WO2017187681A1 - Positioning device, positioning system, and positioning method - Google Patents
Positioning device, positioning system, and positioning method Download PDFInfo
- Publication number
- WO2017187681A1 WO2017187681A1 PCT/JP2017/002661 JP2017002661W WO2017187681A1 WO 2017187681 A1 WO2017187681 A1 WO 2017187681A1 JP 2017002661 W JP2017002661 W JP 2017002661W WO 2017187681 A1 WO2017187681 A1 WO 2017187681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positioning
- satellite
- integer value
- bias
- value bias
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/24—Acquisition or tracking or demodulation of signals transmitted by the system
- G01S19/28—Satellite selection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
- G01S19/44—Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
Definitions
- the present disclosure relates to a positioning device, a positioning system, and a positioning method.
- interference has been performed by measuring the phase of radio waves (carrier waves) from GPS satellites at two points, a reference station whose position is known and an unknown point whose position is unknown, and performing positioning using the measured observation values. Positioning is attracting attention. Observed GPS satellites orbit around a predetermined orbit, and the position and number of observed GPS satellites change over time. In the interference positioning, information (integer value bias described later) used for positioning is recalculated by the change in the state of the GPS satellite.
- Patent Documents 1 and 2 disclose a positioning device that copes with the change in the state of the GPS satellite described above.
- the positioning device disclosed in Patent Document 1 estimates the integer value bias after the change using information calculated before the change in the state of the GPS satellite occurs. Further, the positioning device disclosed in Patent Document 2 estimates an integer bias using a spare reference satellite when data of a reference satellite having a large elevation angle cannot be used.
- the positioning device disclosed in Patent Document 1 copes with the change in the state of the GPS satellite described above, the accuracy of positioning is lowered by taking over the information before the change. Further, the positioning device disclosed in Patent Document 2 cannot perform positioning smoothly because the positioning solution is calculated after the reference satellite cannot be used.
- the present disclosure proposes a new and improved positioning device, positioning system, and positioning method that can smoothly switch positioning without lowering positioning accuracy.
- a reception unit that receives radio waves from a satellite, a detection unit that detects a satellite based on radio waves from the satellite received by the reception unit, and an observation value based on radio waves received from a reference station and the satellite
- a positioning unit that estimates an integer value bias using and performs positioning, and the positioning unit includes positioning based on a first integer value bias determined based on an observation value of a first combination of satellites, and , And estimating the second integer value bias based on the observation value of the second combination of satellites in parallel, and the positioning unit performs the second alignment from the positioning using the first integer value bias.
- a positioning device is provided that switches to positioning using numerical bias.
- a receiving unit that receives radio waves from a satellite, a detection unit that detects a satellite based on radio waves from the satellite received by the receiving unit, a reference station, and a radio wave received from the satellite
- a positioning unit that estimates the integer value bias using the observation value and performs positioning, and the positioning unit is based on the first integer value bias determined based on the observation value of the first combination of the satellites
- the positioning and the estimation of the second integer value bias based on the observation value of the second combination of the satellites are performed in parallel, and the positioning unit performs the second operation from the positioning using the first integer value bias.
- a positioning system is provided that switches to positioning using an integer value bias.
- using the observation value based on the radio wave received from the satellite detecting the satellite based on the radio wave received from the satellite, and the radio wave received from the reference station and the satellite Estimating the integer bias and performing positioning, based on the first integer bias determined based on the first combination observations of the satellites, and on the observations of the second combination of satellites Estimating the second integer value bias in parallel, and switching from positioning using the first integer value bias to positioning using the second integer value bias.
- positioning can be switched smoothly without any deterioration in positioning accuracy.
- FIG. 1 is a schematic diagram illustrating the principle of interference positioning.
- FIG. 2 is a schematic diagram illustrating the principle of obtaining an integer value bias in interference positioning.
- FIG. 3 is a diagram illustrating a path of radio waves with respect to an elevation angle of a GPS satellite viewed from a mobile station.
- FIG. 4 is a schematic diagram illustrating a configuration of a system according to an embodiment of the present disclosure.
- FIG. 5 is a block diagram illustrating a configuration of the receiver according to the embodiment of the present disclosure.
- FIG. 6 is a flowchart illustrating an operation example of performing interference positioning in the embodiment of the present disclosure.
- FIG. 7 is a flowchart illustrating an operation example when the mobile station detects a new satellite in the embodiment of the present disclosure.
- FIG. 8 is a diagram illustrating an operation example when a mobile station detects an unusable satellite in the embodiment of the present disclosure.
- FIG. 1 is a diagram illustrating the principle of interference positioning.
- FIG. 1 shows a GPS satellite 100, a reference station 200 whose position is known, and a mobile station 300 whose position is unknown.
- the reference station 200 and the mobile station 300 include GPS receivers 202 and 302 that receive radio waves from the GPS satellite 100, respectively.
- the receiver 302 is an example of a positioning device that performs positioning by receiving radio waves from the GPS satellite 100.
- the GPS satellite 100 orbits in a predetermined orbit and the position of the GPS satellite 100 is known.
- the GPS satellite 100 uses frequencies of L1 band (1575.42 MHz) and L2 band (1227.6 MHz) as carrier waves.
- the carrier wave includes a ranging code and a navigation message as a modulated signal.
- the ranging code is used to measure the distance between the GPS satellite 100 and the receivers 202 and 302.
- Ranging codes include C / A codes for private use and P codes for users authorized by the US Department of Internal Affairs and Communications.
- the C / A code is transmitted in the L1 band, and the P code is transmitted in the L1 and L2 bands.
- the navigation message includes data indicating the health status of the GPS satellite 100, an ephemeris, and a clock correction coefficient.
- the ephemeris includes parameters used to specify the position and orbit of the GPS satellite 100.
- the reference station 200 and the mobile station 300 observe the radio wave transmitted by the GPS satellite 100 with the GPS receivers 202 and 302, and use the carrier phase and the pseudo distance (the true distance from the GPS satellite 100 to the GPS receivers 202 and 302) as the observed values. The distance including the error is calculated.
- the GPS receivers 202 and 302 receive the radio wave from the GPS satellite 100 to capture the GPS satellite 100, and receive the ephemeris broadcast from the GPS satellite to identify the position and orbit of the GPS satellite 100.
- the reference station 200 transmits the observed observation values (carrier phase and pseudorange) and position information of the reference station 200 to the mobile station 300.
- the mobile station 300 transmits the observation values of the reference station 200, the mobile station The mobile station 300 is positioned by calculating the relative position of the mobile station 300 with respect to the reference station 200 using the observation values observed at 300.
- the mobile station 300 calculates a double difference between the observed value at the reference station 200 and the observed value at the mobile station 300 in order to obtain an integer value bias described later. This double difference calculation is done to cancel the receiver clock error and atmospheric delays and the initial phase bias of the receiver and satellite.
- the mobile station 300 obtains an integer value bias and a relative position of the mobile station 300 with respect to the reference station 200 indicated by an arrow in FIG. 1 using a Kalman filter from the calculated double difference. Since the integer value bias calculated at this time is a real number, the mobile station 300 further obtains an integer value solution of the integer value bias by the integer least square method. Then, the mobile station 300 obtains the relative position again using the integer value bias that is the calculated integer value solution.
- the wavelength of the carrier wave of the GPS satellite 100 is about 19 cm in the above-described L1 band and about 24 cm in the L2 band.
- the GPS receivers 202 and 302 have a high accuracy of observation of the carrier wave phase, and a carrier wave having such a wavelength can be measured by interference positioning with an accuracy of several millimeters to several centimeters.
- the subscript B means the reference station 200.
- the clock error ⁇ i on the satellite side is eliminated by the single phase difference between the reference station 200 and the mobile station 300.
- the clock errors ⁇ A and ⁇ B on the reference station and mobile station side are not eliminated. Therefore, in order to eliminate the clock error on the reference station 200 and the mobile station 300 side, the double phase difference between the GPS satellite i102 and the GPS satellite j104 is calculated.
- Integer bias is estimated by applying the Kalman filter algorithm using Equation (5) and Equation (6) as observation equations.
- the integer bias estimated by applying the Kalman filter is a real number, which is called a Float solution.
- an integer least square method is used to obtain an integer solution.
- the integer least square method is a method for searching for a solution that satisfies the least square method under the constraint that the integer bias is an integer.
- An integer value bias obtained by applying the integer least square method is called a Fix solution.
- This Fix solution is evaluated by a test called Ratio Test.
- Ratio Test the optimal solution obtained by the integer least square method is compared with the suboptimal solution. Then, the optimum solution is adopted as the Fix solution when the element ratio (Ratio factor) that is the ratio of the optimum solution to the next best solution (suboptimal solution / optimum solution) exceeds a predetermined threshold (for example, 3).
- the large element ratio described above indicates that the variance of the solution obtained by the integer least square method is small. That is, it is estimated that the accuracy of the solution (integer value bias) obtained by the integer least square method is high.
- the interference positioning the mobile station performs positioning using the integer value bias of the Fix solution in order to perform highly accurate positioning.
- the double difference between the carrier phase and the pseudorange described above is based on a combination of m (m ⁇ 1) / 2 sets of GPS satellites when m GPS satellites 100 are observed at the reference station 200 and the mobile station 300. Calculated. Since there are two observation values observed from one satellite, that is, the pseudorange and the carrier phase, there are m (m ⁇ 1) combinations of double difference calculated.
- m (m ⁇ 1) / 2 sets need be used, and some of the satellite combinations are used. Also good. However, four or more satellites are used to estimate the integer value bias.
- FIG. 3 is a diagram illustrating an example of the relationship between the positions of the two GPS satellites 106 and 108 and the position of the mobile station 300.
- the GPS satellite 106 is a satellite whose elevation angle viewed from the mobile station 300 is relatively larger than that of the GPS satellite 108. As can be seen from FIG. 3, when the distance between the mobile station 300 and the GPS satellite 106 is compared with the distance between the mobile station 300 and the GPS satellite 108, the distance between the mobile station 300 and the GPS satellite 106 is smaller.
- the distance between the ionosphere and the troposphere that passes through decreases as the elevation angle of the satellite viewed from the mobile station 300 increases, the ionosphere delay I and troposphere delay T decrease. Therefore, when observation is performed using a GPS satellite common to the reference station 200 and the mobile station 300, a GPS satellite having a large elevation angle is preferably selected as the reference satellite in order to perform highly accurate positioning.
- the calculated double difference is a combination of m-1 satellites with respect to the number m of observed satellites. Calculated based on However, as described above, as a combination of GPS satellites used for estimating the integer value bias, not all of m ⁇ 1 sets may be used, and a combination of some satellites may be used.
- Example of system configuration> In the above, the positioning principle of interference positioning and the estimation method of integer value bias have been described. Hereinafter, an example of a system configuration according to an embodiment of the present disclosure will be described.
- a positioning device that performs positioning by receiving radio waves from a satellite will be described.
- a positioning device for example, there is a receiver 302 provided in a mobile station 300 as shown in FIG.
- the system according to the present embodiment includes a GPS satellite 100, a reference station 200 whose position is known, a mobile station 300, and a network 400.
- the reference station 200 and the mobile station 300 include receivers 202 and 302.
- the GPS satellite 100 transmits radio waves and broadcasts distance measurement codes and navigation messages in the same manner as described above. Further, the reference station 200 and the mobile station 300 receive the radio wave transmitted from the GPS satellite 100, capture the GPS satellite 100, and specify the position and orbit of the GPS satellite 100 using the received navigation message. Further, the reference station 200 and the mobile station 300 observe the observation value based on the radio wave received from the GPS satellite 100.
- the network 400 carries information from the reference station 200 or the mobile station 300.
- the network 400 may be a public network such as the Internet or a network having a wireless interface such as a mobile phone network.
- the position of the reference station 200 is known, and the reference station 200 includes a receiver 202 that can measure the carrier phase from the GPS satellite 100.
- the reference station 200 may be a structure installed in an urban area, such as a building or a traffic light or a base station of a mobile phone network, with a receiver 202 that can measure the carrier phase from the GPS satellite 100.
- the reference station 200 may be an electronic reference point installed by the Geographical Survey Institute. In FIG. 4, only one reference station 200 is shown. However, a plurality of reference stations 200 may be installed in this system.
- the mobile station 300 is shown as a vehicle in FIG. However, in this embodiment, the mobile station 300 is not limited to a vehicle, and may be a device that can be carried by a person such as a mobile phone or a game machine. Further, the mobile station 300 may be a ship, and the mobile station 300 may be any device as long as the device includes the receiver 302 that can measure the carrier phase from the GPS satellite 100.
- the mobile station 300 receives information regarding the observation value (carrier phase and pseudorange) of the reference station 200 and the position of the reference station 200 via the network 400. Then, the mobile station 300 performs interference positioning using the information received from the reference station 200 and the observation value obtained by the mobile station 300 observing the radio wave from the GPS satellite 100.
- the observation value carrier phase and pseudorange
- the receiver 302 is provided in the mobile station 300, and the receiver 302 includes a GPS receiver 304, a satellite detector 306, a communication unit 308, and a positioning unit 310.
- the positioning unit 310 includes an integer value bias estimation unit 312 and a positioning execution unit 314.
- the GPS receiving unit 304 receives radio waves from the GPS satellites 100, and sends signals based on the received radio waves from the GPS satellites 100 to the satellite detection unit 306 and the positioning unit 310.
- the satellite detection unit 306 identifies the number, position, and orbit of the GPS satellites 100 to be observed based on the signal received from the GPS reception unit 304. Then, the satellite detection unit 306 sends the number, position, and orbit of the identified GPS satellites 100 to the positioning unit 310.
- the satellite detection unit 306 specifies the position and orbit of the GPS satellite 100
- the satellite detection unit 306 uses the ephemeris included in the navigation message described above.
- the communication unit 308 is used to perform wireless communication with other devices.
- the communication unit 308 receives information regarding the observation value observed at the reference station 200 and the position of the reference station 200 from the reference station 200 via the network 400, and sends the received information to the positioning unit 310.
- the communication unit 308 may be a transceiver used for a wireless LAN such as Bluetooth (registered trademark) or Wi-Fi, or a mobile phone network such as LTE (Long Term Evolution).
- the integer value bias estimation unit 312 calculates the observation value based on the radio wave received from the satellite received by the GPS reception unit 304.
- the integer value bias estimation unit 312 estimates the integer value bias based on the observation value calculated by the integer value bias estimation unit 312 and the observation value of the reference station 200 received from the communication unit 308.
- the positioning execution unit 314 performs positioning based on the integer value bias estimated by the integer value bias estimation unit 312.
- Example of operation when mobile station performs interference positioning> The configuration example of the system of the present embodiment and the receiver 302 of the mobile station 300 has been described above. Hereinafter, an operation example when the mobile station 300 performs interference positioning will be described.
- FIG. 6 is a flowchart showing an operation example when the mobile station 300 performs interference positioning.
- the mobile station 300 receives radio waves from the GPS satellite 100 at the GPS receiving unit 304 and acquires observation values (pseudorange and carrier phase) (S102).
- the integer value bias estimation unit 312 of the mobile station 300 estimates the integer value bias based on the observed combination of satellites as described above.
- the satellite combination used here has m (m ⁇ 1) / 2 satellite combination candidates when the number of observed satellites is m as described above.
- a satellite having a large elevation angle viewed from the mobile station 300 is set as the reference satellite, there are m-1 satellite combination candidates.
- the combination of the satellites for which the double difference is calculated is a combination of the reference satellite and the other satellites.
- the integer value bias estimation unit 312 may estimate the integer value bias using all of these satellite combination candidates, or may estimate the integer value bias using a part of the satellite combinations.
- the integer value bias estimation unit 312 receives the observation value of the reference station 200 from the reference station 200, calculates the double difference between the carrier phase and the pseudorange in the above-described satellite combination, and estimates the integer value bias. Next, in S106, the integer value bias estimation unit 312 sends the integer value bias estimated in S104 to the positioning execution unit 314, and the positioning execution unit 314 performs positioning using the received integer value bias.
- Example of operation when a mobile station detects a new satellite The operation example when the mobile station 300 performs interference positioning has been described above. Hereinafter, an operation example when the mobile station 300 detects a new satellite will be described.
- the GPS satellite 100 orbits a predetermined orbit. Therefore, the position of the GPS satellite 100 viewed from the mobile station 300 changes with time. That is, as time passes, the mobile station 300 detects a new satellite.
- the mobile station 300 again estimates the integer value bias of all the combinations of the satellites using the observation values obtained from the newly detected satellites, the above-described element ratio is significantly lowered. That is, the accuracy of the estimated integer value bias decreases.
- an integer bias is estimated based on the change in state. That is, the mobile station 300 according to the present embodiment performs positioning using the first integer value bias estimated before the new satellite is detected (the integer value bias estimated in S104 in FIG. 6). In parallel, estimation of a second integer value bias (integer value bias estimated in S210 of FIG. 7 described later) in consideration of a newly detected satellite is performed.
- FIG. 7 is a flowchart illustrating an example of an operation performed when the mobile station 300 detects a new satellite.
- step S202 the mobile station 300 receives radio waves from the GPS satellite 100 to acquire observation data such as a ranging code and a navigation message.
- step S204 the satellite detection unit 306 determines whether a new satellite is detected based on the received observation data. If the satellite detection unit 306 detects a new satellite in S204, the process proceeds to S206.
- the integer value bias estimation unit 312 selects a combination of satellites used for estimation of the integer value bias in consideration of the newly detected satellites. At this time, the integer value bias estimation unit 312 estimates the integer value bias using the observed value acquired from the reference station 200 and the observed value observed by the mobile station 300 as described above.
- the integer value bias estimation unit 312 selects a reference satellite from the combination of satellites selected in S206.
- the reference satellite may be a satellite having the largest elevation angle. Then, the integer value bias estimation unit 312 estimates the integer value bias using the combination of the satellites selected in S206 in parallel with the positioning by the positioning execution unit 314.
- the integer value bias estimation unit 312 determines whether or not the element ratio of the integer value bias estimated in S208 has reached a predetermined standard. When the element ratio of the integer value bias estimated here does not reach the predetermined reference, the integer value bias estimation unit 312 repeatedly performs the estimation of the integer value bias by the least square method.
- the integer value bias estimation unit 312 sends the integer value bias that has reached the predetermined reference to the positioning execution unit 314 in S212.
- the positioning execution unit 314 calculates the integer bias estimated in consideration of the satellite newly detected in S210 in parallel with the positioning from the positioning using the integer bias estimated before the new satellite is detected. Switch to the positioning you used.
- the satellite combination selected in S206 may be the same as or different from the satellite combination used to estimate the integer bias estimated before the new satellite was detected. May be. That is, the combination of the satellites used for estimating the integer value bias used for positioning and the combination of the satellites used for estimating the integer value bias in parallel with the positioning may be the same combination. Different combinations may also be used.
- the reference satellite selected in S208 is different from the reference satellite used for positioning, the combination of these satellites is different. That is, the same satellite is used, but if the reference satellite is different, it is treated as a combination of different satellites. Therefore, the combination of satellites selected in S206 may or may not include a newly detected satellite. This is because the newly detected satellite's elevation angle is still small and the newly detected satellite may not be suitable for use in estimating the integer bias.
- the mobile station 300 when a new satellite is detected, the mobile station 300 according to the embodiment of the present disclosure estimates a new integer value bias in parallel with the positioning. This also prevents the accuracy of the integer bias from being reduced by immediately adding the newly detected satellite observations and estimating the integer bias. In addition, since the mobile station 300 according to the present embodiment uses the integer value bias for positioning after the integer value bias estimated in parallel with positioning reaches a predetermined reference, the accuracy of the integer value bias is more reliably reduced. Is prevented.
- the mobile station 300 selects a combination of satellites using the position of the GPS satellite 100 and the accuracy degradation (Dilution of Precision, DOP) that is an index of the clock error.
- the degree of accuracy deterioration is calculated as follows.
- the variance of the positions of the GPS satellites 100 (the left side of the following equation (7)) is expressed as follows using the geometric matrix G.
- ⁇ is the variance of the error in the distance between the mobile station 300 and the satellite.
- the dispersion of the position of the GPS satellite 100 is divided into a term that depends on the distance error between the mobile station 300 and the satellite and a term that depends on the arrangement of the mobile station 300 and the satellite.
- H (G T G) ⁇ 1
- the accuracy degradation degree is defined as a term depending on the arrangement of the mobile station 300 and the satellite as follows.
- Equation (10) is a position degradation of precision (PDOP) related to the position.
- Expression (11) is a time degradation of precision (TDOP).
- the equation (12) is a geometric accuracy deterioration degree (GDOP).
- the accuracy deterioration degree described above is used when a combination of satellites is selected in S206 of FIG. At this time, the combination of satellites is selected so that the degree of accuracy degradation is minimized.
- the combination of satellites that minimizes the degree of accuracy degradation may be selected so that the degree of accuracy degradation is minimized in the future satellite arrangement. This is because the arrangement of the satellites at the time when the estimation of the integer value bias is completed is taken into consideration. As a result, a combination of satellites with less error is selected, and the mobile station 300 can perform positioning with higher accuracy.
- the accuracy deterioration degree used may be any of the position accuracy deterioration degree (PDOP), the time precision deterioration degree (TDOP), and the geometric accuracy deterioration degree (GDOP), and the three accuracy deterioration degrees are combined. And may be used. More preferably, however, the position-related accuracy degradation (PDOP) is used to select the combination of satellites. By calculating the double difference in the process of estimating the integer bias, the satellite and receiver clock errors are eliminated. Therefore, it is preferable to use the degree of accuracy degradation that can obtain information about the position rather than the degree of accuracy degradation (TDOP).
- PDOP position accuracy deterioration degree
- TDOP time precision deterioration degree
- GDOP geometric accuracy deterioration degree
- Example of operation when a mobile station detects an unusable satellite The operation example when the mobile station 300 detects a new satellite and the accuracy deterioration level used in the operation have been described above.
- an operation example of the mobile station 300 when the mobile station 300 detects an unusable satellite will be described.
- the GPS satellite 100 orbits a predetermined orbit, and satellites that cannot be used for positioning are generated with time. For example, the elevation angle of the satellite is reduced, and the ionospheric delay and the tropospheric delay are increased, so that the satellite cannot be used for positioning.
- the mobile station 300 of the present embodiment calculates an integer value bias excluding satellites that cannot be used in the future in parallel with positioning.
- FIG. 8 is a flowchart showing an operation example of the mobile station 300 when the mobile station 300 detects an unusable satellite.
- the mobile station 300 acquires observation data such as a distance measurement code and a navigation message by receiving radio waves from the GPS satellite 100.
- the satellite detection unit 306 determines whether or not there is a satellite that cannot be used in the future based on the received observation data.
- the integer value bias estimation unit 312 selects a combination of satellites used for estimation of the integer value bias except for satellites that cannot be used in the future.
- the determination of the satellite that cannot be used in the future may be performed based on the orbit of the satellite calculated using the ephemeris included in the navigation message.
- the combination of satellites when the combination of satellites is selected in S306, the above-described accuracy deterioration degree may be used. At this time, the combination of satellites is selected so that the degree of accuracy degradation is minimized.
- the combination of satellites that minimizes the degree of accuracy degradation may be selected so that the degree of accuracy degradation is minimized in the future satellite arrangement. This is because the arrangement of satellites at the time when satellites that cannot be used in the future can no longer be used for positioning is taken into consideration. As a result, a combination of satellites with less error is selected, and the mobile station 300 can perform positioning with higher accuracy.
- the integer value bias estimation unit 312 selects a spare reference satellite from the combination of satellites selected in S306.
- the spare reference satellite may be the satellite having the largest elevation angle.
- the integer value bias estimation unit 312 estimates the integer value bias using the combination of the satellites selected in S306 in parallel with the positioning by the positioning execution unit 314.
- the backup reference satellite selected here may be a satellite having the largest elevation angle after a predetermined time has elapsed. This is because the satellite having the largest elevation angle is preferably selected as the reference satellite when the satellite that cannot be used becomes actually unusable for positioning. As a result, since the most appropriate satellite is used as the reference satellite at the time when the unusable satellite is actually unusable, more accurate positioning is performed.
- the satellite detection unit 306 determines whether there is a satellite that has become unusable. If the satellite detection unit 306 determines that there are no satellites that can no longer be used, the integer value bias estimation unit 312 continues to estimate the integer value bias. If the satellite detection unit 306 determines in S310 that there is a disabled satellite, then in S312, the integer value bias estimation unit 312 determines whether the disabled satellite is a reference satellite.
- the reference satellite in S312 is a reference satellite for estimating the integer value bias used for positioning performed in parallel with the estimation of the integer value bias in S308.
- the reference satellite used for this positioning is also referred to as the current reference satellite.
- the process proceeds to S314.
- the integer value bias estimation unit 312 performs integer value bias conversion based on the backup reference satellite selected in S308. The integer value bias conversion performed here will be described below.
- r indicates an arbitrary satellite other than the current reference satellite p and the standby reference satellite q used for estimation of the integer value bias.
- the integer value bias estimation unit 312 performs integer value bias conversion based on the standby reference satellite.
- the positioning execution unit 314 switches to positioning using the integer value bias replaced in S314.
- the process proceeds to S316.
- the integer value bias estimation unit 312 determines whether or not the reason that the satellite has become unusable is that the elevation angle is equal to or smaller than a predetermined magnitude. If the integer value bias estimation unit 312 determines in S316 that the reason that the satellite has become unusable is a decrease in elevation angle, the process proceeds to S318.
- the integer value bias estimation unit 312 switches the integer value bias used for positioning to the integer value bias estimated in parallel with the positioning in S308. Then, the integer value bias estimation unit 312 sends the integer value bias estimated in parallel with the positioning to the positioning execution unit 314, and the positioning execution unit 314 performs positioning using the integer value bias (S322).
- the process proceeds to S320.
- the integer value bias estimation unit 312 uses the current reference satellite as a reference for the integer bias estimated in S308 based on the standby reference satellite in the same manner as the replacement of the integer value bias described above using the equation (13). Replace with the integer bias.
- the positioning execution unit 314 executes positioning using an integer value bias based on the current reference satellite. As a result, positioning is executed without using the satellite that has become unusable.
- the mobile station 300 uses the combination of satellites excluding the satellite that cannot be used to generate a new integer bias. Is estimated. This prevents a decrease in the accuracy of the integer bias due to a change in the satellite state (decrease in the number of satellites).
- the mobile station 300 is continuously highly accurate when satellites are actually unusable. Positioning can be performed.
- the activation of the satellite is estimated by the ephemeris.
- the orbit of the satellite may be estimated by more accurate orbit information.
- the orbit information may be a super-breaking calendar.
- the mobile station 300 according to the present embodiment immediately performs positioning using a new integer value bias when a satellite becomes unusable.
- the mobile station 300 does not perform parallel with positioning after the integer value bias estimated in parallel with positioning reaches a predetermined reference as described in FIG. It may be switched to positioning using the integer value bias estimated as described above.
- the scope of the present disclosure includes a computer program for operating the receiver 302 as described above.
- a storage medium storing such a program may be provided.
- the mobile station 300 estimates the integer value bias in parallel with the positioning. With such a configuration, even when the mobile station 300 detects a new satellite, it is possible to prevent a decrease in the accuracy of the integer value bias. In addition, even when the mobile station 300 detects an unusable satellite, it is possible to prevent a decrease in the accuracy of the integer bias. In addition, when a satellite that cannot be used is detected, positioning can be performed with higher accuracy by changing the processing depending on the attribute of the satellite that cannot be used (for example, whether it is a reference satellite) or the reason (for example, whether it is due to elevation angle reduction) Can be done quickly.
- a receiver for receiving radio waves from a satellite A detection unit for detecting a satellite based on radio waves from the satellite received by the reception unit; A positioning unit that estimates an integer value bias using an observation value based on radio waves received from a reference station and the satellite, and performs positioning;
- the positioning unit is configured to perform positioning based on a first integer bias determined based on observations of the first combination of satellites, and estimate a second integer bias based on observations of the second combination of satellites.
- the positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias.
- the detection unit according to (1) wherein when the detection unit detects a new satellite, the positioning unit estimates a second integer value bias based on an observation value of the second combination including the new satellite. Positioning device. (3) After the second integer value bias reaches a predetermined accuracy, the positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias. The positioning device according to (1) or (2). (4) The positioning device according to any one of (1) to (3), wherein the second combination is selected based on an index of accuracy of the position of the satellite. (5) The positioning device according to (4), wherein the second combination is selected so that an index of accuracy of the position of the satellite is minimized.
- the positioning unit predicts an unusable satellite from the first combination based on information from the detection unit, The positioning unit estimates the second integer value bias based on the observation value of the second combination excluding the satellite that cannot be used, When the detection unit detects a disabled satellite, the positioning using the first integer value bias is switched to the positioning using the second integer value bias. (1) to (5) The positioning device according to any one of the above. (7) When the unusable satellite is a reference satellite, the positioning unit estimates the second integer value bias using another satellite different from the reference satellite as a backup reference satellite, The positioning device according to (6), wherein the positioning unit performs conversion of an integer value bias using the first integer value bias and the second integer value bias.
- the positioning unit performs positioning by switching from the first integer value bias to the second integer value bias, (6) or The positioning device according to (7).
- the positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias.
- (10) Receiving radio waves from satellites, Detecting satellites based on radio waves received from satellites; Estimating an integer value bias using observation values based on radio waves received from a reference station and the satellite, and performing positioning; The positioning based on the first integer bias determined based on the observation value of the first combination of the satellites and the estimation of the second integer bias based on the observation value of the second combination of the satellites are performed in parallel. And doing Switching from positioning using the first integer value bias to positioning using the second integer value bias.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
[Problem] Reduced positioning accuracy and inability to carry out positioning smoothly. [Solution] A positioning device provided with a reception unit for receiving radio waves from satellites, a detection unit for detecting the satellites on the basis of the radio waves from the satellites received by the reception unit, and a positioning unit for estimating an integer bias using observed values based on the radio waves received from a reference station and the satellites and carrying out positioning, wherein the positioning unit carries out, in parallel, positioning based on a first integer bias determined on the basis of observed values for a first satellite combination and estimation of a second integer bias on the basis of observed values for a second satellite combination and is capable of switching from positioning using the first integer bias to positioning using the second integer bias.
Description
本開示は、測位装置、測位システム、測位方法に関する。
The present disclosure relates to a positioning device, a positioning system, and a positioning method.
近年、位置が既知である基準局と、位置が未知である未知点との2地点で、GPS衛星からの電波(搬送波)の位相を測定し、測定された観測値を用いて測位を行う、干渉測位が注目されている。観測されるGPS衛星は所定の軌道を周回しており、時間の経過と共に観測されるGPS衛星の位置および数は変化する。干渉測位では、このGPS衛星の状態の変化によって、測位に用いられる情報(後述される整数値バイアス)が再計算される。
In recent years, interference has been performed by measuring the phase of radio waves (carrier waves) from GPS satellites at two points, a reference station whose position is known and an unknown point whose position is unknown, and performing positioning using the measured observation values. Positioning is attracting attention. Observed GPS satellites orbit around a predetermined orbit, and the position and number of observed GPS satellites change over time. In the interference positioning, information (integer value bias described later) used for positioning is recalculated by the change in the state of the GPS satellite.
特許文献1および2には、上述したGPS衛星の状態の変化に対処する測位装置が開示されている。特許文献1に開示されている測位装置は、GPS衛星の状態の変化が生じる前に算出された情報を用いて変化後の整数値バイアスの推定を行う。また、特許文献2に開示されている測位装置は、仰角が大きい基準衛星のデータが使用できなくなった場合、予備の基準衛星を用いて整数値バイアスの推定を行う。
Patent Documents 1 and 2 disclose a positioning device that copes with the change in the state of the GPS satellite described above. The positioning device disclosed in Patent Document 1 estimates the integer value bias after the change using information calculated before the change in the state of the GPS satellite occurs. Further, the positioning device disclosed in Patent Document 2 estimates an integer bias using a spare reference satellite when data of a reference satellite having a large elevation angle cannot be used.
特許文献1に開示されている測位装置は、上述したGPS衛星の状態の変化に対処するものの、変化前の情報を引き継ぐことによって測位の精度が低下する。また特許文献2に開示されている測位装置は、基準衛星が使用できなくなった後に測位解が算出されていることにより円滑に測位が行えない。
Although the positioning device disclosed in Patent Document 1 copes with the change in the state of the GPS satellite described above, the accuracy of positioning is lowered by taking over the information before the change. Further, the positioning device disclosed in Patent Document 2 cannot perform positioning smoothly because the positioning solution is calculated after the reference satellite cannot be used.
そこで本開示では、測位精度の低下がなく、円滑に測位の切り替えが行える新規かつ改良された測位装置、測位システム、測位方法を提案する。
Therefore, the present disclosure proposes a new and improved positioning device, positioning system, and positioning method that can smoothly switch positioning without lowering positioning accuracy.
本開示によれば、衛星からの電波を受信する受信部と、前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位装置が提供される。
According to the present disclosure, a reception unit that receives radio waves from a satellite, a detection unit that detects a satellite based on radio waves from the satellite received by the reception unit, and an observation value based on radio waves received from a reference station and the satellite A positioning unit that estimates an integer value bias using and performs positioning, and the positioning unit includes positioning based on a first integer value bias determined based on an observation value of a first combination of satellites, and , And estimating the second integer value bias based on the observation value of the second combination of satellites in parallel, and the positioning unit performs the second alignment from the positioning using the first integer value bias. A positioning device is provided that switches to positioning using numerical bias.
また、本開示によれば、衛星からの電波を受信する受信部と、前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位システムが提供される。
Further, according to the present disclosure, a receiving unit that receives radio waves from a satellite, a detection unit that detects a satellite based on radio waves from the satellite received by the receiving unit, a reference station, and a radio wave received from the satellite A positioning unit that estimates the integer value bias using the observation value and performs positioning, and the positioning unit is based on the first integer value bias determined based on the observation value of the first combination of the satellites The positioning and the estimation of the second integer value bias based on the observation value of the second combination of the satellites are performed in parallel, and the positioning unit performs the second operation from the positioning using the first integer value bias. A positioning system is provided that switches to positioning using an integer value bias.
また、本開示によれば、衛星からの電波を受信することと、受信された衛星からの電波に基づいて衛星を検知することと、基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行うことと、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行うことと、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替えることと、を含む測位方法が提供される。
In addition, according to the present disclosure, using the observation value based on the radio wave received from the satellite, detecting the satellite based on the radio wave received from the satellite, and the radio wave received from the reference station and the satellite Estimating the integer bias and performing positioning, based on the first integer bias determined based on the first combination observations of the satellites, and on the observations of the second combination of satellites Estimating the second integer value bias in parallel, and switching from positioning using the first integer value bias to positioning using the second integer value bias. Is provided.
以上説明したように本開示によれば、測位精度の低下がなく、円滑に測位の切り替えが行える。
As described above, according to the present disclosure, positioning can be switched smoothly without any deterioration in positioning accuracy.
なお、上記の効果は必ずしも限定されず、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
The above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
なお、説明は以下の順序で行う。
0.干渉測位の原理
1.整数値バイアスの推定方法
2.システム構成の例
3.移動局の構成
4.移動局が干渉測位を行う際の動作例
5.移動局が新しい衛星を検知した際の動作例
6.衛星の組合せの選択方法
7.移動局が使用不可となる衛星を検知した際の動作例
8.補足
9.むすび The description will be given in the following order.
0. Principle of interference positioning 1. Integer value bias estimation method 2. System configuration example Configuration of mobile station 4. 4. Example of operation when mobile station performs interference positioning 5. Example of operation when a mobile station detects a new satellite 6. Selection method of satellite combination 7. Example of operation when a mobile station detects an unusable satellite Supplement 9 Conclusion
0.干渉測位の原理
1.整数値バイアスの推定方法
2.システム構成の例
3.移動局の構成
4.移動局が干渉測位を行う際の動作例
5.移動局が新しい衛星を検知した際の動作例
6.衛星の組合せの選択方法
7.移動局が使用不可となる衛星を検知した際の動作例
8.補足
9.むすび The description will be given in the following order.
0. Principle of interference positioning 1. Integer value bias estimation method 2. System configuration example Configuration of mobile station 4. 4. Example of operation when mobile station performs interference positioning 5. Example of operation when a mobile station detects a new satellite 6. Selection method of satellite combination 7. Example of operation when a mobile station detects an unusable satellite Supplement 9 Conclusion
<0.干渉測位の原理>
図1は、干渉測位の原理を示す図である。図1には、GPS衛星100と、位置が既知である基準局200と、位置が未知である移動局300とが示される。基準局200および移動局300は、GPS衛星100から電波を受信するGPS受信機202、302をそれぞれ備える。なお、受信機302は、GPS衛星100から電波を受信して測位を行う測位装置の一例である。 <0. Interference positioning principle>
FIG. 1 is a diagram illustrating the principle of interference positioning. FIG. 1 shows aGPS satellite 100, a reference station 200 whose position is known, and a mobile station 300 whose position is unknown. The reference station 200 and the mobile station 300 include GPS receivers 202 and 302 that receive radio waves from the GPS satellite 100, respectively. The receiver 302 is an example of a positioning device that performs positioning by receiving radio waves from the GPS satellite 100.
図1は、干渉測位の原理を示す図である。図1には、GPS衛星100と、位置が既知である基準局200と、位置が未知である移動局300とが示される。基準局200および移動局300は、GPS衛星100から電波を受信するGPS受信機202、302をそれぞれ備える。なお、受信機302は、GPS衛星100から電波を受信して測位を行う測位装置の一例である。 <0. Interference positioning principle>
FIG. 1 is a diagram illustrating the principle of interference positioning. FIG. 1 shows a
GPS衛星100は、所定の軌道で周回しており、GPS衛星100の位置は既知である。GPS衛星100は、搬送波としてL1帯(1575.42MHz)とL2帯(1227.6MHz)の周波数を使用している。搬送波には測距コードおよび航法メッセージが変調された信号として含まれる。
The GPS satellite 100 orbits in a predetermined orbit and the position of the GPS satellite 100 is known. The GPS satellite 100 uses frequencies of L1 band (1575.42 MHz) and L2 band (1227.6 MHz) as carrier waves. The carrier wave includes a ranging code and a navigation message as a modulated signal.
測距コードは、GPS衛星100と受信機202、302との間の距離を測定するために用いられる。測距コードは、民間利用のためのC/Aコードと米国総務省が許可したユーザのためのPコードがある。C/AコードはL1帯で送信され、PコードはL1およびL2帯で送信されている。
The ranging code is used to measure the distance between the GPS satellite 100 and the receivers 202 and 302. Ranging codes include C / A codes for private use and P codes for users authorized by the US Department of Internal Affairs and Communications. The C / A code is transmitted in the L1 band, and the P code is transmitted in the L1 and L2 bands.
航法メッセージには、GPS衛星100の健康状態を示すデータ、エフェメリスおよびクロック補正係数が含まれる。エフェメリスには、GPS衛星100の位置および軌道を特定するために用いられるパラメータが含まれる。
The navigation message includes data indicating the health status of the GPS satellite 100, an ephemeris, and a clock correction coefficient. The ephemeris includes parameters used to specify the position and orbit of the GPS satellite 100.
基準局200および移動局300は、GPS受信機202、302でGPS衛星100が送信する電波を観測し、観測値として搬送波位相および疑似距離(GPS衛星100からGPS受信機202、302までの真の距離に誤差を含んだ距離)を算出する。また、GPS受信機202、302は、GPS衛星100からの電波を受信してGPS衛星100を捕捉し、またGPS衛星から放送されるエフェメリスを受信してGPS衛星100の位置および軌道を特定する。
The reference station 200 and the mobile station 300 observe the radio wave transmitted by the GPS satellite 100 with the GPS receivers 202 and 302, and use the carrier phase and the pseudo distance (the true distance from the GPS satellite 100 to the GPS receivers 202 and 302) as the observed values. The distance including the error is calculated. The GPS receivers 202 and 302 receive the radio wave from the GPS satellite 100 to capture the GPS satellite 100, and receive the ephemeris broadcast from the GPS satellite to identify the position and orbit of the GPS satellite 100.
一般的に干渉測位では、基準局200は、観測した観測値(搬送波位相および疑似距離)および基準局200の位置情報を移動局300に送信し、移動局300は、基準局200の観測値と、移動局300で観測した観測値とを用いて基準局200に対する移動局300の相対位置を算出することによって、移動局300の測位を行う。
In general, in interference positioning, the reference station 200 transmits the observed observation values (carrier phase and pseudorange) and position information of the reference station 200 to the mobile station 300. The mobile station 300 transmits the observation values of the reference station 200, the mobile station The mobile station 300 is positioned by calculating the relative position of the mobile station 300 with respect to the reference station 200 using the observation values observed at 300.
また、移動局300は後述する整数値バイアスを求めるため、基準局200における観測値と移動局300における観測値の2重差を計算する。この2重差の計算は、受信機の時計誤差および大気圏に由来する遅延および受信機と衛星の初期位相バイアスを打ち消すために行われる。次に移動局300は、算出された2重差からカルマンフィルタを用いて整数値バイアスと、図1において矢印で示される基準局200に対する移動局300の相対位置とを求める。この際算出される整数値バイアスは実数であるので、さらに移動局300は整数最小二乗法によって整数値バイアスの整数値解を求める。そして移動局300は、算出された整数値解である整数値バイアスを用いて相対位置を再度求める。
Also, the mobile station 300 calculates a double difference between the observed value at the reference station 200 and the observed value at the mobile station 300 in order to obtain an integer value bias described later. This double difference calculation is done to cancel the receiver clock error and atmospheric delays and the initial phase bias of the receiver and satellite. Next, the mobile station 300 obtains an integer value bias and a relative position of the mobile station 300 with respect to the reference station 200 indicated by an arrow in FIG. 1 using a Kalman filter from the calculated double difference. Since the integer value bias calculated at this time is a real number, the mobile station 300 further obtains an integer value solution of the integer value bias by the integer least square method. Then, the mobile station 300 obtains the relative position again using the integer value bias that is the calculated integer value solution.
なお、GPS衛星100の搬送波の波長は、上述したL1帯の波長が約19cmであり、L2帯の波長が約24cmである。GPS受信機202、302における搬送波位相の観測精度は高く、このような波長の搬送波において、数mmから数cm程度の精度で、干渉測位では測位が可能である。
Note that the wavelength of the carrier wave of the GPS satellite 100 is about 19 cm in the above-described L1 band and about 24 cm in the L2 band. The GPS receivers 202 and 302 have a high accuracy of observation of the carrier wave phase, and a carrier wave having such a wavelength can be measured by interference positioning with an accuracy of several millimeters to several centimeters.
ここで添え字Bは、基準局200を意味する。(3)の式から理解されるように、基準局200-移動局300の間の1重位相差では、衛星側の時計誤差δiは消去される。しかし、基準局200-移動局300の間の1重位相差では、基準局および移動局側の時計誤差δAおよびδBは消去されない。このため、基準局200および移動局300側の時計誤差を消去するために、GPS衛星i102とGPS衛星j104との2重位相差が計算される。
Here, the subscript B means the reference station 200. As can be understood from the expression (3), the clock error δ i on the satellite side is eliminated by the single phase difference between the reference station 200 and the mobile station 300. However, in the single phase difference between the reference station 200 and the mobile station 300, the clock errors δ A and δ B on the reference station and mobile station side are not eliminated. Therefore, in order to eliminate the clock error on the reference station 200 and the mobile station 300 side, the double phase difference between the GPS satellite i102 and the GPS satellite j104 is calculated.
そして整数値バイアスは、式(5)および式(6)を観測方程式として、カルマンフィルタのアルゴリズムを適用して推定される。カルマンフィルタを適用して推定された整数値バイアスは実数であり、これはFloat解と呼ばれる。ここで整数解を求めるために整数最小二乗法が用いられる。
Integer bias is estimated by applying the Kalman filter algorithm using Equation (5) and Equation (6) as observation equations. The integer bias estimated by applying the Kalman filter is a real number, which is called a Float solution. Here, an integer least square method is used to obtain an integer solution.
整数最小二乗法は、整数値バイアスは整数であるとする制約条件において、最小二乗法条件を満たす解を探索する方法である。整数最小二乗法を適用して得られた整数値バイアスはFix解と呼ばれる。このFix解は、Ratio Testと呼ばれる検定により評価される。Ratio Testにおいては、整数最小二乗法によって得られる最適解と次善解とが比較される。そして、最適解と次善解との比(次善解/最適解)である要素比(Ratio factor)が所定の閾値(例えば3)を超えたときに最適解がFix解として採用される。ここで上述した要素比が大きいことは、整数最小二乗法によって得られる解の分散が小さいことを示す。つまり、整数最小二乗法によって得られる解(整数値バイアス)の精度が高いと推定される。干渉測位において、移動局は高精度な測位を行うためにこのFix解の整数値バイアスを用いて測位を行う。
The integer least square method is a method for searching for a solution that satisfies the least square method under the constraint that the integer bias is an integer. An integer value bias obtained by applying the integer least square method is called a Fix solution. This Fix solution is evaluated by a test called Ratio Test. In the Ratio Test, the optimal solution obtained by the integer least square method is compared with the suboptimal solution. Then, the optimum solution is adopted as the Fix solution when the element ratio (Ratio factor) that is the ratio of the optimum solution to the next best solution (suboptimal solution / optimum solution) exceeds a predetermined threshold (for example, 3). Here, the large element ratio described above indicates that the variance of the solution obtained by the integer least square method is small. That is, it is estimated that the accuracy of the solution (integer value bias) obtained by the integer least square method is high. In the interference positioning, the mobile station performs positioning using the integer value bias of the Fix solution in order to perform highly accurate positioning.
以上説明された搬送波位相および疑似距離の2重差は、基準局200および移動局300においてGPS衛星100がm個観測される場合、m(m-1)/2組のGPS衛星の組合せに基づいて算出される。なお、1つの衛星から観測される観測値は、疑似距離と搬送波位相の2つなので、算出される2重差の組合せの数はm(m-1)組ある。ここで、整数値バイアスを推定するために用いられるGPS衛星の組合せとして、上述したm(m-1)/2組の全てが用いられなくてもよく、一部の衛星の組合せが用いられてもよい。ただし、整数値バイアスの推定には4個以上の衛星が用いられる。
The double difference between the carrier phase and the pseudorange described above is based on a combination of m (m−1) / 2 sets of GPS satellites when m GPS satellites 100 are observed at the reference station 200 and the mobile station 300. Calculated. Since there are two observation values observed from one satellite, that is, the pseudorange and the carrier phase, there are m (m−1) combinations of double difference calculated. Here, as a combination of GPS satellites used for estimating the integer value bias, not all of the above-described m (m−1) / 2 sets need be used, and some of the satellite combinations are used. Also good. However, four or more satellites are used to estimate the integer value bias.
また、上述した整数値バイアスの推定過程においては、基準局200および移動局300からの仰角が大きいGPS衛星100を基準衛星として上述した2重差が算出されることが好ましい。図3は、2つのGPS衛星106、108の位置と、移動局300の位置との関係の例を示す図である。GPS衛星106は、移動局300から見た仰角がGPS衛星108に比べて相対的に大きい衛星を示している。図3からわかるように、移動局300とGPS衛星106との距離と、移動局300とGPS衛星108との距離とを比べると、移動局300とGPS衛星106との距離の方が小さい。このように、移動局300から見た衛星の仰角が大きくなれば通過する電離層および対流圏の距離が小さくなるため、電離層遅延Iおよび対流圏遅延Tは小さくなる。よって、基準局200と移動局300とで共通のGPS衛星を用いて観測を行う場合、高精度な測位が行われるためには仰角が大きいGPS衛星が基準衛星として選択されることが好ましい。
Also, in the above-described integer value bias estimation process, the above-described double difference is preferably calculated using the GPS satellite 100 having a large elevation angle from the reference station 200 and the mobile station 300 as the reference satellite. FIG. 3 is a diagram illustrating an example of the relationship between the positions of the two GPS satellites 106 and 108 and the position of the mobile station 300. The GPS satellite 106 is a satellite whose elevation angle viewed from the mobile station 300 is relatively larger than that of the GPS satellite 108. As can be seen from FIG. 3, when the distance between the mobile station 300 and the GPS satellite 106 is compared with the distance between the mobile station 300 and the GPS satellite 108, the distance between the mobile station 300 and the GPS satellite 106 is smaller. Thus, since the distance between the ionosphere and the troposphere that passes through decreases as the elevation angle of the satellite viewed from the mobile station 300 increases, the ionosphere delay I and troposphere delay T decrease. Therefore, when observation is performed using a GPS satellite common to the reference station 200 and the mobile station 300, a GPS satellite having a large elevation angle is preferably selected as the reference satellite in order to perform highly accurate positioning.
上述したように仰角が大きいGPS衛星100を基準衛星として2重差が算出される場合、算出される2重差は、観測される衛星の個数mに対してm-1組の衛星の組合せに基づいて算出される。しかし上述したように、整数値バイアスを推定するために用いられるGPS衛星の組合せとして、m-1組の全てが用いられなくてもよく、一部の衛星の組合せが用いられてもよい。
As described above, when the double difference is calculated using the GPS satellite 100 having a large elevation angle as a reference satellite, the calculated double difference is a combination of m-1 satellites with respect to the number m of observed satellites. Calculated based on However, as described above, as a combination of GPS satellites used for estimating the integer value bias, not all of m−1 sets may be used, and a combination of some satellites may be used.
<2.システム構成の例>
以上では、干渉測位の測位原理および整数値バイアスの推定方法について説明された。以下では、本開示の実施形態に係るシステム構成の例が説明される。本実施形態では、衛星から電波を受信して測位を行う測位装置について説明される。なお、測位装置としては、例えば図4に示されるような移動局300に備えられる受信機302がある。 <2. Example of system configuration>
In the above, the positioning principle of interference positioning and the estimation method of integer value bias have been described. Hereinafter, an example of a system configuration according to an embodiment of the present disclosure will be described. In this embodiment, a positioning device that performs positioning by receiving radio waves from a satellite will be described. As a positioning device, for example, there is areceiver 302 provided in a mobile station 300 as shown in FIG.
以上では、干渉測位の測位原理および整数値バイアスの推定方法について説明された。以下では、本開示の実施形態に係るシステム構成の例が説明される。本実施形態では、衛星から電波を受信して測位を行う測位装置について説明される。なお、測位装置としては、例えば図4に示されるような移動局300に備えられる受信機302がある。 <2. Example of system configuration>
In the above, the positioning principle of interference positioning and the estimation method of integer value bias have been described. Hereinafter, an example of a system configuration according to an embodiment of the present disclosure will be described. In this embodiment, a positioning device that performs positioning by receiving radio waves from a satellite will be described. As a positioning device, for example, there is a
本実施形態に係るシステムは、GPS衛星100と、位置が既知である基準局200と、移動局300と、ネットワーク400が含まれる。また、基準局200および移動局300は、受信機202、302を備える。GPS衛星100は、上述した説明と同様に電波を発信し、測距コードおよび航法メッセージを放送している。また基準局200および移動局300は、GPS衛星100から発信された電波を受信してGPS衛星100を捕捉し、受信された航法メッセージを用いてGPS衛星100の位置および軌道を特定する。また、基準局200および移動局300は、GPS衛星100から受信した電波に基づいて観測値を観測する。
The system according to the present embodiment includes a GPS satellite 100, a reference station 200 whose position is known, a mobile station 300, and a network 400. The reference station 200 and the mobile station 300 include receivers 202 and 302. The GPS satellite 100 transmits radio waves and broadcasts distance measurement codes and navigation messages in the same manner as described above. Further, the reference station 200 and the mobile station 300 receive the radio wave transmitted from the GPS satellite 100, capture the GPS satellite 100, and specify the position and orbit of the GPS satellite 100 using the received navigation message. Further, the reference station 200 and the mobile station 300 observe the observation value based on the radio wave received from the GPS satellite 100.
ネットワーク400は、基準局200または移動局300からの情報を搬送する。ネットワーク400は、例えば、インターネットなどの公のネットワークでもよく、携帯電話網などのような無線インターフェイスを有するネットワークであってもよい。
The network 400 carries information from the reference station 200 or the mobile station 300. The network 400 may be a public network such as the Internet or a network having a wireless interface such as a mobile phone network.
基準局200の位置は既知であり、基準局200は、GPS衛星100から搬送波位相を測定できる受信機202を備えている。例えば、基準局200は、GPS衛星100から搬送波位相を測定できる受信機202を備えた、ビルまたは信号機または携帯電話網の基地局など市街地に設置された構造物であってもよい。また、基準局200は、国土地理院が設置している電子基準点であってもよい。なお、図4には1つの基準局200しか示されていない。しかし、基準局200はこのシステムにおいて複数設置されてもよい。
The position of the reference station 200 is known, and the reference station 200 includes a receiver 202 that can measure the carrier phase from the GPS satellite 100. For example, the reference station 200 may be a structure installed in an urban area, such as a building or a traffic light or a base station of a mobile phone network, with a receiver 202 that can measure the carrier phase from the GPS satellite 100. The reference station 200 may be an electronic reference point installed by the Geographical Survey Institute. In FIG. 4, only one reference station 200 is shown. However, a plurality of reference stations 200 may be installed in this system.
また、移動局300は、図4では車両として示されている。しかし、本実施形態において移動局300は車両に限定されず、携帯電話またはゲーム機など人が携帯できる装置であってもよい。また、移動局300は船舶であってもよく、GPS衛星100から搬送波位相を測定できる受信機302を備えている装置であれば、移動局300はどのような装置であってもよい。
The mobile station 300 is shown as a vehicle in FIG. However, in this embodiment, the mobile station 300 is not limited to a vehicle, and may be a device that can be carried by a person such as a mobile phone or a game machine. Further, the mobile station 300 may be a ship, and the mobile station 300 may be any device as long as the device includes the receiver 302 that can measure the carrier phase from the GPS satellite 100.
また、移動局300は、ネットワーク400を介して基準局200の観測値(搬送波位相および擬似距離)および基準局200の位置に関する情報を受信する。そして移動局300は、基準局200から受信した情報と、移動局300がGPS衛星100からの電波を観測して得た観測値とを用いて干渉測位を行う。
Also, the mobile station 300 receives information regarding the observation value (carrier phase and pseudorange) of the reference station 200 and the position of the reference station 200 via the network 400. Then, the mobile station 300 performs interference positioning using the information received from the reference station 200 and the observation value obtained by the mobile station 300 observing the radio wave from the GPS satellite 100.
<3.移動局の受信機の構成>
以上では、本開示の実施形態のシステムの構成例が説明された。次に、移動局300の受信機302の構成について図5を用いて説明される。受信機302は移動局300に備えられ、受信機302は、GPS受信部304と、衛星検知部306と、通信部308と、測位部310を有する。また、測位部310は、整数値バイアス推定部312と、測位実行部314を有する。 <3. Configuration of mobile station receiver>
The configuration example of the system according to the embodiment of the present disclosure has been described above. Next, the configuration ofreceiver 302 of mobile station 300 will be described using FIG. The receiver 302 is provided in the mobile station 300, and the receiver 302 includes a GPS receiver 304, a satellite detector 306, a communication unit 308, and a positioning unit 310. In addition, the positioning unit 310 includes an integer value bias estimation unit 312 and a positioning execution unit 314.
以上では、本開示の実施形態のシステムの構成例が説明された。次に、移動局300の受信機302の構成について図5を用いて説明される。受信機302は移動局300に備えられ、受信機302は、GPS受信部304と、衛星検知部306と、通信部308と、測位部310を有する。また、測位部310は、整数値バイアス推定部312と、測位実行部314を有する。 <3. Configuration of mobile station receiver>
The configuration example of the system according to the embodiment of the present disclosure has been described above. Next, the configuration of
GPS受信部304は、GPS衛星100から電波を受信し、受信したGPS衛星100からの電波に基づく信号を衛星検知部306および測位部310に送る。衛星検知部306は、GPS受信部304から受け取った信号に基づいて観測されるGPS衛星100の数、位置および軌道を特定する。そして衛星検知部306は、特定されたGPS衛星100の数、位置および軌道を測位部310に送る。ここで衛星検知部306がGPS衛星100の位置および軌道を特定する際、衛星検知部306は上述した航法メッセージに含まれるエフェメリスを使用する。
The GPS receiving unit 304 receives radio waves from the GPS satellites 100, and sends signals based on the received radio waves from the GPS satellites 100 to the satellite detection unit 306 and the positioning unit 310. The satellite detection unit 306 identifies the number, position, and orbit of the GPS satellites 100 to be observed based on the signal received from the GPS reception unit 304. Then, the satellite detection unit 306 sends the number, position, and orbit of the identified GPS satellites 100 to the positioning unit 310. Here, when the satellite detection unit 306 specifies the position and orbit of the GPS satellite 100, the satellite detection unit 306 uses the ephemeris included in the navigation message described above.
通信部308は、他の装置と無線通信を行うために用いられる。通信部308は、基準局200からネットワーク400を介して基準局200で観測した観測値および基準局200の位置に関する情報を受信し、受信した情報を測位部310に送る。通信部308は、Bluetooth(登録商標)、Wi-Fiなどの無線LAN、またはLTE(Long Term Evolution)などの携帯電話網に用いられる送受信機であってもよい。
The communication unit 308 is used to perform wireless communication with other devices. The communication unit 308 receives information regarding the observation value observed at the reference station 200 and the position of the reference station 200 from the reference station 200 via the network 400, and sends the received information to the positioning unit 310. The communication unit 308 may be a transceiver used for a wireless LAN such as Bluetooth (registered trademark) or Wi-Fi, or a mobile phone network such as LTE (Long Term Evolution).
整数値バイアス推定部312は、GPS受信部304が受信した衛星からの電波に基づいて観測値を算出する。また整数値バイアス推定部312は、整数値バイアス推定部312が算出した観測値と通信部308から受け取った基準局200の観測値に基づいて整数値バイアスを推定する。測位実行部314は、整数値バイアス推定部312が推定した整数値バイアスに基づいて測位を行う。
The integer value bias estimation unit 312 calculates the observation value based on the radio wave received from the satellite received by the GPS reception unit 304. The integer value bias estimation unit 312 estimates the integer value bias based on the observation value calculated by the integer value bias estimation unit 312 and the observation value of the reference station 200 received from the communication unit 308. The positioning execution unit 314 performs positioning based on the integer value bias estimated by the integer value bias estimation unit 312.
<4.移動局が干渉測位を行う際の動作例>
以上では、本実施形態のシステムおよび移動局300の受信機302の構成例について説明がされた。以下では、移動局300が干渉測位を行う際の動作例について説明される。 <4. Example of operation when mobile station performs interference positioning>
The configuration example of the system of the present embodiment and thereceiver 302 of the mobile station 300 has been described above. Hereinafter, an operation example when the mobile station 300 performs interference positioning will be described.
以上では、本実施形態のシステムおよび移動局300の受信機302の構成例について説明がされた。以下では、移動局300が干渉測位を行う際の動作例について説明される。 <4. Example of operation when mobile station performs interference positioning>
The configuration example of the system of the present embodiment and the
図6は、移動局300が干渉測位を行う際の動作例を示すフロー図である。移動局300が干渉測位を行う際、移動局300はGPS受信部304においてGPS衛星100からの電波を受信し、観測値(疑似距離および搬送波位相)を取得する(S102)。次にS104において移動局300の整数値バイアス推定部312は、上述したように観測される衛星の組合せに基づいて整数値バイアスを推定する。
FIG. 6 is a flowchart showing an operation example when the mobile station 300 performs interference positioning. When the mobile station 300 performs interference positioning, the mobile station 300 receives radio waves from the GPS satellite 100 at the GPS receiving unit 304 and acquires observation values (pseudorange and carrier phase) (S102). Next, in S104, the integer value bias estimation unit 312 of the mobile station 300 estimates the integer value bias based on the observed combination of satellites as described above.
ここで用いられる衛星の組合せは、上述したように観測される衛星の数がm個である場合、m(m-1)/2の衛星の組合せの候補がある。また移動局300から見た仰角が大きい衛星が基準衛星として設定される場合、m-1組の衛星の組合せの候補がある。このとき2重差が算出される衛星の組合せは、基準衛星とその他の衛星との組合せとなる。整数値バイアス推定部312は、これらの衛星の組合せの候補の全てを用いて整数値バイアスを推定してもよく、衛星の組合せの一部を用いて整数値バイアスを推定してもよい。
The satellite combination used here has m (m−1) / 2 satellite combination candidates when the number of observed satellites is m as described above. When a satellite having a large elevation angle viewed from the mobile station 300 is set as the reference satellite, there are m-1 satellite combination candidates. At this time, the combination of the satellites for which the double difference is calculated is a combination of the reference satellite and the other satellites. The integer value bias estimation unit 312 may estimate the integer value bias using all of these satellite combination candidates, or may estimate the integer value bias using a part of the satellite combinations.
なお、整数値バイアス推定部312は、基準局200から基準局200の観測値を受け取り、上述した衛星の組合せにおける搬送波位相および疑似距離の2重差を算出して整数値バイアスを推定する。次にS106において、整数値バイアス推定部312はS104において推定された整数値バイアスを測位実行部314に送り、測位実行部314は受け取った整数値バイアスを用いて測位を行う。
The integer value bias estimation unit 312 receives the observation value of the reference station 200 from the reference station 200, calculates the double difference between the carrier phase and the pseudorange in the above-described satellite combination, and estimates the integer value bias. Next, in S106, the integer value bias estimation unit 312 sends the integer value bias estimated in S104 to the positioning execution unit 314, and the positioning execution unit 314 performs positioning using the received integer value bias.
<5.移動局が新しい衛星を検知した際の動作例>
以上では移動局300が干渉測位を行う際の動作例が説明された。以下では移動局300が新しい衛星を検知した際の動作例について説明される。上述したようにGPS衛星100は所定の軌道を周回している。よって、移動局300から見たGPS衛星100の位置は時間の経過と共に変化する。つまり、時間が経過するとともに移動局300は新しい衛星を検知する。 <5. Example of operation when a mobile station detects a new satellite>
The operation example when themobile station 300 performs interference positioning has been described above. Hereinafter, an operation example when the mobile station 300 detects a new satellite will be described. As described above, the GPS satellite 100 orbits a predetermined orbit. Therefore, the position of the GPS satellite 100 viewed from the mobile station 300 changes with time. That is, as time passes, the mobile station 300 detects a new satellite.
以上では移動局300が干渉測位を行う際の動作例が説明された。以下では移動局300が新しい衛星を検知した際の動作例について説明される。上述したようにGPS衛星100は所定の軌道を周回している。よって、移動局300から見たGPS衛星100の位置は時間の経過と共に変化する。つまり、時間が経過するとともに移動局300は新しい衛星を検知する。 <5. Example of operation when a mobile station detects a new satellite>
The operation example when the
このとき、移動局300が、新しく検知された衛星から得られる観測値を用いて再度すべての衛星の組合せの整数値バイアスの推定を行うと、上述した要素比が著しく低下する。つまり、推定される整数値バイアスの精度が低下する。
At this time, if the mobile station 300 again estimates the integer value bias of all the combinations of the satellites using the observation values obtained from the newly detected satellites, the above-described element ratio is significantly lowered. That is, the accuracy of the estimated integer value bias decreases.
本開示の実施形態の移動局300においては、上述した整数値バイアスの精度の低下(または要素比の低下)を起こさないために、図6で説明された測位の実行処理と並行して衛星の状態の変化に基づく整数値バイアスの推定が行われる。つまり本実施形態の移動局300は、新しい衛星が検知される前に推定された第1の整数値バイアス(図6のS104で推定される整数値バイアス)を用いて測位を行い、当該測位と並行して新しく検知された衛星を考慮した第2の整数値バイアス(後述される図7のS210において推定される整数値バイアス)の推定を行う。図7は、移動局300が新しい衛星を検知した際に行う動作の例を示すフロー図である。
In the mobile station 300 according to the embodiment of the present disclosure, in order to prevent the above-described decrease in the accuracy of the integer bias (or the decrease in the element ratio), in parallel with the positioning execution process described in FIG. An integer bias is estimated based on the change in state. That is, the mobile station 300 according to the present embodiment performs positioning using the first integer value bias estimated before the new satellite is detected (the integer value bias estimated in S104 in FIG. 6). In parallel, estimation of a second integer value bias (integer value bias estimated in S210 of FIG. 7 described later) in consideration of a newly detected satellite is performed. FIG. 7 is a flowchart illustrating an example of an operation performed when the mobile station 300 detects a new satellite.
S202において移動局300はGPS衛星100からの電波を受信することによって測距コードおよび航法メッセージなどの観測データを取得する。次にS204において衛星検知部306は受信された観測データに基づいて新しい衛星を検知したか否かを判定する。S204において衛星検知部306が新しい衛星を検知した場合、処理はS206に進む。次にS206において整数値バイアス推定部312は新しく検知された衛星を考慮して整数値バイアスの推定に用いる衛星の組合せを選択する。このとき整数値バイアス推定部312は、上述したように基準局200から取得した観測値と移動局300が観測した観測値を用いて整数値バイアスの推定を行う。
In step S202, the mobile station 300 receives radio waves from the GPS satellite 100 to acquire observation data such as a ranging code and a navigation message. In step S204, the satellite detection unit 306 determines whether a new satellite is detected based on the received observation data. If the satellite detection unit 306 detects a new satellite in S204, the process proceeds to S206. Next, in S206, the integer value bias estimation unit 312 selects a combination of satellites used for estimation of the integer value bias in consideration of the newly detected satellites. At this time, the integer value bias estimation unit 312 estimates the integer value bias using the observed value acquired from the reference station 200 and the observed value observed by the mobile station 300 as described above.
次にS208において整数値バイアス推定部312は、S206において選択された衛星の組合せから基準衛星を選択する。ここで基準衛星は仰角の最も大きい衛星であってもよい。そして整数値バイアス推定部312は、測位実行部314による測位と並行してS206において選択された衛星の組合せを用いて整数値バイアスを推定する。
Next, in S208, the integer value bias estimation unit 312 selects a reference satellite from the combination of satellites selected in S206. Here, the reference satellite may be a satellite having the largest elevation angle. Then, the integer value bias estimation unit 312 estimates the integer value bias using the combination of the satellites selected in S206 in parallel with the positioning by the positioning execution unit 314.
次にS210において整数値バイアス推定部312は、S208において推定される整数値バイアスの要素比が所定の基準に達したか否かを判定する。ここで推定される整数値バイアスの要素比が所定の基準に達していないとき、整数値バイアス推定部312は最小二乗法により整数値バイアスの推定を繰り返して行う。
Next, in S210, the integer value bias estimation unit 312 determines whether or not the element ratio of the integer value bias estimated in S208 has reached a predetermined standard. When the element ratio of the integer value bias estimated here does not reach the predetermined reference, the integer value bias estimation unit 312 repeatedly performs the estimation of the integer value bias by the least square method.
S210において推定される整数値バイアスの要素比が所定の基準に達したと判定された場合、S212において整数値バイアス推定部312は当該所定の基準に達した整数値バイアスを測位実行部314に送る。測位実行部314は、新しい衛星が検知される前に推定された整数値バイアスを用いた測位から、当該測位と並行してS210において新しく検知された衛星を考慮して推定された整数値バイアスを用いた測位に切り替える。
When it is determined that the element ratio of the integer value bias estimated in S210 has reached a predetermined reference, the integer value bias estimation unit 312 sends the integer value bias that has reached the predetermined reference to the positioning execution unit 314 in S212. . The positioning execution unit 314 calculates the integer bias estimated in consideration of the satellite newly detected in S210 in parallel with the positioning from the positioning using the integer bias estimated before the new satellite is detected. Switch to the positioning you used.
なお、S206において選択される衛星の組合せは、新しい衛星が検知される前に推定された整数値バイアスを推定するために用いられた衛星の組合せと同一であってもよく、また異なる組合せであってもよい。つまり、測位に用いられる整数値バイアスを推定するために用いられた衛星の組合せと、測位と並行して整数値バイアスを推定するために用いられる衛星の組合せは、同一の組合せであってもよくまた異なる組合せであってもよい。このときS208において選択される基準衛星が測位に用いられている基準衛星と異なる場合、これらの衛星の組合せは異なる。つまり、使用される衛星は同じであるが、基準衛星が異なる場合は異なる衛星の組合せとして扱われる。よって、S206において選択される衛星の組合せは、新しく検知された衛星を含んでもよく、また含まなくてもよい。これは、新しく検知された衛星の仰角がまだ小さく、当該新しく検知された衛星は整数値バイアスの推定に用いられるには適さない場合があるからである。
Note that the satellite combination selected in S206 may be the same as or different from the satellite combination used to estimate the integer bias estimated before the new satellite was detected. May be. That is, the combination of the satellites used for estimating the integer value bias used for positioning and the combination of the satellites used for estimating the integer value bias in parallel with the positioning may be the same combination. Different combinations may also be used. At this time, when the reference satellite selected in S208 is different from the reference satellite used for positioning, the combination of these satellites is different. That is, the same satellite is used, but if the reference satellite is different, it is treated as a combination of different satellites. Therefore, the combination of satellites selected in S206 may or may not include a newly detected satellite. This is because the newly detected satellite's elevation angle is still small and the newly detected satellite may not be suitable for use in estimating the integer bias.
以上説明されたように、新たな衛星が検知された場合、本開示の実施形態の移動局300は、測位と並行して新たな整数値バイアスを推定する。また、これによって新しく検知された衛星の観測値を即座に加えて整数値バイアスを推定することによる整数値バイアスの精度の低下が防がれる。また、本実施形態の移動局300は、測位と並行して推定される整数値バイアスが所定の基準に達した後に当該整数値バイアスを測位に用いるので、より確実に整数値バイアスの精度の低下が防がれる。
As described above, when a new satellite is detected, the mobile station 300 according to the embodiment of the present disclosure estimates a new integer value bias in parallel with the positioning. This also prevents the accuracy of the integer bias from being reduced by immediately adding the newly detected satellite observations and estimating the integer bias. In addition, since the mobile station 300 according to the present embodiment uses the integer value bias for positioning after the integer value bias estimated in parallel with positioning reaches a predetermined reference, the accuracy of the integer value bias is more reliably reduced. Is prevented.
<6.衛星の組合せの選択方法>
以上では、移動局300において新たな衛星が検知された場合の移動局300の動作例について説明された。以下では上述した図7に関する動作例において衛星の組合せを選択する選択方法の例が説明される。 <6. How to select a combination of satellites>
The operation example of themobile station 300 when a new satellite is detected in the mobile station 300 has been described above. Hereinafter, an example of a selection method for selecting a combination of satellites in the operation example related to FIG. 7 will be described.
以上では、移動局300において新たな衛星が検知された場合の移動局300の動作例について説明された。以下では上述した図7に関する動作例において衛星の組合せを選択する選択方法の例が説明される。 <6. How to select a combination of satellites>
The operation example of the
本開示の実施形態の移動局300はGPS衛星100の位置と時計誤差の指標である精度劣化度(Dilution of Precision,DOP)を用いて衛星の組合せを選択する。精度劣化度は以下のように算出される。GPS衛星100の位置の分散(以下の式(7)の左辺)は、幾何行列Gを用いて以下のように表される。
The mobile station 300 according to the embodiment of the present disclosure selects a combination of satellites using the position of the GPS satellite 100 and the accuracy degradation (Dilution of Precision, DOP) that is an index of the clock error. The degree of accuracy deterioration is calculated as follows. The variance of the positions of the GPS satellites 100 (the left side of the following equation (7)) is expressed as follows using the geometric matrix G.
ここで、(7)の式によると、GPS衛星100の位置の分散は、移動局300と衛星との距離誤差に依存する項と、移動局300と衛星の配置に依存する項とに分かれる。ここでH=(GTG)-1とすると、精度劣化度は移動局300と衛星の配置に依存する項として以下のように定義される。
Here, according to the equation (7), the dispersion of the position of the GPS satellite 100 is divided into a term that depends on the distance error between the mobile station 300 and the satellite and a term that depends on the arrangement of the mobile station 300 and the satellite. Here, assuming that H = (G T G) −1 , the accuracy degradation degree is defined as a term depending on the arrangement of the mobile station 300 and the satellite as follows.
ここで、(10)式は位置に関する精度劣化度(Position dilution of precision,PDOP)である。また、(11)式は時間に関する精度劣化度(Time dilution of precision,TDOP)である。また、(12)式は幾何精度劣化度(Geometric dilution of precision,GDOP)である。
Here, Equation (10) is a position degradation of precision (PDOP) related to the position. In addition, Expression (11) is a time degradation of precision (TDOP). Further, the equation (12) is a geometric accuracy deterioration degree (GDOP).
上述した精度劣化度は、図7のS206において衛星の組合せが選択される際に用いられる。このとき精度劣化度が最小となるように衛星の組合せが選択される。また、この精度劣化度が最小となる衛星の組合せは、将来の衛星の配置において精度劣化度が最小となるように選択されてもよい。これは、整数値バイアスの推定が完了する時点における衛星の配置を考慮するためである。これによって、誤差の少ない衛星の組合せが選択され、移動局300はより高精度に測位を行うことができる。
The accuracy deterioration degree described above is used when a combination of satellites is selected in S206 of FIG. At this time, the combination of satellites is selected so that the degree of accuracy degradation is minimized. The combination of satellites that minimizes the degree of accuracy degradation may be selected so that the degree of accuracy degradation is minimized in the future satellite arrangement. This is because the arrangement of the satellites at the time when the estimation of the integer value bias is completed is taken into consideration. As a result, a combination of satellites with less error is selected, and the mobile station 300 can perform positioning with higher accuracy.
なお、用いられる精度劣化度は位置に関する精度劣化度(PDOP)、時間に関する精度劣化度(TDOP)、幾何精度劣化度(GDOP)のいずれが用いられてもよく、また3つの精度劣化度が組み合わされて用いられてもよい。しかしより好ましくは、位置に関する精度劣化度(PDOP)が衛星の組合せの選択に用いられることが好ましい。整数値バイアスが推定される過程において2重差が算出されることによって、衛星および受信機の時計の誤差は除去される。よって時間に関する精度劣化度(TDOP)よりも位置に関する情報が得られる精度劣化度が用いられる方が好ましい。
Note that the accuracy deterioration degree used may be any of the position accuracy deterioration degree (PDOP), the time precision deterioration degree (TDOP), and the geometric accuracy deterioration degree (GDOP), and the three accuracy deterioration degrees are combined. And may be used. More preferably, however, the position-related accuracy degradation (PDOP) is used to select the combination of satellites. By calculating the double difference in the process of estimating the integer bias, the satellite and receiver clock errors are eliminated. Therefore, it is preferable to use the degree of accuracy degradation that can obtain information about the position rather than the degree of accuracy degradation (TDOP).
<7.移動局が使用不可となる衛星を検知した際の動作例>
以上では、移動局300が新しい衛星を検知した際の動作例および当該動作において使用される精度劣化度について説明された。以下では移動局300が使用不可となる衛星を検知した際の移動局300の動作例が説明される。上述したようにGPS衛星100は所定の軌道を周回しており、時間の経過と共に測位に使用できなくなる衛星が発生する。これは例えば、衛星の仰角が小さくなり、電離層遅延および対流圏遅延が大きくなってしまうために衛星が測位に使用できなくなることが考えられる。このとき、本実施形態の移動局300は、測位と並行して将来使用不可となる衛星を除いて整数値バイアスを算出する。図8は、移動局300が使用不可となる衛星を検知した際の移動局300の動作例を示すフロー図である。 <7. Example of operation when a mobile station detects an unusable satellite>
The operation example when themobile station 300 detects a new satellite and the accuracy deterioration level used in the operation have been described above. Hereinafter, an operation example of the mobile station 300 when the mobile station 300 detects an unusable satellite will be described. As described above, the GPS satellite 100 orbits a predetermined orbit, and satellites that cannot be used for positioning are generated with time. For example, the elevation angle of the satellite is reduced, and the ionospheric delay and the tropospheric delay are increased, so that the satellite cannot be used for positioning. At this time, the mobile station 300 of the present embodiment calculates an integer value bias excluding satellites that cannot be used in the future in parallel with positioning. FIG. 8 is a flowchart showing an operation example of the mobile station 300 when the mobile station 300 detects an unusable satellite.
以上では、移動局300が新しい衛星を検知した際の動作例および当該動作において使用される精度劣化度について説明された。以下では移動局300が使用不可となる衛星を検知した際の移動局300の動作例が説明される。上述したようにGPS衛星100は所定の軌道を周回しており、時間の経過と共に測位に使用できなくなる衛星が発生する。これは例えば、衛星の仰角が小さくなり、電離層遅延および対流圏遅延が大きくなってしまうために衛星が測位に使用できなくなることが考えられる。このとき、本実施形態の移動局300は、測位と並行して将来使用不可となる衛星を除いて整数値バイアスを算出する。図8は、移動局300が使用不可となる衛星を検知した際の移動局300の動作例を示すフロー図である。 <7. Example of operation when a mobile station detects an unusable satellite>
The operation example when the
最初にS302において移動局300は、GPS衛星100からの電波を受信することによって測距コードおよび航法メッセージなどの観測データを取得する。次にS304において衛星検知部306は、受信された観測データに基づいて将来使用不可となる衛星があるか否かを判定する。次にS306において整数値バイアス推定部312は、将来使用不可となる衛星を除いて整数値バイアスの推定に用いる衛星の組合せを選択する。ここで将来使用不可となる衛星の判定は、航法メッセージに含まれるエフェメリスを用いて算出される衛星の軌道に基づいて行われてもよい。
First, in S302, the mobile station 300 acquires observation data such as a distance measurement code and a navigation message by receiving radio waves from the GPS satellite 100. In step S304, the satellite detection unit 306 determines whether or not there is a satellite that cannot be used in the future based on the received observation data. In step S <b> 306, the integer value bias estimation unit 312 selects a combination of satellites used for estimation of the integer value bias except for satellites that cannot be used in the future. Here, the determination of the satellite that cannot be used in the future may be performed based on the orbit of the satellite calculated using the ephemeris included in the navigation message.
また、図7のS206と同様に、S306において衛星の組合せが選択される際に、上述した精度劣化度が用いられてもよい。このとき精度劣化度が最小となるように衛星の組合せが選択される。また、この精度劣化度が最小となる衛星の組合せは、将来の衛星の配置において精度劣化度が最小となるように選択されてもよい。これは、将来使用不可となる衛星が実際に測位に使用できなくなった時点における衛星の配置を考慮するためである。これによって、誤差の少ない衛星の組合せが選択され、移動局300はより高精度に測位を行うことができる。
Further, as in S206 of FIG. 7, when the combination of satellites is selected in S306, the above-described accuracy deterioration degree may be used. At this time, the combination of satellites is selected so that the degree of accuracy degradation is minimized. The combination of satellites that minimizes the degree of accuracy degradation may be selected so that the degree of accuracy degradation is minimized in the future satellite arrangement. This is because the arrangement of satellites at the time when satellites that cannot be used in the future can no longer be used for positioning is taken into consideration. As a result, a combination of satellites with less error is selected, and the mobile station 300 can perform positioning with higher accuracy.
次にS308において整数値バイアス推定部312は、S306において選択された衛星の組合せから予備基準衛星を選択する。予備基準衛星は仰角の最も大きい衛星であってもよい。そして整数値バイアス推定部312は、測位実行部314による測位と並行してS306において選択された衛星の組合せを用いて整数値バイアスを推定する。なおここで選択される予備基準衛星は、所定の時間経過後に仰角が最も大きくなる衛星であってもよい。これは、使用不可となる衛星が実際に測位に使用できなくなるときにおいて仰角が最も大きくなる衛星が基準衛星として選択されることが好ましいからである。これによって、使用不可となる衛星が実際に使用不可となる時点において最も適切な衛星が基準衛星として用いられるため、より高精度な測位が行われる。
Next, in S308, the integer value bias estimation unit 312 selects a spare reference satellite from the combination of satellites selected in S306. The spare reference satellite may be the satellite having the largest elevation angle. Then, the integer value bias estimation unit 312 estimates the integer value bias using the combination of the satellites selected in S306 in parallel with the positioning by the positioning execution unit 314. Note that the backup reference satellite selected here may be a satellite having the largest elevation angle after a predetermined time has elapsed. This is because the satellite having the largest elevation angle is preferably selected as the reference satellite when the satellite that cannot be used becomes actually unusable for positioning. As a result, since the most appropriate satellite is used as the reference satellite at the time when the unusable satellite is actually unusable, more accurate positioning is performed.
次にS310において衛星検知部306は、使用不可となった衛星があるか否かを判定する。ここで衛星検知部306が使用不可となった衛星が依然として無いと判定すると、整数値バイアス推定部312は整数値バイアスの推定を継続する。S310において衛星検知部306が使用不可となった衛星があると判定すると、次にS312において整数値バイアス推定部312は、使用不可となった衛星が基準衛星であるか否かを判定する。ここでS312における基準衛星は、S308における整数値バイアスの推定と並行して行われる測位に用いられている整数値バイアスを推定するための基準衛星である。以下この測位に用いられている基準衛星について、現在の基準衛星ともいう。
Next, in S310, the satellite detection unit 306 determines whether there is a satellite that has become unusable. If the satellite detection unit 306 determines that there are no satellites that can no longer be used, the integer value bias estimation unit 312 continues to estimate the integer value bias. If the satellite detection unit 306 determines in S310 that there is a disabled satellite, then in S312, the integer value bias estimation unit 312 determines whether the disabled satellite is a reference satellite. Here, the reference satellite in S312 is a reference satellite for estimating the integer value bias used for positioning performed in parallel with the estimation of the integer value bias in S308. Hereinafter, the reference satellite used for this positioning is also referred to as the current reference satellite.
S312において整数値バイアス推定部312が、使用不可となった衛星は現在の基準衛星であると判定すると、処理はS314に進む。S314において整数値バイアス推定部312は、S308において選択された予備基準衛星を基準として整数値バイアスの変換を行う。ここで行われる整数値バイアスの変換について以下に説明される。
If the integer value bias estimation unit 312 determines in S312 that the satellite that has become unusable is the current reference satellite, the process proceeds to S314. In S314, the integer value bias estimation unit 312 performs integer value bias conversion based on the backup reference satellite selected in S308. The integer value bias conversion performed here will be described below.
図8のフロー図の説明に戻ると、上述したようにS314において整数値バイアス推定部312は予備基準衛星を基準として整数値バイアスの変換を行う。そしてS322において測位実行部314はS314において置き換えられた整数値バイアスを用いた測位に切り替える。
Returning to the description of the flowchart of FIG. 8, as described above, in S314, the integer value bias estimation unit 312 performs integer value bias conversion based on the standby reference satellite. In S322, the positioning execution unit 314 switches to positioning using the integer value bias replaced in S314.
S312において整数値バイアス推定部312が、使用不可となった衛星は基準衛星ではないと判定すると、処理はS316に進む。S316において整数値バイアス推定部312は、衛星が使用不可となった理由が仰角が所定の大きさ以下になったことであるか否かを判定する。S316において整数値バイアス推定部312が、衛星が使用不可となった理由が仰角低下であると判定すると、処理はS318に進む。
If the integer value bias estimation unit 312 determines in S312 that the satellite that has become unusable is not the reference satellite, the process proceeds to S316. In S316, the integer value bias estimation unit 312 determines whether or not the reason that the satellite has become unusable is that the elevation angle is equal to or smaller than a predetermined magnitude. If the integer value bias estimation unit 312 determines in S316 that the reason that the satellite has become unusable is a decrease in elevation angle, the process proceeds to S318.
S318において、整数値バイアス推定部312は測位に用いられる整数値バイアスをS308において測位と並行して推定された整数値バイアスに切り替える。そして整数値バイアス推定部312は、測位と並行して推定された整数値バイアスを測位実行部314に送り、測位実行部314は当該整数値バイアスを用いて測位を行う(S322)。
In S318, the integer value bias estimation unit 312 switches the integer value bias used for positioning to the integer value bias estimated in parallel with the positioning in S308. Then, the integer value bias estimation unit 312 sends the integer value bias estimated in parallel with the positioning to the positioning execution unit 314, and the positioning execution unit 314 performs positioning using the integer value bias (S322).
S316において整数値バイアス推定部312が、衛星が使用不可となった理由が仰角低下ではないと判定すると、処理はS320に進む。S320において整数値バイアス推定部312は、(13)の式を用いて上述した整数値バイアスの置き換えと同様に、S308において予備基準衛星を基準として推定された整数値バイアスを現在の基準衛星を基準とした整数値バイアスに置き換える。そしてS322において測位実行部314は、現在の基準衛星を基準とした整数値バイアスを用いて測位を実行する。これによって使用不可となった衛星が用いられずに測位が実行される。
If the integer value bias estimation unit 312 determines in S316 that the reason that the satellite has become unusable is not a decrease in elevation angle, the process proceeds to S320. In S320, the integer value bias estimation unit 312 uses the current reference satellite as a reference for the integer bias estimated in S308 based on the standby reference satellite in the same manner as the replacement of the integer value bias described above using the equation (13). Replace with the integer bias. In S322, the positioning execution unit 314 executes positioning using an integer value bias based on the current reference satellite. As a result, positioning is executed without using the satellite that has become unusable.
以上説明されたように、将来使用不可となる衛星が検知された場合、本開示の実施形態の移動局300は、当該使用不可となる衛星を除いた衛星の組合せを用いて新たな整数値バイアスを推定する。これによって衛星の状態の変化(衛星の数の減少)による整数値バイアスの精度の低下が防がれる。また、将来使用不可となる衛星を除いた衛星の組合せに基づいて予め新たな整数値バイアスが推定されるので、実際に衛星が使用不可となったときに連続して移動局300は高精度な測位を行うことができる。
As described above, when a satellite that cannot be used in the future is detected, the mobile station 300 according to the embodiment of the present disclosure uses the combination of satellites excluding the satellite that cannot be used to generate a new integer bias. Is estimated. This prevents a decrease in the accuracy of the integer bias due to a change in the satellite state (decrease in the number of satellites). In addition, since a new integer bias is estimated in advance based on a combination of satellites excluding satellites that will become unusable in the future, the mobile station 300 is continuously highly accurate when satellites are actually unusable. Positioning can be performed.
<8.補足>
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明した。なお、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属する。 <8. Supplement>
The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings. Note that the technical scope of the present disclosure is not limited to such an example. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Is naturally within the technical scope of the present disclosure.
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明した。なお、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属する。 <8. Supplement>
The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings. Note that the technical scope of the present disclosure is not limited to such an example. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Is naturally within the technical scope of the present disclosure.
例えば、上述した実施形態ではエフェメリスによって衛星の起動が推定された。しかし、衛星の軌道は、より高精度な軌道情報によって推定されてもよい。例えば軌道情報は、超速報暦であってもよい。また、図8において説明されたように、本実施形態の移動局300は、衛星が使用不可となった場合、即座に新たな整数値バイアスを用いて測位を行う。しかし衛星が使用不可となった場合であっても、移動局300は、図7で説明されたように測位と並行して推定される整数値バイアスが所定の基準に達した後に、測位と並行して推定された整数値バイアスを用いた測位に切り替えてもよい。
For example, in the above-described embodiment, the activation of the satellite is estimated by the ephemeris. However, the orbit of the satellite may be estimated by more accurate orbit information. For example, the orbit information may be a super-breaking calendar. In addition, as described in FIG. 8, the mobile station 300 according to the present embodiment immediately performs positioning using a new integer value bias when a satellite becomes unusable. However, even when the satellite becomes unusable, the mobile station 300 does not perform parallel with positioning after the integer value bias estimated in parallel with positioning reaches a predetermined reference as described in FIG. It may be switched to positioning using the integer value bias estimated as described above.
なお、本開示の範囲には、受信機302を、上述したように動作させるためのコンピュータプログラムが含まれる。また、このようなプログラムが記憶された記憶媒体が提供されてもよい。
Note that the scope of the present disclosure includes a computer program for operating the receiver 302 as described above. A storage medium storing such a program may be provided.
<9.むすび>
以上説明したように本開示の実施形態によれば、移動局300は、測位と並行して整数値バイアスの推定を行う。このような構成によって、移動局300が新たな衛星を検知した場合であっても、整数値バイアスの精度の低下を防ぐことができる。また、移動局300が使用不可となる衛星を検知した場合であっても整数値バイアスの精度の低下を防ぐことができる。さらに使用不可となる衛星が検知される場合、使用不可となる衛星の属性(例えば基準衛星か否か)または理由(例えば仰角低下によるか否か)によって処理を変えることにより、より精度の高い測位を迅速に行うことができる。 <9. Conclusion>
As described above, according to the embodiment of the present disclosure, themobile station 300 estimates the integer value bias in parallel with the positioning. With such a configuration, even when the mobile station 300 detects a new satellite, it is possible to prevent a decrease in the accuracy of the integer value bias. In addition, even when the mobile station 300 detects an unusable satellite, it is possible to prevent a decrease in the accuracy of the integer bias. In addition, when a satellite that cannot be used is detected, positioning can be performed with higher accuracy by changing the processing depending on the attribute of the satellite that cannot be used (for example, whether it is a reference satellite) or the reason (for example, whether it is due to elevation angle reduction) Can be done quickly.
以上説明したように本開示の実施形態によれば、移動局300は、測位と並行して整数値バイアスの推定を行う。このような構成によって、移動局300が新たな衛星を検知した場合であっても、整数値バイアスの精度の低下を防ぐことができる。また、移動局300が使用不可となる衛星を検知した場合であっても整数値バイアスの精度の低下を防ぐことができる。さらに使用不可となる衛星が検知される場合、使用不可となる衛星の属性(例えば基準衛星か否か)または理由(例えば仰角低下によるか否か)によって処理を変えることにより、より精度の高い測位を迅速に行うことができる。 <9. Conclusion>
As described above, according to the embodiment of the present disclosure, the
また、本明細書に記載された効果は、あくまで例示であって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
In addition, the effects described in this specification are merely examples and are not limiting. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
衛星からの電波を受信する受信部と、
前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、
前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、
前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位装置。
(2)
前記検知部が新たな衛星を検知した場合、前記測位部は前記新たな衛星を含む前記第2の組合せの観測値に基づく第2の整数値バイアスの推定を行う、前記(1)に記載の測位装置。
(3)
前記測位部は、前記第2の整数値バイアスが所定の精度に達した後に、前記測位部は前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、前記(1)または前記(2)に記載の測位装置。
(4)
前記第2の組合せは、前記衛星の位置の精度の指標に基づいて選択される、前記(1)から前記(3)のいずれか1項に記載の測位装置。
(5)
前記第2の組合せは、前記衛星の位置の精度の指標が最小になるように選択される、前記(4)に記載の測位装置。
(6)
前記測位部は、前記検知部からの情報に基づいて前記第1の組合せの中から使用不可となる衛星を予測し、
前記測位部は、前記使用不可となる衛星を除いた前記第2の組合せの観測値に基づいて前記第2の整数値バイアスの推定を行い、
前記検知部が使用不可となった衛星を検知した場合、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、前記(1)から前記(5)のいずれか1項に記載の測位装置。
(7)
前記使用不可となる衛星が基準衛星である場合、前記測位部は、前記基準衛星とは異なる他の衛星を予備基準衛星として前記第2の整数値バイアスの推定を行い、
前記測位部は、前記第1の整数値バイアスと前記第2の整数値バイアスを用いて整数値バイアスの変換を行う、前記(6)に記載の測位装置。
(8)
前記使用不可となる衛星が仰角低下によって使用不可となった場合、前記測位部は、前記第1の整数値バイアスから前記第2の整数値バイアスに切り替えて測位を行う、前記(6)または前記(7)に記載の測位装置。
(9)
衛星からの電波を受信する受信部と、
前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、
前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、
前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位システム。
(10)
衛星からの電波を受信することと、
受信された衛星からの電波に基づいて衛星を検知することと、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行うことと、
衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行うことと、
前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替えることと、を含む測位方法。 The following configurations also belong to the technical scope of the present disclosure.
(1)
A receiver for receiving radio waves from a satellite;
A detection unit for detecting a satellite based on radio waves from the satellite received by the reception unit;
A positioning unit that estimates an integer value bias using an observation value based on radio waves received from a reference station and the satellite, and performs positioning;
The positioning unit is configured to perform positioning based on a first integer bias determined based on observations of the first combination of satellites, and estimate a second integer bias based on observations of the second combination of satellites. And in parallel,
The positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias.
(2)
The detection unit according to (1), wherein when the detection unit detects a new satellite, the positioning unit estimates a second integer value bias based on an observation value of the second combination including the new satellite. Positioning device.
(3)
After the second integer value bias reaches a predetermined accuracy, the positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias. The positioning device according to (1) or (2).
(4)
The positioning device according to any one of (1) to (3), wherein the second combination is selected based on an index of accuracy of the position of the satellite.
(5)
The positioning device according to (4), wherein the second combination is selected so that an index of accuracy of the position of the satellite is minimized.
(6)
The positioning unit predicts an unusable satellite from the first combination based on information from the detection unit,
The positioning unit estimates the second integer value bias based on the observation value of the second combination excluding the satellite that cannot be used,
When the detection unit detects a disabled satellite, the positioning using the first integer value bias is switched to the positioning using the second integer value bias. (1) to (5) The positioning device according to any one of the above.
(7)
When the unusable satellite is a reference satellite, the positioning unit estimates the second integer value bias using another satellite different from the reference satellite as a backup reference satellite,
The positioning device according to (6), wherein the positioning unit performs conversion of an integer value bias using the first integer value bias and the second integer value bias.
(8)
When the unusable satellite becomes unusable due to a decrease in elevation angle, the positioning unit performs positioning by switching from the first integer value bias to the second integer value bias, (6) or The positioning device according to (7).
(9)
A receiver for receiving radio waves from a satellite;
A detection unit for detecting a satellite based on radio waves from the satellite received by the reception unit;
A positioning unit that estimates an integer value bias using an observation value based on radio waves received from a reference station and the satellite, and performs positioning;
The positioning unit is configured to perform positioning based on a first integer bias determined based on observations of the first combination of satellites, and estimate a second integer bias based on observations of the second combination of satellites. And in parallel,
The positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias.
(10)
Receiving radio waves from satellites,
Detecting satellites based on radio waves received from satellites;
Estimating an integer value bias using observation values based on radio waves received from a reference station and the satellite, and performing positioning;
The positioning based on the first integer bias determined based on the observation value of the first combination of the satellites and the estimation of the second integer bias based on the observation value of the second combination of the satellites are performed in parallel. And doing
Switching from positioning using the first integer value bias to positioning using the second integer value bias.
(1)
衛星からの電波を受信する受信部と、
前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、
前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、
前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位装置。
(2)
前記検知部が新たな衛星を検知した場合、前記測位部は前記新たな衛星を含む前記第2の組合せの観測値に基づく第2の整数値バイアスの推定を行う、前記(1)に記載の測位装置。
(3)
前記測位部は、前記第2の整数値バイアスが所定の精度に達した後に、前記測位部は前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、前記(1)または前記(2)に記載の測位装置。
(4)
前記第2の組合せは、前記衛星の位置の精度の指標に基づいて選択される、前記(1)から前記(3)のいずれか1項に記載の測位装置。
(5)
前記第2の組合せは、前記衛星の位置の精度の指標が最小になるように選択される、前記(4)に記載の測位装置。
(6)
前記測位部は、前記検知部からの情報に基づいて前記第1の組合せの中から使用不可となる衛星を予測し、
前記測位部は、前記使用不可となる衛星を除いた前記第2の組合せの観測値に基づいて前記第2の整数値バイアスの推定を行い、
前記検知部が使用不可となった衛星を検知した場合、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、前記(1)から前記(5)のいずれか1項に記載の測位装置。
(7)
前記使用不可となる衛星が基準衛星である場合、前記測位部は、前記基準衛星とは異なる他の衛星を予備基準衛星として前記第2の整数値バイアスの推定を行い、
前記測位部は、前記第1の整数値バイアスと前記第2の整数値バイアスを用いて整数値バイアスの変換を行う、前記(6)に記載の測位装置。
(8)
前記使用不可となる衛星が仰角低下によって使用不可となった場合、前記測位部は、前記第1の整数値バイアスから前記第2の整数値バイアスに切り替えて測位を行う、前記(6)または前記(7)に記載の測位装置。
(9)
衛星からの電波を受信する受信部と、
前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、
前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、
前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位システム。
(10)
衛星からの電波を受信することと、
受信された衛星からの電波に基づいて衛星を検知することと、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行うことと、
衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行うことと、
前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替えることと、を含む測位方法。 The following configurations also belong to the technical scope of the present disclosure.
(1)
A receiver for receiving radio waves from a satellite;
A detection unit for detecting a satellite based on radio waves from the satellite received by the reception unit;
A positioning unit that estimates an integer value bias using an observation value based on radio waves received from a reference station and the satellite, and performs positioning;
The positioning unit is configured to perform positioning based on a first integer bias determined based on observations of the first combination of satellites, and estimate a second integer bias based on observations of the second combination of satellites. And in parallel,
The positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias.
(2)
The detection unit according to (1), wherein when the detection unit detects a new satellite, the positioning unit estimates a second integer value bias based on an observation value of the second combination including the new satellite. Positioning device.
(3)
After the second integer value bias reaches a predetermined accuracy, the positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias. The positioning device according to (1) or (2).
(4)
The positioning device according to any one of (1) to (3), wherein the second combination is selected based on an index of accuracy of the position of the satellite.
(5)
The positioning device according to (4), wherein the second combination is selected so that an index of accuracy of the position of the satellite is minimized.
(6)
The positioning unit predicts an unusable satellite from the first combination based on information from the detection unit,
The positioning unit estimates the second integer value bias based on the observation value of the second combination excluding the satellite that cannot be used,
When the detection unit detects a disabled satellite, the positioning using the first integer value bias is switched to the positioning using the second integer value bias. (1) to (5) The positioning device according to any one of the above.
(7)
When the unusable satellite is a reference satellite, the positioning unit estimates the second integer value bias using another satellite different from the reference satellite as a backup reference satellite,
The positioning device according to (6), wherein the positioning unit performs conversion of an integer value bias using the first integer value bias and the second integer value bias.
(8)
When the unusable satellite becomes unusable due to a decrease in elevation angle, the positioning unit performs positioning by switching from the first integer value bias to the second integer value bias, (6) or The positioning device according to (7).
(9)
A receiver for receiving radio waves from a satellite;
A detection unit for detecting a satellite based on radio waves from the satellite received by the reception unit;
A positioning unit that estimates an integer value bias using an observation value based on radio waves received from a reference station and the satellite, and performs positioning;
The positioning unit is configured to perform positioning based on a first integer bias determined based on observations of the first combination of satellites, and estimate a second integer bias based on observations of the second combination of satellites. And in parallel,
The positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias.
(10)
Receiving radio waves from satellites,
Detecting satellites based on radio waves received from satellites;
Estimating an integer value bias using observation values based on radio waves received from a reference station and the satellite, and performing positioning;
The positioning based on the first integer bias determined based on the observation value of the first combination of the satellites and the estimation of the second integer bias based on the observation value of the second combination of the satellites are performed in parallel. And doing
Switching from positioning using the first integer value bias to positioning using the second integer value bias.
100 GPS衛星
200 基準局
202、302 受信機
300 移動局
304 GPS受信部
306 衛星検知部
308 通信部
310 測位部
312 整数値バイアス推定部
314 測位実行部
400 ネットワーク DESCRIPTION OFSYMBOLS 100 GPS satellite 200 Reference station 202, 302 Receiver 300 Mobile station 304 GPS receiving part 306 Satellite detection part 308 Communication part 310 Positioning part 312 Integer value bias estimation part 314 Positioning execution part 400 Network
200 基準局
202、302 受信機
300 移動局
304 GPS受信部
306 衛星検知部
308 通信部
310 測位部
312 整数値バイアス推定部
314 測位実行部
400 ネットワーク DESCRIPTION OF
Claims (10)
- 衛星からの電波を受信する受信部と、
前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、
前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、
前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位装置。 A receiver for receiving radio waves from a satellite;
A detection unit for detecting a satellite based on radio waves from the satellite received by the reception unit;
A positioning unit that estimates an integer value bias using an observation value based on radio waves received from a reference station and the satellite, and performs positioning;
The positioning unit is configured to perform positioning based on a first integer bias determined based on observations of the first combination of satellites, and estimate a second integer bias based on observations of the second combination of satellites. And in parallel,
The positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias. - 前記検知部が新たな衛星を検知した場合、前記測位部は前記新たな衛星を含む前記第2の組合せの観測値に基づく第2の整数値バイアスの推定を行う、請求項1に記載の測位装置。 The positioning according to claim 1, wherein when the detection unit detects a new satellite, the positioning unit estimates a second integer value bias based on an observation value of the second combination including the new satellite. apparatus.
- 前記測位部は、前記第2の整数値バイアスが所定の精度に達した後に、前記測位部は前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、請求項2に記載の測位装置。 After the second integer value bias reaches a predetermined accuracy, the positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias. The positioning device according to claim 2.
- 前記第2の組合せは、前記衛星の位置の精度の指標に基づいて選択される、請求項1に記載の測位装置。 The positioning device according to claim 1, wherein the second combination is selected based on an index of accuracy of the position of the satellite.
- 前記第2の組合せは、前記衛星の位置の精度の指標が最小になるように選択される、請求項4に記載の測位装置。 The positioning device according to claim 4, wherein the second combination is selected such that an index of accuracy of the position of the satellite is minimized.
- 前記測位部は、前記検知部からの情報に基づいて前記第1の組合せの中から使用不可となる衛星を予測し、
前記測位部は、前記使用不可となる衛星を除いた前記第2の組合せの観測値に基づいて前記第2の整数値バイアスの推定を行い、
前記検知部が使用不可となった衛星を検知した場合、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、請求項1に記載の測位装置。 The positioning unit predicts an unusable satellite from the first combination based on information from the detection unit,
The positioning unit estimates the second integer value bias based on the observation value of the second combination excluding the satellite that cannot be used,
2. The positioning device according to claim 1, wherein when the detection unit detects a disabled satellite, the positioning device switches from positioning using the first integer value bias to positioning using the second integer value bias. - 前記使用不可となる衛星が基準衛星である場合、前記測位部は、前記基準衛星とは異なる他の衛星を予備基準衛星として前記第2の整数値バイアスの推定を行い、
前記測位部は、前記第1の整数値バイアスと前記第2の整数値バイアスを用いて整数値バイアスの変換を行う、請求項6に記載の測位装置。 When the unusable satellite is a reference satellite, the positioning unit estimates the second integer value bias using another satellite different from the reference satellite as a backup reference satellite,
The positioning device according to claim 6, wherein the positioning unit performs conversion of integer value bias using the first integer value bias and the second integer value bias. - 前記使用不可となる衛星が仰角低下によって使用不可となった場合、前記測位部は、前記第1の整数値バイアスから前記第2の整数値バイアスに切り替えて測位を行う、請求項6に記載の測位装置。 7. The positioning unit according to claim 6, wherein when the unusable satellite becomes unusable due to a decrease in elevation angle, the positioning unit performs positioning by switching from the first integer value bias to the second integer value bias. 8. Positioning device.
- 衛星からの電波を受信する受信部と、
前記受信部が受信した衛星からの電波に基づいて衛星を検知する検知部と、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行う測位部と、を備え、
前記測位部は、衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行い、
前記測位部は、前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替える、測位システム。 A receiver for receiving radio waves from a satellite;
A detection unit for detecting a satellite based on radio waves from the satellite received by the reception unit;
A positioning unit that estimates an integer value bias using an observation value based on radio waves received from a reference station and the satellite, and performs positioning;
The positioning unit is configured to perform positioning based on a first integer bias determined based on observations of the first combination of satellites, and estimate a second integer bias based on observations of the second combination of satellites. And in parallel,
The positioning unit switches from positioning using the first integer value bias to positioning using the second integer value bias. - 衛星からの電波を受信することと、
受信された衛星からの電波に基づいて衛星を検知することと、
基準局と前記衛星から受信した電波に基づく観測値を用いて整数値バイアスを推定し、測位を行うことと、
衛星の第1の組合せの観測値に基づいて確定された第1の整数値バイアスに基づく測位と、衛星の第2の組合せの観測値に基づく第2の整数値バイアスの推定と、を並行して行うことと、
前記第1の整数値バイアスを用いた測位から前記第2の整数値バイアスを用いた測位に切り替えることと、を含む測位方法。 Receiving radio waves from satellites,
Detecting satellites based on radio waves received from satellites;
Estimating an integer value bias using observation values based on radio waves received from a reference station and the satellite, and performing positioning;
The positioning based on the first integer bias determined based on the observation value of the first combination of the satellites and the estimation of the second integer bias based on the observation value of the second combination of the satellites are performed in parallel. And doing
Switching from positioning using the first integer value bias to positioning using the second integer value bias.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-089118 | 2016-04-27 | ||
JP2016089118A JP2017198531A (en) | 2016-04-27 | 2016-04-27 | Positioning device, positioning system and positioning method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017187681A1 true WO2017187681A1 (en) | 2017-11-02 |
Family
ID=60160200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002661 WO2017187681A1 (en) | 2016-04-27 | 2017-01-26 | Positioning device, positioning system, and positioning method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017198531A (en) |
WO (1) | WO2017187681A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7180972B2 (en) * | 2017-11-22 | 2022-11-30 | 古野電気株式会社 | Analysis data processing device, analysis data processing method, and analysis data processing program |
CN110231637B (en) * | 2018-03-05 | 2021-04-13 | 中移物联网有限公司 | Satellite selection method, server and computer storage medium |
JP2019197009A (en) | 2018-05-10 | 2019-11-14 | ソニー株式会社 | Information processing apparatus, information processing method, and program |
JP7329980B2 (en) * | 2019-06-19 | 2023-08-21 | 清水建設株式会社 | Positioning Algorithm Configuration Parameter Determination Method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5867411A (en) * | 1996-12-19 | 1999-02-02 | The Aerospace Corporation | Kalman filter ionospheric delay estimator |
JP2001074824A (en) * | 1999-09-06 | 2001-03-23 | Furuno Electric Co Ltd | Apparatus for monitoring cycle slip |
JP2003270319A (en) * | 2002-03-18 | 2003-09-25 | Matsushita Electric Ind Co Ltd | Satellite positioning/computing method and satellite navigating/positioning device using the same |
JP2005164395A (en) * | 2003-12-02 | 2005-06-23 | Toyota Motor Corp | Carrier wave phase type gps positioning apparatus and method |
JP2006003208A (en) * | 2004-06-17 | 2006-01-05 | Toyota Motor Corp | Position detector and position detection method |
JP2008039689A (en) * | 2006-08-09 | 2008-02-21 | Toyota Motor Corp | Position-detecting device and position-detecting method |
JP2009025049A (en) * | 2007-07-17 | 2009-02-05 | Toyota Motor Corp | Carrier phase type mobile positioning system |
JP2009270927A (en) * | 2008-05-07 | 2009-11-19 | Toyota Motor Corp | Inter-moving object interference positioning apparatus and method for moving object |
-
2016
- 2016-04-27 JP JP2016089118A patent/JP2017198531A/en active Pending
-
2017
- 2017-01-26 WO PCT/JP2017/002661 patent/WO2017187681A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5867411A (en) * | 1996-12-19 | 1999-02-02 | The Aerospace Corporation | Kalman filter ionospheric delay estimator |
JP2001074824A (en) * | 1999-09-06 | 2001-03-23 | Furuno Electric Co Ltd | Apparatus for monitoring cycle slip |
JP2003270319A (en) * | 2002-03-18 | 2003-09-25 | Matsushita Electric Ind Co Ltd | Satellite positioning/computing method and satellite navigating/positioning device using the same |
JP2005164395A (en) * | 2003-12-02 | 2005-06-23 | Toyota Motor Corp | Carrier wave phase type gps positioning apparatus and method |
JP2006003208A (en) * | 2004-06-17 | 2006-01-05 | Toyota Motor Corp | Position detector and position detection method |
JP2008039689A (en) * | 2006-08-09 | 2008-02-21 | Toyota Motor Corp | Position-detecting device and position-detecting method |
JP2009025049A (en) * | 2007-07-17 | 2009-02-05 | Toyota Motor Corp | Carrier phase type mobile positioning system |
JP2009270927A (en) * | 2008-05-07 | 2009-11-19 | Toyota Motor Corp | Inter-moving object interference positioning apparatus and method for moving object |
Also Published As
Publication number | Publication date |
---|---|
JP2017198531A (en) | 2017-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4304293B2 (en) | GPS positioning system, portable terminal device, GPS receiver, and positioning mode switching method used therefor | |
US10018730B2 (en) | Method and apparatus for determining a position of a GNSS receiver | |
EP1145035B1 (en) | Method and system for using altitude information in a satellite positioning system | |
KR101467645B1 (en) | Transmitter position integrity checking | |
JP5628248B2 (en) | System and method for acquiring signal acquisition assistance data | |
JP4414136B2 (en) | Method and apparatus for determining error estimates in a hybrid position determination system | |
KR101266582B1 (en) | System and/or method for reducing initial position uncertainty in sps operation | |
WO2017130513A1 (en) | Information processing device, computation method, and positioning system | |
US20090085802A1 (en) | Method and apparatus for geolocation determination | |
JP2018534537A (en) | Method and system for joint global navigation satellite system (GNSS) diagnostics | |
WO2017187681A1 (en) | Positioning device, positioning system, and positioning method | |
CN111133337B (en) | Satellite integrity monitoring with crowdsourced mobile device data | |
JP7050906B2 (en) | Methods and devices for supplying correction data for satellite navigation | |
AU2010226678B2 (en) | System and method for concurrently determining locations of mobile device in wireless communication network | |
CN1304270A (en) | Method and device for assisting whole globe positioning system completeness maintaining | |
KR20150015442A (en) | Systems and methods configured to estimate receiver position using timing data associated with reference locations in three-dimensional space | |
JP2009168804A (en) | Method and apparatus for measurement processing of satellite positioning system (sps) signal | |
JP2012230111A (en) | Global navigation satellite system | |
KR20060070493A (en) | Method and apparatus for wireless network hybrid positioning | |
WO2016130285A1 (en) | Assistance data for use in determining a position of a mobile device | |
KR101964241B1 (en) | Method and apparatus for determining a position of a gnss receiver | |
WO2009100079A1 (en) | System and method for verifying consistent measurements in performing gps positioning | |
JP2001228232A (en) | Gps receiver | |
KR20100065964A (en) | Method for locating mobile terminal and system | |
WO2018230227A1 (en) | Timing signal generating device, electronic instrument provided with same, and timing signal generating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17788971 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17788971 Country of ref document: EP Kind code of ref document: A1 |