WO2017187535A1 - Endoscope device and temperature inspection method - Google Patents

Endoscope device and temperature inspection method Download PDF

Info

Publication number
WO2017187535A1
WO2017187535A1 PCT/JP2016/063107 JP2016063107W WO2017187535A1 WO 2017187535 A1 WO2017187535 A1 WO 2017187535A1 JP 2016063107 W JP2016063107 W JP 2016063107W WO 2017187535 A1 WO2017187535 A1 WO 2017187535A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
characteristic
current
characteristic value
unit
Prior art date
Application number
PCT/JP2016/063107
Other languages
French (fr)
Japanese (ja)
Inventor
敏之 野口
明広 窪田
俊介 鈴木
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/063107 priority Critical patent/WO2017187535A1/en
Publication of WO2017187535A1 publication Critical patent/WO2017187535A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to an endoscope apparatus and a temperature inspection method.
  • Endoscope devices are used in various fields to observe the inside of a space that cannot be directly observed from the outside. For example, observation of organs in body cavities, and treatment and treatment of medical equipment using boilers as necessary, observation and inspection of internal scratches, corrosion, etc. in boilers, turbines, engines, chemical plants, etc. There are industrial fields, etc.
  • Some endoscope apparatuses include an electrical member at the distal end of an insertion portion to be inserted into a subject.
  • an imaging member and a lighting member are typical as exemplified below.
  • the imaging member include a solid-state imaging device such as a CCD (Charge Coupled Device) sensor and a CMOS (Complementary Metal Oxide Semiconductor) sensor.
  • Illuminating members include light emitting elements such as LEDs (Light Emitting Diodes) and LDs (Laser Diodes).
  • the electrical member provided in the endoscope apparatus may include passive electrical components. Passive electrical components include, for example, passive elements such as resistance elements, capacitors, and coils.
  • the temperature at the observation location may become high.
  • the temperature of the solid-state image sensor provided in the insertion part of the endoscope apparatus may rise.
  • the temperature of the solid-state imaging device may rise due to illumination light that illuminates the subject. This rise in temperature causes an increase in dark current generated in the solid-state imaging device, and causes a deterioration in image quality of the observed image. Further, when the temperature rises, the solid-state image sensor may be destroyed. In a light emitting element, the amount of light emission may change, and the quality of an observed image may deteriorate.
  • the imaging device disclosed in Patent Document 1 depending on the imaging device, there may be a noticeable variation in signal level (shading) between pixels. For this reason, an error may occur in the temperature due to individual output pixels or individual differences in shading. Further, the light emission control device described in Patent Document 2 does not include means for confirming whether the temperature estimated from the detected forward voltage is normal. For this reason, if a failure occurs in the measurement of the forward voltage, the temperature may not be measured normally.
  • the present invention has been made in consideration of such problems, and provides an endoscope apparatus and a temperature inspection method capable of inspecting an operation state of a temperature measurement function while using main functions of members. For the purpose.
  • a detection unit for detecting a characteristic value of the electrical characteristic including a member having a different electrical characteristic according to a temperature and a physical quantity distinct from the temperature at a distal end of the insertion part, and the characteristic
  • a storage unit that stores temperature characteristic information indicating a temperature characteristic of the value
  • an inspection unit that inspects the measurement state of the temperature specified by referring to the temperature characteristic information from the characteristic value based on the characteristic value for each physical quantity
  • an endoscope apparatus for detecting a characteristic value of the electrical characteristic
  • a plurality of members having different electrical characteristics depending on the temperature are provided at the distal end of the insertion portion, and the characteristic value of the electrical characteristics is set for each of the members.
  • a detection unit for detecting a storage unit for storing temperature characteristic information indicating a temperature characteristic of the characteristic value, and a temperature measurement state specified from the characteristic value with reference to the temperature characteristic information for each member
  • an inspection unit that inspects based on the comparison of the characteristic values.
  • the inspection unit calculates a change amount from the start of measurement of the temperature for each member, and based on the change amount for each member.
  • the measurement state may be inspected.
  • At least one of the members is a light emitting element that emits light in response to current supply
  • the detection unit The voltage generated according to the supply of the current is detected as the characteristic value of the light emitting element
  • the storage unit includes information indicating the temperature characteristic of the voltage generated according to the supply of the current as the temperature characteristic information.
  • the luminance detection unit that detects the luminance of the light from the light emitting element and the storage unit are configured to transmit light that is emitted in response to the supply of the current.
  • Luminance temperature characteristic information indicating a temperature characteristic of luminance is stored, and the inspection unit is identified from the voltage with reference to the temperature with reference to the luminance temperature characteristic information and the temperature with reference to the temperature characteristic information. The measured state of the temperature may be inspected by comparing the measured temperature.
  • the other one of the members is an image sensor that photoelectrically converts incoming light
  • the detection unit Detects a dark current generated in the image sensor as the characteristic value of the image sensor
  • the storage unit further stores dark current temperature characteristic information indicating a temperature characteristic of the dark current as the temperature characteristic information.
  • a method for an endoscope apparatus comprising: a member provided at a distal end of an insertion portion; and a member having different electrical characteristics according to a temperature and a physical quantity separate from the temperature.
  • An eighth aspect of the present invention is a method in an endoscope apparatus, wherein a plurality of members are provided at the distal end of an insertion portion, and each of the members has different electrical characteristics depending on temperature.
  • a detection step for detecting the characteristic value, and temperature characteristic information stored in the storage unit and indicating the temperature characteristic of the characteristic value, and the temperature measurement state specified from the characteristic value is determined for each member And a test step for testing based on the comparison of the characteristic values.
  • the operation state of the temperature measurement function can be inspected while using the main functions of the members.
  • FIG. 1 is a schematic block diagram illustrating a configuration example of an endoscope apparatus 10 according to the first embodiment of the present invention.
  • the endoscope apparatus 10 includes an insertion unit 11 and a housing 12.
  • the insertion portion 11 is configured to include a tube material having an elongated shape whose length in one direction is longer than the other direction.
  • the distal end portion which is one end in the longitudinal direction of the insertion portion 11 includes a lens 111, two LEDs 112-1 and 112-2, an image sensor 113 and a signal driver 114.
  • the tip is a part that is first inserted or approached to the subject.
  • the other end in the longitudinal direction of the insertion portion 11 is referred to as a base end or a base end portion.
  • a conducting wire penetrates the insertion portion 11 in the longitudinal direction.
  • the conductors are respectively the current from the power supply terminal Vcc stored in the housing 12 to the LEDs 112-1 and 112-2, the current from the LEDs 112-1 and 112-2 to the current sources 132-1 and 132-2, and the signal driver. It is used for transmission of an image signal from 114 to the image processing unit 136.
  • the lens 111 is installed at the distal end of the insertion portion 11.
  • the direction of the optical axis of the lens 111 is parallel to the longitudinal direction of the insertion portion 11.
  • the lens 111 is a convex lens that transmits light incident from one side surface to the other side surface.
  • the LEDs 112-1 and 112-2 are light-emitting elements that convert electric power supplied by the drive current into light, respectively.
  • One end of each of the LEDs 112-1 and 112-2 is electrically connected to a common power supply terminal Vcc.
  • the other ends of the LEDs 112-1 and 112-2 are electrically connected to the current sources 132-1 and 132-2. Forward currents flowing from the power supply terminal Vcc to the current sources 132-1 and 132-2 are supplied as driving currents to the LEDs 112-1 and 112-2, respectively.
  • the light emitting surfaces of the LEDs 112-1 and 112-2 are directed toward the tip of the insertion portion 11, and light emitted from the LEDs 112-1 and 112-2 is emitted from the tip of the insertion portion 11, respectively.
  • the LEDs 112-1 and 112-2 mainly function as illumination that emits light to the surface of the subject.
  • the voltage between both terminals of the LED 112-1 is detected as a forward voltage by the A / D 133 stored in the housing 12. This forward voltage is used to specify the temperature of the LED 112-1.
  • the image sensor 113 includes a plurality of pixels that photoelectrically convert light incident from the lens 111 into an output signal that is an electrical signal.
  • the imaging device is, for example, a CCD image sensor, a CMOS image sensor, or the like that includes a photodiode for each pixel.
  • the plurality of pixels are two-dimensionally arranged at predetermined spatial intervals on the imaging surface of the image sensor 113.
  • the imaging surface is orthogonal to the optical axis of the lens 111 and is irradiated with incident light focused by the lens 111. Therefore, an image of the subject is formed on the imaging surface.
  • a region where pixels are arranged on the imaging surface corresponds to a pixel region.
  • the image sensor 113 reads out an output signal from each pixel in response to an input of an imaging control signal from the signal driver 114, and outputs the read output signal to the signal driver 114.
  • the signal driver 114 generates an imaging control signal for controlling imaging by the imaging element 113.
  • the imaging control signal is a control signal for controlling the exposure time for the pixels included in the imaging element 113 and the timing for reading the output signal from each pixel.
  • the imaging control signal is, for example, a drive pulse for instructing the output order of the output signal for each pixel in a predetermined frame cycle for the pixels arranged in the pixel region of the image sensor 113 (for example, raster scan order).
  • Each pixel includes, for example, a photodiode having a PN junction where a P-type semiconductor made of silicon and an N-type semiconductor are in contact. Charge is accumulated in each pixel as time passes.
  • Each pixel releases the accumulated charge in response to the input of the imaging control signal from the signal driver 114. From the pixel, an output signal indicating a voltage generated by releasing the charge as a signal value is output. Therefore, the exposure time substantially corresponds to the frame period (that is, the reciprocal of the frame rate).
  • charge accumulation in each pixel is mainly caused by photoelectric conversion with respect to incident light.
  • the signal driver 114 reads out an output signal for each pixel from the image sensor by outputting an imaging control signal to the image sensor 113.
  • the signal driver 114 outputs the read output signal for each pixel to the image processing unit 136.
  • the endoscope apparatus 10 further includes a power supply terminal Vcc, two current sources 132-1 and 132-2, an A / D 133, a temperature calculation unit 134, an inspection unit 135, an image processing unit 136, a display unit 138, a memory 139, and a control.
  • the unit 140 and the drive circuit 151 are included. These parts are all housed in the housing 12 and configured as a main body of the endoscope apparatus 10. In FIG. 1, the drive circuit 151 is not shown.
  • the power supply terminal Vcc is a positive terminal to which the drive circuit 151 is electrically connected.
  • the drive current generated by the drive circuit 151 is supplied to the LEDs 112-1 and 112-2 as a forward current through the power supply terminal Vcc.
  • the current sources 132-1 and 132-2 are electric circuits that maintain the current value of the current flowing between both ends at a predetermined current value.
  • Each of the current sources 132-1 and 132-2 includes a variable resistance element (not shown) for adjusting the current value, and is configured by connecting the variable resistance elements in series.
  • One end of each of the current sources 132-1 and 132-2 is electrically connected to the other end of the LEDs 112-1 and 112-2.
  • the other ends of the current sources 132-1 and 132-2 are grounded.
  • the current source 132-1 controls the current value of the current flowing between both ends thereof to be equal to the current value of the forward current indicated by the current control signal input from the control unit 140.
  • the current value of the forward current may be simply referred to as the forward current.
  • a / D Analog-to-Digital; analog / digital converter
  • the A / D 133 converts the voltage between one end and the other end of the LED 112-1 that is an analog signal into forward voltage data that indicates the voltage value of the forward voltage that is digital data.
  • the forward voltage means a voltage generated at both ends of the LED 112-1 or a voltage value of the voltage when a forward current that is a current supplied from the power supply terminal Vcc is supplied. The forward voltage varies depending on the forward current supplied to the LED 112-1.
  • the A / D 133 detects the forward voltage V1 of the LED 112-1 as a characteristic value indicating the electrical characteristics of the LED 112-1 under a predetermined forward current I1.
  • the A / D 133 detects the forward voltage V2 of the LED 112-1 under the forward current I2.
  • the forward currents I1 and I2 are instructed by a current control signal input from the control unit 140. Further, the forward current I2 has a current value different from that of the forward current I1.
  • the A / D 133 outputs the forward voltage data indicating the detected forward voltage V1 and forward voltage V2 to the temperature calculation unit 134.
  • the temperature calculation unit 134 reads the forward voltage versus ambient temperature table stored in the memory 139 in advance.
  • the forward voltage vs. ambient temperature table is data indicating the correspondence between the forward voltage supplied to the LED 112-1 and the ambient temperature.
  • the ambient temperature means the temperature around the LED 112-1. That is, the forward voltage vs. ambient temperature table is data indicating the temperature characteristic of the forward voltage generated by the forward current passing through the LED 112-1 as one kind of the electrical characteristics of the LED 112-1.
  • the temperature calculation unit 134 refers to the forward voltage vs. ambient temperature table, the temperature T (V1) corresponding to the forward current I1 and the forward voltage V1, and the temperature corresponding to the forward current I2 and the forward voltage V2. Specify T (V2).
  • the temperature calculation unit 134 outputs temperature data indicating the specified temperature T (V1) and temperature T (V2) to the inspection unit 135.
  • the inspection unit 135 inspects the measurement state of the temperature specified from the forward voltage of the LED 112-1 based on the temperature T (V1) and the temperature T (V2) indicated by the temperature data input from the temperature calculation unit 134. .
  • the inspection unit 135 compares the temperature T (V1) and the temperature T (V2) to determine whether the temperature T (V1) or the temperature T (V2) is appropriate as the measurement state. More specifically, the inspection unit 135 determines that the difference
  • the determination target may be either the temperature T (V1) or the temperature T (V2) that is the comparison target.
  • the determination target is mainly the temperature T (V1) is taken as an example, including other embodiments and modifications.
  • the inspection unit 135 further inspects whether or not the temperature T (V1) is within a predetermined usable temperature range.
  • the usable temperature is a temperature range in which an expected function can be achieved by normal use of the endoscope apparatus 10 and the structure thereof is not significantly damaged or deteriorated.
  • the usable temperature is, for example, in the range from ⁇ 10 ° C. to 70 ° C.
  • the inspection unit 135 outputs display information corresponding to the determination result to the display unit 138. For example, when it is determined that the temperature T (V1) is inappropriate or when it is determined that the temperature T (V1) is not within the usable temperature range, the inspection unit 135 is stored in advance from the memory 139. Read warning information. Then, the inspection unit 135 outputs the read warning information to the display unit 138. On the display unit 138, warning information input from the inspection unit 135 is displayed. The warning information is information for notifying the user that the specified temperature T (V1) is inappropriate or that the specified temperature T (V1) is not within the usable temperature range.
  • the warning information that the inspection unit 135 outputs to the display unit 138 is determined when the temperature T (V1) is determined to be inappropriate and when the temperature T (V1) is determined not to be within the usable temperature range. May be different. That is, when determining that the temperature T (V1) is inappropriate, the inspection unit 135 outputs warning information indicating that the measured temperature T (V1) is inappropriate to the display unit 138. When determining that the temperature T (V1) is not within the usable temperature range, the inspection unit 135 outputs warning information indicating that the temperature T (V1) is not within the usable temperature range to the display unit 138. .
  • the warning information may include an instruction to stop using the endoscope apparatus 10 or an instruction to wait until the temperature T (V1) changes within the usable temperature range.
  • the inspection unit 135 When determining that the temperature T (V1) is appropriate, the inspection unit 135 generates temperature information indicating the temperature T (V1) and outputs the generated temperature information to the display unit 138.
  • the display unit 138 displays the temperature T (V1) as temperature information input from the inspection unit 135.
  • the format of the information to be displayed may be any message, symbol, figure, or image made up of predetermined characters.
  • the format of information presented as warning information is not limited to a format that can be visually recognized, and may be audio information.
  • the endoscope apparatus 10 further includes an audio reproduction unit (not shown).
  • the sound reproducing unit includes a speaker.
  • the inspection unit 135 outputs the warning information to the audio reproduction unit.
  • the sound reproducing unit reproduces sound indicating the warning information input from the inspection unit 135.
  • the image processing unit 136 aggregates the signal values indicated by the output signals for each pixel input from the signal driver 114 for each frame, and generates an image signal indicating the signal value (pixel value) for each pixel.
  • the image signal is a signal indicating an image of the subject.
  • the image processing unit 136 performs predetermined image processing on the generated image signal. Examples of the predetermined image processing include A / D conversion, ⁇ correction, YC conversion, resizing, and the like.
  • the image processing unit 136 outputs an image signal obtained by performing predetermined image processing to the display unit 138. Note that the image processing unit 136 may store the image signal in the memory 139. Thereby, the captured image of the subject is recorded.
  • the display unit 138 displays characters, symbols, figures, or images based on the warning information input from the inspection unit 135.
  • the display unit 138 displays an image based on the image signal input from the image processing unit 136.
  • the display unit 138 may superimpose characters based on the warning information and the image based on the image signal and display a display image obtained by the superimposition.
  • the display unit 138 includes a display device such as a liquid crystal display (LCD) or an electro-luminescence (EL) display.
  • the display unit 138 may include a structure that can be detachably fixed to the main body of the endoscope apparatus 10.
  • the memory 139 stores various data used by each unit of the endoscope apparatus 10 for processing and data generated by each unit as described above.
  • the memory 139 includes, for example, a nonvolatile storage medium such as EEPROM (Electrically Erasable Programmable Read-Only Memory) and a volatile storage medium such as DRAM (Dynamic Random Access Memory).
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • DRAM Dynamic Random Access Memory
  • the control unit 140 controls various operations of the endoscope apparatus 10. For example, when inspecting the temperature measurement state, the control unit 140 generates a current control signal for controlling the forward current supplied to the LED 112-1, and outputs the generated current control signal to the current source 132-1. To do. The control unit 140 sequentially generates the current control signal indicating the forward current I1 and the current control signal indicating the forward current I2 described above as current control signals. When the current control signal input from the control unit 140 indicates the forward current I1, the current source 132-1 has a forward current control signal indicating the current value of the current supplied from the power supply terminal Vcc via the LED 112-1. Control to directional current I1. When the current control signal input from the control unit 140 indicates the forward current I2, the current source 132-1 has a forward current control signal indicating the current value of the current supplied from the power supply terminal Vcc via the LED 112-1. Control to directional current I2.
  • control unit 140 generates a light emission control signal for controlling whether or not light is emitted from the LEDs 112-1 and 112-2, and outputs the generated light emission control signal to the drive circuit (FIG. 2).
  • the drive circuit When the light emission control signal input from the control unit 140 indicates that light emission is required (ON), the drive circuit generates a drive current and supplies the generated drive current to the LEDs 112-1 and 112-2 via the power supply terminal Vcc. .
  • the drive circuit stops generating and supplying the drive current.
  • control unit 140 generates a display control signal for controlling whether to display or record the captured image of the subject, and outputs the generated display control signal to the image processing unit 136.
  • the image processing unit 136 When the display control signal input from the control unit 140 indicates that display is required (ON), the image processing unit 136 outputs the generated image signal to the display unit 138.
  • the image processing unit 136 stops outputting the image signal to the display unit 138.
  • the display control signal input from the control unit 140 indicates that recording is required (ON)
  • the image processing unit 136 stores the generated image signal in the memory 139.
  • the image processing unit 136 stops storing the image signal in the memory 139.
  • control unit 140 may realize the function by executing processing instructed by a predetermined control program.
  • the endoscope apparatus 10 may further include, for example, an operation input unit (not shown), and the control unit 140 may constitute a user interface in cooperation with the operation input unit and the display unit 138.
  • the operation input unit accepts a user operation and outputs an operation signal indicating a user-desired function to the control unit 140 in accordance with the operation.
  • the operation signal is a function of the endoscope apparatus 10, for example, whether or not the temperature measurement state needs to be inspected, whether or not the LEDs 112-1 and 112-2 emit light, whether or not the image captured by the image sensor 113 is displayed, This is a signal for instructing whether or not to record the image.
  • the inspection of the temperature measurement state may be continuously performed during the light emission of the LED 112-1, or may be performed every predetermined time (for example, at intervals of 1 to 15 minutes).
  • the operation input unit may include a dedicated member such as a button or a knob, or may include a general-purpose member such as a mouse or a touch sensor.
  • FIG. 2 is a schematic circuit diagram illustrating a configuration example of the drive circuit 151.
  • the drive circuit 151 is an electric circuit that includes a power source 152 and a variable resistance element 153.
  • One end of the power source 152 is electrically connected to one end of the variable resistance element 153, and the other end of the power source 152 is grounded.
  • the other end of the variable resistance element 153 is connected to one end of the LEDs 112-1 and 112-2 via the power supply terminal Vcc.
  • the current from the power supply 152 is supplied to one end of the LEDs 112-1 and 112-2 via the variable resistance element 153 and the power supply terminal Vcc.
  • FIG. 1 is an electric circuit that includes a power source 152 and a variable resistance element 153.
  • One end of the power source 152 is electrically connected to one end of the variable resistance element 153, and the other end of the power source 152 is grounded.
  • the other end of the variable resistance element 153 is connected to one end of the LEDs 112-1 and 112-2 via
  • the LED 112-2 of the two LEDs 112-1 and 112-2 is not shown, and the LED 112-1 is shown as a measurement target of the forward voltage Vf that is the voltage across the LED 112-1. It should be noted that the forward current If supplied to the LED 112-1 can also be adjusted by adjusting the resistance value of the variable resistance element 153.
  • FIG. 3 is a diagram illustrating an example of temperature characteristics of the forward voltage.
  • the horizontal axis and the vertical axis indicate the ambient temperature T and the forward voltage Vf, respectively.
  • the three curves show the forward voltage generated across the LED 112-1 when the forward currents are I1, I2, and I3, respectively.
  • the forward voltage Vf decreases as the ambient temperature T increases and increases as the ambient temperature T decreases.
  • the higher the ambient temperature T the lower the rate of change of the forward voltage Vf with respect to the change in the ambient temperature T.
  • the forward current If is sequentially increased as I1, I2, and I3 at a constant ambient temperature, for example, T1
  • the forward voltage Vf is sequentially increased as V1, V2, and V3.
  • a forward voltage vs. ambient temperature table indicating the temperature characteristics of the forward voltage for each forward current is stored in the memory 139 in advance as one form of temperature characteristic information. Then, the temperature calculation unit 134 refers to the forward voltage versus ambient temperature table, and for each of the forward currents I1 and I2, the ambient temperature T corresponding to the forward voltages V1 and V2 detected by the A / D 133, respectively. (V1) and T (V2) are specified. If the operation of the endoscope apparatus 10 according to the present embodiment is normal, the specified ambient temperature T (V1) and ambient temperature T (V2) should be equal.
  • the inspecting unit 135 can reliably obtain the obtained ambient temperature T (V1) depending on whether or not the magnitude of the difference between the ambient temperature T (V1) and the ambient temperature T (V2) is within a predetermined range. It can be determined whether or not the temperature is likely.
  • FIG. 4 is a flowchart illustrating an example of the temperature measurement process.
  • the temperature measurement process shown in FIG. 4 is a basic process for displaying the ambient temperature around the LED 112-1 based on the forward voltage generated in the LED 112-1.
  • Step S101 The control unit 140 causes the drive circuit 151 to supply a predetermined forward current If to the LED 112-1.
  • the A / D 133 detects the forward voltage Vf generated across the LED 112-1. Thereafter, the process proceeds to step S102.
  • the temperature calculation unit 134 refers to the forward voltage versus ambient temperature table stored in advance in the memory 139, and specifies the ambient temperature T at the forward voltage Vf under a predetermined forward current If. . Thereafter, the process proceeds to step S103.
  • Step S103 The display unit 138 displays the specified ambient temperature T. Thereafter, the process shown in FIG.
  • FIG. 5 is a flowchart illustrating an example of the temperature inspection process according to the present embodiment.
  • the control unit 140 causes the drive circuit 151 to sequentially change the forward current If supplied to the LED 112-1 to I1 and I2.
  • the A / D 133 detects the forward voltages V1 and V2 at the respective time points. Thereafter, the process proceeds to step S112.
  • the temperature calculation unit 134 refers to the forward voltage versus ambient temperature table stored in advance in the memory 139, and the ambient temperature T (V1) in the forward voltage V1 detected for the forward current I1.
  • the ambient temperature T (V2) at the forward voltage V2 detected for the forward current I2 is specified. Thereafter, the process proceeds to step S113.
  • Step S113 The inspection unit 135 determines that the absolute value
  • Step S114 The inspection unit 135 determines whether or not the specified ambient temperature T (V1) is a temperature within a predetermined usable temperature range. When it is determined that the temperature is within the usable temperature range (YES in step S114), the process proceeds to step S115. When it is determined that the temperature is out of the usable temperature range (NO in step S114), the process proceeds to step S117.
  • Step S115 The inspection unit 135 outputs temperature information indicating the ambient temperature T (V1) determined to be within the usable temperature range to the display unit 138. At this time, the display unit 138 displays the ambient temperature T (V1). Thereafter, the process proceeds to step S116.
  • Step S116 The control unit 140 determines to continue using the endoscope apparatus 10, that is, to continue temperature measurement, illumination, or imaging. Thereafter, the process shown in FIG.
  • Step S117 The inspection unit 135 reads warning information from the memory 139 and outputs the read warning information to the display unit 138. A warning (alarm) is displayed on the display unit 138. Thereafter, the process proceeds to step S118.
  • Step S118 The control unit 140 determines to stop using the endoscope apparatus 10. For example, the control unit 140 may stop at least one of temperature measurement, illumination, and imaging. When the temperature measurement is stopped or the lighting is stopped, the control unit 140 transmits a light emission control signal indicating that light emission is not required (OFF) to the drive circuit 151. When stopping the imaging, the control unit 140 outputs to the image processing unit 136 display control signals indicating that display is not necessary (OFF) and recording is not necessary (OFF). Thereafter, the process shown in FIG.
  • the endoscope apparatus 10 includes at least one LED 112-1 having different electrical characteristics according to temperature and a physical quantity different from the temperature at the distal end of the insertion portion 11, A / D 133 for detecting the characteristic value of the target characteristic is provided.
  • the endoscope apparatus 10 stores the temperature characteristic information indicating the temperature characteristic of the characteristic value, and the measurement state of the temperature specified by referring to the temperature characteristic information from the characteristic value as the characteristic value for each physical quantity.
  • an inspection unit 135 for inspecting based on the above.
  • At least one of the members is an LED 112-1 that emits light in response to supply of a forward current
  • the A / D 133 corresponds to supply of forward current as a characteristic value of the LED 112-1.
  • the forward voltage generated is detected.
  • the memory 139 stores a forward voltage vs. ambient temperature table indicating temperature characteristics of the forward voltage generated in response to the forward current supply as temperature characteristic information.
  • FIG. 6 is a schematic block diagram showing the configuration of the endoscope apparatus 10A according to the present embodiment.
  • An endoscope apparatus 10A according to the present embodiment is configured to further include an A / D 141 and a temperature calculation unit 142 in the endoscope apparatus 10.
  • the endoscope apparatus 10A detects the temperature based on the forward voltage generated at both ends of the LED 112-2 in addition to the LED 112-1. Therefore, the control unit 140 further generates a current control signal for controlling the forward current supplied to the LED 112-2, and outputs the generated current control signal to the current source 132-2.
  • the current source 132-2 controls the current value of the current flowing between both ends thereof to be equal to the current value of the forward current indicated by the current control signal input from the control unit 140.
  • control unit 140 may control the forward current flowing through both ends of the LED 112-1 to be constant by making the forward current indicated by the current control signal to the current source 132-1 constant. . Further, the control unit 140 makes the forward current equal to the forward current indicated by the current control signal to the current source 132-2, so that the forward current flowing through both ends of the LED 112-1 and the both ends of the LED 112-2 are set. It is also possible to control so that the forward current flowing through is equal.
  • the forward current indicated by the current control signal output to the current source 132-1 may be equal to the forward current indicated by the current control signal output to the current source 132-2.
  • the one end and the other end of the A / D 141 are electrically connected to the one end and the other end of the LED 112-2, respectively.
  • the A / D 141 detects the forward voltage generated at both ends of the LED 112-2, and generates forward voltage data indicating the detected forward voltage V2.
  • the A / D 141 outputs the generated forward voltage data to the temperature calculation unit 142.
  • the temperature calculation unit 142 reads a forward voltage versus ambient temperature table stored in advance from the memory 139.
  • the temperature calculation unit 142 refers to the read forward voltage vs. ambient temperature table, and calculates the forward current If indicated by the current control signal to the current source 132-2 and the forward voltage data input from the A / D 141.
  • the temperature T (V2) corresponding to the forward voltage V2 shown is specified. This temperature T (V2) corresponds to the ambient temperature of the LED 112-2.
  • the temperature calculation unit 142 outputs temperature data indicating the specified temperature T (V2) to the inspection unit 135.
  • the inspection unit 135 receives temperature data indicating the temperature T (V1) from the temperature calculation unit 134 and temperature data indicating the temperature T (V2) from the temperature calculation unit 142.
  • the inspection unit 135 determines that the temperature T (V1) is appropriate when the difference
  • ⁇ ′ When the difference
  • the inspection unit 135 determines whether or not the temperature T (V1) is appropriate, the inspection unit 135 compares the forward voltage V1 detected by the A / D 133 and the forward voltage V2 detected by the A / D 141. Also good. In the comparison, the inspection unit 135 determines that the temperature T (when the difference
  • FIG. 7 is a flowchart illustrating an example of the temperature inspection process according to the present embodiment.
  • the temperature inspection process according to the present embodiment includes processes of steps S121 to S123 and processes of steps S114 to S118.
  • the processing in steps S114 to S118 is common to the temperature inspection processing shown in FIG.
  • Step S121 The control unit 140 sets the common forward current I1 as the forward current If supplied to the LEDs 112-1 and 112-2 for the current sources 132-1 and 132-2.
  • a / D 133 and A / D 141 detect forward voltages V1 and V2, respectively. Thereafter, the process proceeds to step S122.
  • Step S122 The inspection unit 135 determines whether or not the absolute value
  • Step S123 The temperature calculation unit 134 refers to the forward voltage vs. ambient temperature table stored in advance in the memory 139 and specifies the ambient temperature T (V1) in the forward voltage V1 detected for the forward current I1. To do. Thereafter, the process proceeds to step S114.
  • the inspection unit 135 compares the forward voltages V1 and V2 at that time or compares the ambient temperatures T (V1) and T (V2) to determine whether the ambient temperature T (V1) is appropriate.
  • the inspection unit 135 determines the forward voltage V1 (t) at the time t from the forward voltages V1 (t 0 ) and V2 (t 0 ) at the temperature measurement start time t 0 .
  • V2 (t) and ⁇ V1 (t) and ⁇ V2 (t) may be compared with each other.
  • the amount of change ⁇ V1 (t), ⁇ V2 (t ) respectively V1 (t) -V1 (t 0 ), a V2 (t) -V2 (t 0 ).
  • the inspecting unit 135 first determines which of the three levels of change ⁇ V1 (t) and ⁇ V2 (t) is ⁇ or less, a value greater than ⁇ and smaller than ⁇ , or ⁇ or more. It is determined whether it belongs to the stage.
  • is a predetermined threshold value for determining whether or not the variation amounts ⁇ V1 (t) and ⁇ V2 (t) are significantly different from zero.
  • is, for example, 0.05 to 0.2V. That is, this three-stage determination is a determination of whether the change amounts ⁇ V1 (t) and ⁇ V2 (t) are significantly positive, substantially 0, and significantly negative, respectively.
  • the inspecting unit 135 determines that the ambient temperature T (V1) is appropriate when both the changes ⁇ V1 (t) and ⁇ V2 (t) are significantly positive, substantially 0, and significantly negative. Judge that there is. When the determination is different between the change amounts ⁇ V1 (t) and ⁇ V2 (t), for example, the inspection unit 135 has a significantly positive change amount ⁇ V1 (t) and a significant change amount ⁇ V2 (t). When it is negative, it is determined that the ambient temperature T (V1) is inappropriate. Therefore, in this determination, since it is determined whether or not the change tendency of the forward voltage V1 and the change tendency of the forward voltage V2 are common, it is easy to determine whether or not the ambient temperature T (V1) is appropriate. Is determined. In this determination, the forward current does not necessarily have to be equal between the LEDs 112-1 and 112-2. When the forward current is controlled independently, the brightness of the light emitted between the LEDs 112-1 and 112-2 is allowed to be different.
  • the inspection unit 135 determines that the variations ⁇ T (V1 (t)) and ⁇ T (V2 (t)) of the ambient temperatures T (V1) and T (V2) are significantly positive, substantially 0, and significantly
  • a predetermined threshold ⁇ is used instead of the threshold ⁇ . ⁇ is, for example, 0.1 ° C to 0.3 ° C.
  • the inspection unit 135 calculates a time-series correlation coefficient ⁇ from the temperature measurement start time t 0 to the time t at the time point of the change amounts ⁇ V 1 (t) and ⁇ V 2 (t) of the forward voltages V 1 and V 2. May be.
  • the inspection unit 135 determines that the ambient temperature T (V1) is appropriate, and the correlation coefficient ⁇ is the predetermined correlation coefficient threshold.
  • the threshold value ⁇ ′ is, for example, 0.9. This determination may also be applied to the ambient temperatures T (V1) and T (V2) instead of the forward voltages V1 and V2.
  • the endoscope apparatus 10A includes a plurality of LEDs 112-1 and 112-2 having different forward voltages depending on the temperature at the distal end of the insertion portion 11.
  • the endoscope apparatus 10A includes A / D 133 and 144 for detecting the characteristic value of the electrical characteristic for each of the LEDs 112-1 and 112-2, and a memory 139 for storing temperature characteristic information indicating the temperature characteristic of the characteristic value.
  • the endoscope apparatus 10A refers to the temperature characteristic information, and inspects the measurement state of the temperature specified from the characteristic value based on the comparison of the characteristic values of the LEDs 112-1 and 112-2. Is provided.
  • the measurement state of the temperature specified from the characteristic values of the electrical characteristics of the LEDs 112-1 and 112-2 is inspected based on the respective characteristic values or temperatures. Therefore, it is possible to inspect the operation state of the temperature measurement function while using the illumination that is the main function of the LEDs 112-1 and 112-2.
  • the inspection unit 135 calculates the amount of change in temperature or characteristic value from the start of temperature measurement for each of the LEDs 112-1 and 112-2, and calculates the temperature based on the amount of change for each of the LEDs 112-1 and 112-2. Check the measurement status. With this configuration, when the temperatures are not completely equal between the LEDs 112-1 and 112-2, or as a physical quantity other than the temperature that changes the characteristic value, for example, even when the forward current is not common, the temperature measurement state Can be inspected.
  • FIG. 8 is a schematic block diagram showing the configuration of the endoscope apparatus 10B according to the present embodiment.
  • the endoscope apparatus 10B according to the present embodiment is configured to further include a temperature calculation unit 137 in the endoscope apparatus 10.
  • the image processing unit 136 selects an output signal for each pixel in an optical black (OB) area from among the output signals for each pixel input from the signal driver 114.
  • the OB region is a predetermined region that is shielded without being irradiated with incident light transmitted through the lens 111 among pixel regions in which pixels of the image sensor 113 are arranged.
  • Charge accumulation in each pixel is mainly caused by photoelectric conversion with respect to incident light, but is also caused by thermal noise in pixels arranged in an OB region that is not irradiated with incident light.
  • the signal value of the output signal for each selected pixel represents the amount of accumulated charge due to thermal noise.
  • the image processing unit 136 calculates, for each pixel, a difference value between the signal value of the current frame (current frame) and the signal value of the immediately preceding frame (previous frame), for example. . Then, the image processing unit 136 calculates the dark current value ID in the current frame based on the distribution of the calculated difference values between the pixels. The image processing unit 136 outputs the calculated dark current value ID to the temperature calculation unit 137. An example of the dark current calculation process will be described later.
  • the temperature calculation unit 137 calculates the temperature T2 of the image sensor 113 based on the dark current value ID input from the image processing unit 136. In general, a larger dark current value ID indicates a higher temperature T2.
  • the temperature calculation unit 137 may calculate the temperature T2 using a relationship shown in a mathematical expression described later, or refers to a dark current temperature table stored in advance in the memory 139 and corresponds to the dark current value ID. T2 may be specified.
  • the dark current temperature table is data indicating the temperature dependence of the dark current value ID as dark current temperature characteristic information.
  • the temperature calculation unit 137 outputs temperature data indicating the calculated temperature T2 to the inspection unit 135.
  • the inspection unit 135 receives temperature data indicating the temperature T (V1) from the temperature calculation unit 134 and temperature data indicating the temperature T2 from the temperature calculation unit 137.
  • the inspection unit 135 determines that the temperature T (V1) is appropriate when the difference
  • FIG. 9 is a conceptual diagram illustrating an example of an output signal input from the signal driver 114 according to the present embodiment.
  • FIG. 9 shows that output signals are sequentially acquired for each frame at a predetermined frame rate ⁇ [fps].
  • the output signals of the frames (0) to (n) are represented by rectangles.
  • the upper left filled area indicates the output signal from the pixel arranged in the OB area, and the other area indicates the output signal from the pixel arranged in the imaging area.
  • incident light transmitted through the lens 111 is always shielded by the arrangement of the image sensor 113.
  • a dark current value ID obtained from an output signal from a pixel arranged in the OB region is used for temperature measurement.
  • an output signal from a pixel arranged in an imaging region irradiated with incident light is used for generating an image signal in the image processing unit 136.
  • FIG. 10 is a diagram illustrating an example of the dark current accumulated charge amount.
  • the vertical axis and the horizontal axis indicate the dark current accumulated charge amount Q and the accumulation time ⁇ , respectively.
  • the dark current accumulated charge amount Q is substantially proportional to the accumulation time ⁇ .
  • the dark current accumulated charge amount Q and the accumulation time ⁇ have the relationship shown in the equation (1).
  • Equation (1) k represents a proportional coefficient.
  • the proportionality coefficient k depends on the temperature. Generally, the higher the temperature, the larger the proportional coefficient k. This means that the dark current increases as the temperature increases.
  • FIG. 10 shows that the dark current increases in the order of increasing temperature T A , T B , T C and temperature.
  • the accumulation time ⁇ is the elapsed time from the start of charge accumulation. That is, the accumulation time ⁇ corresponds to the exposure time or the frame period (reciprocal of the frame rate).
  • FIG. 11 is a diagram illustrating an example of temperature dependence of dark current generated in a photodiode.
  • the vertical axis and the horizontal axis indicate the dark current value I D and the temperature T, respectively.
  • the dark current value ID increases exponentially as the temperature T increases.
  • the dark current value ID and the temperature T have the relationship shown in Formula (2).
  • Equation (2) s and r are coefficients depending on the image sensor 113, such as the material, size, and shape of the photodiode. Equation (2) is transformed as shown in Equation (3).
  • Equation (3) indicates that the temperature T can be calculated from the acquired dark current value ID . Therefore, a dark current temperature table representing the relationship between the dark current value represented by the equation (3) and the temperature is set in the memory 139.
  • the temperature calculation unit 137 obtains a temperature T corresponding to the dark current value ID input from the image processing unit 136 with reference to the dark current temperature table. Note that the temperature calculation unit 137 may calculate the temperature T from the dark current value ID using the relationship shown in Equation (3) without using the dark current temperature table. In that case, the coefficients s and r are set in the temperature calculation unit 137 in advance.
  • the image processing unit 136 calculates the difference value V CAL is a difference between the signal value V OUT of the previous frame from the signal value V OUT of the current frame for each pixel in the OB region.
  • the image processing unit 136 aggregates the difference values V CAL calculated for each pixel in the OB area between the pixels, and determines a frequency-to-pixel distribution for each difference value V CAL .
  • the image processing unit 136 determines the noise level N CAL of the difference value V CAL from the determined inter-pixel distribution.
  • the image processing unit 136 calculates the dark current value ID using the relationship shown in Expression (4) for the noise level N CAL calculated by the image processing unit 136 and the preset read noise level N RO .
  • the readout noise level NRO is a level of readout noise mixed in the output signal read from the pixel.
  • I D ⁇ ⁇ (N CAL 2 / 2-N RO 2 ) (4)
  • Equation (4) is the dark current value I D is the dark current accumulation charge quantity Q DC per frame obtained by subtracting the square of half the reading from the value the noise level N RO of the square of the noise level N CAL, frame rate ⁇ It is calculated by multiplying by. Equation (4) is derived based on the relationships shown in equations (5) and (6).
  • N CAL ⁇ 2 ⁇ N OUT (5)
  • N OUT ⁇ (N DC 2 + N RO 2 ) (6)
  • N OUT indicates the noise level of the signal value V OUT of each frame.
  • Expression (5) indicates that the noise of the signal value VOUT that is generated at random in each pixel and whose average value for each frame is substantially equal between the frames is added to obtain the noise of the difference value VCAL . Even if the signal value is subtracted between frames in the process of calculating the difference value V CAL , the noise component is not canceled out.
  • the noise level N CAL of the difference value V CAL is ⁇ 2 times the noise level N OUT of each frame.
  • N DC represents the noise level of dark current shot noise in the photodiodes constituting each pixel. Equation (6) is obtained by adding the dark current shot noise randomly generated in each pixel and the readout noise to obtain the noise of the signal value VOUT .
  • the square value N DC 2 of the dark current shot noise level corresponds to the dark current accumulated charge amount Q DC .
  • the noise level N CAL obtained without canceling out the noise component is used for the calculation of the dark current value ID .
  • a common noise component between frames such as a fixed pattern noise (FPN) component included in the output signal is canceled.
  • FPN fixed pattern noise
  • the image processing unit 136 obtains the inter-pixel distribution of the difference value V CAL .
  • the inter-pixel distribution of the difference value is represented by the frequency (that is, the number of pixels) for each signal value (or a section composed of a plurality of adjacent signal values) as shown in FIG. Then, the image processing unit 136 calculates the standard deviation ⁇ between the pixels of the signal value as the noise level N CAL .
  • the image sensor 113 includes a readout circuit (not shown) for reading out an output signal for each pixel.
  • the readout circuit includes a photodiode, a pixel amplifier, and a post-amplifier for each pixel.
  • the photodiode is a light receiving element that generates an electrical signal by photoelectric conversion.
  • the pixel amplifier amplifies the output signal from the photodiode and outputs it to the post-amplifier and signal driver 114.
  • the readout noise is added to the output signal for each pixel mainly between the pixel amplifier and the signal driver 114, but it is difficult to extract from the noise of the signal value VOUT .
  • the image processing unit 136 obtains the inter-pixel distribution of the signal value of the amplified signal from the post-amplifier, and calculates the standard deviation of the obtained signal value as the noise level N RO of the read noise.
  • the post-amplifier is configured to include an amplification circuit with a variable amplification factor function, and a sufficiently large amplification factor (for example, a maximum amplification factor in the specification) is set in advance. While the noise added to the output signal from the pixel amplifier is amplified, the readout noise is not amplified by the post-amplifier and is sufficiently smaller than the noise added to the output signal. Therefore, the read noise and the noise added to the output signal from the pixel amplifier can be discriminated by their levels. Accordingly, the image processing unit 136, can be determined with a standard deviation of the distribution of the signal values between the pixels indicated by the amplified signal from the post-amplifier noise level N RO readout noise.
  • the image processing unit 136 calculates the noise level N CAL based on the difference value V CAL for each frame, but the noise level N RO of the readout noise does not necessarily have to be calculated for each frame.
  • the image processing unit 136 may acquire a noise level NRO of readout noise based on the amplified signal in advance before capturing an image.
  • the acquisition timing may be, for example, any of a test operation, a parameter setting, and the like. Normally the operating environment (e.g., usable temperature -10 ° C ⁇ 70 ° C) Under Because so little variation in the noise level N RO is negligible, the noise level N RO is continued as it was once set May be used.
  • FIG. 13 is a flowchart illustrating an example of a temperature inspection process according to the present embodiment.
  • the temperature inspection process according to the present embodiment includes the processes of steps S131 to S136 and the processes of steps S114 to S118.
  • the processing in steps S114 to S118 is common to the temperature inspection processing shown in FIG.
  • Step S131 The control unit 140 sets the forward current If supplied to the LED 112-1 for the current source 132-1.
  • the A / D 133 detects the forward voltage V1. Thereafter, the process proceeds to step S132.
  • Step S132 The temperature calculation unit 134 refers to the forward voltage versus ambient temperature table stored in advance in the memory 139, and identifies the ambient temperature T (V1) in the forward voltage V1 detected for the forward current If. To do. Thereafter, the process proceeds to step S133.
  • Step S133 The image processing unit 136 calculates an inter-frame difference value V CAL for the signal value indicated by the output signal for each pixel in the OB area among the output signals for each pixel.
  • the image processing unit 136 calculates a standard deviation indicating the magnitude of the calculated inter-pixel distribution of the difference value V CAL as the noise level N CAL .
  • step S134 The image processing unit 136 calculates the dark current value ID based on the noise level N CAL , the preset read noise level N RO and a predetermined frame rate ⁇ . Thereafter, the process proceeds to step S135.
  • Step S135 The temperature calculation unit 137 calculates the ambient temperature T2 of the image sensor 113 based on the dark current value ID . Thereafter, the process proceeds to step S136.
  • Step S136 The inspection unit 135 determines whether or not the absolute value
  • an endoscope apparatus 10C further includes a light guide 115 and a temperature calculation unit 143 in the endoscope apparatus 10B.
  • the light guide 115 is disposed between the LED 112-1 provided at the distal end portion of the insertion portion 11 and the image sensor 113.
  • the light guide 115 is a member that transmits a part of the light emitted from the LED 112-1 to the image sensor 113.
  • the light that has passed through the light guide 115 is applied to a predetermined area of the pixel area in which the pixels of the image sensor 113 are arranged.
  • an area irradiated with light transmitted through the light guide 115 is referred to as an irradiation area.
  • the irradiation area is a part of the non-imaging area excluding the imaging area in which the image of the subject is captured in the pixel area.
  • the other part of the non-imaging area corresponds to the OB area described above.
  • the image processing unit 136 detects the relative luminance of the light emitted by the LED 112-1 based on the signal value indicated by the output signal for each pixel in the irradiation region among the output signals for each pixel. That is, the photodiode constituting each pixel in the irradiation area is used as a luminance sensor. The photodiode generates an output signal having a voltage value corresponding to the intensity of light from the LED 112-1 as a signal value.
  • the relative luminance is the ratio of the luminance at that time with reference to the luminance when the ambient temperature is 25 ° C. at the start of use of the LED 112-1.
  • the luminance of the light arriving at the irradiation area from the LED 112-1 does not necessarily have to be equal to the luminance of the light emitted from the tip of the insertion portion 11, and may be attenuated from the luminance.
  • the image processing unit 136 outputs luminance information indicating the detected relative luminance to the temperature calculation unit 143.
  • the memory 139 further stores a luminance vs. ambient temperature table in advance as luminance temperature information.
  • the luminance vs. ambient temperature table is data indicating the temperature characteristics of the luminance of the LED 112-1 for each forward current.
  • the temperature calculation unit 143 refers to the luminance vs. ambient temperature table stored in the memory 139 and obtains the forward current indicated by the current control signal to the current source 132-1 and the luminance information input from the image processing unit 136.
  • the temperature T2 ′ corresponding to the indicated relative luminance is specified.
  • the temperature calculation unit 143 outputs temperature data indicating the specified temperature T2 ′ to the inspection unit 135.
  • the inspection unit 135 receives temperature data indicating the temperature T2.
  • between the temperature T (V1) specified by the temperature calculation unit 134 and the temperature T2 ′ specified by the temperature calculation unit 143 is smaller than a threshold ⁇ of a predetermined difference.
  • Temperature T (V1) is determined to be appropriate, and temperature T (V1) is determined to be inappropriate when the difference
  • the inspection unit 135 can determine whether or not these temperatures are appropriate based on the difference
  • FIG. 16 is a flowchart illustrating an example of a temperature inspection process according to the present modification.
  • the temperature inspection process according to the present embodiment includes processes of steps S131, S132, S136, S143, and step S144, and processes of steps S114 to S118. Since the processes in steps S131, S132 and S136 and the processes in steps S114 to S118 are common to the temperature inspection process shown in FIG. 13, the description thereof is omitted.
  • step S143 the process proceeds to step S143 after the processes in step S131 and step S132.
  • Step S143 The image processing unit 136 detects (measures) the relative luminance of the light emitted by the LED 112-1 based on the signal value indicated by the output signal for each pixel in the irradiation region of the image sensor 113. Thereafter, the process proceeds to step S144.
  • Step S144 The temperature calculation unit 143 refers to the luminance versus ambient temperature table stored in the memory 139, and the forward current indicated by the current control signal to the current source 132-1 and the image processing unit 136 detect A temperature T2 ′ corresponding to the relative luminance is specified. Thereafter, the process proceeds to step S136.
  • step S136 the inspection unit 135 determines that the difference
  • the temperature calculation unit 137 may be provided.
  • the inspection unit 135 determines a difference
  • is greater than or equal to a predetermined difference threshold ⁇ , or the difference
  • is equal to or greater than a predetermined difference threshold ⁇ , the temperature T (V1) specified by the temperature calculation unit 134 is determined to be inappropriate.
  • the other member having different electrical characteristics depending on the temperature is the image sensor 113 that photoelectrically converts the incoming light.
  • the image processing unit 136 detects a dark current generated in the image sensor 113 as a characteristic value of the electrical characteristics of the image sensor 113.
  • the memory 139 further stores a dark current temperature table indicating the temperature characteristics of dark current as temperature characteristic information.
  • the endoscope apparatus 10C includes an image processing unit 136 that detects the luminance of light from the LED 112-1.
  • the memory 139 stores a luminance vs. ambient temperature table indicating the temperature characteristics of the luminance of light emitted in response to the forward current supply.
  • the inspection unit 135 compares the temperature specified from the luminance detected with reference to the luminance vs. ambient temperature table and the temperature specified from the forward voltage with reference to the forward voltage vs. ambient temperature table. Check the measurement state. With this configuration, the temperature measurement state based on the forward voltage generated in the LED 112-1 is inspected based on the temperature based on the brightness detected by the image processing unit 136. Therefore, it is possible to inspect the operating state of the temperature measurement function due to a decrease in luminance of the LED 112-1 due to long-term use in a high temperature environment or aging deterioration.
  • the number of LEDs included in the endoscope apparatuses 10, 10A, 10B, and 10C is not limited to two, and may be three or more.
  • the inspection unit 135 determines whether or not the temperature calculated by comparing the forward voltages generated at both ends of each LED or the temperatures calculated based on each forward voltage is appropriate. Also good.
  • the modification described in the second embodiment may be applied to the endoscope apparatus 10 according to the first embodiment or the endoscope apparatuses 10B and 10C according to the third embodiment.
  • the modification described in the third embodiment may be applied to the endoscope apparatus 10 according to the first embodiment or the endoscope apparatus 10A according to the second embodiment. Further, in the endoscope apparatuses 10, 10B, 10C, the LED 112-2 and the current source 132-2 may be omitted.
  • the LED 112 is mainly a member that is provided at the distal end of the insertion portion 11 of the endoscope apparatus 10 and has different electrical characteristics according to a physical quantity separate from the temperature.
  • the case where the physical quantity is the forward current and the electrical characteristic is the forward voltage is taken as an example.
  • the case where the member that is provided at the distal end of the insertion portion 11 of the endoscope apparatus 10A and has different electrical characteristics depending on the temperature is the LED 112, and the electrical characteristics are forward voltages. Take an example.
  • the LED 112 and the image sensor 113 that are provided at the distal ends of the insertion portions 11 of the endoscope apparatuses 10B and 10C and have different electrical characteristics depending on the temperature are the LEDs 112 and the electric elements of the LED 112.
  • An example is given in which the characteristic is a forward voltage and the electrical characteristic of the image sensor 113 is a dark current.
  • These members may be other types of members, for example, passive elements such as a resistance element, a capacitor, and a coil.
  • the physical quantity separate from the temperature may be a passive element such as an electric resistance, an electric capacity, and an inductance.
  • the electrical characteristic may be a voltage across the member.
  • a part of the endoscope apparatuses 10, 10A, 10B, and 10C, for example, the temperature calculation units 134, 137, 142, and 143, the inspection unit 135, the image processing unit 136, and the control unit 140 may be realized by a computer.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” is a computer system built in the endoscope apparatuses 10, 10A, 10B, and 10C, and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, it may include a volatile memory inside a computer system serving as a server or a client, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • a part or all of the endoscope apparatuses 10, 10A, 10B, and 10C in the above-described embodiment may be realized as an integrated circuit such as an LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each functional block of the endoscope apparatus 10 may be individually made into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology may be used.
  • the measurement state of the temperature specified from the characteristic values of the electrical characteristics of the members having different electrical characteristics according to the physical quantities other than the temperature and the temperature is determined for each physical quantity. Inspected based on characteristic values or temperatures of different electrical characteristics. Alternatively, the measurement state of the temperature specified from the characteristic values of the members having different electrical characteristics depending on the temperature is inspected based on the respective characteristic values or temperatures. Therefore, the operating state of the temperature measurement function can be inspected while using the main functions of each member.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

This endoscope device has, on a tip of an insertion portion, members having different electrical characteristics according to the temperature and a physical quantity other than the temperature, and includes: a detection unit that detects a characteristic value of each electrical characteristic; a storage unit that stores temperature characteristic information that indicates a temperature characteristic of the characteristic value; and an inspection unit that inspects, on the basis of the characteristic value of each physical quantity, a measured condition of the temperature specified by referring to the temperature characteristic information from the characteristic value.

Description

内視鏡装置および温度検査方法Endoscope apparatus and temperature inspection method
 本発明は、内視鏡装置および温度検査方法に関する。 The present invention relates to an endoscope apparatus and a temperature inspection method.
 内視鏡装置は、外部から直接観察することができない空間の内部を観察するために様々な分野で用いられている。例えば、体腔内の臓器の観察を行い、必要に応じて処置具を用いて治療処置を行う医療分野、ボイラ、タービン、エンジン、化学プラント等の設備内部の傷、腐食等の観察、検査を行う工業分野、などがある。内視鏡装置には、被検体内に挿入する挿入部の先端に電気的部材を備えるものがある。 Endoscope devices are used in various fields to observe the inside of a space that cannot be directly observed from the outside. For example, observation of organs in body cavities, and treatment and treatment of medical equipment using boilers as necessary, observation and inspection of internal scratches, corrosion, etc. in boilers, turbines, engines, chemical plants, etc. There are industrial fields, etc. Some endoscope apparatuses include an electrical member at the distal end of an insertion portion to be inserted into a subject.
 電気的部材として、次に例示するように撮像用の部材や照明用の部材が代表的である。撮像用の部材には、例えば、CCD(Charge Coupled Device;電荷結合素子)センサやCMOS(Complementary Metal Oxide Semiconductor;相補性金属酸化物半導体)センサなどの固体撮像素子がある。照明用の部材には、例えば、LED(Light Emitting Diode;発光ダイオード)やLD(Laser Diode;半導体レーザー)などの発光素子がある。
 また、内視鏡装置に備えられる電気的部材には、受動的な電気部品が含まれることがある。受動的な電気部品には、例えば、抵抗素子、コンデンサ、コイルなどの受動素子がある。
As the electrical member, an imaging member and a lighting member are typical as exemplified below. Examples of the imaging member include a solid-state imaging device such as a CCD (Charge Coupled Device) sensor and a CMOS (Complementary Metal Oxide Semiconductor) sensor. Illuminating members include light emitting elements such as LEDs (Light Emitting Diodes) and LDs (Laser Diodes).
In addition, the electrical member provided in the endoscope apparatus may include passive electrical components. Passive electrical components include, for example, passive elements such as resistance elements, capacitors, and coils.
 観察対象となる被検体によっては観察箇所の温度が高温になる場合がある。その場合には、内視鏡装置の挿入部に備えられた固体撮像素子の温度が上昇することがある。また、被検体を照明する照明光によっても固体撮像素子の温度が上昇することがある。この温度上昇は、固体撮像素子において発生する暗電流の増加を引き起こし、観察される画像の画質を劣化させる原因となる。さらに温度が上昇すると固体撮像素子が破壊することがある。発光素子においては、発光量が変化し、観察される画像の画質が劣化することがある。 Depending on the subject to be observed, the temperature at the observation location may become high. In that case, the temperature of the solid-state image sensor provided in the insertion part of the endoscope apparatus may rise. In addition, the temperature of the solid-state imaging device may rise due to illumination light that illuminates the subject. This rise in temperature causes an increase in dark current generated in the solid-state imaging device, and causes a deterioration in image quality of the observed image. Further, when the temperature rises, the solid-state image sensor may be destroyed. In a light emitting element, the amount of light emission may change, and the quality of an observed image may deteriorate.
 例えば、特許文献1に記載の撮像装置のように、固体撮像装置の暗電流が温度によって変化することを利用して、別途温度センサを設けずに温度を推定することが提案されている。
 また、特許文献2に記載の発光制御装置のように、LEDの順方向電圧を検出することにより、周囲温度を算出して発光素子の駆動電流を調節し、発光強度を調節することが提案されている。
For example, it has been proposed to estimate the temperature without providing a separate temperature sensor by utilizing the fact that the dark current of the solid-state imaging device changes with temperature, as in the imaging device described in Patent Document 1.
Further, as in the light emission control device described in Patent Document 2, it is proposed that the forward voltage of the LED is detected to calculate the ambient temperature, adjust the driving current of the light emitting element, and adjust the light emission intensity. ing.
日本国特開2010-11161号公報Japanese Unexamined Patent Publication No. 2010-11116 日本国特開2005-129598号公報Japanese Unexamined Patent Publication No. 2005-129598
 しかしながら、特許文献1の撮像装置において、撮像素子によっては、画素間で信号レベルのばらつき(シェーディング)が顕著に現れるものがある。そのため、特異出力画素やシェーディングの個体差により温度に誤差が生じることがある。
 また、特許文献2に記載の発光制御装置は、検出した順方向電圧から推定した温度が正常であるか確認する手段を備えていない。そのため、順方向電圧の測定に不具合が生じると、正常に温度が測定されなくなることがある。
However, in the imaging device disclosed in Patent Document 1, depending on the imaging device, there may be a noticeable variation in signal level (shading) between pixels. For this reason, an error may occur in the temperature due to individual output pixels or individual differences in shading.
Further, the light emission control device described in Patent Document 2 does not include means for confirming whether the temperature estimated from the detected forward voltage is normal. For this reason, if a failure occurs in the measurement of the forward voltage, the temperature may not be measured normally.
 本発明は、このような課題を考慮してなされたものであり、部材の主な機能を使用しながら温度測定機能の動作状態を検査することができる内視鏡装置および温度検査方法を提供することを目的とする。 The present invention has been made in consideration of such problems, and provides an endoscope apparatus and a temperature inspection method capable of inspecting an operation state of a temperature measurement function while using main functions of members. For the purpose.
 本発明の第1の態様は、温度および前記温度と別個の物理量に応じて電気的特性が異なる部材を挿入部の先端に備え、前記電気的特性の特性値を検出する検出部と、前記特性値の温度特性を示す温度特性情報を記憶する記憶部と、前記特性値から前記温度特性情報を参照して特定される温度の測定状態を、前記物理量ごとの特性値に基づいて検査する検査部と、を備える内視鏡装置である。 According to a first aspect of the present invention, there is provided a detection unit for detecting a characteristic value of the electrical characteristic, including a member having a different electrical characteristic according to a temperature and a physical quantity distinct from the temperature at a distal end of the insertion part, and the characteristic A storage unit that stores temperature characteristic information indicating a temperature characteristic of the value, and an inspection unit that inspects the measurement state of the temperature specified by referring to the temperature characteristic information from the characteristic value based on the characteristic value for each physical quantity And an endoscope apparatus.
 本発明の第2の態様によれば、上記第1の態様において、温度に応じて電気的特性が異なる部材を挿入部の先端に複数個備え、前記部材ごとに前記電気的特性の特性値を検出する検出部と、前記特性値の温度特性を示す温度特性情報を記憶する記憶部と、前記温度特性情報を参照して、前記特性値から特定される温度の測定状態を、前記部材ごとの前記特性値の比較に基づいて検査する検査部と、を備えてもよい。 According to a second aspect of the present invention, in the first aspect, a plurality of members having different electrical characteristics depending on the temperature are provided at the distal end of the insertion portion, and the characteristic value of the electrical characteristics is set for each of the members. A detection unit for detecting, a storage unit for storing temperature characteristic information indicating a temperature characteristic of the characteristic value, and a temperature measurement state specified from the characteristic value with reference to the temperature characteristic information for each member And an inspection unit that inspects based on the comparison of the characteristic values.
 本発明の第3の態様によれば、上記第2の態様において、前記検査部は、部材ごとの前記温度の測定開始時からの変化量を算出し、前記部材ごとの前記変化量に基づいて前記測定状態を検査してもよい。 According to a third aspect of the present invention, in the second aspect, the inspection unit calculates a change amount from the start of measurement of the temperature for each member, and based on the change amount for each member. The measurement state may be inspected.
 本発明の第4の態様によれば、上記第1の態様から第3の態様のいずれかにおいて、前記部材の少なくとも1個は電流の供給に応じて発光する発光素子であり、前記検出部は、前記発光素子の前記特性値として前記電流の供給に応じて発生する電圧を検出し、前記記憶部は、前記温度特性情報として前記電流の供給に応じて発生する電圧の温度特性を示す情報を記憶する。 According to a fourth aspect of the present invention, in any one of the first to third aspects, at least one of the members is a light emitting element that emits light in response to current supply, and the detection unit The voltage generated according to the supply of the current is detected as the characteristic value of the light emitting element, and the storage unit includes information indicating the temperature characteristic of the voltage generated according to the supply of the current as the temperature characteristic information. Remember.
 本発明の第5の態様によれば、上記第4の態様において、前記発光素子からの光の輝度を検出する輝度検出部と、前記記憶部は、前記電流の供給に応じて発光する光の輝度の温度特性を示す輝度温度特性情報を記憶し、前記検査部は、前記輝度温度特性情報を参照して前記輝度から特定される温度と、前記温度特性情報を参照して前記電圧から特定される温度とを比較して前記温度の測定状態を検査してもよい。 According to a fifth aspect of the present invention, in the fourth aspect, the luminance detection unit that detects the luminance of the light from the light emitting element and the storage unit are configured to transmit light that is emitted in response to the supply of the current. Luminance temperature characteristic information indicating a temperature characteristic of luminance is stored, and the inspection unit is identified from the voltage with reference to the temperature with reference to the luminance temperature characteristic information and the temperature with reference to the temperature characteristic information. The measured state of the temperature may be inspected by comparing the measured temperature.
 本発明の第6の態様によれば、上記第2の態様から第5の態様のいずれかにおいて、前記部材の他の1個は、到来した光を光電変換する撮像素子であり、前記検出部は、前記撮像素子の前記特性値として、前記撮像素子に生ずる暗電流を検出し、前記記憶部は、前記温度特性情報として、前記暗電流の温度特性を示す暗電流温度特性情報をさらに記憶する。 According to a sixth aspect of the present invention, in any one of the second to fifth aspects, the other one of the members is an image sensor that photoelectrically converts incoming light, and the detection unit Detects a dark current generated in the image sensor as the characteristic value of the image sensor, and the storage unit further stores dark current temperature characteristic information indicating a temperature characteristic of the dark current as the temperature characteristic information. .
 本発明の第7の態様は、内視鏡装置における方法であって、挿入部の先端に備えられた部材であって、温度および前記温度と別個の物理量に応じて電気的特性が異なる部材の前記電気的特性の特性値を検出する検出ステップと、記憶部に記憶され、前記特性値の温度特性を示す温度特性情報を参照して前記検出ステップで検出された特性値から特定される温度の測定状態を、前記物理量ごとの特性値に基づいて検査する検査ステップと、有する温度検査方法である。 According to a seventh aspect of the present invention, there is provided a method for an endoscope apparatus, comprising: a member provided at a distal end of an insertion portion; and a member having different electrical characteristics according to a temperature and a physical quantity separate from the temperature. A detection step for detecting a characteristic value of the electrical characteristic; a temperature specified by the characteristic value detected in the detection step with reference to temperature characteristic information stored in a storage unit and indicating the temperature characteristic of the characteristic value; An inspection step for inspecting a measurement state based on a characteristic value for each physical quantity, and a temperature inspection method.
 本発明の第8の態様は、内視鏡装置における方法であって、挿入部の先端に複数個備えられた部材であって、温度に応じて電気的特性が異なる部材それぞれの前記電気的特性の特性値を検出する検出ステップと、記憶部に記憶され、前記特性値の温度特性を示す温度特性情報を参照して、前記特性値から特定される温度の測定状態を、前記部材ごとの前記特性値の比較に基づいて検査する検査ステップと、を有する温度検査方法である。 An eighth aspect of the present invention is a method in an endoscope apparatus, wherein a plurality of members are provided at the distal end of an insertion portion, and each of the members has different electrical characteristics depending on temperature. A detection step for detecting the characteristic value, and temperature characteristic information stored in the storage unit and indicating the temperature characteristic of the characteristic value, and the temperature measurement state specified from the characteristic value is determined for each member And a test step for testing based on the comparison of the characteristic values.
 本発明の各態様の内視鏡装置および温度測定方法によれば、部材の主な機能を使用しながら温度測定機能の動作状態を検査することができる。 According to the endoscope apparatus and the temperature measurement method of each aspect of the present invention, the operation state of the temperature measurement function can be inspected while using the main functions of the members.
第1実施形態に係る内視鏡装置の構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the endoscope apparatus which concerns on 1st Embodiment. 第1実施形態に係る駆動回路の構成例を示す概略回路図である。It is a schematic circuit diagram which shows the structural example of the drive circuit which concerns on 1st Embodiment. 順方向電圧の温度特性の一例を示す図である。It is a figure which shows an example of the temperature characteristic of a forward voltage. 第1実施形態に係る温度計測処理の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature measurement process which concerns on 1st Embodiment. 第1実施形態に係る温度検査処理の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature test process which concerns on 1st Embodiment. 第2実施形態に係る内視鏡装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the endoscope apparatus which concerns on 2nd Embodiment. 第2実施形態に係る温度検査処理の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature test process which concerns on 2nd Embodiment. 第3実施形態に係る内視鏡装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the endoscope apparatus which concerns on 3rd Embodiment. 第3実施形態に係る信号ドライバから入力される出力信号の例を示す概念図である。It is a conceptual diagram which shows the example of the output signal input from the signal driver which concerns on 3rd Embodiment. 暗電流蓄積電荷量の一例を示す図である。It is a figure which shows an example of the amount of dark current accumulation charges. フォトダイオードにおいて生じる暗電流の温度依存性の一例を示す図である。It is a figure which shows an example of the temperature dependence of the dark current which arises in a photodiode. フレーム間における信号値の差分値の頻度分布の一例を示す図である。It is a figure which shows an example of the frequency distribution of the difference value of the signal value between frames. 第3実施形態に係る温度検査処理の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature test process which concerns on 3rd Embodiment. 第3実施形態の一変形例に係る内視鏡装置の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the endoscope apparatus which concerns on the modification of 3rd Embodiment. LEDの相対輝度の温度特性の一例を示す図である。It is a figure which shows an example of the temperature characteristic of the relative luminance of LED. 第3実施形態の一変形例に係る温度検査処理の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature test process which concerns on the modification of 3rd Embodiment.
 以下、図面を参照して本発明の実施形態について説明する。
 <第1実施形態>
 図1は、本発明の第1実施形態に係る内視鏡装置10の構成例を示す概略ブロック図である。
 内視鏡装置10は、挿入部11と、筐体12とを含んで構成される。
 挿入部11は、他の方向よりも1つの方向の長さが長い細長の形状を有する管材を含んで構成される。挿入部11の長手方向の一端である先端部に、レンズ111、2個のLED112-1、112-2、撮像素子113および信号ドライバ114を含んで構成される。先端部は、被検体に最初に挿入または接近する部位である。なお、以下の説明では、挿入部11の長手方向の他端を基端または基端部と呼ぶ。挿入部11には、導線が長手方向に貫通している。導線は、それぞれ筐体12に格納されている電源端子VccからLED112-1、112-2への電流、LED112-1、112-2から電流源132-1、132-2への電流、信号ドライバ114から画像処理部136への画像信号の伝送に用いられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a schematic block diagram illustrating a configuration example of an endoscope apparatus 10 according to the first embodiment of the present invention.
The endoscope apparatus 10 includes an insertion unit 11 and a housing 12.
The insertion portion 11 is configured to include a tube material having an elongated shape whose length in one direction is longer than the other direction. The distal end portion which is one end in the longitudinal direction of the insertion portion 11 includes a lens 111, two LEDs 112-1 and 112-2, an image sensor 113 and a signal driver 114. The tip is a part that is first inserted or approached to the subject. In the following description, the other end in the longitudinal direction of the insertion portion 11 is referred to as a base end or a base end portion. A conducting wire penetrates the insertion portion 11 in the longitudinal direction. The conductors are respectively the current from the power supply terminal Vcc stored in the housing 12 to the LEDs 112-1 and 112-2, the current from the LEDs 112-1 and 112-2 to the current sources 132-1 and 132-2, and the signal driver. It is used for transmission of an image signal from 114 to the image processing unit 136.
 レンズ111は、挿入部11の先端に設置される。レンズ111の光軸の向きは挿入部11の長手方向に平行である。レンズ111は、その一方の側面から入射する光を他方の側面に透過する凸レンズである。 The lens 111 is installed at the distal end of the insertion portion 11. The direction of the optical axis of the lens 111 is parallel to the longitudinal direction of the insertion portion 11. The lens 111 is a convex lens that transmits light incident from one side surface to the other side surface.
 LED112-1、112-2は、それぞれ駆動電流により供給される電力を光に変換する発光素子である。LED112-1、112-2それぞれの一端が共通の電源端子Vccに電気的に接続される。また、LED112-1、112-2それぞれの他端が電流源132-1、132-2に電気的に接続される。電源端子Vccから電流源132-1、132-2に流れる順方向電流が駆動電流として、それぞれLED112-1、112-2に供給される。LED112-1、112-2の発光面は、挿入部11の先端に向けられ、挿入部11の先端からLED112-1、112-2がそれぞれ発光した光が放射される。従って、LED112-1、112-2は、被検体の表面に光を放射する照明として主に機能する。また、後述するように、LED112-1の両端子間の電圧は、筐体12に格納されているA/D133により順方向電圧として検出される。この順方向電圧がLED112-1の温度の特定に用いられる。 The LEDs 112-1 and 112-2 are light-emitting elements that convert electric power supplied by the drive current into light, respectively. One end of each of the LEDs 112-1 and 112-2 is electrically connected to a common power supply terminal Vcc. The other ends of the LEDs 112-1 and 112-2 are electrically connected to the current sources 132-1 and 132-2. Forward currents flowing from the power supply terminal Vcc to the current sources 132-1 and 132-2 are supplied as driving currents to the LEDs 112-1 and 112-2, respectively. The light emitting surfaces of the LEDs 112-1 and 112-2 are directed toward the tip of the insertion portion 11, and light emitted from the LEDs 112-1 and 112-2 is emitted from the tip of the insertion portion 11, respectively. Therefore, the LEDs 112-1 and 112-2 mainly function as illumination that emits light to the surface of the subject. As will be described later, the voltage between both terminals of the LED 112-1 is detected as a forward voltage by the A / D 133 stored in the housing 12. This forward voltage is used to specify the temperature of the LED 112-1.
 撮像素子113は、レンズ111から入射する光を電気信号である出力信号に光電変換する画素を複数個備える。撮像素子は、例えば、画素毎にフォトダイオードを含んで構成されるCCDイメージセンサ、CMOSイメージセンサなどである。複数個の画素は、撮像素子113の撮像面上において所定の空間間隔で2次元配置されている。撮像面は、レンズ111の光軸に直交し、レンズ111によって集束される入射光が照射される。そのため、被検体の像が撮像面に結像する。撮像面において画素が配置されている領域が画素領域に相当する。撮像素子113は、信号ドライバ114からの撮像制御信号の入力に応じて各画素からの出力信号を読み出し、読み出した出力信号を信号ドライバ114に出力する。 The image sensor 113 includes a plurality of pixels that photoelectrically convert light incident from the lens 111 into an output signal that is an electrical signal. The imaging device is, for example, a CCD image sensor, a CMOS image sensor, or the like that includes a photodiode for each pixel. The plurality of pixels are two-dimensionally arranged at predetermined spatial intervals on the imaging surface of the image sensor 113. The imaging surface is orthogonal to the optical axis of the lens 111 and is irradiated with incident light focused by the lens 111. Therefore, an image of the subject is formed on the imaging surface. A region where pixels are arranged on the imaging surface corresponds to a pixel region. The image sensor 113 reads out an output signal from each pixel in response to an input of an imaging control signal from the signal driver 114, and outputs the read output signal to the signal driver 114.
 信号ドライバ114は、撮像素子113による撮像を制御するための撮像制御信号を生成する。撮像制御信号は、撮像素子113が備える画素への露光時間と、各画素から出力信号を読み出すタイミングを制御するための制御信号である。撮像制御信号は、例えば、撮像素子113の画素領域に配列された画素について、所定のフレーム周期で出力信号の出力を画素毎にその配列順(例えば、ラスタスキャン順)を指示する駆動パルスである。各画素は、例えば、シリコンからなるP型半導体とN型半導体が接するPN接合を有するフォトダイオードを含んで構成される。各画素には時間の経過に応じて電荷が蓄積される。各画素は、信号ドライバ114からの撮像制御信号の入力に応じて、蓄積された電荷を解放する。当該画素からは、電荷の解放によって生じた電圧を信号値として示す出力信号が出力される。従って、露光時間は、ほぼフレーム周期(即ち、フレームレートの逆数)に相当する。ここで、各画素における電荷の蓄積は、主に入射光に対する光電変換によって生じる。
 信号ドライバ114は、撮像素子113への撮像制御信号を出力することで撮像素子から画素毎の出力信号を読み出す。信号ドライバ114は、読み出した画素ごとの出力信号を画像処理部136に出力する。
The signal driver 114 generates an imaging control signal for controlling imaging by the imaging element 113. The imaging control signal is a control signal for controlling the exposure time for the pixels included in the imaging element 113 and the timing for reading the output signal from each pixel. The imaging control signal is, for example, a drive pulse for instructing the output order of the output signal for each pixel in a predetermined frame cycle for the pixels arranged in the pixel region of the image sensor 113 (for example, raster scan order). . Each pixel includes, for example, a photodiode having a PN junction where a P-type semiconductor made of silicon and an N-type semiconductor are in contact. Charge is accumulated in each pixel as time passes. Each pixel releases the accumulated charge in response to the input of the imaging control signal from the signal driver 114. From the pixel, an output signal indicating a voltage generated by releasing the charge as a signal value is output. Therefore, the exposure time substantially corresponds to the frame period (that is, the reciprocal of the frame rate). Here, charge accumulation in each pixel is mainly caused by photoelectric conversion with respect to incident light.
The signal driver 114 reads out an output signal for each pixel from the image sensor by outputting an imaging control signal to the image sensor 113. The signal driver 114 outputs the read output signal for each pixel to the image processing unit 136.
 内視鏡装置10は、さらに電源端子Vcc、2つの電流源132-1、132-2、A/D133、温度算出部134、検査部135、画像処理部136、表示部138、メモリー139、制御部140および駆動回路151(図2)を含んで構成される。これら各部は、いずれも筐体12に格納され、内視鏡装置10の本体として構成される。図1では、駆動回路151の図示が省略されている。 The endoscope apparatus 10 further includes a power supply terminal Vcc, two current sources 132-1 and 132-2, an A / D 133, a temperature calculation unit 134, an inspection unit 135, an image processing unit 136, a display unit 138, a memory 139, and a control. The unit 140 and the drive circuit 151 (FIG. 2) are included. These parts are all housed in the housing 12 and configured as a main body of the endoscope apparatus 10. In FIG. 1, the drive circuit 151 is not shown.
 電源端子Vccは、駆動回路151が電気的に接続される正極の端子である。駆動回路151が生成した駆動電流は、電源端子Vccを介して順方向電流としてLED112-1、112-2に供給される。 The power supply terminal Vcc is a positive terminal to which the drive circuit 151 is electrically connected. The drive current generated by the drive circuit 151 is supplied to the LEDs 112-1 and 112-2 as a forward current through the power supply terminal Vcc.
 電流源132-1、132-2は、それぞれの両端間を流れる電流の電流値を所定の電流値に維持する電気回路である。電流源132-1、132-2は、それぞれ電流値を調整するための可変抵抗素子(図示せず)を含んで構成され、その可変抵抗素子を直列に接続してなる。電流源132-1、132-2それぞれの一端がLED112-1、112-2の他端に電気的に接続される。電流源132-1、132-2それぞれの他端は接地されている。なお、電流源132-1は、その両端間を流れる電流の電流値を、制御部140から入力される電流制御信号が示す順方向電流の電流値と等しくなるように制御する。以下の説明では、順方向電流の電流値を、単に順方向電流と呼ぶことがある。 The current sources 132-1 and 132-2 are electric circuits that maintain the current value of the current flowing between both ends at a predetermined current value. Each of the current sources 132-1 and 132-2 includes a variable resistance element (not shown) for adjusting the current value, and is configured by connecting the variable resistance elements in series. One end of each of the current sources 132-1 and 132-2 is electrically connected to the other end of the LEDs 112-1 and 112-2. The other ends of the current sources 132-1 and 132-2 are grounded. The current source 132-1 controls the current value of the current flowing between both ends thereof to be equal to the current value of the forward current indicated by the current control signal input from the control unit 140. In the following description, the current value of the forward current may be simply referred to as the forward current.
 A/D(Analog-to-Digital;アナログ・ディジタル変換器)133の一端、他端は、それぞれLED112-1の一端、他端に電気的に接続される。A/D133は、アナログ信号であるLED112-1の一端と他端の間の電圧をディジタルデータである順方向電圧の電圧値を示す順方向電圧データに変換する。順方向電圧とは、電源端子Vccから供給される電流である順方向電流が供給されることによってLED112-1の両端に生じる電圧またはその電圧の電圧値を意味する。順方向電圧は、LED112-1に供給される順方向電流によっても異なる。A/D133は、所定の順方向電流I1のもとでLED112-1の電気的特性を示す特性値としてLED112-1の順方向電圧V1を検出する。また、A/D133は、順方向電流I2のもとでLED112-1の順方向電圧V2を検出する。順方向電流I1、I2は、制御部140から入力される電流制御信号で指示される。また、順方向電流I2は、順方向電流I1とは異なる電流値である。A/D133は、検出した順方向電圧V1と順方向電圧V2を示す順方向電圧データを温度算出部134に出力する。 One end and the other end of an A / D (Analog-to-Digital; analog / digital converter) 133 are electrically connected to one end and the other end of the LED 112-1, respectively. The A / D 133 converts the voltage between one end and the other end of the LED 112-1 that is an analog signal into forward voltage data that indicates the voltage value of the forward voltage that is digital data. The forward voltage means a voltage generated at both ends of the LED 112-1 or a voltage value of the voltage when a forward current that is a current supplied from the power supply terminal Vcc is supplied. The forward voltage varies depending on the forward current supplied to the LED 112-1. The A / D 133 detects the forward voltage V1 of the LED 112-1 as a characteristic value indicating the electrical characteristics of the LED 112-1 under a predetermined forward current I1. The A / D 133 detects the forward voltage V2 of the LED 112-1 under the forward current I2. The forward currents I1 and I2 are instructed by a current control signal input from the control unit 140. Further, the forward current I2 has a current value different from that of the forward current I1. The A / D 133 outputs the forward voltage data indicating the detected forward voltage V1 and forward voltage V2 to the temperature calculation unit 134.
 温度算出部134には、メモリー139に予め記憶させておいた順方向電圧対周囲温度テーブルを読み取る。順方向電圧対周囲温度テーブルは、LED112-1に供給される順方向電圧と周囲温度の対応関係を示すデータである。周囲温度とは、当該LED112-1の周囲の温度を意味する。つまり、順方向電圧対周囲温度テーブルは、LED112-1の電気的特性の一種としてLED112-1を通過する順方向電流によって生ずる順方向電圧の温度特性を示すデータである。温度算出部134は、順方向電圧対周囲温度テーブルを参照して、順方向電流I1と順方向電圧V1に対応する温度T(V1)と、順方向電流I2と順方向電圧V2に対応する温度T(V2)を特定する。温度算出部134は、特定した温度T(V1)と温度T(V2)を示す温度データを検査部135に出力する。 The temperature calculation unit 134 reads the forward voltage versus ambient temperature table stored in the memory 139 in advance. The forward voltage vs. ambient temperature table is data indicating the correspondence between the forward voltage supplied to the LED 112-1 and the ambient temperature. The ambient temperature means the temperature around the LED 112-1. That is, the forward voltage vs. ambient temperature table is data indicating the temperature characteristic of the forward voltage generated by the forward current passing through the LED 112-1 as one kind of the electrical characteristics of the LED 112-1. The temperature calculation unit 134 refers to the forward voltage vs. ambient temperature table, the temperature T (V1) corresponding to the forward current I1 and the forward voltage V1, and the temperature corresponding to the forward current I2 and the forward voltage V2. Specify T (V2). The temperature calculation unit 134 outputs temperature data indicating the specified temperature T (V1) and temperature T (V2) to the inspection unit 135.
 検査部135は、温度算出部134から入力された温度データが示す温度T(V1)と温度T(V2)に基づいて、LED112-1の順方向電圧から特定される温度の測定状態を検査する。検査部135は、温度T(V1)と温度T(V2)を比較して、測定状態として温度T(V1)または温度T(V2)が適切であるか否かを判定する。より具体的には、検査部135は、温度T(V1)と温度T(V2)との差分|T(V1)-T(V2)|が所定の差分の閾値ε(例えば、0.1°Cから0.3°C)よりも小さいとき適切と判定し、当該差分が所定の差分の閾値ε以上であるとき不適切と判定する。なお、判定対象は、温度T(V1)と、その比較対象である温度T(V2)のいずれでもよい。以下の説明では、他の実施形態ならびに変形例も含め、判定対象が主に温度T(V1)である場合を例にする。
 温度T(V1)が適切と判定するとき、検査部135は、さらに温度T(V1)が所定の使用可能温度の範囲内にあるか否かを検査する。使用可能温度は、内視鏡装置10の通常の使用により、期待される機能を奏することができ、その構造が著しく損傷または劣化しない温度の範囲である。使用可能温度は、例えば、-10°Cから70C°までの範囲である。
The inspection unit 135 inspects the measurement state of the temperature specified from the forward voltage of the LED 112-1 based on the temperature T (V1) and the temperature T (V2) indicated by the temperature data input from the temperature calculation unit 134. . The inspection unit 135 compares the temperature T (V1) and the temperature T (V2) to determine whether the temperature T (V1) or the temperature T (V2) is appropriate as the measurement state. More specifically, the inspection unit 135 determines that the difference | T (V1) −T (V2) | between the temperature T (V1) and the temperature T (V2) is a predetermined difference threshold ε (for example, 0.1 °). C is determined to be appropriate when it is smaller than 0.3 ° C., and inappropriate when the difference is equal to or greater than a predetermined difference threshold ε. Note that the determination target may be either the temperature T (V1) or the temperature T (V2) that is the comparison target. In the following description, the case where the determination target is mainly the temperature T (V1) is taken as an example, including other embodiments and modifications.
When determining that the temperature T (V1) is appropriate, the inspection unit 135 further inspects whether or not the temperature T (V1) is within a predetermined usable temperature range. The usable temperature is a temperature range in which an expected function can be achieved by normal use of the endoscope apparatus 10 and the structure thereof is not significantly damaged or deteriorated. The usable temperature is, for example, in the range from −10 ° C. to 70 ° C.
 検査部135は、判定結果に応じた表示情報を表示部138に出力する。例えば、温度T(V1)が不適切と判定するとき、または、温度T(V1)が使用可能温度の範囲内にないと判定するとき、検査部135は、メモリー139から予め記憶しておいた警告情報を読み出す。そして、検査部135は、読み出した警告情報を表示部138に出力する。表示部138には、検査部135から入力される警告情報が表示される。警告情報は、特定された温度T(V1)が不適切であること、または、特定された温度T(V1)が使用可能温度の範囲内にないことをユーザに通知するための情報である。 The inspection unit 135 outputs display information corresponding to the determination result to the display unit 138. For example, when it is determined that the temperature T (V1) is inappropriate or when it is determined that the temperature T (V1) is not within the usable temperature range, the inspection unit 135 is stored in advance from the memory 139. Read warning information. Then, the inspection unit 135 outputs the read warning information to the display unit 138. On the display unit 138, warning information input from the inspection unit 135 is displayed. The warning information is information for notifying the user that the specified temperature T (V1) is inappropriate or that the specified temperature T (V1) is not within the usable temperature range.
 なお、温度T(V1)が不適切と判定するときと、温度T(V1)が使用可能温度の範囲内にないと判定するときとで、検査部135が表示部138に出力する警告情報が異なってもよい。つまり、温度T(V1)が不適切と判定するとき、検査部135は、測定された温度T(V1)が不適切であることを示す警告情報を表示部138に出力する。温度T(V1)が使用可能温度の範囲内にないと判定するとき、検査部135は、温度T(V1)が使用可能温度の範囲内にないことを示す警告情報を表示部138に出力する。その警告情報には、内視鏡装置10の使用中止の指示、または温度T(V1)が使用可能温度の範囲内に変化するまでの待機の指示を含んでいてもよい。 Note that the warning information that the inspection unit 135 outputs to the display unit 138 is determined when the temperature T (V1) is determined to be inappropriate and when the temperature T (V1) is determined not to be within the usable temperature range. May be different. That is, when determining that the temperature T (V1) is inappropriate, the inspection unit 135 outputs warning information indicating that the measured temperature T (V1) is inappropriate to the display unit 138. When determining that the temperature T (V1) is not within the usable temperature range, the inspection unit 135 outputs warning information indicating that the temperature T (V1) is not within the usable temperature range to the display unit 138. . The warning information may include an instruction to stop using the endoscope apparatus 10 or an instruction to wait until the temperature T (V1) changes within the usable temperature range.
 また、温度T(V1)が適切と判定するとき、検査部135は、温度T(V1)を示す温度情報を生成し、生成した温度情報を表示部138に出力する。表示部138には、検査部135から入力される温度情報として温度T(V1)が表示される。
 なお、表示される情報の形式は、所定の文字からなるメッセージ、記号、図形または画像のいずれであってもよい。また、警告情報として提示される情報の形式は、視覚により認識可能な形式に限られず、音声情報であってもよい。その場合には、内視鏡装置10は、さらに音声再生部(図示せず)を備える。音声再生部は、例えば、スピーカを含んで構成される。検査部135は、その警告情報を音声再生部に出力する。音声再生部は、検査部135から入力される警告情報を示す音声を再生する。
When determining that the temperature T (V1) is appropriate, the inspection unit 135 generates temperature information indicating the temperature T (V1) and outputs the generated temperature information to the display unit 138. The display unit 138 displays the temperature T (V1) as temperature information input from the inspection unit 135.
Note that the format of the information to be displayed may be any message, symbol, figure, or image made up of predetermined characters. Also, the format of information presented as warning information is not limited to a format that can be visually recognized, and may be audio information. In that case, the endoscope apparatus 10 further includes an audio reproduction unit (not shown). For example, the sound reproducing unit includes a speaker. The inspection unit 135 outputs the warning information to the audio reproduction unit. The sound reproducing unit reproduces sound indicating the warning information input from the inspection unit 135.
 画像処理部136は、信号ドライバ114から入力される画素毎の出力信号が示す信号値をフレームごとに集約し、画素毎の信号値(画素値)を示す画像信号を生成する。画像信号は、被検体の画像を示す信号である。画像処理部136は、生成した画像信号について所定の画像処理を行う。所定の画像処理として、例えば、A/D変換、γ補正、YC変換、リサイズ、などがある。画像処理部136は、所定の画像処理を行って得られた画像信号を表示部138に出力する。なお、画像処理部136は、その画像信号をメモリー139に記憶してもよい。これにより、撮像された被検体の画像が録画される。 The image processing unit 136 aggregates the signal values indicated by the output signals for each pixel input from the signal driver 114 for each frame, and generates an image signal indicating the signal value (pixel value) for each pixel. The image signal is a signal indicating an image of the subject. The image processing unit 136 performs predetermined image processing on the generated image signal. Examples of the predetermined image processing include A / D conversion, γ correction, YC conversion, resizing, and the like. The image processing unit 136 outputs an image signal obtained by performing predetermined image processing to the display unit 138. Note that the image processing unit 136 may store the image signal in the memory 139. Thereby, the captured image of the subject is recorded.
 表示部138は、検査部135から入力される警告情報に基づく文字、記号、図形または画像を表示する。また、表示部138は、画像処理部136から入力される画像信号に基づく画像を表示する。警告情報と画像信号とが同時に入力される場合には、表示部138は、警告情報に基づく文字等と画像信号に基づく画像とを重畳し、重畳によって得られる表示画像を表示してもよい。
 表示部138は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)、EL(Electro-luminescence)ディスプレイなどの表示デバイスを含んで構成される。なお、表示部138は、内視鏡装置10の本体と着脱自在に固定することができる構造を備えていてもよい。
The display unit 138 displays characters, symbols, figures, or images based on the warning information input from the inspection unit 135. The display unit 138 displays an image based on the image signal input from the image processing unit 136. When the warning information and the image signal are input at the same time, the display unit 138 may superimpose characters based on the warning information and the image based on the image signal and display a display image obtained by the superimposition.
The display unit 138 includes a display device such as a liquid crystal display (LCD) or an electro-luminescence (EL) display. The display unit 138 may include a structure that can be detachably fixed to the main body of the endoscope apparatus 10.
 メモリー139は、上述したように内視鏡装置10の各部が処理に用いられる各種のデータ、各部が生成したデータを記憶する。メモリー139は、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)などの不揮発性記憶媒体と、DRAM(Dynamic Random Access Memory)などの揮発性記憶媒体とを含んで構成される。 The memory 139 stores various data used by each unit of the endoscope apparatus 10 for processing and data generated by each unit as described above. The memory 139 includes, for example, a nonvolatile storage medium such as EEPROM (Electrically Erasable Programmable Read-Only Memory) and a volatile storage medium such as DRAM (Dynamic Random Access Memory).
 制御部140は、内視鏡装置10の各種の動作を制御する。例えば、温度の測定状態を検査する際、制御部140は、LED112-1に供給する順方向電流を制御するための電流制御信号を生成し、生成した電流制御信号を電流源132-1に出力する。制御部140は、電流制御信号として、上述した順方向電流I1を示す電流制御信号と順方向電流I2を示す電流制御信号とを逐次に生成する。制御部140から入力される電流制御信号が順方向電流I1を示すとき、電流源132-1は、電源端子VccからLED112-1を介して供給される電流の電流値を電流制御信号が示す順方向電流I1に制御する。制御部140から入力される電流制御信号が順方向電流I2を示すとき、電流源132-1は、電源端子VccからLED112-1を介して供給される電流の電流値を電流制御信号が示す順方向電流I2に制御する。 The control unit 140 controls various operations of the endoscope apparatus 10. For example, when inspecting the temperature measurement state, the control unit 140 generates a current control signal for controlling the forward current supplied to the LED 112-1, and outputs the generated current control signal to the current source 132-1. To do. The control unit 140 sequentially generates the current control signal indicating the forward current I1 and the current control signal indicating the forward current I2 described above as current control signals. When the current control signal input from the control unit 140 indicates the forward current I1, the current source 132-1 has a forward current control signal indicating the current value of the current supplied from the power supply terminal Vcc via the LED 112-1. Control to directional current I1. When the current control signal input from the control unit 140 indicates the forward current I2, the current source 132-1 has a forward current control signal indicating the current value of the current supplied from the power supply terminal Vcc via the LED 112-1. Control to directional current I2.
 また、制御部140は、LED112-1、112-2から光を発光させるか否かを制御するための発光制御信号を生成し、生成した発光制御信号を駆動回路(図2)に出力する。制御部140から入力される発光制御信号が発光要(ON)を示すとき、駆動回路は駆動電流を生成し、生成した駆動電流をLED112-1、112-2に電源端子Vccを介して供給する。制御部140から入力される発光制御信号が発光不要(OFF)を示すとき、駆動回路は駆動電流の生成ならびに供給を停止する。 Further, the control unit 140 generates a light emission control signal for controlling whether or not light is emitted from the LEDs 112-1 and 112-2, and outputs the generated light emission control signal to the drive circuit (FIG. 2). When the light emission control signal input from the control unit 140 indicates that light emission is required (ON), the drive circuit generates a drive current and supplies the generated drive current to the LEDs 112-1 and 112-2 via the power supply terminal Vcc. . When the light emission control signal input from the controller 140 indicates that light emission is not required (OFF), the drive circuit stops generating and supplying the drive current.
 また、制御部140は、撮像した被検体の画像を表示もしくは記録させるか否かを制御するための表示制御信号を生成し、生成した表示制御信号を画像処理部136に出力する。制御部140から入力される表示制御信号が表示要(ON)を示すとき、画像処理部136は、生成した画像信号を表示部138に出力する。制御部140から入力される表示制御信号が表示不要(OFF)を示すとき、画像処理部136は、画像信号の表示部138への出力を停止する。制御部140から入力される表示制御信号が記録要(ON)を示すとき、画像処理部136は、生成した画像信号をメモリー139に記憶する。制御部140から入力される表示制御信号が記録不要(OFF)を示すとき、画像処理部136は、画像信号のメモリー139への記憶を停止する。 Also, the control unit 140 generates a display control signal for controlling whether to display or record the captured image of the subject, and outputs the generated display control signal to the image processing unit 136. When the display control signal input from the control unit 140 indicates that display is required (ON), the image processing unit 136 outputs the generated image signal to the display unit 138. When the display control signal input from the control unit 140 indicates that display is not required (OFF), the image processing unit 136 stops outputting the image signal to the display unit 138. When the display control signal input from the control unit 140 indicates that recording is required (ON), the image processing unit 136 stores the generated image signal in the memory 139. When the display control signal input from the control unit 140 indicates that recording is not required (OFF), the image processing unit 136 stops storing the image signal in the memory 139.
 なお、制御部140は、所定の制御プログラムで指示される処理を実行することにより、その機能を実現してもよい。内視鏡装置10は、例えば、操作入力部(図示せず)をさらに備え、制御部140は、操作入力部と表示部138と協働してユーザインタフェースを構成してもよい。操作入力部は、ユーザの操作を受け付け、操作に応じてユーザ所望の機能を示す操作信号を制御部140に出力する。操作信号は、内視鏡装置10の機能として例えば、温度の測定状態の検査の要否、LED112-1、112-2の発光の要否、撮像素子113が撮像した画像の表示の要否、その画像の記録の要否などを指示する信号である。なお、温度の測定状態の検査は、LED112-1の発光中において、継続して行われてもよいし、所定の時間ごと(例えば、1~15分間隔)に行われてもよい。なお、操作入力部は、ボタン、つまみ、などの専用の部材を含んで構成されてもよいし、マウス、タッチセンサ、などの汎用の部材を含んで構成されてもよい。 Note that the control unit 140 may realize the function by executing processing instructed by a predetermined control program. The endoscope apparatus 10 may further include, for example, an operation input unit (not shown), and the control unit 140 may constitute a user interface in cooperation with the operation input unit and the display unit 138. The operation input unit accepts a user operation and outputs an operation signal indicating a user-desired function to the control unit 140 in accordance with the operation. The operation signal is a function of the endoscope apparatus 10, for example, whether or not the temperature measurement state needs to be inspected, whether or not the LEDs 112-1 and 112-2 emit light, whether or not the image captured by the image sensor 113 is displayed, This is a signal for instructing whether or not to record the image. It should be noted that the inspection of the temperature measurement state may be continuously performed during the light emission of the LED 112-1, or may be performed every predetermined time (for example, at intervals of 1 to 15 minutes). The operation input unit may include a dedicated member such as a button or a knob, or may include a general-purpose member such as a mouse or a touch sensor.
(駆動回路)
 次に、電源端子Vccに接続される駆動回路151の構成例について説明する。
 図2は、駆動回路151の構成例を示す概略回路図である。駆動回路151は、電源152と可変抵抗素子153を含んで構成される電気回路である。電源152の一端は、可変抵抗素子153の一端に電気的に接続され、電源152の他端は接地される。可変抵抗素子153の他端が電源端子Vccを介してLED112-1、112-2の一端に接続される。電源152からの電流は、可変抵抗素子153と電源端子Vccを介してLED112-1、112-2の一端に供給される。図2では、2個のLED112-1、112-2のうちLED112-2の図示が省略され、LED112-1が、その両端の電圧である順方向電圧Vfの測定対象として表されている。なお、可変抵抗素子153の抵抗値を調整して、LED112-1に供給される順方向電流Ifを調整することもできる。
(Drive circuit)
Next, a configuration example of the drive circuit 151 connected to the power supply terminal Vcc will be described.
FIG. 2 is a schematic circuit diagram illustrating a configuration example of the drive circuit 151. The drive circuit 151 is an electric circuit that includes a power source 152 and a variable resistance element 153. One end of the power source 152 is electrically connected to one end of the variable resistance element 153, and the other end of the power source 152 is grounded. The other end of the variable resistance element 153 is connected to one end of the LEDs 112-1 and 112-2 via the power supply terminal Vcc. The current from the power supply 152 is supplied to one end of the LEDs 112-1 and 112-2 via the variable resistance element 153 and the power supply terminal Vcc. In FIG. 2, the LED 112-2 of the two LEDs 112-1 and 112-2 is not shown, and the LED 112-1 is shown as a measurement target of the forward voltage Vf that is the voltage across the LED 112-1. It should be noted that the forward current If supplied to the LED 112-1 can also be adjusted by adjusting the resistance value of the variable resistance element 153.
(周囲温度と順方向電圧との関係)
 次に、LED112-1の温度である周囲温度と順方向電圧との関係について説明する。図3は、順方向電圧の温度特性の一例を示す図である。図3において、横軸、縦軸は、それぞれ周囲温度T、順方向電圧Vfを示す。また、3つの曲線は、それぞれ順方向電流がI1、I2、I3であるときにLED112-1の両端に生じる順方向電圧を示す。一定の順方向電流Ifについて、順方向電圧Vfは、周囲温度Tが高いほど減少し、周囲温度Tが低いほど増加する。周囲温度Tが高いほど周囲温度Tの変化に対する順方向電圧Vfの変化率が低下する。また、一定の周囲温度、例えば、T1について、順方向電流IfをI1、I2、I3と順次増加させると、順方向電圧Vfは、V1、V2、V3と順次増加する。
(Relationship between ambient temperature and forward voltage)
Next, the relationship between the ambient temperature, which is the temperature of the LED 112-1, and the forward voltage will be described. FIG. 3 is a diagram illustrating an example of temperature characteristics of the forward voltage. In FIG. 3, the horizontal axis and the vertical axis indicate the ambient temperature T and the forward voltage Vf, respectively. The three curves show the forward voltage generated across the LED 112-1 when the forward currents are I1, I2, and I3, respectively. For a certain forward current If, the forward voltage Vf decreases as the ambient temperature T increases and increases as the ambient temperature T decreases. The higher the ambient temperature T, the lower the rate of change of the forward voltage Vf with respect to the change in the ambient temperature T. Further, when the forward current If is sequentially increased as I1, I2, and I3 at a constant ambient temperature, for example, T1, the forward voltage Vf is sequentially increased as V1, V2, and V3.
 本実施形態では、温度特性情報の一形態として順方向電流ごとの順方向電圧の温度特性を示す順方向電圧対周囲温度テーブルを予めメモリー139に記憶させておく。そして、温度算出部134は、この順方向電圧対周囲温度テーブルを参照して、順方向電流I1、I2のそれぞれについて、A/D133が検出した順方向電圧V1、V2にそれぞれ対応する周囲温度T(V1)、T(V2)を特定する。本実施形態に係る内視鏡装置10の動作が正常であれば、特定された周囲温度T(V1)と周囲温度T(V2)は等しくなるはずである。従って、検査部135は、周囲温度T(V1)と周囲温度T(V2)の差の大きさが所定の範囲内であるか否かをもって、得られた周囲温度T(V1)が信頼に足る、確からしい温度であるか否かを判定することができる。 In this embodiment, a forward voltage vs. ambient temperature table indicating the temperature characteristics of the forward voltage for each forward current is stored in the memory 139 in advance as one form of temperature characteristic information. Then, the temperature calculation unit 134 refers to the forward voltage versus ambient temperature table, and for each of the forward currents I1 and I2, the ambient temperature T corresponding to the forward voltages V1 and V2 detected by the A / D 133, respectively. (V1) and T (V2) are specified. If the operation of the endoscope apparatus 10 according to the present embodiment is normal, the specified ambient temperature T (V1) and ambient temperature T (V2) should be equal. Accordingly, the inspecting unit 135 can reliably obtain the obtained ambient temperature T (V1) depending on whether or not the magnitude of the difference between the ambient temperature T (V1) and the ambient temperature T (V2) is within a predetermined range. It can be determined whether or not the temperature is likely.
(温度計測処理)
 次に、順方向電圧に基づく温度計測処理について説明する。図4は、温度計測処理の一例を示すフローチャートである。図4に示す温度計測処理は、LED112-1に生じる順方向電圧に基づいてLED112-1の周囲の周囲温度を表示するための基本的な処理である。
(Temperature measurement processing)
Next, the temperature measurement process based on the forward voltage will be described. FIG. 4 is a flowchart illustrating an example of the temperature measurement process. The temperature measurement process shown in FIG. 4 is a basic process for displaying the ambient temperature around the LED 112-1 based on the forward voltage generated in the LED 112-1.
(ステップS101)制御部140は、駆動回路151に対し、LED112-1に所定の順方向電流Ifを供給させる。A/D133は、LED112-1の両端に生じる順方向電圧Vfを検出する。その後、ステップS102の処理に進む。
(ステップS102)温度算出部134は、メモリー139に予め記憶された順方向電圧対周囲温度テーブルを参照して、所定の順方向電流Ifのもとで順方向電圧Vfにおける周囲温度Tを特定する。その後、ステップS103の処理に進む。
(ステップS103)表示部138は、特定された周囲温度Tを表示する。その後、図4に示す処理を終了する。
(Step S101) The control unit 140 causes the drive circuit 151 to supply a predetermined forward current If to the LED 112-1. The A / D 133 detects the forward voltage Vf generated across the LED 112-1. Thereafter, the process proceeds to step S102.
(Step S102) The temperature calculation unit 134 refers to the forward voltage versus ambient temperature table stored in advance in the memory 139, and specifies the ambient temperature T at the forward voltage Vf under a predetermined forward current If. . Thereafter, the process proceeds to step S103.
(Step S103) The display unit 138 displays the specified ambient temperature T. Thereafter, the process shown in FIG.
(温度検査処理)
 次に、本実施形態に係る温度検査処理について説明する。図5は、本実施形態に係る温度検査処理の一例を示すフローチャートである。
(ステップS111)制御部140は、駆動回路151に対し、LED112-1に供給する順方向電流Ifを、I1、I2に順次変更させる。順方向電流IfがそれぞれI1、I2と設定されるとき、A/D133は、それぞれの時点において順方向電圧V1、V2を検出する。その後、ステップS112の処理に進む。
(ステップS112)温度算出部134は、メモリー139に予め記憶された順方向電圧対周囲温度テーブルを参照して、順方向電流I1について検出される順方向電圧V1における周囲温度T(V1)と、順方向電流I2について検出される順方向電圧V2における周囲温度T(V2)とを特定する。その後、ステップS113の処理に進む。
(Temperature inspection process)
Next, the temperature inspection process according to the present embodiment will be described. FIG. 5 is a flowchart illustrating an example of the temperature inspection process according to the present embodiment.
(Step S111) The control unit 140 causes the drive circuit 151 to sequentially change the forward current If supplied to the LED 112-1 to I1 and I2. When the forward current If is set to I1 and I2, respectively, the A / D 133 detects the forward voltages V1 and V2 at the respective time points. Thereafter, the process proceeds to step S112.
(Step S112) The temperature calculation unit 134 refers to the forward voltage versus ambient temperature table stored in advance in the memory 139, and the ambient temperature T (V1) in the forward voltage V1 detected for the forward current I1. The ambient temperature T (V2) at the forward voltage V2 detected for the forward current I2 is specified. Thereafter, the process proceeds to step S113.
(ステップS113)検査部135は、特定した周囲温度T(V1)と周囲温度T(V2)の差分の絶対値|T(V1)-T(V2)|が所定の差分の閾値εよりも小さいか否かを判定する。小さいと判定されるとき(ステップS113 YES)、ステップS114の処理に進む。差分の閾値εと等しいか、またはそれより大きいと判定されるとき(ステップS113 NO)、ステップS117の処理に進む。
(ステップS114)検査部135は、特定した周囲温度T(V1)が所定の使用可能温度の範囲内の温度であるか否かを判定する。使用可能温度の範囲内の温度であると判定されるとき(ステップS114 YES)、ステップS115の処理に進む。使用可能温度の範囲外の温度であると判定されるとき(ステップS114 NO)、ステップS117の処理に進む。
(Step S113) The inspection unit 135 determines that the absolute value | T (V1) −T (V2) | of the difference between the specified ambient temperature T (V1) and the ambient temperature T (V2) is smaller than a predetermined difference threshold ε. It is determined whether or not. When it is determined that the value is smaller (YES in step S113), the process proceeds to step S114. When it is determined that the difference is equal to or larger than the difference threshold ε (step S113: NO), the process proceeds to step S117.
(Step S114) The inspection unit 135 determines whether or not the specified ambient temperature T (V1) is a temperature within a predetermined usable temperature range. When it is determined that the temperature is within the usable temperature range (YES in step S114), the process proceeds to step S115. When it is determined that the temperature is out of the usable temperature range (NO in step S114), the process proceeds to step S117.
(ステップS115)検査部135は、使用可能温度の範囲内と判定された周囲温度T(V1)を示す温度情報を表示部138に出力する。このとき、表示部138は、周囲温度T(V1)を表示する。その後、ステップS116の処理に進む。
(ステップS116)制御部140は、内視鏡装置10の使用を続行、つまり、温度の計測、照明または撮像を継続すると判定する。その後、図5に示す処理を終了する。
(Step S115) The inspection unit 135 outputs temperature information indicating the ambient temperature T (V1) determined to be within the usable temperature range to the display unit 138. At this time, the display unit 138 displays the ambient temperature T (V1). Thereafter, the process proceeds to step S116.
(Step S116) The control unit 140 determines to continue using the endoscope apparatus 10, that is, to continue temperature measurement, illumination, or imaging. Thereafter, the process shown in FIG.
(ステップS117)検査部135は、メモリー139から警告情報を読み出し、読み出した警告情報を表示部138に出力する。表示部138には、警告(アラーム)が表示される。その後、ステップS118の処理に進む。
(ステップS118)制御部140は、内視鏡装置10の使用を中断すると判定する。制御部140は、例えば、温度の計測、照明、撮像の少なくともいずれかを停止してもよい。温度の計測を停止する場合または照明を停止する場合、制御部140は、発光不要(OFF)を示す発光制御信号を駆動回路151に送信する。撮像を停止する場合、制御部140は、画像処理部136に表示不要(OFF)ならびに記録不要(OFF)を示す表示制御信号を画像処理部136に出力する。その後、図5に示す処理を終了する。
(Step S117) The inspection unit 135 reads warning information from the memory 139 and outputs the read warning information to the display unit 138. A warning (alarm) is displayed on the display unit 138. Thereafter, the process proceeds to step S118.
(Step S118) The control unit 140 determines to stop using the endoscope apparatus 10. For example, the control unit 140 may stop at least one of temperature measurement, illumination, and imaging. When the temperature measurement is stopped or the lighting is stopped, the control unit 140 transmits a light emission control signal indicating that light emission is not required (OFF) to the drive circuit 151. When stopping the imaging, the control unit 140 outputs to the image processing unit 136 display control signals indicating that display is not necessary (OFF) and recording is not necessary (OFF). Thereafter, the process shown in FIG.
 以上に説明したように、本実施形態に係る内視鏡装置10は、温度および温度と別個の物理量に応じて電気的特性が異なるLED112-1を挿入部11の先端に少なくとも1個備え、電気的特性の特性値を検出するA/D133を備える。また、内視鏡装置10は、特性値の温度特性を示す温度特性情報を記憶するメモリー139と、特性値から温度特性情報を参照して特定される温度の測定状態を、物理量ごとの特性値に基づいて検査する検査部135と、を備える。
 この構成により、LED112-1の電気的特性の特性値から特定される温度の測定状態が、物理量ごとに異なる電気的特性の特性値に基づいて検査される。そのため、LED112-1の主な機能である照明を使用しながら温度測定機能の動作状態を検査することができる。
As described above, the endoscope apparatus 10 according to the present embodiment includes at least one LED 112-1 having different electrical characteristics according to temperature and a physical quantity different from the temperature at the distal end of the insertion portion 11, A / D 133 for detecting the characteristic value of the target characteristic is provided. In addition, the endoscope apparatus 10 stores the temperature characteristic information indicating the temperature characteristic of the characteristic value, and the measurement state of the temperature specified by referring to the temperature characteristic information from the characteristic value as the characteristic value for each physical quantity. And an inspection unit 135 for inspecting based on the above.
With this configuration, the measurement state of the temperature specified from the characteristic value of the electrical characteristic of the LED 112-1 is inspected based on the characteristic value of the electrical characteristic that differs for each physical quantity. Therefore, the operation state of the temperature measurement function can be inspected while using the illumination that is the main function of the LED 112-1.
 また、内視鏡装置10は、部材の少なくとも1個は順方向電流の供給に応じて発光するLED112-1であり、A/D133は、LED112-1の特性値として順方向電流の供給に応じて発生する順方向電圧を検出する。また、メモリー139は、温度特性情報として順方向電流の供給に応じて発生する順方向電圧の温度特性を示す順方向電圧対周囲温度テーブルを記憶する。
 この構成により、順方向電流ごとにそれぞれ異なる順方向電圧に基づいて特定される温度が得られる。そのため、それぞれの温度に基づいて温度測定機能の動作状態を検査することができる。
Further, in the endoscope apparatus 10, at least one of the members is an LED 112-1 that emits light in response to supply of a forward current, and the A / D 133 corresponds to supply of forward current as a characteristic value of the LED 112-1. The forward voltage generated is detected. The memory 139 stores a forward voltage vs. ambient temperature table indicating temperature characteristics of the forward voltage generated in response to the forward current supply as temperature characteristic information.
With this configuration, a temperature specified based on different forward voltages for each forward current can be obtained. Therefore, the operation state of the temperature measurement function can be inspected based on each temperature.
<第2実施形態>
 次に、本発明の第2の実施形態について説明する。上述した実施形態と同一の構成については、同一の符号を付してその説明を援用する。以下の説明では、第1の実施形態との差異点を主とする。
 図6は、本実施形態に係る内視鏡装置10Aの構成を示す概略ブロック図である。本実施形態に係る内視鏡装置10Aは、内視鏡装置10において、さらにA/D141および温度算出部142を含んで構成される。
Second Embodiment
Next, a second embodiment of the present invention will be described. About the same structure as embodiment mentioned above, the same code | symbol is attached | subjected and the description is used. In the following description, differences from the first embodiment are mainly used.
FIG. 6 is a schematic block diagram showing the configuration of the endoscope apparatus 10A according to the present embodiment. An endoscope apparatus 10A according to the present embodiment is configured to further include an A / D 141 and a temperature calculation unit 142 in the endoscope apparatus 10.
 本実施形態に係る内視鏡装置10Aは、LED112-1の他、さらにLED112-2の両端に生じる順方向電圧に基づいて温度を検出する。そこで、制御部140は、さらにLED112-2に供給する順方向電流を制御するための電流制御信号を生成し、生成した電流制御信号を電流源132-2に出力する。
 電流源132-2は、その両端間を流れる電流の電流値を、制御部140から入力される電流制御信号が示す順方向電流の電流値と等しくなるように制御する。
The endoscope apparatus 10A according to the present embodiment detects the temperature based on the forward voltage generated at both ends of the LED 112-2 in addition to the LED 112-1. Therefore, the control unit 140 further generates a current control signal for controlling the forward current supplied to the LED 112-2, and outputs the generated current control signal to the current source 132-2.
The current source 132-2 controls the current value of the current flowing between both ends thereof to be equal to the current value of the forward current indicated by the current control signal input from the control unit 140.
 本実施形態では、制御部140は、電流源132-1への電流制御信号が示す順方向電流を一定にすることで、LED112-1の両端を流れる順方向電流を一定に制御してもよい。さらに、制御部140は、その順方向電流が、電流源132-2への電流制御信号が示す順方向電流と等しくすることで、LED112-1の両端を流れる順方向電流とLED112-2の両端を流れる順方向電流とが等しくなるように制御してもよい。ここで、電流源132-1に出力する電流制御信号が示す順方向電流と、電流源132-2に出力する電流制御信号が示す順方向電流は等しくてもよい。 In the present embodiment, the control unit 140 may control the forward current flowing through both ends of the LED 112-1 to be constant by making the forward current indicated by the current control signal to the current source 132-1 constant. . Further, the control unit 140 makes the forward current equal to the forward current indicated by the current control signal to the current source 132-2, so that the forward current flowing through both ends of the LED 112-1 and the both ends of the LED 112-2 are set. It is also possible to control so that the forward current flowing through is equal. Here, the forward current indicated by the current control signal output to the current source 132-1 may be equal to the forward current indicated by the current control signal output to the current source 132-2.
 A/D141の一端、他端は、それぞれLED112-2の一端、他端に電気的に接続される。A/D141は、LED112-2の両端に生じた順方向電圧を検出し、検出した順方向電圧V2を示す順方向電圧データを生成する。A/D141は、生成した順方向電圧データを温度算出部142に出力する。 The one end and the other end of the A / D 141 are electrically connected to the one end and the other end of the LED 112-2, respectively. The A / D 141 detects the forward voltage generated at both ends of the LED 112-2, and generates forward voltage data indicating the detected forward voltage V2. The A / D 141 outputs the generated forward voltage data to the temperature calculation unit 142.
 温度算出部142は、メモリー139から予め記憶させた順方向電圧対周囲温度テーブルを読み取る。温度算出部142は、読み取った順方向電圧対周囲温度テーブルを参照して、電流源132-2への電流制御信号が示す順方向電流Ifと、A/D141から入力される順方向電圧データが示す順方向電圧V2に対応する温度T(V2)を特定する。この温度T(V2)が、LED112-2の周囲温度に相当する。温度算出部142は、特定した温度T(V2)を示す温度データを検査部135に出力する。 The temperature calculation unit 142 reads a forward voltage versus ambient temperature table stored in advance from the memory 139. The temperature calculation unit 142 refers to the read forward voltage vs. ambient temperature table, and calculates the forward current If indicated by the current control signal to the current source 132-2 and the forward voltage data input from the A / D 141. The temperature T (V2) corresponding to the forward voltage V2 shown is specified. This temperature T (V2) corresponds to the ambient temperature of the LED 112-2. The temperature calculation unit 142 outputs temperature data indicating the specified temperature T (V2) to the inspection unit 135.
 検査部135には、温度算出部134から温度T(V1)を示す温度データと、温度算出部142から温度T(V2)を示す温度データが入力される。検査部135は、温度T(V1)と温度T(V2)との差分|T(V1)-T(V2)|が所定の差分の閾値ε’よりも小さいとき温度T(V1)が適切と判定し、当該差分|T(V1)-T(V2)|が所定の差分の閾値ε’以上であるとき温度T(V1)が不適切と判定する。 The inspection unit 135 receives temperature data indicating the temperature T (V1) from the temperature calculation unit 134 and temperature data indicating the temperature T (V2) from the temperature calculation unit 142. The inspection unit 135 determines that the temperature T (V1) is appropriate when the difference | T (V1) −T (V2) | between the temperature T (V1) and the temperature T (V2) is smaller than a predetermined difference threshold ε ′. When the difference | T (V1) −T (V2) | is equal to or greater than a predetermined difference threshold ε ′, it is determined that the temperature T (V1) is inappropriate.
 なお、検査部135は、温度T(V1)が適切であるか否かを判定する際、A/D133が検出した順方向電圧V1とA/D141が検出した順方向電圧V2とを比較してもよい。比較において、検査部135は、順方向電圧V1と順方向電圧V2との差分|V1-V2|が所定の差分の閾値δ(例えば、0.05~0.2V)よりも小さいとき温度T(V1)または温度T(V2)が適切と判定し、当該差分|V1-V2|が所定の差分の閾値δ以上であるとき不適切と判定する。この判定において、順方向電圧V1、V2から温度T(V1)、T(V2)への変換は、必ずしも実行しなくてもよい。このことは、本実施形態に係る内視鏡装置10Aでは、温度算出部142が省略されてもよいことを意味する。 When the inspection unit 135 determines whether or not the temperature T (V1) is appropriate, the inspection unit 135 compares the forward voltage V1 detected by the A / D 133 and the forward voltage V2 detected by the A / D 141. Also good. In the comparison, the inspection unit 135 determines that the temperature T (when the difference | V1−V2 | between the forward voltage V1 and the forward voltage V2 is smaller than a predetermined difference threshold δ (for example, 0.05 to 0.2V). V1) or temperature T (V2) is determined to be appropriate, and when the difference | V1-V2 | is equal to or greater than a predetermined difference threshold δ, it is determined to be inappropriate. In this determination, the conversion from the forward voltages V1 and V2 to the temperatures T (V1) and T (V2) is not necessarily performed. This means that the temperature calculation unit 142 may be omitted in the endoscope apparatus 10A according to the present embodiment.
(温度検査処理)
 次に、本実施形態に係る温度検査処理について説明する。図7は、本実施形態に係る温度検査処理の一例を示すフローチャートである。本実施形態に係る温度検査処理は、ステップS121~S123の処理とステップS114~S118の処理を有する。ステップS114~S118の処理は、図5に示す温度検査処理と共通であるため、その説明を省略する。
(Temperature inspection process)
Next, the temperature inspection process according to the present embodiment will be described. FIG. 7 is a flowchart illustrating an example of the temperature inspection process according to the present embodiment. The temperature inspection process according to the present embodiment includes processes of steps S121 to S123 and processes of steps S114 to S118. The processing in steps S114 to S118 is common to the temperature inspection processing shown in FIG.
(ステップS121)制御部140は、電流源132-1、132-2に対し、LED112-1、112-2に供給する順方向電流Ifとして共通の順方向電流I1に設定する。A/D133、A/D141は、それぞれ順方向電圧V1、V2を検出する。その後、ステップS122の処理に進む。
(ステップS122)検査部135は、検出した順方向電圧V1、V2の差分の絶対値|V1-V2|が所定の差分の閾値δよりも小さいか否かを判定する。小さいと判定されるとき(ステップS122 YES)、ステップS123の処理に進む。差分の閾値δと等しいか、またはそれより大きいと判定されるとき(ステップS122 NO)、ステップS117の処理に進む。
(ステップS123)温度算出部134は、メモリー139に予め記憶された順方向電圧対周囲温度テーブルを参照して、順方向電流I1について検出される順方向電圧V1における周囲温度T(V1)を特定する。その後、ステップS114の処理に進む。
(Step S121) The control unit 140 sets the common forward current I1 as the forward current If supplied to the LEDs 112-1 and 112-2 for the current sources 132-1 and 132-2. A / D 133 and A / D 141 detect forward voltages V1 and V2, respectively. Thereafter, the process proceeds to step S122.
(Step S122) The inspection unit 135 determines whether or not the absolute value | V1−V2 | of the difference between the detected forward voltages V1 and V2 is smaller than a predetermined difference threshold δ. When it is determined that the value is smaller (YES in step S122), the process proceeds to step S123. When it is determined that the difference is equal to or greater than the threshold value δ (NO in step S122), the process proceeds to step S117.
(Step S123) The temperature calculation unit 134 refers to the forward voltage vs. ambient temperature table stored in advance in the memory 139 and specifies the ambient temperature T (V1) in the forward voltage V1 detected for the forward current I1. To do. Thereafter, the process proceeds to step S114.
<変形例>
 上述では、検査部135がその時点における順方向電圧V1、V2同士を比較または周囲温度T(V1)、T(V2)同士を比較して、周囲温度T(V1)が適切であるか否かを判定する場合を例にしたが、これには限られない。本実施形態に係る変形例では、検査部135は、温度測定の開始時刻tにおける順方向電圧V1(t)、V2(t)からその時点の時刻tにおける順方向電圧V1(t)、V2(t)までの変化量ΔV1(t)、ΔV2(t)同士を比較してもよい。ここで、変化量ΔV1(t)、ΔV2(t)は、それぞれV1(t)-V1(t)、V2(t)-V2(t)である。
<Modification>
In the above description, the inspection unit 135 compares the forward voltages V1 and V2 at that time or compares the ambient temperatures T (V1) and T (V2) to determine whether the ambient temperature T (V1) is appropriate. However, the present invention is not limited to this. In the modification according to the present embodiment, the inspection unit 135 determines the forward voltage V1 (t) at the time t from the forward voltages V1 (t 0 ) and V2 (t 0 ) at the temperature measurement start time t 0 . , V2 (t) and ΔV1 (t) and ΔV2 (t) may be compared with each other. Here, the amount of change ΔV1 (t), ΔV2 (t ) , respectively V1 (t) -V1 (t 0 ), a V2 (t) -V2 (t 0 ).
 検査部135は、比較において、まず、変化量ΔV1(t)、ΔV2(t)が、それぞれ-γ以下、-γより大きくγより小さい値、γ以上のいずれであるかの3段階のうちいずれの段階に属するかを判定する。γは、変化量ΔV1(t)、ΔV2(t)が有意に0と異なるか否かを判定するための所定の閾値である。γは、例えば、0.05~0.2Vである。つまり、この3段階の判定は、変化量ΔV1(t)、ΔV2(t)が、それぞれ有意に正、実質的に0、および有意に負のいずれであるかの判定である。
 そして、検査部135は、変化量ΔV1(t)、ΔV2(t)の両者ともに有意に正、実質的に0、および有意に負のいずれかであるとき、周囲温度T(V1)が適切であると判定する。検査部135は、変化量ΔV1(t)、ΔV2(t)の両者間で、判定が異なるとき、例えば、変化量ΔV1(t)が有意に正であって変化量ΔV2(t)が有意に負であるとき、周囲温度T(V1)が不適切であると判定する。従って、この判定において、順方向電圧V1の変化傾向と、順方向電圧V2の変化傾向が共通であるか否かが判定されるので、周囲温度T(V1)が適切であるか否かが簡易に判定される。また、この判定において、LED112-1、112-2間で、順方向電流は必ずしも等しくなくてもよい。順方向電流が独立に制御される場合、LED112-1、112-2の両者間で発光される光の輝度が異なることが許容される。
In the comparison, the inspecting unit 135 first determines which of the three levels of change ΔV1 (t) and ΔV2 (t) is −γ or less, a value greater than −γ and smaller than γ, or γ or more. It is determined whether it belongs to the stage. γ is a predetermined threshold value for determining whether or not the variation amounts ΔV1 (t) and ΔV2 (t) are significantly different from zero. γ is, for example, 0.05 to 0.2V. That is, this three-stage determination is a determination of whether the change amounts ΔV1 (t) and ΔV2 (t) are significantly positive, substantially 0, and significantly negative, respectively.
The inspecting unit 135 determines that the ambient temperature T (V1) is appropriate when both the changes ΔV1 (t) and ΔV2 (t) are significantly positive, substantially 0, and significantly negative. Judge that there is. When the determination is different between the change amounts ΔV1 (t) and ΔV2 (t), for example, the inspection unit 135 has a significantly positive change amount ΔV1 (t) and a significant change amount ΔV2 (t). When it is negative, it is determined that the ambient temperature T (V1) is inappropriate. Therefore, in this determination, since it is determined whether or not the change tendency of the forward voltage V1 and the change tendency of the forward voltage V2 are common, it is easy to determine whether or not the ambient temperature T (V1) is appropriate. Is determined. In this determination, the forward current does not necessarily have to be equal between the LEDs 112-1 and 112-2. When the forward current is controlled independently, the brightness of the light emitted between the LEDs 112-1 and 112-2 is allowed to be different.
 なお、この判定は、順方向電圧V1、V2に代えて、周囲温度T(V1)、T(V2)について行われてもよい。但し、検査部135は、周囲温度T(V1)、T(V2)の変化量ΔT(V1(t))、ΔT(V2(t))がそれぞれ有意に正、実質的に0、および有意に負のいずれかであるかの判定の際、閾値γに代えて所定の閾値ιを用いる。ιは、例えば、0.1°C~0.3°Cである。 Note that this determination may be performed for the ambient temperatures T (V1) and T (V2) instead of the forward voltages V1 and V2. However, the inspection unit 135 determines that the variations ΔT (V1 (t)) and ΔT (V2 (t)) of the ambient temperatures T (V1) and T (V2) are significantly positive, substantially 0, and significantly When determining whether it is negative, a predetermined threshold ι is used instead of the threshold γ. ι is, for example, 0.1 ° C to 0.3 ° C.
 また、検査部135は、順方向電圧V1、V2の変化量ΔV1(t)、ΔV2(t)の温度測定の開始時刻tからその時点の時刻tまでの時系列の相関係数ρを算出してもよい。検査部135は、相関係数ρが所定の相関係数の閾値ρ’よりも大きいとき、周囲温度T(V1)が適切であると判定し、相関係数ρが所定の相関係数の閾値ρ’以下であるとき、周囲温度T(V1)が不適切であると判定してもよい。閾値ρ’は、例えば、0.9である。なお、この判定も、順方向電圧V1、V2に代えて、周囲温度T(V1)、T(V2)に適用されてもよい。 In addition, the inspection unit 135 calculates a time-series correlation coefficient ρ from the temperature measurement start time t 0 to the time t at the time point of the change amounts ΔV 1 (t) and ΔV 2 (t) of the forward voltages V 1 and V 2. May be. When the correlation coefficient ρ is larger than the predetermined correlation coefficient threshold ρ ′, the inspection unit 135 determines that the ambient temperature T (V1) is appropriate, and the correlation coefficient ρ is the predetermined correlation coefficient threshold. When it is equal to or lower than ρ ′, it may be determined that the ambient temperature T (V1) is inappropriate. The threshold value ρ ′ is, for example, 0.9. This determination may also be applied to the ambient temperatures T (V1) and T (V2) instead of the forward voltages V1 and V2.
 以上に説明したように、本実施形態に係る内視鏡装置10Aは、温度に応じて順方向電圧が異なるLED112-1、112-2を挿入部11の先端に複数個備える。また、内視鏡装置10Aは、LED112-1、112-2ごとに電気的特性の特性値を検出するA/D133、144と、特性値の温度特性を示す温度特性情報を記憶するメモリー139を備える。また、内視鏡装置10Aは、温度特性情報を参照して、特性値から特定される温度の測定状態を、LED112-1、112-2ごとの特性値の比較に基づいて検査する検査部135を備える。
 この構成により、LED112-1、112-2それぞれの電気的特性の特性値から特定される温度の測定状態が、それぞれの特性値もしくは温度に基づいて検査される。そのため、LED112-1、112-2の主な機能である照明を使用しながら温度測定機能の動作状態を検査することができる。
As described above, the endoscope apparatus 10A according to the present embodiment includes a plurality of LEDs 112-1 and 112-2 having different forward voltages depending on the temperature at the distal end of the insertion portion 11. In addition, the endoscope apparatus 10A includes A / D 133 and 144 for detecting the characteristic value of the electrical characteristic for each of the LEDs 112-1 and 112-2, and a memory 139 for storing temperature characteristic information indicating the temperature characteristic of the characteristic value. Prepare. Further, the endoscope apparatus 10A refers to the temperature characteristic information, and inspects the measurement state of the temperature specified from the characteristic value based on the comparison of the characteristic values of the LEDs 112-1 and 112-2. Is provided.
With this configuration, the measurement state of the temperature specified from the characteristic values of the electrical characteristics of the LEDs 112-1 and 112-2 is inspected based on the respective characteristic values or temperatures. Therefore, it is possible to inspect the operation state of the temperature measurement function while using the illumination that is the main function of the LEDs 112-1 and 112-2.
 また、検査部135は、LED112-1、112-2ごとの温度の測定開始時からの温度もしくは特性値の変化量を算出し、LED112-1、112-2ごとの変化量に基づいて温度の測定状態を検査する。
 この構成により、LED112-1、112-2間で完全に温度が等しくない場合や、特性値を変動させる温度以外の物理量として、例えば、順方向電流が共通でない場合であっても温度の測定状態を検査することができる。
In addition, the inspection unit 135 calculates the amount of change in temperature or characteristic value from the start of temperature measurement for each of the LEDs 112-1 and 112-2, and calculates the temperature based on the amount of change for each of the LEDs 112-1 and 112-2. Check the measurement status.
With this configuration, when the temperatures are not completely equal between the LEDs 112-1 and 112-2, or as a physical quantity other than the temperature that changes the characteristic value, for example, even when the forward current is not common, the temperature measurement state Can be inspected.
<第3実施形態>
 次に、本発明の第3の実施形態について説明する。上述した実施形態と同一の構成については、同一の符号を付してその説明を援用する。以下の説明では、第1の実施形態との差異点を主とする。
 図8は、本実施形態に係る内視鏡装置10Bの構成を示す概略ブロック図である。本実施形態に係る内視鏡装置10Bは、内視鏡装置10において、さらに温度算出部137を含んで構成される。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. About the same structure as embodiment mentioned above, the same code | symbol is attached | subjected and the description is used. In the following description, differences from the first embodiment are mainly used.
FIG. 8 is a schematic block diagram showing the configuration of the endoscope apparatus 10B according to the present embodiment. The endoscope apparatus 10B according to the present embodiment is configured to further include a temperature calculation unit 137 in the endoscope apparatus 10.
 画像処理部136は、信号ドライバ114から入力される画素毎の出力信号のうち、オプティカルブラック(OB:Optical Black)領域内の画素毎の出力信号を選択する。OB領域とは、撮像素子113の画素が配列された画素領域のうち、レンズ111を透過した入射光が照射されずに遮光される所定の領域である。各画素における電荷の蓄積は、主に入射光に対する光電変換によって生じるが、入射光が照射されないOB領域内に配置された画素についても熱雑音によって生じる。言い換えれば、選択された画素毎の出力信号の信号値は、熱雑音による電荷の蓄積量を表す。 The image processing unit 136 selects an output signal for each pixel in an optical black (OB) area from among the output signals for each pixel input from the signal driver 114. The OB region is a predetermined region that is shielded without being irradiated with incident light transmitted through the lens 111 among pixel regions in which pixels of the image sensor 113 are arranged. Charge accumulation in each pixel is mainly caused by photoelectric conversion with respect to incident light, but is also caused by thermal noise in pixels arranged in an OB region that is not irradiated with incident light. In other words, the signal value of the output signal for each selected pixel represents the amount of accumulated charge due to thermal noise.
 画像処理部136は、選択した出力信号が示す信号値について、例えば、その時点におけるフレーム(現フレーム)の信号値と直前のフレーム(前フレーム)の信号値との差分値を画素ごとに算出する。そして、画像処理部136は、算出した差分値の画素間の分布に基づいて現フレームにおける暗電流値Iを算出する。画像処理部136は、算出した暗電流値Iを温度算出部137に出力する。暗電流算出処理の例については後述する。 For the signal value indicated by the selected output signal, the image processing unit 136 calculates, for each pixel, a difference value between the signal value of the current frame (current frame) and the signal value of the immediately preceding frame (previous frame), for example. . Then, the image processing unit 136 calculates the dark current value ID in the current frame based on the distribution of the calculated difference values between the pixels. The image processing unit 136 outputs the calculated dark current value ID to the temperature calculation unit 137. An example of the dark current calculation process will be described later.
 温度算出部137は、画像処理部136から入力される暗電流値Iに基づいて撮像素子113の温度T2を算出する。一般に、大きい暗電流値Iほど、温度T2が高いことを示す。温度算出部137は、後述する数式に示す関係を用いて温度T2を算出してもよいし、予めメモリー139に記憶された暗電流温度テーブルを参照して、暗電流値Iに対応する温度T2を特定してもよい。暗電流温度テーブルは、暗電流温度特性情報として暗電流値Iの温度依存性を示すデータである。温度算出部137は、算出した温度T2を示す温度データを検査部135に出力する。 The temperature calculation unit 137 calculates the temperature T2 of the image sensor 113 based on the dark current value ID input from the image processing unit 136. In general, a larger dark current value ID indicates a higher temperature T2. The temperature calculation unit 137 may calculate the temperature T2 using a relationship shown in a mathematical expression described later, or refers to a dark current temperature table stored in advance in the memory 139 and corresponds to the dark current value ID. T2 may be specified. The dark current temperature table is data indicating the temperature dependence of the dark current value ID as dark current temperature characteristic information. The temperature calculation unit 137 outputs temperature data indicating the calculated temperature T2 to the inspection unit 135.
 検査部135には、温度算出部134から温度T(V1)を示す温度データと、温度算出部137から温度T2を示す温度データが入力される。検査部135は、温度T(V1)と温度T2との差分|T(V1)-T2|が所定の差分の閾値εよりも小さいとき温度T(V1)が適切と判定し、当該差分|T(V1)-T2|が所定の差分の閾値ε以上であるとき温度T(V1)が不適切と判定する。 The inspection unit 135 receives temperature data indicating the temperature T (V1) from the temperature calculation unit 134 and temperature data indicating the temperature T2 from the temperature calculation unit 137. The inspection unit 135 determines that the temperature T (V1) is appropriate when the difference | T (V1) −T2 | between the temperature T (V1) and the temperature T2 is smaller than a predetermined difference threshold ε, and the difference | T When (V1) −T2 | is equal to or greater than a predetermined difference threshold ε, it is determined that the temperature T (V1) is inappropriate.
(OB領域)
 次に、OB領域の例について説明する。図9は、本実施形態に係る信号ドライバ114から入力される出力信号の例を示す概念図である。図9は、所定のフレームレートα[fps]でフレーム毎に出力信号が順次取得されることを示す。図9において、フレーム(0)からフレーム(n)それぞれの出力信号が長方形で表されている。また、各フレームの出力信号のうち、左上の塗りつぶされた領域はOB領域内に配置された画素からの出力信号を示し、それ以外の領域が撮像領域に配置された画素からの出力信号を示す。OB領域では、撮像素子113の配置によりレンズ111を透過した入射光が常に遮蔽される。OB領域内に配置された画素からの出力信号から得られる暗電流値Iが温度測定に用いられる。これに対し、入射光が照射される撮像領域内に配置された画素からの出力信号が画像処理部136において画像信号の生成に用いられる。
(OB area)
Next, an example of the OB area will be described. FIG. 9 is a conceptual diagram illustrating an example of an output signal input from the signal driver 114 according to the present embodiment. FIG. 9 shows that output signals are sequentially acquired for each frame at a predetermined frame rate α [fps]. In FIG. 9, the output signals of the frames (0) to (n) are represented by rectangles. Also, among the output signals of each frame, the upper left filled area indicates the output signal from the pixel arranged in the OB area, and the other area indicates the output signal from the pixel arranged in the imaging area. . In the OB region, incident light transmitted through the lens 111 is always shielded by the arrangement of the image sensor 113. A dark current value ID obtained from an output signal from a pixel arranged in the OB region is used for temperature measurement. On the other hand, an output signal from a pixel arranged in an imaging region irradiated with incident light is used for generating an image signal in the image processing unit 136.
(暗電流蓄積電荷量の温度依存性)
 次に、撮像素子113の各画素を構成するフォトダイオードにおける暗電流蓄積電荷量について説明する。図10は、暗電流蓄積電荷量の一例を示す図である。縦軸、横軸は、それぞれ暗電流蓄積電荷量Q、蓄積時間τを示す。暗電流蓄積電荷量Qは、蓄積時間τにほぼ比例する。暗電流蓄積電荷量Qと蓄積時間τは、式(1)に示す関係を有する。
(Temperature dependence of dark current accumulated charge)
Next, the dark current accumulated charge amount in the photodiode constituting each pixel of the image sensor 113 will be described. FIG. 10 is a diagram illustrating an example of the dark current accumulated charge amount. The vertical axis and the horizontal axis indicate the dark current accumulated charge amount Q and the accumulation time τ, respectively. The dark current accumulated charge amount Q is substantially proportional to the accumulation time τ. The dark current accumulated charge amount Q and the accumulation time τ have the relationship shown in the equation (1).
 Q=k・τ … (1) Q = k · τ (1)
 式(1)において、kは、比例係数を示す。比例係数kは、温度に依存する。一般に、温度が高いほど比例係数kが大きい。このことは、温度が高いほど暗電流が増加することを意味する。図10は、温度T、T、Tと温度の昇順に、暗電流が増加することを示す。なお、蓄積時間τは、電荷の蓄積開始時点からの経過時間である。つまり、蓄積時間τは、露光時間もしくはフレーム周期(フレームレートの逆数)に相当する。 In Equation (1), k represents a proportional coefficient. The proportionality coefficient k depends on the temperature. Generally, the higher the temperature, the larger the proportional coefficient k. This means that the dark current increases as the temperature increases. FIG. 10 shows that the dark current increases in the order of increasing temperature T A , T B , T C and temperature. The accumulation time τ is the elapsed time from the start of charge accumulation. That is, the accumulation time τ corresponds to the exposure time or the frame period (reciprocal of the frame rate).
(暗電流の温度依存性)
 次に、フォトダイオードにおいて生じる暗電流について説明する。図11は、フォトダイオードにおいて生じる暗電流の温度依存性の一例を示す図である。縦軸、横軸は、それぞれ暗電流値I、温度Tを示す。暗電流値Iは、温度Tの上昇に対して指数関数的に増加する。暗電流値Iと温度Tは、式(2)に示す関係を有する。
(Temperature dependence of dark current)
Next, dark current generated in the photodiode will be described. FIG. 11 is a diagram illustrating an example of temperature dependence of dark current generated in a photodiode. The vertical axis and the horizontal axis indicate the dark current value I D and the temperature T, respectively. The dark current value ID increases exponentially as the temperature T increases. The dark current value ID and the temperature T have the relationship shown in Formula (2).
 I=s・er・T … (2) I D = s · er · T (2)
 式(2)において、s、rは、それぞれフォトダイオードの材質、大きさ、形状など撮像素子113に依存する係数である。式(2)は、式(3)に示すように変形される。 In Equation (2), s and r are coefficients depending on the image sensor 113, such as the material, size, and shape of the photodiode. Equation (2) is transformed as shown in Equation (3).
 T=(1/r)・ln(I/s) … (3) T = (1 / r) · ln ( ID / s) (3)
 従って、式(3)は、取得した暗電流値Iから温度Tが算出できることを示す。そこで、メモリー139には、式(3)で表される暗電流値と温度との関係を表す暗電流温度テーブルを設定しておく。温度算出部137は、暗電流温度テーブルを参照して、画像処理部136から入力された暗電流値Iに対応する温度Tを求める。なお、温度算出部137は、暗電流温度テーブルを用いずに、式(3)に示す関係を用いて暗電流値Iから温度Tを算出してもよい。その場合には、係数s、rを予め温度算出部137に設定しておく。 Therefore, Equation (3) indicates that the temperature T can be calculated from the acquired dark current value ID . Therefore, a dark current temperature table representing the relationship between the dark current value represented by the equation (3) and the temperature is set in the memory 139. The temperature calculation unit 137 obtains a temperature T corresponding to the dark current value ID input from the image processing unit 136 with reference to the dark current temperature table. Note that the temperature calculation unit 137 may calculate the temperature T from the dark current value ID using the relationship shown in Equation (3) without using the dark current temperature table. In that case, the coefficients s and r are set in the temperature calculation unit 137 in advance.
(暗電流算出処理)
 次に、本実施形態に係る暗電流算出処理について説明する。画像処理部136は、OB領域内の各画素について現フレームでの信号値VOUTから前フレームでの信号値VOUTの差分である差分値VCALを算出する。
 画像処理部136は、OB領域内の各画素について算出した差分値VCALを画素間で集約し、差分値VCALごとの頻度の画素間分布を定める。画像処理部136は、定めた画素間分布から差分値VCALのノイズレベルNCALを定める。そして、画像処理部136は、画像処理部136が算出したノイズレベルNCALと予め設定した読出しノイズレベルNROについて式(4)に示す関係を用いて暗電流値Iを算出する。読出しノイズレベルNROは、画素から読み出される出力信号に混入される読出しノイズのレベルである。
(Dark current calculation process)
Next, the dark current calculation process according to the present embodiment will be described. The image processing unit 136 calculates the difference value V CAL is a difference between the signal value V OUT of the previous frame from the signal value V OUT of the current frame for each pixel in the OB region.
The image processing unit 136 aggregates the difference values V CAL calculated for each pixel in the OB area between the pixels, and determines a frequency-to-pixel distribution for each difference value V CAL . The image processing unit 136 determines the noise level N CAL of the difference value V CAL from the determined inter-pixel distribution. Then, the image processing unit 136 calculates the dark current value ID using the relationship shown in Expression (4) for the noise level N CAL calculated by the image processing unit 136 and the preset read noise level N RO . The readout noise level NRO is a level of readout noise mixed in the output signal read from the pixel.
 I=α・(NCAL /2-NRO ) … (4) I D = α · (N CAL 2 / 2-N RO 2 ) (4)
 式(4)は、暗電流値IがノイズレベルNCALの二乗の半分の値から読出しノイズレベルNROの二乗を差し引いて得られるフレーム当たりの暗電流蓄積電荷量QDCに、フレームレートαを乗じて算出されることを示す。
 式(4)は、式(5)、(6)に示す関係に基づいて導出される。
Equation (4) is the dark current value I D is the dark current accumulation charge quantity Q DC per frame obtained by subtracting the square of half the reading from the value the noise level N RO of the square of the noise level N CAL, frame rate α It is calculated by multiplying by.
Equation (4) is derived based on the relationships shown in equations (5) and (6).
 NCAL=√2・NOUT … (5)
 NOUT=√(NDC +NRO ) … (6)
N CAL = √2 · N OUT (5)
N OUT = √ (N DC 2 + N RO 2 ) (6)
 式(5)においてNOUTは、各フレームの信号値VOUTのノイズレベルを示す。式(5)は、各画素にランダムに生じ、フレーム毎の平均値がフレーム間でほぼ等しい信号値VOUTのノイズが加算されて、差分値VCALのノイズとして得られることを示す。差分値VCALの算出過程においてフレーム間で信号値の減算が行われても、ノイズ成分は相殺されない。差分値VCALのノイズレベルNCALは、各フレームのノイズレベルNOUTの√2倍となる。式(6)において、NDCは、各画素を構成するフォトダイオードにおける暗電流ショットノイズのノイズレベルを示す。式(6)は、各画素にランダムに生じる暗電流ショットノイズと、読出しノイズとが加算されて、信号値VOUTのノイズとして得られることによる。なお、暗電流ショットノイズのノイズレベルの二乗値NDC は、暗電流蓄積電荷量QDCに相当する。 In Expression (5), N OUT indicates the noise level of the signal value V OUT of each frame. Expression (5) indicates that the noise of the signal value VOUT that is generated at random in each pixel and whose average value for each frame is substantially equal between the frames is added to obtain the noise of the difference value VCAL . Even if the signal value is subtracted between frames in the process of calculating the difference value V CAL , the noise component is not canceled out. The noise level N CAL of the difference value V CAL is √2 times the noise level N OUT of each frame. In Equation (6), N DC represents the noise level of dark current shot noise in the photodiodes constituting each pixel. Equation (6) is obtained by adding the dark current shot noise randomly generated in each pixel and the readout noise to obtain the noise of the signal value VOUT . The square value N DC 2 of the dark current shot noise level corresponds to the dark current accumulated charge amount Q DC .
 従って、フレーム間の信号値VOUTの差分から得られる差分値VCALにおいて、そのノイズ成分が相殺されずに得られるノイズレベルNCALが暗電流値Iの算出に用いられる。他方、フレーム間で信号値VOUTの差分を算出することにより、出力信号に含まれる固定パターンノイズ(FPN:Fixed Pattern Noise)成分などの、フレーム間で共通のノイズ成分が相殺される。 Accordingly, in the difference value V CAL obtained from the difference between the signal values V OUT between frames, the noise level N CAL obtained without canceling out the noise component is used for the calculation of the dark current value ID . On the other hand, by calculating the difference of the signal value V OUT between frames, a common noise component between frames such as a fixed pattern noise (FPN) component included in the output signal is canceled.
(ノイズレベル決定処理)
 次に、ノイズレベル決定処理について説明する。画像処理部136は、ノイズレベルNCALを定める際、差分値VCALの画素間分布を求める。差分値の画素間分布は、図12に示すように信号値(もしくは、複数の隣接する信号値からなる区間)毎の頻度(つまり、画素数)で表される。そして、画像処理部136は、信号値の画素間における標準偏差σをノイズレベルNCALとして算出する。
(Noise level determination processing)
Next, the noise level determination process will be described. When determining the noise level N CAL , the image processing unit 136 obtains the inter-pixel distribution of the difference value V CAL . The inter-pixel distribution of the difference value is represented by the frequency (that is, the number of pixels) for each signal value (or a section composed of a plurality of adjacent signal values) as shown in FIG. Then, the image processing unit 136 calculates the standard deviation σ between the pixels of the signal value as the noise level N CAL .
 次に、画像処理部136が読出しノイズレベルNROを定める処理について説明する。撮像素子113は、画素毎に出力信号を読み出すための読み出し回路(図示せず)を備える。読み出し回路は、各画素についてフォトダイオード、画素アンプおよび後置アンプを備える。フォトダイオードは、光電変換により電気信号を発生させる受光素子である。画素アンプは、フォトダイオードからの出力信号を増幅して、後置アンプおよび信号ドライバ114に出力する。読出しノイズは、主に画素アンプから信号ドライバ114の間において画素毎の出力信号に付加されるが、信号値VOUTのノイズから抽出することは困難である。 Next, a process in which the image processing unit 136 determines the read noise level NRO will be described. The image sensor 113 includes a readout circuit (not shown) for reading out an output signal for each pixel. The readout circuit includes a photodiode, a pixel amplifier, and a post-amplifier for each pixel. The photodiode is a light receiving element that generates an electrical signal by photoelectric conversion. The pixel amplifier amplifies the output signal from the photodiode and outputs it to the post-amplifier and signal driver 114. The readout noise is added to the output signal for each pixel mainly between the pixel amplifier and the signal driver 114, but it is difficult to extract from the noise of the signal value VOUT .
 そこで、画像処理部136は、後置アンプからの増幅信号の信号値の画素間分布を求め、求めた信号値の標準偏差を読出しノイズのノイズレベルNROとして算出する。後置アンプは、増幅率可変機能付き増幅回路を含んで構成され、十分に大きい増幅率(例えば、仕様上の最大増幅率)を設定しておく。画素アンプからの出力信号に付加されるノイズは増幅されるのに対し、読出しノイズは後置アンプによって増幅されず、出力信号に付加されるノイズよりも十分に小さい。そのため、読出しノイズと、画素アンプからの出力信号に付加されるノイズとが、そのレベルにより判別可能となる。従って、画像処理部136は、読み出しノイズのノイズレベルNROを後置アンプからの増幅信号が示す画素間の信号値の分布に係る標準偏差をもって定めることができる。 Therefore, the image processing unit 136 obtains the inter-pixel distribution of the signal value of the amplified signal from the post-amplifier, and calculates the standard deviation of the obtained signal value as the noise level N RO of the read noise. The post-amplifier is configured to include an amplification circuit with a variable amplification factor function, and a sufficiently large amplification factor (for example, a maximum amplification factor in the specification) is set in advance. While the noise added to the output signal from the pixel amplifier is amplified, the readout noise is not amplified by the post-amplifier and is sufficiently smaller than the noise added to the output signal. Therefore, the read noise and the noise added to the output signal from the pixel amplifier can be discriminated by their levels. Accordingly, the image processing unit 136, can be determined with a standard deviation of the distribution of the signal values between the pixels indicated by the amplified signal from the post-amplifier noise level N RO readout noise.
 なお、画像処理部136は、各フレームについて差分値VCALに基づいてノイズレベルNCALを算出するが、読出しノイズのノイズレベルNROを、必ずしも各フレームについて算出しなくてもよい。画像処理部136は、予め画像の撮影前に増幅信号に基づいて読み出しノイズのノイズレベルNROを取得しておいてもよい。取得するタイミングは、例えば、テスト動作時、パラメータ設定時、などのいずれでもよい。なお、通常の動作環境(例えば、使用可能温度-10°C~70°C)のもとでは、ノイズレベルNROの変動が無視できるほど少ないので、一度設定したノイズレベルNROがそのまま継続して利用されてもよい。 The image processing unit 136 calculates the noise level N CAL based on the difference value V CAL for each frame, but the noise level N RO of the readout noise does not necessarily have to be calculated for each frame. The image processing unit 136 may acquire a noise level NRO of readout noise based on the amplified signal in advance before capturing an image. The acquisition timing may be, for example, any of a test operation, a parameter setting, and the like. Normally the operating environment (e.g., usable temperature -10 ° C ~ 70 ° C) Under Because so little variation in the noise level N RO is negligible, the noise level N RO is continued as it was once set May be used.
(温度検査処理)
 次に、本実施形態に係る温度検査処理について説明する。図13は、本実施形態に係る温度検査処理の一例を示すフローチャートである。本実施形態に係る温度検査処理は、ステップS131~S136の処理とステップS114~S118の処理を有する。ステップS114~S118の処理は、図5に示す温度検査処理と共通であるため、その説明を省略する。
(Temperature inspection process)
Next, the temperature inspection process according to the present embodiment will be described. FIG. 13 is a flowchart illustrating an example of a temperature inspection process according to the present embodiment. The temperature inspection process according to the present embodiment includes the processes of steps S131 to S136 and the processes of steps S114 to S118. The processing in steps S114 to S118 is common to the temperature inspection processing shown in FIG.
(ステップS131)制御部140は、電流源132-1に対し、LED112-1に供給する順方向電流Ifを設定する。A/D133は、順方向電圧V1を検出する。その後、ステップS132の処理に進む。
(ステップS132)温度算出部134は、メモリー139に予め記憶された順方向電圧対周囲温度テーブルを参照して、順方向電流Ifについて検出される順方向電圧V1における周囲温度T(V1)を特定する。その後、ステップS133の処理に進む。
(Step S131) The control unit 140 sets the forward current If supplied to the LED 112-1 for the current source 132-1. The A / D 133 detects the forward voltage V1. Thereafter, the process proceeds to step S132.
(Step S132) The temperature calculation unit 134 refers to the forward voltage versus ambient temperature table stored in advance in the memory 139, and identifies the ambient temperature T (V1) in the forward voltage V1 detected for the forward current If. To do. Thereafter, the process proceeds to step S133.
(ステップS133)画像処理部136は、画素毎の出力信号のうち、OB領域内の画素ごとの出力信号が示す信号値についてフレーム間の差分値VCALを算出する。画像処理部136は、算出した差分値VCALの画素間分布の大きさを示す標準偏差をノイズレベルNCALとして算出する。その後、ステップS134に進む。
(ステップS134)画像処理部136は、ノイズレベルNCAL、予め設定した読出しノイズレベルNROおよび所定のフレームレートαに基づいて暗電流値Iを算出する。その後、ステップS135に進む。
(ステップS135)温度算出部137は、暗電流値Iに基づいて撮像素子113の周囲温度T2を算出する。その後、ステップS136に進む。
(Step S133) The image processing unit 136 calculates an inter-frame difference value V CAL for the signal value indicated by the output signal for each pixel in the OB area among the output signals for each pixel. The image processing unit 136 calculates a standard deviation indicating the magnitude of the calculated inter-pixel distribution of the difference value V CAL as the noise level N CAL . Thereafter, the process proceeds to step S134.
(Step S134) The image processing unit 136 calculates the dark current value ID based on the noise level N CAL , the preset read noise level N RO and a predetermined frame rate α. Thereafter, the process proceeds to step S135.
(Step S135) The temperature calculation unit 137 calculates the ambient temperature T2 of the image sensor 113 based on the dark current value ID . Thereafter, the process proceeds to step S136.
(ステップS136)検査部135は、特定した周囲温度T(V1)と算出した周囲温度T2の差分の絶対値|T(V1)-T2|が所定の差分の閾値εよりも小さいか否かを判定する。小さいと判定されるとき(ステップS136 YES)、ステップS114の処理に進む。差分の閾値εと等しいか、またはそれより大きいと判定されるとき(ステップS136 NO)、ステップS117の処理に進む。 (Step S136) The inspection unit 135 determines whether or not the absolute value | T (V1) −T2 | of the difference between the specified ambient temperature T (V1) and the calculated ambient temperature T2 is smaller than a predetermined difference threshold ε. judge. When it is determined that it is small (YES in step S136), the process proceeds to step S114. When it is determined that the difference is equal to or larger than the difference threshold ε (NO in step S136), the process proceeds to step S117.
 <変形例>
 次に、本実施形態の変形例について説明する。本変形例に係る内視鏡装置10Cは、図14に示すように、内視鏡装置10Bにおいてライトガイド115と温度算出部143をさらに備える。ライトガイド115は、挿入部11の先端部に備えられたLED112-1と撮像素子113の間に配置される。ライトガイド115は、LED112-1が発光した光の一部を撮像素子113に透過する部材である。ライトガイド115を透過した光は、撮像素子113の画素が配列された画素領域のうち、所定の領域内に照射される。以下の説明では、ライトガイド115を透過した光が照射される領域を照射領域と呼ぶ。照射領域は、画素領域のうち被検体の画像が撮像される撮像領域を除く非撮像領域の一部である。その非撮像領域の他の部分が上述したOB領域に相当する。
<Modification>
Next, a modification of this embodiment will be described. As shown in FIG. 14, an endoscope apparatus 10C according to this modification further includes a light guide 115 and a temperature calculation unit 143 in the endoscope apparatus 10B. The light guide 115 is disposed between the LED 112-1 provided at the distal end portion of the insertion portion 11 and the image sensor 113. The light guide 115 is a member that transmits a part of the light emitted from the LED 112-1 to the image sensor 113. The light that has passed through the light guide 115 is applied to a predetermined area of the pixel area in which the pixels of the image sensor 113 are arranged. In the following description, an area irradiated with light transmitted through the light guide 115 is referred to as an irradiation area. The irradiation area is a part of the non-imaging area excluding the imaging area in which the image of the subject is captured in the pixel area. The other part of the non-imaging area corresponds to the OB area described above.
 本変形例では、画像処理部136は、画素ごとの出力信号のうち照射領域内の画素ごとの出力信号が示す信号値に基づいてLED112-1が発光した光の相対輝度を検出する。即ち、照射領域内の各画素を構成するフォトダイオードは、輝度センサとして利用される。当該フォトダイオードは、LED112-1からの光の強度に応じた電圧値を信号値として有する出力信号を生成する。相対輝度は、図15に示す例では、LED112-1の使用開始時において周囲温度が25°Cである場合における輝度を基準とした、その時点における輝度の比率である。そのため、LED112-1から照射領域に到来する光の輝度は、必ずしも挿入部11の先端から放射される光の輝度と等しくなくてもよく、その輝度よりも減衰していてもよい。画像処理部136は、検出した相対輝度を示す輝度情報を温度算出部143に出力する。また、メモリー139には、さらに輝度温度情報として輝度対周囲温度テーブルを予め記憶しておく。輝度対周囲温度テーブルは、順方向電流ごとのLED112-1の輝度の温度特性を示すデータである。 In the present modification, the image processing unit 136 detects the relative luminance of the light emitted by the LED 112-1 based on the signal value indicated by the output signal for each pixel in the irradiation region among the output signals for each pixel. That is, the photodiode constituting each pixel in the irradiation area is used as a luminance sensor. The photodiode generates an output signal having a voltage value corresponding to the intensity of light from the LED 112-1 as a signal value. In the example shown in FIG. 15, the relative luminance is the ratio of the luminance at that time with reference to the luminance when the ambient temperature is 25 ° C. at the start of use of the LED 112-1. Therefore, the luminance of the light arriving at the irradiation area from the LED 112-1 does not necessarily have to be equal to the luminance of the light emitted from the tip of the insertion portion 11, and may be attenuated from the luminance. The image processing unit 136 outputs luminance information indicating the detected relative luminance to the temperature calculation unit 143. The memory 139 further stores a luminance vs. ambient temperature table in advance as luminance temperature information. The luminance vs. ambient temperature table is data indicating the temperature characteristics of the luminance of the LED 112-1 for each forward current.
 温度算出部143は、メモリー139に記憶された輝度対周囲温度テーブルを参照して、電流源132-1への電流制御信号が示す順方向電流と、画像処理部136から入力される輝度情報が示す相対輝度に対応する温度T2’を特定する。温度算出部143は、特定した温度T2’を示す温度データを検査部135に出力する。
 検査部135には、温度T2を示す温度データが入力される。検査部135は、温度算出部134が特定した温度T(V1)と温度算出部143が特定した温度T2’との差分|T(V1)-T2’|が所定の差分の閾値εよりも小さいとき温度T(V1)が適切と判定し、当該差分|T(V1)-T2’|が所定の差分の閾値ε以上であるとき温度T(V1)が不適切と判定する。
The temperature calculation unit 143 refers to the luminance vs. ambient temperature table stored in the memory 139 and obtains the forward current indicated by the current control signal to the current source 132-1 and the luminance information input from the image processing unit 136. The temperature T2 ′ corresponding to the indicated relative luminance is specified. The temperature calculation unit 143 outputs temperature data indicating the specified temperature T2 ′ to the inspection unit 135.
The inspection unit 135 receives temperature data indicating the temperature T2. In the inspection unit 135, the difference | T (V1) −T2 ′ | between the temperature T (V1) specified by the temperature calculation unit 134 and the temperature T2 ′ specified by the temperature calculation unit 143 is smaller than a threshold ε of a predetermined difference. Temperature T (V1) is determined to be appropriate, and temperature T (V1) is determined to be inappropriate when the difference | T (V1) −T2 ′ |
 図15に示すように、一定の順方向電流のもとでは、周囲温度Tの上昇に伴ってLED112-1が発光する光の相対輝度が低下する。そして、LED112-1が、長時間高温環境下に晒され続けると輝度が低下し、使用開始当初の輝度を保つことができない。このことは、温度算出部143において輝度対周囲温度テーブルを参照して順方向電流と輝度情報が示す輝度に基づいて特定される温度T2’が、現実の温度よりも高くなる原因になる。従って、検査部135は、温度T(V1)と温度T2’の差分|T(V1)-T2’|に基づいて、これらの温度が適切であるか否かを判定することができる。 As shown in FIG. 15, under the constant forward current, the relative luminance of the light emitted from the LED 112-1 decreases as the ambient temperature T increases. If the LED 112-1 continues to be exposed to a high temperature environment for a long time, the luminance decreases, and the luminance at the beginning of use cannot be maintained. This causes the temperature T2 'specified based on the forward current and the brightness indicated by the brightness information with reference to the brightness vs. ambient temperature table in the temperature calculation unit 143 to be higher than the actual temperature. Therefore, the inspection unit 135 can determine whether or not these temperatures are appropriate based on the difference | T (V1) −T2 ′ | between the temperature T (V1) and the temperature T2 ′.
(温度検査処理)
 次に、本変形例に係る温度検査処理について説明する。図16は、本変形例に係る温度検査処理の一例を示すフローチャートである。本実施形態に係る温度検査処理は、ステップS131、S132、S136、S143およびステップS144の処理とステップS114~S118の処理を有する。ステップS131、S132およびステップS136の処理とステップS114~S118の処理は、図13に示す温度検査処理と共通であるため、その説明を省略する。
(Temperature inspection process)
Next, a temperature inspection process according to this modification will be described. FIG. 16 is a flowchart illustrating an example of a temperature inspection process according to the present modification. The temperature inspection process according to the present embodiment includes processes of steps S131, S132, S136, S143, and step S144, and processes of steps S114 to S118. Since the processes in steps S131, S132 and S136 and the processes in steps S114 to S118 are common to the temperature inspection process shown in FIG. 13, the description thereof is omitted.
 図16に示す処理では、ステップS131およびステップS132の処理の後、ステップS143の処理に進む。
(ステップS143)画像処理部136は、撮像素子113の照射領域内の画素ごとの出力信号が示す信号値に基づいてLED112-1が発光した光の相対輝度を検出(測定)する。その後、ステップS144の処理に進む。
(ステップS144)温度算出部143は、メモリー139に記憶された輝度対周囲温度テーブルを参照して、電流源132-1への電流制御信号が示す順方向電流と、画像処理部136が検出した相対輝度に対応する温度T2’を特定する。その後、ステップS136の処理に進む。
In the process illustrated in FIG. 16, the process proceeds to step S143 after the processes in step S131 and step S132.
(Step S143) The image processing unit 136 detects (measures) the relative luminance of the light emitted by the LED 112-1 based on the signal value indicated by the output signal for each pixel in the irradiation region of the image sensor 113. Thereafter, the process proceeds to step S144.
(Step S144) The temperature calculation unit 143 refers to the luminance versus ambient temperature table stored in the memory 139, and the forward current indicated by the current control signal to the current source 132-1 and the image processing unit 136 detect A temperature T2 ′ corresponding to the relative luminance is specified. Thereafter, the process proceeds to step S136.
 本変形例では、ステップS136において、検査部135は、温度算出部134が特定した温度T(V1)と温度算出部143が特定した温度T2’との差分|T(V1)-T2’|が所定の差分の閾値εよりも小さいとき温度T(V1)または温度T2’が適切と判定し、当該差分|T(V1)-T2’|が所定の差分の閾値ε以上であるとき不適切と判定する。 In this modification, in step S136, the inspection unit 135 determines that the difference | T (V1) −T2 ′ | between the temperature T (V1) specified by the temperature calculation unit 134 and the temperature T2 ′ specified by the temperature calculation unit 143 is It is determined that the temperature T (V1) or the temperature T2 ′ is appropriate when it is smaller than the predetermined difference threshold ε, and is inappropriate when the difference | T (V1) −T2 ′ | is equal to or greater than the predetermined difference threshold ε. judge.
 なお、上述した変形例に係る内視鏡装置10では、図14に示すように画像処理部136が算出した暗電流値Iに基づいて温度T2を特定する温度算出部137が省略されてもよいし、この温度算出部137が備えられてもよい。内視鏡装置10において温度算出部137が備えられる場合には、検査部135は、温度算出部134が特定した温度T(V1)と温度算出部143が特定した温度T2との差分|T(V1)-T2|が所定の差分の閾値ε以上、または、温度算出部134が特定した温度T(V1)と温度算出部137が特定した温度T2’との差分|T(V1)-T2’|が所定の差分の閾値ε以上であるとき、温度算出部134が特定した温度T(V1)が不適切と判定する。 Note that, in the endoscope apparatus 10 according to the modification described above, even if the temperature calculation unit 137 for specifying the temperature T2 based on the dark current value ID calculated by the image processing unit 136 is omitted as illustrated in FIG. Alternatively, the temperature calculation unit 137 may be provided. When the temperature calculation unit 137 is provided in the endoscope apparatus 10, the inspection unit 135 determines a difference | T () between the temperature T (V1) specified by the temperature calculation unit 134 and the temperature T2 specified by the temperature calculation unit 143. V1) −T2 | is greater than or equal to a predetermined difference threshold ε, or the difference | T (V1) −T2 ′ between the temperature T (V1) specified by the temperature calculation unit 134 and the temperature T2 ′ specified by the temperature calculation unit 137 When | is equal to or greater than a predetermined difference threshold ε, the temperature T (V1) specified by the temperature calculation unit 134 is determined to be inappropriate.
 以上に説明したように、本実施形態に係る内視鏡装置10Bにおいて、温度に応じて電気的特性が異なる部材の他の1個は、到来した光を光電変換する撮像素子113である。また、画像処理部136は、撮像素子113の電気的特性の特性値として、撮像素子113に生ずる暗電流を検出する。また、メモリー139は、温度特性情報として、暗電流の温度特性を示す暗電流温度テーブルをさらに記憶する。
 この構成により、LED112-1に生じた順方向電圧に基づく温度の測定状態が、撮像素子113に生じた暗電流に基づく温度に基づいて検査される。そのため、LED112-1の主な機能である照明と、撮像素子113の主な機能である撮像を使用しながら温度測定機能の動作状態を検査することができる。
As described above, in the endoscope apparatus 10B according to the present embodiment, the other member having different electrical characteristics depending on the temperature is the image sensor 113 that photoelectrically converts the incoming light. Further, the image processing unit 136 detects a dark current generated in the image sensor 113 as a characteristic value of the electrical characteristics of the image sensor 113. Further, the memory 139 further stores a dark current temperature table indicating the temperature characteristics of dark current as temperature characteristic information.
With this configuration, the temperature measurement state based on the forward voltage generated in the LED 112-1 is inspected based on the temperature based on the dark current generated in the image sensor 113. Therefore, it is possible to inspect the operation state of the temperature measurement function while using the illumination that is the main function of the LED 112-1 and the imaging that is the main function of the image sensor 113.
 また、内視鏡装置10Cは、LED112-1からの光の輝度を検出する画像処理部136を備える。また、メモリー139は、順方向電流の供給に応じて発光する光の輝度の温度特性を示す輝度対周囲温度テーブルを記憶する。検査部135は、輝度対周囲温度テーブルを参照して検出される輝度から特定される温度と、順方向電圧対周囲温度テーブルを参照して順方向電圧から特定される温度とを比較して温度の測定状態を検査する。
 この構成により、LED112-1に生じた順方向電圧に基づく温度の測定状態が、画像処理部136で検出された輝度に基づく温度に基づいて検査される。そのため、高温環境下での長時間の使用または経年劣化によるLED112-1の輝度の低下による温度測定機能の動作状態を検査することができる
In addition, the endoscope apparatus 10C includes an image processing unit 136 that detects the luminance of light from the LED 112-1. In addition, the memory 139 stores a luminance vs. ambient temperature table indicating the temperature characteristics of the luminance of light emitted in response to the forward current supply. The inspection unit 135 compares the temperature specified from the luminance detected with reference to the luminance vs. ambient temperature table and the temperature specified from the forward voltage with reference to the forward voltage vs. ambient temperature table. Check the measurement state.
With this configuration, the temperature measurement state based on the forward voltage generated in the LED 112-1 is inspected based on the temperature based on the brightness detected by the image processing unit 136. Therefore, it is possible to inspect the operating state of the temperature measurement function due to a decrease in luminance of the LED 112-1 due to long-term use in a high temperature environment or aging deterioration.
 以上、本発明の実施形態および変形例について説明したが、本発明の要旨を逸脱しない範囲内において種々の変形を加えることができる。
 例えば、内視鏡装置10、10A、10B、10Cが備えるLEDの個数は2個に限られず、3個以上であってもよい。その場合、検査部135は、各LEDの両端に生じる順方向電圧同士または各順方向電圧に基づいて算出された温度同士を比較して算出された温度が適切であるか否かを判定してもよい。
 なお、第2実施形態で説明した変形例は、第1実施形態に係る内視鏡装置10または第3実施形態に係る内視鏡装置10B、10Cに適用されてもよい。また、第3実施形態で説明した変形例は、第1実施形態に係る内視鏡装置10または第2実施形態に係る内視鏡装置10Aに適用されてもよい。
 また、内視鏡装置10、10B、10Cでは、LED112-2と電流源132-2が省略されてもよい。
As mentioned above, although embodiment and the modification of this invention were demonstrated, in the range which does not deviate from the summary of this invention, a various deformation | transformation can be added.
For example, the number of LEDs included in the endoscope apparatuses 10, 10A, 10B, and 10C is not limited to two, and may be three or more. In that case, the inspection unit 135 determines whether or not the temperature calculated by comparing the forward voltages generated at both ends of each LED or the temperatures calculated based on each forward voltage is appropriate. Also good.
Note that the modification described in the second embodiment may be applied to the endoscope apparatus 10 according to the first embodiment or the endoscope apparatuses 10B and 10C according to the third embodiment. The modification described in the third embodiment may be applied to the endoscope apparatus 10 according to the first embodiment or the endoscope apparatus 10A according to the second embodiment.
Further, in the endoscope apparatuses 10, 10B, 10C, the LED 112-2 and the current source 132-2 may be omitted.
 上述した、第1実施形態では、主に、内視鏡装置10の挿入部11の先端に備えられ、温度と別個の物理量に応じて電気的特性が異なる部材がLED112であり、温度と別個の物理量が順方向電流であり、電気的特性が順方向電圧である場合を例にした。第2実施形態では、主に、内視鏡装置10Aの挿入部11の先端に備えられ、温度に応じて電気的特性が異なる部材がLED112であり、電気的特性が順方向電圧である場合を例にした。また、第3実施形態では、主に、内視鏡装置10B、10Cの挿入部11の先端に備えられ、温度に応じて電気的特性が異なる部材がLED112と撮像素子113であり、LED112の電気的特性が順方向電圧であり、撮像素子113の電気的特性が暗電流である場合を例にした。
 これらの部材は、他の種類の部材、例えば、抵抗素子、コンデンサ、コイルなどの受動素子であってもよい。温度と別個の物理量は、電気抵抗、電気容量、インダクタンスなどの受動要素であってもよい。また、電気的特性は、その部材の両端の電圧であってもよい。
In the first embodiment described above, the LED 112 is mainly a member that is provided at the distal end of the insertion portion 11 of the endoscope apparatus 10 and has different electrical characteristics according to a physical quantity separate from the temperature. The case where the physical quantity is the forward current and the electrical characteristic is the forward voltage is taken as an example. In the second embodiment, the case where the member that is provided at the distal end of the insertion portion 11 of the endoscope apparatus 10A and has different electrical characteristics depending on the temperature is the LED 112, and the electrical characteristics are forward voltages. Take an example. In the third embodiment, the LED 112 and the image sensor 113 that are provided at the distal ends of the insertion portions 11 of the endoscope apparatuses 10B and 10C and have different electrical characteristics depending on the temperature are the LEDs 112 and the electric elements of the LED 112. An example is given in which the characteristic is a forward voltage and the electrical characteristic of the image sensor 113 is a dark current.
These members may be other types of members, for example, passive elements such as a resistance element, a capacitor, and a coil. The physical quantity separate from the temperature may be a passive element such as an electric resistance, an electric capacity, and an inductance. The electrical characteristic may be a voltage across the member.
 内視鏡装置10、10A、10B、10Cの一部、例えば、温度算出部134、137、142、143、検査部135、画像処理部136および制御部140をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、内視鏡装置10、10A、10B、10Cに内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリーのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。 A part of the endoscope apparatuses 10, 10A, 10B, and 10C, for example, the temperature calculation units 134, 137, 142, and 143, the inspection unit 135, the image processing unit 136, and the control unit 140 may be realized by a computer. . In that case, the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed. Here, the “computer system” is a computer system built in the endoscope apparatuses 10, 10A, 10B, and 10C, and includes hardware such as an OS and peripheral devices. The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, In this case, it may include a volatile memory inside a computer system serving as a server or a client, which holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 また、上述した実施形態における内視鏡装置10、10A、10B、10Cの一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。内視鏡装置10の各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Further, a part or all of the endoscope apparatuses 10, 10A, 10B, and 10C in the above-described embodiment may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each functional block of the endoscope apparatus 10 may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to the advancement of semiconductor technology, an integrated circuit based on the technology may be used.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態及びその変形例に限定されることはない。本発明の主旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
 また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment and its modification. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Further, the present invention is not limited by the above description, and is limited only by the scope of the appended claims.
 上記各態様の内視鏡装置および温度測定方法によれば、温度と温度以外の物理量に応じて電気的特性が異なる部材の電気的特性の特性値から特定される温度の測定状態が、物理量ごとに異なる電気的特性の特性値もしくは温度に基づいて検査される。または、温度に応じて電気的特性が異なる部材の特性値から特定される温度の測定状態が、それぞれの特性値もしくは温度に基づいて検査される。そのため、各部材の主な機能を使用しながら温度測定機能の動作状態を検査することができる。 According to the endoscope apparatus and the temperature measurement method of each aspect described above, the measurement state of the temperature specified from the characteristic values of the electrical characteristics of the members having different electrical characteristics according to the physical quantities other than the temperature and the temperature is determined for each physical quantity. Inspected based on characteristic values or temperatures of different electrical characteristics. Alternatively, the measurement state of the temperature specified from the characteristic values of the members having different electrical characteristics depending on the temperature is inspected based on the respective characteristic values or temperatures. Therefore, the operating state of the temperature measurement function can be inspected while using the main functions of each member.
10、10A、10B、10C‥内視鏡装置、11…挿入部、12…筐体、111…レンズ、112(112-1、112-2)…LED、113…撮像素子、114…信号ドライバ、115…ライトガイド、132(132-1、132-2)…電流源、133、141…A/D、134、137、142、143…温度算出部、135…検査部、136…画像処理部、138…表示部、139…メモリー、140…制御部、151…駆動回路、152…電源、153…可変抵抗素子 DESCRIPTION OF SYMBOLS 10, 10A, 10B, 10C ... Endoscope apparatus, 11 ... Insertion part, 12 ... Housing, 111 ... Lens, 112 (112-1, 112-2) ... LED, 113 ... Imaging element, 114 ... Signal driver, 115: Light guide, 132 (132-1, 132-2) ... Current source, 133, 141 ... A / D, 134, 137, 142, 143 ... Temperature calculation unit, 135 ... Inspection unit, 136 ... Image processing unit, 138: Display unit, 139 ... Memory, 140 ... Control unit, 151 ... Drive circuit, 152 ... Power source, 153 ... Variable resistance element

Claims (8)

  1. 温度および前記温度と別個の物理量に応じて電気的特性が異なる部材を挿入部の先端に備え、
     前記電気的特性の特性値を検出する検出部と、
     前記特性値の温度特性を示す温度特性情報を記憶する記憶部と、
     前記特性値から前記温度特性情報を参照して特定される温度の測定状態を、前記物理量ごとの特性値に基づいて検査する検査部と、
     を備える内視鏡装置。
    A member having different electrical characteristics according to temperature and a physical quantity distinct from the temperature is provided at the tip of the insertion portion,
    A detector for detecting a characteristic value of the electrical characteristic;
    A storage unit for storing temperature characteristic information indicating a temperature characteristic of the characteristic value;
    An inspection unit that inspects the measurement state of the temperature specified by referring to the temperature characteristic information from the characteristic value based on the characteristic value for each physical quantity;
    An endoscope apparatus comprising:
  2. 温度に応じて電気的特性が異なる部材を挿入部の先端に複数個備え、
     前記部材ごとに前記電気的特性の特性値を検出する検出部と、
     前記特性値の温度特性を示す温度特性情報を記憶する記憶部と、
     前記温度特性情報を参照して、前記特性値から特定される温度の測定状態を、前記部材ごとの前記特性値の比較に基づいて検査する検査部と、
     を備える内視鏡装置。
    Equipped with a plurality of members with different electrical characteristics at the tip of the insertion section depending on the temperature,
    A detection unit for detecting a characteristic value of the electrical characteristic for each member;
    A storage unit for storing temperature characteristic information indicating a temperature characteristic of the characteristic value;
    With reference to the temperature characteristic information, an inspection unit that inspects the measurement state of the temperature specified from the characteristic value based on the comparison of the characteristic value for each member;
    An endoscope apparatus comprising:
  3. 前記検査部は、部材ごとの前記温度の測定開始時からの変化量を算出し、前記部材ごとの前記変化量に基づいて前記測定状態を検査する
     請求項2に記載の内視鏡装置。
    The endoscope apparatus according to claim 2, wherein the inspection unit calculates an amount of change from the start of measurement of the temperature for each member, and inspects the measurement state based on the amount of change for each member.
  4. 前記部材の少なくとも1個は電流の供給に応じて発光する発光素子であり、
     前記検出部は、前記発光素子の前記特性値として前記電流の供給に応じて発生する電圧を検出し、
     前記記憶部は、前記温度特性情報として前記電流の供給に応じて発生する電圧の温度特性を示す情報を記憶する
     請求項1から請求項3のいずれか一項に記載の内視鏡装置。
    At least one of the members is a light emitting element that emits light in response to current supply,
    The detection unit detects a voltage generated according to the supply of the current as the characteristic value of the light emitting element,
    The endoscope apparatus according to any one of claims 1 to 3, wherein the storage unit stores information indicating a temperature characteristic of a voltage generated according to the supply of the current as the temperature characteristic information.
  5. 前記発光素子からの光の輝度を検出する輝度検出部と、
     前記記憶部は、前記電流の供給に応じて発光する光の輝度の温度特性を示す輝度温度特性情報を記憶し、
     前記検査部は、前記輝度温度特性情報を参照して前記輝度から特定される温度と、前記温度特性情報を参照して前記電圧から特定される温度とを比較して前記温度の測定状態を検査する
     請求項4に記載の内視鏡装置。
    A luminance detector for detecting the luminance of light from the light emitting element;
    The storage unit stores luminance temperature characteristic information indicating a temperature characteristic of luminance of light emitted according to the supply of the current,
    The inspection unit inspects the measurement state of the temperature by comparing the temperature specified from the luminance with reference to the luminance temperature characteristic information and the temperature specified from the voltage with reference to the temperature characteristic information. The endoscope apparatus according to claim 4.
  6. 前記部材の他の1個は、到来した光を光電変換する撮像素子であり、
     前記検出部は、前記撮像素子の前記特性値として、前記撮像素子に生ずる暗電流を検出し、
     前記記憶部は、前記温度特性情報として、前記暗電流の温度特性を示す暗電流温度特性情報をさらに記憶する
     請求項2から請求項5のいずれか一項に記載の内視鏡装置。
    Another one of the members is an image sensor that photoelectrically converts incoming light,
    The detection unit detects a dark current generated in the image sensor as the characteristic value of the image sensor,
    The endoscope apparatus according to any one of claims 2 to 5, wherein the storage unit further stores dark current temperature characteristic information indicating a temperature characteristic of the dark current as the temperature characteristic information.
  7.  内視鏡装置における温度検査方法であって、
     挿入部の先端に備えられた部材であって、温度および前記温度と別個の物理量に応じて電気的特性が異なる部材の前記電気的特性の特性値を検出する検出ステップと、
     記憶部に記憶され、前記特性値の温度特性を示す温度特性情報を参照して前記検出ステップで検出された特性値から特定される温度の測定状態を、前記物理量ごとの特性値に基づいて検査する検査ステップと、
     を有する温度検査方法。
    A temperature inspection method for an endoscope apparatus,
    A detection step of detecting a characteristic value of the electrical characteristic of a member provided at the distal end of the insertion portion and having a different electrical characteristic in accordance with a temperature and a physical quantity separate from the temperature;
    The temperature measurement state specified from the characteristic value detected in the detection step with reference to the temperature characteristic information stored in the storage unit and indicating the temperature characteristic of the characteristic value is inspected based on the characteristic value for each physical quantity. An inspection step to perform,
    A temperature inspection method.
  8.  内視鏡装置における温度検査方法であって、
     挿入部の先端に複数個備えられた部材であって、温度に応じて電気的特性が異なる部材それぞれの前記電気的特性の特性値を検出する検出ステップと、
     記憶部に記憶され、前記特性値の温度特性を示す温度特性情報を参照して、前記特性値から特定される温度の測定状態を、前記部材ごとの前記特性値の比較に基づいて検査する検査ステップと、
     を有する温度検査方法。
    A temperature inspection method for an endoscope apparatus,
    A detection step of detecting a characteristic value of each of the electrical characteristics of each of the members provided in a plurality at the distal end of the insertion portion and having different electrical characteristics depending on the temperature;
    An inspection for inspecting the measurement state of the temperature specified from the characteristic value based on the comparison of the characteristic value for each member with reference to temperature characteristic information stored in the storage unit and indicating the temperature characteristic of the characteristic value Steps,
    A temperature inspection method.
PCT/JP2016/063107 2016-04-26 2016-04-26 Endoscope device and temperature inspection method WO2017187535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063107 WO2017187535A1 (en) 2016-04-26 2016-04-26 Endoscope device and temperature inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063107 WO2017187535A1 (en) 2016-04-26 2016-04-26 Endoscope device and temperature inspection method

Publications (1)

Publication Number Publication Date
WO2017187535A1 true WO2017187535A1 (en) 2017-11-02

Family

ID=60161379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063107 WO2017187535A1 (en) 2016-04-26 2016-04-26 Endoscope device and temperature inspection method

Country Status (1)

Country Link
WO (1) WO2017187535A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081394A (en) * 2005-09-09 2007-03-29 Samsung Electro Mech Co Ltd Circuit for controlling driving of led with temperature-compensation function
JP2010142288A (en) * 2008-12-16 2010-07-01 Olympus Corp Endoscope and control method for the same
JP2014053250A (en) * 2012-09-10 2014-03-20 Koito Electric Industries Ltd Led luminous flux control device, road illuminating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081394A (en) * 2005-09-09 2007-03-29 Samsung Electro Mech Co Ltd Circuit for controlling driving of led with temperature-compensation function
JP2010142288A (en) * 2008-12-16 2010-07-01 Olympus Corp Endoscope and control method for the same
JP2014053250A (en) * 2012-09-10 2014-03-20 Koito Electric Industries Ltd Led luminous flux control device, road illuminating device

Similar Documents

Publication Publication Date Title
US10085611B2 (en) Light source apparatus for driving light sources based on generated light adjustment information
US7713192B2 (en) Endoscope system
CN111214250B (en) Radiation imaging apparatus and radiation imaging system
US10531078B2 (en) Imaging apparatus, endoscope apparatus, and temperature-measuring method
US20140239186A1 (en) Radiation imaging apparatus, radiation inspection apparatus, method for correcting signal, and computer-readable storage medium
US9627960B2 (en) Load voltage control device, electronic endoscope and electronic endoscope system
JP5963982B2 (en) Image processing system and image processing apparatus
WO2013128764A1 (en) Medical system
US10735681B2 (en) Inspection device, image processing device, correction value calculating method, image processing method and computer readable recording medium
US10653304B2 (en) Endoscope and endoscope system
JPWO2015098235A1 (en) Endoscope system and pixel correction method
US20120092471A1 (en) Endoscopic device
JP6808458B2 (en) Radiation imaging device and radiation imaging system
WO2017187535A1 (en) Endoscope device and temperature inspection method
WO2017216908A1 (en) Endoscope system
JP2012130578A (en) Endoscope apparatus
JP5889483B2 (en) Endoscope system
JP2021078093A (en) Radiation imaging apparatus and radiation imaging system
US10484626B2 (en) Gain adjustment unit, recording medium holding gain adjustment program, endoscope and endoscope apparatus
JP2012143366A (en) Endoscope apparatus
US20200121174A1 (en) Image pickup system, endoscope system, and image pickup gain setting method
JP6402286B1 (en) Imaging system and endoscope system
WO2015029856A1 (en) Processing device and endoscope system
JPH03151929A (en) Electronic endoscope
JP2007042680A (en) Quality judging method of line light source

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900408

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP