WO2017186995A1 - Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo - Google Patents

Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo Download PDF

Info

Publication number
WO2017186995A1
WO2017186995A1 PCT/ES2017/070253 ES2017070253W WO2017186995A1 WO 2017186995 A1 WO2017186995 A1 WO 2017186995A1 ES 2017070253 W ES2017070253 W ES 2017070253W WO 2017186995 A1 WO2017186995 A1 WO 2017186995A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
channel
fluid channel
flow
flow device
Prior art date
Application number
PCT/ES2017/070253
Other languages
English (en)
French (fr)
Inventor
Carlos MARTÍNEZ BAZÁN
Cándido GUTIÉRREZ MONTES
Rocío Bolaños Jiménez
Javier Ruiz Rus
José Ignacio Jiménez González
José Carlos Cano Lozano
Manuel Lorite Díez
Alejandro Sevilla Santiago
Original Assignee
Universidad De Jaén
Universidad Carlos Iii De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Jaén, Universidad Carlos Iii De Madrid filed Critical Universidad De Jaén
Publication of WO2017186995A1 publication Critical patent/WO2017186995A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers

Definitions

  • the present invention belongs to the field of fluid mechanics, and more particularly to the devices used for the generation of microbubbles.
  • a first object of the present invention is a new system for the generation of monodisperse microbubbles in co-flow configuration that allows controlling the frequency of generation of the microbubbles by modulating the flow rate of one of the fluids.
  • a second object of the present invention is a method associated with the previous system.
  • micrometric and nanometric sized bubbles have attracted great attention in recent times because they have a large surface-volume ratio, a high solubility in an aqueous liquid, a low ascent rate [Zimmerman et al., 2013] , and a self-pressurization induced by surface tension. That is why they can improve gas exchange between the liquid and gas phases or enhance transport phenomena [Bird et al. 2007].
  • microbubbles present unique and special opportunities such as being able to be photo-acoustically excited [Ashkin, 1997; Lauterborn and Kurz, 2010] or can be used as sensors or markers [Tremblay-Darveau et al., 2014].
  • micrometric sized bubbles are present in numerous industrial processes, such as those of biomedicine [Liu et al., 2006], food processing, gas-liquid reactors, or the generation of foams, among others, as well as in many areas of science, for example in the study of liquids with bubbles.
  • biomedicine Liu et al., 2006
  • gas-liquid reactors or the generation of foams, among others, as well as in many areas of science, for example in the study of liquids with bubbles.
  • the efficiency of the above processes depends largely on the use of bubbles of controllable sizes.
  • the controlled formation of bubbles within the micrometric scales represents a very difficult goal to achieve today. At this point, the generation
  • REPLACEMENT SHEET (RULE 26) of classic bubbles by means of gas injection through a hole or a nozzle
  • Davidson and Schuler, 1960, Ramakrishnan et al., 1968, Marmur and Rubin, 1970, Kumar and Kuloor, 1976, Longuet-Higgins et al. , 1991, Oguz and Prosperetti, 1993 and Bola ⁇ os-Jiménez et al., 2008] is limited to small flows and the minimum volumes attainable to the volume of Fritz (the one obtained by means of a balance between gravity and surface tension).
  • Mass production of microbubbles with diameters in the range of 1 to 10 microns is also possible through insonation [Makuta et al. 2006] or mechanical agitation [J. Ellenberger and R. Krishna 2002], but these techniques provide polydisperse bubbles.
  • REPLACEMENT SHEET (RULE 26) almost monodispersed on the order of a micrometer [Castro-Hernández et al. 201 1, Kobayashi et al. 2007, Malloggi et al. 2009].
  • these devices are complex and very expensive to manufacture, which limits their use.
  • these techniques provide volume and frequency relationships that depend on the flow conditions, and independent control of the latest features is not possible.
  • Hoeve et al. (2015), patent WO2013141695 A1 have proposed a method for producing monodisperse microbubbles of diameters less than 10 ⁇ .
  • the microchannel emulsification technique [Yasuno et al. 2004] has also been studied to form microscopic gas bubbles.
  • REPLACEMENT SHEET (RULE 26) use the cavitation phenomenon to generate bubbles, but again without providing monodisperse bubbles and it is not possible to completely regulate the gas used.
  • RULE 26 use the cavitation phenomenon to generate bubbles, but again without providing monodisperse bubbles and it is not possible to completely regulate the gas used.
  • US8186653B2 (2012) a small bubble generation apparatus is proposed that reduces their size by using the cut provided by a flow with rotation generated for this purpose. However, the device generates polydisperse size bubbles.
  • the present invention solves the problems described, by allowing monodisperse microbubbles to be obtained in a much simpler way than the systems described in the prior art documents.
  • this invention provides complete control of the formation process, which allows to independently select the frequency of generation of the microbubbles and the size of the bubbles generated. This constitutes a great advantage in relation to the systems described in the previous documents.
  • dispersed phase fluid refers to the fluid supplied by the inner channel of the co-flow device, which will constitute the dispersed phase by being housed within the continuous phase fluid in the form of microbubbles
  • continuous phase fluid refers to the fluid supplied by the at least one outer channel of the co-flow device, which will constitute the continuous phase when it is outside the generated microbubbles.
  • co-flow device refers to a device provided with an inner fluid channel and, at least, an outer fluid channel where said channels are arranged essentially in parallel, such that at the outlet two fluid streams in co-flow arrangement are generated from them. In this way, the inner fluid stream discharges into the outer fluid stream.
  • a first aspect of the invention is directed to a system for the generation of monodisperse microbubbles in co-flow configuration comprising essentially two elements: a) A co-flow device, which in turn comprises:
  • At least one outer fluid channel for a continuous phase fluid where the outer fluid channel has a co-flow configuration with respect to the inner fluid channel, and where said outer fluid channel substantially surrounds the inner fluid channel .
  • a forcing means connected to the inner fluid channel or to the outer fluid channel of the co-flow device, wherein said forcing means is configured to provide a periodic variation around its average value in the fluid flow rate passing to through one of said inner channel or said outer channel.
  • the inner fluid channel and the outer fluid channel of the co-flow device can be implemented by essentially thin parallel walls, as will be seen later in this document, so that the two fluids will come into contact in the
  • REPLACEMENT SHEET (RULE 26) output end of the inner channel that stands between them. To operate this system, it is sufficient to supply a dispersed phase fluid to the co-flow fluid through the inner channel and a continuous phase fluid through at least one outer channel, applying a periodic flow variation around its mean value to one of the two fluids.
  • the inventors of the present application have discovered that the addition of an oscillation in the flow rate of one of the two fluids that run respectively inside or outside the co-flow device channels, makes the interaction at the exit of the inner channel between the stream of the fluid in dispersed phase and the at least one stream of the fluid in continuous phase causes the generation of microbubbles at a frequency that coincides with the frequency of the fluctuations of the flow, and whose size depends on the flow of first fluid through the inner channel. Therefore, by controlling at least the flow rate of the first fluid passing through the inner channel and the frequency of the oscillations applied to the flow rate of one of the two fluids, the size and frequency of the microbubbles can be controlled independently.
  • the inner fluid channel and the outer fluid channel of the co-flow device can have any geometry provided it meets the characteristics mentioned above.
  • the geometry of the co-flow device is chosen from the following: flat, cylindrical, annular,
  • a flat configuration co-flow device refers in general to an essentially parallelepiped shaped co-flow device where a cross-sectional dimension of the inner and outer channels is much larger than the perpendicular dimension to the same.
  • each cross section of the inner and outer channels is delimited by straight lines, in which case the cross section of the inner and outer channels will be rectangular in shape.
  • a cylindrical co-flow device generally refers to a co-flow device where the cross section of the inner channel is circular and the outer channel surrounds the inner channel externally.
  • An annular configuration co-flow device generally refers to a co-flow device where the cross section of the inner channel is annular and the outer channel surrounds the inner channel internally and externally.
  • a co-flow device of polyhedral configuration generally refers to a co-flow device where the cross-section of the inner channel is polyhedral and the outer channel surrounds the inner channel externally.
  • the outer fluid channel substantially surrounds the inner fluid channel
  • the co-flow device of the invention when the co-flow device of the invention has a cylindrical configuration, the outer channel completely surrounds the channel inside.
  • the co-flow device of the invention when the co-flow device of the invention has a flat configuration, there are two outer channels of rectangular cross-section with a dimension much larger than the other that sandwich the perimeter of the cross-section of the inner fluid channel dispersed phase, whose cross section is also rectangular with a dimension much longer than the other. Therefore, in this case the two outer channels almost completely surround the inner channel except for the two side walls of the inner channel of dispersed phase fluid.
  • the most generic case of the polyhedral configuration could combine or conform to any of the aforementioned characteristics.
  • the exit end of the inner channel has a transverse dimension of less than 1 mm and the exit end of the outer channel has a transverse dimension of less than 3 mm .
  • the term "cross-sectional dimension" referred to the outlet end of the inner channel refers to its hydraulic diameter, in a cylindrical co-flow device or similar, or to the width of its short side, in a flat configuration co-flow device.
  • the 'transverse dimension?' referred to the outlet end of the at least one outer channel refers to the difference between its hydraulic diameter and the hydraulic diameter of the inner channel added to the thickness of the separating wall, in a co-flow device of cylindrical configuration or the like, or at the width of the short side of one of the two channels, in a flat configuration co-flow device.
  • the transverse dimension of the inner channel is the hydraulic diameter of the inner channel
  • the transverse dimension of the outer channel is the difference between its hydraulic diameter and the hydraulic diameter of the inner channel added to the thickness of the separating wall.
  • the transverse dimension of the inner channel is the width of the short side of the inner channel
  • the transverse dimension of the outer channel is the width of the short side of one of the two outer channels.
  • the outer fluid channel has a cross section that can be constant or decrease in the direction of the outlet end.
  • a decrease in the cross section which can respond to different geometries, it is intended to minimize pressure losses, guarantee stable supply conditions, as well as a profile of fluid velocities in a controlled continuous phase.
  • the cross-section may decrease in the area near the outlet end of the outer channel through a nozzle-shaped nozzle, by flat walls, or other shapes.
  • a constant outer fluid cross section is also contemplated along the flow direction.
  • the geometry of the outer channel is symmetric with respect to the axis of the co-flow device (cylindrical or similar configuration) or central plane of the co-flow device (flat configuration).
  • the outlet end of the outer fluid channel protrudes longitudinally relative to the outlet end of the inner fluid channel. This allows the flow direction to be improved in order to obtain a more effective effect of the modulation achieved through the forced means, which will be described later.
  • the outlet end of the inner fluid channel may protrude longitudinally relative to the outlet end of the outer fluid channel or channels to favor microbubble breakage and therefore vary the frequency of formation of
  • the direction of the outlet end of the outer fluid channel is oriented towards the axis or plane of symmetry of the flow device. In this way, a transverse component of the fluid velocity is induced in the continuous phase and thus the breakage of the internal fluid stream in the dispersed phase in microbubbles is facilitated.
  • the inner fluid channel has an essentially constant cross section. As for its length, it must be large enough to ensure complete control over the flow rate and preferential laminar regime conditions.
  • the outlet section of the inner fluid channel may have a decreasing cross-section to standardize the velocity profile of the dispersed phase fluid at the outlet of the inner channel and, thus, be able to alter the microbubble formation process.
  • the walls delimiting the inner fluid channel have an outlet thickness of less than 0.5 mm.
  • These walls can be made of any material or mixture of materials as long as the anchor point of the interphase of both fluids is perfectly controlled.
  • the profile of the wall edge of the outlet end of the inner fluid channel of the co-flow device has a shape that is chosen from: curvilinear in the exterior-interior direction, straight in the exterior-interior direction, flat, rounded and polygonal.
  • curvilinear in the exterior-interior direction straight in the exterior-interior direction
  • flat, rounded and polygonal a shape that is chosen from: curvilinear in the exterior-interior direction, straight in the exterior-interior direction, flat, rounded and polygonal.
  • Each of these particular forms will have a certain effect on the interphase between the inner fluid and the outer fluid, such as the variation in the amplitudes of the modulation necessary to control the process, the variation of the local thicknesses of the different currents or , in general, the conditions of the outflow and, therefore, the frequency.
  • the latter is achieved by varying the relative position of the interphase of both fluids at the outlet. For example, in the case of a leading edge with a sharp edge,
  • the invention contemplates the possibility that the geometry of the walls of the fluid channels presents different forms of action on the dynamics of the flow.
  • the outlet ends of the inner fluid channel and the flow channel are directed to a co-flow device of flat or annular configuration, the outlet ends of the inner fluid channel and the flow channel
  • External fluid may comprise undulations configured to induce instabilities in the transverse direction that cause the current of the fluid in the dispersed phase to break in this direction.
  • undulations can be arranged in a plane essentially parallel to the direction of the flow of the fluids, or in a plane essentially perpendicular to the direction of the flow of the fluids.
  • the inner channel in a co-flow device having a flat configuration can be divided into a plurality of parallel sub-channels of fluid in dispersed phase and a plurality of parallel sub-channels of fluid in continuous phase arranged alternately. This configuration allows to considerably increase the number of bubbles generated.
  • the forced means in principle it can be of any type provided that it allows to periodically modify the flow rate of the fluid line in question around its average value.
  • it may be a positive displacement pump, such as a syringe pump, capable of generating a variable flow, connected to the first or second fluid line.
  • a periodically variable volume container arranged in the first or second fluid line can be used.
  • This vessel can have a movable surface whose position can be controlled through a mechanical, dynamic or acoustic actuator.
  • the system may also comprise a controller connected to the forced means to allow the user to regulate the frequency and amplitude of the periodic flow variations generated.
  • a method for the generation of monodisperse microbubbles in co-flow configuration is described by means of a co-flow device comprising an inner fluid channel for a dispersed phase fluid, and at least one outer fluid channel for a continuous phase fluid arranged in a co-flow configuration with respect to the inner fluid channel, where the outer fluid channel substantially surrounds the inner fluid channel.
  • This method basically comprises: a) Supplying a first fluid to the inner fluid channel. This first fluid will be the dispersed phase fluid, which at the exit of the device will be locked in the
  • REPLACEMENT SHEET (RULE 26) inside of the microbubbles.
  • the oscillation of the flow rate of one of the two fluids that run through the inner and outer channels respectively will cause the appearance of microbubbles at a frequency that coincides with the frequency of the fluctuations of the flow rate and whose size depends of the first fluid flow through the inner channel. Therefore, if the frequency of variation of the flow that varies periodically is modified, it is possible to control the frequency of generation of microbubbles. On the other hand, if the flow of the first fluid that passes through the inner channel is modified, the size of the microbubbles is controlled.
  • the first fluid is a gas.
  • the second fluid is a liquid, which may also contain a surfactant substance for the purpose of stabilizing the bubbles formed by forming a coating layer on its surface that ensures that they remain in the weather.
  • Fig. 1 shows a schematic diagram of a system for the generation of monodisperse microbubbles comprising a device according to the invention.
  • Figs. 2a and 2b respectively show a partial view of a co-flow device according to the invention of flat configuration and a partial view of a device according to the invention of cylindrical configuration.
  • Figs. 3a, 3b and 3c respectively show a co-flow device according to the invention where the exit end of the outer channel protrudes with respect to the inner channel with constant section, a co-flow device according to the invention where the exit end of the channel exterior protrudes with respect to the interior channel with decreasing section, and a
  • REPLACEMENT SHEET (RULE 26) co-flow device according to the invention where the inner channel protrudes with respect to the outer channel.
  • Fig. 4 shows a co-flow device according to the invention where the walls of the outer channel are not parallel with respect to the central axis of the device, and therefore the flow of fluid in continuous phase has a non-zero transverse component towards the axis at the exit.
  • Figs. 5a and 5b show two examples of end sections of an inner channel that have narrowings of different shapes, alternatives to the constant section.
  • Fig. 6 shows different shapes of the wall profile that constitutes the exit end of the inner channel.
  • Figs. 7a and 7b show a flat configuration co-flow device according to the invention whose output end of the inner and outer channels comprises oscillations respectively in a plane parallel to the current and in a plane perpendicular to the current.
  • Fig. 8 shows a flat configuration co-flow device according to the invention whose inner channel is divided into a plurality of individual parallel sub-channels.
  • Fig. 9 shows a graph depicting the temporary variations in pressure in the dispersed phase fluid when it is not forcedly applied.
  • Fig. 10 shows a graph depicting the temporary variations in pressure in the dispersed phase fluid when forced is applied, reflecting the control of the formation frequency and the monodispersion of the bubbles produced.
  • Fig. 11 shows a graph representing the temporal variations of the velocity in the continuous phase fluid produced by the force applied in Fig. 10.
  • REPLACEMENT SHEET (RULE 26) according to the present invention.
  • Fig. 1 shows a schematic view of a system (10) for the generation of monodisperse microbubbles in co-flow configuration formed by a co-flow device (1) that is connected respectively to a first fluid line (12) through which a fluid that will constitute the dispersed phase, preferably a gas, flows to a second line (13) of fluid through which a fluid that will constitute the continuous phase flows.
  • a forcing means (14) is connected to the respective fluid lines (12, 13) to cause a periodic variation of the flow rate of at least one of said fluid lines (12, 13) depending on the orders it receives from a control means (15) that is connected to it.
  • the co-flow device (1) comprises an inner fluid channel (2) for the dispersed phase fluid to whose inlet the first fluid line (12) is connected and one or more external fluid channels (3) for the continuous phase fluid to which the second fluid line (13) is connected.
  • it is a flat configuration co-flow device (1) where the inner fluid channel (2) has a constant cross section of essentially rectangular shape, and which comprises two outer fluid channels (3) that they also have an essentially rectangular cross section that narrows in the second half of its length as a nozzle.
  • the two outer fluid channels (3) are arranged so as to surround almost all of the inner channel (2), which is sandwiched between them, in accordance with a flow configuration.
  • the interaction between both fluids at the outlet of the inner channel (2) ) causes the appearance of monodispersed microbubbles.
  • the forced means (14) apply a periodic variation of the flow rate around its average value in any of the two fluid lines (12, 13) according to a certain frequency. As a consequence, the generation of microbubbles will occur precisely at said predetermined frequency.
  • the control means (15) acts on the forced means (14) to determine which line (12, 13) of fluid is being actuated at each moment and the characteristics of the periodic variation that is applied to it: frequency and amplitude of the oscillations.
  • FIGs. 2a and 2b show two examples of geometric configuration of the co-flow device (1) of the present invention.
  • Fig. 2a shows a co-flow device (1) similar to that shown schematically in Fig. 1. It is a flat configuration device (1) where the cross-section of the inner channel (2) is essentially rectangular with a dimension much larger than another, and where there are two outer channels (3) that surround said inner channel (2) by its two long sandwich-like sides.
  • the cross section of the inner channel (2) may decrease slightly along its length, while the cross section of the outer channels (3) undergoes a much larger decrease.
  • the outlet ends of the inner (2) and outer (3) channels are aligned in the same plane perpendicular to the longitudinal plane of the flow device (1).
  • Fig. 2b shows a co-flow device (1) of cylindrical configuration.
  • the inner channel (2) has a cylindrical shape of constant section, while the outer channel (3) has a shape obtained from a revolution curve whose cross section is decreasing.
  • the inner (2) and outer (3) channels have their respective outlet ends aligned in the same plane perpendicular to the central longitudinal axis of the co-flow device (1).
  • Figs. 3a and 3b show three examples of configuration of the output ends of the inner (2) and outer (3) channels.
  • Figs. 3a and 3b show an example of a co-flow device (1) where the exit end of the outer channel (3) protrudes longitudinally beyond the exit end of the inner channel (2) respectively without a decrease in cross-section and with a decrease in the cross section. This configuration allows more precise guidance of the fluid flow after the two fluids have come into contact.
  • Fig. 3c shows another example of a co-flow device (1) where it is the inner channel outlet end (2) that protrudes longitudinally beyond the outlet end of the outer channel (3). As described above, the effects induced by this modification favor the breakage of the microbubbles and therefore modify their frequency of formation.
  • Fig. 4 shows another example of configuration of the co-flow device (1) where the exit end of the outer channel (3) is inclined relative to a plane or central axis
  • REPLACEMENT SHEET (RULE 26) longitudinal of the device (1). This causes the direction of the continuous phase fluid at the exit of the co-flow device (1) to form a certain angle of inclination in relation to the direction of the dispersed phase fluid, which coincides with the direction of said longitudinal central axis. As mentioned above, this has the effect of inducing a transverse component of the fluid velocity in the continuous phase and thus facilitating the breakage of the internal fluid stream in the dispersed phase in microbubbles.
  • Figs. 5a and 5b show two examples of narrowings practiced in the end portion of the inner channel (2).
  • the shape of the narrowing allows altering the velocity profile of the current at the output and modifying / controlling the conditions of microbubble generation.
  • Fig. 6 shows different profiles of the edge of the outlet end of the inner channel (2) where the inner fluid in the dispersed phase comes into contact with the outer fluid in the continuous phase. From left to right, a curved profile in the outer-inner direction, a straight profile in the outer-inner direction, a flat profile, and a rounded profile is represented.
  • Figs. 7a and 7b show another example of a flat configuration co-flow device (1) where the outlet ends of the inner channel (2) and the outer channel (3) have undulations respectively in a plane essentially parallel to the current and in a plane essentially perpendicular to the current. With this, instabilities are induced in the transverse direction that cause the breakage of the fluid stream in the dispersed phase in this direction.
  • Fig. 7a and 7b show another example of a flat configuration co-flow device (1) where the outlet ends of the inner channel (2) and the outer channel (3) have undulations respectively in a plane essentially parallel to the current and in a plane essentially perpendicular to the current.
  • FIG. 8 shows a further example of the co-flow device (1) having a flat configuration where the inner channel (2) is subdivided into a multiplicity of individual sub-channels (2 ') of dispersed phase fluid arranged in parallel to each other along the longitudinal central plane of the co-flow device (1) which are separated from each other by means of a plurality of sub-channels (3 ') of continuous phase fluid also parallel.
  • the inner channel (2) thus adopts the form of a row where sub-channels (2 ') of fluid in dispersed phase and sub-channels (3') of fluid in continuous phase alternate, and is also sandwiched between the two channels (3) exterior.
  • REPLACEMENT SHEET (RULE 26) in parallel of a plurality of microbubbles.
  • Fig. 9 shows the pressure signal of the microbubbles formed in a conventional co-flow device (without forced means), in which different pressure peaks are observed within the fluid of dispersed phase that passes through the inner channel (2), which indicates the polydispersion of the formed microbubbles.
  • Fig. 10 shows the results corresponding to the case in which the co-flow device (1) of the present document is operating with forced means, where the monodispersion is inferred from the peaks of constant amplitude pressure and formation frequency measured in the dispersed phase fluid during the microbubble formation process.
  • Fig. 1 1 shows the speed modulation, in this case of the continuous phase passing through the outer channel (3), used in the case of Fig. 10.
  • test performed with a system (10) according to the invention of flat configuration and where the forced is carried out in the continuous phase of the outer channel (3) show increases in the frequency of microbubble formation up to values of order of kilo hertz (kHz) and reductions in disperse phase flow of the channel ( 2) internal up to 20 times the co-flow values under natural conditions, with the consequent reduction in the size of the generated microbubbles.
  • tests carried out with a system (10) according to the invention of cylindrical configuration and where the forcing is carried out in the dispersed phase of the inner channel (2) also show increases in the frequency of bubble formation up to values of order of kilo hertz (kHz) REFERENCES CITED
  • REPLACEMENT SHEET (RULE 26) - Liu, Y., Miyoshi, H., Nakamura, M., 2006. Encapsulated ultrasound microbubbles:
  • REPLACEMENT SHEET (RULE 26) - Hanotu, J., Hemaka Bandulasenab, HC, Yen Chiuc, T., Zimmermana, WB, 2013. Oil emulsion separation with fluidic oscillator generated microbubbles. Int. J. Multiphase Flow 56, 119-125.
  • REPLACEMENT SHEET (RULE 26) - M. Stoffel, S. Wahl, E. Lorenceau, R. Hohler, B. Mercier, and DE Angelescu. Bubble Production Mechanism in a Microfluidic Foam Generator. PRL 108, 198302 (2012)
  • microbubbling Absolute instabilities in coflowing gas-liquid jets. Physics of Fluids, 13 (12), 3839-3842.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)

Abstract

La invención describe un sistema (10) y procedimiento para generar microburbujas monodispersas en configuración de co-flujo, donde el sistema (10) comprende: un dispositivo (1) de co-flujo que comprende un canal (2) de fluido interior; y al menos un canal (3) de fluido exterior, donde el canal (3) de fluido exterior presenta una configuración de co-flujo con respecto del canal (2) de fluido interior, y donde dicho canal (3) de fluido exterior rodea sustancialmente el canal (2) de fluido interior; yun medio (14) de forzado conectado al canal (2) de fluido interior o al canal (3) de fluido exterior del dispositivo (1) de co-flujo, donde dicho medio (14) de forzado está configurado para proporcionar una variación periódica alrededor de su valor medio en el caudal de fluido a través de uno de entre dicho canal (2) interior o dicho canal (3) exterior.

Description

DESCRIPCIÓN
Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo
OBJETO DE LA INVENCIÓN
La presente invención pertenece al campo de la mecánica de fluidos, y más particularmente a los dispositivos empleados para la generación de microburbujas.
Un primer objeto de la presente invención es un nuevo sistema para la generación de microburbujas monodispersas en configuración de co-flujo que permite controlar la frecuencia de generación de las microburbujas mediante la modulación del caudal de uno de los fluidos.
Un segundo objeto de la presente invención es un procedimiento asociado al sistema anterior.
ANTECEDENTES DE LA INVENCIÓN
La generación de burbujas de tamaño micrométrico y nanométrico ha atraído una gran atención en los últimos tiempos debido a que presentan una gran relación superficie- volumen, una alta solubilidad en un líquido acuoso, una baja velocidad de ascenso [Zimmerman et al., 2013], y una auto-presurización inducida por la tensión superficial. Es por ello que pueden mejorar el intercambio gaseoso entre las fases de líquido y gas o potenciar fenómenos de transporte [Bird et al. 2007]. Asimismo, las microburbujas presentan oportunidades singulares y especiales como poder ser excitadas foto-acústicamente [Ashkin, 1997; Lauterborn y Kurz, 2010] o poder ser utilizadas como sensores o marcadores [Tremblay-Darveau et al., 2014]. Por todo lo anterior, la aplicación de las burbujas de tamaño micrométrico está presente en numerosos procesos industriales, tales como los propios de la biomedicina [Liu et al., 2006], procesamiento de alimentos, reactores de gas- líquido, o la generación de espumas, entre otros, así como en muchas áreas de la ciencia, por ejemplo en el estudio de líquidos con burbujas. La eficiencia de los procesos anteriores depende en gran medida de la utilización de burbujas de tamaños controlables. Sin embargo, la formación controlada de burbujas dentro de las escalas micrométricas representa un objetivo muy difícil de conseguir en la actualidad. En este punto, la generación
1
HOJA DE REEMPLAZO (REGLA 26) de burbujas clásica por medio de la inyección de gas a través de un orificio o una boquilla [Davidson y Schuler, 1960, Ramakrishnan et al., 1968, Marmur y Rubín, 1970, Kumar y Kuloor, 1976, Longuet-Higgins et al., 1991 , Oguz y Prosperetti, 1993 y Bolaños-Jiménez et al., 2008] está limitada a caudales pequeños y los volúmenes mínimos conseguibles al volumen de Fritz (el conseguido mediante un balance entre la gravedad y la tensión superficial).
En las últimas décadas se han propuesto técnicas y dispositivos alternativos, muchos de ellos basados en la introducción de fuerzas externas adicionales para facilitar el desprendimiento de burbujas. Maclntyre (1967), o posteriormente otros investigadores como Vejrazka et al. (2008), proponen el control de la frecuencia y tamaño de las burbujas a través de la vibración de la aguja inyectora. Además, Ohl (2001), y más tarde Tomiyama et al. (2002), exploraron la inyección intermitente de los flujos para controlar el desprendimiento de las burbujas. Del mismo modo, Kariyasaki y Ousaka (2001) Sanada (2005), Najafi et al. (2008) o Shirota et al. (2008) estudiaron el proceso de formación mediante la variación de la presión de alimentación. Sin embargo, las técnicas antes mencionadas no son adecuadas para la producción masiva de microburbujas, ya que están limitadas en tamaño de burbuja y frecuencia de producción.
Por otro lado, el uso de agitadores [Kawecki, 1967], mezcladores de orificios [Unno y Inoue 1980], mezcladores multi-fluidos [Sadatomi et al. 2012] o inyectores Venturi [Yin et al. 2015] proporciona producciones masivas de burbujas de pequeño tamaño. Sin embargo, estas técnicas presentan inconvenientes, como la falta de generación de burbujas monodispersas, ya que se obtiene una distribución de burbujas de diferentes tamaños, o el control de la frecuencia de burbujeo, entre otros.
La producción masiva de microburbujas con diámetros en el rango de 1 a 10 mieras también es posible a través de insonación [Makuta et al. 2006] o agitación mecánica [J. Ellenberger y R. Krishna 2002], pero estas técnicas proporcionan burbujas polidispersas.
En los últimos años, la producción de pequeñas burbujas se ha logrado por medio de métodos y dispositivos tecnológicamente muy avanzados y sofisticados, conocidos como dispositivos nano y microfluídicos, cuyo uso está fundamentado por el control del proceso de producción que los mismos proporcionan. En este punto, los dispositivos denominados de T- junction (unión en T) [P. Garstecki, et al. 2006, Fu y Ma, 2015] o flow-focusing (concentración de flujo) [Gordillo et al. 2004, Gastecki et al 2004], proporcionan burbujas
2
HOJA DE REEMPLAZO (REGLA 26) casi monodispersas del orden de un micrómetro [Castro-Hernández et al. 201 1 , Kobayashi et al. 2007, Malloggi et al. 2009]. Sin embargo, estos dispositivos son complejos y muy costosos de fabricar, lo que limita su uso. Además, estas técnicas proporcionan relaciones de volumen y frecuencia que dependen de las condiciones de flujo, no siendo posible el control independiente de las últimas características. En este sentido, recientemente, Hoeve et al. (2015), patente WO2013141695 A1 , han propuesto un método para producir microburbujas monodispersas de diámetros inferiores a 10 μηι. La técnica de emulsificación por microcanal [Yasuno et al. 2004] ha sido también estudiada para formar burbujas de gas microscópicas. Además, Stoffel et al. (2012) han diseñado y caracterizado recientemente un generador de burbujas micrométricas, que permite el control de la frecuencia y del volumen de la burbuja de manera independiente y produce burbujas monodispersas en un canal en paralelo. Sin embargo, con este dispositivo se logra la formación de burbujas monodispersas cuando se usa únicamente un canal, mientras que se observa polidispersión cuando se utilizan todos los canales, fundamentalmente a causa del acoplamiento entre los generadores. Además, estos dispositivos están limitados también por la relación de viscosidad de los fluidos considerados.
Las técnicas comentadas anteriormente se han traducido en un número significativo de patentes, que presentan las características ya mencionadas. Por ejemplo, a principios de los 90, la US005122312 (1992) propuso un sistema de inyección en la configuración de un inyector de burbujas modificado, combinando el flujo de líquido que proporciona el arranque de las burbujas (como en US3545731A (1970)), pero que presenta algunos inconvenientes como la coalescencia de las burbujas en otras más grandes. Este tipo de dispositivos tampoco son capaces de generar un número suficiente de burbujas ni las que se generan son monodispersas. Además, se requiere el uso de orificios ultrafinos o de tamaño de mieras para producir microburbujas. Por otro lado, la patente US2006 / 0284325A1 (2006) propone un microdispositivo basado en la inyección y dispersión de un gas a través de un cuerpo poroso en un líquido, lo que implica el uso de poros extremadamente pequeños, y por lo tanto muy complicado de construir. Además, el control de las burbujas producidas tampoco es posible con este método. En este sentido, se han patentado dispositivos basados en la técnica de flow-focusing, tal como en US0061 16516A (2000) o el más reciente WO2013141695 A1 , que también se consideran microdispositivos, con su consiguiente complejidad constructiva. La electrólisis es usada en US006689262B2 (2004), lo cual limita los fluidos y soluciones de trabajo, así como impide la selección del gas. En el documento US 7338551 B2 (2008), se
3
HOJA DE REEMPLAZO (REGLA 26) usa el fenómeno de cavitación para generar burbujas, pero de nuevo sin proporcionar burbujas monodispersas y no siendo posible regular completamente el gas utilizado. Por último, en US8186653B2 (2012), se propone un aparato de generación de burbujas pequeñas que reduce el tamaño de las mismas usando para su rotura la cortadura proporcionada por un flujo con giro generado a tal fin. Sin embargo, el dispositivo genera burbujas de tamaño de miera polidispersas.
En conclusión, existe una falta de un sistema, distinto, más sencillo y barato de la utilización de microdispositivos, simple de construir y capaz de generar microburbujas monodispersas y que proporcione el control independiente del volumen de las burbujas y la frecuencia de formación.
El uso de una configuración de co-flujo constituye una alternativa a todos los métodos y técnicas descritas anteriormente para generar de manera masiva burbujas pequeñas [Gordillo et al. 2001 , Sevilla et al. 2002, Gordillo et al. 2004, Sevilla et al. 2005, Gordillo et al. 2007, Bolaños-Jiménez et al. 2011 , Gutiérrez-Montes et al. 2013, Gutiérrez-Montes et al. 2014]. Además, estos tipos de dispositivos son simples de construir. Sin embargo, el tamaño y la frecuencia de las burbujas se limitan a un tamaño de decenas/cientos de mieras y unos cientos de hercios, respectivamente. Asimismo, el control individual y preciso del volumen de la burbuja y la frecuencia de formación no se consigue plenamente.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención resuelve los problemas descritos, al permitir obtener microburbujas monodispersas de un modo mucho más sencillo que los sistemas descritos en los documentos de la técnica anterior. Además, esta invención proporciona un control completo del proceso de formación, lo que permite seleccionar de manera independiente la frecuencia de generación de las microburbujas y el tamaño de las burbujas generadas. Esto constituye una gran ventaja con relación a los sistemas descritos en los documentos anteriores.
En este documento, el término "fluido en fase dispersa" hace referencia al fluido suministrado por el canal interior del dispositivo de co-flujo, que constituirá la fase dispersa al quedar alojado en el seno del fluido en fase continua en forma de microburbujas, mientras que el término "fluido en fase continua" hace referencia al fluido suministrado por el, al menos, un canal exterior del dispositivo de co-flujo, que constituirá la fase continua al quedar en el exterior de las microburbujas generadas.
4
HOJA DE REEMPLAZO (REGLA 26) En este documento, el término "dispositivo de co-flujo" hace referencia un dispositivo dotado de un canal de fluido interior y, al menos, un canal de fluido exterior donde dichos canales están dispuestos esencialmente en paralelo, de tal modo que a la salida de los mismos se generan dos corrientes de fluido en disposición de co-flujo. De este modo, la corriente de fluido interior descarga en el seno de la corriente de fluido exterior.
En este documento, la expresión "el canal de fluido exterior rodea sustancia/mente el canal de fluido interior" hace referencia a que el canal exterior rodea completamente todo el canal interior, o bien que rodea casi la totalidad de dicho canal interior con excepción de unas zonas muy pequeñas con relación al perímetro total del canal interior. Este concepto quedará más claro más adelante a partir de la descripción de las posibles configuraciones geométricas del dispositivo de la invención. Un primer aspecto de la invención está dirigido a un sistema para para la generación de microburbujas monodispersas en configuración de co-flujo que comprende fundamentalmente dos elementos: a) Un dispositivo de co-flujo, que a su vez comprende:
- Un canal de fluido interior para un fluido en fase dispersa.
- Al menos un canal de fluido exterior para un fluido en fase continua, donde el canal de fluido exterior presenta una configuración de co-flujo con respecto del canal de fluido interior, y donde dicho canal de fluido exterior rodea sustancialmente el canal de fluido interior. b) Un medio de forzado conectado al canal de fluido interior o al canal de fluido exterior del dispositivo de co-flujo, donde dicho medio de forzado está configurado para proporcionar una variación periódica alrededor de su valor medio en el caudal de fluido que pasa a través de uno de entre dicho canal interior o dicho canal exterior.
El canal de fluido interior y el canal de fluido exterior del dispositivo de co-flujo pueden estar implementados mediante sendas paredes delgadas esencialmente paralelas, como se verá más adelante en este documento, de modo que los dos fluidos entrarán en contacto en el
5
HOJA DE REEMPLAZO (REGLA 26) extremo de salida del canal interior que se interpone entre ambos. Para operar este sistema, basta con suministrar un fluido en fase dispersa al fluido de co-flujo a través del canal interior y un fluido en fase continua a través de al menos un canal exterior, aplicando una variación periódica de caudal alrededor de su valor medio a uno de los dos fluidos.
En efecto, los inventores de la presente solicitud han descubierto que la adición de una oscilación en el caudal de uno de entre los dos fluidos que recorren los canales respectivamente interior o exterior del dispositivo de co-flujo, hace que la interacción a la salida del canal interior entre la corriente del fluido en fase dispersa y la, al menos, una corriente del fluido en fase continua provoque la generación de microburbujas a una frecuencia que coincide con la frecuencia de las oscilaciones del caudal, y cuyo tamaño depende del caudal de primer fluido por el canal interior. Por lo tanto, controlando al menos el caudal del primer fluido que pasa por el canal interior y la frecuencia de las oscilaciones aplicadas al caudal de uno de los dos fluidos, se puede controlar el tamaño y frecuencia de las microburbujas de forma independiente.
Esto contrasta con las características de los métodos de generación en co-flujo tradicionales (sin medio de forzado), donde el diámetro y frecuencia de la microburbujas se controla a través de variaciones de los caudales del fluido en fase continua y en fase dispersa. Más concretamente, en los métodos de generación tradicionales cuanto menor es la relación caudal de fase continua/fase dispersa, mayor es la frecuencia de formación de las microburbujas obtenida, de modo que el volumen queda determinado por la relación entre el caudal de fase dispersa y la frecuencia de formación de las burbujas determinada de forma natural. Al incorporar al sistema de la presente invención un medio de forzado para modificar periódicamente el caudal de uno de los dos fluidos alrededor de un valor, se induce la aparición de fenómenos adicionales que modifican los espesores de las corrientes, gobernando el proceso de formación de las microburbujas para amplitudes de la modulación suficientemente grandes. Esto permite conseguir que la frecuencia de generación de las microburbujas sea la impuesta por el medio de forzado. Gracias a ello, se puede controlar de manera independiente tanto el tamaño de las microburbujas como la frecuencia de generación de las mismas.
En principio, el canal de fluido interior y el canal de fluido exterior del dispositivo de co-flujo pueden presentar cualquier geometría siempre que cumpla con las características mencionadas anteriormente. Por ejemplo, en una realización preferida de la invención, la geometría del dispositivo de co-flujo se elige de entre las siguientes: plana, cilindrica, anular,
6
HOJA DE REEMPLAZO (REGLA 26) y poliédrica.
En este contexto, un dispositivo de co-flujo de configuración plana hace referencia de manera general a un dispositivo de co-flujo esencialmente con forma de paralelepípedo donde una dimensión de la sección transversal de los canales interior y exterior es mucho mayor que la dimensión perpendicular a la misma. En un caso particular de la configuración plana cada sección transversal de los canales interior y exterior está delimitada por líneas rectas, en cuyo caso la sección transversal de los canales interior y exterior tendrá forma rectangular. Sin embargo, son posibles otras formas alternativas de esta configuración plana, como se detallará más adelante. Un dispositivo de co-flujo de configuración cilindrica se refiere en general a un dispositivo de co-flujo donde la sección transversal del canal interior es circular y el canal exterior rodea exteriormente al canal interior. Un dispositivo de co-flujo de configuración anular se refiere en general a un dispositivo de co-flujo donde la sección transversal del canal interior es anular y el canal exterior rodea interior y exteriormente al canal interior. Un dispositivo de co-flujo de configuración poliédrica se refiere en general a un dispositivo de co-flujo donde la sección transversal del canal interior es poliédrica y el canal exterior rodea exteriormente al canal interior.
De este modo, volviendo a la definición de la expresión "el canal de fluido exterior rodea sustancia/mente el canal de fluido interior", cuando el dispositivo de co-flujo de la invención tiene una configuración cilindrica, el canal exterior rodea completamente el canal interior. Alternativamente, cuando el dispositivo de co-flujo de la invención tiene una configuración plana, existen dos canales exteriores de sección transversal rectangular con una dimensión mucho mayor que la otra que encierran a modo de sándwich el perímetro de la sección transversal del canal interior de fluido de fase dispersa, cuya sección transversal también es rectangular con una dimensión mucho más larga que la otra. Por lo tanto, en este caso los dos canales exteriores rodean casi completamente el canal interior excepto por las dos paredes laterales del canal interior de fluido de fase dispersa. El caso más genérico de la configuración poliédrica podría combinar o ajustarse a alguna de las características antes mencionadas.
En cuanto al extremo de salida de los canales, de acuerdo con una realización preferida de la invención el extremo de salida del canal interior tiene una dimensión transversal menor que 1 mm y el extremo de salida del canal exterior tiene una dimensión transversal menor que 3 mm.
7
HOJA DE REEMPLAZO (REGLA 26) En este contexto, el término "dimensión transversal' referido al extremo de salida del canal interior hace referencia a su diámetro hidráulico, en un dispositivo de co-flujo de configuración cilindrica o similar, o bien a la anchura de su lado corto, en un dispositivo de co-flujo de configuración plana. Por su parte, la "dimensión transversa?' referida al extremo de salida del, al menos, un canal exterior hace referencia a la diferencia entre su diámetro hidráulico y el diámetro hidráulico del canal interior sumado al espesor de la pared separadora, en un dispositivo de co-flujo de configuración cilindrica o similar, o bien a la anchura del lado corto de uno de los dos canales, en un dispositivo de co-flujo de configuración plana. Es decir, para un dispositivo de co-flujo de configuración cilindrica, la dimensión transversal del canal interior es el diámetro hidráulico del canal interior, y la dimensión transversal del canal exterior es la diferencia entre su diámetro hidráulico y el diámetro hidráulico del canal interior sumado al espesor de la pared separadora. Para un dispositivo de co-flujo de configuración plana, la dimensión transversal del canal interior es la anchura del lado corto del canal interior y la dimensión transversal del canal exterior es la anchura del lado corto de uno de los dos canales exteriores.
En otra realización preferida de la invención, el canal de fluido exterior tiene una sección transversal que puede ser constante o bien disminuir en dirección al extremo de salida. En el caso de una disminución de la sección transversal, que puede responder a diferentes geometrías, tiene el objeto de reducir al mínimo las pérdidas de presión, garantizar unas condiciones de suministro estables, así como un perfil de velocidades del fluido en fase continua controlado. Por ejemplo, la sección transversal puede disminuir en la zona cercana al extremo de salida del canal exterior a través de una boquilla en forma de tobera, mediante paredes planas, u otras formas. También se contempla una sección transversal de fluido exterior constante a lo largo de la dirección del flujo. En cualquier caso, preferentemente la geometría del canal exterior es simétrica con respecto del eje del dispositivo de co-flujo (configuración cilindrica o similar) o plano central del dispositivo de co-flujo (configuración plana). En otra realización preferida de la invención, el extremo de salida del canal de fluido exterior sobresale longitudinalmente con relación al extremo de salida del canal de fluido interior. Esto permite mejorar el direccionamiento del flujo con el propósito de obtener un efecto más eficaz de la modulación conseguida a través del medio de forzado, que se describirá más adelante. Alternativamente, el extremo de salida del canal de fluido interior puede sobresalir longitudinalmente con relación al extremo de salida del canal o canales de fluido exterior para favorecer la rotura de las microburbujas y por tanto variar la frecuencia de formación de
8
HOJA DE REEMPLAZO (REGLA 26) las mismas.
Además, en otra realización preferida de la invención la dirección del extremo de salida del canal de fluido exterior está orientada hacia el eje o plano de simetría del dispositivo de co- flujo. De ese modo, se induce una componente transversal de la velocidad del fluido en fase continua y así se facilita la rotura de la corriente interior de fluido en fase dispersa en microburbujas.
Por otra parte, en una realización preferida de la invención, el canal de fluido interior tiene una sección transversal esencialmente constante. En cuanto a su longitud, debe ser lo suficientemente grande como para asegurar un control completo sobre la velocidad del flujo y unas condiciones preferentes de régimen laminar. Además, preferentemente la sección de salida del canal de fluido interior puede presentar una sección transversal decreciente para uniformizar el perfil de velocidad del fluido en fase dispersa a la salida del canal interior y, de esta forma, poder alterar el proceso de formación de microburbujas.
En otra realización preferida más de la invención, las paredes que delimitan el canal de fluido interior tienen un espesor en la salida de menos de 0,5 mm. Estas paredes pueden fabricarse de cualquier material o mezcla de materiales siempre que el punto de anclaje de la entrefase de ambos fluidos esté perfectamente controlado.
Preferentemente, el perfil del borde de la pared del extremo de salida del canal de fluido interior del dispositivo de co-flujo tiene una forma que se elige entre: curvilínea en dirección exterior-interior, recta en dirección exterior-interior, plana, redondeada y poligonal. Cada una de estas formas particulares tendrá un efecto determinado sobre la entrefase entre el fluido interior y el fluido exterior, como por ejemplo la variación de las amplitudes de la modulación necesarias para controlar el proceso, la variación de los espesores locales de las diferentes corrientes o, en general, las condiciones del flujo de salida y, por ende, la frecuencia. Esto último se consigue mediante la variación de la posición relativa de la entrefase de ambos fluidos en la salida. Por ejemplo, en el caso de un borde de salida en arista viva, se favorece que la entrefase de ambos fluidos se fije en el borde exterior.
Adicionalmente, la invención contempla la posibilidad de que la geometría de las paredes de los canales de fluido presente diferentes formas de actuación sobre la dinámica del flujo. Por ejemplo, en una realización preferida de la invención dirigida a un dispositivo de co-flujo de configuración plana o anular, los extremos de salida del canal de fluido interior y el canal de
9
HOJA DE REEMPLAZO (REGLA 26) fluido exterior pueden comprender ondulaciones configuradas para inducir inestabilidades en la dirección transversal que provoquen la rotura de la corriente del fluido en fase dispersa en esta dirección. Como se apreciará con mayor detalle en las figuras, estas ondulaciones pueden estar dispuestas en un plano esencialmente paralelo a la dirección de la corriente de los fluidos, o bien en un plano esencialmente perpendicular a la dirección de la corriente de los fluidos.
En otra realización preferida más de la invención, en un dispositivo de co-flujo que tiene una configuración plana el canal interior puede estar dividido en una pluralidad de sub-canales paralelos de fluido en fase dispersa y una pluralidad de sub-canales paralelos de fluido en fase continua dispuestos de forma alterna. Esta configuración permite incrementar considerablemente el número de burbujas generadas.
En cuanto al medio de forzado, en principio puede ser de cualquier tipo siempre que permita modificar periódicamente el caudal de la línea de fluido en cuestión alrededor de su valor medio. Por ejemplo, puede tratarse de una bomba de desplazamiento positivo, como una bomba de jeringa, capaz de generar un caudal variable, conectada a la primera o la segunda línea de fluido. Alternativamente, puede utilizarse un recipiente de volumen periódicamente variable dispuesto en la primera o la segunda línea de fluido. Este recipiente puede tener una superficie móvil cuya posición pueda controlarse a través de un actuador mecánico, dinámico o acústico.
En cualquiera de los casos, el sistema también puede comprender un controlador conectado al medio de forzado para permitir al usuario regular la frecuencia y la amplitud de las variaciones periódicas de caudal generadas.
De acuerdo con un segundo aspecto de la invención, se describe un método para la generación de microburbujas monodispersas en configuración de co-flujo por medio de un dispositivo de co-flujo que comprende un canal de fluido interior para un fluido en fase dispersa, y al menos un canal de fluido exterior para un fluido en fase continua dispuesto en configuración de co-flujo con respecto del canal de fluido interior, donde el canal de fluido exterior rodea sustancialmente el canal de fluido interior. Este método comprende fundamentalmente: a) Suministrar un primer fluido al canal de fluido interior. Este primer fluido será el fluido en fase dispersa, que a la salida del dispositivo quedará encerrado en el
10
HOJA DE REEMPLAZO (REGLA 26) interior de las microburbujas. b) Suministrar un segundo fluido al canal de fluido exterior. Se trata del fluido en fase continua que contendrá las microburbujas generadas en su interior. c) Modificar el caudal de uno de entre el primer fluido y el segundo fluido de modo que varíe periódicamente alrededor de su valor medio.
Como se ha descrito con anterioridad en este documento, la oscilación del caudal de uno de los dos fluidos que recorren los canales respectivamente interior y exterior provocará la aparición de microburbujas a una frecuencia que coincide con la frecuencia de las oscilaciones del caudal y cuyo tamaño depende del caudal de primer fluido por el canal interior. Por tanto, si se modifica la frecuencia de variación del caudal que varía periódicamente, se consigue controlar la frecuencia de generación de microburbujas. Por otro lado, si se modifica el caudal del primer fluido que pasa por el canal interior, se consigue controlar el tamaño de las microburbujas.
En una realización preferida de la invención, el primer fluido es un gas. En otra realización preferida de la invención, el segundo fluido es un líquido, que además puede contener una sustancia surfactante con el propósito de estabilizar las burbujas formadas por medio de la formación de una capa de revestimiento en su superficie que garantice que éstas perduran en el tiempo.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Fig. 1 muestra un diagrama esquemático de un sistema para la generación de microburbujas monodispersas que comprende un dispositivo según la invención.
La Figs. 2a y 2b muestran respectivamente una vista parcial de un dispositivo de co-flujo según la invención de configuración plana y una vista parcial de un dispositivo según la invención de configuración cilindrica.
Las Figs. 3a, 3b y 3c muestran respectivamente un dispositivo de co-flujo según la invención donde el extremo de salida del canal exterior sobresale con respecto del canal interior con sección constante, un dispositivo de co-flujo según la invención donde el extremo de salida del canal exterior sobresale con respecto del canal interior con sección decreciente, y un
1 1
HOJA DE REEMPLAZO (REGLA 26) dispositivo de co-flujo según la invención donde el canal interior sobresale con respecto del canal exterior.
La Fig. 4 muestra un dispositivo de co-flujo según la invención donde las paredes del canal exterior no son paralelas con relación al eje central del dispositivo, y por tanto la corriente de fluido en fase continua presenta una componente transversal no nula hacia el eje en la salida.
Las Figs. 5a y 5b muestran dos ejemplos de secciones de extremo de un canal interior que presentan sendos estrechamientos de diferentes formas, alternativas a la sección constante.
La Fig. 6 muestra diferentes formas del perfil de la pared que constituye el extremo de salida del canal interior. Las Fig. 7a y 7b muestran un dispositivo de co-flujo de configuración plana según la invención cuyo extremo de salida de los canales interior y exterior comprende oscilaciones respectivamente en un plano paralelo a la corriente y en un plano perpendicular a la corriente. La Fig. 8 muestra un dispositivo de co-flujo de configuración plana según la invención cuyo canal interior está dividido en una pluralidad de sub-canales paralelos individuales.
La Fig. 9 muestra un gráfico que representa las variaciones temporales de presión en el fluido de fase dispersa cuando no se aplica forzado.
La Fig. 10 muestra un gráfico que representa las variaciones temporales de presión en el fluido de fase dispersa cuando se aplica forzado, reflejando el control de la frecuencia de formación y la monodispersión de las burbujas producidas. La Fig. 11 muestra un gráfico que representa las variaciones temporales de la velocidad en el fluido de fase continua producidas por el forzado aplicado en la Fig. 10.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN A continuación, se describe con mayor detalle la presente invención haciendo referencia a las figuras adjuntas, que muestran varios ejemplos de constitución del sistema (10) de
12
HOJA DE REEMPLAZO (REGLA 26) acuerdo con la presente invención.
La Fig. 1 muestra una vista esquemática de un sistema (10) para la generación de microburbujas monodispersas en configuración de co-flujo formado por un dispositivo (1) de co-flujo que está conectado respectivamente a una primera línea (12) de fluido por la que discurre un fluido que constituirá la fase dispersa, preferentemente un gas, y a una segunda línea (13) de fluido por la que discurre un fluido que constituirá la fase continua. Un medio (14) de forzado está conectado a las respectivas líneas (12, 13) de fluido para provocar una variación periódica del caudal de al menos una de dichas líneas (12, 13) de fluido en función de las órdenes que recibe de un medio (15) de control que está conectado al mismo.
El dispositivo (1) de co-flujo comprende un canal (2) de fluido interior para el fluido en fase dispersa a cuya entrada está conectada la primera línea (12) de fluido y uno o varios canales (3) exteriores de fluido para el fluido en fase continua a los que está conectada la segunda línea (13) de fluido. En este ejemplo concreto se trata de un dispositivo (1) de co- flujo de configuración plana donde el canal (2) de fluido interior tiene una sección transversal constante de forma esencialmente rectangular, y que comprende dos canales (3) exteriores de fluido que tienen una sección transversal también esencialmente rectangular que se estrecha en la segunda mitad de su longitud a modo de tobera. Los dos canales (3) exteriores de fluido están dispuestos de manera que rodean la práctica totalidad del canal (2) interior, que queda emparedado entre ambos, de acuerdo con una configuración de co- flujo.
Cuando se suministran a los canales (2, 3) respectivamente interior y exterior del dispositivo (1) de co-flujo sendos fluidos a través de las líneas (12, 13), la interacción entre ambos fluidos a la salida del canal interior (2) provoca la aparición de microburbujas monodispersas. Para controlar el tamaño de las microburbujas, basta con variar el caudal del fluido suministrado a través de la primera línea (12) de fluido correspondiente al canal (2) interior, tal y como se ha comentado anteriormente. Para controlar además la frecuencia de generación de las microburbujas, el medio (14) de forzado aplica en cualquiera de las dos líneas (12, 13) de fluido una variación periódica del caudal alrededor de su valor medio según una determinada frecuencia. Como consecuencia, la generación de microburbujas se producirá precisamente a dicha frecuencia predeterminada. El medio (15) de control actúa sobre el medio (14) de forzado para determinar sobre qué línea (12, 13) de fluido se actúa en cada momento y las características de la variación periódica que se aplica a la misma: frecuencia y amplitud de las oscilaciones.
13
HOJA DE REEMPLAZO (REGLA 26) Las Figs. 2a y 2b muestran sendos ejemplos de configuración geométrica del dispositivo de co-flujo (1) de la presente invención. Concretamente, la Fig. 2a muestra un dispositivo (1) de co-flujo similar al mostrado esquemáticamente en la Fig. 1. Se trata de un dispositivo (1) de configuración plana donde la sección transversal del canal (2) interior es esencialmente rectangular con una dimensión mucho mayor que otra, y donde existen dos canales (3) exteriores que rodean dicho canal (2) interior por sus dos lados largos a modo de sándwich. La sección transversal del canal (2) interior puede disminuir ligeramente a lo largo de su longitud, mientras que la sección transversal de los canales (3) exteriores sufre una disminución de una magnitud mucho mayor. En este ejemplo, los extremos de salida de los canales interior (2) y exterior (3) están alineados en un mismo plano perpendicular al plano longitudinal del dispositivo (1) de co- flujo.
La Fig. 2b muestra un dispositivo (1) de co-flujo de configuración cilindrica. El canal (2) interior tiene forma cilindrica de sección constante, mientras que el canal (3) exterior tiene una forma obtenida a partir de una curva de revolución cuya sección transversal es decreciente. Al igual que en el caso anterior, los canales interior (2) y exterior (3) tienen sus respectivos extremos de salida alineados en un mismo plano perpendicular al eje longitudinal central del dispositivo (1) de co-flujo.
Las Figs. 3a y 3b muestran tres ejemplos de configuración de los extremos de salida de los canales interior (2) y exterior (3). Concretamente, las Figs. 3a y 3b muestran un ejemplo de dispositivo (1) de co-flujo donde el extremo de salida del canal exterior (3) sobresale longitudinalmente más allá del extremo de salida del canal interior (2) respectivamente sin disminución de sección transversal y con disminución de la sección transversal. Esta configuración permite un guiado más preciso de la corriente de fluido después de que los dos fluidos hayan entrado en contacto. Alternativamente, la Fig. 3c muestra otro ejemplo de dispositivo (1) de co-flujo donde es el extremo de salida canal interior (2) el que sobresale longitudinalmente más allá del extremo de salida del canal (3) exterior. Como se describió anteriormente, los efectos inducidos por esta modificación favorecen la rotura de las microburbujas y por tanto modifican la frecuencia de formación de las mismas. La Fig. 4 muestra otro ejemplo de configuración del dispositivo (1) de co-flujo donde el extremo de salida del canal (3) exterior está inclinado con relación a un plano o eje central
14
HOJA DE REEMPLAZO (REGLA 26) longitudinal del dispositivo (1). Esto provoca que la dirección del fluido en fase continua a la salida del dispositivo (1) de co-flujo forme un determinado ángulo de inclinación con relación a la dirección del fluido en fase dispersa, que coincide con la dirección de dicho eje central longitudinal. Como se ha mencionado anteriormente, esto tiene el efecto de inducir una componente transversal de la velocidad del fluido en fase continua y así facilitar la rotura de la corriente interior de fluido en fase dispersa en microburbujas.
Las Figs. 5a y 5b muestran sendos ejemplos de estrechamientos practicados en la porción de extremo del canal (2) interior. La forma del estrechamiento permite alterar el perfil de velocidad de la corriente a la salida y modificar/controlar las condiciones de generación de las microburbujas.
La Fig. 6 muestra diferentes perfiles del borde del extremo de salida del canal (2) interior donde el fluido interior en fase dispersa entra en contacto con el fluido exterior en fase continua. De izquierda a derecha, se representa un perfil curvo en dirección exterior-interior, un perfil recto en dirección exterior-interior, un perfil plano, y un perfil redondeado.
Las Fig. 7a y 7b muestran otro ejemplo de un dispositivo (1) de co-flujo de configuración plana donde los extremos de salida del canal (2) interior y el canal (3) exterior presentan ondulaciones respectivamente en un plano esencialmente paralelo a la corriente y en un plano esencialmente perpendicular a la corriente. Con ello, se inducen inestabilidades en la dirección transversal que provocan la rotura de la corriente del fluido en fase dispersa en esta dirección. La Fig. 8 muestra un ejemplo más del dispositivo (1) de co-flujo que tiene una configuración plana donde el canal (2) interior está subdividido en una multiplicidad de sub-canales (2') individuales de fluido en fase dispersa dispuestos en paralelo unos a otros a lo largo del plano central longitudinal del dispositivo (1) de co-flujo que están separados entre sí por medio de una pluralidad de sub-canales (3') de fluido en fase continua también paralelos. El canal (2) interior adopta así la forma de una hilera donde se alternan sub-canales (2') de fluido en fase dispersa y sub-canales (3') de fluido en fase continua, y está además emparedado entre los dos canales (3) exteriores. En este dispositivo (1) de co-flujo, cada uno de los sub-canales (2') de fase dispersa, junto los dos sub-canales (3') de fase continua adyacentes y la correspondiente porción de los canales (3) exteriores que lo empareda, constituye una especie de sub-dispositivo de generación de microburbujas individual, de manera que este dispositivo (1) de co-flujo como un todo permite la generación simultánea
15
HOJA DE REEMPLAZO (REGLA 26) en paralelo de una pluralidad de microburbujas.
Como ejemplo de los resultados conseguidos por la invención, la Fig. 9 muestra la señal de presión de las microburbujas formadas en un dispositivo de co-flujo clásico (sin medio de forzado), en los que se observan diferentes picos de presión dentro del fluido de fase dispersa que pasa a través del canal interior (2), lo que indica la polidispersión de las microburbujas formadas. La Fig. 10 muestra los resultados correspondientes al caso en el que el dispositivo (1) de co-flujo del presente documento está funcionando con medio de forzado, donde la monodispersión se infiere de los picos de presión de amplitud y frecuencia de formación constantes medidos en el fluido de fase dispersa durante el proceso de formación de las microburbujas. La Fig. 1 1 muestra la modulación de la velocidad, en este caso de la fase continua que pasa a través del canal exterior (3), empleada en el caso de la Fig. 10. Las pruebas realizadas con un sistema (10) según la invención de configuración plana y donde el forzado se realiza en la fase continua del canal (3) exterior muestran incrementos de la frecuencia de formación de microburbujas hasta valores de orden de kilo hercios (kHz) y reducciones de caudal de fase dispersa del canal (2) interior hasta de 20 veces los valores del co-flujo en condiciones naturales, con la consiguiente reducción del tamaño de las microburbujas generadas. De igual forma, los ensayos realizados con un sistema (10) según la invención de configuración cilindrica y donde el forzado se realiza en la fase dispersa del canal (2) interior muestran igualmente incrementos de la frecuencia de formación de burbujas hasta valores de orden de kilo hercios (kHz). REFERENCIAS CITADAS
- Zimmerman, W.B., Al-Mashhadani, M.K.H., Bandulasena, H.C.H., 2013. Evaporation dynamics of microbubbles. Chem. Eng. Sci.101 , 865-877. - Bird, R.B., Stewart, W.E., Lightfoot, E.N. 2007. Transport Phenomena, Wiley, Singapore.
- Ashkin, A., 1997. Optical trapping and manipulation of neutral partióles using lasers. Proc. Nati. Acad. Sci. U.S.A. 94,4853-4860. - Lauterborn, W., Kurz, T., 2010. Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.
- Tremblay-Darveau, C, Williams R, Burns P.N. Measuring absolute blood pressure using microbubbles. Ultrasound Med Biol. 2014 Apr;40(4):775-87.
16
HOJA DE REEMPLAZO (REGLA 26) - Liu, Y., Miyoshi, H., Nakamura, M., 2006. Encapsulated ultrasound microbubbles:
therapeutic application in drug/gene delivery. J.Controlled Reléase 114, 89-99.
- R. Bolaños-Jiménez, A. Sevilla, C. Martínez-Bazán, J.M. Gordillo. Axisymmetric bubble collapse in a quiescent liquid pool. Part II: Experimental study Phys. Fluids, 20 (2008), p.
112104
- Davidson, J. F., & Schüler, B. O. G. (1997). Bubble formation at an orífice in a viscous liquid. Chemical Engineering Research and Design, 75, S105-S115.
- Kumar, R., & Kuloor, N. R. (1970). The formation of bubbles and drops. Advances in chemical engineering, 8, 255-368.
-M.S. Longuet-Higgins, B.R. Kerman, K. Lunde. The reléase of air bubbles from an underwater nozzle. J. Fluid Mech., 230 (1991), pp. 365-390
-A. Marmur, E. Rubin. A theoretical model for bubble formation at an orífice submerged in an inviscid liquid. Adv. Chem. Eng., 8 (1970), pp. 256-368 -H.N. Oguz, A. Prosperetti. Dynamics of bubble growth and detachment from a needle. J. Fluid Mech., 257 (1993), pp. 11 1-145
-R. Ramakrishnan, R. Kumar, N.R. Kuloor. Studies in bubble formation I: bubble formation under constant flow conditions. Chem. Eng. Sci., 24 (1968), p. 731-747
- Maclntyre, F., 1967. Vibrating capillary for production of uniform small bubbles. Rev. Sci. Instrum. 38, 969-970
- Jiri Vejrazka, Mária Fujasová, Petr Stanovsky, Marek C. Ruzicka, JTrí Drahos. Bubbling controlled by needle movement. Fluid Dynamics Research 40 (2008) 521-533
- Ohl, C.D., 2001. Generator for single bubbles of controllable size. Rev. Sci. Instrum. 72, 252-254. - Tomiyama, A., Celata, G.P., Hosokawa, S., Yoshida, S., 2002. Terminal velocity of single bubbles in surface tensión forcé dominant regime. Int. J. Multiphase Flow 28, 1497-1519.
- Kariyasaki, A., Ousaka, A., 2001. In: Proceedings of the 5th International Conference on Gas-Liquid and Gas-Liquid-Solid Reactor Engineering, pp. 460-468.
- Sanada, T., Watanabe, M., Fukano, T., Kariyasaki, A., 2005. Behavior of a single coherent gas bubble chain and surrounding liquid jet flow structure. Chem. Eng. Sci 60, 4886-4900.
- Najafi, A.S., Xu, Z., Masliyah, J. Single micro-bubble generation by pressure pulse technique. Chemical Engineering Science, 63 (2008) 1779-1787.
- Shirota, M., Sanada, T., Sato, A., Watanabe, M. Formation of a submillimeter bubble from an orífice using pulsed acoustic pressure waves in gas phase. Physics of Fluids, 20, 043301 2008.
- Hanotu, J., Bandulasena, H.C., Zimmerman, W.B., 2012. Microflotation performance for algal separation. Biotechnol. Bioeng. 109, 1663-1673.
17
HOJA DE REEMPLAZO (REGLA 26) - Hanotu, J., Hemaka Bandulasenab, H.C., Yen Chiuc, T.,Zimmermana, W.B., 2013. Oil emulsión separation with fluidic oscillator generated microbubbles. Int. J. Multiphase Flow 56, 119-125.
- Stuart Brittle, Pratik Desai, Woon Choon Ng, Alan Dunbar, Robert Howell, Vaclav Tesa"r, William B. Zimmerman. Minimising microbubble size through oscillation frequency control. Chemical engineering research and design, 104 (2015) 357-366 - Kawecki, W., Reith, T., Van Heuven, J. W., & Beek, W. J. (1967). Bubble size distribution in the impeller región of a stirred vessel. Chemical Engineering Science, 22(11), 1519-1523.
- H. Unno, I. Inoue SIZE REDUCTION OF BUBBLES BY ORIFICE MIXER. Chemical Engineering Science. Volume 35, Issue 7, 1980, Pages 1571-1579
- Michio Sadatomi, , Akimaro Kawahara, Hidetoshi Matsuura, Shinji Shikatani Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orífice and porous tube. Experimental Thermal and Fluid Science. Volume 41 , September 2012, Pages 23-30
- Yin, J., Jingjing Li, J., Li, H., Liu, W., Wang, D. Experimental study on the bubble generation characteristics for an venturi type bubble generator. International Journal of Heat and Mass Transfer Volume 91 , December 2015, Pages 218-224 - TOSHINORI MAKUTA, FUMIO TAKEMURA.EIJI HIHARA, YOICHIRO MATSUMOTO AND MASAHIRO SHOJI Generation of micro gas bubbles of uniform diameter in an ultrasonic field J. Fluid Mech. (2006), vol. 548, pp. 113-131.
- J. Ellenberger, R. Krishna. Improving mass transfer in gas-liquid dispersions by vibration excitement. Chemical Engineering Science 57 (2002) 4809 - 4815
- P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Lab Chip 6, 437 (2006).
- T. Fu, Y. Ma. Bubble formation and breakup dynamics in microfluidic devices: a review Chem. Eng. Sci. (2015) (doi: http://dx.doi.Org/10.1016/j.ces.2015.1002.1016).
- Gordillo, J. M.; Cheng, Z.; Gañán-Calvo, A. M.; Márquez, M.; Weitz, D. A., A new device for the generation of microbubbles. Physics of Fluids 2004, 16 (8), 2828-2834.
- Garstecki, P.; Gitlin, I.; DiLuzio, W.; Whitesides, G. M.; Kumacheva, E.; Stone, H. A., Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters 2004, 85 (13), 2649-2651.
- Castro-Hernández, E.; van Hoeve, W.; Lohse, D.; Gordillo, J. M., Microbubble generation in a co-flow device operated in a new regime. Lab on a Chip 2011 , 1 1 (12), 2023-2029.
- Apparatus and method for mass producing a monodisperse microbubble agent. WO 2013141695 A1
- Motohiro Yasuno, Shinji Sugiura, Satoshi Iwamoto, and Mitsutoshi Nakajima.
Monodispersed Microbubble Formation Using MicroChannel Technique. AlChE Journal, 50(12): 3227-3233, 2004
18
HOJA DE REEMPLAZO (REGLA 26) - M. Stoffel, S. Wahl, E. Lorenceau, R. Hóhler, B. Mercier, and D. E. Angelescu. Bubble Production Mechanism in a Microfluidic Foam Generator. PRL 108, 198302 (2012)
- Gordillo, J. M., Gañán-Calvo, A. M., & Pérez-Saborid, M. (2001). Monodisperse
microbubbling: Absolute instabilities in coflowing gas-liquid jets. Physics of Fluids, 13(12), 3839-3842.
- Sevilla, A., Gordillo, J. M., & Marti nez-Bazán, C. (2002). The effect of the diameter ratio on the absolute and convective instability of free coflowing jets. Physics of Fluids, 14(9), 3028- 3038.
- Sevilla, A., Gordillo, J. M., & Martínez-Bazán, C. (2005). Transition from bubbling to jetting in a coaxial air-water jet. Physics of Fluids, 17(1), 018105. - Gordillo, J. M., Sevilla, A., & Martínez-Bazán, C. (2007). Bubbling in a co-flow at high
Reynolds numbers. Physics of Fluids, 19(7), 077102.
19
HOJA DE REEMPLAZO (REGLA 26)

Claims

REIVINDICACIONES
1. Sistema (10) para la generación de microburbujas monodispersas en configuración de co- flujo, caracterizado por que comprende:
- un dispositivo (1) de co-flujo que comprende:
- un canal (2) de fluido interior para un fluido en fase dispersa; y
- al menos un canal (3) de fluido exterior para un fluido en fase continua, donde el canal (3) de fluido exterior presenta una configuración de co-flujo con respecto del canal (2) de fluido interior, y donde dicho canal (3) de fluido exterior rodea sustancialmente el canal (2) de fluido interior; y
- un medio (14) de forzado conectado al canal (2) de fluido interior o al canal (3) de fluido exterior del dispositivo (1) de co-flujo, donde dicho medio (14) de forzado está configurado para proporcionar una variación periódica alrededor de su valor medio en el caudal de fluido que pasa a través de uno de entre dicho canal (2) interior o dicho canal (3) exterior.
2. Sistema (10) de acuerdo con la reivindicación 1 , donde el dispositivo (1) de co-flujo presenta una geometría que se elige de entre las siguientes: plana, cilindrica, anular, y poliédrica.
3. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el extremo de salida del canal (2) de fluido interior tiene una dimensión transversal menor que 1 mm y el extremo de salida del canal (3) de fluido exterior tiene una dimensión transversal menor que 3 mm.
4. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el canal (3) de fluido exterior tiene una sección transversal constante o que disminuye en dirección al extremo de salida.
5. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el extremo de salida del canal (3) de fluido exterior sobresale longitudinalmente con relación al extremo de salida del canal (2) de fluido interior.
6. Sistema (10) de acuerdo con cualquiera de las reivindicaciones 1-4, donde el extremo de salida del canal (2) de fluido interior sobresale longitudinalmente con relación al extremo de salida del canal (3) de fluido exterior.
20
HOJA DE REEMPLAZO (REGLA 26)
7. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde la dirección del extremo de salida del canal (3) de fluido exterior está orientada hacia un eje o plano de simetría del dispositivo (1) de co-flujo.
8. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el canal (2) de fluido interior tiene una sección transversal esencialmente constante.
9. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde la sección de salida del canal (2) de fluido interior tiene una sección transversal decreciente.
10. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde las paredes que delimitan el canal (2) de fluido interior tienen un espesor en la salida de menos de 0,5 mm.
1 1. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el perfil del borde de la pared del extremo de salida del canal (2) de fluido interior tiene una forma que se elige entre: curvilínea en dirección exterior-interior, recta en dirección exterior- interior, plana, redondeada y poligonal.
12. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el dispositivo (1) de co-flujo tiene una configuración plana o anular, y donde los extremos de salida del canal (2) de fluido interior y el canal (3) de fluido exterior comprenden ondulaciones en un plano esencialmente paralelo a la dirección de la corriente.
13. Sistema (10) de acuerdo con cualquiera de las reivindicaciones 1-1 1 , donde el dispositivo (1) de co-flujo tiene una configuración plana o anular, y donde los extremos de salida del canal (2) de fluido interior y el canal (3) de fluido exterior comprenden ondulaciones en un plano esencialmente perpendicular a la dirección de la corriente.
14. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el dispositivo (1) de co-flujo tiene una configuración plana o anular, y donde el canal interior (2) está dividido en una pluralidad de sub-canales (2') paralelos de fluido en fase dispersa y una pluralidad de sub-canales (3') paralelos de fluido en fase continua dispuestos de forma alterna.
21
HOJA DE REEMPLAZO (REGLA 26)
15. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el medio (14) de forzado se elige entre: una bomba de desplazamiento positivo de generación de caudal variable conectada a la primera o la segunda línea de fluido, y un recipiente de volumen periódicamente variable dispuesto en la primera o la segunda línea de fluido.
16. Sistema (10) de acuerdo con cualquiera de las reivindicaciones anteriores, que además comprende un controlador (15) conectado al medio de forzado para regular la frecuencia y la amplitud de las variaciones periódicas de caudal generadas.
17. Método para la generación de microburbujas monodispersas en configuración de co- flujo por medio de un dispositivo (1) de co-flujo que comprende un canal (2) de fluido interior, y al menos un canal (3) de fluido exterior en configuración de co-flujo con respecto del canal (2) de fluido interior, donde dicho canal (3) de fluido exterior rodea sustancialmente el canal (2) de fluido interior, caracterizado porque comprende:
- suministrar un primer fluido al canal de fluido interior (2);
- suministrar un segundo fluido al canal de fluido exterior (3);
- modificar el caudal de uno de entre el primer y el segundo fluido de modo que varíe periódicamente alrededor de su valor medio.
18. Método de acuerdo con la reivindicación 17, que comprende modificar la frecuencia de variación del caudal que varía periódicamente para modificar la frecuencia de generación de microburbujas.
19. Método de acuerdo con cualquiera de las reivindicaciones anteriores, que comprende modificar el caudal del primer fluido que pasa por el canal (2) interior para modificar el tamaño de las microburbujas.
20. Método de acuerdo con cualquiera de las reivindicaciones 17-19, donde el primer fluido es un gas.
21. Método de acuerdo con cualquiera de las reivindicaciones 17-20, donde el segundo fluido es un líquido.
22. Método de acuerdo con la reivindicación 21 , donde el segundo fluido comprende una sustancia surfactante.
22
HOJA DE REEMPLAZO (REGLA 26)
PCT/ES2017/070253 2016-04-25 2017-04-25 Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo WO2017186995A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201630521 2016-04-25
ES201630521A ES2578283B2 (es) 2016-04-25 2016-04-25 Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo

Publications (1)

Publication Number Publication Date
WO2017186995A1 true WO2017186995A1 (es) 2017-11-02

Family

ID=56409273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070253 WO2017186995A1 (es) 2016-04-25 2017-04-25 Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo

Country Status (2)

Country Link
ES (1) ES2578283B2 (es)
WO (1) WO2017186995A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192562B1 (en) * 2003-04-17 2007-03-20 Uop Llc Hydrogen-oxygen mixer-sparger
US20090315203A1 (en) * 2006-01-23 2009-12-24 National Cheng Kung University Method For Producing Microparticles In A Continuous Phase Liquid
WO2013141695A1 (en) * 2012-03-22 2013-09-26 Universiteit Twente Apparatus and method for mass producing a monodisperse microbubble agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192562B1 (en) * 2003-04-17 2007-03-20 Uop Llc Hydrogen-oxygen mixer-sparger
US20090315203A1 (en) * 2006-01-23 2009-12-24 National Cheng Kung University Method For Producing Microparticles In A Continuous Phase Liquid
WO2013141695A1 (en) * 2012-03-22 2013-09-26 Universiteit Twente Apparatus and method for mass producing a monodisperse microbubble agent

Also Published As

Publication number Publication date
ES2578283A1 (es) 2016-07-22
ES2578283B2 (es) 2016-12-21

Similar Documents

Publication Publication Date Title
US8529026B2 (en) Droplet generator
Parmar et al. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report
ES2492692T3 (es) Reducción del roce de un casco de un barco
ES2373248T3 (es) Generación de burbujas para aireación y otros propósitos.
EP3130395B1 (en) Loop flow bubble-generating nozzle
US9868094B2 (en) Bubble generator
US9782733B2 (en) Apparatus and method for mass producing a monodisperse microbubble agent
Brittle et al. Minimising microbubble size through oscillation frequency control
Gao et al. Droplet microfluidics with gravity-driven overflow system
WO2007096443A1 (es) Procedimiento y dispositivo de elevado rendimiento para la generación de gotas y burbujas
Li et al. Perturbation-induced droplets for manipulating droplet structure and configuration in microfluidics
ES2872473T3 (es) Procedimiento y dispositivo de generación de emulsiones micrométricas simples y compuestas
ES2578283B2 (es) Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo
Chaurasia et al. Millimetric core–shell drops via buoyancy assisted non-confined microfluidics
Yuan et al. Precision emulsification for droplet and capsule production
JP7092358B2 (ja) 超微細気泡発生器及び超微細気泡発生装置
KR101137795B1 (ko) 유체 액적 혼합 장치
ES2306423T3 (es) Dispositivo para producir una interfase lo mayor posible para la mezcla continua y de alto rendimiento de diferentes fluidos en mezclas de gas-liquido.
RU2732142C1 (ru) Микродиспергатор с периодической структурой с переменным шагом для генерирования капель
JP4354857B2 (ja) 超微細気泡発生装置
Vladisavljevic Production of nanoparticles using membrane contactors and microfluidic devices
Xu et al. Droplet pattern formation and translation in new microfluidic flow-focusing devices
KR101132641B1 (ko) 마이크로 유체 혼합 장치
ES2738225A1 (es) Sistema agitador y difusor de gas en líquidos y de líquidos en otros líquidos inmiscibles
Suñol et al. Experimental study of bubbles behaviour

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788866

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788866

Country of ref document: EP

Kind code of ref document: A1