WO2017187002A1 - Material semiconductor micro- y nano- estructurado, procedimiento de obtención y uso como patrón de calibración - Google Patents

Material semiconductor micro- y nano- estructurado, procedimiento de obtención y uso como patrón de calibración Download PDF

Info

Publication number
WO2017187002A1
WO2017187002A1 PCT/ES2017/070266 ES2017070266W WO2017187002A1 WO 2017187002 A1 WO2017187002 A1 WO 2017187002A1 ES 2017070266 W ES2017070266 W ES 2017070266W WO 2017187002 A1 WO2017187002 A1 WO 2017187002A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
cell
period
oscillation
semiconductor material
Prior art date
Application number
PCT/ES2017/070266
Other languages
English (en)
French (fr)
Inventor
Esther REBOLLAR GONZÁLEZ
Álvaro RODRÍGUEZ RODRÍGUEZ
Tiberio Ezquerra Sanz
Mari Cruz GARCÍA GUTIÉRREZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2017187002A1 publication Critical patent/WO2017187002A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q40/00Calibration, e.g. of probes
    • G01Q40/02Calibration standards and methods of fabrication thereof

Definitions

  • the present invention relates to a micro- and nanostructured semiconductor material that serves as a calibration standard, particularly as a spatial and conductive calibration standard in measurements with conductive atomic force microscopes.
  • the present invention relates to the method of manufacturing said material by means of the laser-induced periodic surface structuring technique and the use of a mask. Therefore, the present invention could be framed in the field of sample analysis and characterization techniques.
  • Atomic force microscopy (AF of the English “Atomic Forcé Microscopy”) has become in recent years a very powerful tool when it comes to visualizing matter at the nanometric and even sub-nanometric scale [Schónherr H, Vancso G. "Scanning forced microscopy of po! Ymers”. Heidelberg: Springer; 2010], More recently, AFM technology has gone beyond simple visualization [”Assessment and Formation Mechanism of Laser-lnduced Periodic Sur ⁇ ace Structures on Potymer Spin-Coated Films in Real and Reciproca!
  • the present invention relates to a sheet of a semiconductor material deposited on a conductive substrate comprising a characteristic micro- and nanostructured surface where the micrometric structures serve to carry out the gross spatial calibration of the micrometer scale in measurements with atomic force microscopes and where the nanometric structures serve to perform the fine spatial calibration of the nanometric scale.
  • Said sheet of a micro- and nanostructured semiconductor material is further characterized by having well-defined micrometric and nanometric structures that exhibit electrical conductivity, whereby said sheet can also be used as a conductive calibration standard in measurements with conductive atomic force microscopes.
  • the present invention is a sheet of a semiconductor material with a micro- and nanostructured surface that serves as a pattern of spatial and conductive calibration in measurements of atomic force microscopes, particularly in conductive atomic force microscopes.
  • the present invention also relates to! manufacturing process of said sheet of a semiconductor material. The procedure is based on the surface structuring of a semiconductor material determined by the laser-induced periodic surface structuring technique, the English "laser induced periodic surface structuring" UPSS, and the use of a mask.
  • the LIPSS technique consists in the repetitive irradiation of a material with a polarized linearly laser beam so that it results in the formation of periodic linear structures on the surface of the material, parallel to the polarization of the laser and with sizes in the order of the length of irradiation wave
  • This technique allows the nanostructuring of materials with a simple experimental assembly being able to modify areas of a size of up to square centimeters on a short time scale (of minutes) and by using low energy densities (below a few tens of mJ / cm 2 ) taking place the superficial modification without ablation or ejection of material.
  • a limitation of the technique however is that it requires the use of a subject!
  • This feedback mechanism is related to the use of hundreds or thousands of laser pulses depending on the material, so that heating and cooling cycles of the material that give rise to the rearrangement of the material occur. Examples of these materials are polymers, metals, dielectrics, semiconductors, etc.
  • the present invention relates to the simultaneous micro- and nanostructuring of the surface of a semiconductor material by irradiation through a mask of a certain size and shape, using the irradiation conditions that lead to the formation of induced periodic surface structures by laser (LIPSS structures), that is, by using low energy densities of the laser pulses, below a few tens of mJ / cm 2 .
  • LIPSS structures induced periodic surface structures by laser
  • the mask located at a certain distance from the surface of the semiconductor material produces several distinctive zones in the semiconductor material.
  • the shape and size of the mask define the shape and size of a cell.
  • it induces the formation of a Fresnel diffraction pattern inside said cell with maximum and minimum intensity and determined separation, of so that the local variations of the laser intensity produced by said effect give rise to the microstructuring of the semiconductor material.
  • Fresnel diffraction is a near-field effect produced when the incident wave source or the observation point from which they are observed, or both, are at a finite distance from the aperture or obstacle produced by diffraction, in this Case mask.
  • the screen is the surface of the matter! semiconductor. Due to the diffraction phenomenon, maximums and minimums of intensity (diffraction pattern) are obtained, so the local energy that reaches the screen is not the same at all points.
  • the maximum and minimum intensity (diffraction pattern) can be calculated from the geometry of the opening, the distance from the opening to the screen and the electromagnetic wavelength.
  • the mask used in the manufacturing process is micrometric in size, so that both the size of the cell that is produced on the surface of a material! semiconductor as the Fresnel diffraction pattern that occurs inside said cell are from! micrometric order
  • the shape of the mask of the present invention is variable, from a polygon to a circle, obtaining different diffraction patterns on the surface of the semiconductor materials.
  • Fresnel diffrac ⁇ ion and frac ⁇ al patterns from potygona! Aper ⁇ ures J. G. Huang, J.. Christian, and G. S. McDonald J. Opt. Soc. Am. A, Vol. 23, No. 11 you can see the different Fresnel patterns that can be obtained depending on the polygonal aperture or polygonal mask used.
  • the sheet of a micro- and nanostructured semiconductor material of the present invention is further characterized by having well-defined micrometric and nanometric structures that exhibit electrical conductivity; These are ios valleys or minimums of intensity that have electrical conductivity and therefore can be used as a conductive calibration standard in measurements with c-AF microscopes, both for coarse calibration and fine calibration.
  • the present invention relates to the use of the material of the invention as a calibration standard in AFM and c-AFM measurements.
  • the present invention relates to a subject! (from here "the material of the invention") characterized in that it is a semiconductor material with a roughness of between 0.1 nm and 10 nm capable of absorbing light between 30 nm and 1 100 nm, and in that it comprises a surface with at least one cell, wherein said cell comprises a representative magnitude of micrometer size, and, within said cell, a first zone and a second zone are located,
  • said first zone has a period of decreasing oscillation, a decreasing amplitude and a distance between two equivalent points within the period of oscillation of the micrometric order, between 0.5 ⁇ and 5 ⁇ ,
  • the second zone has a period of constant oscillation and a distance between two equivalent points within the period of oscillation of the nanometric order, between 20 nm and 1000 nm,
  • the material of the invention is a semiconductor material that has little roughness, between 0.1 nm and 10 nm so that the interference and feedback mechanism responsible for the formation of PSS LIs is effective. It is selected from a polymer, a fullerene, a fullerene derivative or a combination thereof.
  • fuerene derivative is understood as that compound that retains the exceptional physical and chemical properties of the precursor fuerenes.
  • the subject! of the invention is po! i (3 ⁇ hexi! thiophene), also known as P3HT.
  • the material of the invention is fenii-C71-methyl ester butyric acid, also known as PC71 BM.
  • the material of the invention is also capable of absorbing light of any wavelength between 30 nm and 1100 nm from a laser source, whereby any laser source operating in the range of said corresponding wavelengths can be used at the beginning of the X-rays and whose limit is the near IR.
  • the material of the invention is a semiconductor material capable of absorbing the wavelengths at which an Nd: YAG laser operates: 1064 nm, 532 nm, 355 nm, 266 nm and 213 nm.
  • a first zone and a second zone can be distinguished
  • first zone has a period of decreasing oscillation, a decreasing amplitude and a distance between two equivalent points within the period of oscillation of the micrometric order, between 0.5 ⁇ and 5 ⁇
  • second zone has a period of constant oscillation and a distance between two equivalent points within the oscillation period is of the nanometric order, between 20 nm and 1000 nm
  • the first zone corresponds to a Fresnel diffraction pattern characterized by having a period of decreasing oscillation, a decreasing amplitude and a distance between two equivalent points within the period of oscillation of the nanometric order, for example, the two equivalent points are valley- valley or ridge-ridge.
  • the Fresnel diffraction pattern that can be distinguished on the surface of the semiconductor material is produced by the use of a mask. Since the mask used in the manufacturing process is micrometric in size, both the size of the cell that is produced on the surface of the semiconductor material and the Fresnel diffraction pattern that occurs inside said cell are of the micrometric order .
  • the representative magnitude of said cell corresponds to a representative dimension of the mask, for example, with a side of a polygon or the diameter of a circle. This representative magnitude of the cell is the origin of the Fresnel diffraction.
  • the second zone corresponds to the LIPSS pattern. Said second zone is registered in the first zone.
  • the material of the invention is capable of absorbing light of 268 nm and where the second zone of the cell has a constant oscillation period and a distance between two equivalent points within the oscillation period of 190 nm and 210 nm .
  • the material of the invention is capable of absorbing light of 532 nm and where the second zone has a constant oscillation period and a distance between two equivalent points within the 410 nm and 470 nm oscillation period. .
  • the semiconductor material is capable of absorbing light of 213 nm and where the second zone of the cell has a constant oscillation period and a distance between two equivalent points within the 150 nm and 190 nm oscillation period.
  • the material of the invention is characterized in that it comprises a surface with at least one cell.
  • the surface size of the material of the invention should be such that it can be placed in the viewing area of a sample by atomic force microscopy, particularly by conductive atomic force microscopy, therefore, a size of about 1 cm 2 .
  • the cell mentioned above comprises a representative magnitude of micrometer size.
  • representative magnitude is meant, in the present invention, that micrometric size dimension that serves to perform the gross spatial calibration in atomic force microscopes, that is, the my metric calibration.
  • Said representative magnitude corresponds to the representative magnitude according to the shape and size of the mask used during the procedure for obtaining the material.
  • the shape of the mask varies from any polygon to even a circle; in the first case one side of the polygon would characterize the significant magnitude of the cell and, in the second case, the diameter of the circle would be the representative magnitude.
  • the cell is a circle and the representative magnitude is the diameter of said circle that varies between 50 ⁇ and 500 ⁇ .
  • the cell comprises a first representative magnitude and a second representative magnitude, where the first representative magnitude and the second magnitude are orthogonal to each other, and where the first representative magnitude and the second representative magnitude are micrometric in size.
  • the cell is a square and the sides or the first and second magnitude representative of said square measure between 50 ⁇ and 500 ⁇ .
  • the cell is a rectangle and a first side or first representative magnitude measures between 40 ⁇ and 100 ⁇ and the second side or second representative magnitude measures between 100 ⁇ and 500 ⁇ .
  • a first zone with a period of decreasing oscillation Fresne ⁇ diffraction zone
  • a conductive atomic force microscope c-AFM
  • a potential difference between the substrate and the tip normally a potential difference between -10 V and 10 V
  • the valleys of the first zone and the second zone have electrical conductivity of between 2 pA and 1 ⁇ when a potential difference -10 V and 10 V is applied, sufficient quantity so that the material of The present invention can be used as a spatial and standard calibration pattern for a c-AFM conductive atomic force microscope.
  • Another aspect of the invention relates to the manufacturing process of the material of the invention (from here the process of the invention) comprising the following steps:
  • Step a) refers to the preparation of a sheet of semiconductor material with low roughness between 0.1 nm and 10 nm and a thickness between 100 nm and 200 nm that is capable of absorbing light between 30 nm and 1100 nm on a conductive substrate.
  • conductive substrates are conductive silicon, indium tin and pyrolytic oxide also known as ITO, metals such as gold or platinum and substrates coated with a metallic layer of gold or platinum.
  • Step (a) can be carried out by any conventional polymer deposition technique.
  • step (a) is carried out by the centrifugal deposition technique (in English "spin-coating") or by the deposition and evaporation technique.
  • spin coating technique consists in depositing a certain volume of a solution of the material in the center of the substrate, and this is rotated so that the material diffuses due to the centrifugal force covering the entire substrate.
  • the solvent used is volatile and evaporates during rotation.
  • the deposition and evaporation technique consists in depositing a certain volume of a solution of material on a substrate and waiting until the solvent evaporates completely.
  • step (b) of the process of the invention a mask is placed parallel to the surface of the sheet of semiconductor material obtained in step (a) at a distance between 100 ⁇ and 500 ⁇ .
  • mask is understood as that material comprising an aperture of a certain size and shape through which the light from a laser passes.
  • the mask of the present invention is made of a material that does not absorb the wavelength of the irradiation laser or that is not decomposes or deteriorates to the creep that operates e! irradiation laser during e! procedure for obtaining the material of the invention, that is, having a modification and / or ablation threshold greater than the creep used in the process of the invention so that it remains intact.
  • creep is understood as the energy per unit area (J / cm 2 ) that is adjusted in intense pulsed or laser light equipment.
  • the distance between the mask and the surface is between 100 pm and 120 ⁇ when the mask is between 5 and 20 m thick.
  • Step (c) of the process refers to irradiation of the sheet of semiconductor material covered with a mask of stage (b) perpendicular to the surface of the sheet of semiconductor material with a pulsed laser, preferably pulses of! lasers are of the order of ios nanoseconds, between 4 ns and 15 ns, although said pulse duration is not limiting being able to use femtosecond lasers with laser pulses between 30 fs and 500 fs
  • Step (c) of the process of the invention is carried out by irradiating perpendicularly to the surface of the sheet of semiconductor material so that the Fresnel diffraction is effectively translated into the first area of the cell of the material of the invention.
  • step (c) of the process of the invention is carried out with a pulsed laser, with laser pulses between 4 ns and 15 ns, operating at a wavelength of 286 nm and at a creep of between 12 mJcm “2 and 15 mJcm " 2 .
  • the number of pulses used is between 2000 and 8000.
  • a mask can be used, for example, of copper, metal that although absorbs 266 nm light does not deteriorate at operating creep during the process of the invention, which are between 12 mJcm “2 and 15 mJcm "2 .
  • step (c) of the process of the invention is carried out with a pulsed laser, with laser pulses between 4 ns and 15 ns, operating at a wavelength of 532 nm and a creep of between 25 mJcm '2 and 35 mJcm ' 2 .
  • AND! Number of pulses used is between 2000 and 2000.
  • step (c) of the process of the invention is carried out with a pulsed laser, with laser pulses between 4 ns and 15 ns, operating at a wavelength of 213 nm and a creep of between 10 mJcm “2 and 15 mJcm " 2 .
  • the number of pulses used is between 2000 and 6000.
  • Step (d) of the process of the invention tries to peel the mask from the sheet of micro- and nanostructured semiconductor material of the present invention manually or with the aid of tweezers.
  • the last aspect of the invention relates to the use of the material of the invention as a calibration standard of a microscope.
  • a calibration standard for an atomic force microscope Preferably as a calibration standard for an atomic force microscope.
  • the present invention refers to the use of the material of the invention as a spatial and conductive calibration standard of a conductive atomic force microscope.
  • the sample to be analyzed is fixed on a metallic disk with conductive material, for example a conductive epoxy resin, silver paint, copper adhesive, and said disk is introduced into The microscope display area. Then a tip is selected that is conductive and suitable for measurements in contact mode, for example a common tip that is coated with Ptlr and the c-AFM measurement mode on the device is selected.
  • conductive material for example a conductive epoxy resin, silver paint, copper adhesive
  • a tip is selected that is conductive and suitable for measurements in contact mode, for example a common tip that is coated with Ptlr and the c-AFM measurement mode on the device is selected.
  • the electrical contact between the support and the sample, the sample and the tip and the tip and the equipment is critical, which means an error in the measurement if they cannot be controlled.
  • the micro-nano structure of the present invention is characterized by presenting an alternation of conductive and insulating regions which allows simultaneous spatial and conductive calibration
  • the material of the invention is a semiconductor material, selected from a semiconductor polymer, a fuilerene, a derivative of a fuilerene or a combination thereof, whereby the measurement of electrical current of these organic materials is carried out at moderate voltages, comparable with those necessary in inorganic semiconductors.
  • FSG 1 a Plan view of the micro- and nanostructured surface of the material of the invention.
  • FIG. 1 b Plan view and elevation view of the interior of a cell of the material of the invention.
  • FIG. 2 Photograph of the polymer pattern in the microscope.
  • FIG. 3 image through an optical microscope objective in which several cells with a size of 90 ⁇ x 90 ⁇ are observed.
  • FIG. 5 topography image of AFM in which micro- and nanostructures obtained by laser irradiation are observed.
  • FIG. 6 AFM images of topography and conductivity in a sample of P3HT modified by irradiation at 268 nm.
  • FIG. 7 AFM images of topography and conductivity in a sample of P3HT by irradiation at 532 nm.
  • a P3HT film with a thickness of 150 nm and prepared by deposition by centrifugation is irradiated with a wavelength of 266 nm in normal incidence with a creep of 13.4 mJ / cm 2 and 3600 pulses through a grid with cells square with a size of 90 ⁇ side and 18 m thick that is placed in contact with the polymer sample.
  • the samples are characterized by AFM and by c-AFM and it is observed that the valleys are conductive.
  • FIG. 1 is shown in plan view of the surface of the material of the invention.
  • FIG. 1a shows the plan view of said surface where 1 is the surface of the semiconductor material of the invention and 2 is a Cell.
  • FIG. 1b shows the plan view and the elevation view of the interior of the cell of the material of the invention where 2 indicates ⁇ a Cell, 3 ⁇ a 1 a zone, that is, ⁇ a zone of diffraction of Fresnel and 4 the 2 a zone corresponding to ⁇ a zone of structuring LI PSS.
  • FIG. 2 shows a photograph of the polymer pattern in the conductive support being introduced into the microscope.
  • FIG. 3 an image is observed through an optical microscope objective in which several cells with a size of 90 ⁇ x 90 pm are observed, resulting from the irradiation of the sheet of semiconductor material with a wavelength of 532 nm through a grid with a cell size of 90 ⁇ x 90 ⁇ .
  • FIG. 4 Image of AF topography in which the micro- and nanostructures obtained by laser irradiation with a wavelength of 286 nm are observed through a grid with a cell size of 90 ⁇ x 90 ⁇ .
  • the microfruits produced by the effect of Fresnel diffraction are observed in the areas near the edge of the cell
  • FIG. 5 Image of topography of AFM, magnification of the area of the edge of the image of the previous figure. The microstructures and nanostructures obtained by laser irradiation are observed. The vertical lines correspond to the structuring consequence of the Fresnel diffraction with a decreasing oscillation of 2.5 ⁇ , 1, 4 ⁇ , 1 ⁇ , and 0.9 ⁇ as the distance of the cell edge increases. A profile corresponding to the line marked on the topography image is shown below the image.
  • FIG. 6 AFM images of topography and conductivity in a sample of P3HT modified by irradiation at 286 nm in the central area of the cell. It is observed that the valleys of the nanometric structures with a period of 190 nm have conductivity. Additionally a sample of P3HT prepared under the same conditions is irradiated at 532 nm with 3600 pulses at a creep of 26 mJ / crn 2 .
  • FIG. 7 AFM images of topography and conductivity in a sample of P3HT modified by irradiation at 532 nm in the central area of the cell. It is observed that the valleys of the nanometric structures with a period of 430 nm have conductivity.
  • the sample is inserted into the microscope and a conductive tip is used for calibration, in this case of silicon coated with Ptlr. The mode of conductive measurements in the microscope is selected. A potential difference of -10 V is applied and the current flow through the sample is measured.
  • the sheet of semiconductor micro- and nanostructured material has conductivity in valleys of structures of the order of 300 pA.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

La presente invención se refiere a un material semiconductor micro- y nano- estructurado que sirve como patrón de calibración, particularmente como patrón de calibración espacial y conductor en medidas con microscopios de fuerza atómica conductivo. Además la presente invención se refiere al procedimiento de fabricación de dicho material mediante la técnica de estructuración superficial periódica inducida por láser y el uso de una máscara. Por tanto, la presente invención se podría encuadrar en el sector de las técnicas de análisis y caracterización de muestras.

Description

Figure imgf000003_0001
La presente invención se refiere a un material semiconductor micro- y nano- estructurado que sirve como patrón de calibración, particularmente como patrón de calibración espacial y conductor en medidas con microscopios de fuerza atómica conductivo. Además, la presente invención se refiere ai procedimiento de fabricación de dicho material mediante la técnica de estructuración superficial periódica inducida por láser y el uso de una máscara. Por tanto, la presente invención se podría encuadrar en el sector de las técnicas de análisis y caracterización de muestras.
Ϊ5 I ALÍU Ut LA ! fcUm
La microscopía de fuerzas atómicas (AF del inglés "Atomic Forcé Microscopy") se ha convertido en los últimos años en una herramienta muy potente a la hora de visualizar la materia a la escala nanométrica e incluso sub-nanométrica [Schónherr H, Vancso G. "Scanning forcé microscopy of po!ymers". Heidelberg: Springer; 2010], Más recientemente ¡a tecnología AFM ha ido más allá de la simple visualización ["Assessment and Formation Mechanism of Laser-lnduced Periodic Suríace Structures on Potymer Spin-Coated Films in Real and Reciproca! Space" Rebollar E, Pérez S, Hernández JJ, Martín-Fabiani i, Rueda DR, Ezquerra TA, Castillejo M, Langmuir, 27(9), 5596-5808 (2011)] y ha evolucionado para convertirse en una verdadera disciplina que utiliza la física y química de las palancas ("cantilevers" ) del AFM para la evaluación a escala nanoscópica de una gran cantidad de magnitudes físicas de entre las que cabe destacar las propiedades mecánicas (Módulo elástico, deformación, adherencia) ["Quantitative Mapping of Mechanicai Properiies in Potyiactic Acid/'Natural Rubber/Organoclay Bíonanocomposites as Revealed by Nanoindentation with Atomic Forcé Microscopy" D.E. Martínez-Tong, A.S. Najar, M. Soccio, A. Nogales, N. Bitinis, M.A. López-Manchado.T.A. Ezquerra, Composites Science and Technology 104 (2014) 34], las propiedades piezoeléctricas ["!mproving Information density in ferroelectric potymer films by using nanoimprinted gratings" Martínez-Tong DE, Soccio M, García-Gutiérrez MC, Nogales A, Rueda DR, Alayo N, Pérez-Murano F, Ezquerra TA, Applied Physics Letters 102(19), 191601 (2013)], la conductividad eléctrica ["Elucidating the nanoscale origins of organic eiectronic function by conductive atomic torce Microscopy" J.M. ativetsky, Y.L. Loob, P. Samonc, J. ater. Chem. C, 2014, 2, 31 18] y las propiedades térmicas ["Diameter- dependení melting behaviour in elecírospun polymer libres",, W. Wang, A. H. Barber, Nanotechnology 21 (2010) 225701] entre otras.
Uno de ios problemas que se presenta habituaimente ai usar la técnica AFM es la del calibrado. Si bien, para la calibración espacial, existen distintos tipos de muestras patrón, que son suministrados generalmente por los fabricantes de equipos AFM, no ocurre lo mismo para la calibración de las otras modalidades de medida a las que se puede acceder con el AFM. En particular cuando se emplea el AFM para la medida de corrientes eléctricas, se denomina el microscopio de fuerza atómica conductivo (c- AFM) es bastante frecuente que no se disponga de muestras patrón que permitan saber si el sistema está funcionando perfectamente. Por tanto, es necesario desarrollar nuevos patrones de calibración para las distintas modalidades de medidas que se pueden realizar mediante AFM.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención se refiere a una lámina de un material semiconductor depositada sobre un sustrato conductor que comprende una superficie micro- y nano- estructurada característica donde las estructuras micrométricas sirven para llevar a cabo el calibrado espacial grueso del escala microméfrica en medidas con microscopios de fuerza atómica y donde las estructuras nanométricas sirven para llevar a cabo el calibrado espacial fino del escala nanométrica.
Dicha lámina de un material semiconductor micro- y nano- estructurada está además caracterizada por tener estructuras micrométricas y nanométricas bien definidas que presentan conductividad eléctrica, por lo que dicha lámina puede utilizarse también como patrón de calibración conductor en medidas con microscopios de fuerza atómica conductivo.
La presente invención, es, por tanto, una lámina de un material semiconductor con una superficie micro- y nano- estructurada que sirve como patrón de calibración espacial y conductor en medidas de microscopios de fuerza atómica, particularmente en microscopios de fuerza atómica conductivo. La presente invención además se refiere a! procedimiento de fabricación de dicha lámina de un material semiconductor. El procedimiento se basa en la estructuración de la superficie de un material semiconductor determinado mediante la técnica de estructuración superficial periódica inducida por láser, del inglés "láser induced períodic surface structuríng" UPSS, y el uso de una máscara.
La técnica LIPSS consiste en la irradiación repetitiva de un material con un haz láser lineaimente polarizado de manera que da lugar a la formación de estructuras periódicas lineales en la superficie del material, paralelas a la polarización del láser y con tamaños del orden de la longitud de onda de irradiación. Esta técnica permite el nanoestructurado de materiales con un montaje experimental sencillo pudiendo modificarse áreas de un tamaño de hasta centímetros cuadrados en una escala temporal corta (de minutos) y mediante el empleo de densidades de energía bajas (por debajo de unas pocas decenas de mJ/cm2) produciéndose la modificación superficial sin ablación o eyección de material. Una limitación de la técnica sin embargo es que requiere el uso de un materia! que absorba a la longitud de onda de irradiación y que dicho material tenga poca rugosidad en la escala nanométrica para que el mecanismo de interferencia y retroalimentación responsable de la formación de las LIPSS sea efectivo. Este mecanismo de retroalimentación está relacionado con el empleo de cientos o miles de pulsos láser dependiendo del material, de manera que se produzcan ciclos de calentamiento y enfriamiento del material que dan lugar al reordenamiento del mismo. Ejemplos de estos materiales son polímeros, metales, dieléctricos, semiconductores, etc ..
La presente invención se refiere a la micro- y nano- estructuración simultánea de la superficie de un material semiconductor mediante irradiación a través de una máscara de un determinado tamaño y forma, utilizando las condiciones de irradiación que conducen a la formación de estructuras superficiales periódicas inducidas por láser (estructuras LIPSS), es decir, mediante el empleo de densidades de energía bajas de los pulsos láser, por debajo de unas pocas decenas de mJ/cm2.
La máscara situada a una determinada distancia de la superficie del material semiconductor produce varias zonas distintivas en el material semiconductor. Por un lado, la forma y el tamaño de la máscara definen la forma y el tamaño de una celda. Por otro, induce la formación de un patrón de difracción de Fresnel en el interior de dicha celda con máximos y mínimos de intensidad y separación determinada, de manera que las variaciones locales de ¡a intensidad láser producidas por dicho efecto dan lugar al microestructurado del material semiconductor.
La difracción de Fresnel es un efecto de campo cercano producido cuando la fuente de ondas incidente o el punto de observación desde el cual se las observa, o ambas, están a una distancia finita de la apertura o del obstáculo que produce la difracción, en este caso la máscara. En particular, para una onda electromagnética atravesando una pantalla, se tiene difracción de Fresnel cuando el cociente a2/LA es mayor que la unidad, siendo a el tamaño de la apertura, L la distancia de la apertura a la pantalla y λ la longitud de onda electromagnética. En la presente invención, la pantalla es la superficie del materia! semiconductor. Debido al fenómeno de difracción se obtienen unos máximos y unos mínimos de intensidad (patrón de difracción) por lo que la energia local que alcanza la pantalla no es igual en todos los puntos. Los máximos y mínimos de intensidad (patrón de difracción) pueden calcularse a partir de la geometría de la apertura, la distancia de la apertura a ¡a pantalla y la longitud de onda electromagnética.
En la presente invención, la máscara utilizada en el procedimiento de fabricación es de tamaño micrométrico, por lo que, tanto el tamaño de la celda que se produce en la superficie de un materia! semiconductor como el patrón de difracción de Fresnel que se produce en el interior de dicha celda son de! orden micrométrico.
La forma de la máscara de la presente invención es variable, desde un polígono hasta un círculo, obteniéndose distintos patrones de difracción sobre la superficie de los materiales semiconductores. En la referencia "Fresnel diffracíion and fracíal patterns from potygona! aperíures" J. G. Huang, J. . Christian, and G. S. McDonald J. Opt. Soc. Am. A, Vol. 23, No. 11 se pueden observar ios distintos patrones de Fresnel que se pueden obtener en función de la apertura poligonal o máscara poligonal que se utilice.
La lámina de un material semiconductor micro- y nano- estructurada de la presente invención está además caracterizada por tener estructuras micrométricas y nanométricas bien definidas que presentan conductividad eléctrica; se trata de ios valles o mínimos de intensidad que presentan conductividad eléctrica y por tanto pueden utilizarse como patrón de calibración conductor en medidas con microscopios de c-AF , tanto para la calibración gruesa como para la calibración fina. Por último, la presente invención se refiere al uso del material de la invención como patrón de calibración en medidas de AFM y c-AFM.
Por tanto, en un primer aspecto, la presente invención se refiere a un materia! (a partir de aquí "el material de la invención") caracterizado por que es un material semiconductor con una rugosidad de entre 0, 1 nm y 10 nm capaz de absorber luz de entre 30 nm y 1 100 nm, y por que comprende una superficie con ai menos una celda, donde dicha celda comprende una magnitud representativa de tamaño micrométrico, y, en el interior de dicha celda, se localiza una primera zona y una segunda zona,
® donde dicha segunda zona está inscrita en la primera zona,
* donde dicha primera zona tiene un periodo de oscilación decreciente, una amplitud decreciente y una distancia entre dos puntos equivalentes dentro del periodo de oscilación del orden micrométrico, de entre 0,5 μνη y 5 μηη,
* donde la segunda zona tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación del orden nanométrico, de entre 20 nm y 1000 nm,
* y donde los valles del periodo de oscilación de dicha primera zona y de dicha segunda zona presentan conductividad eléctrica de entre 2 pA y 1 μΑ cuando se aplica una diferencia de potencial -10 V y 10 V.
El material de la invención es un material semiconductor que presenta poca rugosidad, de entre 0, 1 nm y 10 nm para que el mecanismo de interferencia y retroal i mentación responsable de la formación de las LI PSS sea efectivo. Se selecciona de entre un polímero, un fullereno, un derivado de fullereno o una combinación de ios mismos.
En la presente invención se entiende por "derivado de fullereno" como aquel compuesto que conserva las excepcionales propiedades físicas y químicas de los fuiierenos precursores.
En una realización preferida, el materia! de la invención es po!i(3~hexi!tiofeno), también conocido como P3HT.
En otra realización preferida, el material de la invención es fenii-C71-ácido butírico metil ester, también conocido como PC71 BM. El material de la invención es además capaz de absorber la luz de cualquier longitud de onda de entre 30 nm y 1100 nm procedente de una fuente láser, por lo que se puede usar cualquier fuente láser que opere en el rango de dichas longitudes de onda correspondientes al comienzo de ios Rayos X y cuyo límite es el IR cercano.
Preferiblemente, el material de la invención es un material semiconductor capaz de absorber las longitudes de onda a las que opera un láser de Nd:YAG: 1064 nm, 532 nm, 355 nm, 266 nm y 213 nm.
En el interior de la celda del material de la presente invención se pueden distinguir una primera zona y una segunda zona,
o donde dicha segunda zona está inscrita en la primera zona,
o donde dicha primera zona tiene un periodo de oscilación decreciente, una amplitud decreciente y una distancia entre dos puntos equivalentes dentro del periodo de oscilación del orden micrométrico, de entre 0,5 μηι y 5 μιη, o donde la segunda zona tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación es del orden nanométrico, de entre 20 nm y 1000 nm,
o y donde los valles del periodo de oscilación de dicha primera zona y de dicha segunda zona presentan conductividad eléctrica de entre 2 pA y 1 μΑ cuando se aplica una diferencia de potencial -10 V y 10 V,
La primera zona se corresponde con un patrón de difracción de Fresnel caracterizado por tener un periodo de oscilación decreciente, una amplitud decreciente y una distancia entre dos puntos equivalentes dentro del periodo de oscilación del orden nanométrico, por ejemplo, los dos puntos equivalentes son valle-valle o cresta- cresta.
El patrón de difracción de Fresnel que se puede distinguir en la superficie del material semiconductor se produce por el uso de una máscara. Puesto que la máscara utilizada en el procedimiento de fabricación es de tamaño micrométrico, tanto el tamaño de la celda que se produce en la superficie del material semiconductor como el patrón de difracción de Fresnel que se produce en el interior de dicha celda son del orden micrométrico. La magnitud representativa de dicha celda se corresponde con una dimensión representativa de la máscara, por ejemplo, con un lado de un polígono o el diámetro de un círculo. Esta magnitud representativa de la celda es el origen de la difracción de Fresnel. La segunda zona se corresponde con el patrón LIPSS. Dicha segunda zona está inscrita en la primera zona.
En una realización preferida, el material de la invención es capaz de absorber luz de 268 nm y donde la segunda zona de la celda tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del penodo de oscilación de 190 nm y 210 nm.
En otra realización preferida, el material de la invención el material semiconductor es capaz de absorber luz de 532 nm y donde la segunda zona tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación de 410 nm y 470 nm.
En otra realización preferida, el material semiconductor es capaz de absorber luz de 213 nm y donde la segunda zona de la celda tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación de 150 nm y 190 nm.
Además, el material de la invención está caracterizado por que comprende una superficie con al menos una celda. El tamaño de la superficie del material de la invención debe ser tai que se pueda colocar en la zona de visualización de una muestra por microscopía de fuerza atómica, particularmente por microscopía de fuerza atómica conductiva, por tanto, un tamaño de alrededor de 1 cm2.
La celda mencionada con anterioridad comprende una magnitud representativa de tamaño micrométrico.
Por "magnitud representativa" se entiende, en la presente invención, aquella dimensión de tamaño micrométrico que sirve para llevar a cabo la calibración gruesa espacial en microscopios de fuerza atómica, es decir, la calibración mi ero métrica. Dicha magnitud representativa se corresponde con la magnitud representativa según la forma y el tamaño de la máscara utilizada durante el procedimiento de obtención del material. La forma de la máscara varía desde cualquier polígono hasta incluso un circulo; en el primer caso un lado del polígono caracterizaría la magnitud significativa de la celda y, en el segundo caso, sería el diámetro del círculo la magnitud representativa. En una realización preferida, ia celda es un círculo y la magnitud representativa es el diámetro de dicho círculo que varía de entre 50 μπη y 500 μπτι.
En otra realización preferida, la celda comprende una primera magnitud representativa y una segunda magnitud representativa, donde la primera magnitud representativa y la segunda magnitud son ortogonales entre sí, y donde la primera magnitud representativa y la segunda magnitud representativa son de tamaño micrométrico.
Más preferiblemente, ia celda es un cuadrado y los lados o la primera y la segunda magnitud representativa de dicho cuadrado miden entre 50 μίη y 500 μπτι.
Más preferiblemente, donde la celda es un rectángulo y un primer lado o primera magnitud representativa mide entre 40 μπι y 100 μηι y el segundo lado o segunda magnitud representativa mide entre 100 μηι y 500 μπη.
En el interior de ia celda del material de ia presente invención se pueden distinguir una primera zona con un periodo de oscilación decreciente (zona de difracción de Fresneí) y una segunda zona con un periodo de oscilación constante y donde los valles del periodo de oscilación de dicha primera zona y de dicha segunda zona presentan conductividad eléctrica.
Las medidas de la corriente eléctrica en un microscopio de fuerza atómica conductivo (c-AFM) se llevan a cabo aplicando una diferencia de potencial entre el substrato y la punta, normalmente una diferencia de potencial de entre -10 V y 10 V,
En el material de ia presente invención, ios valles de la primera zona y de la segunda zona presentan conductividad eléctrica de entre 2 pA y 1 μΑ cuando se aplica una diferencia de potencial -10 V y 10 V, cantidad suficiente para que el material de la presente invención pueda ser utilizado como patrón de calibración espacial y conductor de un microscopio de fuerza atómica conductivo c-AFM.
Otro aspecto de la invención se refiere ai procedimiento de fabricación del material de la invención (a partir de aquí el procedimiento de ia invención) que comprende las siguientes etapas:
a) preparar una lámina de un material semiconductor con una rugosidad de entre 0,1 nm y 10 nm y de espesor de entre 100 nm y 200 nm, capaz de absorber luz de entre 30 nm y 1100 nm sobre un sustrato conductor por técnicas de deposición, b) colocar una máscara paralelamente a la superficie de la lámina del material semiconductor obtenida en la etapa (a) a una distancia de entre 100 m y 500 μπτι, c) irradiar la lámina de material semiconductor cubierta con una máscara de la etapa (b) de forma perpendicular a la superficie de la lámina del material semiconductor con un láser pulsado, d) despegar la máscara de la lámina del material semiconductor micro- y nano- estructurada obtenida en la etapa (c).
La etapa a) se refiere a la preparación de una lámina de material semiconductor con poca rugosidad de entre 0, 1 nm y 10 nm y un espesor de entre 100 nm y 200 nm que es capaz de absorber luz de entre 30 nm y 1100 nm sobre un sustrato conductor. Ejemplos de sustratos conductores son silicio conductor, grafito pirolífico óxido de indio y estaño también conocido como ITO, metales tales como el oro o el platino y substratos recubiertos con una capa metálica de oro o platino.
La etapa (a) se puede llevar a cabo mediante cualquier técnica convencional de deposición de polímeros. Preferiblemente la etapa (a) se lleva a cabo mediante la técnica de deposición por centrifugación (en inglés "spin-coating") o mediante la técnica de deposición y evaporación.
La técnica de "spin coating" consiste en depositar un cierto volumen de una disolución del material en el centro del substrato, y este se hace girar de manera que el material difunde por efecto de la fuerza centrífuga recubriendo todo el substrato. El disolvente utilizado es volátil y se evapora durante la rotación.
La técnica de deposición y evaporación consiste en depositar un cierto volumen de una disolución de material sobre un substrato y esperar hasta la completa evaporación del disolvente.
En la etapa (b) del procedimiento de la invención se coloca una máscara paralelamente a la superficie de la lámina de material semiconductor obtenida en la etapa (a) a una distancia de entre 100 μηι y 500 μιτι.
En la presente invención se entiende por "máscara" como aquel material que comprende una apertura de tamaño y forma determinada a través de la cual pasa la luz procedente de un láser. La máscara de la presente invención está hecha de un material que no absorbe la longitud de onda del láser de irradiación o que no se descompone o se deteriora a la fluencia que opera e! láser de irradiación durante e! procedimiento de obtención del material de ¡a invención, es decir, que tenga un umbral de modificación y/o ablación superior a la fluencia empleada en el procedimiento de la invención para que se mantenga intacto.
En la presente invención se entiende por "fluencia" a la energía por unidad de superficie (J/cm2) que se ajusta en los equipos de luz pulsada intensa o láser.
Preferiblemente, en la etapa (b) del procedimiento de la invención, la distancia entre la máscara y la superficie es de entre 100 pm y 120 μνη cuando la máscara tiene un espesor de entre 5 y 20 m.
La etapa (c) del procedimiento se refiere a la irradiación de la lámina de material semiconductor cubierta con una máscara de la etapa (b) de forma perpendicular a la superficie de la lámina de material semiconductor con un láser pulsado, preferiblemente los pulsos de! láser son del orden de ios nanosegundos, de entre 4 ns y 15 ns, aunque dicha duración del pulso no es limitante pudiéndose utilizar láseres de femtosegundos con pulsos láser de entre 30 fs y 500 fs
La etapa (c) del procedimiento de la invención se lleva a cabo irradiando de forma perpendicular a la superficie de la lámina de material semiconductor para que la difracción de Fresnel se traduzca efectivamente en la primera zona de la celda del material de la invención.
En una realización preferida, la etapa (c) del procedimiento de la invención se lleva a cabo con un láser pulsado, con pulsos del láser de entre 4 ns y 15 ns, que opera a una longitud de onda de 286 nm y a una fluencia de entre 12 mJcm"2 y 15 mJcm"2. El número de pulsos utilizado está entre 2000 y 8000.
Para esta realización preferente, se puede utilizar una máscara por ejemplo, de cobre, metal que aunque absorbe la luz de 266 nm no se deteriora a las fluencias de operación durante el procedimiento de la invención, que son de entre 12 mJcm"2 y 15 mJcm"2.
En otra realización preferida, la etapa (c) del procedimiento de la invención se lleva a cabo con un láser pulsado, con pulsos del láser de entre 4 ns y 15 ns, que opera a una longitud de onda de 532 nm y una fluencia de entre 25 mJcm'2 y 35 mJcm'2. E! número de pulsos utilizado está entre 2000 y 2000.
En otra realización preferida, la etapa (c) del procedimiento de la invención se lleva a cabo con un láser pulsado, con pulsos del láser de entre 4 ns y 15 ns, que opera a una longitud de onda de 213 nm y una fluencia de entre 10 mJcm"2 y 15 mJcm"2. El número de pulsos utilizado está entre 2000 y 6000.
La etapa (d) del procedimiento de la invención trata de despegar la máscara de la lámina de material semiconductor micro- y nano- estructurada de la presente invención manualmente o con la ayuda de pinzas.
El último aspecto de la invención se refiere al uso del material de la invención como patrón de calibración de un microscopio. Preferiblemente como patrón de calibración de un microscopio de fuerza atómica.
En otra realización preferida de la presente invención se refiere al uso del material de la invención como patrón de calibración espacial y conductor de un microscopio de fuerza atómica conductivo.
Comúnmente para llevar a cabo medidas de conductividad eléctrica con un microscopio c-AFM se fija la muestra a analizar en un disco metálico con material conductor, por ejemplo una resina epoxi conductora, pintura de plata, adhesivo de cobre, y se introduce dicho disco en la zona de visualización del microscopio. Entonces se selecciona una punta que sea conductora y adecuada para realizar las medidas en modo contacto, por ejemplo una punta común que esté recubierta con Ptlr y se selecciona el modo de medida c-AFM en el equipo. Para este tipo de medidas el contacto eléctrico entre el soporte y la muestra, la muestra y la punta y la punta y el equipo, es crítico, lo que supone un error en la medida si no se pueden controlar.
El uso del material de la invención como patrón de calibración espacial y conductor del c-AFM proporciona no solo información sobre el correcto funcionamiento del equipo en modo conductor sino también información espacial. Aplicando una diferencia de potencial en el rango -10 a 10 V, se pueden tomar en tiempo real y de manera simultánea las imágenes de topografía y conductividad, observándose regiones conductoras (valles) separadas por regiones no conductoras (crestas o picos). Las veníajas de ¡a presente invención con respecto al materia! de ¡a invención son por tanto:
¡a micro-nano estructura de la presente invención se caracteriza por presentar una alternancia de regiones conductoras y aislantes lo que permite una calibración espacial y conductora simultánea el material de la invención es un material semiconductor, seleccionado de entre un polímero semiconductor, un fuilereno, un derivado de un fuilereno o una combinación de ios mismos, por lo que la medida de corriente eléctrica de estos materiales de carácter orgánico se lleva a cabo a voltajes moderados, comparables con los necesarios en semiconductores inorgánicos.
Las ventajas de la presente invención con respecto al procedimiento de la invención son:
en un solo paso se obtienen estructuras en dos escalas de tamaño micro- y nanométrico utilizando fluencias moderadas en el rango de decenas de mJ/cm2 en contraposición con otras técnicas como la litografía no son necesarias condiciones ambientales especiales como son las existentes en salas blancas o cajas de guantes necesarias para la aplicación de técnicas litográficas.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
FSG. 1 a Vista en planta de la superficie micro- y nano- estructurada del material de la invención. FIG. 1 b Vista en planta y vista en alzado dei interior de una celda del material de la invención.
FIG. 2 Fotografía del patrón polimérico en el microscopio.
FIG. 3 imagen a través de objetivo de microscopio óptico en la que se observan varias celdas con un tamaño de 90 μπι x 90 μιη.
FSG. 4 Imagen de topografía de AFM en la que se observan las micro- y nano- estructuras obtenidas por irradiación láser.
FIG. 5 imagen de topografía de AFM en ¡a que se observan ¡as micro- y nano- estructuras obtenidas por irradiación láser. FIG. 6 Imágenes de AFM de topografía y conductividad en una muestra de P3HT modificada mediante irradiación a 268 nm.
FIG. 7 Imágenes de AFM de topografía y conductividad en una muestra de P3HT ediante irradiación a 532 nm.
Figure imgf000015_0001
A continuación se ilustrará la invención mediante unos ensayos realizados por ¡os inventores, que ponen de manifiesto la efectividad del producto de ¡a invención.
Una película de P3HT con un espesor de 150 nm y preparada por deposición por centrifugación es irradiada con una longitud de onda de 266 nm en incidencia normal con una fluencia de 13,4 mJ/cm2 y 3600 pulsos a través de una rejilla con celdillas cuadradas con un tamaño de 90 μρη de lado y 18 m de espesor que se coloca en contacto con ¡a muestra de polímero. Las muestras se caracterizan mediante AFM y mediante c-AFM y se observa que los valles son conductores.
En la FIG. 1 se muestra ¡a vista en planta de la superficie del material de la invención. La FIG. 1a muestra la vista en planta de dicha superficie donde 1 es la superficie de¡ material semiconductor de la invención y 2 es una Celda. En la FIG. 1 b se muestra la vista en planta y la vista en alzado del interior de la celda dei material de la invención donde 2 indica ¡a Celda, 3 ¡a 1a zona, es decir, ¡a zona de difracción de Fresnel y 4 la 2a zona correspondiente a ¡a zona de estructuración LI PSS.
En la FIG, 2 se muestra una fotografía del patrón polimérieo en el soporte conductor siendo introducido en el microscopio.
En la FIG. 3 se observa una imagen a través de objetivo de microscopio óptico en la que se observan varias celdas con un tamaño de 90 μπ x 90 pm resultado de la irradiación de la lámina de material semiconductor con una longitud de onda de 532 nm a través de una rejilla con un tamaño de celda de 90 μηι x 90 μηι.
FIG. 4. Imagen de topografía de AF en la que se observan las micro- y nano- estructuras obtenidas por irradiación láser con una longitud de onda de 286 nm a través de una rejilla con un tamaño de celda de 90 μηι x 90 μηη. Se observan las microesfructuras producidas por efecto de la difracción Fresnel en las zonas cercanas ai borde de la celda
FIG. 5. Imagen de topografía de AFM , magnificación de la zona del borde de la imagen de la figura anterior. Se observan las micro- y nano- estructuras obtenidas por irradiación láser. Las líneas verticales corresponden a la estructuración consecuencia de la difracción Fresnel con una oscilación decreciente de 2,5 μηι, 1 ,4 μηι, 1 μνη, y 0.9 μπι según aumenta la distancia del borde de la celda. Debajo de la imagen se muestra un perfil correspondiente a la línea marcada sobre la imagen de topografía. FIG. 6. imágenes de AFM de topografía y conductividad en una muestra de P3HT modificada mediante irradiación a 286 nm en la zona central de la celda. Se observa que ios valles de las estructuras nanométrícas con un periodo de 190 nm presentan conductividad. Adicionalmente una muestra de P3HT preparada en las mismas condiciones se irradia a 532 nm con 3600 pulsos a una fluencia de 26 mJ/crn2.
FIG. 7. imágenes de AFM de topografía y conductividad en una muestra de P3HT modificada mediante irradiación a 532 nm en la zona central de la celda. Se observa que ios valles de las estructuras nanométrícas con un periodo de 430 nm presentan conductividad. La muestra se introduce en el microscopio y para ¡a calibración se utiliza una punta conductora, en este caso de silicio recubierta con Ptlr. Se selecciona el modo de medidas conductoras en el microscopio. Se aplica una diferencia de potencial de -10 V y se mide el paso de corriente a través de la muestra. La lámina de material semiconductor micro- y nanoesíructurada presenta conductividad en ¡os valles de las estructuras del orden de 300 pA.

Claims

REIVINDICACIONES
1. Un material caracterizado por que es un material semiconductor con una rugosidad de entre 0,1 nm y 10 nm capaz de absorber luz de entre 30 nm y 1 100 nm, y por que comprende una superficie con al menos una celda, donde dicha celda comprende una magnitud representativa de tamaño micrométrico, y, en el interior de dicha celda, se localiza una primera zona y una segunda zona,
« donde dicha segunda zona está inscrita en la primera zona, • donde dicha primera zona tiene un periodo de oscilación decreciente, una amplitud decreciente y una distancia entre dos puntos equivalentes dentro del periodo de oscilación del orden micrométrico, de entre 0,5 μηι y 5 μηι,
® donde dicha segunda zona tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación del orden nanométrico, de entre 20 nm y 1000 nm,
® y donde ios valles del periodo de oscilación de dicha primera zona y de dicha segunda zona presentan conductividad eléctrica de entre 2 pA y 1 μΑ cuando se aplica una diferencia de potencial de entre -10 V a 10 V.
2. El material según la reivindicación 1 , donde el material semiconductor se selecciona de entre un polímero, un fuliereno, un derivado de fuliereno o una combinación de ¡os mismos.
3. El materia! según cualquiera de las reivindicaciones 1 ó 2, donde el material es PC71 BM.
4. El material según cualquiera de las reivindicaciones 1 ó 2, donde el material semiconductor es P3HT,
5. El material según cualquiera de las reivindicaciones 1 a 4, donde el material semiconductor es capaz de absorber luz de entre 150 nm y 600 nm y donde la segunda zona de la celda tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación de entre 130 nm y 550 nm.
6. El material según cualquiera de las reivindicaciones 1 a 5, donde el material semiconductor es capaz de absorber luz de 266 nm y donde la segunda zona de la celda tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación de 90 nm y 210 nm.
7. El material según cualquiera de las reivindicaciones 1 a 5, donde el material semiconductor es capaz de absorber luz de 532 nm y donde la segunda zona tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación de 410 nm y 470 nm.
8. El material según cualquiera de las reivindicaciones 1 a 5, donde el material semiconductor es capaz de absorber luz de 213 nm y donde la segunda zona de la celda tiene un periodo de oscilación constante y una distancia entre dos puntos equivalentes dentro del periodo de oscilación de 50 nm y 190 nm.
9. El material según cualquiera de las reivindicaciones 1 a 8, caracterizado por que la celda es un círculo y la primera magnitud representativa es el diámetro de dicho círculo que varía de entre 50 μΓη y 500 μπη.
10. El material según cualquiera de las reivindicaciones 1 a 8, caracterizado por que la celda comprende una primera magnitud representativa y una segunda magnitud representativa, donde la primera magnitud representativa y la segunda magnitud son ortogonales entre sí, y donde la primera magnitud representativa y la segunda magnitud representativa son de tamaño mierométrico,
1 1. El material según la reivindicación 10, donde la celda es un cuadrado y los lados de dicho cuadrado miden de entre 50 μηι y 500 μπη.
12. El material según la reivindicación 10, donde la celda es un rectángulo y un primer lado o primera magnitud representativa mide de entre 40 μπι y 100 μίη y el segundo lado o segunda magnitud representativa mide de entre 100 μπι y 500 μΓΠ,
13. Procedimiento de fabricación del material según se define en cualquiera de las reivindicaciones 1 a 12, que comprende las siguientes etapas: a) preparar una lámina de un materia! semiconductor de rugosidad de entre 0, 1 nm y 10 nm y de espesor de entre 100 nm y 200 nm, capaz de absorber ¡uz de entre 30 nm y 1100 nm sobre un sustrato conductor por técnicas de deposición,
b) colocar una máscara paralelamente a la superficie de la lámina obtenida en la etapa (a) a una distancia de entre 100 μηι y 500 μηη,
c) irradiar la lámina cubierta con una máscara de la etapa (b) de forma perpendicular a la superficie de la lámina con un láser pulsado,
d) despegar la máscara de la lámina micro-nano-estructurada obtenida en la etapa (c).
14. El procedimiento según la reivindicación 13, donde el sustrato conductor utilizado en la etapa (a) es silicio conductor, grafito piroíítico óxido de indio y estaño, metales tales como el oro o el platino y recubrimientos metálicos de oro o platino.
15. El procedimiento según cualquiera de las reivindicaciones 13 ó 14, donde la etapa (a) se lleva a cabo mediante una técnica de deposición seleccionada de entre la técnica de deposición por centrifugación y la técnica de deposición y evaporación.
16. El procedimiento según cualquiera de las reivindicaciones 13 a 15, donde, en la etapa (b), la distancia entre la máscara y la superficie es de entre 100 m y 120 μηι cuando la máscara tiene un espesor de entre 15 y 20 m.
17. El procedimiento según cualquiera de las reivindicaciones 13 a 16, donde la etapa (c) del procedimiento se lleva a cabo con un láser pulsado, donde ios pulsos del láser son del orden de ios nanosegundos, de entre 4 ns y 15 ns,
18. El procedimiento según la reivindicación 17, donde la etapa (c) se lleva a cabo con un láser pulsado que opera a una longitud de onda de 266 nm y a una fluencia de entre 12 mJcm"2 y 15 mJcm"2.
19. El procedimiento según la reivindicación 17, donde la etapa (c) se lleva a cabo con un láser pulsado que opera a una longitud de onda de 532 nm y una fluencia de entre 25 mJcm"2 y 35 mJcm"2,
20. El procedimiento según la reivindicación 17, donde la etapa (c) se lleva a cabo con un láser pulsado que opera a una longitud de onda de 213 nm y una fluencia de entre 10 mJcm"2 y 15 mJcm"2.
21. Uso del material según cualquiera de las reivindicaciones 1 a 12 como patrón de calibración de un microscopio.
22. Uso del material según la reivindicación 21 , como patrón de calibración espacial de un microscopio de fuerza atómica.
23. Uso según cualquiera de las reivindicaciones 21 ó 22, como patrón de calibración espacial y conductor de un microscopio de fuerza atómica conductivo.
PCT/ES2017/070266 2016-04-29 2017-04-28 Material semiconductor micro- y nano- estructurado, procedimiento de obtención y uso como patrón de calibración WO2017187002A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201630556 2016-04-29
ES201630556A ES2644586B1 (es) 2016-04-29 2016-04-29 Material semiconductor micro- y nano- estructurado, procedimiento de obtención y uso como patrón de calibración

Publications (1)

Publication Number Publication Date
WO2017187002A1 true WO2017187002A1 (es) 2017-11-02

Family

ID=60160151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070266 WO2017187002A1 (es) 2016-04-29 2017-04-28 Material semiconductor micro- y nano- estructurado, procedimiento de obtención y uso como patrón de calibración

Country Status (2)

Country Link
ES (1) ES2644586B1 (es)
WO (1) WO2017187002A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307317A (zh) * 2022-08-05 2022-11-08 合肥美的暖通设备有限公司 加热处理方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243637A1 (en) * 2008-03-31 2009-10-01 Hitachi High-Technologies Corporation Measuring apparatus having nanotube probe
CN103364595A (zh) * 2013-07-17 2013-10-23 中国科学院半导体研究所 一种表征聚合物太阳能电池光敏层相分离程度的方法
KR20150029997A (ko) * 2013-09-11 2015-03-19 삼성디스플레이 주식회사 하프톤 마스크 및 이를 이용한 표시장치의 제조방법
US20160062246A1 (en) * 2013-03-18 2016-03-03 Eulitha A.G. Methods and systems for printing periodic patterns

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090243637A1 (en) * 2008-03-31 2009-10-01 Hitachi High-Technologies Corporation Measuring apparatus having nanotube probe
US20160062246A1 (en) * 2013-03-18 2016-03-03 Eulitha A.G. Methods and systems for printing periodic patterns
CN103364595A (zh) * 2013-07-17 2013-10-23 中国科学院半导体研究所 一种表征聚合物太阳能电池光敏层相分离程度的方法
KR20150029997A (ko) * 2013-09-11 2015-03-19 삼성디스플레이 주식회사 하프톤 마스크 및 이를 이용한 표시장치의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHING-FUH LIN ET AL.: "Nano-Structured and Micro-Structured Semiconductors for Higher Efficiency Solar Cells", PHOTONICSGLOBALSIGMAINGAPORE , 2008 . IPGC 2008. IEEE, 12 August 2008 (2008-08-12), Piscataway, NJ, USA, pages 1 - 4, XP031423852, ISBN: 978-1-4244-3901-0 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115307317A (zh) * 2022-08-05 2022-11-08 合肥美的暖通设备有限公司 加热处理方法和装置

Also Published As

Publication number Publication date
ES2644586B1 (es) 2018-09-17
ES2644586A1 (es) 2017-11-29

Similar Documents

Publication Publication Date Title
Rebollar et al. Laser induced periodic surface structures on polymer films: From fundamentals to applications
Garno et al. Precise positioning of nanoparticles on surfaces using scanning probe lithography
US8728720B2 (en) Arbitrary pattern direct nanostructure fabrication methods and system
Felts et al. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication
Wang et al. Direct modification of silicon surface by nanosecond laser interference lithography
Yue et al. Noncontact sub-10 nm temperature measurement in near-field laser heating
Laslau et al. Scanned pipette techniques for the highly localized electrochemical fabrication and characterization of conducting polymer thin films, microspots, microribbons, and nanowires
Martínez-Tong et al. Laser fabrication of polymer ferroelectric nanostructures for nonvolatile organic memory devices
Stanford et al. Laser-assisted focused He+ ion beam induced etching with and without XeF2 gas assist
Boneberg et al. Optical near-field imaging and nanostructuring by means of laser ablation
ES2644586B1 (es) Material semiconductor micro- y nano- estructurado, procedimiento de obtención y uso como patrón de calibración
Wu et al. Snake‐Inspired, Nano‐Stepped Surface with Tunable Frictional Anisotropy Made from a Shape‐Memory Polymer for Unidirectional Transport of Microparticles
ES2957553T3 (es) Máscaras líquidas para procedimientos de microfabricación
Ding et al. Fabrication of microarrays on fused silica plates using the laser-induced backside wet etching method
Wang et al. Electric-field-assisted dip-pen nanolithography on poly (4-vinylpyridine)(P4VP) thin films
Murphy-DuBay et al. Nanolithography using high transmission nanoscale ridge aperture probe
Schaubroeck et al. Surface analysis of the selective excimer laser patterning of a thin PEDOT: PSS film on flexible polymer films
Zenkova et al. Structured light in applications related to the reconstruction of three-dimensional landscape of nanorough surfaces
Geldhauser et al. Generation of surface energy patterns by single pulse laser interference on self-assembled monolayers
CN103112818A (zh) 一种利用扫描电镜在单根微纳线上制作金属电极的方法
Ślusarz et al. Transparent Metal Mesh Electrodes Microfabricated by Structuring Water-Soluble Polymer Resist via Laser Ablation
Kovalchuk et al. Direct patterning of nitrogen-doped chemical vapor deposited graphene-based microstructures for charge carrier measurements employing femtosecond laser ablation
Reinhardt et al. Mechanically metastable structures generated by single pulse laser-induced periodic surface structures (LIPSS) in the photoresist SU8
Rhinow et al. Forming microstructured alkanethiol self-assembled monolayers on gold by laser ablation
Robinson et al. Two-photon activation of o-nitrobenzyl ligands bound to gold surfaces

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788872

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788872

Country of ref document: EP

Kind code of ref document: A1