6 μm, and the angle (contact angle) formed by the contact surface between the dot surface at the dot end and the surface of the base layer is an average of 44 °, and is centered from the dot end. The height continuously increased in the direction toward.
One right circularly polarizedlight reflecting dot 34R located at the center of the support 32 was cut perpendicularly to the support 32 on the surface including the center of the dot, and the cross section was observed with a scanning electron microscope. As a result, a bright and dark stripe pattern as shown in FIGS. 2 and 3 was confirmed inside the dot.
Further, as shown in FIG. 2 from the cross-sectional view, the dark portion of the dot is formed at the position where the angle α 1 with respect to the perpendicular (one-dot chain line) of the surface of thesupport 32 passing through the center of the dot is 30 ° and 60 °. The angles θ 1 and θ 2 formed by the normal direction of the line and the surface of the dot were measured. In the measurement, as conceptually shown in FIG. 7, the line formed by the outermost dark portion of the dot (the line Ld 1 formed by the first dark portion in FIG. 2 (dot end portion)) and the innermost dark portion of the dot are formed. A line (dot center) and a line formed by three dark portions (between the dot end portion and the center) formed by an intermediate dark portion between the dot end portion and the dot center were performed.
As a result, they were 90 °, 89 °, and 90 ° in the order of the dot end, the dot end and the center, and the dot center. In other words, the angle between the normal direction of the line formed by the dark part of the dot and the surface of the dot is almost the same whether the dot is near the dot surface, in the center of the dot (innermost), or in the middle part of the dot. Met.
作製した右円偏光反射ドット34Rのうち、無作為に10個を選択して、ドットの形状をレーザー顕微鏡(キーエンス社製)にて観察した。その結果、ドットは平均直径30μm、平均最大高さ6μm、ドット端部のドット表面と下地層表面とが両者の接触部でなす角度(接触角)は平均44°であり、ドット端部から中心に向かう方向で、連続的に高さが増加していた。
支持体32の中央に位置する1つの右円偏光反射ドット34Rについて、ドット中心を含む面で、支持体32に垂直に切削し、断面を走査型電子顕微鏡で観察した。その結果、ドット内部に図2および図3に示すような明部と暗部の縞模様が確認された。
さらに、断面図から、図2に示すように、ドットの中心を通る支持体32の表面の垂線(一点鎖線)に対する角度α1が30°の位置および60°の位置において、ドットの暗部が成す線の法線方向と、ドットの表面とが成す角度θ1およびθ2を測定した。測定は、図7に概念的に示すように、ドットの最も外側の暗部が成す線(図2における1本目の暗部が成す線Ld1(ドット端部))、ドットの最も内側の暗部が成す線(ドット中央)、および、ドット端部とドット中央との中間の暗部が成す線(ドット端部と中央の間)の、3本の暗部が成す線に対して行った。
その結果、ドット端部、ドット端部と中央の間、ドット中央の順に、90°、89°および90°であった。すなわち、このドットは、ドットの暗部が成す線の法線方向と、ドットの表面とが成す角度が、ドットの表面近傍でも、ドットの中央(最内部)でも、ドットの中間部でも、ほぼ同じであった。 <Dot shape and cholesteric structure evaluation>
Ten of the right circularly polarized
One right circularly polarized
Further, as shown in FIG. 2 from the cross-sectional view, the dark portion of the dot is formed at the position where the angle α 1 with respect to the perpendicular (one-dot chain line) of the surface of the
As a result, they were 90 °, 89 °, and 90 ° in the order of the dot end, the dot end and the center, and the dot center. In other words, the angle between the normal direction of the line formed by the dark part of the dot and the surface of the dot is almost the same whether the dot is near the dot surface, in the center of the dot (innermost), or in the middle part of the dot. Met.
<ドット面積率>
右円偏光反射ドット34Rを形成した支持体32から、無作為に5箇所を選択して、レーザー顕微鏡(キーエンス社製)にて観察し、1×1mmの領域において、ドットの面積率を測定した。その結果、5箇所におけるドットの面積率の平均値は、20.2%であった。 <Dot area ratio>
From thesupport 32 on which the right circularly polarized reflection dot 34R was formed, 5 locations were selected at random, and observed with a laser microscope (manufactured by Keyence Corporation), and the area ratio of the dots was measured in a 1 × 1 mm region. . As a result, the average value of the dot area ratios at the five locations was 20.2%.
右円偏光反射ドット34Rを形成した支持体32から、無作為に5箇所を選択して、レーザー顕微鏡(キーエンス社製)にて観察し、1×1mmの領域において、ドットの面積率を測定した。その結果、5箇所におけるドットの面積率の平均値は、20.2%であった。 <Dot area ratio>
From the
<オーバーコート層36の形成>
下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、オーバーコート用塗布液を調製した。
(オーバーコート用塗布液)
メチルエチルケトン 103.6質量部
KAYARAD DPCA-30(日本化薬社製) 40質量部
下記の化合物L 60質量部
前述の化合物A 0.6質量部
IRGACURE 127(BASF社製) 3質量部 <Formation ofovercoat layer 36>
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare an overcoat coating solution.
(Coating solution for overcoat)
Methyl ethyl ketone 103.6 parts by mass KAYARAD DPCA-30 (Nippon Kayaku Co., Ltd.) 40 parts by mass The following compound L 60 parts by mass Compound A 0.6 parts by mass IRGACURE 127 (manufactured by BASF) 3 parts by mass
下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、オーバーコート用塗布液を調製した。
(オーバーコート用塗布液)
メチルエチルケトン 103.6質量部
KAYARAD DPCA-30(日本化薬社製) 40質量部
下記の化合物L 60質量部
前述の化合物A 0.6質量部
IRGACURE 127(BASF社製) 3質量部 <Formation of
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare an overcoat coating solution.
(Coating solution for overcoat)
Methyl ethyl ketone 103.6 parts by mass KAYARAD DPCA-30 (Nippon Kayaku Co., Ltd.) 40 parts by mass The following compound L 60 parts by mass Compound A 0.6 parts by mass IRGACURE 127 (manufactured by BASF) 3 parts by mass
調製したオーバーコート用塗布液を、右円偏光反射ドット34Rを形成した支持体32(下地層)の上に、#8のバーコーターを用いて塗布した。
その後、塗膜面温度が50℃になるように塗膜を加熱し、60秒間乾燥した後に、紫外線照射装置により、500mJ/cm2の紫外線を塗膜に照射し、架橋反応を進行させ、オーバーコート層36を作製し、右円偏光ドットフィルム30Rを得た。
本例においては、同じ右円偏光ドットフィルム30Rを、3枚、作製した。 The prepared coating liquid for overcoat was applied onto the support 32 (underlayer) on which the right circularly polarizedreflective dots 34R were formed, using a # 8 bar coater.
Then, after heating the coating film so that the coating surface temperature becomes 50 ° C. and drying for 60 seconds, the coating film is irradiated with UV light of 500 mJ / cm 2 by an UV irradiation device to allow the crosslinking reaction to proceed. Thecoat layer 36 was produced to obtain a right circularly polarized dot film 30R.
In this example, three sheets of the same right circularlypolarized dot film 30R were produced.
その後、塗膜面温度が50℃になるように塗膜を加熱し、60秒間乾燥した後に、紫外線照射装置により、500mJ/cm2の紫外線を塗膜に照射し、架橋反応を進行させ、オーバーコート層36を作製し、右円偏光ドットフィルム30Rを得た。
本例においては、同じ右円偏光ドットフィルム30Rを、3枚、作製した。 The prepared coating liquid for overcoat was applied onto the support 32 (underlayer) on which the right circularly polarized
Then, after heating the coating film so that the coating surface temperature becomes 50 ° C. and drying for 60 seconds, the coating film is irradiated with UV light of 500 mJ / cm 2 by an UV irradiation device to allow the crosslinking reaction to proceed. The
In this example, three sheets of the same right circularly
<コレステリック液晶インク液Lの調製>
キラル剤Aをキラル剤Bに変更し、かつ、キラル剤Bの添加量を8.09質量部とした以外は、コレステリック液晶インク液Rと同様にして、コレステリック液晶インク液Lを調製した。 <Preparation of cholesteric liquid crystal ink liquid L>
A cholesteric liquid crystal ink liquid L was prepared in the same manner as the cholesteric liquid crystal ink liquid R except that the chiral agent A was changed to the chiral agent B and the addition amount of the chiral agent B was 8.09 parts by mass.
キラル剤Aをキラル剤Bに変更し、かつ、キラル剤Bの添加量を8.09質量部とした以外は、コレステリック液晶インク液Rと同様にして、コレステリック液晶インク液Lを調製した。 <Preparation of cholesteric liquid crystal ink liquid L>
A cholesteric liquid crystal ink liquid L was prepared in the same manner as the cholesteric liquid crystal ink liquid R except that the chiral agent A was changed to the chiral agent B and the addition amount of the chiral agent B was 8.09 parts by mass.
キラル剤B
コレステリック液晶インク液Lは、選択反射中心波長550nmの左円偏光を反射する、左円偏光反射ドット34Lを形成するための材料である。 Chiral agent B
The cholesteric liquid crystal ink liquid L is a material for forming the left circularly polarizedlight reflecting dot 34L that reflects left circularly polarized light having a selective reflection center wavelength of 550 nm.
コレステリック液晶インク液Lは、選択反射中心波長550nmの左円偏光を反射する、左円偏光反射ドット34Lを形成するための材料である。 Chiral agent B
The cholesteric liquid crystal ink liquid L is a material for forming the left circularly polarized
<ドットフィルムの作製>
コレステリック液晶インク液Rに変えて、調製したコレステリック液晶インク液Lを用いた以外は、右円偏光ドットフィルム30Rと同様にして、左円偏光ドットフィルム30Lを作製した。
本例においては、同じ左円偏光ドットフィルム30Lを、3枚、作製した。 <Preparation of dot film>
A left circularlypolarized dot film 30L was produced in the same manner as the right circularly polarized dot film 30R except that the prepared cholesteric liquid crystal ink liquid L was used instead of the cholesteric liquid crystal ink liquid R.
In this example, three same left circularlypolarized dot films 30L were produced.
コレステリック液晶インク液Rに変えて、調製したコレステリック液晶インク液Lを用いた以外は、右円偏光ドットフィルム30Rと同様にして、左円偏光ドットフィルム30Lを作製した。
本例においては、同じ左円偏光ドットフィルム30Lを、3枚、作製した。 <Preparation of dot film>
A left circularly
In this example, three same left circularly
<透明スクリーンの作製>
粘着剤(総研化学製、SKダイン)を用いて、支持体32とオーバーコート層36とが対面するように、3枚の右円偏光ドットフィルム30R、および、3枚の左円偏光ドットフィルム30Lを貼り合わせて、左円偏光積層体24および右円偏光積層体20を有する、図1に示すような透明スクリーンを作製した。 <Production of transparent screen>
Using the adhesive (manufactured by Soken Chemicals, SK Dyne), the three right circularlypolarized dot films 30L and the three left circularly polarized dot films 30L so that the support 32 and the overcoat layer 36 face each other. Were bonded together to produce a transparent screen as shown in FIG. 1 having the left circularly polarizing laminate 24 and the right circularly polarizing laminate 20.
粘着剤(総研化学製、SKダイン)を用いて、支持体32とオーバーコート層36とが対面するように、3枚の右円偏光ドットフィルム30R、および、3枚の左円偏光ドットフィルム30Lを貼り合わせて、左円偏光積層体24および右円偏光積層体20を有する、図1に示すような透明スクリーンを作製した。 <Production of transparent screen>
Using the adhesive (manufactured by Soken Chemicals, SK Dyne), the three right circularly
[比較例1]
右円偏光ドットフィルム30Rを1枚、左円偏光ドットフィルム30Lを1枚、とした以外は、実施例1と同様に透明スクリーンを作製した。
すなわち、この透明スクリーンは、右円偏光ドットフィルム30Rと左円偏光ドットフィルム30Lとを、1枚ずつ有する透明スクリーンである。 [Comparative Example 1]
A transparent screen was prepared in the same manner as in Example 1 except that one piece of the right circularly polarizeddot film 30R and one piece of the left circularly polarized dot film 30L were used.
That is, this transparent screen is a transparent screen having one right circularlypolarized dot film 30R and one left circularly polarized dot film 30L.
右円偏光ドットフィルム30Rを1枚、左円偏光ドットフィルム30Lを1枚、とした以外は、実施例1と同様に透明スクリーンを作製した。
すなわち、この透明スクリーンは、右円偏光ドットフィルム30Rと左円偏光ドットフィルム30Lとを、1枚ずつ有する透明スクリーンである。 [Comparative Example 1]
A transparent screen was prepared in the same manner as in Example 1 except that one piece of the right circularly polarized
That is, this transparent screen is a transparent screen having one right circularly
[評価]
<プロジェクターと配置>
プロジェクターは、PJWX4141(リコー社製)を用いて、作製した透明スクリーンの中心で5cm角の白が表示されるように、透明スクリーン下部より画像を照射した。
このプロジェクターは、DLPプロジェクターであり、出射光は無偏光である。 [Evaluation]
<Projector and arrangement>
The projector used PJWX4141 (manufactured by Ricoh Co., Ltd.) to irradiate an image from the lower part of the transparent screen so that white of 5 cm square was displayed at the center of the produced transparent screen.
This projector is a DLP projector, and the emitted light is non-polarized light.
<プロジェクターと配置>
プロジェクターは、PJWX4141(リコー社製)を用いて、作製した透明スクリーンの中心で5cm角の白が表示されるように、透明スクリーン下部より画像を照射した。
このプロジェクターは、DLPプロジェクターであり、出射光は無偏光である。 [Evaluation]
<Projector and arrangement>
The projector used PJWX4141 (manufactured by Ricoh Co., Ltd.) to irradiate an image from the lower part of the transparent screen so that white of 5 cm square was displayed at the center of the produced transparent screen.
This projector is a DLP projector, and the emitted light is non-polarized light.
<ホットスポット(透過直進光)の評価>
図5および図6に示されるように、プロジェクターPの出射光と透明スクリーンSの中心の延長線上に硫酸バリウム製の完全拡散板Dを配置し、完全拡散板Dの法線方向から色彩輝度計B(トプコン社製、BM-5)を用いて輝度を測定した。
なお、図5は上面図、図6は側面図である。
比較例1の透明スクリーンを用いた輝度測定結果を100として規格化したところ、実施例1の透明スクリーンでは輝度測定結果は8であり、ホットスポットが大幅に抑制されていることが分かった。 <Evaluation of hot spot (transmission straight light)>
As shown in FIGS. 5 and 6, a full diffusion plate D made of barium sulfate is arranged on the extended line of the light emitted from the projector P and the center of the transparent screen S, and a color luminance meter is viewed from the normal direction of the complete diffusion plate D. The luminance was measured using B (Topcon, BM-5).
5 is a top view and FIG. 6 is a side view.
When the luminance measurement result using the transparent screen of Comparative Example 1 was normalized as 100, the luminance measurement result of the transparent screen of Example 1 was 8, and it was found that hot spots were significantly suppressed.
図5および図6に示されるように、プロジェクターPの出射光と透明スクリーンSの中心の延長線上に硫酸バリウム製の完全拡散板Dを配置し、完全拡散板Dの法線方向から色彩輝度計B(トプコン社製、BM-5)を用いて輝度を測定した。
なお、図5は上面図、図6は側面図である。
比較例1の透明スクリーンを用いた輝度測定結果を100として規格化したところ、実施例1の透明スクリーンでは輝度測定結果は8であり、ホットスポットが大幅に抑制されていることが分かった。 <Evaluation of hot spot (transmission straight light)>
As shown in FIGS. 5 and 6, a full diffusion plate D made of barium sulfate is arranged on the extended line of the light emitted from the projector P and the center of the transparent screen S, and a color luminance meter is viewed from the normal direction of the complete diffusion plate D. The luminance was measured using B (Topcon, BM-5).
5 is a top view and FIG. 6 is a side view.
When the luminance measurement result using the transparent screen of Comparative Example 1 was normalized as 100, the luminance measurement result of the transparent screen of Example 1 was 8, and it was found that hot spots were significantly suppressed.
[実施例2]
<配向膜の作製>
保護フィルム01の表面に、下記の組成の配向膜塗布液を#16のワイヤーバーコーターで28mL/m2塗布した。その後、60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。形成された膜表面に、ラビングロールで搬送方向に平行な方向に1000回転/分で回転させてラビング処理を行い、配向膜付き保護フィルム01を作製した。
(配向膜塗布液)
下記の変性ポリビニルアルコール 10質量部
水 370質量部
メタノール 120質量部
グルタルアルデヒド(架橋剤) 0.5質量部 [Example 2]
<Preparation of alignment film>
On the surface of the protective film 01, an alignment film coating solution having the following composition was applied at 28 mL / m 2 with a # 16 wire bar coater. Thereafter, the film was dried with warm air of 60 ° C. for 60 seconds and further with warm air of 90 ° C. for 150 seconds. A rubbing treatment was performed on the formed film surface with a rubbing roll in a direction parallel to the transport direction at a rate of 1000 rotations / minute to produce a protective film 01 with an alignment film.
(Alignment film coating solution)
The following modifiedpolyvinyl alcohol 10 parts by mass Water 370 parts by mass Methanol 120 parts by mass Glutaraldehyde (crosslinking agent) 0.5 parts by mass
<配向膜の作製>
保護フィルム01の表面に、下記の組成の配向膜塗布液を#16のワイヤーバーコーターで28mL/m2塗布した。その後、60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。形成された膜表面に、ラビングロールで搬送方向に平行な方向に1000回転/分で回転させてラビング処理を行い、配向膜付き保護フィルム01を作製した。
(配向膜塗布液)
下記の変性ポリビニルアルコール 10質量部
水 370質量部
メタノール 120質量部
グルタルアルデヒド(架橋剤) 0.5質量部 [Example 2]
<Preparation of alignment film>
On the surface of the protective film 01, an alignment film coating solution having the following composition was applied at 28 mL / m 2 with a # 16 wire bar coater. Thereafter, the film was dried with warm air of 60 ° C. for 60 seconds and further with warm air of 90 ° C. for 150 seconds. A rubbing treatment was performed on the formed film surface with a rubbing roll in a direction parallel to the transport direction at a rate of 1000 rotations / minute to produce a protective film 01 with an alignment film.
(Alignment film coating solution)
The following modified
<λ/4板56の作製>
特開2012-18396の実施例([0272]~[0282])を参考に、配向膜付き保護フィルム01上に光学異方性層を形成し、λ/4板56を作製した。Re(550)およびRth(550)は、それぞれ、138nmおよび5nmであった。 <Production of λ / 4plate 56>
With reference to Examples ([0272] to [0282]) of JP2012-18396A, an optically anisotropic layer was formed on the protective film 01 with an alignment film, and a λ / 4plate 56 was produced. Re (550) and Rth (550) were 138 nm and 5 nm, respectively.
特開2012-18396の実施例([0272]~[0282])を参考に、配向膜付き保護フィルム01上に光学異方性層を形成し、λ/4板56を作製した。Re(550)およびRth(550)は、それぞれ、138nmおよび5nmであった。 <Production of λ / 4
With reference to Examples ([0272] to [0282]) of JP2012-18396A, an optically anisotropic layer was formed on the protective film 01 with an alignment film, and a λ / 4
<ドットフィルムの作製>
下地層を形成した保護フィルム01に変えて、配向膜付き保護フィルム01を用いた以外は、実施例1と同様に、右円偏光ドットフィルム30Rを3枚作製した。すなわち、本例も、支持体32は保護フィルム01である。 <Preparation of dot film>
Three right circularlypolarized dot films 30R were produced in the same manner as in Example 1 except that the protective film 01 with an alignment film was used instead of the protective film 01 on which the base layer was formed. That is, also in this example, the support 32 is the protective film 01.
下地層を形成した保護フィルム01に変えて、配向膜付き保護フィルム01を用いた以外は、実施例1と同様に、右円偏光ドットフィルム30Rを3枚作製した。すなわち、本例も、支持体32は保護フィルム01である。 <Preparation of dot film>
Three right circularly
<透明スクリーンの作製>
粘着剤(総研化学製、SKダイン)を用いて、作製したλ/4板56および3枚の右円偏光ドットフィルム30Rを貼り合わせて、図4に示すような、λ/4板56と右円偏光積層体20とを有する透明スクリーンを作製した。
3枚の右円偏光ドットフィルム30Rは、支持体32とオーバーコート層36とを対面して貼り合わせた。λ/4板56は、右円偏光積層体20の一方の表面となるオーバーコート層36に、配向膜付き保護フィルム01を対面して貼り合わせた。 <Production of transparent screen>
Using the adhesive (manufactured by Soken Chemical Co., Ltd., SK Dyne), the produced λ / 4plate 56 and the three right circularly polarized dot films 30R were bonded together, and the λ / 4 plate 56 and the right as shown in FIG. A transparent screen having the circularly polarizing laminate 20 was produced.
The three right circularlypolarized dot films 30R were bonded to each other with the support 32 and the overcoat layer 36 facing each other. The λ / 4 plate 56 was bonded to the overcoat layer 36 that is one surface of the right circularly polarizing laminate 20 with the protective film 01 with an alignment film facing each other.
粘着剤(総研化学製、SKダイン)を用いて、作製したλ/4板56および3枚の右円偏光ドットフィルム30Rを貼り合わせて、図4に示すような、λ/4板56と右円偏光積層体20とを有する透明スクリーンを作製した。
3枚の右円偏光ドットフィルム30Rは、支持体32とオーバーコート層36とを対面して貼り合わせた。λ/4板56は、右円偏光積層体20の一方の表面となるオーバーコート層36に、配向膜付き保護フィルム01を対面して貼り合わせた。 <Production of transparent screen>
Using the adhesive (manufactured by Soken Chemical Co., Ltd., SK Dyne), the produced λ / 4
The three right circularly
[比較例2]
右円偏光ドットフィルム30Rを1枚とした以外は、実施例2と同様に透明スクリーンを作製した。
すなわち、この透明スクリーンは、λ/4板56と1枚の右円偏光ドットフィルム30Rとからなる透明スクリーンである。 [Comparative Example 2]
A transparent screen was produced in the same manner as in Example 2 except that the right circularly polarizeddot film 30R was one.
That is, this transparent screen is a transparent screen composed of the λ / 4plate 56 and one piece of the right circularly polarized dot film 30R.
右円偏光ドットフィルム30Rを1枚とした以外は、実施例2と同様に透明スクリーンを作製した。
すなわち、この透明スクリーンは、λ/4板56と1枚の右円偏光ドットフィルム30Rとからなる透明スクリーンである。 [Comparative Example 2]
A transparent screen was produced in the same manner as in Example 2 except that the right circularly polarized
That is, this transparent screen is a transparent screen composed of the λ / 4
[評価]
<プロジェクターと配置>
プロジェクターは、LSPX-P1(SONY社製)を用いて、透明スクリーンの中心上で5cm角の白が表示されるように、透明スクリーンの下部より画像を照射した。
このプロジェクターはレーザプロジェクターであり、出射光は直線偏光である。 [Evaluation]
<Projector and arrangement>
The projector used LSPX-P1 (manufactured by SONY) to irradiate an image from the lower part of the transparent screen so that white of 5 cm square was displayed on the center of the transparent screen.
This projector is a laser projector, and the emitted light is linearly polarized light.
<プロジェクターと配置>
プロジェクターは、LSPX-P1(SONY社製)を用いて、透明スクリーンの中心上で5cm角の白が表示されるように、透明スクリーンの下部より画像を照射した。
このプロジェクターはレーザプロジェクターであり、出射光は直線偏光である。 [Evaluation]
<Projector and arrangement>
The projector used LSPX-P1 (manufactured by SONY) to irradiate an image from the lower part of the transparent screen so that white of 5 cm square was displayed on the center of the transparent screen.
This projector is a laser projector, and the emitted light is linearly polarized light.
<ホットスポット(透過直進光)の評価>
実施例1および比較例1と同様に、図5および図6に示すようにして輝度計Bで輝度を測定した。
比較例2の透明スクリーンを用いた輝度測定結果を100として規格化したところ、実施例2の透明スクリーンでは輝度測定結果は10であり、ホットスポットが大幅に抑制されていることが分かった。
以上の結果より、本発明の効果は明らかである。 <Evaluation of hot spot (transmission straight light)>
As in Example 1 and Comparative Example 1, the luminance was measured with a luminance meter B as shown in FIGS.
When the luminance measurement result using the transparent screen of Comparative Example 2 was normalized as 100, the luminance measurement result of the transparent screen of Example 2 was 10, and it was found that hot spots were significantly suppressed.
From the above results, the effects of the present invention are clear.
実施例1および比較例1と同様に、図5および図6に示すようにして輝度計Bで輝度を測定した。
比較例2の透明スクリーンを用いた輝度測定結果を100として規格化したところ、実施例2の透明スクリーンでは輝度測定結果は10であり、ホットスポットが大幅に抑制されていることが分かった。
以上の結果より、本発明の効果は明らかである。 <Evaluation of hot spot (transmission straight light)>
As in Example 1 and Comparative Example 1, the luminance was measured with a luminance meter B as shown in FIGS.
When the luminance measurement result using the transparent screen of Comparative Example 2 was normalized as 100, the luminance measurement result of the transparent screen of Example 2 was 10, and it was found that hot spots were significantly suppressed.
From the above results, the effects of the present invention are clear.
10,50 画像表示システム
12,52,S 透明スクリーン
14,54,P プロシェクター
20 右円偏光積層体
24 左円偏光積層体
30R 右円偏光ドットフィルム
30L 左円偏光ドットフィルム
34R 右円偏光反射ドット
34L 左円偏光反射ドット
36 オーバーコート層
B 輝度計
D 完全拡散板 10, 50 Image display system 12, 52, S Transparent screen 14, 54, P Prosector 20 Right circular polarization laminate 24 Left circular polarization laminate 30R Right circular polarization dot film 30L Left circular polarization dot film 34R Right circular polarization reflection dot 34L Left circularly polarized reflective dot 36 Overcoat layer B Luminance meter D Complete diffuser
12,52,S 透明スクリーン
14,54,P プロシェクター
20 右円偏光積層体
24 左円偏光積層体
30R 右円偏光ドットフィルム
30L 左円偏光ドットフィルム
34R 右円偏光反射ドット
34L 左円偏光反射ドット
36 オーバーコート層
B 輝度計
D 完全拡散板 10, 50
Claims (9)
- 支持体の表面に、コレステリック液晶相を固定してなるドットを二次元的に配列したドットフィルムを、複数、有し、かつ、
前記複数のドットフィルムにおいて、少なくとも2つの前記ドットフィルムの前記ドットの選択反射中心波長および反射する円偏光の回転方向が互いに等しいことを特徴とする透明スクリーン。 On the surface of the support, it has a plurality of dot films in which dots formed by fixing a cholesteric liquid crystal phase are two-dimensionally arranged, and
In the plurality of dot films, the transparent reflection screen is characterized in that the selective reflection center wavelength of the dots of at least two of the dot films and the rotation direction of the reflected circularly polarized light are equal to each other. - 前記ドットが右円偏光を反射するドットフィルムと、前記ドットが左円偏光を反射するドットフィルムとを有し、かつ、
前記ドットが右円偏光を反射するドットフィルム、および、前記ドットが左円偏光を反射するドットフィルムの、少なくとも一方を、複数、有する請求項1に記載の透明スクリーン。 The dot has a dot film that reflects right circularly polarized light, and the dot has a dot film that reflects left circularly polarized light, and
2. The transparent screen according to claim 1, comprising a plurality of at least one of a dot film in which the dots reflect right circularly polarized light and a dot film in which the dots reflect left circularly polarized light. - 前記支持体の波長550nmにおける面内レターデーションRe(550)が0~20nmで、前記支持体の波長550nmにおける厚さ方向のレターデーションRth(550)が0~50nmである請求項1または2に記載の透明スクリーン。 The in-plane retardation Re (550) at a wavelength of 550 nm of the support is from 0 to 20 nm, and the retardation Rth (550) in the thickness direction at a wavelength of 550 nm of the support is from 0 to 50 nm. Transparent screen as described.
- λ/4板を有する請求項1~3のいずれか1項に記載の透明スクリーン。 The transparent screen according to any one of claims 1 to 3, comprising a λ / 4 plate.
- 前記λ/4板の波長550nmにおける面内レターデーションRe(550)が120~150nmで、前記λ/4板の波長550nmにおける厚さ方向のレターデーションRth(550)が-50~50nmである請求項4に記載の透明スクリーン。 The in-plane retardation Re (550) of the λ / 4 plate at a wavelength of 550 nm is 120 to 150 nm, and the retardation Rth (550) in the thickness direction of the λ / 4 plate at a wavelength of 550 nm is −50 to 50 nm. Item 5. The transparent screen according to Item 4.
- 請求項1~5のいずれか1項に記載の透明スクリーンと、
出射光が無偏光で、出射光のピーク波長が前記ドットの選択反射中心波長と等しいプロジェクターと、を有することを特徴とする画像表示システム。 A transparent screen according to any one of claims 1 to 5;
An image display system comprising: a projector in which the emitted light is non-polarized and the peak wavelength of the emitted light is equal to the selective reflection center wavelength of the dot. - 請求項4または5に記載の透明スクリーンと、
出射光が偏光で、出射光のピーク波長が前記ドットの選択反射中心波長と等しいプロジェクターと、を有することを特徴とする画像表示システム。 The transparent screen according to claim 4 or 5,
An image display system comprising: a projector, wherein the emitted light is polarized light, and a peak wavelength of the emitted light is equal to a selective reflection center wavelength of the dots. - 前記プロジェクターが、レーザープロジェクターである請求項7に記載の画像表示システム。 The image display system according to claim 7, wherein the projector is a laser projector.
- 前記透明スクリーンの前記ドットフィルムは、前記ドットの凸を前記プロジェクターに向けて配置される請求項6~8のいずれか1項に記載の画像表示システム。 The image display system according to any one of claims 6 to 8, wherein the dot film of the transparent screen is arranged with the convexity of the dots facing the projector.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016089267 | 2016-04-27 | ||
JP2016-089267 | 2016-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017188251A1 true WO2017188251A1 (en) | 2017-11-02 |
Family
ID=60159769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016379 WO2017188251A1 (en) | 2016-04-27 | 2017-04-25 | Transparent screen and image display system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017188251A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005331777A (en) * | 2004-05-20 | 2005-12-02 | Asahi Glass Co Ltd | Display device and reflection type screen |
JP2014071250A (en) * | 2012-09-28 | 2014-04-21 | Dainippon Printing Co Ltd | Reflection type screen, and video display system |
WO2015064581A1 (en) * | 2013-10-28 | 2015-05-07 | 日本ゼオン株式会社 | Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods |
JP2015141318A (en) * | 2014-01-29 | 2015-08-03 | 富士フイルム株式会社 | projection system and projector |
WO2015115390A1 (en) * | 2014-01-28 | 2015-08-06 | 富士フイルム株式会社 | Polymerizable compound, polymerizable composition, film and half mirror for displaying projected image |
-
2017
- 2017-04-25 WO PCT/JP2017/016379 patent/WO2017188251A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005331777A (en) * | 2004-05-20 | 2005-12-02 | Asahi Glass Co Ltd | Display device and reflection type screen |
JP2014071250A (en) * | 2012-09-28 | 2014-04-21 | Dainippon Printing Co Ltd | Reflection type screen, and video display system |
WO2015064581A1 (en) * | 2013-10-28 | 2015-05-07 | 日本ゼオン株式会社 | Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods |
WO2015115390A1 (en) * | 2014-01-28 | 2015-08-06 | 富士フイルム株式会社 | Polymerizable compound, polymerizable composition, film and half mirror for displaying projected image |
JP2015141318A (en) * | 2014-01-29 | 2015-08-03 | 富士フイルム株式会社 | projection system and projector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6606604B2 (en) | Transparent film, transparent screen and image display system, and transparent poster | |
JP6453450B2 (en) | Transparent screen | |
JP6586518B2 (en) | Transparent screen and image display system | |
JP6481018B2 (en) | Transparent screen | |
JP6670326B2 (en) | Transparent screen | |
WO2015141759A1 (en) | Reflection member, projection screen, combiner, and heat shield member | |
US10908491B2 (en) | Optical film | |
JP6470411B2 (en) | Transparent screen for 3D display and 3D display system | |
US10663827B2 (en) | Transparent screen comprising a plurality of dot arrays having different selective reflective wavelengths, the plurality of dot arrays obtained by immobilizing a cholesteric liquid crystalline phase | |
JPWO2020075738A1 (en) | Optical laminate, light guide element and image display device | |
WO2016129645A1 (en) | Optical member, optical element, liquid crystal display device, and near-eye optical member | |
JP6476291B2 (en) | Backlight unit | |
WO2017188251A1 (en) | Transparent screen and image display system | |
JP7292414B2 (en) | Light guide element and image display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17789533 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17789533 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |