WO2017187724A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2017187724A1
WO2017187724A1 PCT/JP2017/005730 JP2017005730W WO2017187724A1 WO 2017187724 A1 WO2017187724 A1 WO 2017187724A1 JP 2017005730 W JP2017005730 W JP 2017005730W WO 2017187724 A1 WO2017187724 A1 WO 2017187724A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound velocity
low sound
elastic wave
material layer
wave device
Prior art date
Application number
PCT/JP2017/005730
Other languages
French (fr)
Japanese (ja)
Inventor
克也 大門
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017187724A1 publication Critical patent/WO2017187724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device using a piston mode.
  • Patent Document 1 discloses an elastic wave device using a piston mode.
  • an IDT electrode, a dielectric layer, a dielectric material layer for forming an edge region as a low sound velocity portion, and a protective film are laminated in this order on a piezoelectric substrate.
  • the dielectric material layer is provided above one electrode finger of the IDT electrode and the tip portion of the other electrode finger.
  • a central region located in the center of the electrode fingers in the extending direction and edge regions arranged on both sides of the central region are provided.
  • the intersecting region is a region where an electrode finger connected to one potential and an electrode finger connected to the other potential overlap when viewed in the elastic wave propagation direction.
  • the edge region since the dielectric material layer is located on the temperature compensation dielectric layer, the speed of the acoustic wave is made slower than that in the central region.
  • the dielectric material layer is partially laminated on the lower dielectric layer portion, and the lower dielectric layer is further covered so as to cover the dielectric material layer.
  • An upper dielectric layer portion is laminated on the portion.
  • the upper surface of the upper dielectric layer portion protrudes upward by the thickness of the dielectric material layer, and a protruding portion is formed. As the thickness of the dielectric material layer increases, the amount of protrusion upward of the protrusion increases.
  • the protective film is made of a different dielectric from the upper dielectric layer portion.
  • the protruding amount of the protruding portion increases, the formed protective film tends to be thin on the side surface of the protruding portion.
  • the protrusion amount becomes larger, a hole may be formed in the protective film between the side surface of the protrusion and the portion outside the protrusion.
  • An object of the present invention is to provide an acoustic wave device in which a hole in a protective film made of another dielectric material laminated on a dielectric layer is hardly generated.
  • An acoustic wave device includes a piezoelectric substrate, and an IDT electrode provided on the piezoelectric substrate and having first and second electrode fingers that are interleaved with each other.
  • a region where the first electrode finger and the second electrode finger overlap when viewed from the elastic wave propagation direction is defined as a cross region, and the cross region includes a central region where the acoustic velocity of the elastic wave is relatively high; The sound velocity is lower than that of the central region, and low sound velocity portions provided at both ends in the direction in which the electrode fingers extend with respect to the central region.
  • the first dielectric layer above the said low sound speed material layer has a protruding portion that protrudes above the other part, the low sound speed material layer density of 7 g / cm 3 or more low Made of sonic material.
  • the said protrusion part has appeared as a protrusion part which protrudes upwards in the cross section in alignment with the extension direction of the said 1st, 2nd electrode finger of the said IDT electrode. .
  • the protruding portion appears in a cross section of the elastic wave device along the elastic wave propagation direction. In this case, it is possible to more effectively suppress the hole opening between the protruding portion and the portion located outside in the elastic wave propagation direction with respect to the protruding portion.
  • the low sound velocity material layer positioned below the projecting portion extends in the direction in which the first and second electrode fingers extend or the elastic wave propagation.
  • a cross section along at least one of the directions has a trapezoidal shape.
  • the second dielectric layer is less likely to be perforated.
  • the low sound velocity material layer is made of metal.
  • the density of the low sound velocity material layer is increased, the inclination of the side surface of the protruding portion can be further softened.
  • the low sound velocity material layer is made of a dielectric.
  • the low sound velocity material layer can be laminated directly on the first and second electrode fingers so as to extend in the elastic wave propagation direction.
  • the low acoustic velocity material layer extends so as to straddle the plurality of lower first and second electrode fingers along the elastic wave propagation direction. Has been. In this case, patterning when forming the low sound velocity material layer is easy.
  • the low sound velocity material layer is located immediately above the first electrode finger or the second electrode finger, and the first and second electrodes It does not reach between the electrode fingers.
  • the low sound velocity material layer is directly laminated on the first or second electrode finger.
  • the low acoustic velocity material layer is laminated above the first or second electrode finger via the first dielectric layer.
  • the second dielectric layer provided on the first dielectric layer it is difficult for the second dielectric layer provided on the first dielectric layer to be perforated.
  • FIG. 1 is a plan view showing an electrode structure and a low sound velocity material layer of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a front cross-sectional view for explaining the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a partially enlarged sectional view of a portion along the line AA in FIG.
  • FIG. 4 is a partially enlarged sectional view of a portion along the line BB in FIG.
  • FIG. 5 is a partially enlarged sectional view of a portion along the line CC in FIG.
  • FIG. 6 is a diagram illustrating the relationship between the width of the low sound velocity part and the electromechanical coupling coefficient of the first-order mode and the third-order or higher-order mode.
  • FIG. 7 is a diagram showing the relationship between the film thickness of the low sound velocity material layer and the sound velocity ratio of the low sound velocity portion, which is the ratio of the sound velocity of the low sound velocity portion to the sound velocity of the high sound velocity portion.
  • FIG. 8 is a diagram showing the relationship between the type of the low sound velocity material and the film thickness of the low sound velocity material layer necessary for suppressing the transverse mode.
  • FIG. 9 is a plan view showing the relationship between the electrode structure and the low acoustic velocity material layer of the acoustic wave device according to the second embodiment of the present invention.
  • FIG. 10 is a partial enlarged cross-sectional view of an acoustic wave device corresponding to a portion along the line DD in FIG. 9 in the second embodiment of the present invention.
  • FIG. 11 is a partially enlarged cross-sectional view for explaining the acoustic wave device of the third embodiment.
  • FIG. 12 is a partially enlarged cross-sectional view for explaining the acoustic wave device of the third embodiment.
  • FIG. 13 is a partial enlarged cross-sectional view of an elastic wave device of a comparative example.
  • FIG. 1 is a plan view showing an electrode structure and a low sound velocity material layer of an elastic wave device according to a first embodiment of the present invention
  • FIG. 2 is a front sectional view of the elastic wave device of the present embodiment.
  • the elastic wave device 1 has a piezoelectric substrate 2.
  • An IDT electrode 3 is provided on the piezoelectric substrate 2.
  • Reflectors 4 and 5 are provided on both sides of the IDT electrode 3 in the elastic wave propagation direction.
  • a first dielectric layer 6 is provided so as to cover the IDT electrode 3.
  • a second dielectric layer 7 is provided on the first dielectric layer 6.
  • FIG. 2 shows a cross section along the elastic wave propagation direction in the center region of the IDT electrode described later.
  • the piezoelectric substrate 2 is made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 or a piezoelectric ceramic.
  • the IDT electrode 3 and the reflectors 4 and 5 are made of an appropriate metal or alloy.
  • the first dielectric layer 6 is provided to reduce the absolute value of the frequency temperature coefficient TCF. That is, the first dielectric layer 6 is provided as a temperature compensation dielectric film.
  • the first dielectric layer 6 is made of dielectric ceramics such as silicon oxide or silicon oxynitride.
  • first dielectric layer 6 may be provided as a layer that performs other functions.
  • the second dielectric layer 7 is provided as a moisture-resistant protective film.
  • a second dielectric layer 7 is made of an appropriate dielectric material that has better moisture resistance than the first dielectric layer 6. Examples of such a dielectric material include silicon nitride.
  • the second dielectric layer 7 is not limited to a protective film for moisture resistance, but may be an appropriate protective film for protecting the first dielectric layer 6 and the IDT electrode 3 or the like, or the frequency is adjusted. It may be a dielectric film.
  • FIG. 1 is an enlarged view showing a portion where the IDT electrode 3 is provided, and is a plan view for explaining an electrode structure and a low sound velocity material layer.
  • the IDT electrode 3 has a plurality of first electrode fingers 8 and a plurality of second electrode fingers 9.
  • the first electrode finger 8 and the second electrode finger 9 are interleaved with each other.
  • This elastic wave propagation direction E is a direction orthogonal to the direction in which the first and second electrode fingers 8 and 9 extend.
  • a region where the first electrode finger 8 and the second electrode finger 9 overlap when viewed from the elastic wave propagation direction E is an intersection region F.
  • an elastic wave is excited.
  • low sound velocity material layers 11 and 12 are provided above the first and second electrode fingers 8 and 9 at the tip portions of the first and second electrode fingers 8 and 9, respectively. ing.
  • the low acoustic velocity material layers 11 and 12 are made of a metal having a density of 7 g / cm 3 or more.
  • metals include Pt, Au, Cu, Ta, W, Ag, Ni, Mo, NiCr and the like.
  • the low sound velocity material layers 11 and 12 may be made of a low sound velocity material other than a metal having a density of 7 g / cm 3 or more. That is, even if it is a dielectric material, a semiconductor, etc., if it is a material with a density of 7 g / cm 3 or more, it can be used as a low sound velocity material.
  • the portions where the low sound velocity material layers 11 and 12 are provided are the low sound velocity portions H1 and H2.
  • the width of the low sound velocity part is a dimension along the extending direction of the first and second electrode fingers 8 and 9 of the low sound velocity material layers 11 and 12.
  • the intersecting region F includes a central region G located in the center in the extending direction of the first and second electrode fingers 8 and 9 and a direction in which the first and second electrode fingers 8 and 9 extend with respect to the central region G. And the low sound velocity portions H1 and H2 disposed at both ends of the central region G.
  • the sound velocity is lower than that in the central region G.
  • high sound speed portions I1 and I2 are provided outside the low sound speed portions H1 and H2 in the direction in which the first and second electrode fingers 8 and 9 extend.
  • the low sound velocity portions H1 and H2 are provided on both sides of the central region G, and the high sound velocity portions I1 and I2 are provided outside the low sound velocity portions H1 and H2, respectively. can do.
  • the transverse mode refers to a higher-order mode than the main mode used in the elastic wave device 1.
  • the acoustic wave device 1 uses a fundamental wave, that is, a first-order mode.
  • FIG. 1 shows the positional relationship between the IDT electrode 3 and the low sound velocity material layers 11 and 12 disposed above the IDT electrode 3.
  • the low acoustic velocity material layers 11 and 12 are separated upward via the first and second electrode fingers 8 and 9 and a part of the first dielectric layer 6.
  • Yes. 3 to 5 are partially enlarged sectional views showing a portion along the line AA, a portion along the line BB, and a portion along the line CC in FIG. 1 in the acoustic wave device 1.
  • FIG. 1 shows the positional relationship between the IDT electrode 3 and the low sound velocity material layers 11 and 12 disposed above the IDT electrode 3.
  • the low acoustic velocity material layers 11 and 12 are separated upward via the first and second electrode fingers 8 and 9 and a part of the first dielectric layer 6.
  • Yes. 3 to 5 are partially enlarged sectional views showing a portion along the line AA, a portion along the line BB, and a portion along the line CC in FIG. 1 in the acoustic wave
  • the first dielectric layer 6 and the second dielectric layer 7 are formed on the portion where the first electrode finger 8 and the second electrode finger 9 are provided. Are stacked.
  • a protruding portion 6a1 protruding upward is formed at a portion where the first electrode finger 8 and the second electrode finger 9 are provided.
  • the amount of protrusion h above the protrusion 6a1 is not so large. Therefore, the inclination of the side surface 6a11 of the protrusion 6a1 is relatively gentle. Therefore, the second dielectric layer 7 is formed with a substantially uniform thickness.
  • the gentle inclination of the side surface 6a11 means that the inclination angle of the side surface 6a11 with respect to the upper surface 6a of the first dielectric layer 6 outside the protrusion 6a1 is small.
  • the large inclination means that the inclination angle of the side surface 6a11 with respect to the upper surface 6a of the first dielectric layer 6 is large.
  • a low sound velocity material layer 11 is disposed in the first dielectric layer 6 in the direction along the elastic wave propagation direction in the low sound velocity portion.
  • the low sound velocity material layer 11 is made of metal.
  • the dielectric layer portion 6 b below the low acoustic velocity material layer 11 is formed.
  • the low acoustic velocity material layer 11 is formed.
  • an upper dielectric layer portion 6c that covers the low acoustic velocity material layer 11 is formed.
  • a second dielectric layer 7 is formed.
  • the above-described protrusion 6a1 appears above the portion where the first electrode finger 8 and the second electrode finger 9 are provided in the elastic wave propagation direction. .
  • the protruding amount of the protruding portion 6a1 is not so large. Therefore, even if the second dielectric layer 7 having a small thickness is provided, it is difficult for a portion having a very thin film thickness to be formed and a hole is not easily formed.
  • FIG. 13 is a partially enlarged cross-sectional view of the elastic wave device of the comparative example corresponding to the portion along the line CC in FIG. 1, similarly to FIG.
  • the slope of the side surface 106a11 of the protrusion 106a1 on the upper surface 106a of the first dielectric layer 106 is large. Therefore, when the second dielectric layer 107 is formed, the thickness of the second dielectric layer 107 is reduced between the side surface 106a11 and the outside of the protruding portion 106a1, and a hole 107a is generated. This is because the thickness of the low sound velocity material layer 111 is relatively large, and thus the difference in height between the upper surface 106a of the first dielectric layer 106 is large between the protruding portion 106a1 and the outer portion thereof. .
  • the inclination of the side surface 6a11 of the protrusion 6a1 is gentle.
  • the density of the low sound velocity material layer 11 is made of a low sound velocity material having a density of 7 g / cm 3 or more, and the thickness thereof is reduced. That is, since the thickness of the low acoustic velocity material layer 11 can be reduced, as shown in FIG. 5, it is difficult for the second dielectric layer 7 to be perforated. Therefore, in the acoustic wave device 1, moisture resistance can be reliably improved.
  • FIG. 6 is a diagram showing the relationship between the width ( ⁇ ) of the low sound velocity part and the electromechanical coupling coefficient of the first-order mode and the higher-order mode higher than the third-order mode in the elastic wave device 1 of the first embodiment. is there.
  • the sound speed in this case is 0.977 times the sound speed of the low sound speed section, where the sound speed in the central region is 1.
  • is a wavelength determined by the electrode finger pitch of the IDT electrode 3.
  • the scale on the right side of FIG. 6 shows the elastic wave to be used, that is, the electromechanical coupling coefficient of the first-order mode
  • the scale on the left side shows the electromechanical coupling coefficient of the higher-order mode of the third-order mode or more, that is, the transverse mode .
  • the sound velocity ratio of the low sound velocity portion is obtained on the assumption of the following structure.
  • LiNbO 3 substrate / IDT electrode with a cut angle of 126.5 ° (NiCr: 10 nm thick, Pt: 23 nm thick, Ti: 10 nm thick, Al: 130 nm thick, Ti: 10 nm thick laminate), first dielectric layer ( SiO 2 : thickness 480 nm), second dielectric layer (SiN: thickness 20 nm).
  • the duty of the IDT electrode is 0.5.
  • the wavelength determined by the electrode finger pitch was changed under the above conditions.
  • the frequency corresponding to the sound speed in the central region is obtained from the resonance frequency of the resonance characteristics.
  • the frequency of the high sound velocity portion outside the low sound velocity portion is determined according to the material and structure.
  • the resonance frequency in the central region is 2600 MHz
  • the frequency of the high sound velocity part is 2813 MHz.
  • the sound velocity ratio with respect to the central region of the high sound velocity portion is 1.08 times.
  • the electromechanical coupling coefficients of the primary mode and the transverse mode change as shown in FIG.
  • the sound speed ratio with respect to the central area of the low sound speed portion that is, the sound speed ratio of the low sound speed portion is 0.977
  • the transverse mode can be reliably suppressed when the width of the low sound speed portion is around 0.652. Recognize.
  • FIG. 7 shows the film thickness of the low sound velocity material layer and the sound velocity ratio of the low sound velocity portion when the distance from the upper surface of the first and second electrode fingers to the lower surface of the low sound velocity material layer is 5 nm. It is a figure which shows the relationship.
  • FIG. 7 shows the results when the low acoustic velocity material layer is Pt, Au, W, Ta, Ag, Mo, Cu, Ni, Ti, or Al. As is clear from FIG. 7, it can be seen that the required film thickness differs depending on the material of the low sound velocity material layer in order to set the sound velocity ratio of the low sound velocity portion to 0.977.
  • FIG. 8 shows the relationship between the kind of low sound velocity material necessary for setting the sound velocity ratio of the low sound velocity portion to 0.977, that is, necessary for suppressing the transverse mode, and the film thickness of the low sound velocity material layer.
  • FIG. 8 it can be seen that the thickness of the low sound velocity material layer can be reduced by using Pt or Au having a high density.
  • the density of the low acoustic velocity material layer is 7 g / cm 3 or more, the thickness of the low acoustic velocity material layers 11 and 12 can be made very thin. Therefore, as shown in FIG. 5, the height of the protrusion 6a1 on the upper surface 6a of the first dielectric layer 6 can be reduced. Therefore, the inclination of the side surface 6a11 of the protrusion 6a1 can be made gentle, and the occurrence of holes in the second dielectric layer 7 can be reliably suppressed.
  • the side surfaces 11a and 11b located on the outer side in the width direction of the low sound velocity portion of the low sound velocity material layer 11 are tapered. That is, the side surfaces 11a and 11b are inclined so as to be located on the center side in the width direction of the low acoustic velocity material layer 11 as going upward. Therefore, also in the part of the first dielectric layer 6 that covers the low sound velocity material layer 11, the inclination of the side surface 6a11 of the protrusion 6a1 is gentle. Therefore, even in this case, a portion where the film thickness of the second dielectric layer 7 becomes thin is hardly generated, and the occurrence of the hole is further effectively suppressed.
  • the side surfaces 11a and 11b of the low acoustic velocity material layer 11 need not be tapered.
  • the low acoustic velocity material layer 11 has a trapezoidal shape in the cross section shown in FIG.
  • the inclination of the side surface 6a11 of the protrusion 6a1 can be made gentle as described above.
  • the cross section along the elastic wave propagation direction E of the low acoustic velocity material layer 11 may have a trapezoidal shape. In that case, in the elastic wave propagation direction E, the side surface 6a11 of the protrusion 6a1 is inclined. Can be relaxed.
  • the cross-sectional shape of the low-sonic material layer 11 is trapezoidal in both the cross-section along the direction in which the first and second electrode fingers 8 and 9 extend and the cross-section along the elastic wave propagation direction E. There may be.
  • the thickness of the low sound velocity material layers 11 and 12 can be reduced, the inclination of the side surface 6a11 of the protruding portion 6a1 can be made gentle in the direction shown in FIG. Therefore, even in the elastic wave propagation direction, it is difficult for the second dielectric layer 7 to be perforated between the protrusion 6a1 and the outer portion.
  • FIG. 9 is a plan view showing the relationship between the electrode structure and the low sound velocity material layer in the elastic wave device according to the second embodiment of the present invention.
  • the low sound velocity material layers 11 and 12 extending in the elastic wave propagation direction E are provided.
  • the low acoustic velocity material layers 21 and 22 are provided in the elastic wave device of the second embodiment.
  • the low sound velocity material layer 21 is provided on the first and second electrode fingers 8 and 9 in a portion constituting one low sound velocity portion H1, and between the first and second electrode fingers 8 and 9. It is not provided in the area.
  • the low sound velocity material layer 22 is provided on the first and second electrode fingers 8 and 9 in the other low sound velocity portion H2. In the region between the first and second electrode fingers 8 and 9, the low sound velocity material layer 22 is not provided.
  • the low sonic material layer 21 or the low sonic material layer 22 is directly laminated on the first and second electrode fingers 8 and 9.
  • the first and second electrode fingers 8 and 8 are arranged so as not to reach the region between the first and second electrode fingers 8 and 9.
  • Low-speed material layers 21 and 22 may be provided only above 9.
  • the low sound velocity material layers 21 and 22 are made of the low sound velocity material having the density of 7 g / cm 3 or more. Therefore, the inclination of the side surface 6a11 of the protrusion 6a1 can be relaxed not only in the cross width direction of the first and second electrode fingers 8 and 9, but also in the elastic wave propagation direction E. Therefore, when the second dielectric layer 7 is laminated, it is difficult for a hole to be formed in the portion between the protruding portion 6a1 and the outer region.
  • the low sound velocity material layer may be directly laminated on the first and second electrode fingers. Therefore, the low acoustic velocity material layers 11 and 12 in the elastic wave device 1 of the first embodiment may also be provided so as to be in direct contact with the upper surfaces of the first and second electrode fingers 8 and 9. However, in that case, in order to prevent a short circuit, the low sound velocity material layers 11 and 12 need to be made of an insulating dielectric material.
  • FIG. 11 and FIG. 12 are enlarged partial sectional views of an elastic wave device according to the third embodiment of the present invention.
  • FIG. 11 is a partial enlarged cross-sectional view of a portion corresponding to FIG. 4 for the first embodiment
  • FIG. 12 is a partial enlarged cross-sectional view of a portion corresponding to FIG. 5 for the first embodiment.
  • the acoustic wave device according to the third embodiment low sound velocity material layers 31 and 32 are provided.
  • the low acoustic velocity material layers 31 and 32 are not continuous in the elastic wave propagation direction, and are laminated only on the first electrode finger 8 or the second electrode finger 9. .
  • the elastic wave device of the third embodiment is the same as the elastic wave device 1 of the first embodiment.
  • the low sound velocity material layer may be directly laminated on the electrode finger.
  • the low sound velocity material layers 21 and 22 are disposed above the first and second electrode fingers 8 and 9 through a part of the first dielectric layer 6 as in the first embodiment. It may be laminated indirectly.
  • the low sound velocity material layers 11 and 12 are extended along the elastic wave propagation direction E so as to straddle the plurality of first and second electrode fingers 8 and 9. Therefore, patterning when forming the low acoustic velocity material layers 11 and 12 is easy.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is an elastic wave device in which holes are unlikely to be produced in a protective film that comprises another dielectric material laminated on a dielectric layer. An IDT electrode 3 is provided on a piezoelectric substrate 2, and an intersecting region of the IDT electrode 3 has a central region in which the sound velocity of an elastic wave is relatively high, and first and second low-sound-velocity sections provided on both sides of the central region in an intersection width direction in which first and second electrode fingers 8, 9 extend, low-sound-velocity material layers 11, 12 being laminated directly or indirectly on the first and second electrode fingers 8, 9 in the first and second low-sound-velocity sections. A first dielectric layer 6, and a second dielectric layer 7 provided on the first dielectric layer 6, are provided so as to cover the IDT electrode 3 and the low-sound-velocity material layers 11, 12. The first dielectric layer 6 has a projecting section 6a1 that projects higher than the other portions above the low-sound-velocity material layers 11, 12. The low-sound-velocity material layers 11, 12 comprise a low-sound-velocity material having a density of 7 g/cm3 or greater.

Description

弾性波装置Elastic wave device
 本発明は、ピストンモードを利用した弾性波装置に関する。 The present invention relates to an elastic wave device using a piston mode.
 下記の特許文献1には、ピストンモードを利用した弾性波装置が開示されている。特許文献1の図15では、圧電基板上に、IDT電極、誘電体層、低音速部としてのエッジ領域を構成するための誘電体材料層及び保護膜がこの順序で積層されている。誘電体材料層は、IDT電極の一方の電極指及び他方の電極指の先端部分の上方に設けられている。それによって、交差領域において、電極指の延びる方向中央に位置している中央領域と、中央領域の両側に配置されているエッジ領域とが設けられている。交差領域とは、一方の電位に接続される電極指と他方の電位に接続される電極指とが弾性波伝搬方向にみたときに重なり合っている領域である。エッジ領域では、誘電体材料層が温度補償用誘電体層上に位置しているため、音響波の速度が、中央領域に比べて遅くされている。 The following Patent Document 1 discloses an elastic wave device using a piston mode. In FIG. 15 of Patent Document 1, an IDT electrode, a dielectric layer, a dielectric material layer for forming an edge region as a low sound velocity portion, and a protective film are laminated in this order on a piezoelectric substrate. The dielectric material layer is provided above one electrode finger of the IDT electrode and the tip portion of the other electrode finger. Thereby, in the intersecting region, a central region located in the center of the electrode fingers in the extending direction and edge regions arranged on both sides of the central region are provided. The intersecting region is a region where an electrode finger connected to one potential and an electrode finger connected to the other potential overlap when viewed in the elastic wave propagation direction. In the edge region, since the dielectric material layer is located on the temperature compensation dielectric layer, the speed of the acoustic wave is made slower than that in the central region.
特開2011-101350号公報JP2011-101350A
 特許文献1に記載の弾性波装置では、下方の誘電体層部分上に、部分的に、上記誘電体材料層が積層されており、さらに誘電体材料層を覆うように、下方の誘電体層部分上に上方の誘電体層部分が積層されている。この場合、誘電体材料層が設けられている部分の上方では、誘電体材料層の厚みの分、上方の誘電体層部分の上面が上方に突出し、突出部が形成されることになる。誘電体材料層の厚みが厚くなると、突出部の上方への突出量が大きくなる。 In the elastic wave device described in Patent Document 1, the dielectric material layer is partially laminated on the lower dielectric layer portion, and the lower dielectric layer is further covered so as to cover the dielectric material layer. An upper dielectric layer portion is laminated on the portion. In this case, above the portion where the dielectric material layer is provided, the upper surface of the upper dielectric layer portion protrudes upward by the thickness of the dielectric material layer, and a protruding portion is formed. As the thickness of the dielectric material layer increases, the amount of protrusion upward of the protrusion increases.
 他方、保護膜は、上方の誘電体層部分と異なる誘電体からなる。上記突出部の突出量が大きくなると、成膜された保護膜が、突出部の側面において薄くなりがちであった。さらに、突出量がより大きくなると、突出部の側面と、突出部の外側の部分との間で、保護膜に穴開きが生じることがあった。 On the other hand, the protective film is made of a different dielectric from the upper dielectric layer portion. When the protruding amount of the protruding portion increases, the formed protective film tends to be thin on the side surface of the protruding portion. Furthermore, when the protrusion amount becomes larger, a hole may be formed in the protective film between the side surface of the protrusion and the portion outside the protrusion.
 本発明の目的は、誘電体層上に積層される他の誘電体材料からなる保護膜の穴開きが生じ難い、弾性波装置を提供することにある。 An object of the present invention is to provide an acoustic wave device in which a hole in a protective film made of another dielectric material laminated on a dielectric layer is hardly generated.
 本発明に係る弾性波装置は、圧電基板と、前記圧電基板上に設けられており、互いに間挿し合っている第1及び第2の電極指を有するIDT電極とを備え、前記IDT電極において、前記第1の電極指と前記第2の電極指とが、弾性波伝搬方向からみたときに重なり合っている領域を交差領域とし、該交差領域が、弾性波の音速が相対的に高い中央領域と、前記中央領域よりも音速が低くされており、前記中央領域に対して電極指の延びる方向において両端部に設けられた低音速部とを有し、前記低音速部において、前記第1,第2の電極指に直接または間接に積層された低音速材料層と、前記IDT電極及び前記低音速材料層を覆うように設けられた第1の誘電体層と、前記第1の誘電体層上に設けられている第2の誘電体層とをさらに備え、前記第1の誘電体層は、前記低音速材料層の上方において、他の部分よりも上方に突出している突出部を有し、前記低音速材料層が、密度7g/cm以上の低音速材料からなる。 An acoustic wave device according to the present invention includes a piezoelectric substrate, and an IDT electrode provided on the piezoelectric substrate and having first and second electrode fingers that are interleaved with each other. A region where the first electrode finger and the second electrode finger overlap when viewed from the elastic wave propagation direction is defined as a cross region, and the cross region includes a central region where the acoustic velocity of the elastic wave is relatively high; The sound velocity is lower than that of the central region, and low sound velocity portions provided at both ends in the direction in which the electrode fingers extend with respect to the central region. A low sound velocity material layer laminated directly or indirectly on two electrode fingers, a first dielectric layer provided so as to cover the IDT electrode and the low sound velocity material layer, and on the first dielectric layer And a second dielectric layer provided on the substrate The first dielectric layer above the said low sound speed material layer has a protruding portion that protrudes above the other part, the low sound speed material layer density of 7 g / cm 3 or more low Made of sonic material.
 本発明に係る弾性波装置のある特定の局面では、前記突出部が、前記IDT電極の前記第1,第2の電極指の延びる方向に沿う断面において上方に突出している突出部として現れている。この場合には、突出部と、交差幅方向において突出部の外側に位置している部分との間での穴開きをより効果的に抑制することができる。 On the specific situation with the elastic wave apparatus which concerns on this invention, the said protrusion part has appeared as a protrusion part which protrudes upwards in the cross section in alignment with the extension direction of the said 1st, 2nd electrode finger of the said IDT electrode. . In this case, it is possible to more effectively suppress the hole opening between the protrusion and the portion located outside the protrusion in the cross width direction.
 本発明に係る弾性波装置の他の特定の局面では、前記突出部が、前記弾性波伝搬方向に沿う前記弾性波装置の断面において現れている。この場合には、突出部と、突出部に対して弾性波伝搬方向において外側に位置している部分との間での穴開きをより効果的に抑制することができる。 In another specific aspect of the elastic wave device according to the present invention, the protruding portion appears in a cross section of the elastic wave device along the elastic wave propagation direction. In this case, it is possible to more effectively suppress the hole opening between the protruding portion and the portion located outside in the elastic wave propagation direction with respect to the protruding portion.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記突出部の下方に位置している前記低音速材料層が、前記第1,第2の電極指の延びる方向または前記弾性波伝搬方向の少なくとも一方に沿う断面において、台形の形状を有している。この場合には、第2の誘電体層の穴開きがより一層生じ難い。 In still another specific aspect of the elastic wave device according to the present invention, the low sound velocity material layer positioned below the projecting portion extends in the direction in which the first and second electrode fingers extend or the elastic wave propagation. A cross section along at least one of the directions has a trapezoidal shape. In this case, the second dielectric layer is less likely to be perforated.
 本発明に係る弾性波装置の別の特定の局面では、前記低音速材料層が、金属からなる。この場合には、低音速材料層の密度が高くなるため、突出部の側面の傾斜をより一層やわらげることができる。 In another specific aspect of the elastic wave device according to the present invention, the low sound velocity material layer is made of metal. In this case, since the density of the low sound velocity material layer is increased, the inclination of the side surface of the protruding portion can be further softened.
 本発明に係る弾性波装置の他の特定の局面では、前記低音速材料層が、誘電体からなる。この場合には、弾性波伝搬方向に延びるように、かつ第1,第2の電極指に直接低音速材料層を積層することができる。 In another specific aspect of the elastic wave device according to the present invention, the low sound velocity material layer is made of a dielectric. In this case, the low sound velocity material layer can be laminated directly on the first and second electrode fingers so as to extend in the elastic wave propagation direction.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記低音速材料層が、弾性波伝搬方向に沿って下方の複数本の前記第1,第2の電極指を跨ぐように延ばされている。この場合には、低音速材料層の形成に際してのパターニングが容易である。 In still another specific aspect of the elastic wave device according to the present invention, the low acoustic velocity material layer extends so as to straddle the plurality of lower first and second electrode fingers along the elastic wave propagation direction. Has been. In this case, patterning when forming the low sound velocity material layer is easy.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記低音速材料層が、前記第1の電極指または前記第2の電極指の直上に位置しており、前記第1,第2の電極指間には至っていない。 In still another specific aspect of the acoustic wave device according to the present invention, the low sound velocity material layer is located immediately above the first electrode finger or the second electrode finger, and the first and second electrodes It does not reach between the electrode fingers.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記低音速材料層が、前記第1または第2の電極指に直接積層されている。 In yet another specific aspect of the acoustic wave device according to the present invention, the low sound velocity material layer is directly laminated on the first or second electrode finger.
 本発明に係る弾性波装置のさらに他の特定の局面では、前記低音速材料層が、前記第1の誘電体層を介して前記第1または第2の電極指の上方に積層されている。 In still another specific aspect of the acoustic wave device according to the present invention, the low acoustic velocity material layer is laminated above the first or second electrode finger via the first dielectric layer.
 本発明に係る弾性波装置によれば、第1の誘電体層上に設けられている第2の誘電体層の穴開きが生じ難い。 According to the acoustic wave device of the present invention, it is difficult for the second dielectric layer provided on the first dielectric layer to be perforated.
図1は、本発明の第1の実施形態に係る弾性波装置の電極構造及び低音速材料層を示す平面図である。FIG. 1 is a plan view showing an electrode structure and a low sound velocity material layer of an acoustic wave device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態の弾性波装置を説明するための正面断面図である。FIG. 2 is a front cross-sectional view for explaining the acoustic wave device according to the first embodiment of the present invention. 図3は、図1のA-A線に沿う部分の部分拡大断面図である。FIG. 3 is a partially enlarged sectional view of a portion along the line AA in FIG. 図4は、図1のB-B線に沿う部分の部分拡大断面図である。FIG. 4 is a partially enlarged sectional view of a portion along the line BB in FIG. 図5は、図1のC-C線に沿う部分の部分拡大断面図である。FIG. 5 is a partially enlarged sectional view of a portion along the line CC in FIG. 図6は、低音速部の幅と、1次モード、及び3次以上の高次モードの電気機械結合係数との関係を示す図である。FIG. 6 is a diagram illustrating the relationship between the width of the low sound velocity part and the electromechanical coupling coefficient of the first-order mode and the third-order or higher-order mode. 図7は、低音速材料層の膜厚と、高音速部の音速に対する低音速部の音速の割合である低音速部の音速比率との関係を示す図である。FIG. 7 is a diagram showing the relationship between the film thickness of the low sound velocity material layer and the sound velocity ratio of the low sound velocity portion, which is the ratio of the sound velocity of the low sound velocity portion to the sound velocity of the high sound velocity portion. 図8は、低音速材料の種類と、横モードを抑制するのに必要な低音速材料層の膜厚との関係を示す図である。FIG. 8 is a diagram showing the relationship between the type of the low sound velocity material and the film thickness of the low sound velocity material layer necessary for suppressing the transverse mode. 図9は、本発明の第2の実施形態に係る弾性波装置の電極構造及び低音速材料層との関係を示す平面図である。FIG. 9 is a plan view showing the relationship between the electrode structure and the low acoustic velocity material layer of the acoustic wave device according to the second embodiment of the present invention. 図10は、本発明の第2の実施形態において、図9のD-D線に沿う部分に相当する弾性波装置の部分拡大断面図である。FIG. 10 is a partial enlarged cross-sectional view of an acoustic wave device corresponding to a portion along the line DD in FIG. 9 in the second embodiment of the present invention. 図11は、第3の実施形態の弾性波装置を説明するための部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view for explaining the acoustic wave device of the third embodiment. 図12は、第3の実施形態の弾性波装置を説明するための部分拡大断面図である。FIG. 12 is a partially enlarged cross-sectional view for explaining the acoustic wave device of the third embodiment. 図13は、比較例の弾性波装置の部分拡大断面図である。FIG. 13 is a partial enlarged cross-sectional view of an elastic wave device of a comparative example.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be pointed out that each embodiment described in this specification is an example, and a partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る弾性波装置の電極構造及び低音速材料層を示す平面図であり、図2は本実施形態の弾性波装置の正面断面図である。 FIG. 1 is a plan view showing an electrode structure and a low sound velocity material layer of an elastic wave device according to a first embodiment of the present invention, and FIG. 2 is a front sectional view of the elastic wave device of the present embodiment.
 図2に示すように、弾性波装置1は、圧電基板2を有する。圧電基板2上に、IDT電極3が設けられている。IDT電極3の弾性波伝搬方向両側に反射器4,5が設けられている。IDT電極3を覆うように第1の誘電体層6が設けられている。第1の誘電体層6上に、第2の誘電体層7が設けられている。なお、図2では、後述するIDT電極の中央領域における弾性波伝搬方向に沿う断面が示されている。 As shown in FIG. 2, the elastic wave device 1 has a piezoelectric substrate 2. An IDT electrode 3 is provided on the piezoelectric substrate 2. Reflectors 4 and 5 are provided on both sides of the IDT electrode 3 in the elastic wave propagation direction. A first dielectric layer 6 is provided so as to cover the IDT electrode 3. A second dielectric layer 7 is provided on the first dielectric layer 6. FIG. 2 shows a cross section along the elastic wave propagation direction in the center region of the IDT electrode described later.
 圧電基板2は、LiNbOやLiTaOなどの圧電単結晶あるいは圧電セラミックスなどからなる。IDT電極3及び反射器4,5は、適宜の金属もしくは合金からなる。 The piezoelectric substrate 2 is made of a piezoelectric single crystal such as LiNbO 3 or LiTaO 3 or a piezoelectric ceramic. The IDT electrode 3 and the reflectors 4 and 5 are made of an appropriate metal or alloy.
 第1の誘電体層6は、周波数温度係数TCFの絶対値を小さくするために設けられている。すなわち、温度補償用の誘電体膜として、第1の誘電体層6が設けられている。第1の誘電体層6は、酸化ケイ素や酸窒化ケイ素などの誘電体セラミックスなどからなる。 The first dielectric layer 6 is provided to reduce the absolute value of the frequency temperature coefficient TCF. That is, the first dielectric layer 6 is provided as a temperature compensation dielectric film. The first dielectric layer 6 is made of dielectric ceramics such as silicon oxide or silicon oxynitride.
 なお、第1の誘電体層6は、他の機能を果たす層として設けられていてもよい。 Note that the first dielectric layer 6 may be provided as a layer that performs other functions.
 第2の誘電体層7は、耐湿保護膜として設けられている。このような第2の誘電体層7は、第1の誘電体層6よりも耐湿性に優れた適宜の誘電体材料からなる。このような誘電体材料としては、窒化ケイ素などを挙げることができる。 The second dielectric layer 7 is provided as a moisture-resistant protective film. Such a second dielectric layer 7 is made of an appropriate dielectric material that has better moisture resistance than the first dielectric layer 6. Examples of such a dielectric material include silicon nitride.
 なお、第2の誘電体層7は、耐湿のための保護膜に限らず、第1の誘電体層6及びIDT電極3などを保護する適宜の保護膜であってもよく、あるいは周波数を調整するための誘電体膜であってもよい。 The second dielectric layer 7 is not limited to a protective film for moisture resistance, but may be an appropriate protective film for protecting the first dielectric layer 6 and the IDT electrode 3 or the like, or the frequency is adjusted. It may be a dielectric film.
 図1は、上記IDT電極3が設けられている部分を拡大して示す図であり、電極構造及び低音速材料層を説明するための平面図である。 FIG. 1 is an enlarged view showing a portion where the IDT electrode 3 is provided, and is a plan view for explaining an electrode structure and a low sound velocity material layer.
 図1に示すように、IDT電極3は、複数本の第1の電極指8と、複数本の第2の電極指9とを有する。第1の電極指8と第2の電極指9とが、互いに間挿し合っている。第1の電極指8と第2の電極指9との間に電圧を印加することにより、弾性波が励振される。この弾性波伝搬方向Eは、第1,第2の電極指8,9が延びる方向と直交する方向である。 As shown in FIG. 1, the IDT electrode 3 has a plurality of first electrode fingers 8 and a plurality of second electrode fingers 9. The first electrode finger 8 and the second electrode finger 9 are interleaved with each other. By applying a voltage between the first electrode finger 8 and the second electrode finger 9, an elastic wave is excited. This elastic wave propagation direction E is a direction orthogonal to the direction in which the first and second electrode fingers 8 and 9 extend.
 弾性波伝搬方向Eからみたときに、第1の電極指8と第2の電極指9とが重なり合っている領域が、交差領域Fである。交差領域Fにおいて、弾性波が励振されることになる。 A region where the first electrode finger 8 and the second electrode finger 9 overlap when viewed from the elastic wave propagation direction E is an intersection region F. In the intersection region F, an elastic wave is excited.
 ところで、図1に示すように、第1,第2の電極指8,9の先端部分において、第1,第2の電極指8,9の上方に、低音速材料層11,12が設けられている。 By the way, as shown in FIG. 1, low sound velocity material layers 11 and 12 are provided above the first and second electrode fingers 8 and 9 at the tip portions of the first and second electrode fingers 8 and 9, respectively. ing.
 本実施形態では、低音速材料層11,12は、密度が7g/cm以上の金属からなる。このような金属としては、Pt、Au、Cu、Ta,W,Ag,Ni,Mo,NiCrなどを挙げることができる。もっとも、低音速材料層11,12は、密度が7g/cm以上の金属以外の低音速材料からなるものであってもよい。すなわち、誘電体や半導体などであっても、密度が7g/cm以上の材料であれば、低音速材料として用いることができる。このような誘電体としては、例えば、Ta(密度=8.73g/cm)やHfO(密度=9.68g/cm)、WO(密度=7.15g/cm)、CeO(密度=7.3g/cm)などを挙げることができる。 In the present embodiment, the low acoustic velocity material layers 11 and 12 are made of a metal having a density of 7 g / cm 3 or more. Examples of such metals include Pt, Au, Cu, Ta, W, Ag, Ni, Mo, NiCr and the like. However, the low sound velocity material layers 11 and 12 may be made of a low sound velocity material other than a metal having a density of 7 g / cm 3 or more. That is, even if it is a dielectric material, a semiconductor, etc., if it is a material with a density of 7 g / cm 3 or more, it can be used as a low sound velocity material. Examples of such dielectrics include Ta 2 O 5 (density = 8.73 g / cm 3 ), HfO 3 (density = 9.68 g / cm 3 ), and WO 3 (density = 7.15 g / cm 3 ). And CeO 2 (density = 7.3 g / cm 3 ).
 低音速材料層11,12の設けられている部分が、低音速部H1,H2である。低音速部の幅とは、低音速材料層11,12の第1,第2の電極指8,9の延びる方向に沿う寸法である。交差領域Fは、第1,第2の電極指8,9の延びる方向において中央に位置している中央領域Gと、中央領域Gに対して第1,第2電極指8,9の延びる方向において中央領域Gの両端部に配置された上記低音速部H1,H2とを有する。 The portions where the low sound velocity material layers 11 and 12 are provided are the low sound velocity portions H1 and H2. The width of the low sound velocity part is a dimension along the extending direction of the first and second electrode fingers 8 and 9 of the low sound velocity material layers 11 and 12. The intersecting region F includes a central region G located in the center in the extending direction of the first and second electrode fingers 8 and 9 and a direction in which the first and second electrode fingers 8 and 9 extend with respect to the central region G. And the low sound velocity portions H1 and H2 disposed at both ends of the central region G.
 低音速部H1,H2では、低音速材料層11,12が配置されているため、中央領域Gに比べて、音速が低められている。他方、低音速部H1,H2の第1,第2の電極指8,9の延びる方向外側には、高音速部I1,I2が設けられている。上記のように、中央領域Gの両側に低音速部H1,H2が設けられており、低音速部H1,H2の外側に高音速部I1,I2がそれぞれ設けられているため、横モードを抑制することができる。 In the low sound velocity portions H1 and H2, since the low sound velocity material layers 11 and 12 are arranged, the sound velocity is lower than that in the central region G. On the other hand, high sound speed portions I1 and I2 are provided outside the low sound speed portions H1 and H2 in the direction in which the first and second electrode fingers 8 and 9 extend. As described above, the low sound velocity portions H1 and H2 are provided on both sides of the central region G, and the high sound velocity portions I1 and I2 are provided outside the low sound velocity portions H1 and H2, respectively. can do.
 なお、横モードとは、弾性波装置1で利用する主モードよりも高次のモードをいうものとする。弾性波装置1では、基本波すなわち1次のモードを利用している。 The transverse mode refers to a higher-order mode than the main mode used in the elastic wave device 1. The acoustic wave device 1 uses a fundamental wave, that is, a first-order mode.
 図1では、IDT電極3と、IDT電極3の上方に配置された低音速材料層11,12との位置関係が示されている。実際には、弾性波装置1では、低音速材料層11,12は、第1,第2の電極指8,9と、第1の誘電体層6の一部を介して上方に隔てられている。図3~図5は、この弾性波装置1における図1中A-A線に沿う部分、B-B線に沿う部分及びC-C線に沿う部分を示す部分拡大断面図である。 FIG. 1 shows the positional relationship between the IDT electrode 3 and the low sound velocity material layers 11 and 12 disposed above the IDT electrode 3. Actually, in the acoustic wave device 1, the low acoustic velocity material layers 11 and 12 are separated upward via the first and second electrode fingers 8 and 9 and a part of the first dielectric layer 6. Yes. 3 to 5 are partially enlarged sectional views showing a portion along the line AA, a portion along the line BB, and a portion along the line CC in FIG. 1 in the acoustic wave device 1. FIG.
 図3に示すように、中央領域Gにおいては、第1の電極指8及び第2の電極指9が設けられている部分上に、第1の誘電体層6及び第2の誘電体層7が積層されている。この場合、第1の誘電体層6の上面6aにおいては、第1の電極指8及び第2の電極指9が設けられている部分において、上方に突出している突出部6a1が形成されている。もっとも、突出部6a1の上方への突出量hはさほど大きくない。そのため、突出部6a1の側面6a11の傾斜は比較的ゆるやかである。よって、第2の誘電体層7がほぼ均一な厚みで形成されている。なお、側面6a11の傾斜がゆるやかとは、側面6a11の突出部6a1外の第1の誘電体層6の上面6aに対する傾斜角度が小さいことを意味する。また、以下において、傾斜が大きいとは、逆に、側面6a11の第1の誘電体層6の上面6aに対する傾斜角度が大きいことを意味する。 As shown in FIG. 3, in the central region G, the first dielectric layer 6 and the second dielectric layer 7 are formed on the portion where the first electrode finger 8 and the second electrode finger 9 are provided. Are stacked. In this case, on the upper surface 6a of the first dielectric layer 6, a protruding portion 6a1 protruding upward is formed at a portion where the first electrode finger 8 and the second electrode finger 9 are provided. . However, the amount of protrusion h above the protrusion 6a1 is not so large. Therefore, the inclination of the side surface 6a11 of the protrusion 6a1 is relatively gentle. Therefore, the second dielectric layer 7 is formed with a substantially uniform thickness. The gentle inclination of the side surface 6a11 means that the inclination angle of the side surface 6a11 with respect to the upper surface 6a of the first dielectric layer 6 outside the protrusion 6a1 is small. In the following description, the large inclination means that the inclination angle of the side surface 6a11 with respect to the upper surface 6a of the first dielectric layer 6 is large.
 図4に示すように、低音速部において、弾性波伝搬方向に沿う方向においては、第1の誘電体層6内に、低音速材料層11が配置されている。この低音速材料層11は、本実施形態では、金属からなる。 As shown in FIG. 4, a low sound velocity material layer 11 is disposed in the first dielectric layer 6 in the direction along the elastic wave propagation direction in the low sound velocity portion. In the present embodiment, the low sound velocity material layer 11 is made of metal.
 弾性波装置1の製造に際しては、低音速材料層11の下方の誘電体層部分6bを成膜する。次に、低音速材料層11を形成する。その次に、低音速材料層11を覆う上方の誘電体層部分6cを成膜する。次に、第2の誘電体層7を成膜する。 In manufacturing the acoustic wave device 1, the dielectric layer portion 6 b below the low acoustic velocity material layer 11 is formed. Next, the low acoustic velocity material layer 11 is formed. Next, an upper dielectric layer portion 6c that covers the low acoustic velocity material layer 11 is formed. Next, a second dielectric layer 7 is formed.
 図4に示すように、低音速部においては、弾性波伝搬方向において、第1の電極指8及び第2の電極指9が設けられている部分の上方に前述した突出部6a1が現れている。ここでも、突出部6a1の突出量はさほど大きくない。従って、厚みの薄い第2の誘電体層7を設けたとしても、膜厚が非常に薄い部分が生じ難く、穴開きが生じ難い。 As shown in FIG. 4, in the low sound velocity portion, the above-described protrusion 6a1 appears above the portion where the first electrode finger 8 and the second electrode finger 9 are provided in the elastic wave propagation direction. . Again, the protruding amount of the protruding portion 6a1 is not so large. Therefore, even if the second dielectric layer 7 having a small thickness is provided, it is difficult for a portion having a very thin film thickness to be formed and a hole is not easily formed.
 図5に示すように、本実施形態では、電極指の延びる方向においても、第2の誘電体層7において穴開きが生じ難い。これを、図13に示す比較例と対比して説明することとする。 As shown in FIG. 5, in the present embodiment, it is difficult for the second dielectric layer 7 to be perforated even in the direction in which the electrode fingers extend. This will be described in comparison with the comparative example shown in FIG.
 図13は、図5と同様に、図1のC-C線に沿う部分に相当する比較例の弾性波装置の部分拡大断面図である。図13に示すように、電極指108の延びる方向においては、第1の誘電体層106の上面106aにおける突出部106a1の、側面106a11の傾斜が大きくなっている。そのため、第2の誘電体層107を成膜した場合、側面106a11と、突出部106a1の外側との間において、第2の誘電体層107の厚みが薄くなり、穴開き107aが生じている。これは、低音速材料層111の厚みが比較的厚いため、突出部106a1と、その外側の部分との間で、第1の誘電体層106の上面106aの高さの差が大きくなることによる。 FIG. 13 is a partially enlarged cross-sectional view of the elastic wave device of the comparative example corresponding to the portion along the line CC in FIG. 1, similarly to FIG. As shown in FIG. 13, in the extending direction of the electrode finger 108, the slope of the side surface 106a11 of the protrusion 106a1 on the upper surface 106a of the first dielectric layer 106 is large. Therefore, when the second dielectric layer 107 is formed, the thickness of the second dielectric layer 107 is reduced between the side surface 106a11 and the outside of the protruding portion 106a1, and a hole 107a is generated. This is because the thickness of the low sound velocity material layer 111 is relatively large, and thus the difference in height between the upper surface 106a of the first dielectric layer 106 is large between the protruding portion 106a1 and the outer portion thereof. .
 これに対して、本実施形態の弾性波装置では、図5に示すように、突出部6a1の側面6a11の傾斜がゆるやかになっている。これは、低音速材料層11の密度が7g/cm以上の低音速材料からなるため、その厚みが薄くなっていることによる。すなわち、低音速材料層11の厚みを薄くすることができるので、図5に示すように、第2の誘電体層7の穴開きが生じ難くされている。従って、弾性波装置1では、耐湿性を確実に高めることができる。 On the other hand, in the elastic wave device of the present embodiment, as shown in FIG. 5, the inclination of the side surface 6a11 of the protrusion 6a1 is gentle. This is because the density of the low sound velocity material layer 11 is made of a low sound velocity material having a density of 7 g / cm 3 or more, and the thickness thereof is reduced. That is, since the thickness of the low acoustic velocity material layer 11 can be reduced, as shown in FIG. 5, it is difficult for the second dielectric layer 7 to be perforated. Therefore, in the acoustic wave device 1, moisture resistance can be reliably improved.
 図6~図8を参照して、より詳細に説明する。 This will be described in more detail with reference to FIGS.
 図6は、第1の実施形態の弾性波装置1において、低音速部の幅(λ)と、1次モード及び3次モード以上の高次モードの電気機械結合係数との関係を示す図である。この場合の音速は、中央領域における音速を1とすると、低音速部の音速は、その0.977倍である。ここで、λは、IDT電極3の電極指ピッチで定まる波長である。また、図6の右側のスケールは、利用する弾性波すなわち1次のモードの電気機械結合係数を示し、左側のスケールは、3次モード以上の高次モードすなわち横モードの電気機械結合係数を示す。 FIG. 6 is a diagram showing the relationship between the width (λ) of the low sound velocity part and the electromechanical coupling coefficient of the first-order mode and the higher-order mode higher than the third-order mode in the elastic wave device 1 of the first embodiment. is there. The sound speed in this case is 0.977 times the sound speed of the low sound speed section, where the sound speed in the central region is 1. Here, λ is a wavelength determined by the electrode finger pitch of the IDT electrode 3. Further, the scale on the right side of FIG. 6 shows the elastic wave to be used, that is, the electromechanical coupling coefficient of the first-order mode, and the scale on the left side shows the electromechanical coupling coefficient of the higher-order mode of the third-order mode or more, that is, the transverse mode .
 図6から明らかなように、低音速部の幅が0.652付近で1次のモードの電気機械結合係数のみ大きく、横モードの電気機械結合係数は小さい。すなわち、低音速部の幅を0.652付近とすることにより横モードを確実に抑制することができる。 As is clear from FIG. 6, when the width of the low sound velocity portion is around 0.652, only the electromechanical coupling coefficient of the first mode is large and the electromechanical coupling coefficient of the transverse mode is small. That is, the transverse mode can be reliably suppressed by setting the width of the low sound velocity portion to around 0.652.
 本実施形態では、以下の構造を前提として、上記低音速部の音速比率を求めた。 In this embodiment, the sound velocity ratio of the low sound velocity portion is obtained on the assumption of the following structure.
 カット角126.5°のLiNbO基板/IDT電極(NiCr:厚み10nm、Pt:厚み23nm、Ti:厚み10nm、Al:厚み130nm、Ti:厚み10nmの積層体)、第1の誘電体層(SiO:厚み480nm)、第2の誘電体層(SiN:厚み20nm)。IDT電極のデューティは0.5。 LiNbO 3 substrate / IDT electrode with a cut angle of 126.5 ° (NiCr: 10 nm thick, Pt: 23 nm thick, Ti: 10 nm thick, Al: 130 nm thick, Ti: 10 nm thick laminate), first dielectric layer ( SiO 2 : thickness 480 nm), second dielectric layer (SiN: thickness 20 nm). The duty of the IDT electrode is 0.5.
 上記条件で、電極指ピッチで定まる波長を変化させた。中央領域の音速に対応する周波数は、共振特性の共振周波数より求められる。他方、低音速部の外側の高音速部の周波数は、上記材料及び構造に従って求められる。本実施形態の一計算例では、中央領域の共振周波数が2600MHzであり、高音速部の周波数が2813MHzである。この場合、高音速部の中央領域に対する音速比率は1.08倍である。 The wavelength determined by the electrode finger pitch was changed under the above conditions. The frequency corresponding to the sound speed in the central region is obtained from the resonance frequency of the resonance characteristics. On the other hand, the frequency of the high sound velocity portion outside the low sound velocity portion is determined according to the material and structure. In one calculation example of the present embodiment, the resonance frequency in the central region is 2600 MHz, and the frequency of the high sound velocity part is 2813 MHz. In this case, the sound velocity ratio with respect to the central region of the high sound velocity portion is 1.08 times.
 この構造において、低音速部の幅を種々変化させた場合、図6に示すように1次モード及び横モードの電気機械結合係数が変化する。そして、低音速部の中央領域に対する音速比率、すなわち低音速部の音速比率を0.977とした時、上記低音速部の幅が0.652付近で、横モードを確実に抑圧し得ることがわかる。 In this structure, when the width of the low sound velocity part is changed variously, the electromechanical coupling coefficients of the primary mode and the transverse mode change as shown in FIG. When the sound speed ratio with respect to the central area of the low sound speed portion, that is, the sound speed ratio of the low sound speed portion is 0.977, the transverse mode can be reliably suppressed when the width of the low sound speed portion is around 0.652. Recognize.
 さらに、図7は、第1,第2の電極指の上面から、低音速材料層の下面までの距離が5nmである場合の、低音速材料層の膜厚と、低音速部の音速比率との関係を示す図である。図7では、低音速材料層が、Pt、Au、W、Ta、Ag、Mo、Cu、Ni、TiまたはAlの場合の結果が示されている。図7から明らかなように、低音速部の音速比率を0.977にするには、低音速材料層の材料によって必要な膜厚が異なることがわかる。すなわち、低音速材料層を構成している低音速材料の密度が高いほど、低音速部の音速比率を0.977にする膜厚が薄くてよいことがわかる。これを、図8に示す。図8は、上記低音速部の音速比率を0.977にするために必要な、すなわち横モードを抑制するために必要な低音速材料の種類と、低音速材料層の膜厚との関係を示す図である。図8から明らかなように、密度が高いPtやAuを用いることにより、低音速材料層の厚みを薄くし得ることがわかる。 Furthermore, FIG. 7 shows the film thickness of the low sound velocity material layer and the sound velocity ratio of the low sound velocity portion when the distance from the upper surface of the first and second electrode fingers to the lower surface of the low sound velocity material layer is 5 nm. It is a figure which shows the relationship. FIG. 7 shows the results when the low acoustic velocity material layer is Pt, Au, W, Ta, Ag, Mo, Cu, Ni, Ti, or Al. As is clear from FIG. 7, it can be seen that the required film thickness differs depending on the material of the low sound velocity material layer in order to set the sound velocity ratio of the low sound velocity portion to 0.977. That is, it can be seen that the higher the density of the low sound velocity material constituting the low sound velocity material layer, the thinner the film thickness that makes the sound velocity ratio of the low sound velocity portion 0.977. This is shown in FIG. FIG. 8 shows the relationship between the kind of low sound velocity material necessary for setting the sound velocity ratio of the low sound velocity portion to 0.977, that is, necessary for suppressing the transverse mode, and the film thickness of the low sound velocity material layer. FIG. As is clear from FIG. 8, it can be seen that the thickness of the low sound velocity material layer can be reduced by using Pt or Au having a high density.
 本実施形態では、低音速材料層は、密度が7g/cm以上であるため、低音速材料層11,12の厚みを非常に薄くすることができる。そのため、図5に示したように、第1の誘電体層6の上面6aにおける突出部6a1の高さを低くすることができる。よって、突出部6a1の側面6a11の傾斜をゆるやかにすることができ、第2の誘電体層7における穴開きの発生を確実に抑制することができる。 In this embodiment, since the density of the low acoustic velocity material layer is 7 g / cm 3 or more, the thickness of the low acoustic velocity material layers 11 and 12 can be made very thin. Therefore, as shown in FIG. 5, the height of the protrusion 6a1 on the upper surface 6a of the first dielectric layer 6 can be reduced. Therefore, the inclination of the side surface 6a11 of the protrusion 6a1 can be made gentle, and the occurrence of holes in the second dielectric layer 7 can be reliably suppressed.
 なお、第1,第2の電極指の上面から、低音速材料層の下面までの距離が、5nmでない場合も同様の結果が得られることが確認されている。 It has been confirmed that the same result can be obtained even when the distance from the upper surface of the first and second electrode fingers to the lower surface of the low sound velocity material layer is not 5 nm.
 また、図5に示すように、本実施形態では、低音速材料層11の上記低音速部の幅方向外側に位置している側面11a,11bにテーパーが付されている。すなわち、側面11a,11bは、上方にいくにつれて、低音速材料層11の幅方向中央側に位置するように、傾斜されている。そのため、第1の誘電体層6の上記低音速材料層11を被覆している部分においても、突出部6a1の側面6a11の傾斜がゆるやかになっている。従って、それによっても、第2の誘電体層7の膜厚が薄くなる部分が生じ難く、かつ上記穴開きの発生がより一層効果的に抑制されている。もっとも、本発明においては、低音速材料層11の側面11a,11bには、テーパーが付与されておらずともよい。 Further, as shown in FIG. 5, in the present embodiment, the side surfaces 11a and 11b located on the outer side in the width direction of the low sound velocity portion of the low sound velocity material layer 11 are tapered. That is, the side surfaces 11a and 11b are inclined so as to be located on the center side in the width direction of the low acoustic velocity material layer 11 as going upward. Therefore, also in the part of the first dielectric layer 6 that covers the low sound velocity material layer 11, the inclination of the side surface 6a11 of the protrusion 6a1 is gentle. Therefore, even in this case, a portion where the film thickness of the second dielectric layer 7 becomes thin is hardly generated, and the occurrence of the hole is further effectively suppressed. However, in the present invention, the side surfaces 11a and 11b of the low acoustic velocity material layer 11 need not be tapered.
 上記のように、低音速材料層11の側面11a,11bにテーパーが付与されているため、低音速材料層11は、図5に示されている断面において台形の形状を有している。このような台形の断面形状を有することにより、上記のように、突出部6a1の側面6a11の傾斜をゆるやかにすることができる。なお、低音速材料層11の弾性波伝搬方向Eに沿う断面が、台形の形状を有していてもよく、その場合には、弾性波伝搬方向Eにおいて、突出部6a1の側面6a11の傾斜をゆるやかにすることができる。また、低音速材料層11の第1,第2の電極指8,9の延びる方向に沿う断面と、弾性波伝搬方向Eに沿う断面の双方において、低音速材料層11の断面形状が台形であってもよい。 As described above, since the side surfaces 11a and 11b of the low acoustic velocity material layer 11 are tapered, the low acoustic velocity material layer 11 has a trapezoidal shape in the cross section shown in FIG. By having such a trapezoidal cross-sectional shape, the inclination of the side surface 6a11 of the protrusion 6a1 can be made gentle as described above. In addition, the cross section along the elastic wave propagation direction E of the low acoustic velocity material layer 11 may have a trapezoidal shape. In that case, in the elastic wave propagation direction E, the side surface 6a11 of the protrusion 6a1 is inclined. Can be relaxed. Further, the cross-sectional shape of the low-sonic material layer 11 is trapezoidal in both the cross-section along the direction in which the first and second electrode fingers 8 and 9 extend and the cross-section along the elastic wave propagation direction E. There may be.
 また、上記低音速材料層11,12の厚みを薄くし得るため、図4に示した方向、すなわち弾性波伝搬方向においても、上記突出部6a1の側面6a11の傾斜をゆるやかにすることができる。従って、弾性波伝搬方向においても、突出部6a1と、その外側の部分との間において、第2の誘電体層7に穴開きが生じ難い。 Further, since the thickness of the low sound velocity material layers 11 and 12 can be reduced, the inclination of the side surface 6a11 of the protruding portion 6a1 can be made gentle in the direction shown in FIG. Therefore, even in the elastic wave propagation direction, it is difficult for the second dielectric layer 7 to be perforated between the protrusion 6a1 and the outer portion.
 図9は、本発明の第2の実施形態の弾性波装置における電極構造と低音速材料層との関係を示す平面図である。第1の実施形態では、弾性波伝搬方向Eに延びる低音速材料層11,12が設けられていた。これに対して、第2の実施形態の弾性波装置では、低音速材料層21,22が設けられている。 FIG. 9 is a plan view showing the relationship between the electrode structure and the low sound velocity material layer in the elastic wave device according to the second embodiment of the present invention. In the first embodiment, the low sound velocity material layers 11 and 12 extending in the elastic wave propagation direction E are provided. On the other hand, the low acoustic velocity material layers 21 and 22 are provided in the elastic wave device of the second embodiment.
 低音速材料層21は、一方の低音速部H1を構成する部分において、第1,第2の電極指8,9上に設けられており、第1,第2の電極指8,9間の領域には設けられていない。また、低音速材料層22は、他方の低音速部H2において、第1,第2の電極指8,9上に設けられている。そして、第1,第2の電極指8,9間の領域においては、低音速材料層22は設けられていない。 The low sound velocity material layer 21 is provided on the first and second electrode fingers 8 and 9 in a portion constituting one low sound velocity portion H1, and between the first and second electrode fingers 8 and 9. It is not provided in the area. The low sound velocity material layer 22 is provided on the first and second electrode fingers 8 and 9 in the other low sound velocity portion H2. In the region between the first and second electrode fingers 8 and 9, the low sound velocity material layer 22 is not provided.
 さらに、図10に示すように、第1,第2の電極指8,9上に、低音速材料層21または低音速材料層22が直接積層されている。このように、本発明においては、低音速材料層21,22のように、第1,第2の電極指8,9間の領域に至らないように、第1,第2の電極指8,9の上方にのみ低速材料層21,22を設けてもよい。また、この場合、低音速材料層21,22は、前述した密度が7g/cm以上の低音速材料からなる。従って、第1,第2の電極指8,9の交差幅方向だけでなく、弾性波伝搬方向Eにおいても、突出部6a1の側面6a11の傾斜をゆるめることができる。よって、第2の誘電体層7を積層した場合、突出部6a1とその外側の領域との間の部分において、穴開きが生じ難い。 Further, as shown in FIG. 10, the low sonic material layer 21 or the low sonic material layer 22 is directly laminated on the first and second electrode fingers 8 and 9. Thus, in the present invention, unlike the low sound velocity material layers 21 and 22, the first and second electrode fingers 8 and 8 are arranged so as not to reach the region between the first and second electrode fingers 8 and 9. Low-speed material layers 21 and 22 may be provided only above 9. In this case, the low sound velocity material layers 21 and 22 are made of the low sound velocity material having the density of 7 g / cm 3 or more. Therefore, the inclination of the side surface 6a11 of the protrusion 6a1 can be relaxed not only in the cross width direction of the first and second electrode fingers 8 and 9, but also in the elastic wave propagation direction E. Therefore, when the second dielectric layer 7 is laminated, it is difficult for a hole to be formed in the portion between the protruding portion 6a1 and the outer region.
 第2の実施形態から明らかなように、低音速材料層は、第1,第2の電極指に直接積層されていてもよい。従って、第1の実施形態の弾性波装置1における低音速材料層11,12についても、第1,第2の電極指8,9の上面に直接接触するように設けられていてもよい。もっとも、その場合には、短絡を防止するために、低音速材料層11,12は、絶縁性の誘電体材料からなることが必要である。 As is clear from the second embodiment, the low sound velocity material layer may be directly laminated on the first and second electrode fingers. Therefore, the low acoustic velocity material layers 11 and 12 in the elastic wave device 1 of the first embodiment may also be provided so as to be in direct contact with the upper surfaces of the first and second electrode fingers 8 and 9. However, in that case, in order to prevent a short circuit, the low sound velocity material layers 11 and 12 need to be made of an insulating dielectric material.
 図11及び図12は、本発明の第3の実施形態に係る弾性波装置の各部分拡大断面図である。図11は、第1の実施形態についての図4に相当する部分の部分拡大断面図であり、図12は、第1の実施形態についての図5に相当する部分の部分拡大断面図である。第3の実施形態の弾性波装置では、低音速材料層31,32が、設けられている。この場合、図11に示すように、低音速材料層31,32は、弾性波伝搬方向において連なっておらず、第1の電極指8上または第2の電極指9上にのみ積層されている。その他の構成は、第3の実施形態の弾性波装置は、第1の実施形態の弾性波装置1と同様である。このように、低音速材料層は、電極指上に直接積層されていてもよい。 FIG. 11 and FIG. 12 are enlarged partial sectional views of an elastic wave device according to the third embodiment of the present invention. FIG. 11 is a partial enlarged cross-sectional view of a portion corresponding to FIG. 4 for the first embodiment, and FIG. 12 is a partial enlarged cross-sectional view of a portion corresponding to FIG. 5 for the first embodiment. In the acoustic wave device according to the third embodiment, low sound velocity material layers 31 and 32 are provided. In this case, as shown in FIG. 11, the low acoustic velocity material layers 31 and 32 are not continuous in the elastic wave propagation direction, and are laminated only on the first electrode finger 8 or the second electrode finger 9. . Otherwise, the elastic wave device of the third embodiment is the same as the elastic wave device 1 of the first embodiment. Thus, the low sound velocity material layer may be directly laminated on the electrode finger.
 また、逆に、低音速材料層21,22を、第1の実施形態と同様に、第1の誘電体層6の一部を介して、第1,第2の電極指8,9の上方に間接的に積層してもよい。 On the contrary, the low sound velocity material layers 21 and 22 are disposed above the first and second electrode fingers 8 and 9 through a part of the first dielectric layer 6 as in the first embodiment. It may be laminated indirectly.
 低音速材料層11,12では、複数本の第1,第2の電極指8,9を跨ぐように、弾性波伝搬方向Eに沿って延ばされている。従って、低音速材料層11,12の形成に際してのパターニングが容易である。 The low sound velocity material layers 11 and 12 are extended along the elastic wave propagation direction E so as to straddle the plurality of first and second electrode fingers 8 and 9. Therefore, patterning when forming the low acoustic velocity material layers 11 and 12 is easy.
1…弾性波装置
2…圧電基板
3…IDT電極
4,5…反射器
6,7…第1,第2の誘電体層
6a…上面
6a1…突出部
6a11…側面
6b…下方の誘電体層部分
6c…上方の誘電体層部分
8,9…第1,第2の電極指
11,12…低音速材料層
11a,11b…側面
21,22,31,32…低音速材料層
F…交差領域
G…中央領域
H1,H2…低音速部
I1,I2…高音速部
DESCRIPTION OF SYMBOLS 1 ... Elastic wave apparatus 2 ... Piezoelectric substrate 3 ... IDT electrode 4, 5 ... Reflector 6, 7 ... 1st, 2nd dielectric layer 6a ... Upper surface 6a1 ... Projection part 6a11 ... Side surface 6b ... Lower dielectric layer part 6c ... Upper dielectric layer portions 8, 9 ... first and second electrode fingers 11, 12 ... low sound velocity material layers 11a, 11b ... side surfaces 21, 22, 31, 32 ... low sound velocity material layers F ... intersection region G ... Central region H1, H2 ... Low sound speed part I1, I2 ... High sound speed part

Claims (10)

  1.  圧電基板と、
     前記圧電基板上に設けられており、互いに間挿し合っている第1及び第2の電極指を有するIDT電極とを備え、
     前記IDT電極において、前記第1の電極指と前記第2の電極指とが、弾性波伝搬方向からみたときに重なり合っている領域を交差領域とし、該交差領域が、弾性波の音速が相対的に高い中央領域と、前記中央領域よりも音速が低くされており、前記中央領域に対して電極指の延びる方向において両端部に設けられた低音速部とを有し、
     前記低音速部において、前記第1,第2の電極指に直接または間接に積層された低音速材料層と、
     前記IDT電極及び前記低音速材料層を覆うように設けられた第1の誘電体層と、前記第1の誘電体層上に設けられている第2の誘電体層とをさらに備え、
     前記第1の誘電体層は、前記低音速材料層の上方において、他の部分よりも上方に突出している突出部を有し、
     前記低音速材料層が、密度7g/cm以上の低音速材料からなる、弾性波装置。
    A piezoelectric substrate;
    An IDT electrode provided on the piezoelectric substrate and having first and second electrode fingers interleaved with each other;
    In the IDT electrode, a region where the first electrode finger and the second electrode finger overlap when viewed from the elastic wave propagation direction is defined as an intersecting region, and the intersecting region has a relative acoustic velocity of the acoustic wave. A high central region, and the sound velocity is lower than that of the central region, and low sound velocity portions provided at both ends in the direction in which the electrode fingers extend with respect to the central region,
    In the low sound velocity part, a low sound velocity material layer laminated directly or indirectly on the first and second electrode fingers,
    A first dielectric layer provided to cover the IDT electrode and the low sound velocity material layer; and a second dielectric layer provided on the first dielectric layer;
    The first dielectric layer has a protruding portion protruding above the other portion above the low sound velocity material layer,
    The acoustic wave device, wherein the low sound velocity material layer is made of a low sound velocity material having a density of 7 g / cm 3 or more.
  2.  前記突出部が、前記IDT電極の前記第1,第2の電極指の延びる方向に沿う断面において上方に突出している突出部として現れている、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the protruding portion appears as a protruding portion protruding upward in a cross section along the extending direction of the first and second electrode fingers of the IDT electrode.
  3.  前記突出部が、前記弾性波伝搬方向に沿う前記弾性波装置の断面において現れている、請求項1または2に記載の弾性波装置。 The elastic wave device according to claim 1 or 2, wherein the protruding portion appears in a cross section of the elastic wave device along the elastic wave propagation direction.
  4.  前記突出部の下方に位置している前記低音速材料層が、前記第1,第2の電極指の延びる方向または前記弾性波伝搬方向の少なくとも一方に沿う断面において、台形の形状を有している、請求項2または3に記載の弾性波装置。 The low sound velocity material layer located below the protrusion has a trapezoidal shape in a cross section along at least one of the extending direction of the first and second electrode fingers or the elastic wave propagation direction. The elastic wave device according to claim 2 or 3.
  5.  前記低音速材料層が、金属からなる、請求項1~4のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 4, wherein the low sound velocity material layer is made of metal.
  6.  前記低音速材料層が、誘電体からなる、請求項1~4のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 4, wherein the low sound velocity material layer is made of a dielectric.
  7.  前記低音速材料層が、弾性波伝搬方向に沿って下方の複数本の前記第1,第2の電極指を跨ぐように延ばされている、請求項1~6のいずれか1項に記載の弾性波装置。 The low sound velocity material layer is extended so as to straddle the plurality of lower first and second electrode fingers along the elastic wave propagation direction. Elastic wave device.
  8.  前記低音速材料層が、前記第1の電極指または前記第2の電極指の直上に位置しており、前記第1,第2の電極指間には至っていない、請求項1~6のいずれか1項に記載の弾性波装置。 The low sound velocity material layer is located immediately above the first electrode finger or the second electrode finger, and does not reach between the first and second electrode fingers. The elastic wave device according to claim 1.
  9.  前記低音速材料層が、前記第1または第2の電極指に直接積層されている、請求項1~6のいずれか1項に記載の弾性波装置。 The acoustic wave device according to any one of claims 1 to 6, wherein the low sound velocity material layer is directly laminated on the first or second electrode finger.
  10.  前記低音速材料層が、前記第1の誘電体層を介して前記第1または第2の電極指の上方に積層されている、請求項1~7のいずれか1項に記載の弾性波装置。 The acoustic wave device according to any one of claims 1 to 7, wherein the low sound velocity material layer is laminated above the first or second electrode finger via the first dielectric layer. .
PCT/JP2017/005730 2016-04-27 2017-02-16 Elastic wave device WO2017187724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-089045 2016-04-27
JP2016089045 2016-04-27

Publications (1)

Publication Number Publication Date
WO2017187724A1 true WO2017187724A1 (en) 2017-11-02

Family

ID=60161262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005730 WO2017187724A1 (en) 2016-04-27 2017-02-16 Elastic wave device

Country Status (1)

Country Link
WO (1) WO2017187724A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787577A (en) * 2017-11-13 2019-05-21 株式会社村田制作所 Acoustic wave device, high-frequency front-end circuit and communication device
JP2019216422A (en) * 2018-06-13 2019-12-19 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Frequency control of spurious shear horizontal mode by adding high velocity layer in lithium niobate filter
CN112054780A (en) * 2019-06-06 2020-12-08 株式会社村田制作所 Elastic wave device
CN113196656A (en) * 2018-12-13 2021-07-30 株式会社村田制作所 Elastic wave device
WO2021220974A1 (en) * 2020-04-27 2021-11-04 株式会社村田製作所 Elastic wave device
WO2023204272A1 (en) * 2022-04-21 2023-10-26 株式会社村田製作所 Elastic wave device
CN113196656B (en) * 2018-12-13 2024-07-05 株式会社村田制作所 Elastic wave device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142629A (en) * 2003-11-04 2005-06-02 Seiko Epson Corp Surface acoustic wave element and manufacturing method thereof
WO2009078089A1 (en) * 2007-12-17 2009-06-25 Fujitsu Limited Elastic wave device, communication module, and communication apparatus
JP2010011440A (en) * 2008-05-30 2010-01-14 Hitachi Ltd Acoustic wave device and high-frequency filter using the same
JP2012186808A (en) * 2011-03-07 2012-09-27 Triquint Semiconductor Inc Acoustic wave guide device and method for minimizing trimming effects and piston mode instabilities
JP2012227626A (en) * 2011-04-15 2012-11-15 Panasonic Corp Surface acoustic wave element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142629A (en) * 2003-11-04 2005-06-02 Seiko Epson Corp Surface acoustic wave element and manufacturing method thereof
WO2009078089A1 (en) * 2007-12-17 2009-06-25 Fujitsu Limited Elastic wave device, communication module, and communication apparatus
JP2010011440A (en) * 2008-05-30 2010-01-14 Hitachi Ltd Acoustic wave device and high-frequency filter using the same
JP2012186808A (en) * 2011-03-07 2012-09-27 Triquint Semiconductor Inc Acoustic wave guide device and method for minimizing trimming effects and piston mode instabilities
JP2012227626A (en) * 2011-04-15 2012-11-15 Panasonic Corp Surface acoustic wave element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787577A (en) * 2017-11-13 2019-05-21 株式会社村田制作所 Acoustic wave device, high-frequency front-end circuit and communication device
CN109787577B (en) * 2017-11-13 2023-06-27 株式会社村田制作所 Elastic wave device, high-frequency front-end circuit, and communication device
JP7250625B2 (en) 2018-06-13 2023-04-03 スカイワークス ソリューションズ,インコーポレイテッド electronic device
JP2019216422A (en) * 2018-06-13 2019-12-19 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Frequency control of spurious shear horizontal mode by adding high velocity layer in lithium niobate filter
US12009806B2 (en) 2018-06-13 2024-06-11 Skyworks Solutions, Inc. Frequency control of spurious shear horizontal mode by adding high velocity layer in a lithium niobate filter
CN113196656A (en) * 2018-12-13 2021-07-30 株式会社村田制作所 Elastic wave device
US20210328572A1 (en) * 2018-12-13 2021-10-21 Murata Manufacturing Co., Ltd. Acoustic wave device
US11811388B2 (en) * 2018-12-13 2023-11-07 Murata Manufacturing Co., Ltd. Acoustic wave device
CN113196656B (en) * 2018-12-13 2024-07-05 株式会社村田制作所 Elastic wave device
CN112054780A (en) * 2019-06-06 2020-12-08 株式会社村田制作所 Elastic wave device
CN112054780B (en) * 2019-06-06 2024-06-21 株式会社村田制作所 Elastic wave device
WO2021220974A1 (en) * 2020-04-27 2021-11-04 株式会社村田製作所 Elastic wave device
WO2023204272A1 (en) * 2022-04-21 2023-10-26 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
WO2017187724A1 (en) Elastic wave device
JP6954799B2 (en) Elastic wave device
US20210066575A1 (en) Elastic wave device
US9640750B2 (en) Acoustic wave device with suppressed higher order transverse modes
JP5120497B2 (en) Boundary acoustic wave device
WO2018131360A1 (en) Elastic wave device
US20220029601A1 (en) Acoustic wave device
JP5581739B2 (en) Boundary acoustic wave device
WO2017086004A1 (en) Elastic-wave device and method for manufacturing same
WO2020184466A1 (en) Elastic wave device
JP5176863B2 (en) Elastic wave device
JP6424958B2 (en) Elastic wave device
WO2010100967A1 (en) Surface acoustic wave device
WO2014054580A1 (en) Elastic surface wave device
JP4862451B2 (en) Surface acoustic wave device and manufacturing method thereof
KR102107393B1 (en) Seismic device
JP2011041082A (en) One-port type elastic wave resonator and elastic wave filter device
WO2023048256A1 (en) Elastic wave device
WO2016039026A1 (en) Surface acoustic wave device
JP5796639B2 (en) Boundary acoustic wave device and manufacturing method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789013

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP