WO2017187815A1 - Measurement device and signal processing method - Google Patents
Measurement device and signal processing method Download PDFInfo
- Publication number
- WO2017187815A1 WO2017187815A1 PCT/JP2017/009677 JP2017009677W WO2017187815A1 WO 2017187815 A1 WO2017187815 A1 WO 2017187815A1 JP 2017009677 W JP2017009677 W JP 2017009677W WO 2017187815 A1 WO2017187815 A1 WO 2017187815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- reference signal
- doppler shift
- doppler
- unit
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims description 8
- 238000003672 processing method Methods 0.000 title claims description 7
- 230000005540 biological transmission Effects 0.000 claims abstract description 39
- 238000001228 spectrum Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/10—Systems for measuring distance only using transmission of interrupted, pulse modulated waves
- G01S13/26—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
- G01S13/28—Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/95—Radar or analogous systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- the present invention relates to a measuring device and a signal processing method used in various technical fields such as an aircraft, a satellite, and an automobile, and typically relates to a lidar and its signal processing method.
- a pulse compression method based on the similarity of a known transmission signal (reference signal), an FMCW (Frequency Modulation Continuous Wave) method that performs distance estimation from a frequency component of a reception signal based on the modulation of the reference signal, have been mainly used (see Patent Documents 1 to 4 and Non-Patent Document 1).
- the received signal is added with a Doppler frequency shift corresponding to the relative speed with the object, which causes a difference between the reference signal and the efficiency. . Since the Doppler frequency shift is proportional to the transmission frequency, it has been difficult to apply the above-described high-efficiency technique, particularly in a lidar that transmits light.
- the size of the power amplifier and the system that cools the power amplifier is increased, the weight is increased, and power consumption is further reduced.
- the radar also has a problem of deterioration of the received signal for the same reason, which hinders further low peak power / long-time pulse transmission.
- a measurement apparatus transmits a transmission signal having a low peak power, a long-time pulse (including a continuous wave) and a predetermined modulation to a target.
- a unit a Doppler shift reference signal creation unit for creating a Doppler shift reference signal obtained by subjecting a reference signal corresponding to the transmission signal to a predetermined Doppler frequency shift, and reception for receiving a reception signal from the object with respect to the transmission signal A unit, and a signal processing unit that performs distance estimation signal processing between the received signal, the reference signal, and the Doppler shift reference signal.
- the measurement device is typically a lidar, but the present invention can also be applied to a radar.
- the rider can achieve high efficiency using low peak power and long-time pulse transmission, and the system can be reduced in size, weight, and power consumption. Further, in the radar, it is possible to prevent deterioration of the received signal, and further low peak power and long-time pulse transmission is possible.
- the Doppler shift reference signal creation unit performs the Doppler shift reference signal obtained by performing the Doppler frequency shift arbitrarily set based on the relative speed between the reference signal and the target object. Is to create.
- the Doppler shift reference signal creation unit creates one or more Doppler shift reference signals. Two or more different Doppler shift reference signals may be created.
- the information on the object is output as a Doppler spectrum at an arbitrary distance using an independent processing result by the signal processing unit.
- a signal processing method transmits a transmission signal having a low peak power and a long-time pulse (including a continuous wave) and subjected to predetermined modulation to an object, and according to the transmission signal
- a plurality of Doppler shift reference signals obtained by performing a predetermined Doppler frequency shift on the reference signal, receiving a reception signal from an object with respect to the transmission signal, receiving the reception signal, the reference signal, and each Doppler shift reference signal,
- the distance estimation signal processing is performed between the two, and the information on the object is output using the performed independent processing results.
- FIG. 1 is a block diagram showing the configuration of a rider according to an embodiment of the present invention.
- the lidar 1 typically irradiates a pulsed laser beam (transmission signal) toward an object 2 at a long distance, for example, a particulate scatterer such as a wind, to form a particulate form. Receives scattered light from a scatterer. Based on the received signal, the lidar 1 outputs information 3 regarding the distance to the object 2 at a long distance and the properties (for example, reflection intensity, relative speed, etc.) of the object 2.
- the target object 2 may be a single object such as an aircraft, or a plurality of aircraft, in addition to a particulate scatterer such as wind.
- the rider 1 includes a transmission unit 10, a storage unit 20, a Doppler shift reference signal creation unit 30, a reception unit 40, a signal processing unit 50, and an output unit 60.
- the transmission unit 10 transmits a transmission signal composed of pulsed laser light.
- the transmission unit 10 modulates a long-time pulse output from an external resonator type laser diode (ECLD) with a chirp signal transmitted from the transmitter in the case of the pulse compression method, Are transmitted through an amplifier and a telescope.
- the predetermined modulation for such a pulse may be any of AM modulation, FM modulation, phase modulation, and the like.
- the FMCW (Frequency Modulation Continuous Wave) method or the like can be used.
- the transmission unit 10 typically transmits a repetitive pulse 201 having a low peak power and a long pulse (including a continuous wave) and a predetermined modulation as a transmission signal.
- symbol 202 has shown an example of the high peak electric power and a short time pulse.
- the peak power of a high peak power / short-time pulse is about several tens of watts
- the pulse width is about 1 ⁇ sec
- the pulse repetition interval is about 100 ⁇ sec.
- the low peak power / long pulse typically has a peak power of about 1 W, a pulse width of about several tens of ⁇ sec, and a pulse repetition interval of about 100 ⁇ sec.
- these peak powers and pulse widths vary depending on the application.
- the storage unit 20 stores a modulation signal for a pulse as a reference signal corresponding to the transmission signal.
- the Doppler shift reference signal creation unit 30 creates a plurality of Doppler shift reference signals obtained by subjecting the reference signal stored in the storage unit 20 to a predetermined Doppler frequency shift.
- the Doppler shift reference signal creation unit 30 typically includes a Doppler according to a relative speed between the reference signal and the object 2, for example, a wind speed arbitrarily set for the particulate scatterer that is the object 2.
- a Doppler shift reference signal subjected to frequency shift is created.
- the Doppler shift reference signal creation unit 30 performs a Doppler shift reference signal obtained by applying a Doppler frequency shift when the wind speed is 1 m / s to the reference signal, and a Doppler frequency shift when the reference signal is 2 m / s.
- a Doppler shift reference signal, a Doppler shift reference signal obtained by performing a Doppler frequency shift when the reference signal is 3 m / s, and the like are created.
- Such a wind speed value and the number of Doppler shift reference signals to be created may be set as appropriate.
- the reference signal is subjected to Doppler frequency shift according to the wind speed.
- a Doppler frequency shift may be applied to the reference signal.
- the reference signal may be subjected to a Doppler frequency shift according to the above-described navigation speed and the wind speed as described above.
- the reception unit 40 receives a reception signal (scattered light) from the object 2 with respect to the transmission signal.
- the receiving unit 40 receives scattered light via a telescope, and performs photoelectric conversion by superimposing the light on a LO (Local Oscillator) signal that is an output of the external resonator type laser diode (ECLD).
- LO Local Oscillator
- the signal processing unit 50 performs distance estimation signal processing between the photoelectrically converted reception signal, the reference signal stored in the storage unit 20, and each Doppler shift reference signal created by the Doppler shift reference signal creation unit 30. .
- the distance estimation signal processing is based on a calculation including a reception signal and a reference signal or a Doppler shift reference signal as an input by using that the reception signal is formed based on a known signal (reference signal) pattern.
- Distance estimation is performed by calculating a distance profile of reception intensity. Taking the matched filter described in Non-Patent Document 1 as an example, this calculates the cross-correlation between the received signal and the reference signal (Doppler shift reference signal). For example, when the received signal is s rec (t) and the reference signal (Doppler shift reference signal) is s ref (t), the cross-correlation C ( ⁇ ) is calculated as follows.
- C ( ⁇ ) ⁇ s ref (t ⁇ ) s rec (t) dt
- the object 2 on the propagation path has the reception intensity from the object 2 at a position corresponding to the relative distance on the distance profile of the reception intensity, for example, as shown in FIG. Appear with uncertainty that is inversely proportional to the frequency bandwidth of the reference signal.
- FIG. 3 is an example of a distance profile of the received intensity, and is an example in the case where a single object 2 exists at a relative distance of about 75 m.
- the distance profile typically appears not as a delta function but as a function having a width (uncertainty) as shown in the figure.
- the output unit 60 outputs information to be observed (Doppler spectrum) at an arbitrary distance using the obtained independent samples.
- the Doppler spectrum is a Doppler velocity profile of received intensity at an arbitrary distance, for example, as shown in FIG.
- FIG. 4 is an example of a speed profile of received power, and shows an example in which the relative speed of the object 2 is 0 m / sec. In FIG. 4, only the positive side of the speed is displayed, but the definition range of the normal speed ranges from positive to negative as ⁇ xx to xxxm / sec.
- the lidar 1 extracts an arbitrary distance from the distance estimation signal processing result of all the reference signals and the Doppler shift reference signals (each corresponding to an arbitrary speed), thereby FIG.
- the Doppler spectrum Doppler velocity profile of the received intensity illustrated in FIG.
- a Doppler shift reference signal subjected to a Doppler frequency shift according to the relative speed between the object 2 and the wind speed of a particulate scatterer such as wind is generated in the received signal, Distance estimation signal processing is performed not only between the received signal and the reference signal but also the Doppler shift reference signal. Therefore, even when the Doppler frequency shift level is increased, high efficiency using low peak power and long-time pulse transmission can be realized. Therefore, the power amplifier of the transmission unit and the system for cooling the power amplifier can be reduced in scale.
- the lidar 1 according to the present embodiment has performance equivalent to that of high peak power / short-time pulse transmission with respect to the details of spatial information in observation and the signal-to-noise ratio, and further downsizing, weight reduction, and low consumption. Electricity can be realized
- Aircraft maker A small, lightweight, and low-power-rider that applies this technology will be installed on platforms that have strict restrictions on size, weight, and power consumption. By using the detection result of wind speed, etc., flight avoiding turbulence of air current, stable flight by aircraft control, etc. are realized. Downsizing, weight reduction, and low power consumption make it possible not only to install on large aircraft expected in the latest technology at the present time, but also to medium-sized and smaller aircraft, expanding the scope of application.
- Satellite maker A small, lightweight, and low-power-consumption rider that applies this technology will be installed on platforms that have strict restrictions on size, weight, and power consumption for the satellites. Measure the global environment such as wind speed and fine particle concentration, and make scientific contributions such as knowledge on climate change. It will be possible to reduce the demand for a satellite platform for the mission. ⁇ Automobile manufacturers As with aircraft, installing a small, lightweight, and low-power-consumption lidar that applies this technology makes it possible to increase the safety of driving.
- Wind Resource Survey Use a small, lightweight, low power consumption lidar to which this technology is applied in order to select the installation location of wind power generation facilities. As the operation becomes easier due to the reduction in size, weight and power consumption, it is expected to secure a better installation location and to reduce the survey cost.
- the wind observation lidar market for wind resource surveys is large in Europe. ⁇ Air pollution survey Same as wind resource survey. ⁇ Safe airport operation
- the present invention is not limited to the above-described embodiment, and various modifications can be made and the implementation is within the scope of the technical idea of the present invention.
- the present invention is applied to a lidar, but the present invention can also be applied to a radar.
- the description has been made on the assumption of a plurality of Doppler shift reference signals.
- the number of Doppler shift reference signals may be one.
- the configuration of the transmission unit and the reception unit is not limited to the above-described embodiment, and various forms are possible.
- a telescope or the like may be shared by the transmission / reception unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
[Problem] To reduce size, weight, and power consumption. [Solution] LIDAR 1 that comprises: a transmission unit 10 that uses a long/low-peak-power pulse to transmit a transmission signal to which prescribed modulation has been applied; a Doppler shift reference signal creation unit 30 that creates a Doppler shift reference signal that is obtained by applying a prescribed Doppler frequency shift to a reference signal that corresponds to the transmission signal; a reception unit 40 that receives, from a target, a reception signal for the transmission signal; and a signal processing unit 50 that performs distance estimation signal processing on the reception signal, the reference signal, and the Doppler shift reference signal.
Description
本発明は、航空機や衛星、自動車などの様々な技術分野に用いられる計測装置及び信号処理方法に関するものであり、典型的にはライダ及びその信号処理方法に関するものである。
The present invention relates to a measuring device and a signal processing method used in various technical fields such as an aircraft, a satellite, and an automobile, and typically relates to a lidar and its signal processing method.
これまでレーダにおいて、高ピーク電力・短時間パルス送信に対して、低ピーク電力・長時間パルス送信を利用した高効率化が成されてきた。これは、長時間パルスに対し任意の変調を施して広周波数帯域化した信号を送信し、対象物からの受信信号に対し距離推定信号処理を適用することで、高効率化(空間的に詳細な情報を高い信号対雑音比で得る)を実現するものである。
So far, in radar, high peak power / short pulse transmission has been improved by using low peak power / long pulse transmission. This is a high-efficiency (spatial details) by transmitting a signal with a wide frequency band by applying arbitrary modulation to a long-time pulse, and applying distance estimation signal processing to the received signal from the object. A high signal-to-noise ratio).
距離推定信号処理方式としては、既知の送信信号(参照信号)の類似性に基づくパルス圧縮方式、参照信号の変調に基づき受信信号の周波数成分から距離推定を行うFMCW (Frequency Modulation Continuous Wave)方式、の二つが主に用いられてきた(特許文献1~4、非特許文献1参照)。
As a distance estimation signal processing method, a pulse compression method based on the similarity of a known transmission signal (reference signal), an FMCW (Frequency Modulation Continuous Wave) method that performs distance estimation from a frequency component of a reception signal based on the modulation of the reference signal, Have been mainly used (see Patent Documents 1 to 4 and Non-Patent Document 1).
この種のシステムにおいては、受信信号には対象物との間の相対速度に対応したドップラー周波数シフトが付加されるため、これにより参照信号との間に差異が生まれ、効率が劣化する問題がある。ドップラー周波数シフトは送信周波数に比例するため、特に光を送信するライダにおいては、上記高効率化技術の適用そのものが困難であった。
In this type of system, the received signal is added with a Doppler frequency shift corresponding to the relative speed with the object, which causes a difference between the reference signal and the efficiency. . Since the Doppler frequency shift is proportional to the transmission frequency, it has been difficult to apply the above-described high-efficiency technique, particularly in a lidar that transmits light.
一方、高ピーク電力・短時間パルス送信の場合には、特に光を送信するライダにおいては、パワーアンプやこれを冷却するシステムのサイズが大きくなり、かつ、重量も重くなり、更には消費電力が大きくなる、という問題がある。
また、レーダにおいても同様の理由で受信信号の劣化の問題があり、更なる低ピーク電力・長時間パルス送信の妨げとなっている。
以上のような事情に鑑み、本発明の目的は、小型化、軽量化及び低消費電力化を実現することができる計測装置及び信号処理方法を提供することにある。 On the other hand, in the case of high peak power and short-time pulse transmission, especially in a lidar that transmits light, the size of the power amplifier and the system that cools the power amplifier is increased, the weight is increased, and power consumption is further reduced. There is a problem of growing.
The radar also has a problem of deterioration of the received signal for the same reason, which hinders further low peak power / long-time pulse transmission.
In view of the circumstances as described above, it is an object of the present invention to provide a measuring apparatus and a signal processing method that can realize miniaturization, weight reduction, and low power consumption.
また、レーダにおいても同様の理由で受信信号の劣化の問題があり、更なる低ピーク電力・長時間パルス送信の妨げとなっている。
以上のような事情に鑑み、本発明の目的は、小型化、軽量化及び低消費電力化を実現することができる計測装置及び信号処理方法を提供することにある。 On the other hand, in the case of high peak power and short-time pulse transmission, especially in a lidar that transmits light, the size of the power amplifier and the system that cools the power amplifier is increased, the weight is increased, and power consumption is further reduced. There is a problem of growing.
The radar also has a problem of deterioration of the received signal for the same reason, which hinders further low peak power / long-time pulse transmission.
In view of the circumstances as described above, it is an object of the present invention to provide a measuring apparatus and a signal processing method that can realize miniaturization, weight reduction, and low power consumption.
上記目的を達成するため、本発明の一形態に係る計測装置は、低ピーク電力・長時間パルス(連続波含む)で、かつ、所定の変調が施された送信信号を対象物に送信する送信ユニットと、前記送信信号に応じた参照信号に所定のドップラー周波数シフトを施したドップラーシフト参照信号を作成するドップラーシフト参照信号作成部と、前記送信信号に対する前記対象物からの受信信号を受信する受信ユニットと、前記受信信号と前記参照信号及び前記ドップラーシフト参照信号との間で距離推定信号処理を実施する信号処理部とを具備する。計測装置としては、典型的にはライダであるが、本発明はレーダにも適用可能である。
In order to achieve the above object, a measurement apparatus according to an aspect of the present invention transmits a transmission signal having a low peak power, a long-time pulse (including a continuous wave) and a predetermined modulation to a target. A unit, a Doppler shift reference signal creation unit for creating a Doppler shift reference signal obtained by subjecting a reference signal corresponding to the transmission signal to a predetermined Doppler frequency shift, and reception for receiving a reception signal from the object with respect to the transmission signal A unit, and a signal processing unit that performs distance estimation signal processing between the received signal, the reference signal, and the Doppler shift reference signal. The measurement device is typically a lidar, but the present invention can also be applied to a radar.
本発明により、ライダにおいては低ピーク電力・長時間パルス送信を利用した高効率化が可能となり、システムの小型化、軽量化及び低消費電力化を実現することができる。また、レーダにおいては受信信号の劣化を防ぐことができ、更なる低ピーク電力・長時間パルス送信が可能となる。
According to the present invention, the rider can achieve high efficiency using low peak power and long-time pulse transmission, and the system can be reduced in size, weight, and power consumption. Further, in the radar, it is possible to prevent deterioration of the received signal, and further low peak power and long-time pulse transmission is possible.
本発明の一形態に係る計測装置では、前記ドップラーシフト参照信号作成部は、前記参照信号に前記対象物との間の相対速度に基づき任意に設定した前記ドップラー周波数シフトを施したドップラーシフト参照信号を作成するものである。
本発明の一実施形態に係る計測装置では、前記ドップラーシフト参照信号作成部は、1以上のドップラーシフト参照信号を作成するものである。2つ以上の異なるドップラーシフト参照信号を作成するものであってもよい。 In the measurement apparatus according to an aspect of the present invention, the Doppler shift reference signal creation unit performs the Doppler shift reference signal obtained by performing the Doppler frequency shift arbitrarily set based on the relative speed between the reference signal and the target object. Is to create.
In the measurement apparatus according to an embodiment of the present invention, the Doppler shift reference signal creation unit creates one or more Doppler shift reference signals. Two or more different Doppler shift reference signals may be created.
本発明の一実施形態に係る計測装置では、前記ドップラーシフト参照信号作成部は、1以上のドップラーシフト参照信号を作成するものである。2つ以上の異なるドップラーシフト参照信号を作成するものであってもよい。 In the measurement apparatus according to an aspect of the present invention, the Doppler shift reference signal creation unit performs the Doppler shift reference signal obtained by performing the Doppler frequency shift arbitrarily set based on the relative speed between the reference signal and the target object. Is to create.
In the measurement apparatus according to an embodiment of the present invention, the Doppler shift reference signal creation unit creates one or more Doppler shift reference signals. Two or more different Doppler shift reference signals may be created.
本発明の一形態に係る計測装置では、前記信号処理部による独立した処理結果を用いて、任意の距離におけるドップラースペクトルとして、前記対象物の情報を出力するものである。
In the measurement apparatus according to an aspect of the present invention, the information on the object is output as a Doppler spectrum at an arbitrary distance using an independent processing result by the signal processing unit.
本発明の一形態に係る信号処理方法は、低ピーク電力・長時間パルス(連続波含む)で、かつ、所定の変調が施された送信信号を対象物に送信し、前記送信信号に応じた参照信号に所定のドップラー周波数シフトを施した複数のドップラーシフト参照信号を作成し、前記送信信号に対する対象物からの受信信号を受信し、前記受信信号と前記参照信号及び各前記ドップラーシフト参照信号との間で距離推定信号処理を実施し、前記実施された独立した処理結果を用いて前記対象物の情報を出力するものである。
A signal processing method according to an aspect of the present invention transmits a transmission signal having a low peak power and a long-time pulse (including a continuous wave) and subjected to predetermined modulation to an object, and according to the transmission signal A plurality of Doppler shift reference signals obtained by performing a predetermined Doppler frequency shift on the reference signal, receiving a reception signal from an object with respect to the transmission signal, receiving the reception signal, the reference signal, and each Doppler shift reference signal, The distance estimation signal processing is performed between the two, and the information on the object is output using the performed independent processing results.
本発明により、小型化・軽量化・低消費電力化を実現することができる。
According to the present invention, a reduction in size, weight and power consumption can be realized.
以下、図面を参照しながら、本発明の実施形態を説明する。
図1は、本発明の一実施形態に係るライダの構成を示すブロック図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of a rider according to an embodiment of the present invention.
図1は、本発明の一実施形態に係るライダの構成を示すブロック図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of a rider according to an embodiment of the present invention.
図1に示すように、ライダ1は、典型的には、パルス状のレーザ光(送信信号)を遠距離にある対象物2、例えば風等の粒子状散乱体に向けて照射し、粒子状散乱体からの散乱光を受信する。ライダ1は、受信した受信信号に基づき、遠距離にある対象物2までの距離やその対象物2の性質(例えば、反射強度、相対速度など)に関する情報3を出力する。なお、対象物2としては、風等の粒子状散乱体の他、航空機等の単一の物体、或いは複数の航空機などであってもよい。
ライダ1は、送信ユニット10と、記憶部20と、ドップラーシフト参照信号作成部30と、受信ユニット40と、信号処理部50と、出力部60とを有する。 As shown in FIG. 1, the lidar 1 typically irradiates a pulsed laser beam (transmission signal) toward anobject 2 at a long distance, for example, a particulate scatterer such as a wind, to form a particulate form. Receives scattered light from a scatterer. Based on the received signal, the lidar 1 outputs information 3 regarding the distance to the object 2 at a long distance and the properties (for example, reflection intensity, relative speed, etc.) of the object 2. The target object 2 may be a single object such as an aircraft, or a plurality of aircraft, in addition to a particulate scatterer such as wind.
The rider 1 includes atransmission unit 10, a storage unit 20, a Doppler shift reference signal creation unit 30, a reception unit 40, a signal processing unit 50, and an output unit 60.
ライダ1は、送信ユニット10と、記憶部20と、ドップラーシフト参照信号作成部30と、受信ユニット40と、信号処理部50と、出力部60とを有する。 As shown in FIG. 1, the lidar 1 typically irradiates a pulsed laser beam (transmission signal) toward an
The rider 1 includes a
送信ユニット10は、パルス状のレーザ光からなる送信信号を送信する。例えば、送信ユニット10は、光変調器において、外部共振器型レーザダイオード(ECLD)より出力された長時間パルスを、パルス圧縮方式の場合には発信器が発信したチャープ信号で変調し、その信号を増幅器及び望遠鏡を介して送信する。なお、このようなパルスに対する所定の変調は、AM変調、FM変調、位相変調などのいずれであっても構わない。例えば、FMCW (Frequency Modulation Continuous Wave)方式などを用いることができる。
The transmission unit 10 transmits a transmission signal composed of pulsed laser light. For example, in the optical modulator, the transmission unit 10 modulates a long-time pulse output from an external resonator type laser diode (ECLD) with a chirp signal transmitted from the transmitter in the case of the pulse compression method, Are transmitted through an amplifier and a telescope. Note that the predetermined modulation for such a pulse may be any of AM modulation, FM modulation, phase modulation, and the like. For example, the FMCW (Frequency Modulation Continuous Wave) method or the like can be used.
送信ユニット10は、典型的には図2に示すように、送信信号として低ピーク電力・長時間パルス(連続波含む)で、かつ、所定の変調が施された繰り返しパルス201を送信する。図2において、符号202は高ピーク電力・短時間パルスの一例を示している。航空機に搭載されるライダ1の場合には、例えば高ピーク電力・短時間パルスのピーク電力が数十W程度以上でパルス幅が1μsec程度、パルスの繰り返し間隔が100μsec程度であるのに対して、低ピーク電力・長時間パルス(連続波含む)とは、典型的には、ピーク電力が1W程度でパルス幅が数十μsec程度、パルスの繰り返し間隔が100μsec程度である。ただし、これらのピーク電力やパルス幅などは用途によって様々である。
As shown in FIG. 2, the transmission unit 10 typically transmits a repetitive pulse 201 having a low peak power and a long pulse (including a continuous wave) and a predetermined modulation as a transmission signal. In FIG. 2, the code | symbol 202 has shown an example of the high peak electric power and a short time pulse. In the case of the lidar 1 mounted on an aircraft, for example, the peak power of a high peak power / short-time pulse is about several tens of watts, the pulse width is about 1 μsec, and the pulse repetition interval is about 100 μsec. The low peak power / long pulse (including continuous wave) typically has a peak power of about 1 W, a pulse width of about several tens of μsec, and a pulse repetition interval of about 100 μsec. However, these peak powers and pulse widths vary depending on the application.
記憶部20は、送信信号に応じた参照信号として、パルスに対する変調信号を保存する。
The storage unit 20 stores a modulation signal for a pulse as a reference signal corresponding to the transmission signal.
ドップラーシフト参照信号作成部30は、記憶部20に記憶された参照信号に所定のドップラー周波数シフトを施した複数のドップラーシフト参照信号を作成する。
The Doppler shift reference signal creation unit 30 creates a plurality of Doppler shift reference signals obtained by subjecting the reference signal stored in the storage unit 20 to a predetermined Doppler frequency shift.
ドップラーシフト参照信号作成部30は、典型的には、参照信号に、対象物2との間の相対速度、例えば対象物2である粒子状散乱体に対して任意に設定した風速に応じたドップラー周波数シフトを施したドップラーシフト参照信号を作成する。
The Doppler shift reference signal creation unit 30 typically includes a Doppler according to a relative speed between the reference signal and the object 2, for example, a wind speed arbitrarily set for the particulate scatterer that is the object 2. A Doppler shift reference signal subjected to frequency shift is created.
例えば、ドップラーシフト参照信号作成部30は、参照信号に風速を1m/sとしたときのドップラー周波数シフトを施したドップラーシフト参照信号、参照信号に2m/sとしたときのドップラー周波数シフトを施したドップラーシフト参照信号、参照信号に3m/sとしたときのドップラー周波数シフトを施したドップラーシフト参照信号などを作成する。このような風速値や作成するドップラーシフト参照信号の数は適宜設定すれば良い。また、この実施形態では、参照信号に風速に応じたドップラー周波数シフトを施すものであるが、風速以外の他のパラメータ、例えば航空機がこのライダ1を搭載する場合には任意に設定した航速に応じたドップラー周波数シフトを、参照信号に施すものであってもよい。更に、例えばこのような航速及び上記のような風速の両方を加味したものに応じたドップラー周波数シフトを、参照信号に施すものであってもよい。
For example, the Doppler shift reference signal creation unit 30 performs a Doppler shift reference signal obtained by applying a Doppler frequency shift when the wind speed is 1 m / s to the reference signal, and a Doppler frequency shift when the reference signal is 2 m / s. A Doppler shift reference signal, a Doppler shift reference signal obtained by performing a Doppler frequency shift when the reference signal is 3 m / s, and the like are created. Such a wind speed value and the number of Doppler shift reference signals to be created may be set as appropriate. In this embodiment, the reference signal is subjected to Doppler frequency shift according to the wind speed. However, other parameters other than the wind speed, for example, when the aircraft is equipped with the lidar 1, depending on the arbitrarily set navigation speed. Alternatively, a Doppler frequency shift may be applied to the reference signal. Further, for example, the reference signal may be subjected to a Doppler frequency shift according to the above-described navigation speed and the wind speed as described above.
受信ユニット40は、送信信号に対する対象物2からの受信信号(散乱光)を受信する。例えば、受信ユニット40は、望遠鏡を介して散乱光を入光し、上記の外部共振器型レーザダイオード(ECLD)の出力であるLO(Local Oscillator)信号と重畳して光電変換する。
The reception unit 40 receives a reception signal (scattered light) from the object 2 with respect to the transmission signal. For example, the receiving unit 40 receives scattered light via a telescope, and performs photoelectric conversion by superimposing the light on a LO (Local Oscillator) signal that is an output of the external resonator type laser diode (ECLD).
信号処理部50は、光電変換された受信信号と記憶部20に保存された参照信号及びドップラーシフト参照信号作成部30により作成された各ドップラーシフト参照信号との間で距離推定信号処理を実施する。
The signal processing unit 50 performs distance estimation signal processing between the photoelectrically converted reception signal, the reference signal stored in the storage unit 20, and each Doppler shift reference signal created by the Doppler shift reference signal creation unit 30. .
ここで、距離推定信号処理とは、受信信号が既知の信号(参照信号)パターンに基づいて形成されることを利用して、受信信号と参照信号又はドップラーシフト参照信号を入力に含む計算から、受信強度の距離プロファイルを算出することで距離推定を行うものである。非特許文献1に記載されたマッチドフィルタを例にとると、これは受信信号と参照信号(ドップラーシフト参照信号)との相互相関を計算する。
例えば、受信信号をsrec(t)、参照信号(ドップラーシフト参照信号)をsref(t)とすると、相互相関C(τ)は以下のように算出する。
C(τ)=∫sref(t-τ)srec(t)dt Here, the distance estimation signal processing is based on a calculation including a reception signal and a reference signal or a Doppler shift reference signal as an input by using that the reception signal is formed based on a known signal (reference signal) pattern. Distance estimation is performed by calculating a distance profile of reception intensity. Taking the matched filter described in Non-Patent Document 1 as an example, this calculates the cross-correlation between the received signal and the reference signal (Doppler shift reference signal).
For example, when the received signal is s rec (t) and the reference signal (Doppler shift reference signal) is s ref (t), the cross-correlation C (τ) is calculated as follows.
C (τ) = ∫s ref (t−τ) s rec (t) dt
例えば、受信信号をsrec(t)、参照信号(ドップラーシフト参照信号)をsref(t)とすると、相互相関C(τ)は以下のように算出する。
C(τ)=∫sref(t-τ)srec(t)dt Here, the distance estimation signal processing is based on a calculation including a reception signal and a reference signal or a Doppler shift reference signal as an input by using that the reception signal is formed based on a known signal (reference signal) pattern. Distance estimation is performed by calculating a distance profile of reception intensity. Taking the matched filter described in Non-Patent Document 1 as an example, this calculates the cross-correlation between the received signal and the reference signal (Doppler shift reference signal).
For example, when the received signal is s rec (t) and the reference signal (Doppler shift reference signal) is s ref (t), the cross-correlation C (τ) is calculated as follows.
C (τ) = ∫s ref (t−τ) s rec (t) dt
相互相関の計算の結果、伝搬経路上の対象物2は、例えば図3に示すように、受信強度の距離プロファイル上相対距離に対応する位置に、対象物2からの受信強度を有し、かつ、参照信号の周波数帯域幅に逆比例する不確定性を有して現れる。ここで、図3は受信強度の距離プロファイルの一例であり、単一の対象物2が相対距離約75mに存在した場合の例である。距離プロファイルは、典型的には、デルタ関数ではなく、図のような幅(不確定性)を持った関数で現れる。
As a result of the calculation of the cross-correlation, the object 2 on the propagation path has the reception intensity from the object 2 at a position corresponding to the relative distance on the distance profile of the reception intensity, for example, as shown in FIG. Appear with uncertainty that is inversely proportional to the frequency bandwidth of the reference signal. Here, FIG. 3 is an example of a distance profile of the received intensity, and is an example in the case where a single object 2 exists at a relative distance of about 75 m. The distance profile typically appears not as a delta function but as a function having a width (uncertainty) as shown in the figure.
出力部60は、得られた複数の独立サンプルを用いて、観測対象の情報(ドップラースペクトル)を任意の距離で出力する。ドップラースペクトルとは、例えば図4に示すように、任意の距離における、受信強度のドップラー速度プロファイルである。ここで、図4は受信電力の速度プロファイルの一例であり、対象物2の相対速度が0m/secの場合の例を示している。なお、図4では速度が正の側しか表示していないが、通常速度の定義域は-xx~xx m/secのように正負に渡る。
The output unit 60 outputs information to be observed (Doppler spectrum) at an arbitrary distance using the obtained independent samples. The Doppler spectrum is a Doppler velocity profile of received intensity at an arbitrary distance, for example, as shown in FIG. Here, FIG. 4 is an example of a speed profile of received power, and shows an example in which the relative speed of the object 2 is 0 m / sec. In FIG. 4, only the positive side of the speed is displayed, but the definition range of the normal speed ranges from positive to negative as −xx to xxxm / sec.
このように本実施形態に係るライダ1では、上記の全ての参照信号及びドップラーシフト参照信号(それぞれが任意の速度に対応)による距離推定信号処理結果から、任意の距離を取り出すことで、図4に例示したドップラースペクトル(受信強度のドップラー速度プロファイル)が構成される。
As described above, the lidar 1 according to the present embodiment extracts an arbitrary distance from the distance estimation signal processing result of all the reference signals and the Doppler shift reference signals (each corresponding to an arbitrary speed), thereby FIG. The Doppler spectrum (Doppler velocity profile of the received intensity) illustrated in FIG.
本実施形態に係るライダ1では、受信信号には対象物2との間の相対速度、例えば風等の粒子状散乱体の風速に応じたドップラー周波数シフトを施したドップラーシフト参照信号を作成し、受信信号と参照信号だけでなくドップラーシフト参照信号との間でも距離推定信号処理を実施している。従って、ドップラー周波数シフトのレベルが大きくなっても低ピーク電力・長時間パルス送信を利用した高効率化が実現できる。よって、送信ユニットのパワーアンプやこれを冷却するシステムを小規模化できる。つまり、本実施形態に係るライダ1は、観測における空間情報の詳細さ及び信号対雑音比に関して高ピーク電力・短時間パルス送信と同等の性能を有した上で、小型化、軽量化及び低消費電力化を実現することができる
In the lidar 1 according to the present embodiment, a Doppler shift reference signal subjected to a Doppler frequency shift according to the relative speed between the object 2 and the wind speed of a particulate scatterer such as wind is generated in the received signal, Distance estimation signal processing is performed not only between the received signal and the reference signal but also the Doppler shift reference signal. Therefore, even when the Doppler frequency shift level is increased, high efficiency using low peak power and long-time pulse transmission can be realized. Therefore, the power amplifier of the transmission unit and the system for cooling the power amplifier can be reduced in scale. In other words, the lidar 1 according to the present embodiment has performance equivalent to that of high peak power / short-time pulse transmission with respect to the details of spatial information in observation and the signal-to-noise ratio, and further downsizing, weight reduction, and low consumption. Electricity can be realized
本技術に係るライダは、以下の示す様々な技術分野に適用可能である。
・航空機メーカ
航空機という搭載物に対してサイズ・重量・消費電力に厳しい制限があるプラットフォームにおいて、本技術を適用した小型・軽量・低消費電力のライダを搭載する。風速の検知結果等を用いて、気流の乱れの回避飛行や航空機制御による安定飛行等を実現する。小型化・軽量化・低消費電力化により、現時点での最新技術で想定されている大型の航空機だけでなく、中型以下の航空機への搭載が可能となり、適用範囲が広がる。 The rider according to the present technology can be applied to various technical fields shown below.
・ Aircraft maker A small, lightweight, and low-power-rider that applies this technology will be installed on platforms that have strict restrictions on size, weight, and power consumption. By using the detection result of wind speed, etc., flight avoiding turbulence of air current, stable flight by aircraft control, etc. are realized. Downsizing, weight reduction, and low power consumption make it possible not only to install on large aircraft expected in the latest technology at the present time, but also to medium-sized and smaller aircraft, expanding the scope of application.
・航空機メーカ
航空機という搭載物に対してサイズ・重量・消費電力に厳しい制限があるプラットフォームにおいて、本技術を適用した小型・軽量・低消費電力のライダを搭載する。風速の検知結果等を用いて、気流の乱れの回避飛行や航空機制御による安定飛行等を実現する。小型化・軽量化・低消費電力化により、現時点での最新技術で想定されている大型の航空機だけでなく、中型以下の航空機への搭載が可能となり、適用範囲が広がる。 The rider according to the present technology can be applied to various technical fields shown below.
・ Aircraft maker A small, lightweight, and low-power-rider that applies this technology will be installed on platforms that have strict restrictions on size, weight, and power consumption. By using the detection result of wind speed, etc., flight avoiding turbulence of air current, stable flight by aircraft control, etc. are realized. Downsizing, weight reduction, and low power consumption make it possible not only to install on large aircraft expected in the latest technology at the present time, but also to medium-sized and smaller aircraft, expanding the scope of application.
・衛星メーカ
人工衛星という搭載物に対してサイズ・重量・消費電力に厳しい制限があるプラットフォームにおいて、本技術を適用した小型・軽量・低消費電力のライダを搭載する。風速や微小粒子の濃度等の地球環境計測を行い、気候変動に関する知見等の科学的貢献を行う。同ミッションを目的とした人工衛星のプラットフォームとしての要求を下げることが可能となる。
・自動車メーカ
航空機同様、本技術を適用した小型・軽量・低消費電力のライダを搭載することで、自動車運転の安全性を高めることが可能となる。 ・ Satellite maker A small, lightweight, and low-power-consumption rider that applies this technology will be installed on platforms that have strict restrictions on size, weight, and power consumption for the satellites. Measure the global environment such as wind speed and fine particle concentration, and make scientific contributions such as knowledge on climate change. It will be possible to reduce the demand for a satellite platform for the mission.
・ Automobile manufacturers As with aircraft, installing a small, lightweight, and low-power-consumption lidar that applies this technology makes it possible to increase the safety of driving.
人工衛星という搭載物に対してサイズ・重量・消費電力に厳しい制限があるプラットフォームにおいて、本技術を適用した小型・軽量・低消費電力のライダを搭載する。風速や微小粒子の濃度等の地球環境計測を行い、気候変動に関する知見等の科学的貢献を行う。同ミッションを目的とした人工衛星のプラットフォームとしての要求を下げることが可能となる。
・自動車メーカ
航空機同様、本技術を適用した小型・軽量・低消費電力のライダを搭載することで、自動車運転の安全性を高めることが可能となる。 ・ Satellite maker A small, lightweight, and low-power-consumption rider that applies this technology will be installed on platforms that have strict restrictions on size, weight, and power consumption for the satellites. Measure the global environment such as wind speed and fine particle concentration, and make scientific contributions such as knowledge on climate change. It will be possible to reduce the demand for a satellite platform for the mission.
・ Automobile manufacturers As with aircraft, installing a small, lightweight, and low-power-consumption lidar that applies this technology makes it possible to increase the safety of driving.
・風資源調査
風力発電設備の設置場所選定のために、本技術を適用した小型・軽量・低消費電力のライダを利用する。小型化・軽量化・低消費電力化により運用が容易となることで、より優れた設置場所確保の実現及び調査費の削減が期待される。なお、風資源調査における風観測ライダの市場は欧州において大きい。
・大気汚染調査
風資源調査に同じである。
・空港の安全運航 ・ Wind Resource Survey Use a small, lightweight, low power consumption lidar to which this technology is applied in order to select the installation location of wind power generation facilities. As the operation becomes easier due to the reduction in size, weight and power consumption, it is expected to secure a better installation location and to reduce the survey cost. The wind observation lidar market for wind resource surveys is large in Europe.
・ Air pollution survey Same as wind resource survey.
・ Safe airport operation
風力発電設備の設置場所選定のために、本技術を適用した小型・軽量・低消費電力のライダを利用する。小型化・軽量化・低消費電力化により運用が容易となることで、より優れた設置場所確保の実現及び調査費の削減が期待される。なお、風資源調査における風観測ライダの市場は欧州において大きい。
・大気汚染調査
風資源調査に同じである。
・空港の安全運航 ・ Wind Resource Survey Use a small, lightweight, low power consumption lidar to which this technology is applied in order to select the installation location of wind power generation facilities. As the operation becomes easier due to the reduction in size, weight and power consumption, it is expected to secure a better installation location and to reduce the survey cost. The wind observation lidar market for wind resource surveys is large in Europe.
・ Air pollution survey Same as wind resource survey.
・ Safe airport operation
本技術を適用した小型・軽量・低消費電力のライダを地上設置し、得られた風データを空港の安全運航及び運航効率の向上のために利用する。大空港における運航効率の向上の手段の代表として新たな滑走路の建設が挙げられるが、風観測ライダの情報による運航効率の向上は、これに比して経済性のメリットが大きいという試算が出ており、国内外の大空港では既に設置が進んでいる。本技術はこの経済性のメリットを大幅に向上するものである。一方地方空港に目を向けると、風の影響が大きい空港が多いものの、現在のライダを設置運用することに負担が大きく、現状配備の計画はない。本技術によりもたらされる経済性のメリットは、地方空港への風観測ライダの配備を進めることが期待できる。
∙ Install a small, lightweight, low-powered lidar that applies this technology on the ground, and use the obtained wind data to improve airport safety and operational efficiency. The construction of a new runway can be mentioned as a representative means of improving operational efficiency at large airports, but it has been estimated that the improvement of operational efficiency based on information from wind observation lidar has a greater economic advantage. It is already installed at major airports in Japan and overseas. This technology greatly improves this economic merit. On the other hand, looking at regional airports, although there are many airports that are greatly affected by wind, there is a large burden on the installation and operation of the current lidar, and there is no plan for current deployment. The economic merit brought about by this technology can be expected to promote the deployment of wind observation lidars at local airports.
本発明は、上記の実施形態に限定されず、様々に変形して実施が可能であり、その実施も本発明の技術思想の範囲内にある。
例えば、上記の実施形態では、本発明をライダに適用したものであるが、本発明はレーダにも適用できる。
また、上記の実施形態では、複数のドップラーシフト参照信号を前提に説明したが、ドップラーシフト参照信号は1つであっても構わない。
更に、送信ユニットや受信ユニットの構成は上記の実施形態に限定されず、様々な形態が考えられる。例えば、送受信ユニットで望遠鏡等を共有しても良い。 The present invention is not limited to the above-described embodiment, and various modifications can be made and the implementation is within the scope of the technical idea of the present invention.
For example, in the above embodiment, the present invention is applied to a lidar, but the present invention can also be applied to a radar.
In the above embodiment, the description has been made on the assumption of a plurality of Doppler shift reference signals. However, the number of Doppler shift reference signals may be one.
Furthermore, the configuration of the transmission unit and the reception unit is not limited to the above-described embodiment, and various forms are possible. For example, a telescope or the like may be shared by the transmission / reception unit.
例えば、上記の実施形態では、本発明をライダに適用したものであるが、本発明はレーダにも適用できる。
また、上記の実施形態では、複数のドップラーシフト参照信号を前提に説明したが、ドップラーシフト参照信号は1つであっても構わない。
更に、送信ユニットや受信ユニットの構成は上記の実施形態に限定されず、様々な形態が考えられる。例えば、送受信ユニットで望遠鏡等を共有しても良い。 The present invention is not limited to the above-described embodiment, and various modifications can be made and the implementation is within the scope of the technical idea of the present invention.
For example, in the above embodiment, the present invention is applied to a lidar, but the present invention can also be applied to a radar.
In the above embodiment, the description has been made on the assumption of a plurality of Doppler shift reference signals. However, the number of Doppler shift reference signals may be one.
Furthermore, the configuration of the transmission unit and the reception unit is not limited to the above-described embodiment, and various forms are possible. For example, a telescope or the like may be shared by the transmission / reception unit.
1 ライダ
2 対象物
3 対象物の情報
10 送信ユニット
20 記憶部
30 ドップラーシフト参照信号作成部
40 受信ユニット
50 信号処理部
60 出力部 DESCRIPTION OF SYMBOLS 1Rider 2 Target object 3 Information of target object 10 Transmission unit 20 Storage part 30 Doppler shift reference signal creation part 40 Reception unit 50 Signal processing part 60 Output part
2 対象物
3 対象物の情報
10 送信ユニット
20 記憶部
30 ドップラーシフト参照信号作成部
40 受信ユニット
50 信号処理部
60 出力部 DESCRIPTION OF SYMBOLS 1
Claims (5)
- 低ピーク電力・長時間パルス(連続波含む)で、かつ、所定の変調が施された送信信号を対象部に送信する送信ユニットと、
前記送信信号に応じた参照信号に所定のドップラー周波数シフトを施したドップラーシフト参照信号を作成するドップラーシフト参照信号作成部と、
前記送信信号に対する前記対象物からの受信信号を受信する受信ユニットと、
前記受信信号と前記参照信号及び前記ドップラーシフト参照信号との間で距離推定信号処理を実施する信号処理部と
を具備する計測装置。 A transmission unit that transmits a transmission signal having a low peak power, a long-time pulse (including a continuous wave) and a predetermined modulation to a target unit;
A Doppler shift reference signal creating unit for creating a Doppler shift reference signal obtained by applying a predetermined Doppler frequency shift to a reference signal corresponding to the transmission signal;
A receiving unit for receiving a received signal from the object with respect to the transmitted signal;
A measurement apparatus comprising: a signal processing unit that performs distance estimation signal processing between the received signal, the reference signal, and the Doppler shift reference signal. - 請求項1に記載の計測装置であって、
前記ドップラーシフト参照信号作成部は、前記参照信号に前記対象物との間の相対速度に基づき任意に設定した前記ドップラー周波数シフトを施したドップラーシフト参照信号を作成する
計測装置。 The measuring device according to claim 1,
The Doppler shift reference signal creation unit creates a Doppler shift reference signal obtained by subjecting the reference signal to the Doppler frequency shift arbitrarily set based on a relative speed between the reference signal and the object. - 請求項1又は2に記載の計測装置であって、
前記ドップラーシフト参照信号作成部は、1以上のドップラーシフト参照信号を作成する
計測装置。 The measuring device according to claim 1 or 2,
The Doppler shift reference signal creating unit creates one or more Doppler shift reference signals. - 請求項1~請求項3のうちいずれか1項に記載の計測装置であって、
前記信号処理部による独立した処理結果を用いて、任意の距離におけるドップラースペクトルとして、前記対象物の情報を出力する
計測装置。 The measuring device according to any one of claims 1 to 3,
A measurement device that outputs information on the object as a Doppler spectrum at an arbitrary distance using an independent processing result by the signal processing unit. - 低ピーク電力・長時間パルス(連続波含む)で、かつ、所定の変調が施された送信信号を対象物に送信し、
前記送信信号に応じた参照信号に所定のドップラー周波数シフトを施した複数のドップラーシフト参照信号を作成し、
前記送信信号に対する前記対象物からの受信信号を受信し、
前記受信信号と前記参照信号及び各前記ドップラーシフト参照信号との間で距離推定信号処理を実施し、
前記実施された独立した処理結果を用いて前記対象物の情報を出力する
信号処理方法。 Low peak power, long-time pulse (including continuous wave), and a transmission signal that has been subjected to predetermined modulation is transmitted to the target,
Creating a plurality of Doppler shift reference signals obtained by applying a predetermined Doppler frequency shift to a reference signal corresponding to the transmission signal;
Receiving a reception signal from the object with respect to the transmission signal;
Performing distance estimation signal processing between the received signal and the reference signal and each of the Doppler shift reference signals;
A signal processing method for outputting information of the object using the implemented independent processing result.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-088724 | 2016-04-27 | ||
JP2016088724A JP6901713B2 (en) | 2016-04-27 | 2016-04-27 | Riders and signal processing methods in the riders |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017187815A1 true WO2017187815A1 (en) | 2017-11-02 |
Family
ID=60161485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009677 WO2017187815A1 (en) | 2016-04-27 | 2017-03-10 | Measurement device and signal processing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6901713B2 (en) |
WO (1) | WO2017187815A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018038128A1 (en) * | 2016-08-26 | 2019-06-24 | 日本電気株式会社 | Moving target detection system and moving target detection method |
US11585928B2 (en) * | 2017-03-22 | 2023-02-21 | Metek Meteorologische Messtechnik Gmbh | LIDAR measuring device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11536805B2 (en) | 2018-06-25 | 2022-12-27 | Silc Technologies, Inc. | Optical switching for tuning direction of LIDAR output signals |
US20200072979A1 (en) * | 2018-08-31 | 2020-03-05 | Silc Technologies, Inc. | Reduction of ADC Sampling Rates in LIDAR Systems |
US11624810B2 (en) | 2019-02-09 | 2023-04-11 | Silc Technologies, Inc. | LIDAR system with reduced speckle sensitivity |
US12019185B2 (en) | 2019-04-16 | 2024-06-25 | Silc Technologies, Inc. | Concurrent LIDAR measurements of a region in a field of view |
JP7405414B2 (en) * | 2020-03-26 | 2023-12-26 | 国立研究開発法人宇宙航空研究開発機構 | Measuring device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107349A (en) * | 1991-10-16 | 1993-04-27 | Mitsubishi Electric Corp | Device for compressing pulse of radar |
JPH10332818A (en) * | 1997-06-03 | 1998-12-18 | Oki Electric Ind Co Ltd | Target position localization method |
JP2014081331A (en) * | 2012-10-18 | 2014-05-08 | Mitsubishi Electric Corp | Anemometer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5553970B2 (en) * | 2008-05-15 | 2014-07-23 | 三菱電機株式会社 | Radar equipment |
EP3156823B1 (en) * | 2014-06-10 | 2020-03-04 | Mitsubishi Electric Corporation | Laser radar device |
-
2016
- 2016-04-27 JP JP2016088724A patent/JP6901713B2/en active Active
-
2017
- 2017-03-10 WO PCT/JP2017/009677 patent/WO2017187815A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05107349A (en) * | 1991-10-16 | 1993-04-27 | Mitsubishi Electric Corp | Device for compressing pulse of radar |
JPH10332818A (en) * | 1997-06-03 | 1998-12-18 | Oki Electric Ind Co Ltd | Target position localization method |
JP2014081331A (en) * | 2012-10-18 | 2014-05-08 | Mitsubishi Electric Corp | Anemometer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018038128A1 (en) * | 2016-08-26 | 2019-06-24 | 日本電気株式会社 | Moving target detection system and moving target detection method |
US11125870B2 (en) | 2016-08-26 | 2021-09-21 | Nec Corporation | Moving-target detection system and moving-target detection method |
US11585928B2 (en) * | 2017-03-22 | 2023-02-21 | Metek Meteorologische Messtechnik Gmbh | LIDAR measuring device |
Also Published As
Publication number | Publication date |
---|---|
JP2017198514A (en) | 2017-11-02 |
JP6901713B2 (en) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017187815A1 (en) | Measurement device and signal processing method | |
JP2017198514A5 (en) | ||
Saponara et al. | Radar sensor signal acquisition and multidimensional FFT processing for surveillance applications in transport systems | |
US9007569B2 (en) | Coherent doppler lidar for measuring altitude, ground velocity, and air velocity of aircraft and spaceborne vehicles | |
US10718863B2 (en) | Mobile radar for visualizing topography | |
US20220187458A1 (en) | Lidar devices with frequency and time multiplexing of sensing signals | |
CN109964143B (en) | Method for processing signals caused by coherent lidar and associated lidar system | |
Onori et al. | Coherent interferometric dual-frequency laser radar for precise range/Doppler measurement | |
Choi et al. | Design of an FMCW radar altimeter for wide-range and low measurement error | |
US11112502B2 (en) | Laser radar system | |
EP2765439B1 (en) | Transponder for Doppler radar, and system for locating targets using such a transponder | |
Lindelöw | Fiber based coherent lidars for remote wind sensing | |
CN115166761B (en) | FMCW frequency sweeping method and FMCW laser radar system | |
JP4053542B2 (en) | Laser radar equipment | |
JP7369822B2 (en) | Multiwavelength Doppler lidar | |
Torun et al. | Realization of multitone continuous wave LiDAR | |
CN112698356A (en) | Non-blind area pulse coherent wind lidar system based on multi-aperture transceiving | |
Sharma et al. | Impact of bandwidth on range resolution of multiple targets using photonic radar | |
Cooper et al. | A compact, low power consumption, and highly sensitive 95 GHz Doppler radar | |
EP3722828A1 (en) | Signal processing device and signal processing method | |
EP3985417A1 (en) | Remote airstream observation device, remote airstream observation method, and program | |
CN115453574B (en) | Multi-functional laser radar of atmosphere multiparameter detection | |
KR20220170767A (en) | Radar-lidar sensor fusion device and target detection method using the same | |
Wang et al. | Phase modulated waveforms for transponder-based radar sensing: signal optimization and experiments | |
IL295072A (en) | A radio system with multiple antenna arrays and adjustable shapes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17789104 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17789104 Country of ref document: EP Kind code of ref document: A1 |