WO2017187950A1 - Image processing device and image processing method - Google Patents

Image processing device and image processing method Download PDF

Info

Publication number
WO2017187950A1
WO2017187950A1 PCT/JP2017/014677 JP2017014677W WO2017187950A1 WO 2017187950 A1 WO2017187950 A1 WO 2017187950A1 JP 2017014677 W JP2017014677 W JP 2017014677W WO 2017187950 A1 WO2017187950 A1 WO 2017187950A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
parallax
region
images
unit
Prior art date
Application number
PCT/JP2017/014677
Other languages
French (fr)
Japanese (ja)
Inventor
浩明 菊池
正志 藏之下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017187950A1 publication Critical patent/WO2017187950A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images

Definitions

  • the present invention relates to an image processing apparatus and an image processing method, and more particularly to an image processing apparatus and an image processing method for calculating parallax from an image of a subject.
  • Patent Document 1 describes that in a road surface state measurement system, stereo images are matched to calculate parallax, and three-dimensional information (such as crack depth and size) of the road surface is measured from the obtained parallax.
  • Patent Document 2 describes that stereo images are reduced to perform matching, and parallax is acquired from the matching result.
  • Patent Document 1 since the original image (the image that has not been reduced) is matched, the accuracy is high but the processing time is long. Further, in Patent Document 2, since the reduced image is matched, the processing is fast but the accuracy is low, and when the measurement area is small or exists at the boundary with the adjacent area, the parallax cannot be obtained or the correct parallax is obtained. I could't. As described above, the conventional technique cannot acquire the parallax at a high speed and stably with respect to a desired region of the subject.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an image processing apparatus and an image processing method capable of acquiring parallax for a desired region of a subject at high speed and stably.
  • an image processing apparatus includes an image input unit that inputs a plurality of images obtained by photographing one subject from a plurality of viewpoints, and a plurality of images.
  • a reduced image generation unit that generates a plurality of reduced images
  • a first parallax calculation unit that calculates a first parallax by searching for a corresponding position between the plurality of reduced images, and a first Based on the parallax and the pixel positions of the plurality of reduced images
  • a geometric region extraction unit that extracts a geometric region in the plurality of reduced images
  • a display unit that displays the extracted geometric region in association with the plurality of images are displayed.
  • the geometric region is extracted based on the first parallax calculated using the reduced image and displayed in association with the image before being reduced (original image).
  • a desired area for example, an area where the parallax cannot be calculated sufficiently
  • the processing amount for the original image can be reduced, and the processing can be performed at high speed.
  • the processing region may be specified for a part of the image before reduction (original image) to calculate the second parallax.
  • parallax can be acquired at high speed and stably for a desired region of the subject.
  • the first and second parallaxes can be calculated by various methods such as feature-based matching and region-based matching.
  • corresponding position refers to the same position (corresponding point) captured in a plurality of images.
  • a “geometric area” refers to a region of a subject belonging to the same plane or curved surface, and one or more arbitrary numbers of one subject may exist.
  • the image input unit may input an image acquired by photographing a subject or an already acquired image.
  • the area designating unit selects an area designated by the user in a plurality of images or an area selected by the user from candidate areas displayed in the plurality of images. Specify as processing area.
  • the area designating unit designates the area designated by the user in the plurality of images or the area selected by the user from the candidate areas displayed in the plurality of images as the processing area. Can be easily specified.
  • the image processing apparatus further includes a grouping processing unit that groups pixels included in a plurality of images for each area in the second aspect, and the area designating unit sets the grouped area as a candidate area. Display on the display. According to the third aspect, since the pixels are grouped for each area and displayed as candidate areas, it is easy to specify the area.
  • the image processing device is the first geometric equation, wherein the geometric area extraction unit determines a first geometric equation that is a geometric equation representing the geometric area. A geometric region is extracted based on the geometric equation.
  • the fourth mode prescribes an example of geometric region extraction from a reduced image.
  • the image processing apparatus is any one of the first to fourth aspects, wherein the geometric region extraction unit extracts pixels whose distance from the geometric region is equal to or less than a threshold as pixels belonging to the geometric region.
  • the fifth aspect shows a criterion for pixel extraction. A pixel whose distance from a certain geometric region exceeds a threshold value is a pixel belonging to a geometric region different from the geometric region. Note that the threshold value can be set in consideration of extraction accuracy requirements and the like.
  • the image processing device is the first noise removal according to any one of the first to fifth aspects, wherein noise removal is performed on at least one of the calculated first parallax and the extracted geometric region.
  • the unit is further provided.
  • parallax can be calculated accurately and stably by removing noise.
  • the parallax can be calculated by designating the processing area for the area in which the parallax calculation or the geometric area extraction cannot be correctly performed by noise removal.
  • the image processing apparatus further includes a second noise removal unit that removes noise from the calculated second parallax.
  • the parallax can be accurately and stably calculated by removing the noise.
  • the image processing apparatus is the image processing apparatus according to any one of the first to seventh aspects, wherein the reduced image generation unit converts the plurality of images into a grayscale image, and the image that parallelizes the plurality of images. At least one of the processes is performed, and a plurality of reduced images are generated for the image subjected to the at least one image process.
  • the eighth aspect prescribes the content of so-called “pre-processing”. By generating a reduced image for an image that has undergone such image processing, the amount of parallax calculation processing can be reduced, and high speed and high speed can be achieved. The parallax can be calculated with high accuracy.
  • the image processing apparatus further includes an optical system that acquires a plurality of images, and the image input unit inputs the images acquired via the optical system.
  • the optical system included in the ninth aspect can be a stereo optical system including a plurality of optical systems including a photographic lens and an imaging element corresponding to each of a plurality of viewpoints.
  • the image processing apparatus calculates the two-dimensional information or the three-dimensional information of the measurement target included in the processing region based on the calculated second parallax. And a measuring unit.
  • high-accuracy and stable measurement can be performed based on the parallax calculated by any one of the first to ninth aspects.
  • examples of the two-dimensional information and the three-dimensional information may include the position, length, width, and area of the measurement target, but are not limited to these examples.
  • the measurement unit calculates a second geometric equation representing a processing area based on the second parallax, and calculates the second geometric equation and the measurement. Two-dimensional information or three-dimensional information is calculated based on the target pixel position.
  • the eleventh aspect defines a method for calculating two-dimensional information and three-dimensional information.
  • the subject in the tenth or eleventh aspect, is a concrete structure, and the measurement target is damage to the concrete structure.
  • the concrete structure is damaged, and the shape and size of the generated damage change with time.
  • the image processing apparatus according to the twelfth aspect is used to measure the damage of the concrete structure.
  • two-dimensional information or three-dimensional information of a measurement target that is, damage
  • Examples of concrete structures include bridges, tunnels, roads, and buildings, and examples of damage include cracks and free lime. Concrete structures to which the twelfth aspect can be applied and Damage is not limited to these examples.
  • an image processing method includes an image input step of inputting a plurality of images obtained by photographing one subject from a plurality of viewpoints, and a plurality of images.
  • the parallax can be calculated with high accuracy and stability in the same manner as in the first aspect.
  • the thirteenth aspect may further include a configuration similar to the second to twelfth aspects.
  • a program that causes an image processing apparatus to execute the image processing method according to these aspects, and a non-transitory recording medium on which a computer-readable code of such a program is recorded can also be cited as one aspect of the present invention.
  • parallax can be acquired at high speed and stably for a desired region.
  • FIG. 1 is a diagram showing a bridge as an example of an application target of the image processing apparatus and the image processing method of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the image processing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a functional configuration of the processing unit.
  • FIG. 4 is a diagram illustrating information stored in the storage unit.
  • FIG. 5 is a flowchart showing the procedure of the image processing method according to the embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a state in which a vertical shift exists between the left and right images.
  • FIG. 7 is a conceptual diagram showing how the left and right images are parallelized.
  • FIG. 8 shows left and right reduced images.
  • FIG. 1 is a diagram showing a bridge as an example of an application target of the image processing apparatus and the image processing method of the present invention.
  • FIG. 2 is a block diagram showing a configuration of the image processing apparatus according to the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a state where the reduced image is subjected to block matching.
  • FIG. 10 is a diagram illustrating the extracted parallax.
  • FIG. 11 is a diagram illustrating a state in which noise is removed from a parallax image.
  • FIG. 12 is a diagram showing the extracted geometric region.
  • FIG. 13 is a diagram illustrating a state in which noise removal is performed on the extracted geometric region.
  • FIG. 14 is a diagram illustrating a state in which an original image and a geometric area are displayed in association with each other.
  • FIG. 15 is a diagram illustrating a state in which the original image and the geometric region are superimposed and displayed.
  • FIG. 16 is a diagram illustrating a state in which a processing area is specified in the original image.
  • FIG. 17 is another diagram showing a state in which a processing area is specified in the original image.
  • FIG. 18 is still another view showing a state in which a geometric region is designated in the original image.
  • FIG. 19 is still another diagram showing a state in which a geometric region is designated in the original image.
  • FIG. 20 is a diagram illustrating how the parallax is calculated for the processing region.
  • FIG. 21 is a diagram illustrating a state where calculated parallax noise is removed.
  • FIG. 22 is a diagram illustrating how a crack is measured.
  • FIG. 1 is a perspective view showing a structure of a bridge 1 (concrete structure) which is an example of an application target of an image processing apparatus and an image processing method according to the present invention.
  • the bridge 1 shown in FIG. 1 has a main girder 3, and the main girder 3 is joined by a joint 3A.
  • the main girder 3 is a member that is passed between the abutment and the pier and supports the load of the vehicle on the floor slab 2.
  • a floor slab 2 for driving a vehicle or the like is placed on the main girder 3.
  • the floor slab 2 is generally made of reinforced concrete.
  • the bridge 1 has members such as a horizontal girder, a tilted frame, and a horizontal frame (not shown) in addition to the floor slab 2 and the main girder 3.
  • the inspector uses the digital camera 102 (see FIG. 2) to photograph the bridge 1 from below (direction C in FIG. 1), and includes an image (left image and right image) of the inspection range. Stereo image; multiple images).
  • the photographing is performed while appropriately moving in the extending direction of the bridge 1 (A direction in FIG. 1) and the orthogonal direction (B direction in FIG. 1).
  • the digital camera 102 may be installed on a movable body that can move along the bridge 1 to perform imaging.
  • a moving body may be provided with a lifting mechanism and / or a pan / tilt mechanism of the digital camera 102. Examples of the moving body include a vehicle, a robot, and a flying body, but are not limited to these.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the image processing apparatus 10 (image processing apparatus) according to the present embodiment.
  • the image processing apparatus 10 includes a digital camera 102 (an image input unit, an optical system), a processing unit 110 (an image input unit, a reduced image generation unit, a first parallax calculation unit, a geometric region extraction unit, a region designation unit, a second designation unit, A parallax calculation unit, a grouping processing unit, a first noise removal unit, a second noise removal unit, a measurement unit, a display unit), a storage unit 120, a display unit 130 (display unit), and an operation unit 140, It is connected so that necessary information can be sent and received.
  • a digital camera 102 an image input unit, an optical system
  • a processing unit 110 an image input unit, a reduced image generation unit, a first parallax calculation unit, a geometric region extraction unit, a region designation unit, a second designation unit, A parallax calculation unit, a grouping processing unit
  • each unit can be realized by a control device such as a CPU (Central Processing Unit) executing a program stored in a ROM (Read Only Memory) or the like.
  • a computer-readable code of a program for causing the image processing apparatus to execute the image processing method according to the present invention is recorded in the ROM or the like.
  • the processing unit 110 includes a wireless communication antenna and an input / output interface circuit
  • the storage unit 120 includes a non-temporary recording medium such as an HDD (Hard Disk Drive).
  • the display unit 130 includes a display device such as a liquid crystal display
  • the operation unit 140 includes an input device such as a keyboard and a mouse. Note that these are examples of the configuration of the image processing apparatus according to the present invention, and other configurations can be adopted as appropriate.
  • the digital camera 102 includes a left image optical system 102L for acquiring a left viewpoint image and a right image optical system 102R for acquiring a right viewpoint image, and the same subject (the bridge 1 in the present embodiment) is captured by these optical systems. You can shoot from multiple viewpoints.
  • the left image optical system 102L and the right image optical system 102R include a photographing lens and an image sensor (not shown). Examples of the image sensor include a CCD (Charge-Coupled Device) type image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor.
  • An R (red), G (green), or B (blue) color filter is provided on the light receiving surface of the image sensor, and a color image of the subject can be acquired based on the signals of each color.
  • FIG. 3 is a diagram showing a main functional configuration of the processing unit 110.
  • the processing unit 110 includes an image acquisition unit 110A, a reduced image generation unit 110B, a parallax calculation unit 110C, a geometric region extraction unit 110D, a region specification unit 110E, a grouping processing unit 110F, a noise removal unit 110G, a measurement unit 110H, and display control. Part 110I.
  • each processing of the image processing method is performed by devices such as a CPU (Central Processing Unit) and various electronic circuits, images and information stored in the storage unit 120, and EEPROM (Electronically Erasable and Programmable Read Only Memory): This is performed by executing a program stored in a ROM or the like while appropriately referring to data stored in a (non-temporary recording medium) or the like.
  • a computer-readable code of a program for causing the image processing apparatus to execute the image processing method according to the present invention is recorded in the ROM or the like.
  • a RAM Random Access Memory
  • FIG. 3 these devices are not shown.
  • the image acquisition unit 110A acquires an image of the bridge 1 by controlling the digital camera 102.
  • the digital camera 102 and the image acquisition unit 110 ⁇ / b> A constitute an image input unit in the image processing apparatus 10.
  • the reduced image generation unit 110B reduces the image input via the image acquisition unit 110A and generates a reduced image.
  • the parallax calculation unit 110C (first parallax calculation unit, second parallax calculation unit) calculates the first parallax based on the reduced image and the second parallax based on the original image (image before reduction).
  • the geometric region extraction unit 110D extracts a geometric region in the reduced image based on the first parallax based on the reduced image and the pixel position of the reduced image.
  • the area designation unit 110E detects a user instruction input via the operation unit 140, and designates a processing area based on the detection result.
  • the grouping processing unit 110F groups pixels included in the original image for each region.
  • the noise removing unit 110G (first noise removing unit, second noise removing unit) performs noise removal on the first parallax, the second parallax, and the geometric region.
  • the measurement unit 110H calculates two-dimensional information or three-dimensional information about the subject based on the second parallax.
  • the display control unit 110I (display unit) performs display control on the display unit 130 such as an image, a parallax, a geometric region, and a measurement result.
  • the storage unit 120 is configured by a non-temporary recording medium such as a CD (Compact Disk), a DVD (Digital Versatile Disk), a hard disk (Hard Disk), or various semiconductor memories, and stores the images and information illustrated in FIG. 4 in association with each other.
  • the crack image 120A is an image obtained by capturing a crack generated in the bridge 1 (for example, the floor slab 2) with the digital camera 102 and inputting it with the image acquisition unit 110A. Note that not only images input by the digital camera 102 and the image acquisition unit 110A but also crack images acquired via a network or a recording medium may be stored.
  • the first parallax 120B is parallax (first parallax) calculated based on an image (reduced image) generated by reducing an image (original image) captured by the digital camera 102.
  • the second parallax 120C is the parallax calculated for the designated processing region (second parallax).
  • the measurement result 120D is a measurement result (two-dimensional information or three-dimensional information) of the subject (measurement target).
  • the storage unit 120 stores the extracted geometric region information and the result of the grouping process in addition to the image and information described above.
  • the display unit 130 includes a display device (not shown) such as a liquid crystal display, and displays input images, images and information stored in the storage unit 120, parallax obtained by the processing unit 110, measurement results, and the like. Can do.
  • the operation unit 140 includes a pointing device such as a mouse and an input device (not shown) such as a keyboard, and the user can operate an image, a button, or the like displayed on the display unit 130 with the operation unit 140.
  • FIG. 5 is a flowchart showing a procedure of measurement processing (image processing method) according to the present embodiment.
  • this embodiment demonstrates the case where the crack which arose in the floor slab 2 of the bridge 1 which is a concrete structure is measured.
  • the stereo image of the bridge 1 photographed by the digital camera 102 as described above is input to the processing unit 110 (image acquisition unit 110A) by wireless communication (step S100; image input process).
  • a plurality of images of the bridge 1 are input in accordance with the inspection range, and information on the shooting date and time is added to the input image by the digital camera 102.
  • the shooting date and time of the input image does not necessarily have to be the same for all images, and may be for a plurality of days.
  • a plurality of images may be input at a time, or one image may be input at a time.
  • the image of the bridge 1 may be input not via wireless communication but via a non-temporary recording medium such as various memory cards, or image data that has already been captured and recorded may be input via a network. .
  • FIG. 6 shows an example of the left image iL0 and the right image iR0 input in this way.
  • FIG. 6 shows an example of an image when a portion where the plate-like member PM is provided in a portion (corner portion) where three planes intersect in the bridge 1 is photographed.
  • the three planes intersect at boundary lines E1, E2, and E3, and these boundary lines E1, E2, and E3 coincide at a point E0.
  • the corners of the plate member PM are set as points E4 and E5.
  • the horizontal direction in FIG. 6 is the horizontal direction u
  • the vertical direction is the vertical direction v.
  • the number of channels and the image size of the left image iL0 and the right image iR0 are not particularly limited.
  • a color image (R, R) of 4,800 pixels (horizontal direction u) ⁇ 3,200 pixels (vertical direction v) is used.
  • the left image iL0 and the right image iR0 are images obtained by editing and / or combining a plurality of images (for example, an image showing the entire measurement range generated by combining images obtained by capturing a part of the measurement range). Also good.
  • the processing unit 110 converts the left image iL0 and the right image iR0 into a grayscale image in step S110 (preprocessing step) prior to generation of a reduced image described later.
  • step S110 the processing unit 110 shifts the left image iL0 and / or the right image iR0 in the vertical direction v to correct (parallelize) the shift of the distance ⁇ described above.
  • Examples of images obtained by performing these pre-processing are shown in FIG.
  • the parallax can be calculated and measured at high speed and stably by performing such preprocessing.
  • the left image iL1 and right image iR1 that have been pre-processed in this way are also referred to as “original images”.
  • the processing unit 110 (reduced image generation unit 110B) generates a reduced image based on the left image iL1 and the right image iR1 that are images after preprocessing (step S120; reduced image generation step).
  • the degree of reduction is not particularly limited.
  • the horizontal direction u and the vertical direction v of the left image iL1 and the right image iR1 are respectively reduced to 1/16 to obtain 300 pixels (horizontal direction u) ⁇ 200 pixels (vertical direction v ) Can be generated.
  • this reduced image be the left image iL2 and the right image iR2 (see FIG. 8).
  • the processing unit 110 calculates a first parallax by searching for a corresponding position between the left image iL2 and the right image iR2 that are reduced images (step S130: first parallax). Calculation step).
  • “Corresponding position” refers to the same position (corresponding point) captured in a plurality of images.
  • points E0, E4, and E5 can be used in FIGS.
  • the first parallax can be calculated by block matching (region-based matching) between reduced images, for example, as described below.
  • Region-based matching is a technique for matching a local block image of a reference image and a local block image of a comparative image using a measure (correlation value) of difference or similarity.
  • Block matching sets a block including a plurality of pixels in one image (reference image) of the left image iL2 and the right image iR2, and sets a block having the same shape and size as the block in the other image (comparison image) Then, the block in the comparative image is moved in the horizontal direction u pixel by pixel, and the correlation value for the two blocks is calculated at each position.
  • the reference image is the left image iL2
  • the comparison image is the right image iR2
  • the block AR having the same shape and size as the block AL set in the left image iL2 is moved in the horizontal direction u pixel by pixel.
  • step S110 Since the left and right images are parallelized in the preprocessing in step S110, if the position of the block AL is determined, it is only necessary to move the block AR in the horizontal direction u at the time of block matching. When the left and right images are not parallelized in the preprocessing, in the block matching, the movement in the horizontal direction u is repeated while shifting the position in the vertical direction v.
  • the correlation value is calculated while moving the block AR, and when the position of the block AR (position corresponding to the block AL) having the highest correlation with respect to the position of the block AL is specified, the target pixel (for example, the block AL) The distance between the center pixel) and the corresponding pixel (for example, the center pixel) of the block AR at the specified position is calculated as the parallax. Then, such processing is executed for all the pixels of the left image iL2, which is the reference image, and parallax is obtained for each pixel position to generate a parallax image.
  • SAD Sud of Absolute Difference
  • SSD Sud of Squared intensity Difference
  • NCC Normalized Cross Correlation
  • FIG. 10 An example of the parallax image obtained in this way is shown in FIG.
  • the density corresponds to the magnitude of the parallax
  • the white portion has a small parallax
  • the black portion has a large parallax.
  • an area where the parallax cannot be calculated accurately is shown as a noise area NA.
  • the parallax cannot be accurately calculated for the plate-like member PM described above, and the region R0 where the parallax is calculated is different from the shape of the original member.
  • a corresponding point may be searched for by feature-based matching.
  • feature-based matching for example, feature points (edges, corners, etc.) are extracted from the left image iL2 and the right image iR2, and a feature amount is calculated from an area around the feature points to search for (match) corresponding positions.
  • examples of the feature points include points E0, E4, E5 and boundary lines E1, E2, E3 in FIGS.
  • the processing unit 110 performs a process of removing the noise area NA on the first parallax calculated in step S130 (step S140: noise removal step).
  • the removal of the noise area NA can be performed, for example, by performing a low-pass filter process on the parallax image.
  • An example of the parallax image after such noise processing is shown in FIG. In the parallax image iP1A in FIG. 11, the noise area NA that existed in FIG. 10 is lost.
  • the processing unit 110 extracts a geometric region (step S150: geometric region extraction step).
  • the extraction of the geometric region can be performed using, for example, a RANSAC (RANDom Sample Consensus) algorithm.
  • the RANSAC algorithm can obtain an optimum evaluation value by calculating a model parameter (a parameter representing a plane) using randomly sampled data (three if it is a plane) and evaluating the correctness of the calculated parameter. It is an algorithm that repeats until. A specific procedure will be described below.
  • Step S1 Three points are randomly extracted from the parallax image after noise removal. For example, points f1 (u 1 , v 1 , w 1 ), f2 (u 2 , v 2 , w 2 ), and f3 (u 3 , v 3 , w 3 ) are extracted from the parallax image iP1A in FIG. Shall.
  • the points to be extracted here are points for determining the geometric equation of each geometric region, and the number of points to be extracted is changed depending on the assumed geometric region type (plane, cylindrical surface, spherical surface, etc.). Good. For example, in the case of a plane, representative points of 3 points or more (assuming that they are not on the same straight line) are extracted.
  • the horizontal coordinate of the image is represented by u i
  • the vertical coordinate is represented by v i
  • the parallax (distance direction) is represented by w i (i is an integer of 1 or more representing a point number).
  • Step S2 a plane equation (first geometric equation) is determined from the extracted points f1, f2, and f3.
  • the plane equation F in the three-dimensional space (u, v, w) is generally expressed by the following (Expression 1) (a, b, c, d are constants).
  • Step S3 For all the pixels (u i , v i , w i ) of the parallax image, the distance to the plane represented by the plane equation F in (Expression 1) is calculated. If the distance is less than or equal to the threshold value, it is determined that the pixel belongs to the plane represented by the plane equation F.
  • Step S4 If the number of pixels existing on the plane represented by the plane equation F is larger than the number of pixels for the current optimal solution, the plane equation F is determined as the optimal solution.
  • Step S5 Steps S1 to S4 are repeated a predetermined number of times.
  • Step S6 One plane is determined by using the obtained plane equation as a solution.
  • Step S7 The pixels on the plane determined up to step S6 are excluded from the processing target (plane extraction target).
  • Step S8 Steps S1 to S7 are repeated, and the process ends when the number of extracted planes exceeds a certain number or the number of remaining pixels is less than a specified number.
  • FIG. 12 shows an example of the geometric region extracted by the above procedure.
  • three geometric regions (planes) G1, G2, and G3 are extracted from the image iG, but the region of the plate-like member PM (region R0 in FIG. 11) is correctly extracted. Not a noise (region N1 and region N2).
  • the processing unit 110 performs noise removal on the extracted geometric region (step S152: noise removal step).
  • Noise removal from the geometric region extraction result can be performed, for example, by the following expansion / contraction process.
  • the expansion / contraction process can be performed on the binarized image (monochrome image). In this case, if there is even a white pixel around the pixel of interest, the process of replacing the pixel of interest with white is called “dilation”. If there is even a black pixel around the pixel of interest, the pixel of interest is black. The process of replacing with is called “Erosion”. Then, small pattern noise (region N1 in the example of FIG. 12) and linear pattern noise (region N2 in the example of FIG. 12) are removed by appropriately repeating contraction and expansion. For example, small pattern noise can be removed by expanding the image after contracting, and linear pattern noise can be removed by contracting after expanding the image. Such expansion and contraction can be repeated, and the process of expanding and contracting the same number of times is called closing, and the process of contracting and expanding the same number of times is called opening.
  • the expansion / contraction process can be performed not only on a binarized image but also on a grayscale image.
  • the above-described “expansion” replaces the luminance value of the target pixel with the maximum luminance value near the target pixel
  • “shrink” replaces the luminance value of the target pixel with the minimum luminance value near the target pixel.
  • FIG. 13 shows an example of the geometric region after removing the noise by the above-described expansion / contraction process.
  • FIG. 13 shows an image iG2 from which the regions N1 and N2 in FIG. 12 have been removed as noise.
  • the image processing apparatus 10 and the image processing method according to the present embodiment specify the desired region based on the region extraction result as described below, so that the second can be performed at high speed and stably.
  • the parallax can be calculated and measurement can be performed based on the second parallax.
  • noise removal is performed on both the parallax image and the geometric region. However, depending on conditions such as the amount of noise and the region where the noise is generated, noise removal is performed on only one of them. May be performed.
  • a geometric equation representing another type of geometric region such as a cylindrical surface (cylindrical surface) or a spherical surface
  • a geometric equation representing another type of geometric region is determined according to the shape of the subject. May be. This is because the shape of a structure such as a bridge pier or a tunnel is often expressed not only by a plane but also by a cylindrical surface or a spherical surface.
  • a cylinder whose central axis is the z-axis and whose radius is r is expressed by the following (formula 2) (z is an arbitrary value), and a sphere whose center is the origin of the coordinate system and whose radius is r is (Equation 3).
  • the processing unit 110 displays the original image and the geometric region in association with the display unit 130 (step S160: display step). For example, as shown in FIG. 14, the left image iL1 and the corresponding image iG2 are displayed in parallel. The right image iR1 may be displayed in addition to or instead of the left image iL1.
  • FIG. 15 is a diagram showing another example of the display of the original image and the geometric area.
  • FIG. 15 shows an image iLG (the left image iL1 is displayed on the front) in which the left image iL1 and the image iG2 are superimposed.
  • the superimposed display one image may be made translucent so that the other image can be seen through, or the image displayed on the front side can be switched.
  • the plate-like member PM is shown in white because no region is extracted.
  • the original image and the geometric region are displayed in association with each other, and these images are compared, so that the region extraction result such as the presence of an unextracted region is obtained. Can be easily grasped.
  • a parallax image for example, the parallax image iP1A in FIG. 11
  • iP1A the parallax image iP1A in FIG. 11
  • FIG. 16 is a diagram showing an example of processing area designation.
  • the user operates a device such as a mouse provided in the operation unit 140 to fill the region R1 of the plate member PM in the left image iL1, and the region specifying unit 110E detects the region R1 painted by the user. And specify it as a processing area.
  • FIG. 17 is a diagram showing another example of processing area designation. In the example of FIG.
  • the user operates the device provided in the operation unit 140 in the left image iL1 to specify the region R2 surrounding the plate member PM, and the region specifying unit 110E detects the region R2 surrounded by the user.
  • a processing area a desired area such as an area that has disappeared at the time of area extraction or an area in which parallax is not correctly calculated, or an area in which a crack to be measured exists can be specified.
  • the processing area is specified by the processing section 110 (grouping processing section 110F) grouping the original images for each area and displaying them as candidate areas, and the area specifying section 110E detects the area selected by the user. You may go.
  • the grouping can be performed, for example, by applying a watershed algorithm or edge detection to the original image.
  • FIG. 18 is an example of an image iG3 showing a grouped region, and each region is displayed in a different color (however, since the color is difficult to show, the color is displayed in characters in FIG. 18).
  • the processing unit 110 when the user specifies the yellow region R3, the processing unit 110 (region specifying unit 110E) detects the user's specification, and specifies the region R3 as the processing region.
  • the processing area is designated by detecting the area designation or area selection instruction input by the user.
  • the processing area designation is designated by detecting the measurement point instruction input by the user. Also good.
  • the processing unit 110 region designation unit 110E detects this designation and designates the region R6 surrounding the measurement point T3 as the processing region. To do.
  • Such measurement points and areas are not limited to one, and a plurality of measurement points and areas may be designated.
  • the user when detecting the length of a crack, the user designates the start point and end point of the crack as the measurement point T3 described above, and the area designation unit 110E detects the designation of those points, and each of the start point and end point is detected.
  • a processing area may be specified.
  • the size of the area R6 is not particularly limited. For example, 480 pixels (horizontal direction u) ⁇ 320 pixels (vertical direction v) or 300 pixels (horizontal direction u) ⁇ 200 pixels ( It can be the vertical direction v).
  • step S180 second parallax calculation step. Similar to the first parallax in step S130, the second parallax calculated in step S180 can be calculated from block matching of the left image iL1 and the right image iR1 and the distance between feature points. A parallax image iP2 indicating the second parallax calculated in this way is shown in FIG. FIG.
  • step S190 noise removing step
  • a parallax image iP3 is obtained.
  • Noise removal in step S190 can be performed by, for example, a low-pass filter process as in step S140.
  • the second parallax is calculated for the processing region specified for a part of the original image, so that the parallax can be calculated at high speed without targeting the entire image, and one pixel. It is possible to avoid the problem that the parallax cannot be calculated for a small area due to the parallax calculation failure due to acquiring only the parallax or the image reduction and noise removal.
  • the processing unit 110 calculates two-dimensional information or three-dimensional information on the measurement target included in the processing region based on the second parallax. Is calculated (step S200: measurement step).
  • two-dimensional information or three-dimensional information can include position, length, width, and area, but items to be calculated are not limited to these examples, and depend on the nature of the subject and the measurement target. Other items such as volume and cross-sectional area may be calculated.
  • the processing unit 110 first extracts a crack from an image (for example, the left image iL1 or the right image iR1).
  • Crack extraction can be performed by various methods. For example, a crack detection method described in Japanese Patent No. 4006007 can be used. This method calculates wavelet coefficients corresponding to the two concentrations to be compared, calculates each wavelet coefficient when each of these two concentrations is changed, creates a wavelet coefficient table, and detects cracks.
  • a wavelet image is created by wavelet transforming the input image of the target concrete surface, and in the wavelet coefficient table, the wavelet coefficients corresponding to the average density of neighboring pixels in the local area and the density of the target pixel are calculated.
  • This is a crack detection method comprising a step of determining a crack area and a non-crack area by comparing a wavelet coefficient of a target pixel with a threshold value as a threshold value.
  • Crack extraction can also be performed using the method described in Non-Patent Document 1 below.
  • an area composed of pixels having a luminance value less than the threshold value is set as a percolated area (percolation area), and the threshold value is sequentially updated according to the shape of the percolation area.
  • the crack is detected from the surface image.
  • the percolation method is a method in which the region is sequentially enlarged in general imitating water penetration (percolation) in nature.
  • FIG. 22 is a diagram illustrating a state in which cracks Cr are extracted in the region R5 of the plate-like member PM.
  • the crack Cr is a crack from the end point T1 to the end point T2.
  • the designation of the end point of the crack may be received by inputting an instruction, and the length may be calculated based on the designated end point.
  • the parallax (corresponding to the w coordinate) at the end points T1 and T2 is obtained because the parallax (second parallax) is calculated for the region R5. Then, if necessary, the (u, v, w) coordinates of the end points T1, T2 are converted into (x, y, z) coordinates in the real space based on the position and shooting direction of the digital camera 102, and the following (formula 4) ) To obtain the length L (distance between end points T1 and T2). If the crack Cr is a curved crack, the crack Cr is divided into a plurality of sections so that each section can be regarded as a straight line, and the length of each section is calculated to obtain the length of the crack Cr. Can do.
  • the length of the crack Cr can be estimated using a plane equation in addition to directly calculating from the parallax calculated for the region R5 (second parallax) as described above. Specifically, parallax is calculated based on block matching, distance between feature points, and the like between the left image iL1 and the right image iR1 with respect to three or more representative points set in the region R5, and the region based on the calculated parallax. Estimate the plane equation (second geometric equation) of R5. At this time, the representative point extraction and the plane equation estimation may be repeated by the RANSAC algorithm described above.
  • the parallax (corresponding to the w coordinate) of the end points T1 and T2 can be obtained from the pixel positions (u and v coordinates) of the end points T1 and T2 and the plane equation of the region R5.
  • the parallax of the end points T1 and T2 is calculated, as described above, the (u, v, w) coordinates of the end points T1 and T2 are converted into (x, y, z) coordinates in the real space,
  • the length L (distance between the end points T1 and T2) can be obtained.
  • the geometric region extracted based on the first parallax and the original image are displayed in association with each other, so that the region extraction result can be easily grasped. It is possible to calculate the second parallax in the processing area designated for a part of the original image even for the area where the geometric area is not correctly extracted (the area where the first parallax cannot be calculated correctly). it can. As a result, it is possible to measure parallax at a high speed and stably for a desired region.
  • the image processing apparatus and the image processing method of the present invention can calculate and measure parallax for various subjects other than cracks in a concrete structure.
  • the parallax can be calculated for the structure itself, not the cracks, obstacles, or cracks on the road, and the shape and size can be measured.

Abstract

The purpose of the present invention is to provide an image processing device and an image processing method which are capable of obtaining parallax stably with high speed. In an image processing device according to one embodiment of the present invention, a geometric region is extracted on the basis of a first parallax calculated using a reduced image, associated with the image (original image) before reduction, and displayed. Accordingly, a user can comprehend the parallax calculation state, and specify a desired region (for instance, a region for which parallax could not be calculated satisfactorily). Furthermore, a second parallax is calculated for a specified processing region in the original image. Accordingly, the amount of processing of the original image can be reduced, and processing can be performed with high speed. Moreover, the second parallax may be calculated using, as the specified processing region, a portion of the image (original image) before reduction.

Description

画像処理装置及び画像処理方法Image processing apparatus and image processing method
 本発明は画像処理装置及び画像処理方法に関し、特に被写体の画像から視差を算出する画像処理装置及び画像処理方法に関する。 The present invention relates to an image processing apparatus and an image processing method, and more particularly to an image processing apparatus and an image processing method for calculating parallax from an image of a subject.
 従来、被写体の計測(2次元情報または3次元情報の取得)は、検査員が測定具を用いて直接行っていたが、近年は撮像装置で取得した画像に基づいて計測する画像計測が行われている。そしてこのような画像計測において、ステレオ画像から算出した視差を計測に用いることが知られている。例えば特許文献1には、路面状態計測システムにおいて、ステレオ画像をマッチングして視差を算出し、得られた視差から路面の3次元情報(ひび割れの深さ、大きさなど)を計測することが記載されている。また特許文献2には、ステレオ画像を縮小してマッチングを行い、マッチング結果から視差を取得することが記載されている。 Conventionally, measurement of a subject (acquisition of two-dimensional information or three-dimensional information) has been performed directly by an inspector using a measuring tool, but in recent years, image measurement has been performed based on an image acquired by an imaging device. ing. In such image measurement, it is known to use parallax calculated from a stereo image for measurement. For example, Patent Document 1 describes that in a road surface state measurement system, stereo images are matched to calculate parallax, and three-dimensional information (such as crack depth and size) of the road surface is measured from the obtained parallax. Has been. Patent Document 2 describes that stereo images are reduced to perform matching, and parallax is acquired from the matching result.
特開2008-82870号公報JP 2008-82870 A 特開2013-65247号公報JP 2013-65247 A
 しかしながら特許文献1では、原画像(縮小しない画像)をマッチングしているので精度は高いが処理時間が掛かっていた。また特許文献2では、縮小画像をマッチングするため処理は高速であるが精度が低く、さらに計測領域が小さい場合や隣接領域との境界に存在する場合は、視差が取得できなかったり正しい視差が得られなかったりした。このように、従来の技術は被写体の所望の領域について高速かつ安定的に視差を取得できるものではなかった。 However, in Patent Document 1, since the original image (the image that has not been reduced) is matched, the accuracy is high but the processing time is long. Further, in Patent Document 2, since the reduced image is matched, the processing is fast but the accuracy is low, and when the measurement area is small or exists at the boundary with the adjacent area, the parallax cannot be obtained or the correct parallax is obtained. I couldn't. As described above, the conventional technique cannot acquire the parallax at a high speed and stably with respect to a desired region of the subject.
 本発明はこのような事情に鑑みてなされたもので、被写体の所望の領域について高速かつ安定的に視差を取得できる画像処理装置及び画像処理方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an image processing apparatus and an image processing method capable of acquiring parallax for a desired region of a subject at high speed and stably.
 上述した目的を達成するため、本発明の第1の態様に係る画像処理装置は、一の被写体を複数の視点から撮影して得られた複数の画像を入力する画像入力部と、複数の画像をそれぞれ縮小して複数の縮小画像を生成する縮小画像生成部と、複数の縮小画像間の対応する位置の探索をして第1の視差を算出する第1の視差算出部と、第1の視差と複数の縮小画像の画素位置とに基づいて、複数の縮小画像における幾何領域を抽出する幾何領域抽出部と、抽出した幾何領域と複数の画像とを関連付けて表示する表示部と、表示された複数の画像に対するユーザの指示入力を検出して、複数の画像の一部の領域を処理領域として指定する領域指定部と、指定された処理領域について複数の画像間の対応する位置の探索をして第2の視差を算出する第2の視差算出部と、を備える。 In order to achieve the above-described object, an image processing apparatus according to the first aspect of the present invention includes an image input unit that inputs a plurality of images obtained by photographing one subject from a plurality of viewpoints, and a plurality of images. Respectively, a reduced image generation unit that generates a plurality of reduced images, a first parallax calculation unit that calculates a first parallax by searching for a corresponding position between the plurality of reduced images, and a first Based on the parallax and the pixel positions of the plurality of reduced images, a geometric region extraction unit that extracts a geometric region in the plurality of reduced images, and a display unit that displays the extracted geometric region in association with the plurality of images are displayed. And detecting a user's instruction input for the plurality of images, and specifying an area designating unit for designating a partial region of the plurality of images as a processing region, and searching for a corresponding position between the plurality of images for the designated processing region. To calculate the second parallax Comprising a second parallax calculating section, the.
 第1の態様に係る画像処理装置では、縮小画像を用いて算出した第1の視差に基づいて幾何領域を抽出し、縮小前の画像(原画像)と関連づけて表示するので、ユーザは視差の算出状況を把握して所望の領域(例えば、視差を十分に算出できなかった領域)を指定することができる。また、第2の視差は原画像において指定された処理領域について算出するので、原画像に対する処理量を減らすことができ、処理を高速に行うことができる。なお、処理領域は縮小前の画像(原画像)の一部について指定して第2の視差を算出すればよい。 In the image processing apparatus according to the first aspect, the geometric region is extracted based on the first parallax calculated using the reduced image and displayed in association with the image before being reduced (original image). By grasping the calculation status, a desired area (for example, an area where the parallax cannot be calculated sufficiently) can be designated. In addition, since the second parallax is calculated for the processing region designated in the original image, the processing amount for the original image can be reduced, and the processing can be performed at high speed. Note that the processing region may be specified for a part of the image before reduction (original image) to calculate the second parallax.
 このように、第1の態様によれば被写体の所望の領域について高速かつ安定的に視差を取得することができる。なお第1の態様において、第1,第2の視差は特徴ベースマッチング、領域ベースマッチングなど種々の手法により算出することができる。また第1の態様において「対応する位置」とは複数の画像で撮像されている同一の位置(対応点)をいう。「幾何領域」とは同一の平面または曲面に属する被写体の領域をいい、1つの被写体について1つ以上任意の数だけ存在してよい。また第1の態様において、画像入力部は被写体を撮影して取得した画像を入力してもよいし、既に取得された画像を入力してもよい。 Thus, according to the first aspect, parallax can be acquired at high speed and stably for a desired region of the subject. In the first aspect, the first and second parallaxes can be calculated by various methods such as feature-based matching and region-based matching. In the first aspect, “corresponding position” refers to the same position (corresponding point) captured in a plurality of images. A “geometric area” refers to a region of a subject belonging to the same plane or curved surface, and one or more arbitrary numbers of one subject may exist. In the first aspect, the image input unit may input an image acquired by photographing a subject or an already acquired image.
 第2の態様に係る画像処理装置は第1の態様において、領域指定部は、ユーザが複数の画像において指定した領域、または複数の画像に表示された候補領域の中からユーザが選択した領域を処理領域として指定する。第2の態様では領域指定部は、ユーザが複数の画像において指定した領域、または複数の画像に表示された候補領域の中からユーザが選択した領域を処理領域として指定するので、所望の領域を容易に指定することができる。 In the image processing apparatus according to the second aspect, in the first aspect, the area designating unit selects an area designated by the user in a plurality of images or an area selected by the user from candidate areas displayed in the plurality of images. Specify as processing area. In the second aspect, the area designating unit designates the area designated by the user in the plurality of images or the area selected by the user from the candidate areas displayed in the plurality of images as the processing area. Can be easily specified.
 第3の態様に係る画像処理装置は第2の態様において、複数の画像に含まれる画素を領域ごとにグループ化するグループ化処理部をさらに備え、領域指定部はグループ化した領域を候補領域として表示部に表示する。第3の態様によれば、画素が領域ごとにグループ化されて候補領域として表示されるので、領域の指定が容易である。 The image processing apparatus according to a third aspect further includes a grouping processing unit that groups pixels included in a plurality of images for each area in the second aspect, and the area designating unit sets the grouped area as a candidate area. Display on the display. According to the third aspect, since the pixels are grouped for each area and displayed as candidate areas, it is easy to specify the area.
 第4の態様に係る画像処理装置は第1から第3の態様のいずれか1つにおいて、幾何領域抽出部は幾何領域を表す幾何方程式である第1の幾何方程式を決定し、決定した第1の幾何方程式に基づいて幾何領域を抽出する。第4の態様は縮小画像における幾何領域抽出の一例を規定するものである。 In any one of the first to third aspects, the image processing device according to the fourth aspect is the first geometric equation, wherein the geometric area extraction unit determines a first geometric equation that is a geometric equation representing the geometric area. A geometric region is extracted based on the geometric equation. The fourth mode prescribes an example of geometric region extraction from a reduced image.
 第5の態様に係る画像処理装置は第1から第4の態様のいずれか1つにおいて、幾何領域抽出部は幾何領域との距離が閾値以下である画素を幾何領域に属する画素として抽出する。第5の態様は画素抽出の基準を示すものであり、ある幾何領域からの距離が閾値を超える画素は、その幾何領域とは別の幾何領域に属する画素とする。なお閾値は抽出精度の要求等を考慮して設定することができる。 The image processing apparatus according to the fifth aspect is any one of the first to fourth aspects, wherein the geometric region extraction unit extracts pixels whose distance from the geometric region is equal to or less than a threshold as pixels belonging to the geometric region. The fifth aspect shows a criterion for pixel extraction. A pixel whose distance from a certain geometric region exceeds a threshold value is a pixel belonging to a geometric region different from the geometric region. Note that the threshold value can be set in consideration of extraction accuracy requirements and the like.
 第6の態様に係る画像処理装置は第1から第5の態様のいずれか1つにおいて、算出した第1の視差及び抽出した幾何領域のうち少なくとも一方に対しノイズ除去を行う第1のノイズ除去部をさらに備える。第6の態様では、ノイズを除去することで正確かつ安定的に視差を算出できる。なお、ノイズ除去により視差の算出や幾何領域の抽出を正しく行えなかった領域については、第1から第5の態様について上述したように、処理領域を指定して視差を算出することができる。 The image processing device according to a sixth aspect is the first noise removal according to any one of the first to fifth aspects, wherein noise removal is performed on at least one of the calculated first parallax and the extracted geometric region. The unit is further provided. In the sixth aspect, parallax can be calculated accurately and stably by removing noise. In addition, as described above with respect to the first to fifth aspects, the parallax can be calculated by designating the processing area for the area in which the parallax calculation or the geometric area extraction cannot be correctly performed by noise removal.
 第7の態様に係る画像処理装置は第1から第6の態様のいずれか1つにおいて、算出した第2の視差に対しノイズ除去を行う第2のノイズ除去部をさらに備える。第7の態様では、ノイズを除去することで正確かつ安定的に視差を算出することができる。 In any one of the first to sixth aspects, the image processing apparatus according to the seventh aspect further includes a second noise removal unit that removes noise from the calculated second parallax. In the seventh aspect, the parallax can be accurately and stably calculated by removing the noise.
 第8の態様に係る画像処理装置は第1から第7の態様のいずれか1つにおいて、縮小画像生成部は複数の画像をグレースケール画像に変換する画像処理と複数の画像を平行化する画像処理とのうち少なくとも1つの画像処理を行い、少なくとも1つの画像処理を行った画像に対して複数の縮小画像を生成する。第8の態様はいわゆる「前処理」の内容を規定するもので、このような画像処理を行った画像に対して縮小画像を生成することで、視差算出の処理量を低減して高速かつ高精度に視差を算出することができる。 The image processing apparatus according to an eighth aspect is the image processing apparatus according to any one of the first to seventh aspects, wherein the reduced image generation unit converts the plurality of images into a grayscale image, and the image that parallelizes the plurality of images. At least one of the processes is performed, and a plurality of reduced images are generated for the image subjected to the at least one image process. The eighth aspect prescribes the content of so-called “pre-processing”. By generating a reduced image for an image that has undergone such image processing, the amount of parallax calculation processing can be reduced, and high speed and high speed can be achieved. The parallax can be calculated with high accuracy.
 第9の態様に係る画像処理装置は第1から第8の態様のいずれか1つにおいて、複数の画像を取得する光学系をさらに備え、画像入力部は光学系を介して取得した画像を入力する。第9の態様が備える光学系は、撮影レンズ及び撮像素子を含む光学系を複数の視点のそれぞれに対応して複数備えたステレオ光学系とすることができる。 In any one of the first to eighth aspects, the image processing apparatus according to the ninth aspect further includes an optical system that acquires a plurality of images, and the image input unit inputs the images acquired via the optical system. To do. The optical system included in the ninth aspect can be a stereo optical system including a plurality of optical systems including a photographic lens and an imaging element corresponding to each of a plurality of viewpoints.
 第10の態様に係る画像処理装置は第1から第9の態様のいずれか1つにおいて、算出した第2の視差に基づいて処理領域に含まれる計測対象の2次元情報または3次元情報を算出する計測部をさらに備える。第10の態様では、第1から第9の態様のいずれか1つにより算出した視差に基づき、高精度かつ安定的に計測を行うことができる。なお、本発明の各態様において2次元情報及び3次元情報の例としては計測対象の位置、長さ、幅、及び面積を挙げることができるが、これらの例に限定されるものではない。 In any one of the first to ninth aspects, the image processing apparatus according to the tenth aspect calculates the two-dimensional information or the three-dimensional information of the measurement target included in the processing region based on the calculated second parallax. And a measuring unit. In the tenth aspect, high-accuracy and stable measurement can be performed based on the parallax calculated by any one of the first to ninth aspects. In each aspect of the present invention, examples of the two-dimensional information and the three-dimensional information may include the position, length, width, and area of the measurement target, but are not limited to these examples.
 第11の態様に係る画像処理装置は第10の態様において、計測部は第2の視差に基づいて処理領域を表す幾何方程式である第2の幾何方程式を算出し、第2の幾何方程式と計測対象の画素位置とに基づいて2次元情報または3次元情報を算出する。第11の態様は2次元情報及び3次元情報算出の手法を規定するものである。 In an image processing apparatus according to an eleventh aspect, in the tenth aspect, the measurement unit calculates a second geometric equation representing a processing area based on the second parallax, and calculates the second geometric equation and the measurement. Two-dimensional information or three-dimensional information is calculated based on the target pixel position. The eleventh aspect defines a method for calculating two-dimensional information and three-dimensional information.
 第12の態様に係る画像処理装置は第10または第11の態様において、被写体はコンクリート構造物であり、計測対象はコンクリート構造物の損傷である。コンクリート構造物には損傷が発生し、発生した損傷の形状及び大きさは時間の経過と共に変化していくが、第12の態様に係る画像処理装置をそのようなコンクリート構造物の損傷の計測に適用することにより、計測対象(即ち損傷)の2次元情報または3次元情報を高速かつ高精度に算出できる。なおコンクリート構造物の例としては橋梁、トンネル、道路、及びビルを挙げることができ、損傷の例としてはひび割れ及び遊離石灰を挙げることができるが、第12の態様が適用可能なコンクリート構造物及び損傷はこれらの例に限定されるものではない。 In the image processing apparatus according to the twelfth aspect, in the tenth or eleventh aspect, the subject is a concrete structure, and the measurement target is damage to the concrete structure. The concrete structure is damaged, and the shape and size of the generated damage change with time. The image processing apparatus according to the twelfth aspect is used to measure the damage of the concrete structure. By applying, two-dimensional information or three-dimensional information of a measurement target (that is, damage) can be calculated at high speed and with high accuracy. Examples of concrete structures include bridges, tunnels, roads, and buildings, and examples of damage include cracks and free lime. Concrete structures to which the twelfth aspect can be applied and Damage is not limited to these examples.
 上述した目的を達成するため、本発明の第13の態様に係る画像処理方法は、一の被写体を複数の視点から撮影して得られた複数の画像を入力する画像入力工程と、複数の画像をそれぞれ縮小して複数の縮小画像を生成する縮小画像生成工程と、複数の縮小画像間の対応する位置の探索をして第1の視差を算出する第1の視差算出工程と、第1の視差と複数の縮小画像の画素位置とに基づいて、複数の縮小画像における幾何領域を抽出する幾何領域抽出工程と、抽出した幾何領域と複数の画像とを関連付けて表示する表示工程と、表示された複数の画像に対するユーザの指示入力を検出して、複数の画像の一部の領域を処理領域として指定する領域指定工程と、指定された処理領域について複数の画像間の対応する位置の探索をして第2の視差を算出する第2の視差算出工程と、を備える。第13の態様によれば、第1の態様と同様に高精度かつ安定的に視差を算出することができる。なお第13の態様において、第2から第12の態様と同様の構成をさらに含めてもよい。また、それら態様の画像処理方法を画像処理装置に実行させるプログラム、及びそのようなプログラムのコンピュータ読み取り可能なコードが記録された非一時的記録媒体も、本発明の一態様として挙げることができる。 In order to achieve the above-described object, an image processing method according to a thirteenth aspect of the present invention includes an image input step of inputting a plurality of images obtained by photographing one subject from a plurality of viewpoints, and a plurality of images. A reduced image generation step of generating a plurality of reduced images by reducing each of the image, a first parallax calculation step of calculating a first parallax by searching for a corresponding position between the plurality of reduced images, Based on the parallax and the pixel positions of the plurality of reduced images, a geometric region extraction step for extracting a geometric region in the plurality of reduced images, and a display step for displaying the extracted geometric region in association with the plurality of images are displayed. Detecting an instruction input by a user for a plurality of images and designating a part of the plurality of images as a processing region, and searching for a corresponding position between the plurality of images in the designated processing region. And second Comprising a second parallax calculating step of calculating a difference, a. According to the thirteenth aspect, the parallax can be calculated with high accuracy and stability in the same manner as in the first aspect. Note that the thirteenth aspect may further include a configuration similar to the second to twelfth aspects. In addition, a program that causes an image processing apparatus to execute the image processing method according to these aspects, and a non-transitory recording medium on which a computer-readable code of such a program is recorded can also be cited as one aspect of the present invention.
 以上説明したように、本発明の画像処理装置及び画像処理方法によれば、所望の領域について高速かつ安定的に視差を取得することができる。 As described above, according to the image processing apparatus and the image processing method of the present invention, parallax can be acquired at high speed and stably for a desired region.
図1は、本発明の画像処理装置及び画像処理方法の適用対象の例である橋梁を示す図である。FIG. 1 is a diagram showing a bridge as an example of an application target of the image processing apparatus and the image processing method of the present invention. 図2は、本発明の一実施形態に係る画像処理装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the image processing apparatus according to the embodiment of the present invention. 図3は、処理部の機能構成を示す図である。FIG. 3 is a diagram illustrating a functional configuration of the processing unit. 図4は、記憶部に記憶される情報を示す図である。FIG. 4 is a diagram illustrating information stored in the storage unit. 図5は、本発明の一実施形態に係る画像処理方法の手順を示すフローチャートである。FIG. 5 is a flowchart showing the procedure of the image processing method according to the embodiment of the present invention. 図6は、左右画像間に垂直方向のずれが存在する様子を示す概念図である。FIG. 6 is a conceptual diagram illustrating a state in which a vertical shift exists between the left and right images. 図7は、左右画像を平行化する様子を示す概念図である。FIG. 7 is a conceptual diagram showing how the left and right images are parallelized. 図8は、左右の縮小画像を示す図である。FIG. 8 shows left and right reduced images. 図9は、縮小画像をブロックマッチングする様子を示す図である。FIG. 9 is a diagram illustrating a state where the reduced image is subjected to block matching. 図10は、抽出された視差を示す図である。FIG. 10 is a diagram illustrating the extracted parallax. 図11は、視差画像でノイズが除去された様子を示す図である。FIG. 11 is a diagram illustrating a state in which noise is removed from a parallax image. 図12は、抽出された幾何領域を示す図である。FIG. 12 is a diagram showing the extracted geometric region. 図13は、抽出幾何領域に対しノイズ除去を施した様子を示す図である。FIG. 13 is a diagram illustrating a state in which noise removal is performed on the extracted geometric region. 図14は、原画像と幾何領域とを関連づけて表示した様子を示す図である。FIG. 14 is a diagram illustrating a state in which an original image and a geometric area are displayed in association with each other. 図15は、原画像と幾何領域とを重畳表示した様子を示す図である。FIG. 15 is a diagram illustrating a state in which the original image and the geometric region are superimposed and displayed. 図16は、原画像中で処理領域を指定した様子を示す図である。FIG. 16 is a diagram illustrating a state in which a processing area is specified in the original image. 図17は、原画像中で処理領域を指定した様子を示す他の図である。FIG. 17 is another diagram showing a state in which a processing area is specified in the original image. 図18は、原画像中で幾何領域を指定した様子を示すさらに他の図である。FIG. 18 is still another view showing a state in which a geometric region is designated in the original image. 図19は、原画像中で幾何領域を指定した様子を示すさらに他の図である。FIG. 19 is still another diagram showing a state in which a geometric region is designated in the original image. 図20は、処理領域について視差を算出した様子を示す図である。FIG. 20 is a diagram illustrating how the parallax is calculated for the processing region. 図21は、算出した視差のノイズを除去した様子を示す図である。FIG. 21 is a diagram illustrating a state where calculated parallax noise is removed. 図22は、ひび割れを計測する様子を示す図である。FIG. 22 is a diagram illustrating how a crack is measured.
 以下、添付図面を参照しつつ、本発明に係る画像処理装置及び画像処理方法の実施形態について説明する。 Hereinafter, embodiments of an image processing apparatus and an image processing method according to the present invention will be described with reference to the accompanying drawings.
 図1は、本発明に係る画像処理装置及び画像処理方法の適用対象の一例である橋梁1(コンクリート構造物)の構造を示す斜視図である。図1に示す橋梁1は主桁3を有し、主桁3は接合部3Aで接合されている。主桁3は橋台や橋脚の間に渡され、床版2上の車輌等の荷重を支える部材である。また、主桁3の上部には車輌等が走行するための床版2が打設されている。床版2は鉄筋コンクリート製のものが一般的である。なお橋梁1は、床版2及び主桁3の他に図示せぬ横桁、対傾構、及び横構等の部材を有する。 FIG. 1 is a perspective view showing a structure of a bridge 1 (concrete structure) which is an example of an application target of an image processing apparatus and an image processing method according to the present invention. The bridge 1 shown in FIG. 1 has a main girder 3, and the main girder 3 is joined by a joint 3A. The main girder 3 is a member that is passed between the abutment and the pier and supports the load of the vehicle on the floor slab 2. In addition, a floor slab 2 for driving a vehicle or the like is placed on the main girder 3. The floor slab 2 is generally made of reinforced concrete. The bridge 1 has members such as a horizontal girder, a tilted frame, and a horizontal frame (not shown) in addition to the floor slab 2 and the main girder 3.
 <画像の取得>
 橋梁1の損傷を計測する場合、検査員はデジタルカメラ102(図2参照)を用いて橋梁1を下方から撮影し(図1のC方向)、検査範囲について画像(左画像及び右画像からなるステレオ画像;複数の画像)を取得する。撮影は、橋梁1の延伸方向(図1のA方向)及びその直交方向(図1のB方向)に適宜移動しながら行う。なお橋梁1の周辺状況により検査員の移動が困難な場合は、橋梁1に沿って移動可能な移動体にデジタルカメラ102を設置して撮影を行ってもよい。このような移動体には、デジタルカメラ102の昇降機構及び/またはパン・チルト機構を設けてもよい。なお移動体の例としては車輌、ロボット、及び飛翔体を挙げることができるが、これらに限定されるものではない。
<Acquisition of image>
When measuring damage to the bridge 1, the inspector uses the digital camera 102 (see FIG. 2) to photograph the bridge 1 from below (direction C in FIG. 1), and includes an image (left image and right image) of the inspection range. Stereo image; multiple images). The photographing is performed while appropriately moving in the extending direction of the bridge 1 (A direction in FIG. 1) and the orthogonal direction (B direction in FIG. 1). If it is difficult for the inspector to move due to the surrounding conditions of the bridge 1, the digital camera 102 may be installed on a movable body that can move along the bridge 1 to perform imaging. Such a moving body may be provided with a lifting mechanism and / or a pan / tilt mechanism of the digital camera 102. Examples of the moving body include a vehicle, a robot, and a flying body, but are not limited to these.
 <画像処理装置の構成>
 図2は、本実施形態に係る画像処理装置10(画像処理装置)の概略構成を示すブロック図である。画像処理装置10は、デジタルカメラ102(画像入力部、光学系)、処理部110(画像入力部、縮小画像生成部、第1の視差算出部、幾何領域抽出部、領域指定部、第2の視差算出部、グループ化処理部、第1のノイズ除去部、第2のノイズ除去部、計測部、表示部)、記憶部120、表示部130(表示部)、及び操作部140を備え、互いに接続されていて、必要な情報を送受信できるようになっている。
<Configuration of image processing apparatus>
FIG. 2 is a block diagram illustrating a schematic configuration of the image processing apparatus 10 (image processing apparatus) according to the present embodiment. The image processing apparatus 10 includes a digital camera 102 (an image input unit, an optical system), a processing unit 110 (an image input unit, a reduced image generation unit, a first parallax calculation unit, a geometric region extraction unit, a region designation unit, a second designation unit, A parallax calculation unit, a grouping processing unit, a first noise removal unit, a second noise removal unit, a measurement unit, a display unit), a storage unit 120, a display unit 130 (display unit), and an operation unit 140, It is connected so that necessary information can be sent and received.
 各部の機能は、例えばCPU(Central Processing Unit)等の制御デバイスがROM(Read Only Memory:非一時的記録媒体)等に記憶されたプログラムを実行することで実現できる。この場合、ROM等には本発明に係る画像処理方法を画像処理装置に実行させるプログラムのコンピュータ読み取り可能なコードが記録される。また、処理部110は無線通信用アンテナ及び入出力インタフェース回路を含み、記憶部120はHDD(Hard Disk Drive)等の非一時的記録媒体を含んで構成される。また表示部130は液晶ディスプレイ等の表示デバイスを含み、操作部140はキーボードやマウス等の入力デバイスを含む。なおこれらは本発明に係る画像処理装置の構成の一例を示すものであり、他の構成を適宜採用し得る。 The function of each unit can be realized by a control device such as a CPU (Central Processing Unit) executing a program stored in a ROM (Read Only Memory) or the like. In this case, a computer-readable code of a program for causing the image processing apparatus to execute the image processing method according to the present invention is recorded in the ROM or the like. The processing unit 110 includes a wireless communication antenna and an input / output interface circuit, and the storage unit 120 includes a non-temporary recording medium such as an HDD (Hard Disk Drive). The display unit 130 includes a display device such as a liquid crystal display, and the operation unit 140 includes an input device such as a keyboard and a mouse. Note that these are examples of the configuration of the image processing apparatus according to the present invention, and other configurations can be adopted as appropriate.
 上述のようにデジタルカメラ102を用いて撮影された画像は、無線通信により処理部110に入力されて計測処理(後述)が行われる。なお、デジタルカメラ102は左視点画像取得用の左画像用光学系102L及び右視点画像取得用の右画像用光学系102Rを備え、これら光学系により同一の被写体(本実施形態では橋梁1)を複数の視点から撮影できる。左画像用光学系102L及び右画像用光学系102Rは、図示せぬ撮影レンズ及び撮像素子を備える。撮像素子の例としてはCCD(Charge Coupled Device)型の撮像素子及びCMOS(Complementary Metal-Oxide Semiconductor)型の撮像素子を挙げることができる。撮像素子の受光面上にはR(赤),G(緑),またはB(青)のカラーフィルタが設けられており、各色の信号に基づいて被写体のカラー画像を取得することができる。 As described above, an image photographed using the digital camera 102 is input to the processing unit 110 by wireless communication and subjected to measurement processing (described later). The digital camera 102 includes a left image optical system 102L for acquiring a left viewpoint image and a right image optical system 102R for acquiring a right viewpoint image, and the same subject (the bridge 1 in the present embodiment) is captured by these optical systems. You can shoot from multiple viewpoints. The left image optical system 102L and the right image optical system 102R include a photographing lens and an image sensor (not shown). Examples of the image sensor include a CCD (Charge-Coupled Device) type image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor. An R (red), G (green), or B (blue) color filter is provided on the light receiving surface of the image sensor, and a color image of the subject can be acquired based on the signals of each color.
 <処理部の機能構成>
 図3は処理部110の主要機能構成を示す図である。処理部110は、画像取得部110A、縮小画像生成部110B、視差算出部110C、幾何領域抽出部110D、領域指定部110E、グループ化処理部110F、ノイズ除去部110G、計測部110H、及び表示制御部110Iを備える。これらの機能(画像処理方法の各処理)は、CPU(Central Processing Unit)や各種電子回路等のデバイスが、記憶部120に記憶された画像や情報、またEEPROM(Electronically Erasable and Programmable Read Only Memory:非一時的記録媒体)等に記憶されたデータを適宜参照しつつ、ROM等に記憶されたプログラムを実行することにより行われる。この場合、ROM等には本発明に係る画像処理方法を画像処理装置に実行させるプログラムのコンピュータ読み取り可能なコードが記録される。処理の際には、RAM(Random Access Memory)等が一時記憶領域や作業領域として用いられる。なお、図3ではこれらデバイスの図示は省略する。
<Functional configuration of processing unit>
FIG. 3 is a diagram showing a main functional configuration of the processing unit 110. The processing unit 110 includes an image acquisition unit 110A, a reduced image generation unit 110B, a parallax calculation unit 110C, a geometric region extraction unit 110D, a region specification unit 110E, a grouping processing unit 110F, a noise removal unit 110G, a measurement unit 110H, and display control. Part 110I. These functions (each processing of the image processing method) are performed by devices such as a CPU (Central Processing Unit) and various electronic circuits, images and information stored in the storage unit 120, and EEPROM (Electronically Erasable and Programmable Read Only Memory): This is performed by executing a program stored in a ROM or the like while appropriately referring to data stored in a (non-temporary recording medium) or the like. In this case, a computer-readable code of a program for causing the image processing apparatus to execute the image processing method according to the present invention is recorded in the ROM or the like. In processing, a RAM (Random Access Memory) or the like is used as a temporary storage area or a work area. In FIG. 3, these devices are not shown.
 画像取得部110Aは、デジタルカメラ102を制御して橋梁1の画像を取得する。デジタルカメラ102及び画像取得部110Aは、画像処理装置10における画像入力部を構成する。縮小画像生成部110Bは、画像取得部110Aを介して入力した画像を縮小して縮小画像を生成する。視差算出部110C(第1の視差算出部、第2の視差算出部)は、縮小画像に基づく第1の視差、及び原画像(縮小前の画像)に基づく第2の視差を算出する。幾何領域抽出部110Dは、縮小画像に基づく第1の視差と縮小画像の画素位置とに基づいて、縮小画像における幾何領域を抽出する。領域指定部110Eは、操作部140を介したユーザの指示入力を検出し、検出結果に基づいて処理領域を指定する。グループ化処理部110Fは、原画像に含まれる画素を領域ごとにグループ化する。ノイズ除去部110G(第1のノイズ除去部、第2のノイズ除去部)は、第1の視差、第2の視差、及び幾何領域に対しノイズ除去を行う。計測部110Hは、第2の視差に基づいて被写体の2次元情報または3次元情報を算出する。表示制御部110I(表示部)は、画像、視差、幾何領域、計測結果等の表示部130への表示制御を行う。 The image acquisition unit 110A acquires an image of the bridge 1 by controlling the digital camera 102. The digital camera 102 and the image acquisition unit 110 </ b> A constitute an image input unit in the image processing apparatus 10. The reduced image generation unit 110B reduces the image input via the image acquisition unit 110A and generates a reduced image. The parallax calculation unit 110C (first parallax calculation unit, second parallax calculation unit) calculates the first parallax based on the reduced image and the second parallax based on the original image (image before reduction). The geometric region extraction unit 110D extracts a geometric region in the reduced image based on the first parallax based on the reduced image and the pixel position of the reduced image. The area designation unit 110E detects a user instruction input via the operation unit 140, and designates a processing area based on the detection result. The grouping processing unit 110F groups pixels included in the original image for each region. The noise removing unit 110G (first noise removing unit, second noise removing unit) performs noise removal on the first parallax, the second parallax, and the geometric region. The measurement unit 110H calculates two-dimensional information or three-dimensional information about the subject based on the second parallax. The display control unit 110I (display unit) performs display control on the display unit 130 such as an image, a parallax, a geometric region, and a measurement result.
 <記憶部の構成>
 記憶部120はCD(Compact Disk)、DVD(Digital Versatile Disk)、ハードディスク(Hard Disk)、各種半導体メモリ等の非一時的記録媒体により構成され、図4に示す画像及び情報を互いに関連づけて記憶する。ひび割れ画像120Aは、橋梁1(例えば床版2)に発生したひび割れをデジタルカメラ102で撮像し画像取得部110Aで入力した画像である。なお、デジタルカメラ102及び画像取得部110Aにより入力した画像だけでなく、ネットワークや記録媒体経由で取得したひび割れの画像を記憶してもよい。また、デジタルカメラ102で撮像した画像(原画像)だけでなく、後述する処理を施した画像(例えば、前処理後の画像、縮小画像)を記憶してもよい。第1の視差120Bは、デジタルカメラ102で撮像した画像(原画像)を縮小して生成した画像(縮小画像)に基づいて算出した視差(第1の視差)である。第2の視差120Cは、指定された処理領域について算出した視差(第2の視差)である。計測結果120Dは、被写体(計測対象)の計測結果(2次元情報または3次元情報)である。記憶部120は、上述した画像及び情報の他、抽出した幾何領域の情報やグループ化処理の結果を記憶する。
<Configuration of storage unit>
The storage unit 120 is configured by a non-temporary recording medium such as a CD (Compact Disk), a DVD (Digital Versatile Disk), a hard disk (Hard Disk), or various semiconductor memories, and stores the images and information illustrated in FIG. 4 in association with each other. . The crack image 120A is an image obtained by capturing a crack generated in the bridge 1 (for example, the floor slab 2) with the digital camera 102 and inputting it with the image acquisition unit 110A. Note that not only images input by the digital camera 102 and the image acquisition unit 110A but also crack images acquired via a network or a recording medium may be stored. Further, not only an image (original image) captured by the digital camera 102 but also an image (for example, an image after preprocessing or a reduced image) subjected to processing described later may be stored. The first parallax 120B is parallax (first parallax) calculated based on an image (reduced image) generated by reducing an image (original image) captured by the digital camera 102. The second parallax 120C is the parallax calculated for the designated processing region (second parallax). The measurement result 120D is a measurement result (two-dimensional information or three-dimensional information) of the subject (measurement target). The storage unit 120 stores the extracted geometric region information and the result of the grouping process in addition to the image and information described above.
 <表示部及び操作部の構成>
 表示部130は液晶ディスプレイ等の表示デバイス(不図示)を備えており、入力した画像や記憶部120に記憶された画像及び情報、処理部110により得られた視差や計測結果等を表示することができる。操作部140はマウス等のポインティングデバイス及びキーボード等の入力デバイス(不図示)を含んでおり、ユーザは表示部130に表示された画像やボタン等を操作部140により操作することができる。
<Configuration of display unit and operation unit>
The display unit 130 includes a display device (not shown) such as a liquid crystal display, and displays input images, images and information stored in the storage unit 120, parallax obtained by the processing unit 110, measurement results, and the like. Can do. The operation unit 140 includes a pointing device such as a mouse and an input device (not shown) such as a keyboard, and the user can operate an image, a button, or the like displayed on the display unit 130 with the operation unit 140.
 <計測処理の手順>
 次に、上述した構成の画像処理装置10を用いた被写体の計測について説明する。図5は本実施形態に係る計測処理(画像処理方法)の手順を示すフローチャートである。なお、本実施形態ではコンクリート構造物である橋梁1の床版2に生じたひび割れを計測する場合について説明する。
<Measurement procedure>
Next, measurement of a subject using the image processing apparatus 10 having the above-described configuration will be described. FIG. 5 is a flowchart showing a procedure of measurement processing (image processing method) according to the present embodiment. In addition, this embodiment demonstrates the case where the crack which arose in the floor slab 2 of the bridge 1 which is a concrete structure is measured.
 <画像取得>
 まず、上述のようにデジタルカメラ102で撮影した橋梁1のステレオ画像を、無線通信により処理部110(画像取得部110A)に入力する(ステップS100;画像入力工程)。橋梁1の画像は検査範囲に応じて複数入力され、また入力する画像には、デジタルカメラ102により撮影日時の情報が付加されている。なお入力画像の撮影日時は必ずしも全ての画像において同一である必要はなく、複数日に亘っていてもよい。画像は複数の画像を一括して入力してもよいし、一度に1つの画像を入力してもよい。なお、橋梁1の画像は無線通信でなく各種メモリカード等の非一時的記録媒体を介して入力してもよいし、既に撮影され記録されている画像のデータをネットワーク経由で入力してもよい。
<Image acquisition>
First, the stereo image of the bridge 1 photographed by the digital camera 102 as described above is input to the processing unit 110 (image acquisition unit 110A) by wireless communication (step S100; image input process). A plurality of images of the bridge 1 are input in accordance with the inspection range, and information on the shooting date and time is added to the input image by the digital camera 102. Note that the shooting date and time of the input image does not necessarily have to be the same for all images, and may be for a plurality of days. As the image, a plurality of images may be input at a time, or one image may be input at a time. The image of the bridge 1 may be input not via wireless communication but via a non-temporary recording medium such as various memory cards, or image data that has already been captured and recorded may be input via a network. .
 このようにして入力した左画像iL0及び右画像iR0の例を図6に示す。図6では、橋梁1において3つの平面が交差する部分(隅部分)に板状部材PMが設けられた部分を撮影した場合の画像の例を示している。3つの平面は境界線E1,E2,及びE3で交差し、これら境界線E1,E2,及びE3は点E0で一致している。また、板状部材PMのコーナーを点E4,E5とする。なお、左画像iL0及び右画像iR0において、図6の左右方向を水平方向uとし、上下方向を垂直方向vとする。なお左画像iL0及び右画像iR0のチャンネル数及び画像サイズは特に限定されるものではないが、例えば4,800ピクセル(水平方向u)×3,200ピクセル(垂直方向v)のカラー画像(R,G,Bの3チャンネル)とすることができる。また、左画像iL0及び右画像iR0は複数の画像を編集及び/または合成した画像(例えば、計測範囲の一部を撮影した画像を合成して生成した、計測範囲全体を示す画像)であってもよい。 FIG. 6 shows an example of the left image iL0 and the right image iR0 input in this way. FIG. 6 shows an example of an image when a portion where the plate-like member PM is provided in a portion (corner portion) where three planes intersect in the bridge 1 is photographed. The three planes intersect at boundary lines E1, E2, and E3, and these boundary lines E1, E2, and E3 coincide at a point E0. Further, the corners of the plate member PM are set as points E4 and E5. In the left image iL0 and the right image iR0, the horizontal direction in FIG. 6 is the horizontal direction u, and the vertical direction is the vertical direction v. The number of channels and the image size of the left image iL0 and the right image iR0 are not particularly limited. For example, a color image (R, R) of 4,800 pixels (horizontal direction u) × 3,200 pixels (vertical direction v) is used. G, B 3 channels). The left image iL0 and the right image iR0 are images obtained by editing and / or combining a plurality of images (for example, an image showing the entire measurement range generated by combining images obtained by capturing a part of the measurement range). Also good.
 <前処理>
 本実施形態において、左画像iL0及び右画像iR0はカラー画像であり、また図6に示すように垂直方向vに距離δずれているものとする。そこで処理部110(縮小画像生成部110B)は、後述する縮小画像の生成等に先立って、ステップS110(前処理工程)において左画像iL0及び右画像iR0をグレースケール画像に変換する。また処理部110は、ステップS110において左画像iL0及び/または右画像iR0を垂直方向vにシフトして、上述した距離δのずれを補正(平行化)する。これらの前処理を行って得られた画像の例(左画像iL1及び右画像iR1)を図7に示す。本実施形態に係る画像処理装置10及び画像処理方法では、このような前処理を行うことで視差の算出及び計測を高速かつ安定的に行うことができる。なお本実施形態において、入力した左画像iL0及び右画像iR0に加え、このように前処理を施した左画像iL1及び右画像iR1をも「原画像」と呼ぶ。
<Pretreatment>
In the present embodiment, it is assumed that the left image iL0 and the right image iR0 are color images and are shifted by a distance δ in the vertical direction v as shown in FIG. Accordingly, the processing unit 110 (reduced image generation unit 110B) converts the left image iL0 and the right image iR0 into a grayscale image in step S110 (preprocessing step) prior to generation of a reduced image described later. In step S110, the processing unit 110 shifts the left image iL0 and / or the right image iR0 in the vertical direction v to correct (parallelize) the shift of the distance δ described above. Examples of images obtained by performing these pre-processing (left image iL1 and right image iR1) are shown in FIG. In the image processing apparatus 10 and the image processing method according to the present embodiment, the parallax can be calculated and measured at high speed and stably by performing such preprocessing. In the present embodiment, in addition to the input left image iL0 and right image iR0, the left image iL1 and right image iR1 that have been pre-processed in this way are also referred to as “original images”.
 <縮小画像生成>
 次に、処理部110(縮小画像生成部110B)は、前処理後の画像である左画像iL1及び右画像iR1に基づいて縮小画像を生成する(ステップS120;縮小画像生成工程)。縮小の度合いは特に限定されないが、例えば左画像iL1及び右画像iR1の水平方向u及び垂直方向vをそれぞれ16分の1に縮小して、300ピクセル(水平方向u)×200ピクセル(垂直方向v)の縮小画像を生成することができる。この縮小画像を左画像iL2及び右画像iR2とする(図8参照)。
<Reduced image generation>
Next, the processing unit 110 (reduced image generation unit 110B) generates a reduced image based on the left image iL1 and the right image iR1 that are images after preprocessing (step S120; reduced image generation step). The degree of reduction is not particularly limited. For example, the horizontal direction u and the vertical direction v of the left image iL1 and the right image iR1 are respectively reduced to 1/16 to obtain 300 pixels (horizontal direction u) × 200 pixels (vertical direction v ) Can be generated. Let this reduced image be the left image iL2 and the right image iR2 (see FIG. 8).
 <第1の視差の算出>
 次に、処理部110(視差算出部110C)は、縮小画像である左画像iL2及び右画像iR2間で対応する位置の探索をして第1の視差を算出する(ステップS130:第1の視差算出工程)。「対応する位置」とは複数の画像で撮像されている同一の位置(対応点)をいい、図7,8では例えば点E0,E4,E5を用いることができる。第1の視差は、例えば以下に説明するように、縮小画像間のブロックマッチング(領域ベースマッチング)により算出することができる。領域ベースマッチングは、基準画像の局所ブロック画像と比較画像の局所ブロック画像とを相違度あるいは類似度の尺度(相関値)を用いてマッチングする手法である。
<Calculation of first parallax>
Next, the processing unit 110 (parallax calculation unit 110C) calculates a first parallax by searching for a corresponding position between the left image iL2 and the right image iR2 that are reduced images (step S130: first parallax). Calculation step). “Corresponding position” refers to the same position (corresponding point) captured in a plurality of images. For example, points E0, E4, and E5 can be used in FIGS. The first parallax can be calculated by block matching (region-based matching) between reduced images, for example, as described below. Region-based matching is a technique for matching a local block image of a reference image and a local block image of a comparative image using a measure (correlation value) of difference or similarity.
 ブロックマッチングは、左画像iL2及び右画像iR2のうち一方の画像(基準画像)において複数の画素を含むブロックを設定し、他方の画像(比較画像)においてこのブロックと同じ形状及びサイズのブロックを設定して、比較画像におけるブロックを1画素ずつ水平方向uに移動させて、各位置で2つのブロックについての相関値を算出することにより行う。図9の例では、基準画像を左画像iL2、比較画像を右画像iR2とし、左画像iL2で設定したブロックALと同形状及び同サイズのブロックARを1画素ずつ水平方向uに移動させる。なお、ステップS110の前処理において左右画像を平行化しているので、ブロックALの位置が決まれば、ブロックマッチングの際はブロックARを水平方向uに移動させるだけでよい。前処理において左右画像を平行化していない場合、ブロックマッチングでは、水平方向uへの移動を垂直方向vの位置をずらしながら繰り返す。 Block matching sets a block including a plurality of pixels in one image (reference image) of the left image iL2 and the right image iR2, and sets a block having the same shape and size as the block in the other image (comparison image) Then, the block in the comparative image is moved in the horizontal direction u pixel by pixel, and the correlation value for the two blocks is calculated at each position. In the example of FIG. 9, the reference image is the left image iL2, the comparison image is the right image iR2, and the block AR having the same shape and size as the block AL set in the left image iL2 is moved in the horizontal direction u pixel by pixel. Since the left and right images are parallelized in the preprocessing in step S110, if the position of the block AL is determined, it is only necessary to move the block AR in the horizontal direction u at the time of block matching. When the left and right images are not parallelized in the preprocessing, in the block matching, the movement in the horizontal direction u is repeated while shifting the position in the vertical direction v.
 このようにブロックARを移動させながら相関値を算出し、ブロックALの位置に対し相関が最も高くなるブロックARの位置(ブロックALに対応する位置)が特定されたら、ブロックALにおける注目画素(例えば中央の画素)と、特定された位置におけるブロックARの対応画素(例えば中央の画素)との間の距離を視差として算出する。そして、このような処理を基準画像である左画像iL2の全画素について実行して、各画素位置について視差を求め、視差画像を生成する。なお視差の算出における類似度あるいは相違度の算出方法としては、例えばSAD(Sum of Absolute Difference)、SSD(Sum of Squared intensity Difference)、NCC(Normalized Cross Correlation)等の手法を挙げることができる。これらの手法のうちSAD及びSSDでは画像間の相違度を計算しており、NCCでは画像間の類似度を計算している。 As described above, the correlation value is calculated while moving the block AR, and when the position of the block AR (position corresponding to the block AL) having the highest correlation with respect to the position of the block AL is specified, the target pixel (for example, the block AL) The distance between the center pixel) and the corresponding pixel (for example, the center pixel) of the block AR at the specified position is calculated as the parallax. Then, such processing is executed for all the pixels of the left image iL2, which is the reference image, and parallax is obtained for each pixel position to generate a parallax image. As a method of calculating similarity or dissimilarity in the calculation of parallax, for example, methods such as SAD (Sum of Absolute Difference), SSD (Sum of Squared intensity Difference), NCC (Normalized Cross Correlation) can be cited. Among these methods, SAD and SSD calculate the degree of difference between images, and NCC calculates the degree of similarity between images.
 このようにして求めた視差画像の例を図10に示す。図10に示す視差画像iP1では濃淡が視差の大きさに対応しており、白い部分は視差が小さく、黒い部分は視差が大きい。なお、視差が正確に算出できなかった領域(視差の値が周囲と大きく異なっている領域)をノイズ領域NAとして示している。上述した板状部材PMについても正確に視差が算出できておらず、視差が算出された領域R0が元の部材の形状と異なっている。 An example of the parallax image obtained in this way is shown in FIG. In the parallax image iP1 shown in FIG. 10, the density corresponds to the magnitude of the parallax, the white portion has a small parallax, and the black portion has a large parallax. Note that an area where the parallax cannot be calculated accurately (an area where the parallax value is significantly different from the surrounding area) is shown as a noise area NA. The parallax cannot be accurately calculated for the plate-like member PM described above, and the region R0 where the parallax is calculated is different from the shape of the original member.
 なお、ここではブロックマッチング(領域ベースマッチング)により画像間の対応する位置を検索して視差を算出する場合について説明したが、特徴ベースマッチングにより対応点を検索してもよい。特徴ベースマッチングの場合、例えば左画像iL2及び右画像iR2から特徴点(エッジ、コーナー等)を抽出し、特徴点の周囲の領域から特徴量を計算することで対応する位置の検索(マッチング)を行う。この場合特徴点としては、例えば図7,8の点E0,E4,E5及び境界線E1,E2,E3を挙げることができる。 In addition, although the case where a corresponding position between images is searched for by calculating a parallax by block matching (region-based matching) has been described here, a corresponding point may be searched for by feature-based matching. In the case of feature-based matching, for example, feature points (edges, corners, etc.) are extracted from the left image iL2 and the right image iR2, and a feature amount is calculated from an area around the feature points to search for (match) corresponding positions. Do. In this case, examples of the feature points include points E0, E4, E5 and boundary lines E1, E2, E3 in FIGS.
 <ノイズ除去>
 次に、処理部110(ノイズ除去部110G)はステップS130で算出された第1の視差に対しノイズ領域NAを除去する処理を行う(ステップS140:ノイズ除去工程)。ノイズ領域NAの除去は、例えば視差画像に対しローパスフィルタ処理を施すことにより行うことができる。このようなノイズ処理後の視差画像の例を図11に示す。図11の視差画像iP1Aでは、図10で存在していたノイズ領域NAがなくなっている。
<Noise removal>
Next, the processing unit 110 (noise removal unit 110G) performs a process of removing the noise area NA on the first parallax calculated in step S130 (step S140: noise removal step). The removal of the noise area NA can be performed, for example, by performing a low-pass filter process on the parallax image. An example of the parallax image after such noise processing is shown in FIG. In the parallax image iP1A in FIG. 11, the noise area NA that existed in FIG. 10 is lost.
 <幾何領域の抽出>
 次に、処理部110(幾何領域抽出部110D)は幾何領域を抽出する(ステップS150:幾何領域抽出工程)。幾何領域の抽出は、例えばRANSAC(RANDom Sample Consensus)アルゴリズムを用いて行うことができる。RANSACアルゴリズムは、ランダムにサンプリングしたデータ(平面であれば3個)を用いたモデルパラメータ(平面を表すパラメータ)の算出と、算出したパラメータの正しさの評価とを、最適な評価値が得られるまで繰り返すアルゴリズムである。以下、具体的な手順を説明する。
<Extraction of geometric area>
Next, the processing unit 110 (geometric region extraction unit 110D) extracts a geometric region (step S150: geometric region extraction step). The extraction of the geometric region can be performed using, for example, a RANSAC (RANDom Sample Consensus) algorithm. The RANSAC algorithm can obtain an optimum evaluation value by calculating a model parameter (a parameter representing a plane) using randomly sampled data (three if it is a plane) and evaluating the correctness of the calculated parameter. It is an algorithm that repeats until. A specific procedure will be described below.
 (ステップS1)
 ノイズ除去後の視差画像から、ランダムに3点抽出する。例えば、図11の視差画像iP1Aにおいて点f1(u,v,w),f2(u,v,w),及びf3(u,v,w)が抽出されたものとする。ここで抽出する点は、各幾何領域の幾何方程式を決定するための点であり、想定される幾何領域の種類(平面、円筒面、及び球面等)に応じて抽出する点の数を変えてよい。例えば平面であれば、3点以上(ただし、同一直線上にないものとする)の代表点を抽出する。なお、画像の水平方向座標をu,垂直方向座標をv,視差(距離方向)をwで表す(iは点番号を表す1以上の整数)。
(Step S1)
Three points are randomly extracted from the parallax image after noise removal. For example, points f1 (u 1 , v 1 , w 1 ), f2 (u 2 , v 2 , w 2 ), and f3 (u 3 , v 3 , w 3 ) are extracted from the parallax image iP1A in FIG. Shall. The points to be extracted here are points for determining the geometric equation of each geometric region, and the number of points to be extracted is changed depending on the assumed geometric region type (plane, cylindrical surface, spherical surface, etc.). Good. For example, in the case of a plane, representative points of 3 points or more (assuming that they are not on the same straight line) are extracted. The horizontal coordinate of the image is represented by u i , the vertical coordinate is represented by v i , and the parallax (distance direction) is represented by w i (i is an integer of 1 or more representing a point number).
 (ステップS2)
 次に、抽出した点f1,f2,f3から平面方程式(第1の幾何方程式)を決定する。3次元空間(u,v,w)における平面方程式Fは一般に以下の(式1)で表される(a,b,c,dは定数)。
(Step S2)
Next, a plane equation (first geometric equation) is determined from the extracted points f1, f2, and f3. The plane equation F in the three-dimensional space (u, v, w) is generally expressed by the following (Expression 1) (a, b, c, d are constants).
   F=a×u+b×v+c×w+d     …(式1)
 (ステップS3)
 視差画像の全ての画素(u,v,w)に対して、(式1)の平面方程式Fで表される平面までの距離を算出する。距離が閾値以下なら、その画素は平面方程式Fで表される平面に属すると判断する。
F = a * u + b * v + c * w + d (Formula 1)
(Step S3)
For all the pixels (u i , v i , w i ) of the parallax image, the distance to the plane represented by the plane equation F in (Expression 1) is calculated. If the distance is less than or equal to the threshold value, it is determined that the pixel belongs to the plane represented by the plane equation F.
 (ステップS4)
 平面方程式Fで表される平面上に存在する画素数が現在の最適解についての画素数よりも多ければ、平面方程式Fを最適解とする。
(Step S4)
If the number of pixels existing on the plane represented by the plane equation F is larger than the number of pixels for the current optimal solution, the plane equation F is determined as the optimal solution.
 (ステップS5)
 ステップS1~S4を決められた回数繰り返す。
(Step S5)
Steps S1 to S4 are repeated a predetermined number of times.
 (ステップS6)
 得られた平面方程式を解として1つの平面を決定する。
(Step S6)
One plane is determined by using the obtained plane equation as a solution.
 (ステップS7)
 ステップS6までで決定した平面上の画素を処理対象(平面の抽出対象)から除外する。
(Step S7)
The pixels on the plane determined up to step S6 are excluded from the processing target (plane extraction target).
 (ステップS8)
 ステップS1~S7を繰り返し、抽出した平面が一定数を超えるか、残った画素が規定数より少なくなれば終了する。
(Step S8)
Steps S1 to S7 are repeated, and the process ends when the number of extracted planes exceeds a certain number or the number of remaining pixels is less than a specified number.
 上述の手順により抽出した幾何領域の例を図12に示す。図12の例では、画像iGにおいて3つの幾何領域(平面)G1,G2,及びG3が抽出されているが、板状部材PMの領域(図11の領域R0)については領域が正しく抽出されておらずノイズ状(領域N1及び領域N2)になっている。 FIG. 12 shows an example of the geometric region extracted by the above procedure. In the example of FIG. 12, three geometric regions (planes) G1, G2, and G3 are extracted from the image iG, but the region of the plate-like member PM (region R0 in FIG. 11) is correctly extracted. Not a noise (region N1 and region N2).
 <幾何領域抽出結果に対するノイズ除去>
 次に、処理部110(ノイズ除去部110G)は抽出した幾何領域に対しノイズ除去を行う(ステップS152:ノイズ除去工程)。幾何領域の抽出結果に対するノイズ除去は、例えば以下に示す膨張収縮処理により行うことができる。
<Noise reduction for geometric region extraction results>
Next, the processing unit 110 (noise removal unit 110G) performs noise removal on the extracted geometric region (step S152: noise removal step). Noise removal from the geometric region extraction result can be performed, for example, by the following expansion / contraction process.
 <膨張収縮処理>
 膨張収縮処理は、二値化した画像(白黒画像)に対して行うことができる。この場合、注目画素の周辺に1画素でも白い画素があれば注目画素を白に置き換える処理を「膨張(Dilation)」といい、注目画素の周辺に1画素でも黒い画素があれば注目画素を黒に置き換える処理を「収縮(Erosion)」という。そして収縮と膨張とを適宜繰り返すことで小さいパターンのノイズ(図12の例では領域N1)や線状パターンのノイズ(図12の例では領域N2)を除去する。例えば、画像を収縮してから膨張することで小さいパターンのノイズを除去することができ、画像を膨張してから収縮することで線状パターンのノイズを除去することができる。このような膨張及び収縮は繰り返し行うことができ、同じ回数だけ膨張して収縮する処理をクロージング(Closing)、同じ回数分だけ収縮して膨張する処理をオープニング(Opening)という。
<Expansion and shrinkage treatment>
The expansion / contraction process can be performed on the binarized image (monochrome image). In this case, if there is even a white pixel around the pixel of interest, the process of replacing the pixel of interest with white is called “dilation”. If there is even a black pixel around the pixel of interest, the pixel of interest is black. The process of replacing with is called “Erosion”. Then, small pattern noise (region N1 in the example of FIG. 12) and linear pattern noise (region N2 in the example of FIG. 12) are removed by appropriately repeating contraction and expansion. For example, small pattern noise can be removed by expanding the image after contracting, and linear pattern noise can be removed by contracting after expanding the image. Such expansion and contraction can be repeated, and the process of expanding and contracting the same number of times is called closing, and the process of contracting and expanding the same number of times is called opening.
 膨張収縮処理は、二値化された画像だけでなくグレースケール画像に対しても行うことができる。この場合上述した「膨張」では注目画素の輝度値を注目画素近傍の最大輝度値に置き換え、「収縮」では注目画素の輝度値を注目画素近傍の最小輝度値に置き換える。 The expansion / contraction process can be performed not only on a binarized image but also on a grayscale image. In this case, the above-described “expansion” replaces the luminance value of the target pixel with the maximum luminance value near the target pixel, and “shrink” replaces the luminance value of the target pixel with the minimum luminance value near the target pixel.
 上述した膨張収縮処理によりノイズを除去した後の幾何領域の例を図13に示す。図13は、図12の領域N1及び領域N2がノイズとして除去された画像iG2を示している。 FIG. 13 shows an example of the geometric region after removing the noise by the above-described expansion / contraction process. FIG. 13 shows an image iG2 from which the regions N1 and N2 in FIG. 12 have been removed as noise.
 上述のように、第1の視差の算出において画像を縮小し、また視差画像及び幾何領域に対しノイズ除去を施しているので、板状部材PMのように小さな部材や平面同士の境界部分において視差の算出や領域抽出が正しく行えない場合がある。しかしながら本実施形態の画像処理装置10及び画像処理方法では、このような場合でも、以下に説明するように領域抽出結果を踏まえて所望の領域を指定することで、高速かつ安定的に第2の視差を算出し、この第2の視差に基づいて計測を行うことができる。なお、上述した例では視差画像及び幾何領域の双方に対してノイズ除去を施しているが、ノイズの量やノイズが発生している領域等の条件によっては、いずれか一方に対してのみノイズ除去を行うようにしてもよい。 As described above, since the image is reduced in the first parallax calculation, and noise is removed from the parallax image and the geometric area, the parallax is reduced at the boundary between small members and planes like the plate member PM. Calculation and area extraction may not be performed correctly. However, in this case, the image processing apparatus 10 and the image processing method according to the present embodiment specify the desired region based on the region extraction result as described below, so that the second can be performed at high speed and stably. The parallax can be calculated and measurement can be performed based on the second parallax. In the above-described example, noise removal is performed on both the parallax image and the geometric region. However, depending on conditions such as the amount of noise and the region where the noise is generated, noise removal is performed on only one of them. May be performed.
 なお、ここでは幾何領域が平面の場合の幾何方程式(平面方程式)について説明したが、被写体の形状に応じて円筒面(円柱面)あるいは球面等、他の種類の幾何領域を表す幾何方程式を決定してもよい。これは、橋脚やトンネル等の構造物の形状は、平面だけでなく円筒面または球面により表されることも多いからである。具体的には、中心軸がz軸であり半径がrの円柱は以下の(式2)で表され(zは任意の値)、中心が座標系の原点であり半径がrの球は以下の(式3)で表される。 Here, the geometric equation (plane equation) when the geometric region is a plane has been described, but a geometric equation representing another type of geometric region, such as a cylindrical surface (cylindrical surface) or a spherical surface, is determined according to the shape of the subject. May be. This is because the shape of a structure such as a bridge pier or a tunnel is often expressed not only by a plane but also by a cylindrical surface or a spherical surface. Specifically, a cylinder whose central axis is the z-axis and whose radius is r is expressed by the following (formula 2) (z is an arbitrary value), and a sphere whose center is the origin of the coordinate system and whose radius is r is (Equation 3).
   x2+y2   =r2     …(式2)
   x2+y2+z2=r2     …(式3)
 <原画像及び幾何領域の表示>
 ステップS150までの処理で幾何領域を抽出したら、処理部110(表示制御部110I)は原画像及び幾何領域を表示部130に関連付けて表示する(ステップS160:表示工程)。例えば、図14に示すように左画像iL1とこれに対応する画像iG2とを並列表示する。左画像iL1に加えて、またはこれに代えて右画像iR1を表示してもよい。図15は原画像及び幾何領域の表示の他の例を示す図である。図15では、左画像iL1と画像iG2とを重畳した画像iLG(左画像iL1を前面に表示)を示している。重畳表示においては、一方の画像を半透明にして他方の画像を透過して視認できるようにしてもよいし、前面に表示する画像を切り替えられるようにしてもよい。なお、図15では板状部材PMについては領域が抽出されていないため白色で示している。
x 2 + y 2 = r 2 (Formula 2)
x 2 + y 2 + z 2 = r 2 (Formula 3)
<Display of original image and geometric area>
When the geometric region is extracted by the processing up to step S150, the processing unit 110 (display control unit 110I) displays the original image and the geometric region in association with the display unit 130 (step S160: display step). For example, as shown in FIG. 14, the left image iL1 and the corresponding image iG2 are displayed in parallel. The right image iR1 may be displayed in addition to or instead of the left image iL1. FIG. 15 is a diagram showing another example of the display of the original image and the geometric area. FIG. 15 shows an image iLG (the left image iL1 is displayed on the front) in which the left image iL1 and the image iG2 are superimposed. In the superimposed display, one image may be made translucent so that the other image can be seen through, or the image displayed on the front side can be switched. In FIG. 15, the plate-like member PM is shown in white because no region is extracted.
 このように、本実施形態に係る画像処理装置10及び画像処理方法では、原画像及び幾何領域を関連づけて表示してこれら画像を比較することで、抽出されていない領域の存在等、領域抽出結果を容易に把握することができる。なお、幾何領域に加えて視差画像(例えば図11の視差画像iP1A)を表示してもよい。 As described above, in the image processing apparatus 10 and the image processing method according to the present embodiment, the original image and the geometric region are displayed in association with each other, and these images are compared, so that the region extraction result such as the presence of an unextracted region is obtained. Can be easily grasped. In addition to the geometric region, a parallax image (for example, the parallax image iP1A in FIG. 11) may be displayed.
 <処理領域指定>
 次に、処理部110(領域指定部110E)は、ユーザの指示入力を検出し原画像の一部に対して処理領域を指定する(ステップS170:領域指定工程)。図16は処理領域指定の例を示す図である。図16の例では、ユーザは操作部140に備えられたマウス等のデバイスを操作して左画像iL1における板状部材PMの領域R1を塗りつぶし、領域指定部110Eはユーザが塗りつぶした領域R1を検出して処理領域として指定する。図17は処理領域指定の他の例を示す図である。図17の例では、ユーザは左画像iL1において操作部140に備えられたデバイスを操作して板状部材PMを囲む領域R2を指定し、領域指定部110Eはユーザが囲んだ領域R2を検出して処理領域として指定する。なお、処理領域としては、領域抽出の際に消失した領域や視差が正しく算出されていない領域の他、計測対象のひび割れが存在する領域等所望の領域を指定することができる。
<Processing area specification>
Next, the processing unit 110 (region specifying unit 110E) detects a user instruction input and specifies a processing region for a part of the original image (step S170: region specifying step). FIG. 16 is a diagram showing an example of processing area designation. In the example of FIG. 16, the user operates a device such as a mouse provided in the operation unit 140 to fill the region R1 of the plate member PM in the left image iL1, and the region specifying unit 110E detects the region R1 painted by the user. And specify it as a processing area. FIG. 17 is a diagram showing another example of processing area designation. In the example of FIG. 17, the user operates the device provided in the operation unit 140 in the left image iL1 to specify the region R2 surrounding the plate member PM, and the region specifying unit 110E detects the region R2 surrounded by the user. To specify as a processing area. As a processing area, a desired area such as an area that has disappeared at the time of area extraction or an area in which parallax is not correctly calculated, or an area in which a crack to be measured exists can be specified.
 処理領域の指定は、処理部110(グループ化処理部110F)が原画像を領域ごとにグループ化して候補領域として表示し、その中からユーザが選択した領域を領域指定部110Eが検出することで行ってもよい。この場合グループ化は、例えば原画像に対し分水嶺アルゴリズムやエッジ検出を適用することにより行うことができる。図18は、グループ化された領域を示す画像iG3の例であり、各領域を異なる色で表示している(ただし色の図示は困難なので、図18では色を文字表示している)。図18においてユーザが黄の領域R3を指定すると、処理部110(領域指定部110E)がユーザの指定を検出し、領域R3を処理領域として指定する。 The processing area is specified by the processing section 110 (grouping processing section 110F) grouping the original images for each area and displaying them as candidate areas, and the area specifying section 110E detects the area selected by the user. You may go. In this case, the grouping can be performed, for example, by applying a watershed algorithm or edge detection to the original image. FIG. 18 is an example of an image iG3 showing a grouped region, and each region is displayed in a different color (however, since the color is difficult to show, the color is displayed in characters in FIG. 18). In FIG. 18, when the user specifies the yellow region R3, the processing unit 110 (region specifying unit 110E) detects the user's specification, and specifies the region R3 as the processing region.
 なお、上述した処理領域指定の例ではユーザによる領域指定または領域選択の指示入力を検出して処理領域を指定しているが、ユーザによる計測点の指示入力を検出して処理領域を指定してもよい。例えば、図19のように操作部140を介してユーザが計測点T3を指定すると、処理部110(領域指定部110E)がこの指定を検出して計測点T3を囲む領域R6を処理領域として指定する。このような計測点及び領域は、1つに限らず複数指定してもよい。例えば、ひび割れの長さを検出する場合に、ユーザがひび割れの始点及び終点を上述した計測点T3として指定し、領域指定部110Eがそれらの点の指定を検出して、始点及び終点のそれぞれに対して処理領域を指定してもよい。なおこのような領域指定を行う場合、領域R6の大きさは特に限定されないが、例えば480ピクセル(水平方向u)×320ピクセル(垂直方向v)や、300ピクセル(水平方向u)×200ピクセル(垂直方向v)とすることができる。 In the above-described processing area designation example, the processing area is designated by detecting the area designation or area selection instruction input by the user. However, the processing area designation is designated by detecting the measurement point instruction input by the user. Also good. For example, when the user designates the measurement point T3 via the operation unit 140 as shown in FIG. 19, the processing unit 110 (region designation unit 110E) detects this designation and designates the region R6 surrounding the measurement point T3 as the processing region. To do. Such measurement points and areas are not limited to one, and a plurality of measurement points and areas may be designated. For example, when detecting the length of a crack, the user designates the start point and end point of the crack as the measurement point T3 described above, and the area designation unit 110E detects the designation of those points, and each of the start point and end point is detected. Alternatively, a processing area may be specified. When performing such area designation, the size of the area R6 is not particularly limited. For example, 480 pixels (horizontal direction u) × 320 pixels (vertical direction v) or 300 pixels (horizontal direction u) × 200 pixels ( It can be the vertical direction v).
 なお、上述した塗りつぶしや囲み、及び計測点指定の操作は、処理部110(領域指定部110E、表示制御部110I)が表示部130に表示した操作用ボタンやツールボックスを介して行うことができる。 Note that the above-described operations for filling, enclosing, and measuring point specification can be performed via operation buttons and tool boxes displayed on the display unit 130 by the processing unit 110 (region specifying unit 110E and display control unit 110I). .
 <第2の視差算出>
 ステップS170で処理領域を指定すると、処理部110(視差算出部110C)は、指定された処理領域について原画像により第2の視差を算出(ステップS180:第2の視差算出工程)。ステップS180で算出する第2の視差は、ステップS130での第1の視差と同様に、左画像iL1及び右画像iR1のブロックマッチングや、特徴点の距離により算出することができる。このようにして算出した第2の視差を示す視差画像iP2を図20に示す。図20は、板状部材PMに対応する領域R4の他にノイズ領域NAを含んだ状態であり、ノイズ除去部110Gによりノイズを除去(ステップS190:ノイズ除去工程)することで図21に示すような視差画像iP3が得られる。ステップS190におけるノイズ除去は、例えばステップS140と同様にローパスフィルタ処理により行うことができる。
<Second parallax calculation>
When the processing region is designated in step S170, the processing unit 110 (parallax calculation unit 110C) calculates a second parallax from the original image for the designated processing region (step S180: second parallax calculation step). Similar to the first parallax in step S130, the second parallax calculated in step S180 can be calculated from block matching of the left image iL1 and the right image iR1 and the distance between feature points. A parallax image iP2 indicating the second parallax calculated in this way is shown in FIG. FIG. 20 shows a state including a noise region NA in addition to the region R4 corresponding to the plate member PM, and noise is removed by the noise removing unit 110G (step S190: noise removing step) as shown in FIG. A parallax image iP3 is obtained. Noise removal in step S190 can be performed by, for example, a low-pass filter process as in step S140.
 このように、本実施形態では原画像の一部について指定された処理領域について第2の視差を算出するので、画像全体を対象とすることなく高速に視差を算出することができ、また1画素だけの視差を取得することによる視差算出失敗や、画像の縮小及びノイズ除去等により小領域について視差が算出できないという問題を回避することができる。 As described above, in the present embodiment, the second parallax is calculated for the processing region specified for a part of the original image, so that the parallax can be calculated at high speed without targeting the entire image, and one pixel. It is possible to avoid the problem that the parallax cannot be calculated for a small area due to the parallax calculation failure due to acquiring only the parallax or the image reduction and noise removal.
 <2次元情報または3次元情報の算出>
 上述の処理により所望の処理領域について第2の視差が算出されたら、処理部110(計測部110H)は、第2の視差に基づいて処理領域に含まれる計測対象の2次元情報または3次元情報を算出する(ステップS200:計測工程)。2次元情報または3次元情報の例としては位置、長さ、幅、及び面積を挙げることができるが、算出する項目はこれらの例に限定されるものではなく、被写体及び計測対象の性質に応じて体積や断面積等他の項目を算出してもよい。
<Calculation of 2D information or 3D information>
When the second parallax is calculated for the desired processing region by the above-described processing, the processing unit 110 (measurement unit 110H) performs two-dimensional information or three-dimensional information on the measurement target included in the processing region based on the second parallax. Is calculated (step S200: measurement step). Examples of two-dimensional information or three-dimensional information can include position, length, width, and area, but items to be calculated are not limited to these examples, and depend on the nature of the subject and the measurement target. Other items such as volume and cross-sectional area may be calculated.
 <ひび割れの抽出>
 本実施形態では橋梁1の損傷(ひび割れ)を計測する場合を想定しているので、処理部110(計測部110H)は、まず画像(例えば左画像iL1または右画像iR1)からひび割れを抽出する。ひび割れの抽出は種々の手法により行うことができるが、例えば特許4006007号公報に記載されたひび割れ検出方法を用いることができる。この方法は、対比される2つの濃度に対応したウェーブレット係数を算定すると共に、そのような2つの濃度をそれぞれ変化させた場合のそれぞれのウェーブレット係数を算定してウェーブレット係数テーブルを作成し、ひび割れ検出対象であるコンクリート表面を撮影した入力画像をウェーブレット変換することによってウェーブレット画像を作成する工程と、ウェーブレット係数テーブル内において、局所領域内の近傍画素の平均濃度と注目画素の濃度に対応するウェーブレット係数を閾値として、注目画素のウェーブレット係数と閾値とを比較することによりひび割れ領域とひび割れでない領域を判定する工程とからなるひび割れ検出方法である。
<Extraction of cracks>
In this embodiment, since it is assumed that damage (crack) of the bridge 1 is measured, the processing unit 110 (measurement unit 110H) first extracts a crack from an image (for example, the left image iL1 or the right image iR1). Crack extraction can be performed by various methods. For example, a crack detection method described in Japanese Patent No. 4006007 can be used. This method calculates wavelet coefficients corresponding to the two concentrations to be compared, calculates each wavelet coefficient when each of these two concentrations is changed, creates a wavelet coefficient table, and detects cracks. A wavelet image is created by wavelet transforming the input image of the target concrete surface, and in the wavelet coefficient table, the wavelet coefficients corresponding to the average density of neighboring pixels in the local area and the density of the target pixel are calculated. This is a crack detection method comprising a step of determining a crack area and a non-crack area by comparing a wavelet coefficient of a target pixel with a threshold value as a threshold value.
 ひび割れの抽出は、下記の非特許文献1に記載の方法を用いて行うこともできる。非特許文献1に記載の方法では、閾値未満の輝度値を有する画素で構成された領域をパーコレイションされた領域(パーコレイション領域)とし、そのパーコレイション領域の形状に応じて閾値を順次更新し、表面画像よりひび割れの検出を行っている。なお、パーコレイション法とは一般に自然界における水の浸透(パーコレイション)を模して領域を順次拡大させる方法である。 Crack extraction can also be performed using the method described in Non-Patent Document 1 below. In the method described in Non-Patent Document 1, an area composed of pixels having a luminance value less than the threshold value is set as a percolated area (percolation area), and the threshold value is sequentially updated according to the shape of the percolation area. The crack is detected from the surface image. Note that the percolation method is a method in which the region is sequentially enlarged in general imitating water penetration (percolation) in nature.
 [非特許文献1]Tomoyuki Yamaguchi、「A Study on Image Processing Method for Crack Inspection of Real Concreate Surfaces」、MAJOR IN PURE AND APPLIED PHYSICS, GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY、2008年2月
 なお本実施形態では幾何方程式の決定後にひび割れを抽出する態様について説明しているが、ひび割れの抽出は前処理(ステップS110)からノイズ除去(ステップS190)までの処理と並行して、あるいはこれらの処理に先立って行ってもよい。図22は、板状部材PMの領域R5においてひび割れCrが抽出された様子を示す図である。ひび割れCrは、端点T1から端点T2へ至るひび割れである。なお、上述のように画像処理によりひび割れを抽出して長さを求めるのではなく、図19に関連して説明したように、表示部130に表示した画像に対し操作部140を介してユーザの指示入力によりひび割れの端点の指定(例えば、マウスで端点をクリックする)を受け付け、指定された端点に基づいて長さを算出してもよい。
[Non-Patent Document 1] Tomoyuki Yamaguchi, “A Study on Image Processing Method for Crack Inspection of Real Concreate Surfaces”, MAJOR IN PURE AND APPLIED PHYSICS, GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, February 2008 In the above description, the crack is extracted after the geometric equation is determined. However, the crack extraction is performed in parallel with the processing from the preprocessing (step S110) to the noise removal (step S190) or prior to these processing. You may go. FIG. 22 is a diagram illustrating a state in which cracks Cr are extracted in the region R5 of the plate-like member PM. The crack Cr is a crack from the end point T1 to the end point T2. Instead of extracting cracks by image processing as described above and obtaining the length, as described in relation to FIG. The designation of the end point of the crack (for example, clicking on the end point with the mouse) may be received by inputting an instruction, and the length may be calculated based on the designated end point.
 <ひび割れの計測>
 ひび割れCrの長さを算出する場合、領域R5について視差(第2の視差)が算出されているので、端点T1,T2における視差(w座標に対応)が得られる。そして、必要に応じ端点T1,T2の(u,v,w)座標をデジタルカメラ102の位置及び撮影方向に基づいて実空間の(x,y,z)座標に変換し、以下の(式4)により長さL(端点T1,T2の距離)を求める。なおひび割れCrが曲線状のひび割れである場合は、ひび割れCrを複数の区間に分割して各区間が直線と見なせるようにし、各区間の長さを積算することでひび割れCrの長さを求めることができる。
<Measurement of cracks>
When calculating the length of the crack Cr, the parallax (corresponding to the w coordinate) at the end points T1 and T2 is obtained because the parallax (second parallax) is calculated for the region R5. Then, if necessary, the (u, v, w) coordinates of the end points T1, T2 are converted into (x, y, z) coordinates in the real space based on the position and shooting direction of the digital camera 102, and the following (formula 4) ) To obtain the length L (distance between end points T1 and T2). If the crack Cr is a curved crack, the crack Cr is divided into a plurality of sections so that each section can be regarded as a straight line, and the length of each section is calculated to obtain the length of the crack Cr. Can do.
 L={(x-x+(y-y+(z-z1/2 …(式4)
 ただし、端点T1,T2の実空間内の座標はそれぞれ(x,y,z),(x,y,z)であるものとする。
L = {(x 1 −x 2 ) 2 + (y 1 −y 2 ) 2 + (z 1 −z 2 ) 2 } 1/2 (Formula 4)
However, the coordinates in the real space of the end points T1 and T2 are (x 1 , y 1 , z 1 ) and (x 2 , y 2 , z 2 ), respectively.
 <平面方程式及び画素位置に基づくひび割れの計測>
 ひび割れCrの長さは、上述したように領域R5について算出された視差(第2の視差)から直接算出する以外に、平面方程式を用いて推定することもできる。具体的には、領域R5に設定した3点以上の代表点に対し左画像iL1と右画像iR1とでブロックマッチングや特徴点の距離等に基づいて視差を算出し、算出した視差に基づいて領域R5の平面方程式(第2の幾何方程式)を推定する。この際、上述したRANSACアルゴリズムにより代表点の抽出と平面方程式の推定とを繰り返してもよい。そして、端点T1,T2の画素位置(u,v座標)及び領域R5の平面方程式から端点T1,T2の視差(w座標に対応)を求めることができる。端点T1,T2の視差が算出されたら、上述したように端点T1,T2の(u,v,w)座標を実空間の(x,y,z)座標に変換し、(式4)により長さL(端点T1,T2の距離)を求めることができる。
<Measurement of crack based on plane equation and pixel position>
The length of the crack Cr can be estimated using a plane equation in addition to directly calculating from the parallax calculated for the region R5 (second parallax) as described above. Specifically, parallax is calculated based on block matching, distance between feature points, and the like between the left image iL1 and the right image iR1 with respect to three or more representative points set in the region R5, and the region based on the calculated parallax. Estimate the plane equation (second geometric equation) of R5. At this time, the representative point extraction and the plane equation estimation may be repeated by the RANSAC algorithm described above. Then, the parallax (corresponding to the w coordinate) of the end points T1 and T2 can be obtained from the pixel positions (u and v coordinates) of the end points T1 and T2 and the plane equation of the region R5. When the parallax of the end points T1 and T2 is calculated, as described above, the (u, v, w) coordinates of the end points T1 and T2 are converted into (x, y, z) coordinates in the real space, The length L (distance between the end points T1 and T2) can be obtained.
 以上説明したように、本実施形態に係る画像処理装置10及び画像処理方法では、第1の視差に基づいて抽出した幾何領域と原画像とを関連づけて表示するので領域抽出結果を容易に把握することができ、幾何領域が正しく抽出されなかった領域(第1の視差が正しく算出できなかった領域)についても、原画像の一部について指定された処理領域において第2の視差を算出することができる。これにより所望の領域について高速かつ安定的に視差を取得して計測を行うことができる。 As described above, in the image processing apparatus 10 and the image processing method according to the present embodiment, the geometric region extracted based on the first parallax and the original image are displayed in association with each other, so that the region extraction result can be easily grasped. It is possible to calculate the second parallax in the processing area designated for a part of the original image even for the area where the geometric area is not correctly extracted (the area where the first parallax cannot be calculated correctly). it can. As a result, it is possible to measure parallax at a high speed and stably for a desired region.
 以上で本発明の実施形態に関して説明してきたが、本発明は上述した実施形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能である。例えば、本発明の画像処理装置及び画像処理方法は、コンクリート構造物のひび割れ以外の各種被写体について視差を算出し計測を行うことが可能である。例えば、道路上のひび割れや障害物、あるいはひび割れ等ではなく構造物そのものについて視差を算出し形状や大きさなどの計測を行うことができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, the image processing apparatus and the image processing method of the present invention can calculate and measure parallax for various subjects other than cracks in a concrete structure. For example, the parallax can be calculated for the structure itself, not the cracks, obstacles, or cracks on the road, and the shape and size can be measured.
1    橋梁
2    床版
3    主桁
3A   接合部
10   画像処理装置
102  デジタルカメラ
102L 左画像用光学系
102R 右画像用光学系
110  処理部
110A 画像取得部
110B 縮小画像生成部
110C 視差算出部
110D 幾何領域抽出部
110E 領域指定部
110F グループ化処理部
110G ノイズ除去部
110H 計測部
110I 表示制御部
120  記憶部
120A 画像
120B 第1の視差
120C 第2の視差
120D 計測結果
130  表示部
140  操作部
AL   ブロック
AR   ブロック
E1   境界線
E2   境界線
E3   境界線
N1   領域
N2   領域
NA   ノイズ領域
PM   板状部材
R0   領域
R1   領域
R2   領域
R3   領域
R4   領域
R5   領域
R6   領域
S1~S8     幾何領域抽出の各ステップ
S100~S200 画像処理方法の各ステップ
T1   端点
T2   端点
T3   計測点
iG   画像
iG2  画像
iG3  画像
iL0  左画像
iL1  左画像
iL2  左画像
iLG  画像
iP1  視差画像
iP1A 視差画像
iP2  視差画像
iP3  視差画像
iR0  右画像
iR1  右画像
iR2  右画像
u    水平方向
v    垂直方向
δ    距離
DESCRIPTION OF SYMBOLS 1 Bridge 2 Floor slab 3 Main girder 3A Joint part 10 Image processing apparatus 102 Digital camera 102L Left image optical system 102R Right image optical system 110 Processing part 110A Image acquisition part 110B Reduced image generation part 110C Parallax calculation part 110D Geometric area extraction Unit 110E area designation unit 110F grouping processing unit 110G noise removal unit 110H measurement unit 110I display control unit 120 storage unit 120A image 120B first parallax 120C second parallax 120D measurement result 130 display unit 140 operation unit AL block AR block E1 Boundary line E2 Boundary line E3 Boundary line N1 Region N2 Region NA Noise region PM Plate member R0 Region R1 Region R2 Region R3 Region R4 Region R5 Region R6 Region S1 to S8 Steps S100 to S200 of geometric region extraction Processing Steps T1 End Point T2 End Point T3 Measurement Point iG Image iG2 Image iG3 Image iL0 Left Image iL1 Left Image iL2 Left Image iLG Image iP1 Parallax Image iP1A Parallax Image iP2 Parallax Image iP3 Parallax Image iR0 Right Image iR1 Right Image iR2 Right Image u Horizontal v Vertical δ Distance

Claims (13)

  1.  一の被写体を複数の視点から撮影して得られた複数の画像を入力する画像入力部と、
     前記複数の画像をそれぞれ縮小して複数の縮小画像を生成する縮小画像生成部と、
     前記複数の縮小画像間の対応する位置の探索をして第1の視差を算出する第1の視差算出部と、
     前記第1の視差と前記複数の縮小画像の画素位置とに基づいて、前記複数の縮小画像における幾何領域を抽出する幾何領域抽出部と、
     前記抽出した幾何領域と前記複数の画像とを関連付けて表示する表示部と、
     前記表示された前記複数の画像に対するユーザの指示入力を検出して、前記複数の画像の一部の領域を処理領域として指定する領域指定部と、
     前記指定された処理領域について前記複数の画像間の対応する位置の探索をして第2の視差を算出する第2の視差算出部と、
     を備える画像処理装置。
    An image input unit for inputting a plurality of images obtained by photographing one subject from a plurality of viewpoints;
    A reduced image generator that reduces the plurality of images to generate a plurality of reduced images;
    A first parallax calculation unit that calculates a first parallax by searching for a corresponding position between the plurality of reduced images;
    A geometric region extraction unit that extracts a geometric region in the plurality of reduced images based on the first parallax and the pixel positions of the plurality of reduced images;
    A display unit that displays the extracted geometric region in association with the plurality of images;
    An area designating unit for detecting a user instruction input for the plurality of displayed images and designating a partial area of the plurality of images as a processing area;
    A second parallax calculating unit that calculates a second parallax by searching for a corresponding position between the plurality of images for the designated processing region;
    An image processing apparatus comprising:
  2.  前記領域指定部は、前記ユーザが前記複数の画像において指定した領域、または前記複数の画像に表示された候補領域の中から前記ユーザが選択した領域を前記処理領域として指定する請求項1に記載の画像処理装置。 The area designating unit designates, as the processing area, an area designated by the user in the plurality of images or an area selected by the user from candidate areas displayed in the plurality of images. Image processing apparatus.
  3.  前記複数の画像に含まれる画素を領域ごとにグループ化するグループ化処理部をさらに備え、前記領域指定部は前記グループ化した領域を前記候補領域として前記表示部に表示する請求項2に記載の画像処理装置。 The grouping process part which groups the pixel contained in the said several image for every area | region, The said area | region designation | designated part displays the said grouped area | region on the said display part as said candidate area | region. Image processing device.
  4.  前記幾何領域抽出部は前記幾何領域を表す幾何方程式である第1の幾何方程式を決定し、前記決定した第1の幾何方程式に基づいて前記幾何領域を抽出する請求項1から3のいずれか1項に記載の画像処理装置。 The geometric region extraction unit determines a first geometric equation that is a geometric equation representing the geometric region, and extracts the geometric region based on the determined first geometric equation. The image processing apparatus according to item.
  5.  前記幾何領域抽出部は前記幾何領域との距離が閾値以下である画素を前記幾何領域に属する画素として抽出する請求項1から4のいずれか1項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 4, wherein the geometric region extraction unit extracts pixels whose distance from the geometric region is equal to or less than a threshold as pixels belonging to the geometric region.
  6.  前記算出した第1の視差及び前記抽出した幾何領域のうち少なくとも一方に対しノイズ除去を行う第1のノイズ除去部をさらに備える請求項1から5のいずれか1項に記載の画像処理装置。 The image processing apparatus according to claim 1, further comprising a first noise removing unit that removes noise from at least one of the calculated first parallax and the extracted geometric region.
  7.  前記算出した第2の視差に対しノイズ除去を行う第2のノイズ除去部をさらに備える請求項1から6のいずれか1項に記載の画像処理装置。 The image processing apparatus according to any one of claims 1 to 6, further comprising a second noise removing unit that removes noise from the calculated second parallax.
  8.  前記縮小画像生成部は前記複数の画像をグレースケール画像に変換する画像処理と前記複数の画像を平行化する画像処理とのうち少なくとも1つの画像処理を行い、前記少なくとも1つの画像処理を行った画像に対して前記複数の縮小画像を生成する請求項1から7のいずれか1項に記載の画像処理装置。 The reduced image generation unit performs at least one of image processing for converting the plurality of images into a grayscale image and image processing for parallelizing the plurality of images, and performs the at least one image processing. The image processing apparatus according to claim 1, wherein the plurality of reduced images are generated for an image.
  9.  前記複数の画像を取得する光学系をさらに備え、前記画像入力部は前記光学系を介して取得した画像を入力する請求項1から8のいずれか1項に記載の画像処理装置。 The image processing apparatus according to claim 1, further comprising an optical system that acquires the plurality of images, wherein the image input unit inputs an image acquired via the optical system.
  10.  前記算出した第2の視差に基づいて前記処理領域に含まれる計測対象の2次元情報または3次元情報を算出する計測部をさらに備える、請求項1から9のいずれか1項に記載の画像処理装置。 The image processing according to any one of claims 1 to 9, further comprising a measurement unit that calculates two-dimensional information or three-dimensional information of a measurement target included in the processing region based on the calculated second parallax. apparatus.
  11.  前記計測部は前記第2の視差に基づいて前記処理領域を表す幾何方程式である第2の幾何方程式を算出し、前記第2の幾何方程式と前記計測対象の画素位置とに基づいて前記2次元情報または前記3次元情報を算出する請求項10に記載の画像処理装置。 The measurement unit calculates a second geometric equation that is a geometric equation representing the processing region based on the second parallax, and the two-dimensional based on the second geometric equation and the pixel position of the measurement target. The image processing apparatus according to claim 10, wherein the information or the three-dimensional information is calculated.
  12.  前記被写体はコンクリート構造物であり、前記計測対象は前記コンクリート構造物の損傷である請求項10または11に記載の画像処理装置。 12. The image processing apparatus according to claim 10, wherein the subject is a concrete structure, and the measurement target is damage to the concrete structure.
  13.  一の被写体を複数の視点から撮影して得られた複数の画像を入力する画像入力工程と、
     前記複数の画像をそれぞれ縮小して複数の縮小画像を生成する縮小画像生成工程と、
     前記複数の縮小画像間の対応する位置の探索をして第1の視差を算出する第1の視差算出工程と、
     前記第1の視差と前記複数の縮小画像の画素位置とに基づいて、前記複数の縮小画像における幾何領域を抽出する幾何領域抽出工程と、
     前記抽出した幾何領域と前記複数の画像とを関連付けて表示する表示工程と、
     前記表示された前記複数の画像に対するユーザの指示入力を検出して、前記複数の画像の一部の領域を処理領域として指定する領域指定工程と、
     前記指定された処理領域について前記複数の画像間の対応する位置の探索をして第2の視差を算出する第2の視差算出工程と、
     を備える画像処理方法。
    An image input step of inputting a plurality of images obtained by photographing one subject from a plurality of viewpoints;
    A reduced image generating step of generating a plurality of reduced images by reducing the plurality of images respectively;
    A first parallax calculating step of searching for a corresponding position between the plurality of reduced images and calculating a first parallax;
    A geometric region extraction step of extracting a geometric region in the plurality of reduced images based on the first parallax and the pixel positions of the plurality of reduced images;
    A display step of displaying the extracted geometric region in association with the plurality of images;
    A region designation step of detecting a user instruction input to the displayed plurality of images and designating a partial region of the plurality of images as a processing region;
    A second parallax calculating step of calculating a second parallax by searching for a corresponding position between the plurality of images for the designated processing region;
    An image processing method comprising:
PCT/JP2017/014677 2016-04-27 2017-04-10 Image processing device and image processing method WO2017187950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-089557 2016-04-27
JP2016089557 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017187950A1 true WO2017187950A1 (en) 2017-11-02

Family

ID=60160452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014677 WO2017187950A1 (en) 2016-04-27 2017-04-10 Image processing device and image processing method

Country Status (1)

Country Link
WO (1) WO2017187950A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057960A (en) * 2010-09-06 2012-03-22 Topcon Corp Point group position data processor, point group position data processing method, point group position data processing system, and point group position data processing program
JP2012088114A (en) * 2010-10-18 2012-05-10 Topcon Corp Optical information processing device, optical information processing method, optical information processing system and optical information processing program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057960A (en) * 2010-09-06 2012-03-22 Topcon Corp Point group position data processor, point group position data processing method, point group position data processing system, and point group position data processing program
JP2012088114A (en) * 2010-10-18 2012-05-10 Topcon Corp Optical information processing device, optical information processing method, optical information processing system and optical information processing program

Similar Documents

Publication Publication Date Title
Yang et al. Color-guided depth recovery from RGB-D data using an adaptive autoregressive model
Wei et al. A non-contact measurement method of ship block using image-based 3D reconstruction technology
US9449431B2 (en) Systems and methods for matching scenes using mutual relations between features
CN101432776A (en) System and method for three-dimensional object reconstruction from two-dimensional images
JP2005037378A (en) Depth measurement method and depth measurement device
US20210397907A1 (en) Methods and Systems for Object Detection
Bethmann et al. Semi-global matching in object space
KR102481896B1 (en) System and method for establishing structural exterior map using image stitching
Bethmann et al. Object-based multi-image semi-global matching–concept and first results
JP6285686B2 (en) Parallax image generation device
Thaher et al. Stereo vision distance estimation employing SAD with canny edge detector
JP4935769B2 (en) Plane region estimation apparatus and program
CN104981844A (en) Moving object detection
KR100792172B1 (en) Apparatus and method for estimating fundamental matrix using robust correspondence point
WO2017187950A1 (en) Image processing device and image processing method
WO2017122640A1 (en) Measurement device and measurement method
Nanya et al. Reconstruction of complete 3D models by voxel integration
EP3582179B1 (en) Image processing apparatus, image processing method, and image processing program
Saovana et al. An image feature classification system for piers based on semantic segmentation with deep learning
JP2017162024A (en) Stereo matching processing method, processing program and processing device
Xu et al. Monocular Video Frame Optimization Through Feature-Based Parallax Analysis for 3D Pipe Reconstruction
Onmek et al. Evaluation of underwater 3D reconstruction methods for Archaeological Objects: Case study of Anchor at Mediterranean Sea
JP2007241418A (en) Template matching device
Gadelmawla et al. On-line measurement of product dimensions using computer vision
Shukla et al. Unsteady camera zoom stabilization using slope estimation over interest warping vectors

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789237

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP