WO2017188146A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2017188146A1
WO2017188146A1 PCT/JP2017/016031 JP2017016031W WO2017188146A1 WO 2017188146 A1 WO2017188146 A1 WO 2017188146A1 JP 2017016031 W JP2017016031 W JP 2017016031W WO 2017188146 A1 WO2017188146 A1 WO 2017188146A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
main body
refrigerator according
refrigerator
condenser
Prior art date
Application number
PCT/JP2017/016031
Other languages
French (fr)
Japanese (ja)
Inventor
林 秀竹
野口 明裕
耕世 西村
Original Assignee
東芝ライフスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016161225A external-priority patent/JP6740057B2/en
Application filed by 東芝ライフスタイル株式会社 filed Critical 東芝ライフスタイル株式会社
Priority to CN201780026906.2A priority Critical patent/CN109073312A/en
Priority to EP17789429.2A priority patent/EP3450889A4/en
Publication of WO2017188146A1 publication Critical patent/WO2017188146A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/028Cores with empty spaces or with additional elements integrated into the cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits

Definitions

  • Embodiment of this invention is related with a refrigerator.
  • the refrigerator has a refrigeration cycle composed of a compressor and a condenser. These compressors and condensers are installed in a so-called machine room and generate heat during operation, so that they are cooled by a cooling fan.
  • Patent Document 1 proposes to efficiently cool the compressor, the condenser, and the like in the machine room by devising the arrangement of the exhaust ports.
  • a refrigerator is provided that can increase the volume of a storage room and can secure a necessary heat dissipation amount in a refrigeration cycle.
  • the refrigerator of the embodiment is a multi-flow type having a flat tube that is formed in a flat shape, a plurality of flow passages in which the refrigerant flows therein, and a header that serves as an inlet or an outlet of the refrigerant to the flat tube. Heat exchange of the refrigeration cycle is performed using a condenser.
  • the figure which shows the refrigerator of embodiment typically The figure which shows the machine room provided in the body typically The figure which shows the structure of the capacitor
  • the figure which shows the attachment aspect of the connection pipe in the structural example B typically The figure which shows the structure of the capacitor
  • condenser in the structural example D typically Diagram showing capacitor orientation The figure which shows typically the example of component arrangement
  • the refrigerator 1 has a main body 2 that is generally rectangular.
  • the main body 2 has a back plate 3, a left side plate 4, a right side plate 5, a top plate 6 and a bottom plate 7 (see FIG. 2), and the front surface is open.
  • the opening on the front surface of the main body 2 is opened and closed by a door 10a (see FIG. 2).
  • the back plate 3, the left side plate 4, the right side plate 5, the top plate 6 and the bottom plate 7 are not shown in the figure, but have, for example, a vacuum heat insulating panel, foamed polyurethane, or a structure using them together, and the storage chamber 10 (FIG. 2) and the outside of the refrigerator 1.
  • the direction along the gravity in the state where the refrigerator 1 is installed is the vertical direction
  • the direction from the left side plate 4 to the right side plate 5 is left and right in the state where the refrigerator 1 is viewed from the front.
  • the direction from the door 10a to the back plate 3 side will be described as the front-rear direction.
  • a machine room 8 is provided in the lower part of the main body 2.
  • the back plate 3, the left side plate 4, the right side plate 5, and the bottom plate 7 have an opening 9 communicating with the machine room 8 at a position corresponding to the machine room 8.
  • Each opening 9 functions as an intake port for sucking air from the outside into the machine room 8 or an exhaust port for discharging air from the machine room 8 to the outside when the cooling fan 20 (see FIG.
  • the opening 9 may be a simple slit, may be processed into a louver shape, or may be provided with a dustproof filter or the like.
  • a compressor 11, a condenser 12, a cooling fan 20, and the like are installed in the machine room 8.
  • the compressor 11 and the condenser 12 constitute a refrigeration cycle 21 together with an evaporator (not shown).
  • an axial fan is used as the cooling fan 20.
  • other parts other than the compressor 11, the condenser 12, and the cooling fan 20 are also installed in the machine room 8.
  • a control unit that controls the entire refrigerator 1 including the compressor 11, the condenser 12, the cooling fan 20, and the like is also provided in the main body 2.
  • a storage room 10 such as a vegetable room is provided in front of the machine room 8 and is opened and closed by a pull-out door 10a.
  • a storage room 10 such as a freezing room is provided above the machine room 8 and is opened and closed by a pull-out door 10a.
  • the storage chamber 10 such as a refrigerator compartment, is provided above the inside of the main body 2, for example, is opened and closed by the rotary door 10a. Since the compressor 11 and the condenser 12 generate heat, the machine room 8 and each storage room 10 are partitioned by a heat insulating partition wall 10b.
  • a so-called multiflow type capacitor 12 is used as the capacitor 12 installed in the machine room 8.
  • the multiflow capacitor 12 has a flat tube 14 connected between the headers 13 as shown in FIG. 3 and the like, and a plurality of flow paths are provided in parallel in the flat tube 14. It has a configuration. Hereinafter, this configuration is referred to as a parallel type for convenience.
  • the multi-flow type capacitor 12 has a configuration in which a single flat tube 14 meandering between the headers 13 is connected as shown in FIG. Hereinafter, this configuration is referred to as a meandering type for the sake of convenience.
  • heat radiation fins 15 are provided between the flat tubes 14.
  • the machine chamber 8 is relatively small. It is necessary to make it. However, if the machine room 8 is downsized, the volume of the machine room 8 is reduced, so that it is not possible to install a large part that can secure a sufficient heat dissipation amount. For this reason, in order to secure the necessary heat dissipation amount, for example, measures such as providing a separate heat dissipation pipe on the back side have been taken.
  • the multiflow type capacitor 12 is adopted. Since the multi-flow type capacitor 12 has a large surface area even if it is small, it can secure a sufficient heat radiation amount and can also be installed in the miniaturized machine room 8.
  • ⁇ Structure example A Parallel structure, in which the flow of refrigerant is unidirectional>
  • a structure example A that is a parallel type and has a unidirectional refrigerant flow will be described with reference to FIGS.
  • the capacitor 12 of the structural example A is referred to as a capacitor 12A for the sake of convenience with the suffix “A” corrected.
  • the description will be made without adding a suffix.
  • the capacitor 12 ⁇ / b> A has a plurality of flat tubes 14 provided in parallel between two cylindrical headers 13.
  • Each flat tube 14 has a plurality of channels formed therein, and each channel communicates with each header 13. For this reason, the refrigerant flows in parallel in the flat tube 14. With such a structure, it is called a multiflow type or a parallel flow type.
  • the refrigerant that has flowed into the header 13 on the inlet side flows through the flat tube 14 and reaches the other header 13 on the outlet side.
  • the radiating fins 15 provided between the flat tubes 14 are in contact with the flat tubes 14, thereby releasing the heat of the flat tubes 14.
  • the part where each flat tube 14 and the radiation fin 15 are arranged is referred to as a main body 12a for convenience.
  • the main body 12a as a whole can be regarded as having a rectangular parallelepiped outer edge.
  • the width direction of the main body 12a that is, the direction from one header 13 to the other header 13 in FIG.
  • the height direction of the main body 12a that is, the direction in which the cylindrical header 13 extends in FIG.
  • the thickness direction of the main body 12a that is, the direction orthogonal to the X axis and the Y axis is referred to as the Z axis.
  • the directions of the arrows indicating the X axis, the Y axis, and the Z axis are assumed to be positive directions, “+” is attached to the positive direction with respect to the main body 12a, and “+” is assigned to the negative direction that is the opposite direction. -"
  • the refrigerant flowing from the inlet side connecting pipe 16a is indicated by an arrow F from the header 13 provided with the inlet side connecting pipe 16a. In this way, it flows in each flat tube 14 toward the other header 13 and flows out from the outlet side connection tube 16b. That is, in the case of the capacitor 12A, the refrigerant flow is unidirectional. At this time, the refrigerant is in a gaseous state when flowing into the inlet-side connecting pipe 16a, and is condensed by the condenser 12 so as to be in a liquid state when flowing out from the outlet-side connecting pipe 16b.
  • the temperature of the header 13 on the inlet side is relatively high, and the temperature of the header 13 on the outlet side is relatively low.
  • the flat tube 14 has the highest temperature on the inlet side, and the temperature decreases as the temperature approaches the outlet side. That is, the temperature distribution is generated in the main body 12 a of the capacitor 12 including the header 13.
  • the inlet side connection pipe 16a and the outlet side connection pipe 16b are considered to have a relatively high degree of freedom.
  • the inlet side connecting pipe 16a is provided in various directions such as the X-direction, the Y + direction, the Z + direction, and the Z-direction with respect to the main body portion 12a. be able to.
  • the outlet side connecting pipe 16b can be provided in various directions such as the X + direction, the Y + direction, the Z + direction, and the Z ⁇ direction with respect to the main body portion 12a.
  • the capacitor 12 has connecting pipes (an inlet-side connecting pipe 16a and an outlet-side connecting pipe 16b) that are formed in a length protruding from the main body 12a where the flat tube 14 is disposed and are connected to the external pipe 17.
  • the connecting pipes inlet side connecting pipe 16 a and outlet side connecting pipe 16 b
  • the connecting pipes may extend parallel to the flat tube 14 or may extend vertically to the flat tube 14.
  • the inlet side connecting pipe 16a and the outlet side connecting pipe 16b may have different directions with respect to the flat tube 14, or may have different directions protruding from the main body portion 12a. The same applies to a meandering capacitor 12 (see FIGS. 9 and 12) described later.
  • the inlet side connecting pipe 16a and the outlet side connecting pipe 16b do not necessarily need to be strictly orthogonal or parallel to these directions, that is, to the respective axes, and may be slightly inclined. It is good or it may be greatly inclined with respect to each axis.
  • the outlet side connecting pipe 16b can be provided in the region R shown in FIG. 5, in this case, since the inlet and the outlet are close to each other, there is a possibility that the refrigerant does not flow evenly in all the flat pipes 14, In the case of the capacitor 12A, the inlet side connecting pipe 16a and the outlet side connecting pipe 16b are desirably provided as diagonally as possible.
  • the pipes 17 connected to the connection pipes 16 correspond to the directions of the connection pipes 16 near the capacitors 12. Therefore, for example, when the inlet side connecting pipe 16a is provided extending in the X-direction and the outlet side connecting pipe 16b is provided extending in the X + direction as shown in FIG. 5, the pipe 17 is connected from the X direction. Considering the size including the pipe 17, the actual installation space required when installing the capacitor 12A is required to some extent in the X direction, that is, the width direction of the main body 12a. Similarly, when the inlet side connecting pipe 16a is provided so as to extend in the Z + direction, for example, an installation space is required to some extent in the Z direction, that is, the thickness direction of the main body 12a. That is, the installation space is limited by the direction of each connecting pipe 16.
  • ⁇ Structural Example B Parallel structure with refrigerant flow in two directions>
  • a structural example B which is a parallel type and has a bi-directional refrigerant flow will be described with reference to FIGS.
  • the basic structure of the capacitor 12 ⁇ / b> B is common to the capacitor 12 ⁇ / b> A, and a plurality of flat tubes 14 are provided in parallel between two cylindrical headers 13.
  • Each flat tube 14 has a plurality of channels formed therein, and each channel communicates with each header 13. For this reason, the refrigerant flows in parallel in the flat tube 14.
  • heat radiation fins 15 are provided between the flat tubes 14.
  • one header 13 is provided with both the inlet side connecting pipe 16a and the outlet side connecting pipe 16b, and a sealing portion is provided between the inlet side connecting pipe 16a and the outlet side connecting pipe 16b.
  • 13a is provided.
  • the sealing portion 13 a seals the inside of the cylindrical header 13. That is, the sealing part 13a divides the inside of one header 13 into two ranges. Further, the sealing portion 13a relatively increases the number of flat tubes 14 on the inlet side and relatively decreases the number of flat tubes 14 on the outlet side. This is because the volume is large because the refrigerant is gaseous on the inlet side, and the volume is reduced because it is condensed and liquid on the outlet side. Thereby, efficiency can be improved.
  • the gaseous refrigerant that has flowed from the inlet side connecting pipe 16a is more at the inlet than the sealing portion 13a, as indicated by an arrow F.
  • each flat tube 14 located on the side connecting pipe 16a side toward the other header 13 it passes through the other header 13 and each flat located on the outlet side connecting tube 16b side from the sealing portion 13a.
  • the refrigerant flows in two directions.
  • the capacitor 12 having such a structure is referred to as a folding type for convenience.
  • each connecting pipe 16 is in accordance with the direction of the connecting pipe 16 near the capacitor 12, so that the installation space is limited by the direction of each connecting pipe 16. It will be.
  • omitted the entrance side connection pipe
  • the capacitor 12C is provided with a single flat tube 14 meandering between two relatively small cylindrical headers 13.
  • the flat tube 14 has a plurality of channels formed therein, and each channel communicates with each header 13. That is, in the meandering type capacitor 12C, one flat tube 14 is bent in the thickness direction and connected from the inlet to the outlet. Even in this case, the refrigerant flows in parallel in the flat tube 14.
  • heat radiation fins 15 are provided between the folded flat tubes 14.
  • the inlet-side header 13 and the outlet-side header 13 are provided on the same side with respect to the main body portion 12a.
  • the gaseous refrigerant flowing in from the inlet side connecting pipe 16a passes through the flat pipe 14 as shown by the arrow F. It flows toward the header 13 and flows out from the outlet side connection pipe 16b.
  • the header 13 may be oriented horizontally or coaxially with the flat tube 14. Since the header 13 itself is small, it is considered that the problem of space is mainly caused by the direction of the connecting pipe 16.
  • the degree of freedom in the direction of the inlet side connecting pipe 16a and the outlet side connecting pipe 16b is relatively high unless the restriction due to the installation location and the installation direction is considered.
  • the inlet side connecting pipe 16a has various types such as a Z + direction, an X ⁇ direction, a Y + direction, a Y ⁇ direction, and a Z ⁇ direction with respect to the main body portion 12a.
  • the outlet side connection pipe 16b can be provided in various directions such as the Z + direction, the X ⁇ direction, the Y + direction, the Y ⁇ direction, and the Z ⁇ direction with respect to the main body portion 12a.
  • each connection pipe 16 corresponds to the direction of the connection pipe 16 near the capacitor 12, so that the installation space is limited by the direction of each connection pipe 16. It will be.
  • tube 16b may be inclined a little, and may be largely inclined with respect to each axis
  • ⁇ Structure Example C Structure with Serpentine Type and Headers on the Diagonal Side>
  • a structure example D which is a meandering type and has headers 13 provided on the diagonal side, that is, a structure example D in which the inlet and outlet of the refrigerant are arranged diagonally with respect to the main body 12a will be described with reference to FIG. .
  • the capacitor 12D is generally in common with the capacitor 12C, but two cylindrical headers 13 are provided at positions diagonal to the main body 12a.
  • the degree of freedom in the direction of the inlet side connecting pipe 16a and the outlet side connecting pipe 16b is relatively high unless the restriction due to the installation location and the installation direction is considered.
  • the inlet side connecting pipe 16a can be provided in various directions, such as a Z + direction, an X ⁇ direction, a Y + direction, a Y ⁇ direction, and a Z ⁇ direction, with respect to the main body portion 12a.
  • the outlet side connecting pipe 16b can be provided in various directions such as the Z + direction, the X + direction, the Y + direction, and the Z ⁇ direction with respect to the main body portion 12a.
  • each connecting pipe 16 corresponds to the direction of the connecting pipe 16 near the capacitor 12, so that the installation space is limited by the direction of each connecting pipe 16. It will be.
  • tube 16b may be inclined a little, and may be largely inclined with respect to each axis
  • the capacitors 12 shown in the above structural examples A to D have various installation directions.
  • a state in which the height direction of the main body portion 12a is installed along the direction of gravity, that is, the header 13 is along the direction of gravity and flattened. It is conceivable that the tube 14 is horizontal to the installation surface. In FIG. 13, the connection pipe 16 is not shown.
  • the width direction of the main body 12a is installed along the direction of gravity, that is, the header 13 is horizontal to the installation surface, and the flat tube 14 is along the direction of gravity.
  • the state is considered.
  • the thickness direction of the main body portion 12a is installed along the direction of gravity, and as shown in FIG. 13D, the thickness direction of the main body portion 12a is inclined with respect to the direction of gravity. It can be considered to be installed in
  • illustration is abbreviate
  • the storage chambers 10 are provided in front and above the machine room 8 as described above, it is desirable that the heat radiation from the capacitor 12 has less influence on the storage rooms 10.
  • the distance to the storage chamber 10 on the front side of the machine room 8 is the same, it is conceivable to consider the influence on the storage chamber 10 on the upper side of the machine room 8 (see FIG. 2).
  • the condenser 12 condenses the gaseous refrigerant into the liquid state as described above, it is desirable that the outlet side connection pipe 16b is positioned below. Further, since the right side plate 5 exists on the right side of the capacitor 12 in the figure, it is difficult to secure a space on the right side of the capacitor 12. In order to reduce the size of the machine room 8, it is not preferable that the space above the capacitor 12 is increased.
  • the header 13 is installed so as to be along the direction of gravity, and the header 13 on the right side of the main body portion 12a is connected to the inlet side.
  • the connecting pipe 16a is provided so as to extend in the Z + direction (front side perpendicular to the paper surface), and the outlet side connecting pipe 16b is provided on the header 13 on the left side in the figure with the Z + direction indicated by a solid line or the X-direction indicated with a broken line (left side in the figure). It is preferable that it is provided so as to extend to the side).
  • FIG. 15 schematically shows the state seen from the arrow XV in FIG.
  • the influence of heat generation on the storage chamber 10 on the upper side of the machine room 8 can be suppressed as compared with the case where the header 13 is arranged vertically (see FIG. 13B). . Further, since the inlet side where the temperature is relatively high is arranged on the outside side, the influence of heat generation on not only the storage chamber 10 but also other components in the machine chamber 8 can be further suppressed.
  • the inlet side connecting pipe 16a is disposed on the upper side and the outlet side connecting pipe 16b is disposed on the lower side, the flow of the refrigerant that transitions from a gaseous state to a liquid state is not hindered by gravity.
  • the arrangement shown in FIG. 15A is considered suitable.
  • the header 13 is installed along the direction of gravity, and the inlet side connection pipe 16a is provided in the header 13 on the right side of the drawing so as to extend in the Z + direction.
  • the outlet side connecting pipe 16b is provided on the lower side with the sealing portion 13a interposed therebetween so as to extend in the Z + direction.
  • the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected.
  • the same effect as the capacitor 12A described above can be obtained. That is, in the case of the capacitor 12B, it is considered that the installation direction and structure as shown in FIG.
  • each header 13 is installed so as to be positioned on the right side plate 5 side, and the inlet-side connecting pipe is connected to the header 13 at the upper right side of the main body 12a.
  • 16a may be provided so as to extend in the Z + direction, and the inlet side connecting pipe 16a may be provided so as to extend in the Z + direction on the header 13 on the lower right side of the main body 12a.
  • the header 13 is installed so as to be on the right side plate 5 side and the side opposite to the right side plate 5 side.
  • the inlet side connecting pipe 16a may be provided so as to extend in the Z + direction
  • the outlet side connecting pipe 16b may be provided in the header 13 on the lower left side of the main body 12a so as to extend in the Z + direction.
  • the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected.
  • the same effect as the capacitor 12A described above can be obtained. That is, in the case of the capacitor 12C, it is considered that the installation direction and structure as shown in FIG.
  • FIG. 16 shows an installation example B, schematically showing a state in which the machine room 8 is viewed from above.
  • the capacitor 12 is installed such that the main body 12 a is substantially perpendicular to the storage chamber 10 in front of the machine room 8.
  • the compressor 11 is cooled and exhausted from the openings 9 provided in the left plate 4. become.
  • the cooling fan 20 is disposed on the most upstream side in the air flow
  • the condenser 12 is disposed on the downstream side
  • the compressor 11 is disposed on the further downstream side.
  • the header 13 is along the direction of gravity, and the header 13 on the inlet side is the front side of the drawing (FIG. 16).
  • the inlet side connecting pipe 16a and the outlet side connecting pipe 16b are arranged in the Z + direction (right side in the figure) as indicated by solid lines or the Z ⁇ direction (left side in the figure) indicated by broken lines. It is preferable that it is provided so as to extend in the direction toward the other side. That is, it is preferable to provide the connecting pipes (inlet side connecting pipe 16 a and outlet side connecting pipe 16 b) so as to extend in parallel to the air blowing direction of the cooling fan 20.
  • connection pipe 16 is schematically shown in a mode connected to the header 13 indicated by a broken line.
  • the entrance side where the temperature becomes relatively high is disposed on the back plate 3 side while suppressing the influence of heat generation on the storage chambers 10 on the front side and the upper side of the machine room 8. Therefore, the influence of heat generation on not only the storage chamber 10 but also other components in the machine chamber 8 can be further suppressed.
  • the inlet side connecting pipe 16a is disposed on the upper side and the outlet side connecting pipe 16b is disposed on the lower side, the flow of the refrigerant that transitions from the gaseous state to the liquid state is not hindered by gravity.
  • the cooling fan 20 has a space (S) formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b, that is, the inlet side connecting pipe 16a and the outlet side connecting pipe 16b protruding from the main body 12a. It is provided in a range less than the length. Needless to say, the cooling fan 20 is large enough to fit in the space (S).
  • the header 13 is installed along the direction of gravity, and the inlet-side connecting pipe 16a and the outlet-side connecting pipe are connected to the header 13 on the front side in the figure.
  • 16b is preferably provided so as to extend in the Z + direction (right side in the figure) as indicated by a solid line or in the Z-direction (left side in the figure) indicated by a broken line.
  • the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected.
  • the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12B, it is considered that the installation direction and structure as shown in FIG.
  • each header 13 is installed so as to be positioned on the back plate 3 side, and the inlet side connecting pipe 16a is connected to the header 13 in the upper part of the main body 12a in the figure.
  • the outlet side connecting pipe 16b is provided in the header 13 below the main body 12a so as to extend in the Z + direction indicated by a solid line or the Z ⁇ direction (left side in the figure) indicated by a broken line.
  • the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected.
  • the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12C, it is considered that the installation direction and structure as shown in FIG.
  • the inlet-side header 13 is placed on the back plate 3 side, and the outlet-side header 13 is placed on the diagonal side.
  • the inlet side connecting pipe 16a is shown in the header 13 at the upper part of the figure 12a, and the outlet side connecting pipe 16b is shown in the header 13 at the lower side of the main body 12a. It is preferable to provide it so as to extend to the left side.
  • the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected.
  • the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12D, it is considered that the installation direction and structure as shown in FIG. In this installation example B, as shown in FIG. 26, the compressor 11, the cooling fan 20, and the condenser 12 are arranged from the left side of the figure, in other words, the condenser 12 is arranged on the most upstream side in the air flow.
  • the cooling fan 20 is disposed on the downstream side and the compressor 11 is disposed on the further downstream side.
  • FIG. 18 shows an installation example C, schematically showing a state in which the machine room 8 is viewed from above.
  • the capacitor 12 is installed such that the main body 12 a is parallel to the bottom plate 7.
  • the compressor 11 is cooled and exhausted from the opening 9 provided in the left side plate 4 and the back plate 3. become.
  • the header 13 is substantially perpendicular to the direction of gravity, and the inlet-side header 13 is on the front side in the figure. It is preferable that the inlet side connecting pipe 16a and the outlet side connecting pipe 16b are provided so as to extend in the Z + direction (upper side in the figure) as indicated by solid lines.
  • FIG. 19 schematically shows the state seen from the arrow XIX in FIG. 18, and in FIG. 19A, the direction of the header 13 is schematically shown by a broken line.
  • the connection pipe 16 is schematically shown in a mode connected to the header 13 indicated by a broken line.
  • the header 13 provided with the inlet side connecting pipe 16a may be inclined slightly upward from the header 13 provided with the outlet side connecting pipe 16b (FIG. 13 ( d)).
  • the cooling fan 20 is provided in a space (S) formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b. Thereby, space saving can be achieved. Further, it is considered that the connection of the pipe 17 is facilitated from above the capacitor 12. That is, in the case of the capacitor 12A, the arrangement as shown in FIG.
  • the header 13 is installed so as to be substantially perpendicular to the direction of gravity, and the inlet-side connecting pipe 16a and the outlet are connected to the header 13 on the front side in the figure.
  • the side connection pipe 16b is preferably provided so as to extend in the Z + direction.
  • the inlet side connecting pipe 16a is connected to the header 13 on the right side of the main body 12a, that is, the side away from the storage chamber 10, and the main body 12a.
  • the outlet side connecting pipe 16b is preferably provided on the header 13 on the left side of the portion 12a, that is, on the side closer to the storage chamber 10, so as to extend in the Z + direction.
  • the inlet side connecting pipe 16a and the outlet side connecting pipe are connected to the header 13 on the near side of the main body 12a, that is, the side away from the storage chamber 10.
  • 16b is preferably provided so as to extend in the Z + direction.
  • the capacitor 12 has a constant distance between the header 13 and the storage chamber 10 in front of the machine room 8, while the distance between the header 13 and the storage chamber 10 above the machine room 8 depends on the position of the header 13. Different. Therefore, in the case of such installation, it is considered that the influence of heat generation on the storage chamber 10 can be suppressed by providing the header 13 below.
  • the header 13 on the inlet side is disposed on the lower side in the figure, that is, on the lower side in the direction of gravity, the flow of the refrigerant may be hindered.
  • the header 13 is arranged along the heat insulating partition wall 10b, and on the right side of the main body 12a.
  • the inlet-side connecting pipe 16a is provided in the header 13 on the side close to the side plate so as to extend in the Z + direction (generally on the near side in the figure), and the outlet-side connecting pipe 16b is provided on the header 13 on the left side in the figure of the main body 12a. It is preferably provided so as to extend in the Z + direction shown in FIG.
  • FIG. 21 schematically shows a state viewed from the back side of the refrigerator 1.
  • the capacitor 12A By installing in such a state, the influence of heat generation on the storage chamber 10 above the machine room 8 can be suppressed.
  • the state is substantially as shown in FIG. 19A, and the space (S) in which the cooling fan 20 is formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b. ).
  • space saving can be achieved. That is, in the case of the capacitor 12A, the arrangement shown in FIG. 21A is considered suitable.
  • the header 13 is installed along the heat insulating partition wall 10b, and the inlet side connecting pipe 16a and the outlet are connected to the header 13 on the right side in the figure.
  • the side connection pipe 16b is preferably provided so as to extend in the Z + direction.
  • the cooling fan 20 is preferably disposed in the space (S) formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b.
  • the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected.
  • the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12B, it is considered that the installation direction and structure as shown in FIG.
  • the inlet side connecting pipe 16a is provided on the header 13 on the right side of the main body 12a and the header on the left of the main body 12a. 13 is preferably provided with an outlet side connection pipe 16b extending in the Z + direction.
  • the inlet side connecting pipe 16a is provided in the header 13 on the right side of the main body 12a so as to extend in the Z + direction, and the main body 12a is illustrated. It is preferable that the right side header 13 is provided so as to extend in the Z + direction in which the outlet side connecting pipe 16b is shown by a solid line or in the X ⁇ direction (left side in the figure) shown by a broken line.
  • the refrigerator 1 of the present embodiment employs the capacitors 12 having different structures depending on the installation position in the machine room 8.
  • the refrigerator 1 is a multi-flow type having a flat tube 14 that is formed in a flat shape and in which a plurality of flow paths through which a refrigerant flows is formed, and a header 13 that serves as an inlet or an outlet for the refrigerant into the flat tube 14.
  • Heat exchange of the refrigeration cycle 21 is performed using the condenser 12.
  • the multi-flow type capacitor 12 can be expected to have a heat dissipation effect that is two to three times that of the same volume, so that the heat dissipating pipe that has been provided in the past is not necessary, and the structure can be simplified.
  • the manufacturing cost can be reduced.
  • heat leak to the storage is reduced, which can contribute to energy saving.
  • the capacitor 12 may be arranged so that the direction in which the flat tube 14 extends is horizontal to the installation surface of the refrigerator 1, or the direction in which the flat tube 14 extends is perpendicular to the installation surface.
  • the main body portion 12a may be disposed so as to be horizontal with respect to the installation surface, or the main body portion 12a may be disposed so as to be inclined with respect to the installation surface. Also good. That is, the installation direction of the capacitor 12 can be set according to the shape of the machine room 8 and the balance with other components in the machine room 8. Thereby, the freedom degree of installation can be improved.
  • the condenser 12 When the condenser 12 is installed, the refrigerant flows from the upper side. Thereby, since the refrigerant
  • the condenser 12 is arranged such that the inlet side of the refrigerant is away from the storage chamber 10. Thereby, it can suppress that the storage room 10 or the heat insulation partition wall 10b is heated by the heat_generation
  • the capacitor 12 is disposed in a machine room 8 provided in the main body 2 of the refrigerator 1.
  • the machine room 8 is provided with an opening 9 for cooling the compressor 11 so that the outside air can be easily introduced and discharged. For this reason, by providing the capacitor 12 in the machine room 8, the capacitor 12 can be cooled, and the air heated by cooling the capacitor 12 can be efficiently discharged.
  • the condenser 12 has a connecting pipe 16 which is a refrigerant inlet or outlet and is formed in a length projecting in the X direction, the Y direction or the Z direction from the main body portion 12a where the flat tube 14 is disposed. Yes.
  • the cooling fan 20 that cools the condenser 12 is smaller than the outer shape of the main body portion 12 a and thinner than the protruding length of the connection pipe 16, and between the main body portion 12 a and the tip of the connection pipe 16. It is arranged in a space (S. space) formed.
  • the cooling fan 20 can be installed in a space that is always required when the capacitor 12 is installed, and space saving can be achieved.
  • the multi-flow capacitor 12 is small and high performance as described above, and can effectively exchange heat even with a relatively small air volume, so that the space (S) formed by the main body 12a and the connecting pipe 16 is sufficient. Even the cooling fan 20 that fits inside can be sufficiently cooled.
  • one condenser 12 is cooled by the cooling fan 20
  • two or more capacitors 12 may be cooled by one cooling fan 20.
  • the condenser 12 is disposed obliquely with respect to the air blowing surface of the cooling fan 20 so that the air blown from the cooling fan 20 strikes each capacitor 12 as indicated by an arrow Y. May be.
  • the condenser 12 may be disposed so as to overlap the air blowing surface, and the air blown from the cooling fan 20 may hit each condenser 12.
  • a parallel type or a meandering type may be provided or mixed.
  • the capacitor 12 having one main body 12a is illustrated, but for example, a capacitor 12 having a plurality of main bodies 12a may be used as shown in FIG.
  • capacitance of the refrigerating cycle 21 can be improved, without causing the excessive enlargement of the capacitor
  • FIG. As a result, the surface area of the capacitor 12 can be increased, or the capacitor 12 can be thinned, and the space occupied by the capacitor 12 can be reduced. In addition, the heat dissipation efficiency can be increased.
  • main body portions 12a are shown in FIG. 23, three or more main body portions 12a may be included.
  • main body portions 12a may be provided with an angle instead of being folded as shown in FIG.
  • some main-body part 12a may be connected in series, and may be connected in parallel.
  • defrost water is water generated when frost adhering to a cooler (not shown) is melted.
  • condenser 12 can be efficiently cooled with defrost water.
  • the direction of the condenser 12 is set so that the flat tube 14 follows the direction of gravity, the defrost water is promoted to flow down by the gravity through the flat tube 14, and cooling water does not accumulate in the radiating fins 15. It can be cooled efficiently.
  • the defrosting water may be dripped onto the main body 12a from the front, that is, from the Z-axis direction in the embodiment. Moreover, it is good also as a structure which always dripping defrost water (W), and good also as a structure which dripping defrost water (W) regularly. Thereby, clogging of the radiation fin 15 due to dust or the like can be prevented.
  • the configuration of the refrigerator 1 exemplified in the embodiment is an example, and the function and arrangement may be different, for example, the number of storage chambers 10 may be different, or a freezing chamber may be provided at the bottom.
  • FIG. 2 and the like schematically show the configuration and structure.
  • the size, installation location, etc. of the compressor 11, the condenser, the cooling fan 20, the opening 9 and the like are not necessarily in the relationship shown in the figure. Also good.
  • the refrigerator 1 which provided the machine room 8 in the upper part in the main body 2 may be sufficient. That is, the shape of the machine room 8 and the arrangement in the main body 2 are not limited to those exemplified in the embodiment.
  • the capacitor 12 is installed as shown in FIG. 17A when viewed from the left side plate 4 side with the header 13 on the inlet side facing the upper part and the header 13 on the outlet side facing the lower part.
  • a heat insulating member 30 that closes at least a part of the space or the space may be provided. Thereby, for example, when it is necessary to arrange the inlet side connecting pipe 16a having a relatively high temperature on the heat insulating partition wall 10b side due to piping, the transfer of heat from the capacitor 12 to the storage chamber 10 is suppressed. Can do.
  • the heat insulating member 30 may be provided in the space above the capacitor 12.
  • the capacitor 12 may be disposed in contact with the wall portion of the installation place where the capacitor 12 is provided, for example, the heat insulating partition wall 10b of the machine room 8.
  • the outlet side connecting pipe 16b having a relatively low temperature on the heat insulating partition wall 10b side.
  • the transfer of heat from the capacitor 12 to the storage chamber 10 can be suppressed.
  • the capacitor 12 in contact with the heat insulating partition wall 10b, it is possible to suppress the inflow of air into the space between the capacitor 12 and the heat insulating partition wall 10b, and to send air from the cooling fan 20 Is effectively concentrated on the capacitor 12, so that the capacitor 12 can be efficiently cooled.
  • the top and bottom of the capacitor 12 are arranged on the ceiling side wall and the inside wall part as shown in FIG. You may arrange
  • the outlet side connecting pipe 16b having a relatively low temperature inside the warehouse it is possible to suppress the transfer of heat to the storage chamber 10, and to connect the inlet side connecting pipe 16a having a relatively high temperature to the ceiling. By making contact with the side, heat dissipation from the handcuff side can be promoted.
  • the capacitor 12 is illustrated in which the main body 12a is formed in a substantially thin rectangular parallelepiped shape, but the main body 12a may have other shapes.
  • a part of the main body 12 a is inclined such that the inlet-side header 13 is obliquely arranged by changing the length of the flat tube 14. It may be formed in any shape.
  • the main body portion 12a is formed in a shape in which a part thereof is inclined. May be.
  • the inclined portion 12a is placed along the wall portion of the machine room 8, thereby reducing the space in the machine room 8. It can be used effectively. In other words, dead space can be reduced, and for example, the storage chamber 10 can be enlarged.
  • the header 13 on the left upper side in the figure serving as the inlet side and the header 13 on the lower left side in the figure serving as the outlet are separated from each other.
  • the main end 12a may be formed in a step shape.
  • the end 12a in the meandering capacitor 12, the end 12a may be formed in a stepped shape by setting the turn length of the flat tube 14 to, for example, two stages.
  • the installation space can be effectively utilized, for example, other mechanical parts and piping parts (not shown) can be avoided.
  • the main body portion 12a may have a shape having both an inclination and a step, or may be a deformed shape other than a rectangular parallelepiped shape, such as a substantially U-shaped shape or a U-shaped shape, which is partially recessed. Good. Even in the case of such an irregular shape, the installation space can be effectively utilized, such as avoiding other machine parts and piping parts.
  • a centrifugal fan may be adopted as the cooling fan.
  • the capacitors 12 are arranged side by side in the circumferential direction so as to face the cooling fan 20. Can be cooled.
  • the main body 12a of the capacitor 12 may be formed in a curved shape along the outer shape of the cooling fan 20, in this case, an arch shape.
  • condenser 12 can be efficiently cooled with the flow of the air which goes to radial direction outer side from the center of the cooling fan 20.
  • FIG. Further, by elongating the main body portion 12a in the circumferential direction, the height dimension of the capacitor 12 can be reduced, and space saving can be achieved.

Abstract

In this refrigerator 1, heat exchange of a refrigeration cycle 21 is carried out using a multiflow-type condenser 12 which comprises a flat pipe 14, which is formed in a flat shape and in which multiple flow paths are internally formed for circulating a refrigerant, and a header 13, which is the refrigerant inlet or the outlet into the flat pipe 14.

Description

冷蔵庫refrigerator
 本発明の実施形態は、冷蔵庫に関する。 Embodiment of this invention is related with a refrigerator.
 冷蔵庫は、コンプレッサやコンデンサで構成された冷凍サイクルを備えている。これらコンプレッサやコンデンサは、いわゆる機械室内に設置されており、動作時に発熱することから、冷却ファンによって冷却されている。そして、例えば特許文献1には、排気口の配置を工夫することにより、機械室内のコンプレッサやコンデンサ等を効率よく冷却することが提案されている。 The refrigerator has a refrigeration cycle composed of a compressor and a condenser. These compressors and condensers are installed in a so-called machine room and generate heat during operation, so that they are cooled by a cooling fan. For example, Patent Document 1 proposes to efficiently cool the compressor, the condenser, and the like in the machine room by devising the arrangement of the exhaust ports.
特開2014-238219号公報JP 2014-238219 A
 さて、近年では、冷蔵室等の貯蔵室を高容積化することが望まれている。このとき、本体の大型化を招くことなく高容積化を図るために、機械室が相対的に小型化されている。その結果、大きなコンデンサを機械室内に設置することができなくなり、例えば冷蔵庫の背面側に別途放熱パイプを設けることによって必要な放熱量を確保する等の対策が必要となっていた。
 そこで、貯蔵室を高容積化できるとともに、冷凍サイクルにおいて必要な放熱量を確保することができる冷蔵庫を提供する。
In recent years, it has been desired to increase the volume of a storage room such as a refrigerator room. At this time, the machine room is relatively miniaturized in order to increase the volume without increasing the size of the main body. As a result, a large capacitor cannot be installed in the machine room, and measures such as securing a necessary heat radiation amount by providing a separate heat radiation pipe on the back side of the refrigerator, for example, have been required.
Thus, a refrigerator is provided that can increase the volume of a storage room and can secure a necessary heat dissipation amount in a refrigeration cycle.
 実施形態の冷蔵庫は、偏平状に形成され、その内部に冷媒が流れる流路が複数形成されている偏平管と、偏平管への冷媒の入口または出口となるヘッダと、を有するマルチフロー型のコンデンサを用いて、冷凍サイクルの熱交換を行う。 The refrigerator of the embodiment is a multi-flow type having a flat tube that is formed in a flat shape, a plurality of flow passages in which the refrigerant flows therein, and a header that serves as an inlet or an outlet of the refrigerant to the flat tube. Heat exchange of the refrigeration cycle is performed using a condenser.
実施形態の冷蔵庫を模式的に示す図The figure which shows the refrigerator of embodiment typically 本体内に設けられている機械室を模式的に示す図The figure which shows the machine room provided in the body typically 構造例Aにおけるコンデンサの構造を模式的に示す図The figure which shows the structure of the capacitor | condenser in the structural example A typically 構造例Aにおける冷媒の流れを模式的に示す図The figure which shows the flow of the refrigerant | coolant in the structural example A typically 構造例Aにおける接続管の取り付け態様を模式的に示す図The figure which shows the attachment aspect of the connection pipe in the structural example A typically 構造例Bにおけるコンデンサの構造を模式的に示す図The figure which shows the structure of the capacitor | condenser in the structural example B typically 構造例Bにおける冷媒の流れを模式的に示す図The figure which shows typically the flow of the refrigerant | coolant in the structural example B 構造例Bにおける接続管の取り付け態様を模式的に示す図The figure which shows the attachment aspect of the connection pipe in the structural example B typically 構造例Cにおけるコンデンサの構造を模式的に示す図The figure which shows the structure of the capacitor | condenser in the structural example C typically 構造例Cにおける冷媒の流れを模式的に示す図The figure which shows typically the flow of the refrigerant | coolant in the structural example C 構造例Cにおける接続管の取り付け態様を模式的に示す図The figure which shows typically the attachment aspect of the connecting pipe in the structural example C 構造例Dにおけるコンデンサの構造を模式的に示す図The figure which shows the structure of the capacitor | condenser in the structural example D typically コンデンサの設置向きを模式的に示す図Diagram showing capacitor orientation 設置例Aにおける機械室内の部品配置例を模式的に示す図The figure which shows typically the example of component arrangement | positioning in the machine room in the installation example A 設置例Aにおけるコンデンサの設置向きの一例を模式的に示す図The figure which shows an example of the installation direction of the capacitor | condenser in the installation example A typically 設置例Bにおける機械室内の部品配置例を模式的に示す図The figure which shows typically the example of component arrangement | positioning in the machine room in the installation example B 設置例Bにおけるコンデンサの設置向きの一例を模式的に示す図The figure which shows typically an example of the installation direction of the capacitor in the installation example B 設置例Cにおける機械室内の部品配置例を模式的に示す図The figure which shows typically the example of component arrangement | positioning in the machine room in the installation example C 設置例Cにおけるコンデンサの設置向きの一例を模式的に示す図The figure which shows typically an example of the installation direction of the capacitor in the installation example C 設置例Dにおける機械室内の部品配置例を模式的に示す図The figure which shows typically the example of component arrangement | positioning in the machine room in the installation example D 設置例Dにおけるコンデンサの設置向きの一例を模式的に示す図The figure which shows typically an example of the installation direction of the capacitor | condenser in the installation example D その他の実施形態における冷却ファンとコンデンサとの設置例を模式的に示す図The figure which shows typically the example of installation of the cooling fan and capacitor | condenser in other embodiment. コンデンサの他の構造を模式的に示す図Diagram showing another structure of capacitor 除霜水を滴下する際のコンデンサの設置向きの一例を模式的に示す図The figure which shows an example of the installation direction of a capacitor | condenser at the time of dripping defrost water typically 機械室の他の配置例を模式的に示す図The figure which shows the other example of arrangement of a machine room typically コンデンサの他の配置例を模式的に示す図Diagram showing another example of capacitor arrangement 断熱部材の配置例を模式的に示す図The figure which shows the example of arrangement | positioning of a heat insulation member typically 平面視におけるコンデンサの他の配置例を示す図The figure which shows the other example of arrangement | positioning of the capacitor in planar view 側面視におけるコンデンサの他の配置例を示す図The figure which shows the other example of arrangement | positioning of the capacitor in a side view 並列式のコンデンサの他の構造を模式的に示す図Diagram showing another structure of parallel capacitor 蛇行式のコンデンサの他の構造を模式的に示す図Diagram showing another structure of serpentine type capacitor 機械室への配置態様を模式的に示す図The figure which shows the arrangement mode to the machine room typically 並列式のコンデンサの他の構造を模式的に示す図Diagram showing another structure of parallel capacitor 蛇行式のコンデンサの他の構造を模式的に示す図Diagram showing another structure of serpentine type capacitor 冷却ファンの他の構造とコンデンサの設置態様を模式的に示す図Diagram showing another cooling fan structure and capacitor installation mode コンデンサの他の構造を模式的に示す図Diagram showing another structure of capacitor
 以下、実施形態について、図1から図21を参照しながら説明する。
 図1に示すように、冷蔵庫1は、その本体2が概ね長方形に形成されている。この本体2は、背板3、左側板4、右側板5、天板6および底板7(図2参照)を有し、前面が開口している。本体2の前面の開口は、扉10a(図2参照)によって開閉される。これら背板3、左側板4、右側板5、天板6および底板7は、図示は省略するが、例えば真空断熱パネルや発泡ポリウレタンあるいはそれらを併用した構造となっており、貯蔵室10(図2参照)と冷蔵庫1の外部との間を断熱する構造となっている。
Hereinafter, embodiments will be described with reference to FIGS. 1 to 21.
As shown in FIG. 1, the refrigerator 1 has a main body 2 that is generally rectangular. The main body 2 has a back plate 3, a left side plate 4, a right side plate 5, a top plate 6 and a bottom plate 7 (see FIG. 2), and the front surface is open. The opening on the front surface of the main body 2 is opened and closed by a door 10a (see FIG. 2). The back plate 3, the left side plate 4, the right side plate 5, the top plate 6 and the bottom plate 7 are not shown in the figure, but have, for example, a vacuum heat insulating panel, foamed polyurethane, or a structure using them together, and the storage chamber 10 (FIG. 2) and the outside of the refrigerator 1.
 以下、本明細書では、図1に示すように、冷蔵庫1を設置した状態において重力に沿った向きを上下方向、冷蔵庫1を正面からみた状態において左側板4から右側板5への向きを左右方向、扉10aから背板3側への向きを前後方向と称して説明する。
 本体2内の下部には、機械室8が設けられている。そして、背板3、左側板4、右側板5および底板7は、機械室8に対応する位置に、機械室8内に連通する開口部9が形成されている。各開口部9は、冷却ファン20(図2参照)が作動したとき、機械室8内に外部から空気を吸い込む吸気口、あるいは機械室8内から外部に空気を排出する排気口として機能する。開口部9が吸気口として機能するか排気口として機能するかは、機械室8内における冷却ファン20の位置によって定まる。なお、開口部9は、単なるスリットでもよいし、ルーバ状等に加工されていてもよいし、防塵フィルタ等が設けられていてもよい。
Hereinafter, in the present specification, as shown in FIG. 1, the direction along the gravity in the state where the refrigerator 1 is installed is the vertical direction, and the direction from the left side plate 4 to the right side plate 5 is left and right in the state where the refrigerator 1 is viewed from the front. The direction from the door 10a to the back plate 3 side will be described as the front-rear direction.
A machine room 8 is provided in the lower part of the main body 2. The back plate 3, the left side plate 4, the right side plate 5, and the bottom plate 7 have an opening 9 communicating with the machine room 8 at a position corresponding to the machine room 8. Each opening 9 functions as an intake port for sucking air from the outside into the machine room 8 or an exhaust port for discharging air from the machine room 8 to the outside when the cooling fan 20 (see FIG. 2) is operated. Whether the opening 9 functions as an intake port or an exhaust port is determined by the position of the cooling fan 20 in the machine room 8. The opening 9 may be a simple slit, may be processed into a louver shape, or may be provided with a dustproof filter or the like.
 機械室8内には、図2に示すように、コンプレッサ11、コンデンサ12、冷却ファン20等が設置されている。これらコンプレッサ11およびコンデンサ12は、図示しないエバポレータとともに、冷凍サイクル21を構成している。本実施形態では冷却ファン20として軸流ファンを採用している。機械室8内には、図示は省略するが、コンプレッサ11、コンデンサ12、冷却ファン20以外の他の部品も設置されている。また、当然のことながら、コンプレッサ11、コンデンサ12、冷却ファン20等を含む冷蔵庫1の全体を制御する制御部も、本体2内に設けられている。 In the machine room 8, as shown in FIG. 2, a compressor 11, a condenser 12, a cooling fan 20, and the like are installed. The compressor 11 and the condenser 12 constitute a refrigeration cycle 21 together with an evaporator (not shown). In the present embodiment, an axial fan is used as the cooling fan 20. Although not shown, other parts other than the compressor 11, the condenser 12, and the cooling fan 20 are also installed in the machine room 8. As a matter of course, a control unit that controls the entire refrigerator 1 including the compressor 11, the condenser 12, the cooling fan 20, and the like is also provided in the main body 2.
 機械室8の前方には、例えば野菜室等の貯蔵室10が設けられており、引き出し式の扉10aによって開閉される。また、機械室8の上方には、例えば冷凍室等の貯蔵室10が設けられており、引き出し式の扉10aによって開閉される。また、図示は省略するが、本体2内の上方には例えば冷蔵室等の貯蔵室10が設けられており、例えば回動式の扉10aによって開閉される。これら機械室8と各貯蔵室10との間は、コンプレッサ11やコンデンサ12が発熱することから、断熱仕切壁10bによって仕切られている。 A storage room 10 such as a vegetable room is provided in front of the machine room 8 and is opened and closed by a pull-out door 10a. In addition, a storage room 10 such as a freezing room is provided above the machine room 8 and is opened and closed by a pull-out door 10a. Moreover, although illustration is abbreviate | omitted, the storage chamber 10, such as a refrigerator compartment, is provided above the inside of the main body 2, for example, is opened and closed by the rotary door 10a. Since the compressor 11 and the condenser 12 generate heat, the machine room 8 and each storage room 10 are partitioned by a heat insulating partition wall 10b.
 本実施形態では、機械室8内に設置するコンデンサ12として、いわゆるマルチフロー型のものを採用している。マルチフロー型のコンデンサ12は、詳細は後述するが、図3等に示すようにヘッダ13間を偏平管14が接続されており、その偏平管14内に複数の流路が並行に設けられた構成となっている。以下、この構成を、便宜的に平行式と称する。また、マルチフロー型のコンデンサ12は、図4等に示すようにヘッダ13間を蛇行する1本の偏平管14で接続した構成のものもある。以下、この構成を、便宜的に蛇行式と称する。また、各偏平管14の間には、放熱フィン15が設けられている。 In this embodiment, a so-called multiflow type capacitor 12 is used as the capacitor 12 installed in the machine room 8. As will be described in detail later, the multiflow capacitor 12 has a flat tube 14 connected between the headers 13 as shown in FIG. 3 and the like, and a plurality of flow paths are provided in parallel in the flat tube 14. It has a configuration. Hereinafter, this configuration is referred to as a parallel type for convenience. Further, the multi-flow type capacitor 12 has a configuration in which a single flat tube 14 meandering between the headers 13 is connected as shown in FIG. Hereinafter, this configuration is referred to as a meandering type for the sake of convenience. In addition, heat radiation fins 15 are provided between the flat tubes 14.
 次に上記した構成の作用について説明する。
 例えば図2から想像できるように、本体2の大型化を招くことなく収納量を拡大するためには、つまりは、貯蔵室10を高容積化するためには、機械室8を相対的に小型化する必要がある。ただし、機械室8を小型化すると、機械室8の容積が減ることから、十分な放熱量を確保できる大きな部品を設置することができなくなる。そのため、必要な放熱量を確保するために、例えば別途放熱パイプを背面側に設ける等の対策を施していた。
 これに対して、本実施形態では、マルチフロー型のコンデンサ12を採用している。マルチフロー型のコンデンサ12は、小型であっても大きな表面積を有することから、まず、十分な放熱量を確保することができるとともに、小型化された機械室8内にも設置することができる。
Next, the operation of the above configuration will be described.
For example, as can be imagined from FIG. 2, in order to increase the storage capacity without incurring an increase in the size of the main body 2, that is, to increase the volume of the storage chamber 10, the machine chamber 8 is relatively small. It is necessary to make it. However, if the machine room 8 is downsized, the volume of the machine room 8 is reduced, so that it is not possible to install a large part that can secure a sufficient heat dissipation amount. For this reason, in order to secure the necessary heat dissipation amount, for example, measures such as providing a separate heat dissipation pipe on the back side have been taken.
On the other hand, in this embodiment, the multiflow type capacitor 12 is adopted. Since the multi-flow type capacitor 12 has a large surface area even if it is small, it can secure a sufficient heat radiation amount and can also be installed in the miniaturized machine room 8.
 ところで、コンデンサ12を設置する場合には、留意すべき点が複数存在する。例えば、機械室8内には上記したように他の部品も設置されているため、コンデンサ12の配置場所が他の部品の位置や開口部9の位置等によって制限されることがある。また、特に冷蔵庫1の場合には冷蔵室や冷凍室等の貯蔵室10が設けられているため、貯蔵室10への発熱の影響を抑制する必要がある。また、実際の製造行程においては、後述する配管17(図5等参照)との接続の容易さ等も考慮する必要がある。 Incidentally, there are a plurality of points to be noted when the capacitor 12 is installed. For example, since other parts are also installed in the machine room 8 as described above, the location of the capacitor 12 may be limited by the position of the other parts, the position of the opening 9, and the like. In particular, in the case of the refrigerator 1, since the storage room 10 such as a refrigerator room or a freezer room is provided, it is necessary to suppress the influence of heat generation on the storage room 10. Further, in an actual manufacturing process, it is necessary to consider the ease of connection with a pipe 17 (see FIG. 5 and the like) described later.
 つまり、冷蔵庫1に対してマルチフロー型のコンデンサ12を設置する場合には、単にコンデンサ12が小型であればよいというだけでなく、その設置場所や設置する向きに創意工夫が必要となる。以下、まず、コンデンサ12の複数の構造(構造例A~D)を説明し、その後、構造例A~Dでの好適な設置例(設置例A~D)について説明する。 That is, when the multi-flow type capacitor 12 is installed in the refrigerator 1, it is not only necessary that the capacitor 12 is small, but ingenuity is required in the installation location and the installation direction. Hereinafter, first, a plurality of structures (structure examples A to D) of the capacitor 12 will be described, and then suitable installation examples (installation examples A to D) in the structure examples A to D will be described.
  <構造例A:平行式で、冷媒の流れが一方向の構造>
 平行式であって冷媒の流れが一方向の構造である構造例Aについて、図3から図5を参照しながら説明する。以下、この構造例Aのコンデンサ12について、サフィックス「A」を修して便宜的にコンデンサ12Aと称する。なお、後述する各構造例も同様であるが、各構造例において共通の説明をする場合には、サフィックスを付さずに説明する。
<Structure example A: Parallel structure, in which the flow of refrigerant is unidirectional>
A structure example A that is a parallel type and has a unidirectional refrigerant flow will be described with reference to FIGS. Hereinafter, the capacitor 12 of the structural example A is referred to as a capacitor 12A for the sake of convenience with the suffix “A” corrected. The same applies to each structural example described later. However, in the case where a common description is given in each structural example, the description will be made without adding a suffix.
 図3に示すように、コンデンサ12Aは、2つの円筒状のヘッダ13間に、複数の偏平管14が並行に設けられている。各偏平管14は、その内部に複数の流路が形成されており、各流路は、各ヘッダ13に連通している。このため、偏平管14内では、冷媒が並行して流れることになる。このような構造によって、マルチフロー型あるはパラレルフロー型と称されている。 As shown in FIG. 3, the capacitor 12 </ b> A has a plurality of flat tubes 14 provided in parallel between two cylindrical headers 13. Each flat tube 14 has a plurality of channels formed therein, and each channel communicates with each header 13. For this reason, the refrigerant flows in parallel in the flat tube 14. With such a structure, it is called a multiflow type or a parallel flow type.
 さて、入口側となる一方のヘッダ13に流入した冷媒は、偏平管14内を流れ、出口側となる他方のヘッダ13に到達する。このとき、例えば薄い金属板を波状に形成することにより各偏平管14の間に設けられている放熱フィン15は、各偏平管14と接触していることから、各偏平管14の熱を放出する。以下、各偏平管14と放熱フィン15とが配置されている部位を、便宜的に本体部12aと称する。この本体部12aは、全体として、その外縁が概ね薄い直方体状になっているとみなすことができる。 Now, the refrigerant that has flowed into the header 13 on the inlet side flows through the flat tube 14 and reaches the other header 13 on the outlet side. At this time, for example, by forming a thin metal plate in a wave shape, the radiating fins 15 provided between the flat tubes 14 are in contact with the flat tubes 14, thereby releasing the heat of the flat tubes 14. To do. Hereinafter, the part where each flat tube 14 and the radiation fin 15 are arranged is referred to as a main body 12a for convenience. The main body 12a as a whole can be regarded as having a rectangular parallelepiped outer edge.
 以下、本体部12aの幅方向、つまりは、図3においては一方のヘッダ13から他方のヘッダ13への向きをX軸と称する。また、本体部12aの高さ方向、つまりは、図3においは円筒状のヘッダ13が延びている向きをY軸と称する。また、本体部12aの厚み方向、つまりは、X軸およびY軸にそれぞれ直交する向きをZ軸と称する。また、図3においてX軸、Y軸およびZ軸を示す矢印の向きを正方向とし、本体部12aを基準として正方向には「+」を付し、その逆向きとなる負方向には「-」を付して説明する。 Hereinafter, the width direction of the main body 12a, that is, the direction from one header 13 to the other header 13 in FIG. Further, the height direction of the main body 12a, that is, the direction in which the cylindrical header 13 extends in FIG. The thickness direction of the main body 12a, that is, the direction orthogonal to the X axis and the Y axis is referred to as the Z axis. Further, in FIG. 3, the directions of the arrows indicating the X axis, the Y axis, and the Z axis are assumed to be positive directions, “+” is attached to the positive direction with respect to the main body 12a, and “+” is assigned to the negative direction that is the opposite direction. -"
 各ヘッダ13には、それぞれ接続管16が設けられている。この接続管16は、配管17(図5参照)との接続を行うために設けられており、ヘッダ13に対して強固に接続されている一方、配管17と接続される側は、例えば湾曲や屈曲が可能なパイプ状に形成されており、例えばロウ付けによって配管17と接続される。以下、冷媒の入口側の接続管16を便宜的に入口側接続管16aと称し、冷媒の出口側の接続管16を便宜的に出口側接続管16bと称する。この場合、入口側接続管16aの向きは概ねX-方向であり、出口側接続管16bの向きは概ねX+方向となっている。 Each header 13 is provided with a connecting pipe 16. The connecting pipe 16 is provided to connect to the pipe 17 (see FIG. 5), and is firmly connected to the header 13, while the side connected to the pipe 17 is, for example, curved or It is formed in a pipe shape that can be bent, and is connected to the pipe 17 by brazing, for example. Hereinafter, the connecting pipe 16 on the refrigerant inlet side will be referred to as an inlet side connecting pipe 16a for the sake of convenience, and the connecting pipe 16 on the outlet side of the refrigerant will be referred to as an outlet side connection pipe 16b for the sake of convenience. In this case, the direction of the inlet side connecting pipe 16a is substantially the X-direction, and the direction of the outlet side connecting pipe 16b is substantially the X + direction.
 このようなコンデンサ12Aの場合、図4に簡略化した図にて示すように、入口側接続管16aから流入した冷媒は、入口側接続管16aが設けられているヘッダ13から矢印Fにて示すように他方のヘッダ13に向けて各偏平管14内を流れ、出口側接続管16bから流出する。つまり、コンデンサ12Aの場合、冷媒の流れは一方向である。このとき、冷媒は、入口側接続管16aに流入する際には気体状であり、コンデンサ12によって凝縮されることで、出口側接続管16bから流出する際には液体状になる。 In the case of such a capacitor 12A, as shown in a simplified diagram in FIG. 4, the refrigerant flowing from the inlet side connecting pipe 16a is indicated by an arrow F from the header 13 provided with the inlet side connecting pipe 16a. In this way, it flows in each flat tube 14 toward the other header 13 and flows out from the outlet side connection tube 16b. That is, in the case of the capacitor 12A, the refrigerant flow is unidirectional. At this time, the refrigerant is in a gaseous state when flowing into the inlet-side connecting pipe 16a, and is condensed by the condenser 12 so as to be in a liquid state when flowing out from the outlet-side connecting pipe 16b.
 このため、コンデンサ12は、入口側となるヘッダ13の温度が相対的に高く、出口側となるヘッダ13の温度が相対的に低くなっている。また、偏平管14は、入口側の温度が最も高く、出口側に近づくにつれて温度が低下していく。つまり、ヘッダ13を含めて、コンデンサ12の本体部12aは、温度の分布が生じている。 Therefore, in the capacitor 12, the temperature of the header 13 on the inlet side is relatively high, and the temperature of the header 13 on the outlet side is relatively low. The flat tube 14 has the highest temperature on the inlet side, and the temperature decreases as the temperature approaches the outlet side. That is, the temperature distribution is generated in the main body 12 a of the capacitor 12 including the header 13.
 さて、設置場所や設置する向きによる制限を考えない場合、入口側接続管16aおよび出口側接続管16bは、その向きの自由度が比較的高いと考えられる。具体的には、図5に実線および破線にて示すように、入口側接続管16aは、本体部12aに対してX-方向、Y+方向、Z+方向、Z-方向等、様々な向きに設けることができる。同様に、出口側接続管16bは、本体部12aに対してX+方向、Y+方向、Z+方向、Z-方向等、様々な向きに設けることができる。 Now, when the restriction by the installation location and the installation direction is not considered, the inlet side connection pipe 16a and the outlet side connection pipe 16b are considered to have a relatively high degree of freedom. Specifically, as shown by a solid line and a broken line in FIG. 5, the inlet side connecting pipe 16a is provided in various directions such as the X-direction, the Y + direction, the Z + direction, and the Z-direction with respect to the main body portion 12a. be able to. Similarly, the outlet side connecting pipe 16b can be provided in various directions such as the X + direction, the Y + direction, the Z + direction, and the Z− direction with respect to the main body portion 12a.
 すなわち、コンデンサ12は、偏平管14が配置されている本体部12aから突出する長さに形成されて外部の配管17に接続される接続管(入口側接続管16a、出口側接続管16b)を有している。そして、接続管(入口側接続管16a、出口側接続管16b)は、偏平管14に対して平行に延びていてもよいし、偏平管14に対して垂直に延びていてもよい。また、入口側接続管16aと出口側接続管16bとは、偏平管14に対する向きが異なっていてもよいし、本体部12aから突出する向きが異なっていてもよい。これは、後述する蛇行式のコンデンサ12(図9、図12参照)等においても同様である。 That is, the capacitor 12 has connecting pipes (an inlet-side connecting pipe 16a and an outlet-side connecting pipe 16b) that are formed in a length protruding from the main body 12a where the flat tube 14 is disposed and are connected to the external pipe 17. Have. The connecting pipes (inlet side connecting pipe 16 a and outlet side connecting pipe 16 b) may extend parallel to the flat tube 14 or may extend vertically to the flat tube 14. Further, the inlet side connecting pipe 16a and the outlet side connecting pipe 16b may have different directions with respect to the flat tube 14, or may have different directions protruding from the main body portion 12a. The same applies to a meandering capacitor 12 (see FIGS. 9 and 12) described later.
 なお、図示は省略するが、入口側接続管16aおよび出口側接続管16bは、必ずしもこれらの方向つまりは各軸に対して厳密に直交あるいは並行となっている必要はなく、多少傾いていてもよいし、各軸に対して大きく斜めになっていてもよい。また、図5に示す領域Rに出口側接続管16bを設けることができるものの、この場合、入口と出口とが近いため、全ての偏平管14に均等に冷媒が流れなくなる可能性があるため、コンデンサ12Aの場合には、入口側接続管16aおよび出口側接続管16bは、可能な限り対角に設けることが望ましい。 Although illustration is omitted, the inlet side connecting pipe 16a and the outlet side connecting pipe 16b do not necessarily need to be strictly orthogonal or parallel to these directions, that is, to the respective axes, and may be slightly inclined. It is good or it may be greatly inclined with respect to each axis. Further, although the outlet side connecting pipe 16b can be provided in the region R shown in FIG. 5, in this case, since the inlet and the outlet are close to each other, there is a possibility that the refrigerant does not flow evenly in all the flat pipes 14, In the case of the capacitor 12A, the inlet side connecting pipe 16a and the outlet side connecting pipe 16b are desirably provided as diagonally as possible.
 ただし、各接続管16に接続される配管17は、コンデンサ12の近くでは接続管16の向きに応じたものになる。そのため、例えば図5のように入口側接続管16aがX-方向に延びて設けられ、出口側接続管16bがX+方向に延びて設けられている場合、配管17がX方向から接続されるため、配管17を含む大きさを考えた場合、コンデンサ12Aを設置する際に必要となる実際の設置スペースは、X方向つまり本体部12aの幅方向にある程度必要となる。
 同様に、入口側接続管16aが例えばZ+方向に延びて設けられている場合には、設置スペースは、Z方向つまり本体部12aの厚み方向にある程度必要となる。すなわち、設置スペースは、各接続管16の向きによって制限される。
However, the pipes 17 connected to the connection pipes 16 correspond to the directions of the connection pipes 16 near the capacitors 12. Therefore, for example, when the inlet side connecting pipe 16a is provided extending in the X-direction and the outlet side connecting pipe 16b is provided extending in the X + direction as shown in FIG. 5, the pipe 17 is connected from the X direction. Considering the size including the pipe 17, the actual installation space required when installing the capacitor 12A is required to some extent in the X direction, that is, the width direction of the main body 12a.
Similarly, when the inlet side connecting pipe 16a is provided so as to extend in the Z + direction, for example, an installation space is required to some extent in the Z direction, that is, the thickness direction of the main body 12a. That is, the installation space is limited by the direction of each connecting pipe 16.
  <構造例B:平行式で、冷媒の流れが二方向の構造>
 平行式であって冷媒の流れが二方向の構造である構造例Bについて、図6から図8を参照しながら説明する。
 図6に示すように、コンデンサ12Bは、基本的な構造はコンデンサ12Aと共通であり、2つの円筒状のヘッダ13間に、複数の偏平管14が並行に設けられている。各偏平管14は、その内部に複数の流路が形成されており、各流路は、各ヘッダ13に連通している。このため、偏平管14内では、冷媒が並行して流れることになる。また、各偏平管14の間には、放熱フィン15が設けられている。
<Structural Example B: Parallel structure with refrigerant flow in two directions>
A structural example B which is a parallel type and has a bi-directional refrigerant flow will be described with reference to FIGS.
As shown in FIG. 6, the basic structure of the capacitor 12 </ b> B is common to the capacitor 12 </ b> A, and a plurality of flat tubes 14 are provided in parallel between two cylindrical headers 13. Each flat tube 14 has a plurality of channels formed therein, and each channel communicates with each header 13. For this reason, the refrigerant flows in parallel in the flat tube 14. In addition, heat radiation fins 15 are provided between the flat tubes 14.
 ただし、コンデンサ12Bの場合、一方のヘッダ13は、入口側接続管16aおよび出口側接続管16bの双方が設けられており、これら入口側接続管16aおよび出口側接続管16bの間に封止部13aが設けられている。この封止部13aは、円筒状のヘッダ13の内部を封止している。つまり、封止部13aは、1本のヘッダ13の内部を2つの範囲に区切っている。また、封止部13aは、入口側となる偏平管14の数を相対的に多くし、出口側となる偏平管14の数を相対的に少なくする。これは、入口側では冷媒が気体状であるため体積が大きく、出口側では凝縮されて液体状になるため体積が少なくなるためである。これにより、効率を向上させることができる。 However, in the case of the capacitor 12B, one header 13 is provided with both the inlet side connecting pipe 16a and the outlet side connecting pipe 16b, and a sealing portion is provided between the inlet side connecting pipe 16a and the outlet side connecting pipe 16b. 13a is provided. The sealing portion 13 a seals the inside of the cylindrical header 13. That is, the sealing part 13a divides the inside of one header 13 into two ranges. Further, the sealing portion 13a relatively increases the number of flat tubes 14 on the inlet side and relatively decreases the number of flat tubes 14 on the outlet side. This is because the volume is large because the refrigerant is gaseous on the inlet side, and the volume is reduced because it is condensed and liquid on the outlet side. Thereby, efficiency can be improved.
 このようなコンデンサ12Bの場合、図7に簡略化した図にて示すように、入口側接続管16aから流入した気体状の冷媒は、矢印Fにて示すように、封止部13aよりも入口側接続管16a側に位置する各偏平管14内を他方のヘッダ13に向けて流れた後、他方のヘッダ13内を通り、封止部13aよりも出口側接続管16b側に位置する各偏平管14内を逆方向に流れた後、出口側接続管16bから流出する。つまり、コンデンサ12Bの場合、冷媒の流れは二方向となる。以下、このような構造のコンデンサ12を、便宜的に折り返し式と称する。 In the case of such a capacitor 12B, as shown in a simplified diagram in FIG. 7, the gaseous refrigerant that has flowed from the inlet side connecting pipe 16a is more at the inlet than the sealing portion 13a, as indicated by an arrow F. After flowing in each flat tube 14 located on the side connecting pipe 16a side toward the other header 13, it passes through the other header 13 and each flat located on the outlet side connecting tube 16b side from the sealing portion 13a. After flowing in the pipe 14 in the reverse direction, it flows out from the outlet side connecting pipe 16b. That is, in the case of the capacitor 12B, the refrigerant flows in two directions. Hereinafter, the capacitor 12 having such a structure is referred to as a folding type for convenience.
 このコンデンサ12Bの場合も、設置場所や設置する向きによる制限を考えなければ入口側接続管16aおよび出口側接続管16bの向きの自由度は比較的高くなる。具体的には、図8に実線および破線にて示すように、入口側接続管16aは、本体部12aに対してX-方向、Y+方向、Z+方向、Z-方向等、様々な向きに設けることができる。同様に、出口側接続管16bは、本体部12aに対してX-方向、Y-方向、Z+方向、Z-方向等、様々な向きに設けることができる。 Also in the case of this capacitor 12B, the degree of freedom in the direction of the inlet side connecting pipe 16a and the outlet side connecting pipe 16b is relatively high unless restrictions are imposed by the installation location and the installation direction. Specifically, as shown by a solid line and a broken line in FIG. 8, the inlet side connection pipe 16a is provided in various directions such as an X− direction, a Y + direction, a Z + direction, and a Z− direction with respect to the main body portion 12a. be able to. Similarly, the outlet side connecting pipe 16b can be provided in various directions such as the X-direction, the Y-direction, the Z + direction, and the Z-direction with respect to the main body portion 12a.
 このコンデンサ12Bの場合も、各接続管16に接続される配管17はコンデンサ12の近くでは接続管16の向きに応じたものになるため、設置スペースは、各接続管16の向きによって制限されることになる。なお、図示は省略するが、入口側接続管16aおよび出口側接続管16bは、多少傾いていてもよいし、各軸に対して大きく斜めになっていてもよい。 Also in the case of this capacitor 12B, the piping 17 connected to each connecting pipe 16 is in accordance with the direction of the connecting pipe 16 near the capacitor 12, so that the installation space is limited by the direction of each connecting pipe 16. It will be. In addition, although illustration is abbreviate | omitted, the entrance side connection pipe | tube 16a and the exit side connection pipe | tube 16b may be inclined a little, and may be largely inclined with respect to each axis | shaft.
  <構造例C:蛇行式で、ヘッダを同一側に設けた構造>
 蛇行式であってヘッダ13を同一側に設けた構造、つまりは、冷媒の入口と出口とを本体部12aに対して同じ側に配置した構造例Cについて、図9から図11を参照しながら説明する。
<Structure Example C: Structure with Serpentine Type and Header on the Same Side>
A structure in which the header 13 is provided on the same side, ie, a structural example C in which the inlet and outlet of the refrigerant are arranged on the same side with respect to the main body 12a, with reference to FIGS. explain.
 図9に示すように、コンデンサ12Cは、2つの比較的小型の円筒状のヘッダ13間に、1本の偏平管14が蛇行して設けられている。この偏平管14は、その内部に複数の流路が形成されており、各流路は、各ヘッダ13に連通している。つまり、蛇行式のコンデンサ12Cは、1本の偏平管14が厚み方向に折り曲げられて入口から出口までの間を接続している。この場合でも、偏平管14内においては、冷媒が並行して流れることになる。また折り返されている偏平管14の間には、放熱フィン15が設けられている。また、コンデンサ12Cの場合、入口側のヘッダ13および出口側のヘッダ13は、本体部12aに対して同じ側に位置して設けられている。 As shown in FIG. 9, the capacitor 12C is provided with a single flat tube 14 meandering between two relatively small cylindrical headers 13. The flat tube 14 has a plurality of channels formed therein, and each channel communicates with each header 13. That is, in the meandering type capacitor 12C, one flat tube 14 is bent in the thickness direction and connected from the inlet to the outlet. Even in this case, the refrigerant flows in parallel in the flat tube 14. In addition, heat radiation fins 15 are provided between the folded flat tubes 14. In the case of the capacitor 12C, the inlet-side header 13 and the outlet-side header 13 are provided on the same side with respect to the main body portion 12a.
 このようなコンデンサ12Cの場合、図10に簡略化した図にて示すように、入口側接続管16aから流入した気体状の冷媒は、矢印Fにて示すように、偏平管14内を他方のヘッダ13に向けて流れ、出口側接続管16bから流出する。なお、ヘッダ13の向きは、図9のように偏平管14に垂直な向き以外にも、偏平管14に水平な向きや同軸となる向き等も考えられるが、コンデンサ12Cの場合には比較的ヘッダ13自体が小さいため、スペースの問題は、接続管16の向きが主たる要因になると考えられる。 In the case of such a capacitor 12C, as shown in a simplified diagram in FIG. 10, the gaseous refrigerant flowing in from the inlet side connecting pipe 16a passes through the flat pipe 14 as shown by the arrow F. It flows toward the header 13 and flows out from the outlet side connection pipe 16b. In addition to the direction perpendicular to the flat tube 14 as shown in FIG. 9, the header 13 may be oriented horizontally or coaxially with the flat tube 14. Since the header 13 itself is small, it is considered that the problem of space is mainly caused by the direction of the connecting pipe 16.
 このコンデンサ12Cの場合も、設置場所や設置する向きによる制限を考えなければ、入口側接続管16aおよび出口側接続管16bの向きの自由度は比較的高くなる。具体的には、図11に実線および破線にて示すように、入口側接続管16aは、本体部12aに対してZ+方向、X-方向、Y+方向、Y-方向、Z-方向等、様々な向きに設けることができる。同様に、出口側接続管16bは、本体部12aに対してZ+方向、X-方向、Y+方向、Y-方向、Z-方向等、様々な向きに設けることができる。 Also in the case of this capacitor 12C, the degree of freedom in the direction of the inlet side connecting pipe 16a and the outlet side connecting pipe 16b is relatively high unless the restriction due to the installation location and the installation direction is considered. Specifically, as shown by a solid line and a broken line in FIG. 11, the inlet side connecting pipe 16a has various types such as a Z + direction, an X− direction, a Y + direction, a Y− direction, and a Z− direction with respect to the main body portion 12a. Can be provided in any orientation. Similarly, the outlet side connection pipe 16b can be provided in various directions such as the Z + direction, the X− direction, the Y + direction, the Y− direction, and the Z− direction with respect to the main body portion 12a.
 このコンデンサ12Cの場合も、各接続管16に接続される配管17はコンデンサ12の近くでは接続管16の向きに応じたものになるため、設置スペースは、各接続管16の向きによって制限されることになる。なお、図示は省略するが、入口側接続管16aおよび出口側接続管16bは、多少傾いていてもよいし、各軸に対して大きく斜めになっていてもよい。 Also in the case of this capacitor 12 </ b> C, the pipe 17 connected to each connection pipe 16 corresponds to the direction of the connection pipe 16 near the capacitor 12, so that the installation space is limited by the direction of each connection pipe 16. It will be. In addition, although illustration is abbreviate | omitted, the entrance side connection pipe | tube 16a and the exit side connection pipe | tube 16b may be inclined a little, and may be largely inclined with respect to each axis | shaft.
  <構造例C:蛇行式で、ヘッダを対角側に設けた構造>
 蛇行式であってヘッダ13を対角側に設けた構造、つまりは、冷媒の入口と出口とを本体部12aに対して対角線上に配置した構造例Dについて、図12を参照しながら説明する。
 図12に示すように、コンデンサ12Dは、概ねコンデンサ12Cと共通するものの、2つ円筒状のヘッダ13が、本体部12aに対して対角となる位置に設けられている。
<Structure Example C: Structure with Serpentine Type and Headers on the Diagonal Side>
A structure example D which is a meandering type and has headers 13 provided on the diagonal side, that is, a structure example D in which the inlet and outlet of the refrigerant are arranged diagonally with respect to the main body 12a will be described with reference to FIG. .
As shown in FIG. 12, the capacitor 12D is generally in common with the capacitor 12C, but two cylindrical headers 13 are provided at positions diagonal to the main body 12a.
 このコンデンサ12Cの場合も、設置場所や設置する向きによる制限を考えなければ、入口側接続管16aおよび出口側接続管16bの向きの自由度は比較的高くなる。具体的には、入口側接続管16aは、本体部12aに対してZ+方向、X-方向、Y+方向、Y-方向、Z-方向等、様々な向きに設けることができる。同様に、出口側接続管16bは、本体部12aに対してZ+方向、X+方向、Y+方向、Z-方向等、様々な向きに設けることができる。 Also in the case of this capacitor 12C, the degree of freedom in the direction of the inlet side connecting pipe 16a and the outlet side connecting pipe 16b is relatively high unless the restriction due to the installation location and the installation direction is considered. Specifically, the inlet side connecting pipe 16a can be provided in various directions, such as a Z + direction, an X− direction, a Y + direction, a Y− direction, and a Z− direction, with respect to the main body portion 12a. Similarly, the outlet side connecting pipe 16b can be provided in various directions such as the Z + direction, the X + direction, the Y + direction, and the Z− direction with respect to the main body portion 12a.
 このコンデンサ12Dの場合も、各接続管16に接続される配管17はコンデンサ12の近くでは接続管16の向きに応じたものになるため、設置スペースは、各接続管16の向きによって制限されることになる。なお、図示は省略するが、入口側接続管16aおよび出口側接続管16bは、多少傾いていてもよいし、各軸に対して大きく斜めになっていてもよい。 Also in the case of this capacitor 12 </ b> D, the piping 17 connected to each connecting pipe 16 corresponds to the direction of the connecting pipe 16 near the capacitor 12, so that the installation space is limited by the direction of each connecting pipe 16. It will be. In addition, although illustration is abbreviate | omitted, the entrance side connection pipe | tube 16a and the exit side connection pipe | tube 16b may be inclined a little, and may be largely inclined with respect to each axis | shaft.
 さて、上記した構造例A~Dに示すコンデンサ12は、その設置する向きも様々ある。例えば、コンデンサ12Aの場合であれば、図13(a)に示すように、本体部12aの高さ方向を重力方向に沿って設置する状態、つまりは、ヘッダ13が重力方向に沿うとともに、偏平管14が設置面に水平となる状態が考えられる。なお、図13では、接続管16の図示は省略している。 Now, the capacitors 12 shown in the above structural examples A to D have various installation directions. For example, in the case of the capacitor 12A, as shown in FIG. 13A, a state in which the height direction of the main body portion 12a is installed along the direction of gravity, that is, the header 13 is along the direction of gravity and flattened. It is conceivable that the tube 14 is horizontal to the installation surface. In FIG. 13, the connection pipe 16 is not shown.
 また、図13(b)に示すように、本体部12aの幅方向を重力方向に沿って設置する状態、つまりは、ヘッダ13が設置面に水平となるとともに、偏平管14が重力方向に沿う状態が考えられる。また、図13(c)に示すように本体部12aの厚み方向を重力方向に沿って設置する状態や、図13(d)に示すように本体部12aの厚み方向を重力方向に対して斜めに設置する状態等が考えられる。なお、図示は書略するが、ヘッダ13を重力方向に対して斜めに設置する状態(図20参照)も考えられる。 Moreover, as shown in FIG. 13B, the width direction of the main body 12a is installed along the direction of gravity, that is, the header 13 is horizontal to the installation surface, and the flat tube 14 is along the direction of gravity. The state is considered. Also, as shown in FIG. 13C, the thickness direction of the main body portion 12a is installed along the direction of gravity, and as shown in FIG. 13D, the thickness direction of the main body portion 12a is inclined with respect to the direction of gravity. It can be considered to be installed in In addition, although illustration is abbreviate | omitted, the state (refer FIG. 20) which installs the header 13 diagonally with respect to the gravity direction is also considered.
  <設置例A>
 以下、設置例Aについて、図14および図15を参照しながら説明する。
 図14は、設置例Aを示すものであり、機械室8を上方から見た状態を模式的に示している。この設置例Aでは、コンデンサ12は、本体部12aが、機械室8の前方の貯蔵室10に対して概ね並行となるように設置されている。この場合、底板7に設けられている開口部9から外気を吸い込んでコンデンサ12を冷却した後、コンプレッサ11を冷却しながら左側板4に設けられている開口部9から排気することになる。
<Installation example A>
Hereinafter, the installation example A will be described with reference to FIGS. 14 and 15.
FIG. 14 shows an installation example A, schematically showing a state in which the machine room 8 is viewed from above. In this installation example A, the capacitor 12 is installed such that the main body 12 a is substantially parallel to the storage chamber 10 in front of the machine room 8. In this case, after sucking outside air from the opening 9 provided in the bottom plate 7 and cooling the condenser 12, the compressor 11 is cooled and exhausted from the opening 9 provided in the left plate 4.
 まず、上記したように機械室8の前方および上方には貯蔵室10が設けられているため、コンデンサ12からの放熱がそれらの貯蔵室10に与える影響が少ないほうが望ましい。この場合、機械室8の前方側の貯蔵室10までの距離は同じであるため、機械室8の上部側の貯蔵室10(図2参照)に対する影響を考慮することが考えられる。 First, since the storage chambers 10 are provided in front and above the machine room 8 as described above, it is desirable that the heat radiation from the capacitor 12 has less influence on the storage rooms 10. In this case, since the distance to the storage chamber 10 on the front side of the machine room 8 is the same, it is conceivable to consider the influence on the storage chamber 10 on the upper side of the machine room 8 (see FIG. 2).
 また、コンデンサ12は、上記したように気体状の冷媒を液体状に凝縮するため、出口側接続管16bが下方に位置するほうが望ましい。また、コンデンサ12の図示右方側には右側板5が存在していることから、コンデンサ12の右側のスペースを確保することは難しい。また、機械室8を小型化するためには、コンデンサ12の上方へのスペースが大きくなることは好ましくない。 Further, since the condenser 12 condenses the gaseous refrigerant into the liquid state as described above, it is desirable that the outlet side connection pipe 16b is positioned below. Further, since the right side plate 5 exists on the right side of the capacitor 12 in the figure, it is difficult to secure a space on the right side of the capacitor 12. In order to reduce the size of the machine room 8, it is not preferable that the space above the capacitor 12 is increased.
 これらの留意点に鑑みた場合、例えばコンデンサ12Aであれば、図15(a)に示すように、ヘッダ13が重力方向に沿うように設置し、本体部12aの図示右側のヘッダ13に入口側接続管16aをZ+方向(紙面に垂直な手前側)に延びるように設け、図示左側のヘッダ13に出口側接続管16bを実線にて示すZ+方向あるいは破線にて示すX-方向(図示左方側)に延びるように設けることが好ましい。なお、図15は、図14の矢印XVからみた状態を模式的に示している。 Considering these points, for example, in the case of the capacitor 12A, as shown in FIG. 15A, the header 13 is installed so as to be along the direction of gravity, and the header 13 on the right side of the main body portion 12a is connected to the inlet side. The connecting pipe 16a is provided so as to extend in the Z + direction (front side perpendicular to the paper surface), and the outlet side connecting pipe 16b is provided on the header 13 on the left side in the figure with the Z + direction indicated by a solid line or the X-direction indicated with a broken line (left side in the figure). It is preferable that it is provided so as to extend to the side). FIG. 15 schematically shows the state seen from the arrow XV in FIG.
 このような状態で設置することにより、ヘッダ13を上下に配置する場合(図13(b)参照)と比べて、機械室8の上部側の貯蔵室10に対する発熱の影響を抑制することができる。また、比較的温度が高くなる入口側が外部側に配置されるため、貯蔵室10だけでなく機械室8内の他の部品に対する発熱の影響をより抑えることができる。 By installing in such a state, the influence of heat generation on the storage chamber 10 on the upper side of the machine room 8 can be suppressed as compared with the case where the header 13 is arranged vertically (see FIG. 13B). . Further, since the inlet side where the temperature is relatively high is arranged on the outside side, the influence of heat generation on not only the storage chamber 10 but also other components in the machine chamber 8 can be further suppressed.
 また、入口側接続管16aを上方側に配置し、出口側接続管16bを下方側に配置しているので、気体状から液体状に遷移する冷媒の流れが重力によって妨げられることもない。また、図14におけるコンデンサ12の図示下方側には比較的スペースが存在するため、設置スペースを確保しやすく、且つ、配管17を接続することが容易となる。すなわち、コンデンサ12Aの場合、この図15(a)に示すような配置が好適であると考えられる。 In addition, since the inlet side connecting pipe 16a is disposed on the upper side and the outlet side connecting pipe 16b is disposed on the lower side, the flow of the refrigerant that transitions from a gaseous state to a liquid state is not hindered by gravity. In addition, since there is a relatively small space on the lower side of the capacitor 12 in FIG. 14, it is easy to secure an installation space and to connect the pipe 17. That is, in the case of the capacitor 12A, the arrangement shown in FIG. 15A is considered suitable.
 また、例えばコンデンサ12Bであれば、図15(b)に示すように、ヘッダ13が重力方向に沿うように設置し、図示右側のヘッダ13に入口側接続管16aをZ+方向に延びるように設けるとともに、封止部13aを挟んで下方側に出口側接続管16bをZ+方向に延びるように設けることが望ましい。 Further, for example, in the case of the capacitor 12B, as shown in FIG. 15B, the header 13 is installed along the direction of gravity, and the inlet side connection pipe 16a is provided in the header 13 on the right side of the drawing so as to extend in the Z + direction. In addition, it is desirable to provide the outlet side connecting pipe 16b on the lower side with the sealing portion 13a interposed therebetween so as to extend in the Z + direction.
 このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Bの場合、この図15(b)に示すような設置向きおよび構造が好適であると考えられる。 By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. The same effect as the capacitor 12A described above can be obtained. That is, in the case of the capacitor 12B, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Cであれば、図15(c)に示すように、各ヘッダ13が右側板5側に位置するように設置し、本体部12aの図示右側上部のヘッダ13に入口側接続管16aをZ+方向に延びるように設け、本体部12aの図示右側下部のヘッダ13に入口側接続管16aをZ+方向に延びるように設けるとよい。 Further, for example, in the case of the capacitor 12C, as shown in FIG. 15C, each header 13 is installed so as to be positioned on the right side plate 5 side, and the inlet-side connecting pipe is connected to the header 13 at the upper right side of the main body 12a. 16a may be provided so as to extend in the Z + direction, and the inlet side connecting pipe 16a may be provided so as to extend in the Z + direction on the header 13 on the lower right side of the main body 12a.
 このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Cの場合、この図15(c)に示すような設置向きおよび構造が好適であると考えられる。 By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. The same effect as the capacitor 12A described above can be obtained. That is, in the case of the capacitor 12C, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Dであれば、図15(d)に示すように、ヘッダ13が右側板5側とそれに対角する側になるように設置し、本体部12aの図示右側上部のヘッダ13に入口側接続管16aをZ+方向に延びるように設けるとともに、本体部12aの図示左側下部のヘッダ13に出口側接続管16bをZ+方向に延びるように設けるとよい。 Further, for example, in the case of the capacitor 12D, as shown in FIG. 15D, the header 13 is installed so as to be on the right side plate 5 side and the side opposite to the right side plate 5 side. The inlet side connecting pipe 16a may be provided so as to extend in the Z + direction, and the outlet side connecting pipe 16b may be provided in the header 13 on the lower left side of the main body 12a so as to extend in the Z + direction.
 このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Cの場合、この図15(b)に示すような設置向きおよび構造が好適であると考えられる。 By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. The same effect as the capacitor 12A described above can be obtained. That is, in the case of the capacitor 12C, it is considered that the installation direction and structure as shown in FIG.
  <設置例B>
 以下、設置例Bについて、図16、図17および図26を参照しながら説明する。
 図16は、設置例Bを示すものであり、機械室8を上方から見た状態を模式的に示している。この設置例Bでは、コンデンサ12は、本体部12aが、機械室8の前方の貯蔵室10に対して概ね垂直となるように設置されている。この場合、底板7および右側板5に設けられている開口部9から外気を吸い込んでコンデンサ12を冷却した後、コンプレッサ11を冷却しながら左側板4に設けられている開口部9から排気することになる。換言すると、空気の流れにおいて最も上流側に冷却ファン20が配置され、その下流側にコンデンサ12が配置され、そのさらに下流側にコンプレッサ11が配置されている状態である。
<Installation example B>
Hereinafter, the installation example B will be described with reference to FIGS. 16, 17, and 26.
FIG. 16 shows an installation example B, schematically showing a state in which the machine room 8 is viewed from above. In this installation example B, the capacitor 12 is installed such that the main body 12 a is substantially perpendicular to the storage chamber 10 in front of the machine room 8. In this case, after sucking outside air from the openings 9 provided in the bottom plate 7 and the right plate 5 to cool the condenser 12, the compressor 11 is cooled and exhausted from the openings 9 provided in the left plate 4. become. In other words, the cooling fan 20 is disposed on the most upstream side in the air flow, the condenser 12 is disposed on the downstream side, and the compressor 11 is disposed on the further downstream side.
 この場合、コンデンサ12の入口側を、機械室8の前方側の貯蔵室10から離間させる方が発熱による影響は少なくなると考えられる。また、コンデンサ12の図示下方側には背板3が存在していることから、コンデンサ12の図示下方側には設置スペースの確保が難しくなると考えられる。 In this case, it is considered that the influence of heat generation is reduced if the inlet side of the capacitor 12 is separated from the storage chamber 10 on the front side of the machine room 8. Further, since the back plate 3 exists on the lower side of the capacitor 12 in the figure, it is considered that it is difficult to secure an installation space on the lower side of the capacitor 12 in the figure.
 これらの留意点に鑑みた場合、例えばコンデンサ12Aであれば、図17(a)に示すように、ヘッダ13が重力方向に沿うように、且つ、入口側のヘッダ13が図示手前側(図16における図示下方側)となるように設置し、入口側接続管16aおよび出口側接続管16bを、実線にて示すようにZ+方向(図示右方側)あるいは破線にて示すZ-方向(図示左方側)に延びるように設けことが好ましい。すなわち、接続管(入口側接続管16aおよび出口側接続管16b)を、冷却ファン20の送風方向に対して平行に延びるように設けることが好ましい。なお、図17は、図16の矢印XVIIからみた状態を模式的に示しているとともに、図17(a)ではヘッダ13の向きを破線にて模式的に示している。また、ヘッダ13が図示手前側か奥側かを示すために、接続管16が破線にて示すヘッダ13に接続されている態様にて模式的に示している。 Considering these points, for example, in the case of the capacitor 12A, as shown in FIG. 17A, the header 13 is along the direction of gravity, and the header 13 on the inlet side is the front side of the drawing (FIG. 16). The inlet side connecting pipe 16a and the outlet side connecting pipe 16b are arranged in the Z + direction (right side in the figure) as indicated by solid lines or the Z− direction (left side in the figure) indicated by broken lines. It is preferable that it is provided so as to extend in the direction toward the other side. That is, it is preferable to provide the connecting pipes (inlet side connecting pipe 16 a and outlet side connecting pipe 16 b) so as to extend in parallel to the air blowing direction of the cooling fan 20. FIG. 17 schematically shows the state seen from the arrow XVII in FIG. 16, and in FIG. 17A, the direction of the header 13 is schematically shown by a broken line. In addition, in order to indicate whether the header 13 is the front side or the back side in the drawing, the connection pipe 16 is schematically shown in a mode connected to the header 13 indicated by a broken line.
 このような状態で設置することにより、機械室8の前方側および上方側の各貯蔵室10への発熱の影響を抑制しつつ、比較的温度が高くなる入口側が背板3側に配置されるため、貯蔵室10だけでなく機械室8内の他の部品に対する発熱の影響をより抑えることができる。また、入口側接続管16aを上方側に配置し、出口側接続管16bを下方側に配置しているので、気体状から液体状に遷移する冷媒の流れが重力によって妨げられることもない。 By installing in such a state, the entrance side where the temperature becomes relatively high is disposed on the back plate 3 side while suppressing the influence of heat generation on the storage chambers 10 on the front side and the upper side of the machine room 8. Therefore, the influence of heat generation on not only the storage chamber 10 but also other components in the machine chamber 8 can be further suppressed. In addition, since the inlet side connecting pipe 16a is disposed on the upper side and the outlet side connecting pipe 16b is disposed on the lower side, the flow of the refrigerant that transitions from the gaseous state to the liquid state is not hindered by gravity.
 この場合、冷却ファン20を、入口側接続管16aと出口側接続管16bとによって形成されるスペース(S)、つまりは、本体部12aから突出する入口側接続管16aおよび出口側接続管16bの長さ未満の範囲に設けている。なお、冷却ファン20がスペース(S)に納まる大きさであることは勿論である。 In this case, the cooling fan 20 has a space (S) formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b, that is, the inlet side connecting pipe 16a and the outlet side connecting pipe 16b protruding from the main body 12a. It is provided in a range less than the length. Needless to say, the cooling fan 20 is large enough to fit in the space (S).
 これにより、省スペース化を図ることができる。また、図16におけるコンデンサ12の図示右方側には比較的スペースが存在するため、設置スペースを確保しやすく、且つ、配管17を接続することが容易となる。また、入口側接続管16aおよび出口側接続管16bをZ-方向(図示左方側)に延びるように設けた場合には、冷却ファン20をそちら側、つまりは、本体部12aの図示左方側に設けるとよい。すなわち、コンデンサ12Aの場合、この図17(a)に示すような配置が好適であると考えられる。 This can save space. In addition, since there is a relatively large space on the right side of the capacitor 12 in FIG. 16, it is easy to secure an installation space and to connect the pipe 17 easily. Further, when the inlet side connecting pipe 16a and the outlet side connecting pipe 16b are provided so as to extend in the Z-direction (left side in the figure), the cooling fan 20 is placed on that side, that is, on the left side in the figure of the main body 12a. It should be provided on the side. That is, in the case of the capacitor 12A, it is considered that the arrangement as shown in FIG.
 また、例えばコンデンサ12Bであれば、図17(b)に示すように、ヘッダ13が重力方向に沿うように設置し、図示手前側となるヘッダ13に、入口側接続管16aおよび出口側接続管16bを実線にて示すようにZ+方向(図示右方側)あるいは破線にて示すZ-方向(図示左方側)に延びるように設けることが好ましい。 Further, for example, in the case of the capacitor 12B, as shown in FIG. 17B, the header 13 is installed along the direction of gravity, and the inlet-side connecting pipe 16a and the outlet-side connecting pipe are connected to the header 13 on the front side in the figure. 16b is preferably provided so as to extend in the Z + direction (right side in the figure) as indicated by a solid line or in the Z-direction (left side in the figure) indicated by a broken line.
 このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができ、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Bの場合、この図17(b)に示すような設置向きおよび構造が好適であると考えられる。 By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. Thus, the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12B, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Cであれば、図17(c)に示すように、各ヘッダ13が背板3側に位置するように設置し、本体部12aの図示上部のヘッダ13に入口側接続管16aを、また、本体部12aの図示下方のヘッダ13に出口側接続管16bを、実線にて示すZ+方向あるいは破線にて示すZ-方向(図示左方側)に延びるように設けることが好ましい。 Further, for example, in the case of the capacitor 12C, as shown in FIG. 17C, each header 13 is installed so as to be positioned on the back plate 3 side, and the inlet side connecting pipe 16a is connected to the header 13 in the upper part of the main body 12a in the figure. Further, it is preferable that the outlet side connecting pipe 16b is provided in the header 13 below the main body 12a so as to extend in the Z + direction indicated by a solid line or the Z− direction (left side in the figure) indicated by a broken line.
 このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができ、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Cの場合、この図17(c)に示すような設置向きおよび構造が好適であると考えられる。 By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. Thus, the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12C, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Dであれば、図17(d)に示すように、入口側のヘッダ13を背板3側、出口側のヘッダ13をその対角側に位置するように設置し、本体部12aの図示上部のヘッダ13に入口側接続管16aを、また、本体部12aの図示下方のヘッダ13に出口側接続管16bを、実線にて示すZ+方向あるいは破線にて示すZ-方向(図示左方側)に延びるように設けることが好ましい。 Further, for example, in the case of the capacitor 12D, as shown in FIG. 17 (d), the inlet-side header 13 is placed on the back plate 3 side, and the outlet-side header 13 is placed on the diagonal side. The inlet side connecting pipe 16a is shown in the header 13 at the upper part of the figure 12a, and the outlet side connecting pipe 16b is shown in the header 13 at the lower side of the main body 12a. It is preferable to provide it so as to extend to the left side.
 このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができ、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Dの場合、この図17(d)に示すような設置向きおよび構造が好適であると考えられる。
 なお、この設置例Bは、図26に示すように図示左方側からコンプレッサ11、冷却ファン20、コンデンサ12が配置されている状態、換言すると、空気の流れにおいて最も上流側にコンデンサ12が配置され、その下流側に冷却ファン20が配置され、そのさらに下流側にコンプレッサ11が配置されている状態においても同様である。
By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. Thus, the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12D, it is considered that the installation direction and structure as shown in FIG.
In this installation example B, as shown in FIG. 26, the compressor 11, the cooling fan 20, and the condenser 12 are arranged from the left side of the figure, in other words, the condenser 12 is arranged on the most upstream side in the air flow. The same applies to the state in which the cooling fan 20 is disposed on the downstream side and the compressor 11 is disposed on the further downstream side.
  <設置例C>
 以下、設置例Cについて、図18および図19を参照しながら説明する。
 図18は、設置例Cを示すものであり、機械室8を上方から見た状態を模式的に示している。この設置例Cでは、コンデンサ12は、本体部12aが、底板7に対して平行となるように設置されている。この場合、底板7に設けられている開口部9から外気を吸い込んでコンデンサ12を冷却した後、コンプレッサ11を冷却しながら左側板4や背板3に設けられている開口部9から排気することになる。
<Example C>
Hereinafter, the installation example C will be described with reference to FIGS. 18 and 19.
FIG. 18 shows an installation example C, schematically showing a state in which the machine room 8 is viewed from above. In this installation example C, the capacitor 12 is installed such that the main body 12 a is parallel to the bottom plate 7. In this case, after sucking outside air from the opening 9 provided in the bottom plate 7 and cooling the condenser 12, the compressor 11 is cooled and exhausted from the opening 9 provided in the left side plate 4 and the back plate 3. become.
 この場合、機械室8の前方側の貯蔵室10に比較的近いため、コンデンサ12の入口側をできるだけ離間させる方が発熱による影響は少なくなると考えられる。また、コンデンサ12の図示上方側には断熱仕切壁10bが存在していることから、コンデンサ12の図示上方側には設置スペースの確保が難しくなると考えられる。 In this case, since it is relatively close to the storage chamber 10 on the front side of the machine room 8, it is considered that the effect of heat generation is reduced if the inlet side of the capacitor 12 is separated as much as possible. Further, since the heat insulating partition wall 10b exists on the upper side of the capacitor 12 in the figure, it is considered that it is difficult to secure an installation space on the upper side of the capacitor 12 in the figure.
 これらの留意点に鑑みた場合、例えばコンデンサ12Aであれば、図19(a)に示すように、ヘッダ13が重力方向に概ね垂直となるように、且つ、入口側のヘッダ13が図示手前側(図17における図示下方側)となるように設置し、入口側接続管16aおよび出口側接続管16bを、実線にて示すようにZ+方向(図示上方側)に延びるように設けことが好ましい。なお、図19は、図18の矢印XIXからみた状態を模式的に示しているとともに、図19(a)ではヘッダ13の向きを破線にて模式的に示している。また、ヘッダ13が図示手前側か奥側かを示すために、接続管16が破線にて示すヘッダ13に接続されている態様にて模式的に示している。 In consideration of these points, for example, in the case of the capacitor 12A, as shown in FIG. 19A, the header 13 is substantially perpendicular to the direction of gravity, and the inlet-side header 13 is on the front side in the figure. It is preferable that the inlet side connecting pipe 16a and the outlet side connecting pipe 16b are provided so as to extend in the Z + direction (upper side in the figure) as indicated by solid lines. FIG. 19 schematically shows the state seen from the arrow XIX in FIG. 18, and in FIG. 19A, the direction of the header 13 is schematically shown by a broken line. In addition, in order to indicate whether the header 13 is the front side or the back side in the drawing, the connection pipe 16 is schematically shown in a mode connected to the header 13 indicated by a broken line.
 このような状態で設置することにより、機械室8の前方側の貯蔵室10への発熱の影響を抑制することができる。また、相対的に温度が高くなる入口側のヘッダ13を冷却した空気は外部に排気されていくため、機械室8内の他の部品に対する発熱の影響をより抑えることができる。この場合、冷媒の流れを促すために、入口側接続管16aが設けられているヘッダ13を、出口側接続管16bが設けられているヘッダ13よりも若干上方に傾けてもよい(図13(d)参照)。 By installing in such a state, the influence of heat generation on the storage chamber 10 on the front side of the machine room 8 can be suppressed. In addition, since the air that has cooled the inlet-side header 13 whose temperature is relatively high is exhausted to the outside, the influence of heat generation on other components in the machine chamber 8 can be further suppressed. In this case, in order to promote the flow of the refrigerant, the header 13 provided with the inlet side connecting pipe 16a may be inclined slightly upward from the header 13 provided with the outlet side connecting pipe 16b (FIG. 13 ( d)).
 また、冷却ファン20を、入口側接続管16aと出口側接続管16bとによって形成されるスペース(S)に設けている。これにより、省スペース化を図ることができる。また、コンデンサ12の上方からであれば、配管17の接続が容易になると考えられる。すなわち、コンデンサ12Aの場合、この図19(a)に示すような配置が好適であると考えられる。 Further, the cooling fan 20 is provided in a space (S) formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b. Thereby, space saving can be achieved. Further, it is considered that the connection of the pipe 17 is facilitated from above the capacitor 12. That is, in the case of the capacitor 12A, the arrangement as shown in FIG.
 また、例えばコンデンサ12Bであれば、図19(b)に示すように、ヘッダ13を重力方向に概ね垂直となるように設置し、図示手前側となるヘッダ13に、入口側接続管16aおよび出口側接続管16bを、Z+方向に延びるように設けることが好ましい。このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができ、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Bの場合、この図19(b)に示すような設置向きおよび構造が好適であると考えられる。 For example, in the case of the capacitor 12B, as shown in FIG. 19B, the header 13 is installed so as to be substantially perpendicular to the direction of gravity, and the inlet-side connecting pipe 16a and the outlet are connected to the header 13 on the front side in the figure. The side connection pipe 16b is preferably provided so as to extend in the Z + direction. By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. Thus, the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12B, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Cであれば、図19(c)に示すように、本体部12aの図示右方つまりは貯蔵室10から離間した側となるヘッダ13に入口側接続管16aを、また、本体部12aの図示左方つまりは貯蔵室10に近い側となるヘッダ13に出口側接続管16bを、Z+方向に延びるように設けることが好ましい。このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができ、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Cの場合、この図19(c)に示すような設置向きおよび構造が好適であると考えられる。 Further, for example, in the case of the capacitor 12C, as shown in FIG. 19C, the inlet side connecting pipe 16a is connected to the header 13 on the right side of the main body 12a, that is, the side away from the storage chamber 10, and the main body 12a. The outlet side connecting pipe 16b is preferably provided on the header 13 on the left side of the portion 12a, that is, on the side closer to the storage chamber 10, so as to extend in the Z + direction. By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. Thus, the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12C, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Dであれば、図19(d)に示すように、本体部12aの図示手前側つまりは貯蔵室10から離間した側となるヘッダ13に入口側接続管16aおよび出口側接続管16bを、Z+方向に延びるように設けることが好ましい。このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができ、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Dの場合、この図19(d)に示すような設置向きおよび構造が好適であると考えられる。 For example, in the case of the capacitor 12D, as shown in FIG. 19 (d), the inlet side connecting pipe 16a and the outlet side connecting pipe are connected to the header 13 on the near side of the main body 12a, that is, the side away from the storage chamber 10. 16b is preferably provided so as to extend in the Z + direction. By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. Thus, the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12D, it is considered that the installation direction and structure as shown in FIG.
  <設置例D>
 以下、設置例Dについて、図20および図21を参照しながら説明する。
 図20は、設置例Dを示すものであり、機械室8を側方から見た状態を模式的に示している。この設置例Dでは、コンデンサ12は、本体部12aが、断熱仕切壁10bの傾斜部分に沿うように、概ね断熱仕切壁10bの上端に近い側に設置されている。また、図示は省略するが、コンデンサ12は、右側板5に近い側に設置されているものとする。この場合、底板7に設けられている開口部9から外気を吸い込んでコンデンサ12を冷却することになる。
<Installation example D>
Hereinafter, the installation example D will be described with reference to FIGS. 20 and 21. FIG.
FIG. 20 shows an installation example D, schematically showing a state in which the machine room 8 is viewed from the side. In this installation example D, the capacitor 12 is installed on the side substantially close to the upper end of the heat insulating partition wall 10b so that the main body 12a is along the inclined portion of the heat insulating partition wall 10b. Although illustration is omitted, it is assumed that the capacitor 12 is installed on the side close to the right side plate 5. In this case, the condenser 12 is cooled by sucking outside air from the opening 9 provided in the bottom plate 7.
 この場合、コンデンサ12は、ヘッダ13と機械室8の前方の貯蔵室10との距離が一定となる一方、ヘッダ13と機械室8の上部の貯蔵室10との距離は、ヘッダ13の位置により異なる。そのため、このような設置の場合、ヘッダ13を下方に設けることで、貯蔵室10への発熱による影響を抑えることができると考えられる。その一方で、入口側のヘッダ13を図示下方側つまりは重力方向における下方側に配置すると、冷媒の流れを阻害するおそれがある。 In this case, the capacitor 12 has a constant distance between the header 13 and the storage chamber 10 in front of the machine room 8, while the distance between the header 13 and the storage chamber 10 above the machine room 8 depends on the position of the header 13. Different. Therefore, in the case of such installation, it is considered that the influence of heat generation on the storage chamber 10 can be suppressed by providing the header 13 below. On the other hand, if the header 13 on the inlet side is disposed on the lower side in the figure, that is, on the lower side in the direction of gravity, the flow of the refrigerant may be hindered.
 これらの留意点に鑑みた場合、例えばコンデンサ12Aであれば、図21(a)に示すように、ヘッダ13が断熱仕切壁10bに沿うように配置するとともに、本体部12aの図示右方であって側板に近い側のヘッダ13に入口側接続管16aをZ+方向(概ね、図示手前側)に延びるように設け、本体部12aの図示左方側のヘッダ13に出口側接続管16bを、実線にて示すZ+方向(概ね、図示手前側)あるいは破線にて示すX-方向(図示左方)に延びるように設けることが好ましい。なお、図21は、冷蔵庫1の背面側からみた状態を模式的に示している。 In consideration of these points, for example, in the case of the capacitor 12A, as shown in FIG. 21 (a), the header 13 is arranged along the heat insulating partition wall 10b, and on the right side of the main body 12a. The inlet-side connecting pipe 16a is provided in the header 13 on the side close to the side plate so as to extend in the Z + direction (generally on the near side in the figure), and the outlet-side connecting pipe 16b is provided on the header 13 on the left side in the figure of the main body 12a. It is preferably provided so as to extend in the Z + direction shown in FIG. FIG. 21 schematically shows a state viewed from the back side of the refrigerator 1.
 このような状態で設置することにより、機械室8の上方側の貯蔵室10への発熱の影響を抑制することができる。このとき、コンデンサ12Aを側方から視たとすると、その状態は概ね図19(a)のようになり、冷却ファン20が入口側接続管16aと出口側接続管16bとによって形成されるスペース(S)に配置されることになる。これにより、省スペース化を図ることができる。すなわち、コンデンサ12Aの場合、この図21(a)に示すような配置が好適であると考えられる。 By installing in such a state, the influence of heat generation on the storage chamber 10 above the machine room 8 can be suppressed. At this time, if the capacitor 12A is viewed from the side, the state is substantially as shown in FIG. 19A, and the space (S) in which the cooling fan 20 is formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b. ). Thereby, space saving can be achieved. That is, in the case of the capacitor 12A, the arrangement shown in FIG. 21A is considered suitable.
 また、例えばコンデンサ12Bであれば、図21(b)に示すように、ヘッダ13が断熱仕切壁10bに沿うように設置し、図示右方側となるヘッダ13に、入口側接続管16aおよび出口側接続管16bを、Z+方向に延びるように設けることが好ましい。また、この場合も、冷却ファン20を、入口側接続管16aおよび出口側接続管16bによって形成されるスペース(S)に配置することが好ましい。 Further, for example, in the case of the capacitor 12B, as shown in FIG. 21B, the header 13 is installed along the heat insulating partition wall 10b, and the inlet side connecting pipe 16a and the outlet are connected to the header 13 on the right side in the figure. The side connection pipe 16b is preferably provided so as to extend in the Z + direction. Also in this case, the cooling fan 20 is preferably disposed in the space (S) formed by the inlet side connecting pipe 16a and the outlet side connecting pipe 16b.
 このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、設置スペースを確保されることから配管17を容易に接続することができ、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Bの場合、この図21(b)に示すような設置向きおよび構造が好適であると考えられる。 By installing in such a state, the installation space can be secured without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, so that the pipe 17 can be easily connected. Thus, the same effect as the above-described capacitor 12A can be obtained, such as saving space. That is, in the case of the capacitor 12B, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Cであれば、図21(c)に示すように、本体部12aの図示右方となるヘッダ13に入口側接続管16aを、また、本体部12aの図示左方となるヘッダ13に出口側接続管16bを、Z+方向に延びるように設けることが好ましい。このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Cの場合、この図21(c)に示すような設置向きおよび構造が好適であると考えられる。 For example, in the case of the capacitor 12C, as shown in FIG. 21 (c), the inlet side connecting pipe 16a is provided on the header 13 on the right side of the main body 12a and the header on the left of the main body 12a. 13 is preferably provided with an outlet side connection pipe 16b extending in the Z + direction. By installing in such a state, it is possible to save the space without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, and similar to the above-described capacitor 12A. An effect can be obtained. That is, in the case of the capacitor 12C, it is considered that the installation direction and structure as shown in FIG.
 また、例えばコンデンサ12Dであれば、図21(d)に示すように、本体部12aの図示右方となるヘッダ13に入口側接続管16aをZ+方向に延びるように設け、本体部12aの図示右方となるヘッダ13に出口側接続管16bを実線にてしめすZ+方向あるいは破線にて示すX-方向(図示左方側)に延びるように設けることが好ましい。このような状態で設置することにより、コンデンサ12からの発熱による貯蔵室10への影響を抑えつつ、冷媒の流れを妨げることなく、省スペース化が可能となる等、上記したコンデンサ12Aと同様の効果を得ることができる。すなわち、コンデンサ12Dの場合、この図21(d)に示すような設置向きおよび構造が好適であると考えられる。 For example, in the case of the capacitor 12D, as shown in FIG. 21 (d), the inlet side connecting pipe 16a is provided in the header 13 on the right side of the main body 12a so as to extend in the Z + direction, and the main body 12a is illustrated. It is preferable that the right side header 13 is provided so as to extend in the Z + direction in which the outlet side connecting pipe 16b is shown by a solid line or in the X− direction (left side in the figure) shown by a broken line. By installing in such a state, it is possible to save the space without hindering the flow of the refrigerant while suppressing the influence on the storage chamber 10 due to the heat generated from the capacitor 12, and similar to the above-described capacitor 12A. An effect can be obtained. That is, in the case of the capacitor 12D, it is considered that the installation direction and structure as shown in FIG.
 なお、設置例Dではコンデンサ12が右側板5に近い状態を想定したが、コンデンサ12が左側板4に近い状態の場合には、上記した各例とは逆の考え方で入口側接続管16aおよび出口側接続管16bの向きを設定すればよい。
 このように、本実施形態の冷蔵庫1は、機械室8での設置位置に応じて、異なる構造のコンデンサ12を採用する。
In the installation example D, it is assumed that the capacitor 12 is close to the right side plate 5. However, when the capacitor 12 is close to the left side plate 4, the inlet side connecting pipe 16a and What is necessary is just to set the direction of the exit side connection pipe 16b.
Thus, the refrigerator 1 of the present embodiment employs the capacitors 12 having different structures depending on the installation position in the machine room 8.
 以上説明した実施形態によれば、次のような効果を得ることができる。
 冷蔵庫1は、偏平状に形成され、その内部に冷媒が流れる流路が複数形成されている偏平管14と、偏平管14への冷媒の入口または出口となるヘッダ13と、を有するマルチフロー型のコンデンサ12を用いて冷凍サイクル21の熱交換を行う。これにより、マルチフロー型のコンデンサ12は、小型且つ高性能であるため、小型化された機械室8内に設置することができる。したがって、必要な放熱量を機械室8内に設置したコンデンサ12によって確保することができる。
According to the embodiment described above, the following effects can be obtained.
The refrigerator 1 is a multi-flow type having a flat tube 14 that is formed in a flat shape and in which a plurality of flow paths through which a refrigerant flows is formed, and a header 13 that serves as an inlet or an outlet for the refrigerant into the flat tube 14. Heat exchange of the refrigeration cycle 21 is performed using the condenser 12. Thereby, since the multiflow type | mold capacitor | condenser 12 is small and highly efficient, it can be installed in the machine room 8 reduced in size. Therefore, the necessary heat radiation amount can be ensured by the capacitor 12 installed in the machine room 8.
 また、マルチフロー型のコンデンサ12は、同体積のものと比べておよそ2~3倍の放熱効果が期待できるため、従来設けられていた放熱パイプが不要となり、構造を簡略化することができるとともに、製造コストの低減を図ることができる。また、貯蔵庫へのヒートリークが低減され、省エネにも貢献できる。 In addition, the multi-flow type capacitor 12 can be expected to have a heat dissipation effect that is two to three times that of the same volume, so that the heat dissipating pipe that has been provided in the past is not necessary, and the structure can be simplified. The manufacturing cost can be reduced. In addition, heat leak to the storage is reduced, which can contribute to energy saving.
 コンデンサ12は、偏平管14が延びている向きが当該冷蔵庫1の設置面に対して水平となるように配置してもよいし、偏平管14が延びている向きが設置面に対して垂直となるように配置されていてもよいし、本体部12aが設置面に対して水平となるように配置されていてもよいし、本体部12aが設置面に対して傾斜するように配置されていてもよい。つまり、コンデンサ12は、機械室8の形状や、機械室8内の他の部品との兼ね合いにより、その設置向きを設定することができる。これにより、設置の自由度を向上させることができる。 The capacitor 12 may be arranged so that the direction in which the flat tube 14 extends is horizontal to the installation surface of the refrigerator 1, or the direction in which the flat tube 14 extends is perpendicular to the installation surface. The main body portion 12a may be disposed so as to be horizontal with respect to the installation surface, or the main body portion 12a may be disposed so as to be inclined with respect to the installation surface. Also good. That is, the installation direction of the capacitor 12 can be set according to the shape of the machine room 8 and the balance with other components in the machine room 8. Thereby, the freedom degree of installation can be improved.
 コンデンサ12は、設置された状態において、上部側から冷媒が流入する。これにより、凝縮されて液体状になった冷媒が重力によって下方に移動することから、冷媒を効率よく液化させること、つまりは、冷凍サイクル21の性能を向上させることができる。
 コンデンサ12は、冷媒の入口側が、貯蔵室10から離間する向きに配置されている。これにより、コンデンサ12からの発熱によって貯蔵室10あるいは断熱仕切壁10bが暖められることを抑制でき、ヒートリークを低減することができる。
When the condenser 12 is installed, the refrigerant flows from the upper side. Thereby, since the refrigerant | coolant which was condensed and became the liquid state moves below with gravity, a refrigerant | coolant can be efficiently liquefied, ie, the performance of the refrigerating cycle 21 can be improved.
The condenser 12 is arranged such that the inlet side of the refrigerant is away from the storage chamber 10. Thereby, it can suppress that the storage room 10 or the heat insulation partition wall 10b is heated by the heat_generation | fever from the capacitor | condenser 12, and can reduce heat leak.
 コンデンサ12は、冷蔵庫1の本体2内に設けられている機械室8に配置されている。機械室8には、コンプレッサ11を冷却するための開口部9が設けられており、外気の導入および排出がし易くなっている。このため、コンデンサ12を機械室8に設けることにより、コンデンサ12の冷却、ならびに、コンデンサ12を冷却して加熱された空気の排出を効率よく行うことができる。 The capacitor 12 is disposed in a machine room 8 provided in the main body 2 of the refrigerator 1. The machine room 8 is provided with an opening 9 for cooling the compressor 11 so that the outside air can be easily introduced and discharged. For this reason, by providing the capacitor 12 in the machine room 8, the capacitor 12 can be cooled, and the air heated by cooling the capacitor 12 can be efficiently discharged.
 コンデンサ12は、冷媒の入口または出口であって、偏平管14が配置されている本体部12aからX方向、Y方向あるいはZ方向に突出する長さに形成されている接続管16を有している。そして、このコンデンサ12を冷却する冷却ファン20は、本体部12aの外形よりも小さく、且つ、接続管16の突出長さよりも薄く形成されており、本体部12aと接続管16の先端との間に形成されるスペース(S。空間)内に配置されている。 The condenser 12 has a connecting pipe 16 which is a refrigerant inlet or outlet and is formed in a length projecting in the X direction, the Y direction or the Z direction from the main body portion 12a where the flat tube 14 is disposed. Yes. The cooling fan 20 that cools the condenser 12 is smaller than the outer shape of the main body portion 12 a and thinner than the protruding length of the connection pipe 16, and between the main body portion 12 a and the tip of the connection pipe 16. It is arranged in a space (S. space) formed.
 これにより、コンデンサ12を設置する際に必ず必要となる空間内に冷却ファン20を設置することができ、省スペース化を図ることができる。
 また、マルチフロー型のコンデンサ12は、上記したように小型且つ高性能であるとともに、比較的少ない風量でも効果的に熱交換できるため、本体部12aと接続管16によって形成されるスペース(S)内に納まるような冷却ファン20であっても十分に冷却することができる。
As a result, the cooling fan 20 can be installed in a space that is always required when the capacitor 12 is installed, and space saving can be achieved.
In addition, the multi-flow capacitor 12 is small and high performance as described above, and can effectively exchange heat even with a relatively small air volume, so that the space (S) formed by the main body 12a and the connecting pipe 16 is sufficient. Even the cooling fan 20 that fits inside can be sufficiently cooled.
   (その他の実施形態)
 本発明は、上記した実施形態にて例示したものに限定されることなく、その範囲を逸脱しない範囲で任意に例えば以下のように変形あるいは拡張することができる。
(Other embodiments)
The present invention is not limited to those exemplified in the above-described embodiment, and can be arbitrarily modified or expanded as follows, for example, without departing from the scope thereof.
 上記した実施形態では冷却ファン20により1つのコンデンサ12を冷却する例を示したが、例えば図22に示すように1つの冷却ファン20で2以上の複数のコンデンサ12を冷却する構成としてもよい。この場合、例えば図22(a)に示すように、冷却ファン20の送風面に対してコンデンサ12を斜めに配置し、矢印Yに示すように冷却ファン20からの送風が各コンデンサ12に当たるようにしてもよい。また、図22(b)に示すように、送風面にコンデンサ12を重なるように配置し、冷却ファン20からの送風が各コンデンサ12に当たるようにしてもよい。また、図22(c)に示すように、送風面に複数のコンデンサ12を並べて配置してもよい。 In the above-described embodiment, the example in which one condenser 12 is cooled by the cooling fan 20 has been shown. However, for example, as shown in FIG. 22, two or more capacitors 12 may be cooled by one cooling fan 20. In this case, for example, as shown in FIG. 22A, the condenser 12 is disposed obliquely with respect to the air blowing surface of the cooling fan 20 so that the air blown from the cooling fan 20 strikes each capacitor 12 as indicated by an arrow Y. May be. Further, as shown in FIG. 22 (b), the condenser 12 may be disposed so as to overlap the air blowing surface, and the air blown from the cooling fan 20 may hit each condenser 12. Moreover, as shown in FIG.22 (c), you may arrange | position the some capacitor | condenser 12 side by side on a ventilation surface.
 このように複数のコンデンサ12を設けることで、冷凍サイクル21の能力の向上を図ることができるとともに、1つの冷却ファン20で複数のコンデンサ12を冷却することで、省スペース化を図ることができる。この場合、並列式あるは蛇行式をそれぞれ設けてもよいし、混在させてもよい。 By providing a plurality of capacitors 12 in this way, the capacity of the refrigeration cycle 21 can be improved, and by cooling the plurality of capacitors 12 with one cooling fan 20, space saving can be achieved. . In this case, a parallel type or a meandering type may be provided or mixed.
 実施形態では1つの本体部12aを有するコンデンサ12を例示したが、例えば図23に示すように本体部12aを複数有するコンデンサ12を用いてもよい。これにより、コンデンサ12の過度の大型化を招くことなく、冷凍サイクル21の能力の向上を図ることができる。これらによって、コンデンサ12の表面積を稼ぐこと、あるいは、コンデンサ12を薄型化することができ、コンデンサ12が占めるスペースを小さくすることができる。また、放熱効率も高めることができる。 In the embodiment, the capacitor 12 having one main body 12a is illustrated, but for example, a capacitor 12 having a plurality of main bodies 12a may be used as shown in FIG. Thereby, the capacity | capacitance of the refrigerating cycle 21 can be improved, without causing the excessive enlargement of the capacitor | condenser 12. FIG. As a result, the surface area of the capacitor 12 can be increased, or the capacitor 12 can be thinned, and the space occupied by the capacitor 12 can be reduced. In addition, the heat dissipation efficiency can be increased.
 なお、図23では2つの本体部12aを示しているが、3以上の本体部12aを有していてもよい。また、図23のように折り重なるのではなく、本体部12a同士に角度を設けてもよい。また、複数の本体部12aは、直列に接続されていてもよいし、並列に接続されていてもよい。 Note that although two main body portions 12a are shown in FIG. 23, three or more main body portions 12a may be included. In addition, the main body portions 12a may be provided with an angle instead of being folded as shown in FIG. Moreover, the some main-body part 12a may be connected in series, and may be connected in parallel.
 実施形態では冷却ファン20によりコンデンサ12を冷却する例を示したが、例えば図24に示すように、除霜水(W)をコンデンサ12の上方から滴下する構成としてもよい。なお、除霜水は、図示しない冷却器に付着した霜を溶かした時に発生する水である。これにより、除霜水によってコンデンサ12を効率よく冷却することができる。
 このとき、偏平管14が重力方向に沿うようにコンデンサ12の向きを設定すれば、除霜水が偏平管14を伝って重力によって流下することが促進され放熱フィン15に冷却水が溜まらずに効率よく冷却することができる。
Although the example which cools the capacitor | condenser 12 with the cooling fan 20 was shown in embodiment, it is good also as a structure which dripped defrost water (W) from the upper direction of the capacitor | condenser 12, as shown, for example in FIG. In addition, defrost water is water generated when frost adhering to a cooler (not shown) is melted. Thereby, the capacitor | condenser 12 can be efficiently cooled with defrost water.
At this time, if the direction of the condenser 12 is set so that the flat tube 14 follows the direction of gravity, the defrost water is promoted to flow down by the gravity through the flat tube 14, and cooling water does not accumulate in the radiating fins 15. It can be cooled efficiently.
 この場合、本体部12aに正面から、つまりは実施形態で言うZ軸の方向から除霜水を滴下する構成としてもよい。また、除霜水(W)を常時滴下する構成としてもよいし、定期的に除霜水(W)を滴下する構成としてもよい。これにより、埃等による放熱フィン15の目詰まりを防止することができる。 In this case, the defrosting water may be dripped onto the main body 12a from the front, that is, from the Z-axis direction in the embodiment. Moreover, it is good also as a structure which always dripping defrost water (W), and good also as a structure which dripping defrost water (W) regularly. Thereby, clogging of the radiation fin 15 due to dust or the like can be prevented.
 実施形態で例示した冷蔵庫1の構成は一例であり、貯蔵室10の数が異なっていたり、最下部に冷凍室が設けられている等、その機能や配置が異なっていたりしてもよい。また、例えば図2等は模式的に構成や構造を示しており、例えばコンプレッサ11やコンデン、冷却ファン20や開口部9等は、その大きさや設置場所等が必ずしも図示した通りの関係で無くてもよい。 The configuration of the refrigerator 1 exemplified in the embodiment is an example, and the function and arrangement may be different, for example, the number of storage chambers 10 may be different, or a freezing chamber may be provided at the bottom. Further, for example, FIG. 2 and the like schematically show the configuration and structure. For example, the size, installation location, etc. of the compressor 11, the condenser, the cooling fan 20, the opening 9 and the like are not necessarily in the relationship shown in the figure. Also good.
 また、図25に示すように、機械室8を本体2内の上部に設けた冷蔵庫1であってもよい。つまり、機械室8の形状や本体2内における配置は、実施形態で例示したものに限定されない。この図25の場合、コンデンサ12を、入口側となるヘッダ13を上部部、出口側になるヘッダ13を下部に向け、左側板4側から見た場合に概ね図17(a)に示した設置向きとなるようにすることにより、貯蔵室10への影響を抑えることができるとともに、省スペース化を図ることができる。 Moreover, as shown in FIG. 25, the refrigerator 1 which provided the machine room 8 in the upper part in the main body 2 may be sufficient. That is, the shape of the machine room 8 and the arrangement in the main body 2 are not limited to those exemplified in the embodiment. In the case of FIG. 25, the capacitor 12 is installed as shown in FIG. 17A when viewed from the left side plate 4 side with the header 13 on the inlet side facing the upper part and the header 13 on the outlet side facing the lower part. By making it become suitable, while being able to suppress the influence on the storage chamber 10, space saving can be achieved.
 また、図27に示すように、コンデンサ12と、そのコンデンサ12が設けられている設置場所の壁部例えば機械室8の断熱仕切壁10bとの間に、コンデンサ12と断熱仕切壁10bとの間の空間、あるいは、その空間の少なくとも一部を塞ぐ断熱部材30を設けてもよい。これにより、例えば配管の都合上、相対的に温度が高い入口側接続管16aを断熱仕切壁10b側に配置する必要がある場合等において、コンデンサ12から貯蔵室10への熱の伝達を抑えることができる。なお、コンデンサ12の上方側の空間に断熱部材30を設けてもよい。 In addition, as shown in FIG. 27, between the capacitor 12 and the heat insulating partition wall 10b between the capacitor 12 and the wall portion of the installation location where the capacitor 12 is provided, for example, the heat insulating partition wall 10b of the machine room 8. A heat insulating member 30 that closes at least a part of the space or the space may be provided. Thereby, for example, when it is necessary to arrange the inlet side connecting pipe 16a having a relatively high temperature on the heat insulating partition wall 10b side due to piping, the transfer of heat from the capacitor 12 to the storage chamber 10 is suppressed. Can do. The heat insulating member 30 may be provided in the space above the capacitor 12.
 このように、断熱部材30をコンデンサ12と断熱仕切壁10bとの間の空間を塞ぐ態様で設けることにより、コンデンサ12と断熱仕切壁10bとの間の空間への空気の流入を抑制することができる。換言すると、冷却ファン20からの送風を、効果的にコンデンサ12に集中させることが可能となる。これにより、コンデンサ12を効率的に冷却することができる。 In this way, by providing the heat insulating member 30 in such a manner as to close the space between the capacitor 12 and the heat insulating partition wall 10b, it is possible to suppress the inflow of air into the space between the capacitor 12 and the heat insulating partition wall 10b. it can. In other words, it is possible to effectively concentrate the air blown from the cooling fan 20 on the capacitor 12. Thereby, the capacitor | condenser 12 can be cooled efficiently.
 また、図28に示すように、コンデンサ12を、そのコンデンサ12が設けられている設置場所の壁部例えば機械室8の断熱仕切壁10bに接触した状態で配置してもよい。この場合、相対的に温度が低い出口側接続管16bを断熱仕切壁10b側に配置することが望ましい。これにより、コンデンサ12から貯蔵室10への熱の伝達を抑えることができる。また、コンデンサ12を断熱仕切壁10bに接触させた状態で配置することにより、コンデンサ12と断熱仕切壁10bとの間の空間への空気の流入を抑制することができ、冷却ファン20からの送風が効果的にコンデンサ12に集中することから、コンデンサ12を効率的に冷却することができる。この場合、接触している部位以外には、上記した断熱部材30を設けてもよい。 Further, as shown in FIG. 28, the capacitor 12 may be disposed in contact with the wall portion of the installation place where the capacitor 12 is provided, for example, the heat insulating partition wall 10b of the machine room 8. In this case, it is desirable to arrange the outlet side connecting pipe 16b having a relatively low temperature on the heat insulating partition wall 10b side. Thereby, the transfer of heat from the capacitor 12 to the storage chamber 10 can be suppressed. Further, by disposing the capacitor 12 in contact with the heat insulating partition wall 10b, it is possible to suppress the inflow of air into the space between the capacitor 12 and the heat insulating partition wall 10b, and to send air from the cooling fan 20 Is effectively concentrated on the capacitor 12, so that the capacitor 12 can be efficiently cooled. In this case, you may provide the above-mentioned heat insulation member 30 other than the site | part which is contacting.
 また、上記した図25のように機械室8を本体2内の上部に設けている場合には、図29に示すように、コンデンサ12の上下を天井側の壁部と庫内側の壁部とに接触した状態で配置してもよい。この場合、相対的に温度が低い出口側接続管16bを庫内側に配置することで貯蔵室10への熱の伝達を抑えることができるとともに、相対的に温度が高い入口側接続管16aを天井側に接触させることで、手錠側からの放熱を促すこともできる。 In addition, when the machine room 8 is provided in the upper part of the main body 2 as shown in FIG. 25, the top and bottom of the capacitor 12 are arranged on the ceiling side wall and the inside wall part as shown in FIG. You may arrange | position in the state which contacted. In this case, by disposing the outlet side connecting pipe 16b having a relatively low temperature inside the warehouse, it is possible to suppress the transfer of heat to the storage chamber 10, and to connect the inlet side connecting pipe 16a having a relatively high temperature to the ceiling. By making contact with the side, heat dissipation from the handcuff side can be promoted.
 各実施形態では本体部12aが概ね薄い直方体状に形成されているコンデンサ12を例示したが、本体部12aは他の形状であってもよい。
 例えば、図30に示すように、並行式のコンデンサ12において、偏平管14の長さを変えることにより入口側のヘッダ13を斜めに配置する等、本体部12aを、その一部が傾斜するような形状に形成してもよい。あるいは、図31に示すように、蛇行式のコンデンサ12において、偏平管14を折り返す際の長さつまりはターン長を変えることにより、本体部12aを、その一部が傾斜するような形状に形成してもよい。
In each embodiment, the capacitor 12 is illustrated in which the main body 12a is formed in a substantially thin rectangular parallelepiped shape, but the main body 12a may have other shapes.
For example, as shown in FIG. 30, in the parallel capacitor 12, a part of the main body 12 a is inclined such that the inlet-side header 13 is obliquely arranged by changing the length of the flat tube 14. It may be formed in any shape. Alternatively, as shown in FIG. 31, in the meandering capacitor 12, by changing the length when the flat tube 14 is folded, that is, the turn length, the main body portion 12a is formed in a shape in which a part thereof is inclined. May be.
 このような本体部12aの少なくとも一部が傾斜したコンデンサ12であれば、例えば図32に示すように、傾斜した部位を機械室8の壁部に沿わせることにより、機械室8内のスペースを有効活用することができる。換言すると、デッドスペースを減らすことができ、例えば貯蔵室10を大きくすること等が可能となる。 If at least a part of the main body portion 12a is an inclined capacitor 12, for example, as shown in FIG. 32, the inclined portion is placed along the wall portion of the machine room 8, thereby reducing the space in the machine room 8. It can be used effectively. In other words, dead space can be reduced, and for example, the storage chamber 10 can be enlarged.
 また、図33に示すように、折り返し式のコンデンサ12において、入口側となる図示左方上部のヘッダ13と、出口となる図示左方下部側のヘッダ13とを別体とし、それらと折り返し側となる図示右方側のヘッダ13との間の偏平管14の長さを変えることにより、本端部12aを段差状に形成してもよい。あるいは、図34に示すように、蛇行式のコンデンサ12において、偏平管14のターン長を例えば2段階に設定することで、本端部12aを段差状に形成してもよい。あるいは、 Further, as shown in FIG. 33, in the folding type capacitor 12, the header 13 on the left upper side in the figure serving as the inlet side and the header 13 on the lower left side in the figure serving as the outlet are separated from each other. By changing the length of the flat tube 14 between the header 13 on the right side of the figure, the main end 12a may be formed in a step shape. Alternatively, as shown in FIG. 34, in the meandering capacitor 12, the end 12a may be formed in a stepped shape by setting the turn length of the flat tube 14 to, for example, two stages. Or
 このような本体部12aの少なくとも一部に段差を有するコンデンサ12であれば、例えば図示しない他の機械部品や配管部品を避けることができる等、設置スペースを有効活用することができる。また、本体部12aは、傾斜と段差の双方を有する形状であってもよいし、例えば一部が凹んだ略U字状やコ字状となる形状等、直方体状以外の異形であってもよい。そのような異形の場合にも、他の機械部品や配管部品を避けることができる等、設置スペースを有効活用することができる。 If the capacitor 12 has a step in at least a part of the main body 12a, the installation space can be effectively utilized, for example, other mechanical parts and piping parts (not shown) can be avoided. Further, the main body portion 12a may have a shape having both an inclination and a step, or may be a deformed shape other than a rectangular parallelepiped shape, such as a substantially U-shaped shape or a U-shaped shape, which is partially recessed. Good. Even in the case of such an irregular shape, the installation space can be effectively utilized, such as avoiding other machine parts and piping parts.
 実施形態では冷却ファン20として軸流ファンを採用した例を示したが、冷却ファンとして遠心ファンを採用してもよい。遠心ファンの場合、空気は、冷却ファン20の中心から径方向外側に向かって流れることになる。これにより、例えば図35に示すように、コンデンサ12を複数設ける場合において、コンデンサ12を冷却ファン20と対向するように周方向に並べて配置することにより、1つの冷却ファン20で複数のコンデンサ12を冷却することができる。 In the embodiment, an example in which an axial fan is adopted as the cooling fan 20 is shown, but a centrifugal fan may be adopted as the cooling fan. In the case of a centrifugal fan, air flows from the center of the cooling fan 20 toward the radially outer side. Thus, for example, as shown in FIG. 35, when a plurality of capacitors 12 are provided, the capacitors 12 are arranged side by side in the circumferential direction so as to face the cooling fan 20. Can be cooled.
 この場合、図36に示すように、コンデンサ12の本体部12aを、冷却ファン20の外形に沿った曲面状、この場合はアーチ状に形成してもよい。これにより、冷却ファン20の中心から径方向外側に向かう空気の流れにより、コンデンサ12を効率的に冷却することができる。また、本体部12aを周方向に長くすることにより、コンデンサ12の高さ寸法を低減でき、省スペース化を図ることができる。 In this case, as shown in FIG. 36, the main body 12a of the capacitor 12 may be formed in a curved shape along the outer shape of the cooling fan 20, in this case, an arch shape. Thereby, the capacitor | condenser 12 can be efficiently cooled with the flow of the air which goes to radial direction outer side from the center of the cooling fan 20. FIG. Further, by elongating the main body portion 12a in the circumferential direction, the height dimension of the capacitor 12 can be reduced, and space saving can be achieved.
 各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。本実施形態およびその変形は、発明の範囲および要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Each embodiment is presented as an example, and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (26)

  1.  偏平状に形成され、その内部に冷媒が流れる流路が複数形成されている偏平管と、前記偏平管への冷媒の入口または出口となるヘッダと、を有するマルチフロー型のコンデンサを用いて冷凍サイクルの熱交換を行うことを特徴とする冷蔵庫。 Refrigeration using a multi-flow condenser having a flat tube formed with a plurality of flow paths through which refrigerant flows and a header serving as an inlet or outlet for the refrigerant into the flat tube. A refrigerator that performs heat exchange of a cycle.
  2.  前記コンデンサは、前記偏平管が延びている向きが当該冷蔵庫の設置面に対して水平となるように配置されていることを特徴とする請求項1記載の冷蔵庫。 2. The refrigerator according to claim 1, wherein the condenser is arranged so that a direction in which the flat tube extends is horizontal to an installation surface of the refrigerator.
  3.  前記コンデンサは、前記偏平管が延びている向きが当該冷蔵庫の設置面に対して垂直となるように配置されていることを特徴とする請求項1記載の冷蔵庫。 2. The refrigerator according to claim 1, wherein the condenser is disposed so that a direction in which the flat tube extends is perpendicular to an installation surface of the refrigerator.
  4.  前記コンデンサは、当該冷蔵庫の設置面に対して水平となるように配置されていることを特徴とする請求項1から3のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the condenser is disposed so as to be horizontal with respect to a surface on which the refrigerator is installed.
  5.  前記コンデンサは、当該冷蔵庫の設置面に対して傾斜するように配置されていることを特徴とする請求項1から3のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the condenser is disposed so as to be inclined with respect to an installation surface of the refrigerator.
  6.  前記コンデンサは、前記偏平管が配置されている部位である本体部を複数有していることを特徴とする請求項1から5のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the condenser has a plurality of main body portions that are portions where the flat tubes are arranged.
  7.  前記コンデンサは、前記本体部を、並列に複数有していることを特徴とする請求項6記載の冷蔵庫。 The refrigerator according to claim 6, wherein the capacitor includes a plurality of the main body portions in parallel.
  8.  前記コンデンサは、前記本体部を、直列に複数有していることを特徴とする請求項6記載の冷蔵庫。 The refrigerator according to claim 6, wherein the capacitor has a plurality of the main body portions in series.
  9.  前記コンデンサは、前記本体部が折り重ねられていることを特徴とする請求項6から8のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 6 to 8, wherein the capacitor has the body portion folded.
  10.  前記コンデンサを設置した状態において、当該コンデンサの上部側から冷媒を流入させることを特徴とする請求項1から9のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 9, wherein a refrigerant is allowed to flow from an upper side of the capacitor in a state where the capacitor is installed.
  11.  前記コンデンサは、冷媒の入口側が、貯蔵室から離間する向きに配置されていることを特徴とする請求項1から10のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 10, wherein the condenser is arranged in a direction in which an inlet side of the refrigerant is separated from the storage chamber.
  12.  前記コンデンサを、当該冷蔵庫の本体の内部に設けられている機械室に配置したことを特徴とした請求項1から11のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 11, wherein the condenser is disposed in a machine room provided in a main body of the refrigerator.
  13.  前記コンデンサを、当該冷蔵庫の本体内の上部側に配置したことを特徴とする請求項1から12のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 12, wherein the capacitor is arranged on an upper side in the main body of the refrigerator.
  14.  前記コンデンサを冷却する冷却ファンを備え、
     前記コンデンサは、前記偏平管が配置されている本体部から突出する長さに形成され、外部の配管に接続される接続管を有し、
     冷却ファンは、前記本体部の外形よりも小さく、且つ、前記接続管の突出長さよりも薄く形成されており、前記本体部と前記接続管の先端との間に形成される空間内に配置されていることを特徴とする請求項1から13のいずれか一項記載の冷蔵庫。
    A cooling fan for cooling the condenser;
    The capacitor is formed in a length protruding from the main body portion where the flat tube is disposed, and has a connection pipe connected to an external pipe,
    The cooling fan is formed smaller than the outer shape of the main body and thinner than the protruding length of the connection pipe, and is disposed in a space formed between the main body and the tip of the connection pipe. The refrigerator according to any one of claims 1 to 13, wherein the refrigerator is provided.
  15.  前記コンデンサの上方から除霜水を滴下することを特徴とする請求項1から14のいずれか一項記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 14, wherein defrost water is dropped from above the condenser.
  16.  前記除霜水を定期的に滴下することを特徴とする請求項15記載の冷蔵庫。 The refrigerator according to claim 15, wherein the defrosted water is dropped periodically.
  17.  前記コンデンサは、前記偏平管が配置されている本体部から突出する長さに形成されて外部の配管に接続される接続管を有し、
     前記接続管は、前記偏平管に対して平行に延びていることを特徴とする請求項1から16のいずれか一項記載の冷蔵庫。
    The capacitor has a connecting pipe that is formed in a length protruding from a main body portion where the flat tube is disposed and connected to an external pipe,
    The refrigerator according to any one of claims 1 to 16, wherein the connection pipe extends in parallel to the flat tube.
  18.  前記コンデンサは、前記偏平管が配置されている本体部から突出する長さに形成されて外部の配管に接続される接続管を有し、
     前記接続管は、前記偏平管に対して垂直に延びていることを特徴とする請求項1から16のいずれか一項記載の冷蔵庫。
    The capacitor has a connecting pipe that is formed in a length protruding from a main body portion where the flat tube is disposed and connected to an external pipe,
    The refrigerator according to any one of claims 1 to 16, wherein the connection pipe extends perpendicularly to the flat pipe.
  19.  前記コンデンサは、前記偏平管が配置されている本体部から突出する長さに形成されて外部の配管に接続される接続管を冷媒の入口側と出口側とにそれぞれ有し、
     前記接続管は、前記偏平管に対して平行または垂直に延びているとともに、入口側と出口側とで前記偏平管に対する向きが異なることを特徴とする請求項1から16のいずれか一項記載の冷蔵庫。
    The capacitor has connection pipes formed on a length protruding from a main body portion where the flat tube is arranged and connected to an external pipe on the refrigerant inlet side and the outlet side, respectively.
    17. The connection pipe according to claim 1, wherein the connection pipe extends in parallel or perpendicular to the flat pipe, and has different directions with respect to the flat pipe on an inlet side and an outlet side. Refrigerator.
  20.  前記コンデンサは、前記偏平管が配置されている部位である本体部から突出する長さに形成されて外部の配管に接続される接続管を冷媒の入口側と出口側とにそれぞれ有し、
     前記接続管は、入口側と出口側とで、前記本体部から突出する向きが異なることを特徴とする請求項1から19のいずれか一項記載の冷蔵庫。
    The capacitor has connection pipes formed on a length protruding from a main body part where the flat tube is disposed and connected to an external pipe on the refrigerant inlet side and the outlet side, respectively.
    The refrigerator according to any one of claims 1 to 19, wherein the connecting pipe has different directions of protruding from the main body on the inlet side and the outlet side.
  21.  前記コンデンサを冷却する冷却ファンを備え、
     前記コンデンサは、前記偏平管が配置されている部位である本体部から突出する長さに形成されて外部の配管に接続される接続管を有し、
     前記接続管は、前記冷却ファンの送風方向に対して平行に延びていることを特徴とする請求項1から20のいずれか一項記載の冷蔵庫。
    A cooling fan for cooling the condenser;
    The capacitor has a connecting pipe that is formed in a length that protrudes from a main body portion where the flat tube is disposed and is connected to an external pipe.
    21. The refrigerator according to any one of claims 1 to 20, wherein the connection pipe extends in parallel with a blowing direction of the cooling fan.
  22.  前記コンデンサと当該コンデンサが設けられている設置場所の壁部との間に設けられ、前記コンデンサと前記壁部との間の空間の少なくとも一部を塞ぐ断熱部材を備えることを特徴とする請求項1から21のいずれか一項記載の冷蔵庫。 The heat insulating member is provided between the capacitor and a wall portion of the installation place where the capacitor is provided, and includes a heat insulating member that blocks at least a part of a space between the capacitor and the wall portion. The refrigerator according to any one of 1 to 21.
  23.  前記コンデンサは、複数の前記偏平管が並行に配置されている並行式または折り返し式のものであり、前記偏平管の長さを変えることにより、当該偏平管が配置されている部位である本体部が段差状、傾斜状、または段差と傾斜の双方を含む形状に形成されていることを特徴とする請求項1から22のいずれか一項記載の冷蔵庫。 The capacitor is a parallel type or a folded type in which a plurality of the flat tubes are arranged in parallel, and a main body portion which is a portion where the flat tubes are arranged by changing the length of the flat tubes 23. The refrigerator according to any one of claims 1 to 22, wherein the refrigerator is formed in a step shape, an inclined shape, or a shape including both a step and an inclination.
  24.  前記コンデンサは、1本の前記偏平管が厚み方向に折り曲げられて入口から出口までの間を接続している蛇行式のものであり、前記偏平管のターン長を変えることにより、当該偏平管が配置されている部位である本体部が段差状、傾斜状、または段差と傾斜の双方を含む形状に形成されていることを特徴とする請求項1から22のいずれか一項記載の冷蔵庫。 The capacitor is a meandering type in which one flat tube is bent in the thickness direction and connected from the inlet to the outlet. By changing the turn length of the flat tube, the flat tube is 23. The refrigerator according to any one of claims 1 to 22, wherein the main body portion, which is a portion to be disposed, is formed in a stepped shape, an inclined shape, or a shape including both a stepped portion and an inclined portion.
  25.  前記コンデンサを冷却する冷却ファンを備え、
     前記ファンは、遠心ファンであることを特徴とする請求項1から24のいずれか一項記載の冷蔵庫。
    A cooling fan for cooling the condenser;
    The refrigerator according to any one of claims 1 to 24, wherein the fan is a centrifugal fan.
  26.  前記コンデンサは、前記ファンの外形に沿った曲面状に形成されていることを特徴とする請求項25記載の冷蔵庫。 26. The refrigerator according to claim 25, wherein the capacitor is formed in a curved shape along the outer shape of the fan.
PCT/JP2017/016031 2016-04-27 2017-04-21 Refrigerator WO2017188146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780026906.2A CN109073312A (en) 2016-04-27 2017-04-21 Refrigerator
EP17789429.2A EP3450889A4 (en) 2016-04-27 2017-04-21 Refrigerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-089338 2016-04-27
JP2016089338 2016-04-27
JP2016161225A JP6740057B2 (en) 2016-04-27 2016-08-19 refrigerator
JP2016-161225 2016-08-19

Publications (1)

Publication Number Publication Date
WO2017188146A1 true WO2017188146A1 (en) 2017-11-02

Family

ID=60160395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016031 WO2017188146A1 (en) 2016-04-27 2017-04-21 Refrigerator

Country Status (1)

Country Link
WO (1) WO2017188146A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375481A (en) * 2018-04-13 2019-10-25 青岛海尔股份有限公司 Bottom has the refrigerator of Double condenser structure

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115668U (en) * 1989-02-28 1990-09-17
JPH0396574U (en) * 1989-12-29 1991-10-02
JPH0436574A (en) * 1990-05-31 1992-02-06 Sanyo Electric Co Ltd Refrigerator
JPH04340070A (en) * 1991-05-15 1992-11-26 Showa Alum Corp Condenser
JPH08296945A (en) * 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd Refrigerator
JPH0926252A (en) * 1995-07-11 1997-01-28 Sharp Corp Heat exchanging unit and freezer device
JP2003004359A (en) * 2001-06-22 2003-01-08 Hitachi Ltd Refrigerator
US6519970B1 (en) * 2001-11-13 2003-02-18 General Electric Company High-side refrigeration unit assembly
CN101769656A (en) * 2009-02-05 2010-07-07 浙江康盛股份有限公司 Coiled parallel flow condenser for refrigerator
JP2011208909A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Cooling device
JP2011231948A (en) * 2010-04-26 2011-11-17 Toshiba Corp Refrigerator
JP2014020680A (en) * 2012-07-19 2014-02-03 Toshiba Corp Refrigerator
JP2014059073A (en) * 2012-09-14 2014-04-03 Sharp Corp Condenser and refrigerator-freezer
CN104390395A (en) * 2014-11-19 2015-03-04 合肥华凌股份有限公司 Condenser and refrigerator
CN104493449A (en) * 2014-11-26 2015-04-08 浙江康盛热交换器有限公司 Air cooling refrigerator and freezer serpentine parallel flow condenser manufacture process
JP2016044824A (en) * 2014-08-20 2016-04-04 日立アプライアンス株式会社 refrigerator

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115668U (en) * 1989-02-28 1990-09-17
JPH0396574U (en) * 1989-12-29 1991-10-02
JPH0436574A (en) * 1990-05-31 1992-02-06 Sanyo Electric Co Ltd Refrigerator
JPH04340070A (en) * 1991-05-15 1992-11-26 Showa Alum Corp Condenser
JPH08296945A (en) * 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd Refrigerator
JPH0926252A (en) * 1995-07-11 1997-01-28 Sharp Corp Heat exchanging unit and freezer device
JP2003004359A (en) * 2001-06-22 2003-01-08 Hitachi Ltd Refrigerator
US6519970B1 (en) * 2001-11-13 2003-02-18 General Electric Company High-side refrigeration unit assembly
CN101769656A (en) * 2009-02-05 2010-07-07 浙江康盛股份有限公司 Coiled parallel flow condenser for refrigerator
JP2011208909A (en) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd Cooling device
JP2011231948A (en) * 2010-04-26 2011-11-17 Toshiba Corp Refrigerator
JP2014020680A (en) * 2012-07-19 2014-02-03 Toshiba Corp Refrigerator
JP2014059073A (en) * 2012-09-14 2014-04-03 Sharp Corp Condenser and refrigerator-freezer
JP2016044824A (en) * 2014-08-20 2016-04-04 日立アプライアンス株式会社 refrigerator
CN104390395A (en) * 2014-11-19 2015-03-04 合肥华凌股份有限公司 Condenser and refrigerator
CN104493449A (en) * 2014-11-26 2015-04-08 浙江康盛热交换器有限公司 Air cooling refrigerator and freezer serpentine parallel flow condenser manufacture process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375481A (en) * 2018-04-13 2019-10-25 青岛海尔股份有限公司 Bottom has the refrigerator of Double condenser structure

Similar Documents

Publication Publication Date Title
JP6740057B2 (en) refrigerator
EP2868999B1 (en) Refrigeration cycle of refrigerator
JP6023464B2 (en) Vehicle capacitors
EP2869000B1 (en) Refrigeration cycle of refrigerator
US9714787B2 (en) Refrigerator
WO2015141315A1 (en) Refrigerator
US11885570B2 (en) Cooling system
JP7117093B2 (en) refrigerator
KR20200048739A (en) Cooling module for vehicle
JP6351875B1 (en) Heat exchanger and refrigeration cycle apparatus
WO2017188146A1 (en) Refrigerator
WO2017188147A1 (en) Refrigerator
US20140284031A1 (en) Heat exchanger
JPWO2017158714A1 (en) refrigerator
KR20050002652A (en) The refrigerator for improvement on heat exchange efficiency
JP2014013111A (en) Refrigerator
CN213841119U (en) Air conditioner indoor unit
JP5818984B2 (en) Outdoor unit of air conditioner and air conditioner provided with the same
JP2022140876A (en) refrigerator
US20230213216A1 (en) Heat exchanger, electric control box and air conditioning system
US20230168000A1 (en) Air conditioning apparatus and electric control box
KR100229188B1 (en) Refrigerator
JP6850091B2 (en) refrigerator
KR102161475B1 (en) Air conditioner system for vehicle
JP2019070484A (en) refrigerator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017789429

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017789429

Country of ref document: EP

Effective date: 20181127