WO2017188210A1 - Identifier and id generation method - Google Patents

Identifier and id generation method Download PDF

Info

Publication number
WO2017188210A1
WO2017188210A1 PCT/JP2017/016271 JP2017016271W WO2017188210A1 WO 2017188210 A1 WO2017188210 A1 WO 2017188210A1 JP 2017016271 W JP2017016271 W JP 2017016271W WO 2017188210 A1 WO2017188210 A1 WO 2017188210A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
antenna
conductive
resonance frequency
dielectric
Prior art date
Application number
PCT/JP2017/016271
Other languages
French (fr)
Japanese (ja)
Inventor
岳央 道坂
正俊 近藤
裕 出口
Original Assignee
トッパン・フォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トッパン・フォームズ株式会社 filed Critical トッパン・フォームズ株式会社
Publication of WO2017188210A1 publication Critical patent/WO2017188210A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/305Associated digital information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/08Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the present invention relates to an identifier and an ID generation method that can identify an ID using a resonance frequency or the like.
  • Patent Document 1 A technique that enables an ID to be expressed is disclosed in Patent Document 1.
  • this technique only the resonance frequency of the antenna corresponding to the ID can be detected by cutting the wiring or shorting the capacitor portion of any antenna having different resonance frequencies according to the ID. I am doing so.
  • the number of antennas is N
  • two pieces of information “1” and “0” can be provided depending on whether or not the resonance frequency can be detected, and (2 N ⁇ 1) IDs are identified. It can be expressed as possible.
  • a plurality of wiring segments separated from each other are formed by analog printing, which is fixed printing, and a connection segment is additionally formed between desired wiring segments by digital printing, which is variable printing.
  • analog printing which is fixed printing
  • digital printing which is variable printing.
  • the present invention has been made in view of the problems of the conventional techniques as described above, and can easily generate an ID in an identification body that can identify the ID using a resonance frequency or the like.
  • the present invention provides: A discriminator that is formed by forming a conductive antenna on a base substrate, and that can identify a given ID using at least the resonance frequency of the conductive antenna,
  • a sealing agent for sealing the conductive antenna and a non-metallic dielectric material different from the base substrate are arranged to face each other.
  • the conductive antenna formed on the base substrate includes a sealant for sealing the conductive antenna and a non-metallic dielectric different from the base substrate. The frequency characteristics of the conductive antenna change due to the opposing arrangement. Therefore, a desired ID is generated by using this change in frequency characteristics.
  • the present invention is an identification body that is formed on a base substrate and that can identify an ID using a plurality of conductive antennas having different resonance frequencies or polarization directions, At least one electrically conductive antenna is selected according to the ID of the plurality of electrically conductive antenna, loss calculated from 1/2 (dielectric constant) ⁇ (dielectric loss tangent) ⁇ (thickness [[mu] m]) Dielectrics having a coefficient of 0.75 or more are arranged to face each other.
  • a plurality of conductive antennas having different resonance frequencies or polarization directions are formed on the base substrate, and the plurality of conductive antennas are selected according to the ID.
  • a dielectric having a loss factor of 0.75 or more calculated from (relative dielectric constant) ⁇ (dielectric loss tangent) ⁇ (film thickness [ ⁇ m]) 1/2 is disposed opposite to at least one conductive antenna.
  • the reflection intensity in the reflected wave decreases, It is not determined that the wave number or polarization direction has been detected.
  • the individual ID for the conductive antenna for which it is determined that the resonance frequency or the polarization direction is detected is the first identifier, and the individual ID for the conductive antenna for which it is determined that the resonance frequency or the polarization direction is not detected is the first ID.
  • the ID is generated by arranging these individual IDs in a predetermined order with the identifier of 2.
  • the plurality of conductive antennas are uniformly formed on the base substrate without depending on the ID, and the conductive antennas may be formed by disposing a dielectric to face the plurality of conductive antennas. Since individual IDs are generated for each, the resonance frequency and reflection intensity can be easily set without causing unintentional disconnection of the conductive antenna, and without using a dedicated hot-pressure device / high-frequency equipment or a high-temperature drying furnace. Different IDs can be generated.
  • the conductive antenna formed on the base substrate and the non-metal dielectric different from the base material and the sealant for sealing the conductive antenna are disposed opposite to each other. Since the desired ID is generated in this way, it is possible to easily generate the desired ID without causing unintentional disconnection in the conductive antenna and without using a dedicated hot-pressure device / high-frequency equipment or a high-temperature drying furnace. be able to. In addition, since a dielectric is not arranged or opposed to a plurality of conductive antennas uniformly formed on the base substrate regardless of ID, an individual ID for each conductive antenna is generated. An ID can be easily generated with different resonance frequencies and reflection intensities without causing unintentional disconnection in the conductive antenna and without using a dedicated hot-pressure device / high-frequency equipment or a high-temperature drying furnace. .
  • FIG. 1B is a cross-sectional view taken along the line A-A ′ shown in FIG. It is a figure which shows the structure of the surface which removed the resin layer from the ID tag shown in FIG. 1a. It is a surface view which shows other embodiment of the identification object of this invention.
  • FIG. 2b is a cross-sectional view taken along the line A-A 'shown in FIG. 2a. It is a figure which shows the structure of the surface which removed the resin layer from the ID tag shown in FIG. 2a.
  • 2 is a diagram showing an example of an ID generation system that generates and discriminates IDs assigned to ID tags shown in FIGS. 1a to 1c and 2a to 2c.
  • FIG. 5 is a table summarizing changes in frequency characteristics shown in FIGS.
  • FIG. 7B is a cross-sectional view taken along the line A-A ′ shown in FIG. It is a reverse view which shows other embodiment of the identification body of this invention.
  • FIG. 1a is a surface view showing an embodiment of an identifier of the present invention.
  • FIG. 1B is a cross-sectional view taken along the line AA ′ shown in FIG. 1a.
  • FIG. 1c is a diagram showing the configuration of the surface where the resin layer 4 is removed from the ID tag 1a shown in FIG. 1a.
  • a region where the resin layer 4 is laminated is indicated by a broken line.
  • the identification body in this embodiment includes five conductive antennas 3a to 3e formed on a base substrate 2 made of an insulating material such as a resin film, and the antennas 3a to 3e.
  • the ID tag 1a is formed by laminating the resin layer 4 on the antennas 3a, 3c, 3e.
  • the antennas 3a to 3e have a rectangular outer shape, and have a shape in which a slit enters the longitudinal direction from one of the short sides.
  • the antennas 3a to 3e have the same width, and have different resonance frequencies due to their different lengths in the longitudinal direction.
  • the ID tag 1a can identify any ID using the antennas 3a to 3e. However, the antennas 3a to 3e are all formed uniformly on the base substrate 2 by fixed printing regardless of the ID. Has been.
  • the resin layer 4 is laminated only on the antennas 3a, 3c and 3e according to the ID assigned to the ID tag 1a among the antennas 3a to 3e formed on the base substrate 2.
  • the resin layer 4 is formed by, for example, applying a resin-containing liquid in a rectangular shape larger than the outer shape of the antennas 3a, 3c, 3e so as to cover the antennas 3a, 3c, 3e by solid printing. It can be laminated on 3e. Accordingly, the resin layer 4 serving as a dielectric is opposed to the antennas 3a, 3c, 3e selected according to the ID given to the ID tag 1a among the antennas 3a to 3e formed on the base substrate 2. It is the composition arranged.
  • FIG. 2a is a surface view showing another embodiment of the identifier of the present invention.
  • FIG. 2B is a cross-sectional view taken along the line AA ′ shown in FIG. 2A.
  • FIG. 2c is a diagram showing the configuration of the surface where the resin layer 4 is removed from the ID tag 1b shown in FIG. 2a.
  • stacked is shown with the broken line.
  • the identification body in this embodiment is formed by laminating a resin layer 4 among the antennas 3a to 3e formed on the base substrate 2 with respect to those shown in FIGS. 1a to 1c. Different antennas.
  • the resin layer 4 is laminated only on the antennas 3a, 3c, and 3d among the antennas 3a to 3e.
  • the ID tags 1a and 1b configured as described above are given IDs that can be identified, and among the antennas 3a to 3e formed on the base substrate 2, the IDs assigned to the ID tags 1a and 1b.
  • a sealing agent for sealing the antennas 3a to 3e and a resin layer 4 which is a non-metallic dielectric material different from the base substrate 2 are laminated.
  • the individual IDs corresponding to the resonance frequencies detected by the reflection intensity in the reflected wave with respect to the electromagnetic waves are arranged in the order of the resonance frequencies, so that the ID tag The IDs assigned to 1a and 1b are generated and determined.
  • an ID generation method for generating and determining IDs assigned to the ID tags 1a and 1b configured as described above will be described.
  • FIG. 3 is a diagram showing an example of an ID generation system that generates and discriminates IDs assigned to the ID tags 1a and 1b shown in FIGS. 1a to 1c and 2a to 2c.
  • the ID generation system in this example includes the ID tag 1a shown in FIGS. 1a to 1c and a reading device 5 that generates and discriminates the ID assigned to the ID tag 1a.
  • the reading device 5 includes antennas 30 a and 30 b, an electromagnetic wave radiation unit 10, a reflected wave reception unit 20, a processing unit 40, and a control unit 50.
  • the electromagnetic wave radiation unit 10 transmits electromagnetic waves including the resonance frequencies of the antennas 3a to 3e of the ID tags 1a and 1b via the antenna 30a.
  • the reflected wave receiving unit 20 receives the reflected waves from the ID tags 1a and 1b received via the antenna 30b with respect to the electromagnetic waves transmitted from the electromagnetic wave emitting unit 10 via the antenna 30a.
  • the processing unit 40 includes a reflection intensity detection unit 41 and an ID generation unit 42.
  • the reflection intensity detector 41 detects the reflection intensity in the reflected wave received by the reflected wave receiver 20.
  • the ID generation unit 42 determines whether or not the resonance frequency of the antenna in the ID tags 1a and 1b is detected based on the reflection intensity detected by the reflection intensity detection unit 41. Based on the detection result of the resonance frequency, the ID generation unit 42 sets the individual ID for the antenna determined to have detected the resonance frequency as the first identifier “1” and determines that the resonance frequency has not been detected.
  • the ID assigned to the ID tags 1a and 1b is generated and discriminated by setting the individual ID for the antenna to “0” as the second identifier and arranging these “1” and “0” in the order of the resonance frequency. To do.
  • the control unit 50 controls the emission of electromagnetic waves in the electromagnetic wave emission unit 10 and each process in the processing unit 40.
  • the assigned ID is generated and determined based on the resonance frequency detected by the reflection intensity in the reflected wave.
  • the resonance frequency detected by the reader 5 is made different by changing the antenna on which the resin layer 4 is laminated among the antennas 3a to 3e.
  • FIG. 4 is a diagram illustrating a change in frequency characteristics of a reflected wave from the antenna when a resin layer is laminated on the antenna.
  • the dry film thickness is 130 ⁇ m
  • the relative dielectric constant is 3.62
  • the dielectric loss tangent at a frequency of 10 GHz is 0.3.
  • FIGS. 1a to 1c and 2a to 2c the resonance frequency of the antenna having the resin layer 4 laminated among the antennas 3a to 3e is not detected.
  • the reading device 5 gives the ID tags 1a and 1b. ID can be generated and discriminated.
  • FIG. 5a is a diagram showing a change in frequency characteristics of a reflected wave from an antenna when the thickness of a dielectric constituting the resin layer is changed.
  • FIG. 5b is a diagram showing a change in frequency characteristics of a reflected wave from the antenna when the dielectric loss tangent of the dielectric constituting the resin layer is changed.
  • FIG. 5c is a diagram illustrating a change in frequency characteristics of a reflected wave from the antenna when the dielectric constant of the dielectric constituting the resin layer is changed.
  • the film thickness is about 0.5 to 20 ⁇ m. Therefore, in order to increase the film thickness, it is considered to stick a dielectric seal. It is done. In that case, a film thickness of several hundred ⁇ m can be secured.
  • the frequency characteristics at that time were measured by changing the values to 05, 0.1, 0.2, and 0.5.
  • the dielectric loss tangent tan ⁇ of the dielectric increases.
  • the reflection intensity of the reflected wave from the antenna decreases linearly.
  • the reflection intensity simply decreases. Therefore, in order to prevent the resonance frequency from being detected, a higher one is desirable. At that time, it is possible to increase the dielectric loss tangent of the resin by mixing a specific additive.
  • the relative dielectric constant of ordinary polymer materials is 2-8. In addition, it is possible to increase the relative dielectric constant of the resin by mixing a specific additive.
  • FIG. 6 shows the change using the frequency characteristics shown in FIGS. 5a to 5c and the calculation using (relative permittivity) ⁇ (dielectric loss tangent at a frequency of 10 GHz) ⁇ (film thickness [ ⁇ m]) 1/2 at that time. It is the table
  • the calculation coefficient by 1/2 is No. in FIG. 2 and No. From the measurement result of 10, it is assumed that it is 0.75 or more.
  • the condition for making the reflection intensity of the reflected wave from the antenna not reach the standard for determining that the resonance frequency has been detected is (relative dielectric constant).
  • X dielectric loss tangent at a frequency of 10 GHz
  • x film thickness [ ⁇ m]
  • a dielectric loss factor calculated from 1/2 is set to 0.75 or more. This is because the reflection intensity in the reflected wave from the antenna decreases in a quadratic curve as the dielectric film thickness increases, so it is good when the calculation coefficient is small. Correlation is obtained. On the other hand, when the calculated coefficient is large, the deviation becomes somewhat large.
  • a dielectric having a loss factor calculated from (relative dielectric constant) ⁇ (dielectric loss tangent at a frequency of 10 GHz) ⁇ (film thickness [ ⁇ m]) 1/2 is 0.75 or more.
  • At least one conductive antenna selected according to the ID among the plurality of conductive antennas is (relative dielectric constant) ⁇ (dielectric loss tangent at a frequency of 10 GHz) ⁇ (Thickness [ ⁇ m]) Dielectrics having a loss coefficient calculated from 1/2 are 0.75 or more are arranged facing each other. Then, among the plurality of conductive antennas, the individual ID for the conductive antenna for which it is determined that the resonance frequency is detected by the reflected wave is “1”, and the individual for the conductive antenna for which it is determined that the resonance frequency has not been detected.
  • the ID By setting the ID to “0” and arranging these individual IDs in a predetermined order, there is no unintentional disconnection in the conductive antenna, and there is no need to use a dedicated hot pressure / high frequency equipment or a high-temperature drying furnace.
  • the ID can be easily generated by changing the resonance frequency and reflection intensity.
  • IDs generated using the ID tags 1a and 1b shown in FIGS. 1a to 1c and 2a to 2c will be described as examples.
  • the ID tag 1a shown in FIGS. 1a to 1c as described above, five antennas 3a to 3e having different resonance frequencies are formed on the base substrate 2, and among these five conductive antennas 3a to 3e, The resin layer 4 is laminated on the antennas 3a, 3c, 3e.
  • the loss coefficient calculated from (relative dielectric constant) ⁇ (dielectric loss tangent at a frequency of 10 GHz) ⁇ (film thickness [ ⁇ m]) 1/2 of the resin layer 4 is 0.75 or more.
  • the ID tag 1a received by the reflected wave reception unit 20 of the reading device 5 is configured.
  • the reflected wave it is determined that the resonance frequencies of the antennas 3b, 3d are detected, but the resonance frequencies of the antennas 3a, 3c, 3e are not detected.
  • the individual ID for the antennas 3b and 3d for which the resonance frequency has been detected is set to “1”, and the individual ID for the antennas 3a, 3c and 3e for which the resonance frequency has not been detected is determined.
  • the ID “01010” assigned to the ID tag 1a is generated and determined.
  • the ID tag 1b shown in FIGS. 2a to 2c has the resin layer 4 laminated on the antennas 3a, 3c, and 3d among the antennas 3a to 3e formed on the base substrate 2. It is configured.
  • the loss coefficient calculated from (relative dielectric constant) ⁇ (dielectric loss tangent at a frequency of 10 GHz) ⁇ (film thickness [ ⁇ m]) 1/2 of the resin layer 4 is 0.75 or more.
  • the individual ID for the antennas 3b and 3e for which the resonance frequency has been detected is set to “1”, and the individual ID for the antennas 3a, 3c and 3d for which it has been determined that the resonance frequency has not been detected.
  • the ID “01001” assigned to the ID tag 1b is generated and determined.
  • FIG. 7a is a surface view showing another embodiment of the identifier of the present invention.
  • FIG. 7B is a cross-sectional view taken along the line AA ′ shown in FIG. 7A.
  • FIG. 7 c is a back view showing another embodiment of the identifier of the present invention. As shown in FIGS. 7a to 7c, the identification body in the present embodiment is different from that shown in FIGS.
  • the resin layer 4 has a loss coefficient calculated from (relative dielectric constant) ⁇ (dielectric loss tangent at a frequency of 10 GHz) ⁇ (film thickness [ ⁇ m]) 1/2.
  • the reflection from the ID tag 1 c received by the reflected wave reception unit 20 of the reading device 5 is configured.
  • the wave it is determined that the resonance frequencies of the antennas 3b and 3d are detected, but it is determined that the resonance frequencies of the antennas 3a, 3c and 3e are not detected.
  • the ID “01010” assigned to the ID tag 1 c is generated and determined in the ID generation unit 42 of the reading device 5.
  • a rectangular resin layer 4 larger than the outer shape of the antennas 3a to 3e is laminated on the antennas 3a, 3c, 3d, and 3e, so that these antennas 3a, 3c, 3d, and 3e are stacked.
  • the resin layer 4 is disposed so as to face the antenna layer 3a to 3e, the resin layer 4 having the same shape as the antennas 3a to 3e may be used, or the rectangular resin layer 4 smaller than the outer shape of the antennas 3a to 3e may be used. Good.
  • the rectangular resin layer 4 smaller than the outer shape of the antennas 3a to 3e is used, the degree of reduction in the reflection intensity from the antennas 3a to 3e is weakened.
  • the plurality of antennas can be identified by making the resonance frequencies of the plurality of antennas different from each other.
  • the polarization directions can be made different for each antenna.
  • the antenna may be identified by the polarization direction. In that case, priority is given to the polarization direction, and individual IDs are arranged in an order according to the priority.
  • the shape of the antenna is not limited to that having a rectangular outer shape and having a slit in the longitudinal direction from one of its short sides as shown in the above-described embodiment.
  • the individual ID for the antenna for which it is determined that the resonance frequency has been detected is “1”, and the individual ID for the antenna for which it has been determined that the resonance frequency has not been detected is “0”.
  • the ID assigned to the ID tag is generated and discriminated, but the individual ID for the antenna that is determined to have detected the resonance frequency is “0”. “,” And “1” as the individual ID for the antenna for which it was determined that the resonance frequency was not detected.
  • the ID assigned to the ID tag can be changed. Generation and discrimination may be performed.
  • At least one conductive antenna selected according to the ID among the plurality of conductive antennas has (relative dielectric constant) ⁇ (dielectric loss tangent at a frequency of 10 GHz) ⁇ (film thickness [ ⁇ m]) A dielectric whose loss factor calculated from 1/2 is 0.75 or more is placed facing each other, and the resonant frequency is detected by the reflected wave from the conductive antenna on which the dielectric is placed facing.
  • the ID is generated by adopting a configuration that is not used, the conductive antenna formed on the base substrate has a sealing agent for sealing the conductive antenna and a non-metallic dielectric different from the base substrate.
  • the frequency characteristics of the conductive antenna can be changed by simply arranging the bodies facing each other, and a desired ID can be generated by utilizing the change in the frequency characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Aerials With Secondary Devices (AREA)
  • Credit Cards Or The Like (AREA)
  • Details Of Aerials (AREA)

Abstract

In the present invention a plurality of antennas 3a-3e having mutually different resonance frequencies are formed on a base material 2, and among these antennas 3a-3e, a resin layer 4, comprising a sealant for sealing the antennas 3a-3e and a nonmetallic dielectric different from the base material 2, is laminated on the antennas 3a, 3c, and 3e, in correspondence with an ID.

Description

識別体及びID生成方法Identifier and ID generation method
 本発明は、共振周波数等を用いてIDを識別可能とする識別体及びID生成方法に関する。 The present invention relates to an identifier and an ID generation method that can identify an ID using a resonance frequency or the like.
 昨今、情報化社会の進展に伴って、商品等に貼付されるラベルやタグに情報を記録し、このラベルやタグを用いて商品等の管理が行われている。このようなラベルやタグを用いた情報管理においては、ラベルやタグに対して非接触状態にて情報の書き込みや読み出しを行うことが可能なICチップが搭載された非接触型ICラベルや非接触型ICタグ等のRFID技術を利用した識別体がその優れた利便性から急速な普及が進みつつある。
 このようなRFID技術を利用した識別体としては、上述したようにICチップが搭載されたものに限らず、共振周波数が互いに異なる複数のアンテナを有し、ICチップを用いずに複数のアンテナの組み合わせでIDを識別可能とするものも考えられている。例えば、複数のアンテナを構成する誘電子要素とコンデンサ要素の形状を異ならせたり、複数のアンテナの形状や向きを異ならせたりして共振周波数を複数のアンテナ毎に異ならせ、そのアンテナの組み合わせでIDを表現可能とする技術が、特許文献1に開示されている。この技術においては、IDに応じて、共振周波数が互いに異なるアンテナのうち任意のアンテナについて、配線を切断したりコンデンサ部を短絡させたりすることで、IDに応じたアンテナの共振周波数のみを検出できるようにしている。それにより、アンテナの数をN個とした場合、その共振周波数の検出の可否によって“1”,“0”の2つの情報を持たせることができ、(2N-1)個のIDを識別可能に表現することができる。
In recent years, with the progress of the information society, information is recorded on labels and tags attached to products and the like, and products and the like are managed using the labels and tags. In information management using such a label or tag, a non-contact type IC label or non-contact type in which an IC chip capable of writing or reading information in a non-contact state with respect to the label or tag is mounted. Discriminators using RFID technology such as type IC tags are rapidly spreading due to their excellent convenience.
The identification body using such RFID technology is not limited to the one on which the IC chip is mounted as described above, and has a plurality of antennas having different resonance frequencies, and the plurality of antennas without using the IC chip. It is also considered that IDs can be identified by a combination. For example, by changing the shape of the dielectric elements and capacitor elements that make up multiple antennas, or by changing the shape and orientation of the multiple antennas to make the resonance frequency different for each of the multiple antennas, A technique that enables an ID to be expressed is disclosed in Patent Document 1. In this technique, only the resonance frequency of the antenna corresponding to the ID can be detected by cutting the wiring or shorting the capacitor portion of any antenna having different resonance frequencies according to the ID. I am doing so. As a result, when the number of antennas is N, two pieces of information “1” and “0” can be provided depending on whether or not the resonance frequency can be detected, and (2 N −1) IDs are identified. It can be expressed as possible.
 また、互いに分離された複数の配線セグメントを固定印刷であるアナログ印刷によって形成しておき、所望の配線セグメント間に接続セグメントを可変印刷であるデジタル印刷によって追加して形成することで所望の配線セグメントを接続し、それにより、アンテナの形状を異ならせる技術が、特許文献2に開示されている。この技術においては、アナログ印刷による固定印刷とデジタル印刷による可変印刷とを組み合わせることにより、アンテナの共振周波数を異ならせることができる。 In addition, a plurality of wiring segments separated from each other are formed by analog printing, which is fixed printing, and a connection segment is additionally formed between desired wiring segments by digital printing, which is variable printing. Is disclosed in Japanese Patent Application Laid-Open No. H10-228688. In this technique, the resonance frequency of the antenna can be varied by combining fixed printing by analog printing and variable printing by digital printing.
特公平7-80386号公報Japanese Patent Publication No. 7-80386 特許第5501601号公報Japanese Patent No. 5501601
 しかしながら、上述したようにIDに応じてアンテナを加工する場合、相当の設備が必要となり、容易に共振周波数を異ならせることができないという問題点がある。例えば、IDに応じて配線を切断する場合、配線を容易に切断可能とするためには配線部分が外部に表出している必要がある。ところが、相当の設備を用いることなく配線部分が外部に表出していると、配線が意図せずに断線してしまう虞がある。また、コンデンサ部を短絡させる場合、専用の熱圧器/高周波設備等が必要となってしまい、不良が生じやすい。さらに、固定印刷と可変印刷とを組み合わせる場合、配線セグメントを構成する導電性インクを乾燥させるための高温の乾燥炉が必要となり、容易に共振周波数を異ならせてIDを生成することができない。
 本発明は、上述したような従来の技術が有する問題点に鑑みてなされたものであって、共振周波数等を用いてIDを識別可能とする識別体において、IDを容易に生成することができる識別体及びID生成方法を提供することを目的とする。
However, when the antenna is processed according to the ID as described above, considerable equipment is required, and there is a problem that the resonance frequency cannot be easily changed. For example, when the wiring is cut according to the ID, the wiring portion needs to be exposed to the outside so that the wiring can be easily cut. However, if the wiring portion is exposed to the outside without using a considerable facility, the wiring may be disconnected unintentionally. Moreover, when short-circuiting the capacitor portion, a dedicated hot pressure device / high frequency equipment is required, and defects are likely to occur. Further, when fixed printing and variable printing are combined, a high-temperature drying oven for drying the conductive ink constituting the wiring segment is required, and IDs cannot be easily generated with different resonance frequencies.
The present invention has been made in view of the problems of the conventional techniques as described above, and can easily generate an ID in an identification body that can identify the ID using a resonance frequency or the like. An object is to provide an identifier and an ID generation method.
 上記目的を達成するために本発明は、
 ベース基材上に導電性アンテナが形成されてなり、該導電性アンテナの少なくとも共振周波数を用いて、付与されたIDを識別可能とする識別体であって、
 前記導電性アンテナには、当該導電性アンテナを封止するための封止剤及び前記ベース基材とは異なる非金属の誘電体が対向して配置されている。
 上記のように構成された本発明においては、ベース基材上に形成された導電性アンテナに、導電性アンテナを封止するための封止剤及びベース基材とは異なる非金属の誘電体が対向して配置されていることで、導電性アンテナの周波数特性が変化する。そのため、この周波数特性の変化を利用することで、所望のIDが生成されることになる。
In order to achieve the above object, the present invention provides:
A discriminator that is formed by forming a conductive antenna on a base substrate, and that can identify a given ID using at least the resonance frequency of the conductive antenna,
In the conductive antenna, a sealing agent for sealing the conductive antenna and a non-metallic dielectric material different from the base substrate are arranged to face each other.
In the present invention configured as described above, the conductive antenna formed on the base substrate includes a sealant for sealing the conductive antenna and a non-metallic dielectric different from the base substrate. The frequency characteristics of the conductive antenna change due to the opposing arrangement. Therefore, a desired ID is generated by using this change in frequency characteristics.
 また、本発明は、ベース基材に形成され、共振周波数または偏波方向が互いに異なる複数の導電性アンテナを用いてIDを識別可能とする識別体であって、
 前記複数の導電性アンテナのうち前記IDに応じて選択される少なくとも1つの導電性アンテナに、(比誘電率)×(誘電正接)×(膜厚[μm])1/2から算出される損失係数が0.75以上となる誘電体が対向して配置されている。
Further, the present invention is an identification body that is formed on a base substrate and that can identify an ID using a plurality of conductive antennas having different resonance frequencies or polarization directions,
At least one electrically conductive antenna is selected according to the ID of the plurality of electrically conductive antenna, loss calculated from 1/2 (dielectric constant) × (dielectric loss tangent) × (thickness [[mu] m]) Dielectrics having a coefficient of 0.75 or more are arranged to face each other.
 上記のように構成された本発明においては、共振周波数または偏波方向が互いに異なる複数の導電性アンテナがベース基材に形成されており、この複数の導電性アンテナのうちIDに応じて選択される少なくとも1つの導電性アンテナに、(比誘電率)×(誘電正接)×(膜厚[μm])1/2から算出される損失係数が0.75以上となる誘電体が対向して配置されていることにより、複数の導電性アンテナに電磁波を送信してこの電磁波の複数の導電性アンテナからの反射波を受信し、受信した反射波における反射強度によって導電性アンテナの共振周波数または偏波方向が検出されたと判断する際、複数の導電性アンテナのうち誘電体が対向して配置された導電性アンテナにおいては、その反射波における反射強度が低下することで、共振周波数または偏波方向が検出されたとは判断されない。そして、共振周波数または偏波方向が検出されたと判断した導電性アンテナについての個別IDを第1の識別子とし、共振周波数または偏波方向が検出されなかったと判断した導電性アンテナについての個別IDを第2の識別子とし、これら個別IDを所定の順序に並べることによってIDが生成される。ここで、複数の導電性アンテナはIDによらずにベース基材に一律に形成されており、この複数の導電性アンテナに対向して誘電体が配置されたりされなかったりすることで導電性アンテナ毎の個別IDが生成されるので、導電性アンテナに意図しない断線が生じることなく、かつ、専用の熱圧器/高周波設備や、高温の乾燥炉を用いることなく、容易に共振周波数や反射強度を異ならせてIDを生成することができる。 In the present invention configured as described above, a plurality of conductive antennas having different resonance frequencies or polarization directions are formed on the base substrate, and the plurality of conductive antennas are selected according to the ID. A dielectric having a loss factor of 0.75 or more calculated from (relative dielectric constant) × (dielectric loss tangent) × (film thickness [μm]) 1/2 is disposed opposite to at least one conductive antenna. By transmitting electromagnetic waves to a plurality of conductive antennas and receiving reflected waves from the plurality of conductive antennas, the resonant frequency or polarization of the conductive antennas depending on the reflected intensity in the received reflected waves. When it is determined that the direction is detected, among the plurality of conductive antennas, in the conductive antenna in which the dielectrics are arranged to face each other, the reflection intensity in the reflected wave decreases, It is not determined that the wave number or polarization direction has been detected. Then, the individual ID for the conductive antenna for which it is determined that the resonance frequency or the polarization direction is detected is the first identifier, and the individual ID for the conductive antenna for which it is determined that the resonance frequency or the polarization direction is not detected is the first ID. The ID is generated by arranging these individual IDs in a predetermined order with the identifier of 2. Here, the plurality of conductive antennas are uniformly formed on the base substrate without depending on the ID, and the conductive antennas may be formed by disposing a dielectric to face the plurality of conductive antennas. Since individual IDs are generated for each, the resonance frequency and reflection intensity can be easily set without causing unintentional disconnection of the conductive antenna, and without using a dedicated hot-pressure device / high-frequency equipment or a high-temperature drying furnace. Different IDs can be generated.
 本発明によれば、ベース基材上に形成された導電性アンテナに、導電性アンテナを封止するための封止剤及びベース基材とは異なる非金属の誘電体を対向して配置することで所望のIDが生成されるため、導電性アンテナに意図しない断線が生じることなく、かつ、専用の熱圧器/高周波設備や、高温の乾燥炉を用いることなく、所望のIDを容易に生成することができる。
 また、ベース基材にIDによらずに一律に形成された複数の導電性アンテナに対向して誘電体が配置されたりされなかったりすることで導電性アンテナ毎の個別IDが生成されるため、導電性アンテナに意図しない断線が生じることなく、かつ、専用の熱圧器/高周波設備や、高温の乾燥炉を用いることなく、容易に共振周波数や反射強度を異ならせてIDを生成することができる。
According to the present invention, the conductive antenna formed on the base substrate and the non-metal dielectric different from the base material and the sealant for sealing the conductive antenna are disposed opposite to each other. Since the desired ID is generated in this way, it is possible to easily generate the desired ID without causing unintentional disconnection in the conductive antenna and without using a dedicated hot-pressure device / high-frequency equipment or a high-temperature drying furnace. be able to.
In addition, since a dielectric is not arranged or opposed to a plurality of conductive antennas uniformly formed on the base substrate regardless of ID, an individual ID for each conductive antenna is generated. An ID can be easily generated with different resonance frequencies and reflection intensities without causing unintentional disconnection in the conductive antenna and without using a dedicated hot-pressure device / high-frequency equipment or a high-temperature drying furnace. .
本発明の識別体の実施の一形態を示す表面図である。It is a surface view which shows one Embodiment of the identification body of this invention. 図1aに示したA-A’断面図である。FIG. 1B is a cross-sectional view taken along the line A-A ′ shown in FIG. 図1aに示したIDタグから樹脂層を取り除いた表面の構成を示す図である。It is a figure which shows the structure of the surface which removed the resin layer from the ID tag shown in FIG. 1a. 本発明の識別体の他の実施の形態を示す表面図である。It is a surface view which shows other embodiment of the identification object of this invention. 図2aに示したA-A’断面図である。FIG. 2b is a cross-sectional view taken along the line A-A 'shown in FIG. 2a. 図2aに示したIDタグから樹脂層を取り除いた表面の構成を示す図である。It is a figure which shows the structure of the surface which removed the resin layer from the ID tag shown in FIG. 2a. 図1a~図1c及び図2a~図2cに示したIDタグに付与されたIDを生成、判別するID生成システムの一例を示す図である。2 is a diagram showing an example of an ID generation system that generates and discriminates IDs assigned to ID tags shown in FIGS. 1a to 1c and 2a to 2c. FIG. アンテナ上に樹脂層が積層された場合におけるアンテナからの反射波の周波数特性の変化を示す図である。It is a figure which shows the change of the frequency characteristic of the reflected wave from an antenna in case the resin layer is laminated | stacked on the antenna. 樹脂層を構成する誘電体の厚さを変化させた場合におけるアンテナからの反射波の周波数特性の変化を示す図である。It is a figure which shows the change of the frequency characteristic of the reflected wave from an antenna when the thickness of the dielectric material which comprises a resin layer is changed. 樹脂層を構成する誘電体の誘電正接を変化させた場合におけるアンテナからの反射波の周波数特性の変化を示す図である。It is a figure which shows the change of the frequency characteristic of the reflected wave from an antenna when the dielectric loss tangent of the dielectric material which comprises a resin layer is changed. 樹脂層を構成する誘電体の比誘電率を変化させた場合におけるアンテナからの反射波の周波数特性の変化を示す図である。It is a figure which shows the change of the frequency characteristic of the reflected wave from an antenna at the time of changing the dielectric constant of the dielectric material which comprises a resin layer. 図5a~図5cに示した周波数特性の変化、並びに、その際の(比誘電率)×(誘電正接)×(膜厚[μm])1/2を用いた算出係数をまとめた表である。FIG. 5 is a table summarizing changes in frequency characteristics shown in FIGS. 5a to 5c and calculation coefficients using (dielectric constant) × (dielectric loss tangent) × (film thickness [μm]) 1/2 at that time. . 本発明の識別体の他の実施の形態を示す表面図である。It is a surface view which shows other embodiment of the identification object of this invention. 図7aに示したA-A’断面図である。FIG. 7B is a cross-sectional view taken along the line A-A ′ shown in FIG. 本発明の識別体の他の実施の形態を示す裏面図である。It is a reverse view which shows other embodiment of the identification body of this invention.
 以下に、本発明の実施の形態について図面を参照して説明する。
 図1aは、本発明の識別体の実施の一形態を示す表面図である。図1bは、図1aに示したA-A’断面図である。図1cは、図1aに示したIDタグ1aから樹脂層4を取り除いた表面の構成を示す図である。なお、図1cにおいては樹脂層4が積層される領域を破線で示している。
 本形態における識別体は図1a~図1cに示すように、樹脂フィルム等の絶縁性材料からなるベース基材2に5つの導電性のアンテナ3a~3eが形成され、さらに、このアンテナ3a~3eのうち、アンテナ3a,3c,3e上に樹脂層4が積層されて構成されたIDタグ1aである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1a is a surface view showing an embodiment of an identifier of the present invention. FIG. 1B is a cross-sectional view taken along the line AA ′ shown in FIG. 1a. FIG. 1c is a diagram showing the configuration of the surface where the resin layer 4 is removed from the ID tag 1a shown in FIG. 1a. In FIG. 1c, a region where the resin layer 4 is laminated is indicated by a broken line.
As shown in FIGS. 1a to 1c, the identification body in this embodiment includes five conductive antennas 3a to 3e formed on a base substrate 2 made of an insulating material such as a resin film, and the antennas 3a to 3e. Among these, the ID tag 1a is formed by laminating the resin layer 4 on the antennas 3a, 3c, 3e.
 アンテナ3a~3eは、長方形の外形を有し、その短辺の1つからスリットが長手方向に入った形状となっている。アンテナ3a~3eは、互いに同一の幅を有し、その長手方向の長さが異なることで、互いに異なる共振周波数を有している。IDタグ1aは、アンテナ3a~3eを用いて任意のIDを識別可能とするものであるが、アンテナ3a~3eは、ベース基材2にIDによらずにその全てが固定印刷によって一律に形成されている。
 樹脂層4は、ベース基材2に形成されたアンテナ3a~3eのうち、IDタグ1aに付与されたIDに応じて、アンテナ3a,3c,3eのみに積層されている。樹脂層4は、例えば、樹脂を含有する液体を、アンテナ3a,3c,3eの外形よりも大きな長方形形状にベタ印刷によってアンテナ3a,3c,3eを覆って塗布することで、アンテナ3a,3c,3e上に積層することができる。これにより、ベース基材2に形成されたアンテナ3a~3eのうち、IDタグ1aに付与されたIDに応じて選択されるアンテナ3a,3c,3eに、誘電体となる樹脂層4が対向して配置された構成となっている。
The antennas 3a to 3e have a rectangular outer shape, and have a shape in which a slit enters the longitudinal direction from one of the short sides. The antennas 3a to 3e have the same width, and have different resonance frequencies due to their different lengths in the longitudinal direction. The ID tag 1a can identify any ID using the antennas 3a to 3e. However, the antennas 3a to 3e are all formed uniformly on the base substrate 2 by fixed printing regardless of the ID. Has been.
The resin layer 4 is laminated only on the antennas 3a, 3c and 3e according to the ID assigned to the ID tag 1a among the antennas 3a to 3e formed on the base substrate 2. The resin layer 4 is formed by, for example, applying a resin-containing liquid in a rectangular shape larger than the outer shape of the antennas 3a, 3c, 3e so as to cover the antennas 3a, 3c, 3e by solid printing. It can be laminated on 3e. Accordingly, the resin layer 4 serving as a dielectric is opposed to the antennas 3a, 3c, 3e selected according to the ID given to the ID tag 1a among the antennas 3a to 3e formed on the base substrate 2. It is the composition arranged.
 図2aは、本発明の識別体の他の実施の形態を示す表面図である。図2bは、図2aに示したA-A’断面図である。図2cは、図2aに示したIDタグ1bから樹脂層4を取り除いた表面の構成を示す図である。なお、図2cにおいては樹脂層4が積層される領域を破線で示している。
 本形態における識別体は図2a~図2cに示すように、図1a~図1cに示したものに対して、ベース基材2に形成されたアンテナ3a~3eのうち、樹脂層4が積層されるアンテナが異なっている。本形態によるIDタグ1bは、アンテナ3a~3eのうちアンテナ3a,3c,3dのみに樹脂層4が積層されている。
FIG. 2a is a surface view showing another embodiment of the identifier of the present invention. FIG. 2B is a cross-sectional view taken along the line AA ′ shown in FIG. 2A. FIG. 2c is a diagram showing the configuration of the surface where the resin layer 4 is removed from the ID tag 1b shown in FIG. 2a. In addition, in FIG. 2c, the area | region where the resin layer 4 is laminated | stacked is shown with the broken line.
As shown in FIGS. 2a to 2c, the identification body in this embodiment is formed by laminating a resin layer 4 among the antennas 3a to 3e formed on the base substrate 2 with respect to those shown in FIGS. 1a to 1c. Different antennas. In the ID tag 1b according to this embodiment, the resin layer 4 is laminated only on the antennas 3a, 3c, and 3d among the antennas 3a to 3e.
 このように構成されたIDタグ1a,1bは、それぞれ識別可能となるIDが付与されており、ベース基材2に形成されたアンテナ3a~3eのうち、IDタグ1a,1bに付与されたIDに応じて選択されるアンテナ上に、アンテナ3a~3eを封止する封止剤やベース基材2とは異なる非金属の誘電体となる樹脂層4が積層されている。そして、IDタグ1a,1bに対して電磁波が送信された場合に、その電磁波に対する反射波における反射強度によって検出された共振周波数に応じた個別IDが共振周波数の順序で並べられることで、IDタグ1a,1bに付与されたIDが生成、判別されることになる。
 以下に、上記のように構成されたIDタグ1a,1bに付与されたIDを生成、判別するID生成方法について説明する。
The ID tags 1a and 1b configured as described above are given IDs that can be identified, and among the antennas 3a to 3e formed on the base substrate 2, the IDs assigned to the ID tags 1a and 1b. On the antenna selected according to the above, a sealing agent for sealing the antennas 3a to 3e and a resin layer 4 which is a non-metallic dielectric material different from the base substrate 2 are laminated. When the electromagnetic waves are transmitted to the ID tags 1a and 1b, the individual IDs corresponding to the resonance frequencies detected by the reflection intensity in the reflected wave with respect to the electromagnetic waves are arranged in the order of the resonance frequencies, so that the ID tag The IDs assigned to 1a and 1b are generated and determined.
Hereinafter, an ID generation method for generating and determining IDs assigned to the ID tags 1a and 1b configured as described above will be described.
 図3は、図1a~図1c及び図2a~図2cに示したIDタグ1a,1bに付与されたIDを生成、判別するID生成システムの一例を示す図である。なお、図3においては、IDタグ1bの図示を省略しているが、IDタグ1aと同様に、読取装置5から送信された電磁波がIDタグ1bにて反射することとなる。
 本例におけるID生成システムは図3に示すように、図1a~図1cに示したIDタグ1aと、IDタグ1aに付与されたIDを生成、判別する読取装置5とから構成されている。読取装置5は、アンテナ30a,30bと、電磁波放射部10と、反射波受信部20と、処理部40と、制御部50とを有する。
FIG. 3 is a diagram showing an example of an ID generation system that generates and discriminates IDs assigned to the ID tags 1a and 1b shown in FIGS. 1a to 1c and 2a to 2c. In FIG. 3, although the illustration of the ID tag 1b is omitted, similarly to the ID tag 1a, the electromagnetic wave transmitted from the reading device 5 is reflected by the ID tag 1b.
As shown in FIG. 3, the ID generation system in this example includes the ID tag 1a shown in FIGS. 1a to 1c and a reading device 5 that generates and discriminates the ID assigned to the ID tag 1a. The reading device 5 includes antennas 30 a and 30 b, an electromagnetic wave radiation unit 10, a reflected wave reception unit 20, a processing unit 40, and a control unit 50.
 電磁波放射部10は、IDタグ1a,1bのアンテナ3a~3eの共振周波数を含む電磁波をアンテナ30aを介して送信する。
 反射波受信部20は、電磁波放射部10からアンテナ30aを介して送信された電磁波に対してアンテナ30bを介して受信されたIDタグ1a,1bからの反射波を受信する。
 処理部40は、反射強度検知部41と、ID生成部42とを有する。
 反射強度検知部41は、反射波受信部20にて受信された反射波における反射強度を検知する。
The electromagnetic wave radiation unit 10 transmits electromagnetic waves including the resonance frequencies of the antennas 3a to 3e of the ID tags 1a and 1b via the antenna 30a.
The reflected wave receiving unit 20 receives the reflected waves from the ID tags 1a and 1b received via the antenna 30b with respect to the electromagnetic waves transmitted from the electromagnetic wave emitting unit 10 via the antenna 30a.
The processing unit 40 includes a reflection intensity detection unit 41 and an ID generation unit 42.
The reflection intensity detector 41 detects the reflection intensity in the reflected wave received by the reflected wave receiver 20.
 ID生成部42は、反射強度検知部41にて検知された反射強度によってIDタグ1a,1bにおけるアンテナの共振周波数が検出されたかどうかを判断する。ID生成部42は、この共振周波数の検出結果に基づいて、共振周波数が検出されたと判断したアンテナについての個別IDを第1の識別子である“1”とし、共振周波数が検出されなかったと判断したアンテナについての個別IDを第2の識別子である“0”とし、これら“1”と“0”とを共振周波数の順序で並べることで、IDタグ1a,1bに付与されたIDを生成、判別する。
 制御部50は、電磁波放射部10における電磁波の放射、及び処理部40における各処理を制御する。
The ID generation unit 42 determines whether or not the resonance frequency of the antenna in the ID tags 1a and 1b is detected based on the reflection intensity detected by the reflection intensity detection unit 41. Based on the detection result of the resonance frequency, the ID generation unit 42 sets the individual ID for the antenna determined to have detected the resonance frequency as the first identifier “1” and determines that the resonance frequency has not been detected. The ID assigned to the ID tags 1a and 1b is generated and discriminated by setting the individual ID for the antenna to “0” as the second identifier and arranging these “1” and “0” in the order of the resonance frequency. To do.
The control unit 50 controls the emission of electromagnetic waves in the electromagnetic wave emission unit 10 and each process in the processing unit 40.
 図1a~図1c及び図2a~図2cに示したIDタグ1a,1bにおいては、上述したように、図3に示した読取装置5から照射された電磁波に対する反射波が読取装置5にて受信され、反射波における反射強度によって検出される共振周波数に基づいて、付与されたIDが生成、判別されることになる。その際、アンテナ3a~3eのうち樹脂層4が積層されるアンテナを異ならせることで、読取装置5にて検出される共振周波数を異ならせている。
 以下に、同一のアンテナ3a~3eが形成されたIDタグ1a,1bに異なるIDを付与することができる原理について説明する。
In the ID tags 1a and 1b shown in FIGS. 1a to 1c and 2a to 2c, as described above, the reflected wave with respect to the electromagnetic wave emitted from the reading device 5 shown in FIG. Then, the assigned ID is generated and determined based on the resonance frequency detected by the reflection intensity in the reflected wave. At this time, the resonance frequency detected by the reader 5 is made different by changing the antenna on which the resin layer 4 is laminated among the antennas 3a to 3e.
Hereinafter, the principle that different IDs can be assigned to the ID tags 1a and 1b on which the same antennas 3a to 3e are formed will be described.
 図4は、アンテナ上に樹脂層が積層された場合におけるアンテナからの反射波の周波数特性の変化を示す図である。
 例えば、図4の実線で示すような6.7GHz近傍に共振周波数を有する中抜きの長方形のアンテナ上に、ドライ膜厚が130μm、比誘電率が3.62、周波数10GHzにおける誘電正接が0.804のポリビニルピロリドンが10w%のピロリドン溶液を塗布することで樹脂層を積層した場合、図4の破線で示すように、アンテナからの反射波の周波数特性が変化して反射強度が極端に低下し、6.7GHz近傍にて共振周波数が検出されなくなる。
FIG. 4 is a diagram illustrating a change in frequency characteristics of a reflected wave from the antenna when a resin layer is laminated on the antenna.
For example, on a hollow rectangular antenna having a resonance frequency near 6.7 GHz as shown by the solid line in FIG. 4, the dry film thickness is 130 μm, the relative dielectric constant is 3.62, and the dielectric loss tangent at a frequency of 10 GHz is 0.3. When a resin layer is laminated by applying a 10% pyrrolidone solution of 804 polyvinylpyrrolidone, as shown by the broken line in FIG. , The resonance frequency is not detected in the vicinity of 6.7 GHz.
 図1a~図1c及び図2a~図2cに示したIDタグ1a,1bにおいても、上記のように、アンテナ3a~3eのうち樹脂層4が積層されたアンテナの共振周波数が検出されない構成とすれば、アンテナ3a~3eのうち、IDタグ1a,1bに付与されたIDに応じて選択されるアンテナ上に樹脂層4を積層することにより、読取装置5において、IDタグ1a,1bに付与されたIDを生成、判別することができるようになる。
 図5aは、樹脂層を構成する誘電体の厚さを変化させた場合におけるアンテナからの反射波の周波数特性の変化を示す図である。図5bは、樹脂層を構成する誘電体の誘電正接を変化させた場合におけるアンテナからの反射波の周波数特性の変化を示す図である。図5cは、樹脂層を構成する誘電体の比誘電率を変化させた場合におけるアンテナからの反射波の周波数特性の変化を示す図である。
Also in the ID tags 1a and 1b shown in FIGS. 1a to 1c and 2a to 2c, as described above, the resonance frequency of the antenna having the resin layer 4 laminated among the antennas 3a to 3e is not detected. For example, by stacking the resin layer 4 on the antenna selected according to the ID given to the ID tags 1a and 1b among the antennas 3a to 3e, the reading device 5 gives the ID tags 1a and 1b. ID can be generated and discriminated.
FIG. 5a is a diagram showing a change in frequency characteristics of a reflected wave from an antenna when the thickness of a dielectric constituting the resin layer is changed. FIG. 5b is a diagram showing a change in frequency characteristics of a reflected wave from the antenna when the dielectric loss tangent of the dielectric constituting the resin layer is changed. FIG. 5c is a diagram illustrating a change in frequency characteristics of a reflected wave from the antenna when the dielectric constant of the dielectric constituting the resin layer is changed.
 図5aに示すように、8.3GHz近傍に共振周波数を有するアンテナに、比誘電率ε=3、周波数10GHzにおける誘電正接tanσ=0.2の誘電体を積層し、誘電体の膜厚tを1μm、10μm、50μm、100μmと変化させて、その際の周波数特性を測定した。
 すると、膜厚t=1μmでは、アンテナからの反射波における反射強度がそれほど低下せず、共振周波数が検出されてしまうが、誘電体の膜厚tが増加するに伴って、アンテナからの反射波における反射強度が二次曲線的に低下していくことになる。なお、誘電体を塗布によってアンテナ上に積層する場合、膜厚は0.5~20μm程度が妥当であるため、膜厚を厚くするためには、誘電体からなるシールを貼付すること等が考えられる。その場合、膜厚として、数百μmを確保することができる。
As shown in FIG. 5a, a dielectric having a dielectric constant ε = 3 and a dielectric loss tangent tan σ = 0.2 at a frequency of 10 GHz is laminated on an antenna having a resonance frequency near 8.3 GHz, and the film thickness t of the dielectric is The frequency characteristics at that time were measured by changing the thickness to 1 μm, 10 μm, 50 μm, and 100 μm.
Then, when the film thickness is t = 1 μm, the reflection intensity in the reflected wave from the antenna does not decrease so much and the resonance frequency is detected, but the reflected wave from the antenna increases as the film thickness t of the dielectric increases. Thus, the reflection intensity at the point decreases in a quadratic curve. When laminating a dielectric on an antenna by coating, it is appropriate that the film thickness is about 0.5 to 20 μm. Therefore, in order to increase the film thickness, it is considered to stick a dielectric seal. It is done. In that case, a film thickness of several hundred μm can be secured.
 また、図5bに示すように、8.3GHz近傍に共振周波数のピークを有するアンテナに、比誘電率=3、膜厚t=10μmの誘電体を積層し、周波数10GHzにおける誘電正接tanσを0.05、0.1、0.2、0.5と変化させて、その際の周波数特性を測定した。
 すると、誘電正接tanσ=0.05では、共振周波数がずれるもののアンテナからの反射波における反射強度がそれほど低下せず、共振周波数が検出されてしまうが、誘電体の誘電正接tanσが増加するに伴って、アンテナからの反射波における反射強度が直線的に低下していくことになる。なお、誘電正接は、高くした場合に、ただ単に反射強度が低下するだけであるため、共振周波数が検出されないようにするためには、高ければ高い方が望ましい。その際、特定の添加物を混ぜることで、樹脂の誘電正接を高くすることも可能である。
Further, as shown in FIG. 5b, a dielectric having a relative dielectric constant = 3 and a film thickness t = 10 μm is laminated on an antenna having a resonance frequency peak in the vicinity of 8.3 GHz, and a dielectric loss tangent tanσ at a frequency of 10 GHz is set to 0. The frequency characteristics at that time were measured by changing the values to 05, 0.1, 0.2, and 0.5.
Then, when the dielectric loss tangent tan σ = 0.05, although the resonance frequency is shifted, the reflection intensity in the reflected wave from the antenna does not decrease so much and the resonance frequency is detected. However, as the dielectric loss tangent tan σ of the dielectric increases. As a result, the reflection intensity of the reflected wave from the antenna decreases linearly. Note that, when the dielectric loss tangent is increased, the reflection intensity simply decreases. Therefore, in order to prevent the resonance frequency from being detected, a higher one is desirable. At that time, it is possible to increase the dielectric loss tangent of the resin by mixing a specific additive.
 また、図5cに示すように、8.3GHz近傍に共振周波数のピークを有するアンテナに、膜厚t=10μm、周波数10GHzにおける誘電正接tanσ=0.2の誘電体を積層し、比誘電率εを2、3、4、5と変化させて、その際の周波数特性を測定した。
 すると、誘電体の比誘電率εが増加するに伴って、アンテナからの反射波における反射強度が直線的に低下していく。なお、通常のポリマー材料の比誘電率は2~8である。また、特定の添加物を混ぜることで、樹脂の比誘電率を高くすることも可能である。
 上記測定結果に基づいて、アンテナからの反射波における反射強度を低下させるための近似式として、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2を用い、誘電体をアンテナに積層した場合にアンテナからの反射波における反射強度を、共振周波数が検出されたと判断するための基準に達しない程度のものとするための条件を設定することができる。
Further, as shown in FIG. 5c, a dielectric having a film thickness t = 10 μm and a dielectric loss tangent tan σ = 0.2 at a frequency of 10 GHz is laminated on an antenna having a resonance frequency peak in the vicinity of 8.3 GHz, and a relative dielectric constant ε Was changed to 2, 3, 4, and 5, and the frequency characteristics at that time were measured.
Then, as the relative dielectric constant ε of the dielectric increases, the reflection intensity in the reflected wave from the antenna decreases linearly. The relative dielectric constant of ordinary polymer materials is 2-8. In addition, it is possible to increase the relative dielectric constant of the resin by mixing a specific additive.
Based on the above measurement results, (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [μm]) 1/2 is used as an approximate expression for reducing the reflection intensity in the reflected wave from the antenna. In addition, when the dielectric is laminated on the antenna, it is possible to set a condition for setting the reflection intensity of the reflected wave from the antenna to a level that does not reach the reference for determining that the resonance frequency is detected.
 図6は、図5a~図5cに示した周波数特性の変化、並びに、その際の(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2を用いた算出係数をまとめた表である。
 一般に、電磁波の強度差が-3dBとなると、その電力が半分となる。ここで、図5a~図5cに示した周波数特性の変化において、反射波の強度差が-3dB以上となる際の、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2による算出係数は、図6のNo.2とNo.10の測定結果から、0.75以上であることが想定される。
FIG. 6 shows the change using the frequency characteristics shown in FIGS. 5a to 5c and the calculation using (relative permittivity) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [μm]) 1/2 at that time. It is the table | surface which put together the coefficient.
In general, when the electromagnetic wave intensity difference is -3 dB, the power is halved. Here, in the change in the frequency characteristics shown in FIGS. 5a to 5c, (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [μm] when the intensity difference of the reflected wave is −3 dB or more. ] The calculation coefficient by 1/2 is No. in FIG. 2 and No. From the measurement result of 10, it is assumed that it is 0.75 or more.
 そこで、誘電体をアンテナに積層した場合にアンテナからの反射波における反射強度を、共振周波数が検出されたと判断するための基準に達しない程度のものとするための条件として、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2から算出される誘電体の損失係数を0.75以上と設定する。これは、誘電体の膜厚が増加するに伴って、アンテナからの反射波における反射強度が二次曲線的に低下していくことを考慮したものであるため、算出係数が小さな場合は良好な相関が得られる。一方、算出係数が大きな場合はズレが多少大きくなるが、算出係数が大きな場合は、そもそも反射強度の低下が大きいので、共振周波数が検出されたと判断されない状態には変わりがない。なお、反射波の強度差がー1dB等の微小な差となる際の算出係数を条件に設定した場合、ノイズ等のブレとの判別が難しくなる。 Therefore, when the dielectric is laminated on the antenna, the condition for making the reflection intensity of the reflected wave from the antenna not reach the standard for determining that the resonance frequency has been detected is (relative dielectric constant). X (dielectric loss tangent at a frequency of 10 GHz) x (film thickness [μm]) A dielectric loss factor calculated from 1/2 is set to 0.75 or more. This is because the reflection intensity in the reflected wave from the antenna decreases in a quadratic curve as the dielectric film thickness increases, so it is good when the calculation coefficient is small. Correlation is obtained. On the other hand, when the calculated coefficient is large, the deviation becomes somewhat large. However, when the calculated coefficient is large, the reflection intensity is largely decreased, so that the state where it is not determined that the resonance frequency has been detected remains unchanged. In addition, when the calculation coefficient when the intensity difference of the reflected wave is a minute difference such as −1 dB is set as a condition, it is difficult to discriminate from a blur such as noise.
 このように、導電性のアンテナに、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2から算出される損失係数が、0.75以上となる誘電体が対向して配置されている場合、このアンテナに電磁波を送信したとしても、その反射波における反射強度が低下し、共振周波数が検出されなかったと判断されることになる。そこで、本形態においては、共振周波数が互いに異なる複数の導電性アンテナがベース基材に形成され、このアンテナに対して送信される電磁波の反射波にて共振周波数が検出されたと判断されるかどうかによって、付与されたIDが判別されるIDタグについて、複数の導電性アンテナのうちIDに応じて選択される少なくとも1つの導電性アンテナに、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2から算出される損失係数が、0.75以上となる誘電体を対向して配置しておく。そして、複数の導電性アンテナのうち、反射波にて共振周波数が検出されたと判断した導電性アンテナについての個別IDを“1”とし、共振周波数が検出されなかったと判断した導電性アンテナについての個別IDを“0”とし、これら個別IDを所定の順序に並べることによって、導電性アンテナに意図しない断線が生じることなく、かつ、専用の熱圧器/高周波設備や、高温の乾燥炉を用いることなく、容易に共振周波数や反射強度を異ならせてIDを生成することができる。 In this way, a dielectric having a loss factor calculated from (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [μm]) 1/2 is 0.75 or more. When the electromagnetic waves are arranged opposite to each other, even if an electromagnetic wave is transmitted to the antenna, the reflection intensity in the reflected wave is reduced, and it is determined that the resonance frequency has not been detected. Therefore, in this embodiment, whether or not it is determined that a plurality of conductive antennas having different resonance frequencies are formed on the base substrate and the resonance frequency is detected by a reflected wave of an electromagnetic wave transmitted to the antenna. With respect to the ID tag for which the assigned ID is discriminated, at least one conductive antenna selected according to the ID among the plurality of conductive antennas is (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (Thickness [μm]) Dielectrics having a loss coefficient calculated from 1/2 are 0.75 or more are arranged facing each other. Then, among the plurality of conductive antennas, the individual ID for the conductive antenna for which it is determined that the resonance frequency is detected by the reflected wave is “1”, and the individual for the conductive antenna for which it is determined that the resonance frequency has not been detected. By setting the ID to “0” and arranging these individual IDs in a predetermined order, there is no unintentional disconnection in the conductive antenna, and there is no need to use a dedicated hot pressure / high frequency equipment or a high-temperature drying furnace. The ID can be easily generated by changing the resonance frequency and reflection intensity.
 以下に、その具体例として、図1a~図1c及び図2a~図2cに示したIDタグ1a,1bを用いて生成されるIDを例に挙げて説明する。
 図1a~図1cに示したIDタグ1aは、上述したように、ベース基材2に互いに共振周波数が異なる5つのアンテナ3a~3eが形成され、この5つの導電性のアンテナ3a~3eのうち、アンテナ3a,3c,3e上に樹脂層4が積層されて構成されている。そして、樹脂層4を、上述したように、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2から算出される損失係数が、0.75以上となるものから構成することで、IDタグ1aに対して図3に示した読取装置5の電磁波放射部10から電磁波を送信すると、読取装置5の反射波受信部20にて受信されたIDタグ1aからの反射波においては、アンテナ3b,3dの共振周波数が検出されたと判断されるものの、アンテナ3a,3c,3eの共振周波数は検出されなかったと判断されることとなる。
Hereinafter, as specific examples, IDs generated using the ID tags 1a and 1b shown in FIGS. 1a to 1c and 2a to 2c will be described as examples.
In the ID tag 1a shown in FIGS. 1a to 1c, as described above, five antennas 3a to 3e having different resonance frequencies are formed on the base substrate 2, and among these five conductive antennas 3a to 3e, The resin layer 4 is laminated on the antennas 3a, 3c, 3e. As described above, the loss coefficient calculated from (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [μm]) 1/2 of the resin layer 4 is 0.75 or more. When the electromagnetic wave is transmitted from the electromagnetic wave radiation unit 10 of the reading device 5 shown in FIG. 3 to the ID tag 1a, the ID tag 1a received by the reflected wave reception unit 20 of the reading device 5 is configured. In the reflected wave, it is determined that the resonance frequencies of the antennas 3b, 3d are detected, but the resonance frequencies of the antennas 3a, 3c, 3e are not detected.
 そして、ID生成部42において、共振周波数が検出されたと判断したアンテナ3b,3dについての個別IDを“1”とし、共振周波数が検出されなかったと判断したアンテナ3a,3c,3eについての個別IDを“0”とし、これら“1”と“0”とを共振周波数の順序で並べることで、IDタグ1aに付与されたID“01010”が生成、判別される。
 また、図2a~図2cに示したIDタグ1bは、上述したように、ベース基材2に形成されたアンテナ3a~3eのうち、アンテナ3a,3c,3d上に樹脂層4が積層されて構成されている。そして、樹脂層4を、上述したように、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2から算出される損失係数が、0.75以上となるものから構成することで、IDタグ1bに対して図3に示した読取装置5の電磁波放射部10から電磁波を送信すると、読取装置5の反射波受信部20にて受信されたIDタグ1bからの反射波においては、アンテナ3b,3eの共振周波数が検出されたと判断されるものの、アンテナ3a,3c,3dの共振周波数は検出されなかったと判断されることとなる。
 そして、ID生成部42において、共振周波数が検出されたと判断したアンテナ3b,3eについての個別IDを“1”とし、共振周波数が検出されなかったと判断したアンテナ3a,3c,3dについての個別IDを“0”とし、これら“1”と“0”とを共振周波数の順序で並べることで、IDタグ1bに付与されたID“01001”が生成、判別される。
Then, in the ID generation unit 42, the individual ID for the antennas 3b and 3d for which the resonance frequency has been detected is set to “1”, and the individual ID for the antennas 3a, 3c and 3e for which the resonance frequency has not been detected is determined. By setting “0” and arranging these “1” and “0” in the order of the resonance frequency, the ID “01010” assigned to the ID tag 1a is generated and determined.
In addition, as described above, the ID tag 1b shown in FIGS. 2a to 2c has the resin layer 4 laminated on the antennas 3a, 3c, and 3d among the antennas 3a to 3e formed on the base substrate 2. It is configured. As described above, the loss coefficient calculated from (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [μm]) 1/2 of the resin layer 4 is 0.75 or more. When the electromagnetic wave is transmitted from the electromagnetic wave radiation unit 10 of the reading device 5 shown in FIG. 3 to the ID tag 1b, the ID tag 1b received by the reflected wave reception unit 20 of the reading device 5 is configured. In the reflected wave, it is determined that the resonance frequencies of the antennas 3b, 3e are detected, but the resonance frequencies of the antennas 3a, 3c, 3d are not detected.
Then, in the ID generation unit 42, the individual ID for the antennas 3b and 3e for which the resonance frequency has been detected is set to “1”, and the individual ID for the antennas 3a, 3c and 3d for which it has been determined that the resonance frequency has not been detected. By setting “0” and arranging these “1” and “0” in the order of the resonance frequency, the ID “01001” assigned to the ID tag 1b is generated and determined.
 (他の実施の形態)
 図7aは、本発明の識別体の他の実施の形態を示す表面図である。図7bは、図7aに示したA-A’断面図である。図7cは、本発明の識別体の他の実施の形態を示す裏面図である。
 本形態における識別体は図7a~図7cに示すように、図1a~図1cに示したものに対して、アンテナ3a,3c,3e上に樹脂層4が積層されているのではなく、ベース基材2のアンテナ3a~3eが形成された面とは反対側の面に、アンテナ3a,3c,3eに対向して樹脂層4が配置されている点が異なるIDタグ1cである。
 本形態によるIDタグ1cにおいても、樹脂層4を、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2から算出される損失係数が、0.75以上となるものから構成することで、図3に示した読取装置5の電磁波放射部10から電磁波が送信された場合、読取装置5の反射波受信部20にて受信されたIDタグ1cからの反射波においては、アンテナ3b,3dの共振周波数が検出されたと判断されるものの、アンテナ3a,3c,3eの共振周波数は検出されなかったと判断される。それにより、読取装置5のID生成部42において、IDタグ1cに付与されたID“01010”が生成、判別することになる。
(Other embodiments)
FIG. 7a is a surface view showing another embodiment of the identifier of the present invention. FIG. 7B is a cross-sectional view taken along the line AA ′ shown in FIG. 7A. FIG. 7 c is a back view showing another embodiment of the identifier of the present invention.
As shown in FIGS. 7a to 7c, the identification body in the present embodiment is different from that shown in FIGS. 1a to 1c in that the resin layer 4 is not laminated on the antennas 3a, 3c, 3e, but the base The ID tag 1c is different in that the resin layer 4 is disposed on the surface of the base 2 opposite to the surface on which the antennas 3a to 3e are formed so as to face the antennas 3a, 3c, and 3e.
Also in the ID tag 1c according to this embodiment, the resin layer 4 has a loss coefficient calculated from (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [μm]) 1/2. When the electromagnetic wave is transmitted from the electromagnetic wave radiation unit 10 of the reading device 5 shown in FIG. 3, the reflection from the ID tag 1 c received by the reflected wave reception unit 20 of the reading device 5 is configured. In the wave, it is determined that the resonance frequencies of the antennas 3b and 3d are detected, but it is determined that the resonance frequencies of the antennas 3a, 3c and 3e are not detected. As a result, the ID “01010” assigned to the ID tag 1 c is generated and determined in the ID generation unit 42 of the reading device 5.
 なお、上述した実施の形態においては、アンテナ3a~3eの外形よりも大きな長方形形状の樹脂層4を、アンテナ3a,3c,3d,3e上に積層することでこれらアンテナ3a,3c,3d,3eに樹脂層4を対向させて配置しているが、アンテナ3a~3eと同一形状の樹脂層4を用いたり、アンテナ3a~3eの外形よりも小さな長方形形状の樹脂層4を用いたりしてもよい。ただし、アンテナ3a~3eの外形よりも小さな長方形形状の樹脂層4を用いた場合は、アンテナ3a~3eからの反射強度の低下の程度が弱くなる。
 また、ベース基材に形成された複数のアンテナの共振周波数を互いに異なるものとするためには、上述したように複数のアンテナの長手方向の長さを互いに異ならせるものに限らず、外形を同一としながらもスリットの長さを互いに異ならせることも考えられる。
In the above-described embodiment, a rectangular resin layer 4 larger than the outer shape of the antennas 3a to 3e is laminated on the antennas 3a, 3c, 3d, and 3e, so that these antennas 3a, 3c, 3d, and 3e are stacked. Although the resin layer 4 is disposed so as to face the antenna layer 3a to 3e, the resin layer 4 having the same shape as the antennas 3a to 3e may be used, or the rectangular resin layer 4 smaller than the outer shape of the antennas 3a to 3e may be used. Good. However, when the rectangular resin layer 4 smaller than the outer shape of the antennas 3a to 3e is used, the degree of reduction in the reflection intensity from the antennas 3a to 3e is weakened.
Further, in order to make the resonance frequencies of the plurality of antennas formed on the base substrate different from each other, not only the longitudinal lengths of the plurality of antennas are different from each other as described above, but also the same outer shape. However, it is also conceivable to make the slit lengths different from each other.
 また、上述した実施の形態においては、複数のアンテナの共振周波数を互いに異ならせることで複数のアンテナを識別可能としているが、アンテナの向きを互いに異ならせることで偏波方向をアンテナ毎に異ならせ、偏波方向によってアンテナを識別可能としてもよい。その場合、偏波方向に優先順位を付与し、その優先順位に従った順序に個別IDを並べることとなる。
 また、アンテナの形状としては、上述した実施の形態にて示したように、長方形の外形を有し、その短辺の1つからスリットが長手方向に入ったものに限らない。
 また、上述した実施の形態においては、共振周波数が検出されたと判断したアンテナについての個別IDを“1”とし、共振周波数が検出されなかったと判断したアンテナについての個別IDを“0”とし、これら“1”と“0”とを共振周波数の順序で並べることで、IDタグに付与されたIDを生成、判別しているが、共振周波数が検出されたと判断したアンテナについての個別IDを“0”とし、共振周波数が検出されなかったと判断したアンテナについての個別IDを“1”とし、これら“0”と“1”とを共振周波数の順序で並べることで、IDタグに付与されたIDを生成、判別してもよい。
In the above-described embodiment, the plurality of antennas can be identified by making the resonance frequencies of the plurality of antennas different from each other. However, by changing the directions of the antennas, the polarization directions can be made different for each antenna. The antenna may be identified by the polarization direction. In that case, priority is given to the polarization direction, and individual IDs are arranged in an order according to the priority.
The shape of the antenna is not limited to that having a rectangular outer shape and having a slit in the longitudinal direction from one of its short sides as shown in the above-described embodiment.
Further, in the above-described embodiment, the individual ID for the antenna for which it is determined that the resonance frequency has been detected is “1”, and the individual ID for the antenna for which it has been determined that the resonance frequency has not been detected is “0”. By arranging “1” and “0” in the order of the resonance frequency, the ID assigned to the ID tag is generated and discriminated, but the individual ID for the antenna that is determined to have detected the resonance frequency is “0”. “,” And “1” as the individual ID for the antenna for which it was determined that the resonance frequency was not detected. By arranging these “0” and “1” in the order of the resonance frequency, the ID assigned to the ID tag can be changed. Generation and discrimination may be performed.
 また、上述した実施の形態においては、複数の導電性アンテナのうちIDに応じて選択される少なくとも1つの導電性アンテナに、(比誘電率)×(周波数10GHzにおける誘電正接)×(膜厚[μm])1/2から算出される損失係数が0.75以上となる誘電体を対向して配置し、誘電体が対向して配置された導電性アンテナからの反射波にて共振周波数が検出されない構成とすることでIDを生成しているが、ベース基材上に形成された導電性アンテナに、導電性アンテナを封止するための封止剤及びベース基材とは異なる非金属の誘電体を対向して配置するだけでも、導電性アンテナの周波数特性が変化し、この周波数特性の変化を利用することによって所望のIDを生成することができる。 In the above-described embodiment, at least one conductive antenna selected according to the ID among the plurality of conductive antennas has (relative dielectric constant) × (dielectric loss tangent at a frequency of 10 GHz) × (film thickness [ μm]) A dielectric whose loss factor calculated from 1/2 is 0.75 or more is placed facing each other, and the resonant frequency is detected by the reflected wave from the conductive antenna on which the dielectric is placed facing. Although the ID is generated by adopting a configuration that is not used, the conductive antenna formed on the base substrate has a sealing agent for sealing the conductive antenna and a non-metallic dielectric different from the base substrate. The frequency characteristics of the conductive antenna can be changed by simply arranging the bodies facing each other, and a desired ID can be generated by utilizing the change in the frequency characteristics.

Claims (3)

  1.  ベース基材上に導電性アンテナが形成されてなり、該導電性アンテナの少なくとも共振周波数を用いて、付与されたIDを識別可能とする識別体であって、
     前記導電性アンテナには、当該導電性アンテナを封止するための封止剤及び前記ベース基材とは異なる非金属の誘電体が対向して配置されている、識別体。
    A discriminator that is formed by forming a conductive antenna on a base substrate, and that can identify a given ID using at least the resonance frequency of the conductive antenna,
    A discriminating body in which a non-metal dielectric different from a sealing agent for sealing the conductive antenna and the base base material is disposed opposite to the conductive antenna.
  2.  ベース基材に形成され、共振周波数または偏波方向が互いに異なる複数の導電性アンテナを用いてIDを識別可能とする識別体であって、
     前記複数の導電性アンテナのうち前記IDに応じて選択される少なくとも1つの導電性アンテナに、(比誘電率)×(誘電正接)×(膜厚[μm])1/2から算出される損失係数が0.75以上となる誘電体が対向して配置されている、識別体。
    An identifier that is formed on a base substrate and that can identify an ID using a plurality of conductive antennas having different resonance frequencies or polarization directions,
    Loss calculated from (relative dielectric constant) × (dielectric loss tangent) × (film thickness [μm]) 1/2 in at least one conductive antenna selected according to the ID among the plurality of conductive antennas. An identification body in which dielectrics having a coefficient of 0.75 or more are arranged to face each other.
  3.  共振周波数または偏波方向が互いに異なる複数の導電性アンテナがベース基材に形成されてなる識別体を用いてIDを生成するID生成方法であって、
     前記複数の導電性アンテナのうち前記IDに応じて選択される少なくとも1つの導電性アンテナに、(比誘電率)×(誘電正接)×(膜厚[μm])1/2から算出される損失係数が0.75以上となる誘電体を対向して配置することで当該導電性アンテナからの反射波における反射強度を低下させる処理と、
     前記複数の導電性アンテナに電磁波を送信し、該電磁波の前記複数の導電性アンテナからの反射波を受信する処理と、
     前記反射波における反射強度によって前記共振周波数または偏波方向が検出されたと判断した導電性アンテナについての個別IDを第1の識別子とし、前記共振周波数または偏波方向が検出されなかったと判断した導電性アンテナについての個別IDを第2の識別子とし、これら個別IDを所定の順序に並べる処理とを有する、ID生成方法。
    An ID generation method for generating an ID using an identifier formed by forming a plurality of conductive antennas having different resonance frequencies or polarization directions on a base substrate,
    Loss calculated from (relative dielectric constant) × (dielectric loss tangent) × (film thickness [μm]) 1/2 in at least one conductive antenna selected according to the ID among the plurality of conductive antennas. A process of reducing the reflection intensity in the reflected wave from the conductive antenna by arranging the dielectrics having a coefficient of 0.75 or more to face each other;
    A process of transmitting electromagnetic waves to the plurality of conductive antennas and receiving reflected waves of the electromagnetic waves from the plurality of conductive antennas;
    The individual ID of the conductive antenna for which it is determined that the resonance frequency or polarization direction is detected based on the reflection intensity in the reflected wave is the first identifier, and the conductivity for which it is determined that the resonance frequency or polarization direction is not detected. An ID generation method comprising: processing an individual ID for an antenna as a second identifier and arranging the individual IDs in a predetermined order.
PCT/JP2017/016271 2016-04-28 2017-04-25 Identifier and id generation method WO2017188210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-090434 2016-04-28
JP2016090434A JP6587575B2 (en) 2016-04-28 2016-04-28 Identifier and ID generation method

Publications (1)

Publication Number Publication Date
WO2017188210A1 true WO2017188210A1 (en) 2017-11-02

Family

ID=60160504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016271 WO2017188210A1 (en) 2016-04-28 2017-04-25 Identifier and id generation method

Country Status (2)

Country Link
JP (1) JP6587575B2 (en)
WO (1) WO2017188210A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196326A (en) * 1997-09-19 1999-04-09 Seiko Epson Corp Radio wave response sheet and production thereof
JP2008503759A (en) * 2004-06-22 2008-02-07 ヴュービック インコーポレイテッド RFID system using parametric reflective technology
JP2009250480A (en) * 2008-04-03 2009-10-29 Mitsubishi Electric Corp Storage and refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202583A (en) * 1983-04-30 1984-11-16 Mitsubishi Electric Corp Identification card
US5604485A (en) * 1993-04-21 1997-02-18 Motorola Inc. RF identification tag configurations and assemblies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196326A (en) * 1997-09-19 1999-04-09 Seiko Epson Corp Radio wave response sheet and production thereof
JP2008503759A (en) * 2004-06-22 2008-02-07 ヴュービック インコーポレイテッド RFID system using parametric reflective technology
JP2009250480A (en) * 2008-04-03 2009-10-29 Mitsubishi Electric Corp Storage and refrigerator

Also Published As

Publication number Publication date
JP6587575B2 (en) 2019-10-09
JP2017199241A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
Nikitin et al. Low cost silver ink RFID tag antennas
Vena et al. High-capacity chipless RFID tag insensitive to the polarization
Noor et al. High‐density chipless RFID tag for temperature sensing
Javed et al. Directly printable moisture sensor tag for intelligent packaging
TW200405614A (en) RFID tag wide bandwidth logarithmic spiral antenna method and system
Koski et al. Inkjet-printed passive UHF RFID tags: review and performance evaluation
KR20070098420A (en) Rfid tag and manufacturing method thereof
JP2020517151A (en) Antenna with frequency selective element
US9582750B2 (en) RFID devices with multi-frequency antennae
JP4950104B2 (en) EBG structure manufacturing method, EBG structure, EBG structure sheet, and antenna device
Habib et al. Chipless slot resonators for IoT system identification
Jabeen et al. Miniaturized elliptical slot based chipless RFID tag for moisture sensing
Habib et al. Directly printable compact chipless RFID tag for humidity sensing
WO2017188210A1 (en) Identifier and id generation method
Zhang et al. Multilayer liquid crystal polymer based RF frontend module for millimeter wave imaging
Ding et al. A novel magnetic coupling UHF near field RFID reader antenna based on multilayer-printed-dipoles array
Svanda et al. On‐body semi‐electrically‐small tag antenna for ultra high frequency radio‐frequency identification platform‐tolerant applications
Janeczek et al. Printed HF antennas for RFID on-metal transponders
US20160134020A1 (en) Magnetic shielding for an antenna, using a composite based on thin magnetic layers, and antenna comprising such a shielding
JP2019061516A (en) Identification body
JP6798930B2 (en) Discriminator and its manufacturing method
JP2017199251A (en) Identification body and id generation method
CN209231970U (en) Hyperfrequency anti-metal electronic tag
Parthiban et al. 3D‐printed circularly polarized concave patch with enhanced bandwidth and radiation pattern
CN109598326A (en) Hyperfrequency anti-metal electronic tag and production method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789492

Country of ref document: EP

Kind code of ref document: A1