WO2017187229A1 - Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes - Google Patents

Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes Download PDF

Info

Publication number
WO2017187229A1
WO2017187229A1 PCT/IB2016/052385 IB2016052385W WO2017187229A1 WO 2017187229 A1 WO2017187229 A1 WO 2017187229A1 IB 2016052385 W IB2016052385 W IB 2016052385W WO 2017187229 A1 WO2017187229 A1 WO 2017187229A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
blades
rotor according
vertical axis
wind
Prior art date
Application number
PCT/IB2016/052385
Other languages
French (fr)
Inventor
Orlando Lozzi
Original Assignee
Orlando Lozzi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orlando Lozzi filed Critical Orlando Lozzi
Priority to PCT/IB2016/052385 priority Critical patent/WO2017187229A1/en
Publication of WO2017187229A1 publication Critical patent/WO2017187229A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/005Wind motors having a single vane which axis generate a conus or like surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/232Geometry three-dimensional prismatic conical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a vertical axis wind rotor equipped with a plurality of inclined blades.
  • the wind rotor of the present invention having blades inclined at about 45° relative to the axis and orthogonal to one another is a fast-type rotor, as it has a ratio between peripheral speed and wind speed higher than 1 (this ratio is known as ratio ⁇ in techno-scientific literature) ; such ratio can be up to values of 2.5, with specially devised parameters .
  • the three blades 1 are arranged at an angle a of 120° relative to one another and are inclined at an angle ⁇ of 45° relative to the vertical axis of rotation Y-Y and are mutually perpendicular.
  • the angle ⁇ can range between 30° and 60°.
  • Each of the three blades 1 consists of two parallel elements 1A, IB having the same aerodynamic profiles.
  • the elements 1A, IB are mounted suitably spaced from each other, this condition allowing self-starting of the rotor even with modest wind speeds.
  • the rotor Due to its particular configuration (sub-vertical impeller), the rotor, which during rotation is much faster than the wind stream, causes a phenomenon of secondary induced flow with respect to the main stream flow, said secondary induced flow enveloping the entire upper circular area of the rotor and arriving at the inner conical area between the blades, yielding a further amount of kinetic energy of the flow to the blades, whereby the power delivered to the shaft 2 of the wind-power generator associated to the rotor is remarkably increased.
  • a tie-rod 3 preferably an adjustable tie-rod, is provided on each of the three blades, which tie- rod connects the upper end of the blade 1 in a point Lb and the central hub 4 in a point Mh.
  • the rotor acquires high rigidity that allows safe operation thereof at high rotational speeds Or that characterize this type of machine, whereby the field of application of the rotor also extends to very fast winds, which can become a critical factor for the application of other types of rotors .
  • Figure 2 shows the schematic cross section of composite blades 1 consisting of two parallel elements 1A, IB equipped with blade profiles having a length equal to the chord C with their respective median planes P spaced apart by a distance "dl” having a value from 0.2 to 1.2 times the chord C and staggered at their respective leading edges Bt by a value "d2" from 0.1 to 0.8 times, and preferably 0.4 times, the chord C.
  • the rotor which is the subject matter of the present invention combines all the aerodynamic advantages of horizontal axis fast turbines with the simplicity of vertical axis turbines, this type or rotor being a hybrid construction between the aforesaid two systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

Vertical axis wind rotor having three blades arranged at 120° relative to one another, consisting of two suitable aerodynamic profiles appropriately spaced apart from each other, thus determining the principle of the blade array effect. Upon rotation caused by wind, the rotor with self- starting properties creates, by virtue of its configuration, a secondary induced flow, which flows from the upper central part to the periphery, thus remarkably increasing the degree of aerodynamic efficiency of the wind-power generator.

Description

"Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes"
DESCRIPTION
The invention relates to a vertical axis wind rotor equipped with a plurality of inclined blades.
The wind rotor of the present invention having blades inclined at about 45° relative to the axis and orthogonal to one another is a fast-type rotor, as it has a ratio between peripheral speed and wind speed higher than 1 (this ratio is known as ratio λ in techno-scientific literature) ; such ratio can be up to values of 2.5, with specially devised parameters .
In the rotor as shown in Figure 1, the three blades 1 are arranged at an angle a of 120° relative to one another and are inclined at an angle β of 45° relative to the vertical axis of rotation Y-Y and are mutually perpendicular. According to the invention, the angle β can range between 30° and 60°.
Each of the three blades 1 consists of two parallel elements 1A, IB having the same aerodynamic profiles. According to the invention, the elements 1A, IB are mounted suitably spaced from each other, this condition allowing self-starting of the rotor even with modest wind speeds.
Due to its particular configuration (sub-vertical impeller), the rotor, which during rotation is much faster than the wind stream, causes a phenomenon of secondary induced flow with respect to the main stream flow, said secondary induced flow enveloping the entire upper circular area of the rotor and arriving at the inner conical area between the blades, yielding a further amount of kinetic energy of the flow to the blades, whereby the power delivered to the shaft 2 of the wind-power generator associated to the rotor is remarkably increased.
The entity of this particular phenomenon with consequent remarkable overall efficiency of the system depends on several parameters such as, for instance, the instantaneous wind speed, the shape of the blade profiles, the length of the blades, the distance between the profiles and so on. An optimization of the rotor characteristic quantities which is valid for a wide range of values is not easy to achieve; this problem has been solved through several, systematic experiences carried out at various wind sites and with different parametric values integrated with sophisticated CFD (Computer Fluid Dynamics) systems; in this way it was possible to achieve application developments that allow satisfactory results for the whole operating range of the wind turbine.
Owing to the fact that the rotor is very fast, the centrifugal forces arising on the blades 1 have remarkable values, which greatly stress the entire structure and more particularly the section at which the rotor are wedged in the base of the rotor.
In order to limit the structural deformations and have low stress upon wedging, a tie-rod 3, preferably an adjustable tie-rod, is provided on each of the three blades, which tie- rod connects the upper end of the blade 1 in a point Lb and the central hub 4 in a point Mh.
Through the connection between blades 1 and tie-rod 3 the rotor acquires high rigidity that allows safe operation thereof at high rotational speeds Or that characterize this type of machine, whereby the field of application of the rotor also extends to very fast winds, which can become a critical factor for the application of other types of rotors .
Figure 2 shows the schematic cross section of composite blades 1 consisting of two parallel elements 1A, IB equipped with blade profiles having a length equal to the chord C with their respective median planes P spaced apart by a distance "dl" having a value from 0.2 to 1.2 times the chord C and staggered at their respective leading edges Bt by a value "d2" from 0.1 to 0.8 times, and preferably 0.4 times, the chord C. With this range of dimensional ratios it is possible to obtain the best aerodynamic efficiency values of the rotor and high performances.
In practice, the rotor which is the subject matter of the present invention combines all the aerodynamic advantages of horizontal axis fast turbines with the simplicity of vertical axis turbines, this type or rotor being a hybrid construction between the aforesaid two systems.

Claims

1. Vertical axis wind rotor (Y-Y) comprising a plurality of blades (1) arranged on axes that are inclined at an angle ( β ) ranging between 30° e 60° relative to the vertical main axis of rotation (Y-Y) .
2. Rotor according to claim 1, wherein the blades (1) are three in number, spaced apart by an angle ( a ) of 120° relative to one another.
3. Rotor according to claim 1 o 2, wherein the blades (1) are inclined at an angle ( β ) of 45° relative to the axis of rotation (Y-Y) .
4. Rotor according to claim 1 o 2, wherein each blade (1) comprises two mutually parallel elements (1A, IB) having the same aerodynamic profiles.
5. Rotor according to claim 4, wherein the mutual distance ("dl") between the median planes ("P") of the two blade profiles of the elements (1A, IB) of each blade (1) is comprised between 0.2 and 1.2 times the length of the chord (C) of the blade profile.
6. Rotor according to claim 5, wherein said distance ("dl") is 0.35 times the chord (C) .
7. Rotor according to claim 6, wherein the position of the respective leading edges (Bt) of each blade profile is staggered by a value ("d2") comprised between 0.1 and 0.8 times the chord (C) .
8. Rotor according to claim 7, wherein said position is staggered by 0.4 times the chord (C)
9. Rotor according to any of the preceding claims, wherein the blades (1) are interiorly attached by wedging to the hub (4) of the rotor and are fixed, at the upper end, to an adjustable tie-rod (3) connected to the central hub (4) of the rotor.
PCT/IB2016/052385 2016-04-27 2016-04-27 Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes WO2017187229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/052385 WO2017187229A1 (en) 2016-04-27 2016-04-27 Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/052385 WO2017187229A1 (en) 2016-04-27 2016-04-27 Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes

Publications (1)

Publication Number Publication Date
WO2017187229A1 true WO2017187229A1 (en) 2017-11-02

Family

ID=56098290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/052385 WO2017187229A1 (en) 2016-04-27 2016-04-27 Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes

Country Status (1)

Country Link
WO (1) WO2017187229A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018353A1 (en) 2019-07-27 2021-02-04 Siva Raghuram Prasad Chennupati Universal propeller, operating method and favoured uses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355956A (en) * 1979-12-26 1982-10-26 Leland O. Lane Wind turbine
FR2873764A1 (en) * 2004-07-28 2006-02-03 Spinosa Andre Tour Vertical axis wind turbine for generating electric, pneumatic or hydraulic energy, has rotor with arms mounted around horizontal axes on central shaft whose speed is controlled by counterweights, and blades placed between arms and shaft top
WO2011039404A1 (en) * 2009-10-01 2011-04-07 Cuycha Innovation Oy Method for improving the efficiency of wind or water turbine and a corresponding turbine
WO2015040539A1 (en) * 2013-09-17 2015-03-26 Genius Energy Srl Vertical axis wind turbine rotor
WO2015123738A1 (en) * 2014-02-21 2015-08-27 DE ARAÚJO, Marcelus Geraldo Fluid kinetic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355956A (en) * 1979-12-26 1982-10-26 Leland O. Lane Wind turbine
FR2873764A1 (en) * 2004-07-28 2006-02-03 Spinosa Andre Tour Vertical axis wind turbine for generating electric, pneumatic or hydraulic energy, has rotor with arms mounted around horizontal axes on central shaft whose speed is controlled by counterweights, and blades placed between arms and shaft top
WO2011039404A1 (en) * 2009-10-01 2011-04-07 Cuycha Innovation Oy Method for improving the efficiency of wind or water turbine and a corresponding turbine
WO2015040539A1 (en) * 2013-09-17 2015-03-26 Genius Energy Srl Vertical axis wind turbine rotor
WO2015123738A1 (en) * 2014-02-21 2015-08-27 DE ARAÚJO, Marcelus Geraldo Fluid kinetic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018353A1 (en) 2019-07-27 2021-02-04 Siva Raghuram Prasad Chennupati Universal propeller, operating method and favoured uses

Similar Documents

Publication Publication Date Title
US20090169388A1 (en) Multiple Rotor Windmill and Method of Operation Thereof
CN101598104B (en) Rotor assembly for a wind turbine and method of assembling the same
EP2479381A1 (en) Axial flow turbine
US20130093191A1 (en) Vertical axis wind turbine
KR20140015405A (en) System for using wind power
EP3613980A1 (en) Vertical-shaft turbine
RU2016103276A (en) WIND GENERATOR TOWER WITH GYROMILL TURBINE (OPTIONS)
US8226348B2 (en) Vertical axis rotor-type wind turbine
WO2009071150A3 (en) Wells turbine having passive rotor blade displacement
US10704526B2 (en) Vaned wheel for a turbine, and power generation device
WO2015040539A1 (en) Vertical axis wind turbine rotor
AU2014288898B2 (en) Vertical axis wind turbine
WO2017187229A1 (en) Vertical axis multibladed wind rotor having inclined blades with intersecting aerodynamic fluxes
KR20140014185A (en) Device for using wind power having at least one rotor
WO2017195145A1 (en) Vertical axis wind turbine with concentrator in stacked configuration surrounding the rotor
US11629691B2 (en) Vertical axis turbine
US20170306925A1 (en) Three-vane double rotor for vertical axis turbine
US11946449B2 (en) Flow turbine rotor with twisted blades
US20160327022A1 (en) Crossflow axes rotary mechanical devices with dynamic increased swept area
EP2617991A1 (en) Vertical axis wind turbine
RU2705531C1 (en) Rotor of vertical axial wind-driven unit
RU2508471C2 (en) Wind motor
GB2581411A (en) Shaftless wind turbine
CN107002635B (en) Including the longitudinally concave blade with PSP dihedral angle
RU2470181C2 (en) Wind turbine with vertical rotational axis

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16726950

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16726950

Country of ref document: EP

Kind code of ref document: A1