WO2017187824A1 - Supplementary post for checker brick bracket, checker brick bracket and post-increasing method - Google Patents
Supplementary post for checker brick bracket, checker brick bracket and post-increasing method Download PDFInfo
- Publication number
- WO2017187824A1 WO2017187824A1 PCT/JP2017/010286 JP2017010286W WO2017187824A1 WO 2017187824 A1 WO2017187824 A1 WO 2017187824A1 JP 2017010286 W JP2017010286 W JP 2017010286W WO 2017187824 A1 WO2017187824 A1 WO 2017187824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- column
- pillar
- additional
- checker brick
- existing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B9/00—Stoves for heating the blast in blast furnaces
- C21B9/02—Brick hot-blast stoves
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B9/00—Stoves for heating the blast in blast furnaces
- C21B9/10—Other details, e.g. blast mains
Definitions
- the present invention relates to an additional column for a checker brick receiving fixture that supports a checker brick in a heat storage chamber of a hot stove, a checker brick receiving fixture, and a method for adding a column.
- a hot stove has been used as equipment for supplying hot air to a blast furnace for iron making.
- Multiple hot blast furnaces (3 to 5) are installed per blast furnace. By storing heat in one of these blast furnaces, and supplying hot blast to other blast furnaces, Hot air can be continuously supplied to the blast furnace.
- the hot stove includes a combustion chamber and a heat storage chamber, and checker bricks for heat storage are stacked in the heat storage chamber.
- a checker brick receiver for supporting the checker brick is installed on the bottom surface of the hot stove, and a duct is connected to a lower side surface of the hot stove so as to communicate with a space below the checker brick receiver.
- checker brick receiving hardware As an example of checker brick receiving hardware, a pillar (support stand) is set up on the bottom of the hot stove, a horizontal beam (Great Girder) is supported by this pillar, and a grid metal is stretched on the upper surface of the horizontal beam. Is known (see Patent Document 1).
- the checker brick is received on the upper surface side of the lattice hardware.
- the lattice hardware is provided with openings similar to the checker brick through-holes.
- a ventilation space is formed between the lower surface of the lattice metal and the bottom surface of the hot stove.
- the ventilation space communicates with the duct described above. Thereby, it is comprised so that ventilation can be carried out to a checker brick, a lattice metal, a ventilation space, and a duct.
- the hot air that has heated the checker brick is ejected downward from the through hole of the lowermost checker brick, gathers in the ventilation space, and is then discharged from the duct to the outside.
- outside air is introduced into the ventilation space from the duct, is distributed to the through holes of the checker brick, is heated while passing through the checker brick, and is sent to the blast furnace as hot air.
- the amount of heat stored in the checker brick of the hot stove (heat storage amount) is increased, and the checker brick It is necessary to increase the temperature, particularly the bottom surface temperature.
- the checker brick receiving hardware reaches the heat resistant temperature or more, the checker brick receiving metal may be damaged, the checker brick collapses, and the hot-blast furnace operation may be stopped.
- the upper limit value of the hot stove exhaust gas temperature that determines the ambient temperature of the bottom of the hot stove furnace is determined by the heat resistance temperature of the checker brick receiver.
- the hot air for heating at the time of heat storage is restricted to the heat resistant temperature of the checker brick receiving metal part or less, and the upper limit of the heat storage energy of the checker brick is limited.
- the hot air supplied to the blast furnace cannot be further increased in temperature.
- it is conceivable to raise the upper limit of the heat storage energy of the checker brick by replacing the checker brick receiver of the existing hot stove with a checker brick receiver having a higher heat resistance temperature.
- An object of the present invention is to increase the heat storage amount of checker bricks to cope with higher temperatures, reduce running costs, and shorten the work period, and additional columns for checker brick receivers, checker brick receivers and columns
- the purpose is to provide an expansion method.
- the additional pillar for the checker brick receiving hardware is an additional pillar for the checker brick receiving hardware installed between the lattice hardware receiving the checker brick of the hot air furnace and the bottom of the furnace, wherein the lattice hardware and the furnace A column main body installed coaxially outside an existing column installed between the bottom surface and a height adjusting mechanism capable of adjusting the height of the column main body, It has a plurality of columnar cylinders stacked in the vertical direction.
- an additional column (coaxial additional column) coaxial with the existing column can be formed by the column main body installed so as to cover the outer periphery of the existing column.
- the additional pillars are coaxial with the existing pillars because the additional pillars are installed twice on the outside with respect to the existing pillars inside, so that the additional pillars and the existing pillars share the same installation area. It is not limited to the state where the central axis of the additional column and the central axis of the existing column are shared at the same position.
- the additional column may be installed in a state where it is eccentric with respect to the existing column, that is, in a state in which each central axis is shifted. Since these additional coaxial columns are installed at the same position as the existing columns, there is no need for a dedicated installation space, and if additional additional columns (independent additional columns) cannot be installed between existing columns, or even if possible Even if the number is limited, it can be installed without any problem.
- each column cylindrical body can be made sufficiently short compared to the column main body, and can be carried into the hot stove furnace, Work can be done without any problems.
- connection between the columnar cylinders includes, for example, a structure in which a flange is formed at the opening end of each columnar cylinder, and a bolt that penetrates the flange is tightened, or an inlay structure formed by processing the flange surface. Available.
- the height can be adjusted with the existing pillar, and the load of the lattice hardware borne by the existing pillar can be reliably replaced.
- the load of the lattice hardware received by the existing pillar can be transferred to the coaxial additional pillar.
- the function as an additional pillar can be achieved with respect to the existing pillar.
- the height adjustment mechanism for example, a structure that adjusts the height by driving a wedge metal from the outside or using a jack bolt can be used.
- the height adjusting mechanism can be installed in the middle of the column main body, or between the column main body and the furnace bottom surface, between the column main body and the lattice hardware.
- the columnar cylinder has a plurality of column members each divided in the circumferential direction.
- the pillar main body which covers the existing pillar can be formed by letting along the pillar member divided
- the pillar member divided in the circumferential direction for example, it is possible to divide into two parts (so-called middle alignment) with a central angle of 180 degrees, three parts with 120 degrees, or four parts with 90 degrees. For example, a combination of 180 degrees and two 90 degrees may be used.
- a structure in which a flange is formed on each pillar member and the bolt is passed through the flange can be used.
- the columnar body is cylindrical, and the column member has a semi-cylindrical shape obtained by dividing the cylindrical surface into two.
- the column main body can be formed into a general cylindrical structure, and the column member is divided into two parts each having a central angle of 180 degrees, and the column main body can be formed with the minimum number of members.
- the column shape may be a polygonal shape such as a square or a hexagon.
- a heat insulating material is installed between the column main body and the existing column.
- the heat insulating material since the heat insulating material is installed, when the hot stove is operated, a temperature difference is generated between the outer column main body (coaxial additional column) and the existing existing column, and this is accompanied. Using the difference in thermal expansion, the load can be transferred from the existing column to the coaxial additional column. That is, the heat transferred from the outside during the operation of the hot stove is sufficiently transferred to the outer coaxial additional column by interposing a heat insulating material between the outer coaxial additional column and the inner existing column. Reaching the existing pillars inside is suppressed.
- the outer coaxial additional column becomes high temperature and the thermal expansion is relatively large, and the existing existing column on the inner side suppresses the temperature rise and the thermal expansion becomes relatively small, resulting in a difference in thermal expansion between each. .
- the coaxial additional column is extended with the operation of the hot stove, and the lattice hardware is lifted due to the difference in thermal expansion with respect to the existing column
- the load transfer from the existing column to the coaxial additional column can be performed.
- the height adjusting mechanism has a wedge hardware that is driven from the outside of the pillar body toward the central axis of the pillar body.
- the wedge metal is preferably a steel plate having a front and back taper angle larger than 0 degree and smaller than 10 degrees.
- a plurality of wedges can be arranged at equal intervals around the coaxial additional pillar. For example, four wedges can be arranged at intervals of 90 degrees.
- the height adjusting mechanism is provided between a jack bolt that is erected on the furnace bottom surface and can contact the pillar body, and between the pillar body and the furnace bottom surface. It is preferable to have a wedge metal device to be driven into.
- the upper end height of the jack bolt is adjusted to a predetermined height from the bottom of the furnace in advance, and the column main body (coaxial additional column) is placed on the jack bolt, so that the coaxial additional column is set to the basic height. Can be set. Thereafter, by driving a wedge metal object, the coaxial additional pillar can be raised from the basic height to the set height.
- the coaxial additional pillar can be raised from the basic height to the set height.
- a wedge metal object can be reduced in size and driving operation can also be minimized.
- setting of the basic height by the jack bolt can be easily operated in a no-load state before placing the coaxial additional column, and the working time can be shortened.
- the checker brick receiving hardware is a checker brick receiving hardware having a grid hardware that receives a checker brick of a hot stove furnace, and an existing pillar that is installed between the lattice hardware and the bottom of the furnace, A coaxial additional column that is coaxially installed on the outside of the column, the coaxial additional column having a column body that is coaxially installed outside the existing column, and a height capable of adjusting a height of the column body
- An adjustment mechanism wherein the column main body has a plurality of columnar cylinders stacked in a height direction.
- an independent additional pillar may be installed between the coaxial additional pillars between the lattice hardware and the furnace bottom surface at a position away from the coaxial additional pillars.
- not only the reinforcement with the coaxial additional pillar but also the use of the independent additional pillar can reduce the stress generated in the existing grid hardware and improve the maximum usable temperature of the existing grid hardware. be able to.
- the method of adding the pillars of the checker brick receiving hardware according to the present invention is added to the checker brick receiving hardware having the grid hardware that receives the checker bricks of the hot stove furnace and the existing pillars installed between the grid hardware and the bottom of the furnace.
- the coaxial additional column is coaxially installed outside the existing column.
- the coaxial additional column is thermally expanded larger than the existing column, and the load burden of the lattice hardware by the coaxial additional column is increased. It is preferable to make it larger.
- the additional pillar can be added even when the installation space is restricted.
- the disassembled perspective view which shows the column cylinder of the coaxial additional column of the said 1st Embodiment.
- Sectional drawing which shows the lower end of the coaxial additional pillar of the said 1st Embodiment.
- the longitudinal cross-sectional view which shows the independent additional pillar of the said 1st Embodiment.
- the cross-sectional view which shows the independent additional pillar of the said 1st Embodiment.
- the schematic diagram which shows the checker brick receiving metal object of 2nd Embodiment of this invention.
- FIG. 1 a hot blast furnace 2 for supplying hot air is connected to a blast furnace 1 for iron making. Although only one hot stove 2 is shown in FIG. 1, a plurality of hot stoves 2 are generally installed per one blast furnace.
- the hot stove 2 includes a combustion chamber 9 and a heat storage chamber 3.
- a checker brick receiver 10 is installed at the bottom of the furnace of the heat storage chamber 3, and a checker brick 4 for heat storage is laminated on the checker brick receiver 10.
- the checker brick 4 has a substantially hexagonal shape in plan view, and has a plurality of through holes penetrating vertically.
- a plurality of checker bricks 4 are arranged in a grid pattern in the horizontal direction, and are stacked from the checker brick receiver 10 to near the top of the hot stove 2.
- the checker bricks 4 are connected to each other through holes, and air can be passed between the bottom of the heat storage chamber 3 and the top of the furnace through the through holes.
- a duct 5 is connected to the lower side surface of the hot stove 2, and a ventilation space 6 is formed in the gap between the checker brick receiving hardware 10. Through the ventilation space 6, the duct 5 communicates with the through hole of the checker brick 4.
- the checker brick receiving hardware 10 includes a lattice metal 20 that supports the checker brick 4 on the upper surface, and a girder 30 that supports the lattice metal 20 from the lower surface side. Further, the checker brick receiving hardware 10 includes a plurality of existing columns 40 and a plurality of coaxial additional columns 50 that support the girder 30, and a plurality of independent additional columns 60 that support the lattice hardware 20.
- These lattice metal object 20, girder 30, existing pillar 40, coaxial additional pillar 50, and independent additional pillar 60 are each made of cast iron. However, other materials such as a refractory, a steel plate, and cast steel can be used as long as there is no problem with the heat-resistant temperature.
- the lattice metal 20 has a flat plate shape and is provided in the furnace bottom portion inside the hot stove 2 so as to extend in the horizontal direction.
- a large number of ventilation holes are formed in the lattice metal 20 so as to penetrate vertically, and communicated with the penetration holes of the checker brick 4.
- the girder 30 is a horizontally supported beam member, and a plurality of girders 30 are arranged along the lower surface of the lattice metal 20 to support the lattice metal 20 from the lower surface side.
- the existing columns 40 are arranged at a predetermined interval along the longitudinal direction of the girder 30 and support the girder 30 at the upper end.
- the lower end of the existing pillar 40 is fixed to the furnace bottom of the hot stove 2 and embedded in the heat resistant concrete 22.
- On the heat-resistant concrete 22, a laying brick 23 is further laid.
- the coaxial additional column 50 is disposed outside the existing column 40 in a coaxial manner with the existing column 40 and supports the girder 30 at the upper end.
- the lower end of the coaxial additional pillar 50 is fixed to the heat-resistant concrete 22 and embedded in the laying brick 23.
- the independent additional pillar 60 is arranged in the space between the existing pillar 40 and the coaxial additional pillar 50 at a predetermined interval from the periphery, and supports the lattice metal 20 at the upper end.
- the lower end of the independent additional pillar 60 is fixed to the heat-resistant concrete 22 and is embedded in the laying brick 23.
- the existing pillars 40 are arranged along the girder 30 at the bottom of the hot stove 2, they are arranged linearly.
- the coaxial additional columns 50 are arranged coaxially, that is, at the same position as each of the existing columns 40, and the arrangement at the bottom of the furnace is a linear arrangement according to the existing columns 40.
- the independent additional pillar 60 is disposed regardless of the girder 30. In arranging the independent additional pillars 60, an intermediate position of the existing pillars 40 is set in order to secure an interval with the surroundings. For this reason, most of the independent additional pillars 60 are also linearly arranged. However, in the vicinity of the outer periphery of the hot stove 2, the arrangement is not always linear.
- the details of the existing pillar 40, the coaxial additional pillar 50, and the independent additional pillar 60 will be described.
- the existing pillar 40 is installed at the time of building the hot stove 2, and is formed of a tubular steel material continuous over the entire length, as shown in FIGS.
- the lower end of the existing pillar 40 is embedded in the heat-resistant concrete 22 at the bottom of the hot stove 2. Before the lower end is embedded in the heat-resistant concrete 22, the fixed height of the existing pillar 40 is adjusted.
- the lower end plate 41 is fixed to the lower end of the existing pillar 40.
- a hot-blast furnace bottom iron skin 221 is installed at the bottom of the hot-blast furnace 2.
- a wedge metal 42 is installed between the lower end plate 41 and the hot stove furnace bottom iron 221.
- the height of the existing pillar 40 can be adjusted in accordance with the driving position of the wedged object 42. After performing such height adjustment, by placing concrete, the existing pillar 40 is installed at a predetermined height, and the lower end is embedded in the heat-resistant concrete 22.
- the installation procedure of the existing pillar 40 is as follows. First, the wedge metal object 42 is installed on the hot-blast furnace bottom iron shell 221, and the lower end plate 41 is placed thereon to hold the existing pillar 40 vertically. Next, the wedge hardware 42 is driven from the outer periphery of the existing column 40, and the upper end height of the existing column 40 is adjusted to a predetermined height. When the height of the existing pillar 40 reaches a predetermined height, concrete is placed so as to wrap the lower end plate 41 and the wedge metal object 42 to form the heat resistant concrete 22. Thereby, the lower end of the existing pillar 40 is fixed to the furnace bottom. When the existing pillar 40 is fixed to the furnace bottom, the laying brick 23 is laid on the surface of the heat-resistant concrete 22 around the existing pillar 40. Further, the girder 30 and the lattice hardware 20 are supported on the upper end of the existing pillar 40.
- the existing pillar 40 that supports the lattice metal object 20 via the girder 30 is formed.
- the hot stove 2 can be operated in a state where the girder 30 and the lattice hardware 20 are supported only by these existing pillars 40.
- an additional pillar is installed for the purpose of increasing the heat storage amount of the checker brick 4 to increase the temperature.
- the coaxial additional pillar 50 and the independent additional pillar 60 are installed as additional pillars.
- the coaxial additional column 50 is additionally installed in the hot stove 2 and, as shown in FIG. 6, a steel column main body 51 installed coaxially outside the existing column 40, and the column main body 51. And a height adjusting mechanism 59 capable of adjusting the height.
- the column main body 51 has a plurality of columnar cylinders 52 stacked in the height direction.
- the columnar cylinder 52 is configured by a pair of semicylindrical column members 53 having a central angle of 180 degrees.
- flanges 531 are formed on the column members 53, and the flanges 531 are fastened and fixed with bolts 532.
- the columnar cylinder 52 is coaxially installed outside the existing column 40 by sandwiching the existing column 40 therebetween.
- a heat insulating material 54 is installed between the column member 53 and the existing column 40.
- the heat insulating material 54 may be stretched on the inner surface of the column member 53 in advance, or may be wound around the outer surface of the existing column 40. Moreover, you may pack in the clearance gap with the existing pillar 40 formed after the pillar member 53 installation.
- the heat insulating material 54 may be formed by spraying in addition to a sheet or mat. If a sufficient temperature difference is generated between the coaxial additional column 50 and the existing column 40 to generate an expansion difference, the thickness of the coaxial additional column 50 is increased without using the heat insulating material 54, or Other methods such as increasing the gap interval between the coaxial additional pillar 50 and the existing pillar 40 may be used.
- the columnar cylinders 52 are connected to each other by fastening the arc-shaped flanges 521 along the upper and lower edges of the columnar cylinders 52 with bolts 522 to form the column main body 51.
- An upper end member 58 is connected to the uppermost columnar cylinder 52 of the column main body 51.
- the column main body 51 is connected to the girder 30 via the upper end member 58.
- FIG. 6 when the coaxial additional pillar 50 is installed, a part of the brick 23 around the existing pillar 40 is removed and the heat resistant concrete 22 is exposed.
- a height adjusting mechanism 59 is formed between the lowermost columnar body 52 of the column main body 51 and the heat resistant concrete 22.
- a base plate 222 is laid on the surface of the heat resistant concrete 22.
- the base plate 222 is provided with a wedge 591, a jack bolt 592, and a fixing bolt 593.
- the wedge metal 591 is a steel piece having a taper angle larger than 0 degree and smaller than 10 degrees, and the height can be adjusted and a heavy load can be applied by driving from the outside.
- the jack bolt 592 is screwed into a nut fixed to the base plate 222, and the head height can be adjusted by rotating. By this height adjustment, the height position of the lowermost columnar body 52 can be adjusted, and thereby the height position of the coaxial additional pillar 50 can be determined.
- the fixing bolt 593 has a lower portion embedded and fixed in the heat-resistant concrete 22, and is inserted into the bolt hole of the base plate 222 and the bolt hole of the flange 521 of the lowermost columnar body 52, and then tightened by screwing a nut. Thus, the columnar cylinder 52 can be fixed to the heat-resistant concrete 22.
- the installation procedure of the coaxial additional column 50 is as follows. First, around the existing pillar 40 where the coaxial additional pillar 50 is installed, a part of the brick 23 is removed to expose the heat resistant concrete 22 (see FIG. 6). Then, a base plate 222 is laid on the exposed surface of the heat-resistant concrete 22 (see FIG. 9), and a wedge metal 591, a jack bolt 592, and a fixing bolt 593 are installed on the base plate 222.
- the column main body 51 is assembled on the jack bolt 592.
- the upper end member 58 (see FIG. 6) to be the uppermost stage of the column main body 51 is loaded onto the jack bolt 592 and lifted by a crane, and a space for one column cylinder 52 is secured below the upper end member 58.
- a pair of column members 53 (see FIG. 8) are combined with the existing column 40 interposed therebetween to form a second-stage columnar cylinder 52.
- a heat insulating material 54 is sandwiched between the existing pillar 40 and each pillar member 53.
- the column main body 51 is formed by connecting a predetermined number of the columnar cylinders 52 by repeating the lifting of the columnar cylinders 52 that may be assembled.
- the jack bolt 592 is adjusted to a predetermined height, the crane that lifts the column main body 51 is lowered, the lowermost columnar cylinder 52 is supported by the jack bolt 592, and the fixing bolt Fix with 593. At this time, the wedge metal 591 is set to contact the flange 521 of the columnar cylinder 52.
- the column main body 51 is lifted upward, the gap between the upper surface of the upper end member 58 and the lower surface of the girder 30 is reduced, and the gap is eventually lost.
- the girder 30 is supported by the column main body 51. In this state, the load burden of the girder 30 by the existing pillar 40 may still remain.
- the load of the existing column 40 is further reduced or released by the difference in thermal expansion from the coaxial additional column 50 by being heated by restarting the operation of the hot stove 2.
- the independent additional pillar 60 is additionally installed in a portion where the girder 30 between the existing pillars 40 of the hot stove 2 is not provided. As shown in FIG. 10, as shown in FIG. Is provided with a height adjusting mechanism 69 that can adjust the height.
- the column main body 61 has a plurality of columnar cylinders 62 stacked in the height direction.
- the columnar cylinder 62 is a cylindrical member, and has flanges 621 at the upper and lower openings.
- the columnar cylinders 62 are connected to each other by fastening the flanges 621 with bolts 622 to form the column main body 61.
- An upper end member 68 is connected to the uppermost columnar cylinder 62 of the column main body 61.
- the column main body 61 is directly connected to the lattice metal 20 via the upper end member 68.
- FIG. 10 when installing the independent additional pillar 60, a portion of the installation brick 23 is removed and the heat resistant concrete 22 is exposed.
- a height adjusting mechanism 69 using a wedge metal 691 is formed between the lowermost columnar body 62 of the column main body 61 and the heat-resistant concrete 22.
- the height adjusting mechanism 69 performs an operation of arranging the upper end member 68 and the plurality of columnar cylinders 62 one by one and lifting them with a crane. By repeating, it can assemble as a series of pillar main bodies 61, and the overlapping description is abbreviate
- the column main body 61 is assembled with the columnar cylinder 62 and the upper end member 68.
- a slight gap is formed between the upper surface of the upper end member 58 and the lower surface of the lattice metal object 20.
- This gap is set to be smaller than the adjustment allowance of the height adjustment mechanism 69, that is, the adjustable range by the wedge metal 691 at the design stage. Therefore, by driving the wedge hardware 691 from the outside of the independent additional column 60, the column main body 61 is lifted upward, and the gap between the upper surface of the upper end member 68 and the lower surface of the lattice metal 20 is reduced, and the gap is eventually eliminated. Then, the upper surface of the upper end member 68 and the lower surface of the lattice metal object 20 come into contact with each other, and the lattice metal object 20 is supported by the column main body 61 by further driving.
- Additional pillars are added to the hot stove 2 during the blast furnace off-air period.
- the operation of the hot stove 2 is first stopped and the furnace temperature is cooled to a workable temperature.
- an operator enters the furnace from the manhole 8 (see FIGS. 2 and 3), and at the installation site of the coaxial additional pillar 50 and the independent additional pillar 60, the laying brick 23 is dug down from the furnace bottom face 21 and the heat resistant concrete 22 is removed. Expose. Waste material of the laying brick 23 is carried out from the manhole 8.
- the materials of the coaxial additional pillar 50 and the independent additional pillar 60 that is, the constituent members of the pillar member 53, the pillar cylindrical body 62, and the height adjusting mechanisms 59 and 69 are carried from the manhole 8 and assembled.
- the height adjustment mechanisms 59 and 69 are operated to start the load burden on the girder 30 and the lattice hardware 20.
- the existing pillar 40, the coaxial additional pillar 50, and the independent additional pillar 60 are thermally expanded by the heat in the furnace accompanying the operation.
- the existing pillar 40 is surrounded by the heat insulating material 54 and the temperature rise is relatively small, the amount of thermal expansion is small.
- the coaxial additional pillar 50 and the independent additional pillar 60 have a large amount of thermal expansion, and the load burden on the girder 30 and the lattice hardware 20 is further increased. As a result, the load burden due to the existing pillar 40 is reduced or released. This situation can be selected by adjusting the gap during design or construction.
- the coaxial additional column 50 coaxial with the existing column 40 can be formed by the column main body 51 installed so as to cover the outer periphery of the existing column 40. Since the coaxial additional column 50 is installed at the same position as the existing column 40, a dedicated installation space is not required, and a case where a separate additional column (independent additional column 60) cannot be installed between the existing columns 40 or is possible. Even if the number is limited, it can be installed without any problem. Further, by forming the column main body 51 by stacking a plurality of column cylindrical bodies 52, each column cylindrical body 52 can be made sufficiently shorter than the column main body 51, and can be carried into the hot stove 2 or The work in the furnace can be performed without any trouble.
- the height adjustment mechanism 59 height adjustment can be performed with the existing pillar 40, and the load of the lattice metal object 20 and the girder 30 loaded on the existing pillar 40 is surely replaced. be able to.
- the height adjustment mechanism 59 increases the height of the coaxial additional column 50.
- the load of the lattice hardware 20 received by the existing column 40 can be transferred to the coaxial additional column 50.
- Such a coaxial additional pillar 50 can achieve a function as an additional pillar with respect to the existing pillar 40.
- the columnar cylinder 52 is composed of a plurality of column members 53 that are divided in the circumferential direction. For this reason, from each direction of the outer periphery of the existing column 40, the column member 53 or the column main body 51 that covers the existing column 40 is provided by connecting the column members 53 divided in the circumferential direction and connecting them in the circumferential direction. Can be formed.
- the columnar body 52 has a cylindrical shape
- the column member 53 has a semicylindrical shape obtained by dividing the cylindrical surface into two.
- the column main body 51 can be formed into a general cylindrical structure, and the column member 53 is divided into two parts each having a central angle of 180 degrees, so that the column main body 51 can be formed with a minimum number of members.
- the heat insulating material 54 is installed between the existing pillar 40 and the coaxial additional pillar 50. For this reason, when the hot stove 2 is operated, a temperature difference is generated between the outer coaxial additional column 50 and the inner existing column 40, and the thermal expansion difference associated therewith is utilized to make a coaxial difference from the existing column 40. The load can be transferred to the additional column 50.
- the height adjustment mechanism 59 has a wedge metal 591 that is driven from the outside of the column main body 51 toward the central axis of the column main body 51.
- a wedge 591 By using such a wedge 591, sufficient load strength can be obtained in the coaxial additional column 50, and a height adjusting function can be obtained with a simple structure.
- the height adjusting mechanism 59 uses jack bolts 592 that are erected on the base plate 222 on the bottom surface of the furnace and can come into contact with the column main body 51 together with the above-described wedge metal 591. For this reason, the upper end height of the jack bolt 592 is adjusted in advance from the furnace bottom surface 21 to a predetermined height, and the column main body 51 is placed on the jack bolt 592 to set the coaxial additional column 50 to the basic height. it can. Thereafter, by driving a wedge 591, the coaxial additional pillar 50 can be raised from the basic height to the set height.
- the portion up to the basic height can be handled by the jack bolt 592, and the height corresponding to the wedge metal 591 is only the difference between the basic height and the set height. Just do it. For this reason, the wedge metal object 591 can be reduced in size and the driving operation can be minimized.
- setting of the basic height by the jack bolt 592 can be easily operated in a no-load state before mounting the coaxial additional column 50, and the working time can be shortened.
- a checker brick receiver 10 ⁇ / b> A is installed on the bottom of the hot stove 2.
- the checker brick receiver 10 ⁇ / b> A supported the girder 30 and the lattice hardware 20 only with the existing pillars 40 when the hot blast furnace 2 was constructed.
- the coaxial additional pillar 50 is installed outside the existing pillar 40 in the checker brick receiving hardware 10A.
- the additional pillar (the independent additional pillar 60 of the first embodiment) is not installed between the existing pillars 40.
- the individual configurations of the coaxial additional pillar 50, the existing pillar 40, the girder 30, and the lattice hardware 20 are the same as those in the first embodiment described above. For this reason, the overlapping description about each is abbreviate
- the present invention is not limited to the above-described embodiments, and modifications and the like within a scope where the object of the present invention can be achieved are included in the present invention.
- the jack bolt 592 can be omitted.
- the columnar cylinder 52 may be supported using a steel piece or the like as a spacer, and then the height of the wedged metal 591 may be adjusted by driving.
- the height adjusting mechanism 59 is not limited to the structure using the wedge metal 591. However, as a structure capable of adjusting the height while bearing a heavy load, a wedge member 591 or a wedge member made of another heat resistant material is desirable.
- the column member 53 assembled as the columnar cylinder 52 is not limited to a semi-cylindrical shape obtained by dividing the cylinder into two, and may be divided into three or more. However, since the number of parts increases, it is desirable that the number of parts is about two.
- the column body 51 is not limited to a circular cross section, and may be a rectangular cross section. However, considering the uniformity of direction, a circular cross section is desirable.
- the hot stove 2 to which the present invention is applied may be an internal combustion type, an external combustion type, or a furnace top combustion type. Can also be applied.
- the material used for the coaxial additional pillar 50 and the independent additional pillar 60 is not limited to cast iron, and other materials such as a refractory, a steel plate, and cast steel can be adopted as long as the material can withstand a high temperature.
- the present invention can be used for an additional column for a checker brick receiving fixture that supports a checker brick in a heat storage chamber of a hot stove, a checker brick receiving fixture, and a method for adding a column.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Blast Furnaces (AREA)
Abstract
Description
熱風炉は、高炉1基につき複数(3~5基)が設置され、このうちのいずれかの熱風炉にて蓄熱を行うとともに、他の熱風炉にて高炉への熱風供給を行うことで、高炉に絶え間なく熱風を供給できるようになっている。
熱風炉は、燃焼室と蓄熱室とを備え、蓄熱室内には、蓄熱用のチェッカー煉瓦が積層される。熱風炉の底面には、チェッカー煉瓦を支持するためのチェッカー煉瓦受け金物が設置され、熱風炉の下部側面には、チェッカー煉瓦受け金物よりも下の空間に連通するようにダクトが接続される。 Conventionally, a hot stove has been used as equipment for supplying hot air to a blast furnace for iron making.
Multiple hot blast furnaces (3 to 5) are installed per blast furnace. By storing heat in one of these blast furnaces, and supplying hot blast to other blast furnaces, Hot air can be continuously supplied to the blast furnace.
The hot stove includes a combustion chamber and a heat storage chamber, and checker bricks for heat storage are stacked in the heat storage chamber. A checker brick receiver for supporting the checker brick is installed on the bottom surface of the hot stove, and a duct is connected to a lower side surface of the hot stove so as to communicate with a space below the checker brick receiver.
高炉に熱風を供給する際、ダクトから外気が通気空間に導入され、ここからチェッカー煉瓦の各貫通孔へと分配され、チェッカー煉瓦を通る間に加熱され、熱風として高炉へ送り出される。 When storing heat in the hot air furnace, the hot air that has heated the checker brick is ejected downward from the through hole of the lowermost checker brick, gathers in the ventilation space, and is then discharged from the duct to the outside.
When hot air is supplied to the blast furnace, outside air is introduced into the ventilation space from the duct, is distributed to the through holes of the checker brick, is heated while passing through the checker brick, and is sent to the blast furnace as hot air.
しかし、前述したチェッカー煉瓦受け金物が耐熱温度以上になると、チェッカー煉瓦受け金物が破損し、チェッカー煉瓦が崩落して熱風炉操業が停止するおそれがある。このため、熱風炉炉底部の雰囲気温度を決定する熱風炉排ガス温度の上限値はチェッカー煉瓦受け金物の耐熱温度によって決定される。 As described above, in order to change the hot air supplied from the hot stove to the blast furnace to high-temperature hot air having a sufficient amount of heat, the amount of heat stored in the checker brick of the hot stove (heat storage amount) is increased, and the checker brick It is necessary to increase the temperature, particularly the bottom surface temperature.
However, when the above-described checker brick receiving hardware reaches the heat resistant temperature or more, the checker brick receiving metal may be damaged, the checker brick collapses, and the hot-blast furnace operation may be stopped. For this reason, the upper limit value of the hot stove exhaust gas temperature that determines the ambient temperature of the bottom of the hot stove furnace is determined by the heat resistance temperature of the checker brick receiver.
ここで、既設の熱風炉のチェッカー煉瓦受け金物を、より耐熱温度が高いチェッカー煉瓦受け金物に取り替えることによって、チェッカー煉瓦の蓄熱エネルギーの上限を引き上げることが考えられる。
しかし、チェッカー煉瓦受け金物を取り替えるためには、チェッカー煉瓦を含む大規模な取替・改造工事をする必要がある。この工事を行うと、1年以上等の長期の操業停止期間が必要となり高炉生産量が低下することとなる。 Therefore, when supplying hot air to the blast furnace, the hot air for heating at the time of heat storage is restricted to the heat resistant temperature of the checker brick receiving metal part or less, and the upper limit of the heat storage energy of the checker brick is limited. As a result, the hot air supplied to the blast furnace cannot be further increased in temperature.
Here, it is conceivable to raise the upper limit of the heat storage energy of the checker brick by replacing the checker brick receiver of the existing hot stove with a checker brick receiver having a higher heat resistance temperature.
However, in order to replace the checker brick receiving hardware, it is necessary to perform a large-scale replacement / remodeling work including the checker brick. If this construction is carried out, a long operation stoppage period such as one year or more will be required, resulting in a decrease in blast furnace production.
しかし、既存の支柱の間隔が十分にない場合、後付する支柱を設置することが難しい。すなわち、既存の支柱の間には、後付する支柱の設置スペースだけでなく、作業スペースが必要になるためである。このように、支柱の増設で対応しようとしても、既存の支柱の配置によっては、増設する支柱の数が十分に得られず、前述した高温化およびランニングコスト削減への対応ができないという問題があった。 As another countermeasure to increase the temperature, it is conceivable to add a support column that supports the lattice hardware. If the support can be increased, the strength of the checker brick receiving hardware can be improved and the heat-resistant temperature can be improved.
However, when there is not enough space between the existing struts, it is difficult to install a post to be retrofitted. In other words, not only the installation space for the post column to be retrofitted but also a work space is required between the existing columns. As described above, even if it is attempted to cope with the addition of struts, depending on the arrangement of existing struts, there is a problem that the number of struts to be added cannot be obtained sufficiently, and the above-described high temperature and running cost reduction cannot be handled. It was.
このような同軸追加柱は、既存柱と同じ位置に設置されるため、専用の設置スペースが必要なく、既存柱の間に別途の追加柱(独立追加柱)が設置できない場合、あるいはできても本数に制約がある場合でも、何ら支障なく設置することができる。
また、柱本体を複数の柱筒体の積み重ねで形成することで、各々の柱筒体は柱本体に比べて十分に短尺とすることができ、熱風炉内への搬入や、炉内での作業を、何ら支障なく行うことができる。
柱筒体どうしの連結は、例えば、各柱筒体の開口端部にフランジを形成しておき、このフランジを貫通するボルトにより締め付ける構造や、フランジ面を加工して形成されたインロー構造などが利用できる。 According to the present invention, an additional column (coaxial additional column) coaxial with the existing column can be formed by the column main body installed so as to cover the outer periphery of the existing column. The additional pillars are coaxial with the existing pillars because the additional pillars are installed twice on the outside with respect to the existing pillars inside, so that the additional pillars and the existing pillars share the same installation area. It is not limited to the state where the central axis of the additional column and the central axis of the existing column are shared at the same position. For this reason, if the interference between the additional column and the existing column does not occur, the additional column may be installed in a state where it is eccentric with respect to the existing column, that is, in a state in which each central axis is shifted.
Since these additional coaxial columns are installed at the same position as the existing columns, there is no need for a dedicated installation space, and if additional additional columns (independent additional columns) cannot be installed between existing columns, or even if possible Even if the number is limited, it can be installed without any problem.
In addition, by forming the column main body by stacking a plurality of column cylindrical bodies, each column cylindrical body can be made sufficiently short compared to the column main body, and can be carried into the hot stove furnace, Work can be done without any problems.
The connection between the columnar cylinders includes, for example, a structure in which a flange is formed at the opening end of each columnar cylinder, and a bolt that penetrates the flange is tightened, or an inlay structure formed by processing the flange surface. Available.
例えば、既存柱の外側に、既存柱より短い状態で同軸追加柱を設置した後、高さ調整機構で同軸追加柱の高さを大きくすれば、同軸追加柱が既存柱よりも長くなった段階で、既存柱で受けられていた格子金物の荷重を、同軸追加柱に載せ替えることができる。このような同軸追加柱により、既存柱に対して、追加柱としての機能を達成することができる。
高さ調整機構としては、例えば外側から楔金物を打ち込むか、ジャッキボルトを用いることで高さを調整する構造が利用できる。高さ調整機構は、柱本体と格子金物との、柱本体の途中、または柱本体と炉底面との間に設置することができる。 Furthermore, by providing the height adjusting mechanism, the height can be adjusted with the existing pillar, and the load of the lattice hardware borne by the existing pillar can be reliably replaced.
For example, if a coaxial additional column is installed outside the existing column in a shorter state than the existing column, and the height of the coaxial additional column is increased by the height adjustment mechanism, the coaxial additional column becomes longer than the existing column. Thus, the load of the lattice hardware received by the existing pillar can be transferred to the coaxial additional pillar. By such a coaxial additional pillar, the function as an additional pillar can be achieved with respect to the existing pillar.
As the height adjustment mechanism, for example, a structure that adjusts the height by driving a wedge metal from the outside or using a jack bolt can be used. The height adjusting mechanism can be installed in the middle of the column main body, or between the column main body and the furnace bottom surface, between the column main body and the lattice hardware.
周方向に分割された柱部材としては、例えば中心角180度ずつの2分割(いわゆる最中合わせ)、120度ずつの3分割や90度ずつの4分割などとすることができる。例えば、180度のものと90度のもの2つとを組み合わせる等としてもよい。
柱部材の周方向の連結は、例えば、各柱部材にフランジを形成しておき、このフランジを貫通するボルトにより締め付ける構造などが利用できる。 ADVANTAGE OF THE INVENTION According to this invention, the pillar main body which covers the existing pillar can be formed by letting along the pillar member divided | segmented into the circumferential direction from each direction of the outer periphery of the existing pillar, and connecting each in the circumferential direction.
As the pillar member divided in the circumferential direction, for example, it is possible to divide into two parts (so-called middle alignment) with a central angle of 180 degrees, three parts with 120 degrees, or four parts with 90 degrees. For example, a combination of 180 degrees and two 90 degrees may be used.
For the connection of the pillar members in the circumferential direction, for example, a structure in which a flange is formed on each pillar member and the bolt is passed through the flange can be used.
すなわち、外側の同軸追加柱と内側の既存柱との間に断熱材が介在することで、熱風炉の稼働時に外側から伝えられる熱は、外側の同軸追加柱には十分に伝達されるが、内側の既存柱への到達が抑制される。その結果、外側の同軸追加柱は高温となって熱膨張が比較的大きく、内側の既存柱は温度上昇が抑制されて熱膨張が比較的小さくなり、各々の間には熱膨張の差が生じる。同軸追加柱を設置する際に、格子金物の荷重を負担する直前の状態としておけば、既存柱に対する熱膨張差により、熱風炉の稼働に伴って同軸追加柱が伸長し、格子金物を持ち上げる状態となり、これにより前述した既存柱から同軸追加柱への荷重載せ替えを行うことができる。 According to the present invention, since the heat insulating material is installed, when the hot stove is operated, a temperature difference is generated between the outer column main body (coaxial additional column) and the existing existing column, and this is accompanied. Using the difference in thermal expansion, the load can be transferred from the existing column to the coaxial additional column.
That is, the heat transferred from the outside during the operation of the hot stove is sufficiently transferred to the outer coaxial additional column by interposing a heat insulating material between the outer coaxial additional column and the inner existing column. Reaching the existing pillars inside is suppressed. As a result, the outer coaxial additional column becomes high temperature and the thermal expansion is relatively large, and the existing existing column on the inner side suppresses the temperature rise and the thermal expansion becomes relatively small, resulting in a difference in thermal expansion between each. . When installing a coaxial additional column, if it is in a state immediately before bearing the load of the lattice hardware, the coaxial additional column is extended with the operation of the hot stove, and the lattice hardware is lifted due to the difference in thermal expansion with respect to the existing column Thus, the load transfer from the existing column to the coaxial additional column can be performed.
楔金物としては、鋼製の板材であって、表裏のテーパ角度が0度よりも大きく10度よりも小さいものが好ましい。楔金物は、同軸追加柱の周囲に複数を均等間隔で配置することができ、例えば4つの楔金物を90度間隔で配置することができる。 According to the present invention, sufficient load strength can be obtained, and a height adjusting function can be obtained with a simple structure.
The wedge metal is preferably a steel plate having a front and back taper angle larger than 0 degree and smaller than 10 degrees. A plurality of wedges can be arranged at equal intervals around the coaxial additional pillar. For example, four wedges can be arranged at intervals of 90 degrees.
つまり、設定高さと炉底面との差が大きい場合でも、基本高さまでの分はジャッキボルトで対応することができ、楔金物で対応する高さは、基本高さと設定高さとの差分だけで済む。このため、楔金物を小型化することができ、打ち込み作業も最小限にすることができる。また、ジャッキボルトによる基本高さの設定は、同軸追加柱を載せる前の無負荷状態で簡単に操作することができ、作業時間を短縮することができる。 According to the present invention, the upper end height of the jack bolt is adjusted to a predetermined height from the bottom of the furnace in advance, and the column main body (coaxial additional column) is placed on the jack bolt, so that the coaxial additional column is set to the basic height. Can be set. Thereafter, by driving a wedge metal object, the coaxial additional pillar can be raised from the basic height to the set height.
In other words, even if the difference between the set height and the bottom of the furnace is large, the part up to the basic height can be handled with jack bolts, and the corresponding height with the wedge hardware is only the difference between the basic height and the set height. . For this reason, a wedge metal object can be reduced in size and driving operation can also be minimized. In addition, setting of the basic height by the jack bolt can be easily operated in a no-load state before placing the coaxial additional column, and the working time can be shortened.
〔第1実施形態〕
図1において、製銑用の高炉1には、熱風を供給する熱風炉2が接続されている。図1では、熱風炉2を1基だけ示したが、一般に熱風炉2は高炉1基につき複数設置される。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
In FIG. 1, a
チェッカー煉瓦4は、平面視略六角形状であり、上下に貫通する複数の貫通孔が形成されている。チェッカー煉瓦4は、水平方向に格子状に複数配列され、チェッカー煉瓦受け金物10から熱風炉2の炉頂近くまで積まれている。 The
The
熱風炉2の下部側面にはダクト5が接続され、チェッカー煉瓦受け金物10の隙間には通気空間6が形成されている。通気空間6を通して、ダクト5はチェッカー煉瓦4の貫通孔に連通されている。 The
A
図2に示すように、チェッカー煉瓦受け金物10は、チェッカー煉瓦4を上面で支持する格子金物20と、格子金物20を下面側から支持するガーダー30と、を有する。さらに、チェッカー煉瓦受け金物10は、ガーダー30を支持する複数の既存柱40および複数の同軸追加柱50と、格子金物20を支持する複数の独立追加柱60と、を備えている。これらの格子金物20、ガーダー30、既存柱40、同軸追加柱50および独立追加柱60は、それぞれ鋳鉄製である。ただし、耐熱温度上問題無ければ、耐火物、鋼板、鋳鋼などの別材質でも採用可能である。 [Checker brick receiving hardware 10]
As shown in FIG. 2, the checker
ガーダー30は、水平に支持された梁材であり、格子金物20の下面に沿って複数配置され、格子金物20を下面側から支持している。
既存柱40は、ガーダー30の長手方向に沿って所定間隔を隔てて配置され、上端でガーダー30を支持している。既存柱40の下端は、熱風炉2の炉底部に固定され、耐熱コンクリート22に埋設されている。耐熱コンクリート22上には、さらに敷煉瓦23が敷設されている。 The
The
The existing
独立追加柱60は、既存柱40および同軸追加柱50の間の空間に、周囲と所定間隔を空けて配置され、上端で格子金物20を支持している。独立追加柱60の下端は、耐熱コンクリート22に固定され、敷煉瓦23に埋設されている。 The coaxial
The independent
一方、独立追加柱60は、ガーダー30と関係なく配置される。独立追加柱60の配置にあたっては、周囲との間隔確保のため、既存柱40の中間位置などとされる。このため、独立追加柱60も大部分が直線的に配列される。ただし、熱風炉2の外周付近では、必ずしも直線的な配列とはならない。
以下、既存柱40、同軸追加柱50および独立追加柱60の詳細について説明する。 As shown in FIG. 3, since the existing
On the other hand, the independent
Hereinafter, the details of the existing
既存柱40は、熱風炉2の築炉時に設置されるものであり、図4および図5に示すように、全長にわたって連続した円管状の鋼材で形成される。
図4において、既存柱40は、下端が熱風炉2の炉底部の耐熱コンクリート22に埋設されている。下端を耐熱コンクリート22に埋設される前に、既存柱40はその固定高さを調整される。 [Existing pillar 40]
The existing
In FIG. 4, the lower end of the existing
先ず、熱風炉炉底鉄皮221上に楔金物42を設置し、その上に下端プレート41を載せ、既存柱40を垂直に保持する。
次に、楔金物42を既存柱40の外周から打ち込み、既存柱40の上端高さが所定の高さとなるように調整する。
既存柱40の高さが所定高さとなったら、下端プレート41および楔金物42を包むようにコンクリートを打設し、耐熱コンクリート22を形成する。これにより、既存柱40の下端が炉底部に固定される。
既存柱40が炉底部に固定されたら、既存柱40の周囲の耐熱コンクリート22の表面に敷煉瓦23を敷く。さらに、既存柱40の上端に、ガーダー30および格子金物20を支持させる。 The installation procedure of the existing
First, the
Next, the
When the height of the existing
When the existing
熱風炉2は、これらの既存柱40のみでガーダー30および格子金物20を支持した状態で稼働可能である。ただし、チェッカー煉瓦4の蓄熱量を増やして高温化する目的などで、追加柱が設置される。
本実施形態では、追加柱として、同軸追加柱50および独立追加柱60を設置する。 In this way, the existing
The
In this embodiment, the coaxial
同軸追加柱50は、熱風炉2に追加で設置されるものであり、図6に示すように、既存柱40の外側に同軸状に設置される鋼製の柱本体51と、柱本体51の高さを調整可能な高さ調整機構59とを備えている。そして、柱本体51は、高さ方向に積み上げられる複数の柱筒体52を有する。 [Coaxial additional pillar 50]
The coaxial
一対の柱部材53を組み合わせる際に、その間に既存柱40を挟み込むことで、柱筒体52は既存柱40の外側に同軸状に設置される。 As shown in FIGS. 7 and 8, the
When combining the pair of
断熱材54は、予め柱部材53の内面に張っておいてもよく、既存柱40の外面に巻き付けておいてもよい。また、柱部材53設置後にできる既存柱40との隙間に詰め込んでもよい。断熱材54は、シート状あるいはマット状のもののほか、吹付けて形成されるものであってもよい。
同軸追加柱50と既存柱40の間に膨張差が発生するだけの十分な温度差が生まれるのであれば、断熱材54を使用せずに、同軸追加柱の50の厚みを大きくするか、あるいは同軸追加柱50と既存柱40との隙間間隔を大きくするなど、他の方法を用いてもよい。 A
The
If a sufficient temperature difference is generated between the coaxial
柱本体51の最上段の柱筒体52には、上端部材58が接続される。この上端部材58を介して、柱本体51はガーダー30に接続される。 The
An
図9に示すように、耐熱コンクリート22の表面にはベースプレート222が敷かれている。ベースプレート222には、楔金物591、ジャッキボルト592,固定ボルト593が設置されている。 In FIG. 6, when the coaxial
As shown in FIG. 9, a
ジャッキボルト592は、ベースプレート222に固定されたナットに螺合され、回転させることで頭部の高さを調整可能である。この高さ調整により、最下段の柱筒体52の高さ位置が調整でき、これにより同軸追加柱50の高さ位置を決めることができる。
固定ボルト593は、下部を耐熱コンクリート22に埋設固定されており、ベースプレート222のボルト孔および最下段の柱筒体52のフランジ521のボルト孔を挿通したうえで、ナットを螺合させて締め付けることで、柱筒体52を耐熱コンクリート22に固定可能である。 The
The
The fixing
先ず、同軸追加柱50を設置する既存柱40の周囲で、敷煉瓦23を一部撤去して耐熱コンクリート22を露出させる(図6参照)。
そして、露出された耐熱コンクリート22の表面にベースプレート222を敷き(図9参照)、ベースプレート222に楔金物591、ジャッキボルト592,固定ボルト593を設置しておく。 The installation procedure of the coaxial
First, around the existing
Then, a
先ず、柱本体51の最上段となるべき上端部材58(図6参照)をジャッキボルト592の上に搬入し、クレーンで吊り上げ、上端部材58の下方に柱筒体52の一段分のスペースを確保する。
そして、上端部材58の下方で、既存柱40を間に挟んで一対の柱部材53(図8参照)を組み合わせて、2段目の柱筒体52を形成する。この際、既存柱40と各柱部材53との間には断熱材54(図7参照)を挟み込んでおく。柱筒体52ができたら、クレーンを再度上昇させて新たな柱筒体52のスペースを確保する。
このような柱筒体52の組立ておよい吊り上げの繰り返しにより、所定数の柱筒体52を連結することで、柱本体51が形成される。 Next, the column
First, the upper end member 58 (see FIG. 6) to be the uppermost stage of the column
Then, below the
The column
前述した上端部材58の上面とガーダー30の下面との間の隙間は、設計段階で、高さ調整機構59の調整代つまり楔金物591による調整可能範囲より小さな寸法となるように設定されている。
そして、高さ調整機構59による柱本体51の高さ調整により、格子金物20およびガーダー30の荷重は同軸追加柱50にも負担される状態に移行する。 In a state where the column
The gap between the upper surface of the
Then, by the height adjustment of the column
この状態で、既存柱40によるガーダー30の荷重負担はまだ残されていてもよい。既存柱40の荷重負担は、熱風炉2の稼働再開により加熱されることで、同軸追加柱50との熱膨張の差によって、さらに軽減ないし解除されることになる。 That is, by driving the
In this state, the load burden of the
独立追加柱60は、熱風炉2の既存柱40どうしの間のガーダー30がない部位に追加で設置されるものであり、図10に示すように、鋼製の柱本体61と、柱本体61の高さを調整可能な高さ調整機構69と備えている。そして、柱本体61は、高さ方向に積み上げられる複数の柱筒体62を有する。 [Independent additional pillar 60]
The independent
柱筒体62は、各々のフランジ621どうしをボルト622で締め付け固定されることで、相互に連結され、柱本体61とされる。
柱本体61の最上段の柱筒体62には、上端部材68が接続される。この上端部材68を介して、柱本体61は格子金物20に直接接続される。 As shown in FIGS. 10 and 11, the
The
An
高さ調整機構69は、前述した同軸追加柱50の高さ調整機構59(図9参照)と同様に、上端部材68および複数の柱筒体62を一段ずつ配置してはクレーンで吊り上げる操作を繰り返すことで、一連の柱本体61として組立てられるものであり、ここでは重複する説明は省略する。 In FIG. 10, when installing the independent
Similarly to the height adjusting mechanism 59 (see FIG. 9) of the coaxial
そこで、楔金物691を独立追加柱60の外側から打ち込むことで、柱本体61が上方へ持ち上げられ、上端部材68の上面と格子金物20の下面との間の隙間が減少し、やがて隙間がなくなって上端部材68の上面と格子金物20の下面とが接触し、更に打ち込むことで、柱本体61で格子金物20が支持された状態となる。 With the above operations, the column
Therefore, by driving the
本実施形態において、熱風炉2の築炉時の既存柱40の設置手順、および、追加柱増設時の同軸追加柱50および独立追加柱60の設置手順は、各々既に述べた通りである。
ここで、追加柱増設時の全体的な作業手順について説明する。 [Procedure for adding additional pillars]
In the present embodiment, the installation procedure of the existing
Here, the overall work procedure when adding additional pillars will be described.
次に、マンホール8(図2および図3参照)から作業員が炉内に入り、同軸追加柱50および独立追加柱60の設置部位において、炉底面21から敷煉瓦23を掘り下げて耐熱コンクリート22を露出させる。敷煉瓦23の廃材はマンホール8から搬出する。
続いて、マンホール8から同軸追加柱50および独立追加柱60の資材、つまり柱部材53や柱筒体62および高さ調整機構59,69の構成部材を搬入し、組立てる。
各部において、同軸追加柱50および独立追加柱60の柱本体51,61が組み上がったら、高さ調整機構59,69を操作してガーダー30および格子金物20の荷重負担を開始する。 Additional pillars are added to the
Next, an operator enters the furnace from the manhole 8 (see FIGS. 2 and 3), and at the installation site of the coaxial
Subsequently, the materials of the coaxial
In each part, when the
同軸追加柱50は、既存柱40と同じ位置に設置されるため、専用の設置スペースが必要なく、既存柱40の間に別途の追加柱(独立追加柱60)が設置できない場合、あるいはできても本数に制約がある場合でも、何ら支障なく設置することができる。
また、柱本体51を複数の柱筒体52の積み重ねで形成することで、各々の柱筒体52は柱本体51に比べて十分に短尺とすることができ、熱風炉2内への搬入や、炉内での作業を、何ら支障なく行うことができる。 According to this embodiment, the coaxial
Since the coaxial
Further, by forming the column
例えば、既存柱40の外側に、既存柱40より短い状態(相対的に高さが小さい状態)で同軸追加柱50を設置した後、高さ調整機構59で同軸追加柱50の高さを大きくすれば、同軸追加柱50が既存柱40よりも長くなった段階で、既存柱40で受けられていた格子金物20の荷重を、同軸追加柱50に載せ替えることができる。このような同軸追加柱50により、既存柱40に対して、追加柱としての機能を達成することができる。 Furthermore, by providing the
For example, after the coaxial
つまり、設定高さと炉底面との差が大きい場合でも、基本高さまでの分はジャッキボルト592で対応することができ、楔金物591で対応する高さは、基本高さと設定高さとの差分だけで済む。このため、楔金物591を小型化することができ、打ち込み作業も最小限にすることができる。また、ジャッキボルト592による基本高さの設定は、同軸追加柱50を載せる前の無負荷状態で簡単に操作することができ、作業時間を短縮することができる。 In the present embodiment, the
That is, even when the difference between the set height and the furnace bottom is large, the portion up to the basic height can be handled by the
前述した第1実施形態では、追加柱として同軸追加柱50および独立追加柱60を併用した。これに対し、本実施形態では、追加柱として同軸追加柱50のみが設置され、独立追加柱60は設置されていない。 [Second Embodiment]
In 1st Embodiment mentioned above, the coaxial
チェッカー煉瓦受け金物10Aは、前述した第1実施形態のチェッカー煉瓦受け金物10と同様に、熱風炉2の築炉時には既存柱40のみでガーダー30および格子金物20が支持されていた。
追加柱の増設にあたって、チェッカー煉瓦受け金物10Aにおいては、既存柱40の外側に同軸追加柱50が設置される。ただし、既存柱40の間に追加柱(第1実施形態の独立追加柱60)は設置されていない。 12 and 13, a
As with the
In adding the additional pillar, the coaxial
このような本実施形態によっても、同軸追加柱50による作用効果を得ることができる。そして、第1実施形態のような独立追加柱60による補強は得られないが、チェッカー煉瓦受け金物10Aの追加柱として要求される性能に対して、同軸追加柱50だけで十分であれば、構造を簡素化し、工期を短縮することができる。 In the present embodiment, the individual configurations of the coaxial
Also according to the present embodiment as described above, it is possible to obtain the effect of the coaxial
本発明は、前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
例えば、高さ調整機構59において、ジャッキボルト592は省略可能である。ジャッキボルト592に代えて、鋼片などをスペーサとして柱筒体52を支持しておき、その後楔金物591を打ち込んで高さを調整してもよい。 [Other Embodiments]
The present invention is not limited to the above-described embodiments, and modifications and the like within a scope where the object of the present invention can be achieved are included in the present invention.
For example, in the
柱筒体52として組み立てられる柱部材53は、円筒を2分割した半円筒状に限らず、3分割以上としてもよい。ただし、部品点数が増加するため、2分割程度であることが望ましい。
柱本体51は円形断面に限らず、矩形断面などであってもよい。ただし、方向の均等性を考慮すると、円形断面であることが望ましい。 The
The
The
Claims (10)
- 熱風炉のチェッカー煉瓦を受ける格子金物と炉底面との間に設置されるチェッカー煉瓦受け金物用の追加柱であって、
前記格子金物と前記炉底面との間に設置されている既存柱の外側に同軸状に設置される柱本体と、
前記柱本体の高さを調整可能な高さ調整機構と、を有し、
前記柱本体は、高さ方向に積み上げられる複数の柱筒体を有することを特徴とするチェッカー煉瓦受け金物用の追加柱。 It is an additional pillar for checker brick receiving hardware installed between the lattice hardware receiving the checker brick of the hot air furnace and the bottom of the furnace,
A column main body installed coaxially outside the existing columns installed between the lattice metal and the furnace bottom surface,
A height adjustment mechanism capable of adjusting the height of the column main body,
The pillar main body has a plurality of pillar cylinders stacked in a height direction, and the additional pillar for the checker brick receiving hardware. - 請求項1に記載したチェッカー煉瓦受け金物用の追加柱において、
前記柱筒体は、それぞれ周方向に分割された複数の柱部材を有することを特徴とするチェッカー煉瓦受け金物用の追加柱。 In the additional pillar for the checker brick receiver according to claim 1,
The columnar cylinder has a plurality of column members each divided in the circumferential direction, and is an additional column for a checker brick receiving hardware. - 請求項2に記載したチェッカー煉瓦受け金物用の追加柱において、
前記柱筒体は円筒状であり、前記柱部材は円筒面を2分割した半円筒状を有することを特徴とするチェッカー煉瓦受け金物用の追加柱。 In the additional pillar for the checker brick receiving hardware according to claim 2,
The columnar body has a cylindrical shape, and the columnar member has a semi-cylindrical shape obtained by dividing a cylindrical surface into two, and is an additional column for checker brick receiving hardware. - 請求項1から請求項3のいずれか一項に記載したチェッカー煉瓦受け金物用の追加柱において、
前記柱本体と前記既存柱との間に、断熱材が設置されていることを特徴とするチェッカー煉瓦受け金物用の追加柱。 In the additional pillar for the checker brick receiving hardware according to any one of claims 1 to 3,
An additional column for a checker brick receiving hardware, wherein a heat insulating material is installed between the column main body and the existing column. - 請求項1から請求項4のいずれか一項に記載したチェッカー煉瓦受け金物用の追加柱において、
前記高さ調整機構は、前記柱本体の外側から前記柱本体の中心軸線に向けて打ち込まれる楔金物を有することを特徴とするチェッカー煉瓦受け金物用の追加柱。 In the additional pillar for the checker brick receiving hardware according to any one of claims 1 to 4,
The height adjusting mechanism has a wedge hardware that is driven from the outside of the column main body toward the central axis of the column main body, and is an additional column for a checker brick receiving hardware. - 請求項5に記載したチェッカー煉瓦受け金物用の追加柱において、
前記高さ調整機構は、前記炉底面に立設されて前記柱本体に当接可能なジャッキボルトと、前記柱本体と前記炉底面との間に打ち込まれる楔金物と、を有することを特徴とするチェッカー煉瓦受け金物用の追加柱。 In the additional pillar for the checker brick receiving hardware according to claim 5,
The height adjusting mechanism includes a jack bolt that is erected on the bottom surface of the furnace and is capable of contacting the pillar body, and a wedge hardware that is driven between the pillar body and the bottom surface of the furnace. Additional pillar for checker brick receiving hardware. - 熱風炉のチェッカー煉瓦を受ける格子金物と、前記格子金物と炉底面との間に設置される既存柱と、を有するチェッカー煉瓦受け金物であって、
前記既存柱の外側に同軸状に設置される同軸追加柱を有し、
前記同軸追加柱は、
前記既存柱の外側に同軸状に設置される柱本体と、
前記柱本体の高さを調整可能な高さ調整機構と、を有し、
前記柱本体は、高さ方向に積み上げられる複数の柱筒体を有することを特徴とするチェッカー煉瓦受け金物。 A checker brick receiving hardware having a lattice metal receiving a checker brick of a hot air furnace, and an existing pillar installed between the lattice metal and the bottom of the furnace,
It has a coaxial additional column installed coaxially outside the existing column,
The coaxial additional pillar is
A pillar body installed coaxially outside the existing pillar;
A height adjustment mechanism capable of adjusting the height of the column main body,
The column main body has a plurality of columnar cylinders stacked in the height direction. - 請求項7のチェッカー煉瓦受け金物において、
前記同軸追加柱の間には、前記同軸追加柱から離れた位置で前記格子金物と前記炉底面との間に独立追加柱が設置されていることを特徴とするチェッカー煉瓦受け金物。 In the checker brick receiver according to claim 7,
A checker brick receiving hardware, wherein independent additional columns are installed between the coaxial additional columns between the lattice metal and the furnace bottom surface at a position away from the coaxial additional columns. - 熱風炉のチェッカー煉瓦を受ける格子金物と、前記格子金物と炉底面との間に設置される既存柱と、を有するチェッカー煉瓦受け金物に、追加柱を増設するチェッカー煉瓦受け金物の柱増設方法であって、
複数の柱筒体を高さ方向に積み上げて構成される柱本体と、前記柱本体の高さを調整可能な高さ調整機構とを、有する同軸追加柱を用い、
前記同軸追加柱を、前記既存柱の外側に同軸状に設置することを特徴とするチェッカー煉瓦受け金物の柱増設方法。 In the checker brick receiving metal column adding method, an additional column is added to the checker brick receiving metal fixture having a lattice metal receiving the checker brick of the hot air furnace and the existing column installed between the lattice metal hardware and the bottom of the furnace. There,
Using a coaxial additional column having a column main body configured by stacking a plurality of column cylinders in the height direction, and a height adjustment mechanism capable of adjusting the height of the column main body,
A method for adding columns of checker brick receiving hardware, wherein the coaxial additional columns are coaxially installed outside the existing columns. - 請求項9のチェッカー煉瓦受け金物の柱増設方法において、
前記熱風炉の稼働時に、前記同軸追加柱を前記既存柱よりも大きく熱膨張させ、前記同軸追加柱による前記格子金物の荷重負担を前記既存柱よりも大きくすることを特徴とするチェッカー煉瓦受け金物の柱増設方法。 In the checker brick receiving metal pillar extension method of claim 9,
During operation of the hot stove, the coaxial additional column is thermally expanded larger than the existing column, and the load on the lattice metal by the coaxial additional column is made larger than that of the existing column. How to add more pillars.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187033582A KR102287016B1 (en) | 2016-04-26 | 2017-03-14 | Additional columns for accommodating checker bricks, metal objects for accommodating checker bricks and methods of expanding columns |
CN201780023923.0A CN109072319B (en) | 2016-04-26 | 2017-03-14 | Additional column for checker brick support metal member, and column addition method |
EP17789113.2A EP3450576A4 (en) | 2016-04-26 | 2017-03-14 | Supplementary post for checker brick bracket, checker brick bracket and post-increasing method |
BR112018071775A BR112018071775B8 (en) | 2016-04-26 | 2017-03-14 | REINFORCEMENT SUPPORT FOR REFRACTORY BRICK STACKING SUPPORT, REFRACTORY BRICK STACKING SUPPORT, AND SUPPORT INCREASE METHOD |
RU2018140094A RU2703759C1 (en) | 2016-04-26 | 2017-03-14 | Additional column for support of checker bricks, support of checker bricks and method of column strengthening |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016088181A JP6013637B1 (en) | 2016-04-26 | 2016-04-26 | Additional columns for checker brick receiving hardware, checker brick receiving hardware and column expansion method |
JP2016-088181 | 2016-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017187824A1 true WO2017187824A1 (en) | 2017-11-02 |
Family
ID=57145183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/010286 WO2017187824A1 (en) | 2016-04-26 | 2017-03-14 | Supplementary post for checker brick bracket, checker brick bracket and post-increasing method |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP3450576A4 (en) |
JP (1) | JP6013637B1 (en) |
KR (1) | KR102287016B1 (en) |
CN (1) | CN109072319B (en) |
BR (1) | BR112018071775B8 (en) |
RU (1) | RU2703759C1 (en) |
TW (1) | TWI628284B (en) |
WO (1) | WO2017187824A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251556A (en) * | 2020-09-30 | 2021-01-22 | 广东韶钢松山股份有限公司 | Method for recovering performance of grate support column equipment of blast furnace hot blast stove |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111795396A (en) * | 2020-07-07 | 2020-10-20 | 北京首钢国际工程技术有限公司 | Beam type hot-blast stove grate with diamond-shaped grate plate holes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120004A (en) * | 1974-08-12 | 1976-02-17 | Nippon Steel Corp | NETSUPUROCHIKU NETSUSHITSUNO CHETSUKAAUKEKANAMONOSHIJIKOZO |
US4235593A (en) * | 1979-03-27 | 1980-11-25 | Republic Steel Corporation | Blast stove |
JP2016050464A (en) * | 2014-09-02 | 2016-04-11 | 新日鉄住金エンジニアリング株式会社 | Columnar structure, and construction method for the columnar structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120004B2 (en) * | 1971-09-08 | 1976-06-22 | ||
SU745955A1 (en) * | 1978-02-13 | 1980-07-07 | Украинский Государственный Институт По Проектированию Металлургических Заводов | Fixation of rider arch column of blast furnace air heater |
JPS6283412A (en) * | 1985-10-07 | 1987-04-16 | Sumitomo Metal Ind Ltd | Method for preventing drift of hot stove |
SU1298248A1 (en) * | 1985-11-04 | 1987-03-23 | Всесоюзный научно-исследовательский институт металлургической теплотехники | Air heater |
US20080199820A1 (en) * | 2005-02-01 | 2008-08-21 | Danieli Corus Bv | Support Assembly For Supporting Heat Regeneration Checker Work In A Hot Blast Stove, Hot Blast Stove Provided With Said Support Assembly, Method Of Producing Hot Air Using Said Hot Blast Stove |
CN201040761Y (en) * | 2007-06-01 | 2008-03-26 | 济南济钢设计院 | Hot blast stove checker brick supporting device |
TWM489130U (en) * | 2014-06-18 | 2014-11-01 | ping-sheng Wu | Improved labor-saving device for bicycle |
-
2016
- 2016-04-26 JP JP2016088181A patent/JP6013637B1/en active Active
-
2017
- 2017-03-14 EP EP17789113.2A patent/EP3450576A4/en not_active Withdrawn
- 2017-03-14 KR KR1020187033582A patent/KR102287016B1/en active IP Right Grant
- 2017-03-14 BR BR112018071775A patent/BR112018071775B8/en active IP Right Grant
- 2017-03-14 WO PCT/JP2017/010286 patent/WO2017187824A1/en active Application Filing
- 2017-03-14 RU RU2018140094A patent/RU2703759C1/en active
- 2017-03-14 CN CN201780023923.0A patent/CN109072319B/en active Active
- 2017-03-24 TW TW106109973A patent/TWI628284B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5120004A (en) * | 1974-08-12 | 1976-02-17 | Nippon Steel Corp | NETSUPUROCHIKU NETSUSHITSUNO CHETSUKAAUKEKANAMONOSHIJIKOZO |
US4235593A (en) * | 1979-03-27 | 1980-11-25 | Republic Steel Corporation | Blast stove |
JP2016050464A (en) * | 2014-09-02 | 2016-04-11 | 新日鉄住金エンジニアリング株式会社 | Columnar structure, and construction method for the columnar structure |
Non-Patent Citations (1)
Title |
---|
See also references of EP3450576A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251556A (en) * | 2020-09-30 | 2021-01-22 | 广东韶钢松山股份有限公司 | Method for recovering performance of grate support column equipment of blast furnace hot blast stove |
CN112251556B (en) * | 2020-09-30 | 2022-06-21 | 广东韶钢松山股份有限公司 | Method for recovering performance of grate support column equipment of blast furnace hot blast stove |
Also Published As
Publication number | Publication date |
---|---|
TWI628284B (en) | 2018-07-01 |
RU2703759C1 (en) | 2019-10-22 |
JP2017197796A (en) | 2017-11-02 |
JP6013637B1 (en) | 2016-10-25 |
CN109072319B (en) | 2021-02-09 |
BR112018071775A2 (en) | 2019-02-19 |
KR20180134413A (en) | 2018-12-18 |
BR112018071775B1 (en) | 2022-10-18 |
EP3450576A4 (en) | 2020-01-01 |
BR112018071775B8 (en) | 2023-02-14 |
EP3450576A1 (en) | 2019-03-06 |
CN109072319A (en) | 2018-12-21 |
TW201739920A (en) | 2017-11-16 |
KR102287016B1 (en) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8033078B2 (en) | Method of mounting elements inside a wind generator tower | |
CN103628680B (en) | Large steel space truss hanging layer construction method | |
KR102170772B1 (en) | Multi layered typed support for height control and the structural lifting method using the same | |
CA2871473C (en) | Free-standing liner unit and method of building tank | |
JP6013637B1 (en) | Additional columns for checker brick receiving hardware, checker brick receiving hardware and column expansion method | |
US12078420B2 (en) | Modular enclosure structure of high temperature heating furnace and installation method | |
JP6615059B2 (en) | Additional columns for checker brick receiving hardware, checker brick receiving hardware and column expansion method | |
JP2014020097A (en) | Seismic isolator supporting structure and construction method for the same | |
CN205975635U (en) | Foundation pit support structure | |
JP7082888B2 (en) | Construction method of tank bottom slab | |
JP7512026B2 (en) | Generator System | |
WO2019102851A1 (en) | Hot-blast stove | |
RU2360309C1 (en) | Nuclear reactor attachment point | |
JP2009052123A (en) | Method of constructing air-heating furnace | |
CN211006674U (en) | Steel-pipe pile positioner | |
CN110846451B (en) | Building method of blast furnace cooling refractory | |
US3006054A (en) | Chimney liner construction device | |
US10648737B2 (en) | Heat protection assembly for a charging installation of a metallurgical reactor | |
TWI564462B (en) | Construction method for cylindrical tank | |
JP5307422B2 (en) | Mounting structure for steel skin reinforcement members | |
JPS635446B2 (en) | ||
CN118725879A (en) | Novel fast-assembling type coke tank for dry quenching castable and assembling method | |
CN118793326A (en) | Coastal area typhoon-preventing temporary enclosure and construction method | |
CN118197665A (en) | Integral reactor pressure vessel insulation equipment and installation method | |
TW201632702A (en) | Construction method for cylindrical tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018071775 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20187033582 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017789113 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17789113 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017789113 Country of ref document: EP Effective date: 20181126 |
|
ENP | Entry into the national phase |
Ref document number: 112018071775 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181023 |