WO2017186984A1 - Máquina para generar energía de las olas y corrientes de agua - Google Patents

Máquina para generar energía de las olas y corrientes de agua Download PDF

Info

Publication number
WO2017186984A1
WO2017186984A1 PCT/ES2017/070156 ES2017070156W WO2017186984A1 WO 2017186984 A1 WO2017186984 A1 WO 2017186984A1 ES 2017070156 W ES2017070156 W ES 2017070156W WO 2017186984 A1 WO2017186984 A1 WO 2017186984A1
Authority
WO
WIPO (PCT)
Prior art keywords
central axis
machine
waves
water
generating energy
Prior art date
Application number
PCT/ES2017/070156
Other languages
English (en)
French (fr)
Inventor
José María Planells Cervera
Original Assignee
Elaborados Castellano, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elaborados Castellano, S.L. filed Critical Elaborados Castellano, S.L.
Publication of WO2017186984A1 publication Critical patent/WO2017186984A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/04Nozzles; Nozzle-carrying members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a machine for generating energy from waves and water currents.
  • the present invention finds special application in the sector of the devices for generating energy taking advantage of the movements of the sea waves and the movement of the water currents. It also finds application in the desalination sector, since the machine of the present invention pressurizes seawater that will later be desalted by reverse osmosis. TECHNICAL PROBLEM TO BE RESOLVED AND BACKGROUND OF THE INVENTION
  • Document U201430806 complements and expands the invention presented in the previous document describing a device for generating energy by taking advantage of the movement of the sea waves focused on the energy use of the periodic unevenness of the waves and their translational force.
  • the helical propellers are replaced by a set of floats also attached to the central axis and that all of them upon receiving the thrust of the waves will produce a pair of forces that will rotate the central axis.
  • Document U201530054 describes a positive multi-function piston displacement device focused on pumping different fluids at the same time with high pressures and different flow rates for the use of their mechanical energy. Both functions, pumping and motor can be simultaneous.
  • the present invention comes to solve the current problems by the disclosure of a machine that takes advantage of the vertical movement of the wave, the movement of translation of the aforementioned wave and the movement of globalized water currents in a single device that, additionally, has the following advantages over the devices existing in the state of the art:
  • the invention disclosed in the present specification is a machine that takes advantage of moving water, both from waves and currents, to generate energy by implementing, in a single machine, different machines capable of taking advantage of the movement of water.
  • the machine object of the invention is composed of twelve differentiated mechanisms or parts that, working in conjunction or individually, are capable of transforming the energy of the waves and of the water currents into pressurized water to be used as a source of energy and to generate electricity or even desalinated water through the use of reverse osmosis devices.
  • Fig. 1 is a side view of an embodiment of the machine of the invention to generate energy from waves and water currents incorporating the twelve mechanisms that it can include.
  • Fig. 2 is a side view of the fourth mechanism, with two closed tubes of semicircular section, wound in the form of a propeller around a central axis connected to it by means of plates, with the central axis located at sea level.
  • Fig. 3 is a sectional view of the fourth mechanism with two closed tubes of semicircular section, wound in the form of a propeller around the central axis connected to it by means of plates.
  • Fig. 4 is a side and sectional view of the fourth mechanism with two closed tubes of semicircular section, wound in the form of a propeller around the central axis connected to it by means of plates, with its central axis located at sea level at the time when the crest from a wave reaches the machine.
  • Fig. 5 is a side and sectional view of the fourth mechanism with two closed tubes of semicircular section, wound in the form of a propeller around the central axis connected to it by means of plates, with its central axis located at sea level at the time when the crest of the wave has reached 25% of the length of the central axis in which this mechanism has rotated 45 ° in relation to the device of figure 4.
  • Fig. 6 is a side and sectional view of the fourth mechanism with two closed tubes of semicircular section, wound in the form of a propeller around the central axis attached to it by means of plates, with its central axis located at sea level at the time when the crest of the wave reached 75% of the length of the central axis in which this mechanism has rotated 135 ° in relation to the device of Figure 4.
  • Fig. 7 is a side view of the fifth mechanism with two series of tubes located on the central axis of the machine, forming two curved blades of 180 ° each and helical in shape.
  • Fig. 8 is a front view of the fifth mechanism with two series of tubes located on the central axis of the machine, forming two 180 ° curved blades each and helically shaped.
  • Fig. 9 is a sectional view of the sixth mechanism with a first float and with A second float located this mechanism in the calm sea.
  • Fig. 10 is a sectional view of the sixth mechanism with a first float and with a second float located this mechanism in the sea when the crest of the wave is reaching the first float and the second float is located in the valley of the wave.
  • Fig. 11 is a sectional view of the sixth mechanism with a first float and with a second float, this mechanism located in the sea when the crest of the wave is reaching the second float and the first float is located in the valley of the wave.
  • Fig. 12 is a sectional view of a first float, its connecting arm and a first jaw with a roller enclave concentric to the central axis, all of the sixth mechanism.
  • Fig. 13 is a sectional view of a first float, its connecting arm and a first jaw with wedge enclave concentric to the central axis, all of the sixth mechanism.
  • Fig. 14 is a sectional view of a second float, its connecting arm and a second jaw with a roller enclave concentric to the central axis, all of the sixth mechanism.
  • Fig. 15 is a sectional view of a second float, its connecting arm and a second jaw with wedge enclave concentric to the central axis, all of the sixth mechanism.
  • Fig. 16 is a side view of the sixth mechanism with a first float and its connecting arm, in which the central axis is on solid ground.
  • Fig. 17 is a front view of the sixth mechanism with first floats and second floats and their connecting arms, in which the central axis is on the mainland.
  • Fig. 18 is a sectional view of the seventh mechanism called a guide tube for water currents with its radial grating that prevents the passage of solid elements, a concentration cone that forces the flow of water to pass through a section of smaller surface area with which increases its speed, a cylindrical central body and a diffuser cone.
  • Fig. 19 is a front view of the seventh mechanism called a guide tube for water currents with its radial grid that prevents the passage of solid elements, a concentration cone that forces the flow of water to pass through a section of smaller surface area, which increases its speed, a cylindrical central body and a diffuser cone.
  • Fig. 20 is a sectional view of the eighth mechanism, called a cone with radial fins with its vertex integral with the central axis that crosses it, with its base disk.
  • Fig. 21 is a front view of the eighth mechanism showing, attached to the base, a set of radial fins.
  • Fig. 22 is a side view of a complete radial hydraulic cylinder with its rolling and guiding elements of the ninth mechanism, called a positive fluid displacement device with multifunction cylinders.
  • Fig. 23 is a side view of the cam and the tracking elements of the ninth mechanism, called positive fluid displacement device with hydraulic cylinders - multifunction.
  • Fig. 24 is a sectional view of the ninth complete mechanism, called a positive fluid displacement device with ten multifunction pistons.
  • Fig. 25 is a sectional view of a preferred embodiment of the machine of the invention incorporating the first, second, third, fifth, ninth, tenth, eleventh and twelfth mechanisms.
  • Fig. 26 is a front view of the sixth mechanism with first floats and its connecting arms fixed to two central axes, which are located on a floating platform.
  • the machine of the invention comprises twelve different mechanisms (1 to 12) which, as indicated, may be used together or individually.
  • the first mechanism (1) comprises one or more flotation towers (16) or floats to stabilize the machine and govern its flotation.
  • the floating towers (16) have several watertight compartments that, flooding them at will, place the machine in the most suitable position with respect to sea level (44).
  • the machine rises to the surface, facilitating its transport to quieter waters such as bays, inlets or ports of little draft where They can perform repairs and maintenance.
  • the second mechanism (2) comprises the joint structure, which consists of at least two levels, one lower at the base of the flotation towers (16) and another higher near the central axis (31). These joining structures are metallic and have the function of stiffening the buoyancy towers (16) of the first mechanism (1) so that the whole assembly is integral.
  • the third mechanism (31) comprises a central axis (31) which, preferably, is hollow to be flooded at will to be able, in this way, to control its position.
  • This central axis (31), which is supported by at least one flotation tower (16), is the engine shaft of the machine.
  • the supports consist of one or more roller or friction bearings that do not require lubrication as the rolling or friction elements of plastic material or composites specially designed for both submerged and dry work.
  • the central axis (31) is the main axis of rotation of the machine of the invention.
  • the central axis (31) supports at least one of the fourth to eighth mechanisms (4, 5, 6, 7, 8) that, when affected by the moving water, begin to move and transmit their kinetic energy to the central axis ( 31), rotating it.
  • the central axis (31) can also support the ninth mechanism (9), which transforms its rotation into pressurized water.
  • the central axis (31) may not be configured as a single axis and be divided into several parts to be joined by joining mechanisms such as cardan joints.
  • the location of the central axis (31) with respect to sea level (44) is controlled at will by flooding the floating towers (16).
  • the fourth mechanism (4) comprises at least two coil-shaped tubes (42) in the form of a helix and closed, as shown in Figure 2.
  • the rolled tubes (42) are located around the central axis (31) and connected thereto. by means of plates (43) that separate them at a certain distance.
  • This configuration of rolled tubes (42) is suitable for use with waves (41) or high-energy currents since its spatial structure confers great rigidity to the whole machine.
  • the operation of the coiled tubes (42) of the fourth mechanism (4) is with the central axis (31) located at sea level (41), as indicated in Figure 2. Thus, being calm waters, they have a part below and another above sea level (44).
  • the rolled tube (42) has a geometry with a cross section that, on the face that rubs against the water when turning, has little friction and, on the other side of the section of the rolled tube (42), where the wave collides ( 41) or current, is as flat a surface as possible, so that a hydrodynamic design is used that causes the least losses and maximum thrust in the movement.
  • the circular sections are avoided, the semicircular, semi-elliptical or triangular sections being more suitable, in order to present the aforementioned faces with little friction and flat, as shown in Figures 3 to 6.
  • the angle rotated and the speed of rotation at the passage of each wave (41) or current is an inverse function of the number of coiled tubes (42) that make up the propeller of the fourth mechanism (4).
  • two tubes (42) make the central axis (31) rotate 180 ° to the passage of each wave (41).
  • Three tubes cause said central axis rotation (31) to be 120 ° to the passage of a wave (41).
  • the flotation or vertical thrust exerted by the passage of a wave (41) or current is independent of the weight of the coiled tubes (42). For this reason, the rolled tubes (42) may be empty or filled with any other fluid or material.
  • the fifth mechanism (5) comprises at least one series of helical tubes (51). Each helical tube (51) of a series is placed with one end resting on the central axis (31) and resting on the previous tube (51). The tubes (51) of a series are fixed by means of support plates (52) to the central axis (31), forming a blade (53), helically. Each helical tube (51) is configured so that it begins substantially parallel to the central axis (31) and opens up to a maximum radius, configuring a shape similar to an arrowhead, as shown in Figures 7 and 8.
  • the fifth mechanism (5) can also be constructed at a constant angle with respect to the central axis (31).
  • the fifth mechanism (5) may comprise several blades (53) for configuring a propeller of at least 360 °.
  • the helical tubes (51) of each of the blades (53) fill their entire surface, from the central axis (31) to the periphery, leaving no gaps between them.
  • the undulations between the helical tubes (51) can be filled with the appropriate putty to leave a smoother surface.
  • the blades (53) or blades of the propellers can be constructed with metal or plastic parts.
  • the thrust force of said current or wave interacts with the helical tubes (51) causing them to start rotating .
  • the angular velocity of this fifth mechanism (5) is proportional to the speed of the current of the water or waves that drives it and the length it occupies in the central axis (31).
  • the rotation speed can be modified by varying the length occupied on the central axis (31).
  • the rotation speed of the central axis (31) is inversely proportional to this length. So that this machine does not damage the aquatic fauna, its rotation speed must be as slow as possible.
  • This same configuration of helical blades can be used in wind turbines replacing the current blades, since their rotation speed is much slower, eliminating noise and damage to birds.
  • the sixth mechanism (6) comprises at least a first float (61) and a second float (62) located one on each side of the central axis (31) and connected to it by a first and second connecting arms (63, 64) and their corresponding jaw (65, 66, 67, 68), or ratchet, concentric to the central axis (31) to which they transmit the force exerted at the passage of the wave (41).
  • a representation of the sixth mechanism (6) can be seen in figures 9 to 17, where the movement of the sixth mechanism (6) against the movement of a wave (41) is represented in figures 9 to 1 1.
  • the first float (61 ) with the corresponding first connecting arm (63) and its corresponding first jaw (65, 67) is shown in Figures 12 and 13.
  • the second float (62) with the corresponding second connecting arm (64) and its corresponding second Jaw (66, 68) is depicted in Figures 14 and 15.
  • Each wave (41) has two main components, a height and a linear speed.
  • the aforementioned floats (61, 62) are affected by both components, being the height of the wave (41) that will generate the buoyant and gravitational force and its linear velocity that will generate the frontal thrust force.
  • the sum of these two forces produces a continuous rotary movement of the central axis (31) to the passage of the waves (41).
  • These three forces act as indicated below.
  • This vertical thrust causes the first float (61) and the first connecting arm (63) to rotate on the central axis (31).
  • the first jaw (65, 67) joins the first connecting arm (63) of the first float (61) with the central axis (31), forcing it to rotate.
  • the rotation is maintained during the entire elevation of the first float (61) at each wave pass (41).
  • the buoyant force disappears, it stops its ascent and begins to descend.
  • the first jaw (65, 67) is unlocked, leaving the first float (61) and the first connecting arm (63) of the central shaft (31) free, allowing the first float (61) and the first arm of union (63) descend without transmitting any force or movement to the mentioned central axis (31).
  • the first float (61) has a face as flat as possible at its bottom to maximize the impact force associated with the speed of the wave (41).
  • the first connecting arm (63) of the first float (61) keeps it in a position, so that its lower face has an inclined plane with respect to the direction of the wave shift. When the wave (41) collides with the inclined plane, it transmits a frontal thrust force, due to the impact, which is added to the buoyant force described above.
  • a second float (62) and the second link arm (64) to the central axis (31) is located on the other side of the central axis (31).
  • the force of gravity is used, which acts in the opposite direction to the buoyant force.
  • the cross section of the second float (62) is circular or elliptical.
  • the second jaw (66, 68) joins the second float (63) and the second connecting arm (64) with the central axis (31), acts the force of gravity and the second float (62) and the second arm (64) descend forcing the central axis (31) to rotate in the same direction as the first float (61) located opposite the central axis (31).
  • the jaws (65, 66, 67, 68), located concentrically to the central axis (31), are composed of one or more interlocking elements (71, 72) which can be interlocking rollers (71) or interlocking wedges (72 ). In either case, they are confined between an inclined plane located in the body of the jaws (65, 66, 67, 68) and the surface normal to the central axis (31).
  • the interlocking element (71, 72) of the first jaw (65, 67) is interlocked between the inclined plane and the normal surface of the central axis (31), the first float (61), the first connecting arm (63) and the first jaw (65, 67) being integral with the central axis (31), resulting in the rotation of the axis center (31) during the ascent of the first float (61).
  • a second jaw (66, 68), located concentric to the central axis (31), is composed of one or more interlocking elements (71, 72) which, as in the first jaw (65, 67), can also be interlocking rollers (71) or interlocking wedges (72).
  • the interlocking elements (71, 72) are also confined between the inclined plane, located in the body of this second jaw (66, 68), and the surface normal to the central axis (31).
  • the dimensions of the sixth mechanism (6) are designed to maximize the potential of the waves (41 ) at each location.
  • the sixth mechanism (6) can be mounted on the floating towers (16) on the central axis (31) or on the mainland, as shown in the front and side views of Figures 16 and 17.
  • the location on the mainland it would be in places such as docks, breakwaters or coasts.
  • the floating towers (16) are located on only one side of the central axis (31), with the floating towers (16) floating in the sea at a suitable distance from the central axis (31).
  • the central axis (31) of the sixth mechanism (6) can be located on solid ground, it can also be located on a floating platform of variable section (circular, rectangular, elliptical, etc.) placing a central axis (31) on each side of the platform and placing, as in the previous case, the flotation towers (1) on only one side of the central axis (31).
  • This embodiment is depicted in Figure 26.
  • the seventh mechanism (7) comprises a current guide tube for channeling and increasing the speed of water flow. It can be used as protection of the fifth mechanism (5) and the eighth mechanism (8). It is made up of a conical grid-shaped protection structure (88), to prevent the collision of objects dragged by the incident current and also to prevent the passage of marine fauna, a cone of concentration (89), a central body cylindrical (90) and a diffuser cone (91).
  • the seventh mechanism (7) is static or with very low rotation speed and its mission is to protect, channel and accelerate the water flow.
  • the eighth mechanism (8) is represented in Figures 20 and 21. It comprises a cone (92) integral to the central axis (31) by its vertex. The base of the cone (92) is supported by a support disk (94), where it incorporates radial fins (93) that direct the incident water outwards tangentially. The reaction force of the water rotates the cone (92) and, in solidarity, the central axis (31). Being fixed to the central axis (31), the cone (92) is rotary and is designed, together with the fins (93), for a slow rotation speed. Being its centrifugal type operation, it does not affect marine species.
  • the ninth mechanism (9), called positive fluid displacement device with radial hydraulic cylinders (77), is located at one end of the central axis (31) and transforms the rotation energy of this axis (31) into a pressurized fluid. It is represented in figure 24 in a complete view.
  • Figure 22 represents a view of one of the radial hydraulic cylinders (77) and Figure 23 a detail of the cam (76) acting on the rod of the hydraulic cylinder (79).
  • the ninth mechanism (9) consists of the following parts:
  • the axis of the ninth mechanism (87) is located in the housing (75) and secured by bearings that allow it to rotate. In the central part of the axis of the ninth mechanism (87) it has one or more cams (76) in solidarity with the axis (87) in its rotation movement. Faced with said cam (76), radially, the hydraulic cylinders (77) are mounted. Each cylinder (77) is fixed to the housing (75) by one end and, inside, a rod (79) slides. At the end of the rod (79) is the cam follower device (76) composed of:
  • the cam follower device (76) consists of an axis (81) fixed to the stem head (86) in holes made in a grooved area. In this grooved area there is a cam follower wheel (80), fixed to the rod (79) by means of the shaft (81), which crosses it. At both ends of the axle (81) two free wheels (85) are located that are confined in radial recesses or grooves (82) inserted in the housing (75), where they move by rotating the free wheels (85) perpendicular to the axle of the cam (76) and, consequently, of the axis of the ninth mechanism (87).
  • This arrangement of the follower device allows the follower wheel (80) to follow the cam profile (76) at all times and the free wheels (85) of the shaft ends (81) guide the rod end (79) so perpendicular to the axis of the ninth mechanism (87) and of the cam (76) along its entire length.
  • This configuration eliminates the tangential drag of the cam (76) when rotating and the rod (79) acquires a radial movement without deviations avoiding the belling of said rod (79) inside the jacket of the hydraulic cylinder (78).
  • the hydraulic cylinders (77) of this ninth mechanism (9) are of the same type as those used in current excavating machines, these hydraulic cylinders (77) being of great strength and small speed. This feature makes the ninth mechanism (9) especially suitable for use in machines for obtaining energy from moving bodies of water.
  • the ninth mechanism (9) can be used as a fluid pump, as an engine taking advantage of the energy of a fluid or with both uses at the same time.
  • the pressurized fluid introduced in some of the cylinders rotates the cam and this in turn is capable of moving rods (79) other hydraulic cylinders (77) to expel a fluid at greater or lesser pressure than the Used as an engine.
  • the tenth mechanism (10) is responsible for transporting the pressurized fluid to the mainland. It comprises the pipes (101) for transporting the pressurized water generated by the ninth mechanism to the mainland by the sea or riverbed.
  • the conduction of low viscosity fluid such as water makes the energy loss in this transport minimal since, using appropriate pipe sections, this value of losses can be practically negligible.
  • the eleventh mechanism (1 1) comprises a turbine or motor that, coupled to a generator, produces electrical energy or a reverse osmosis plant that produces desalinated water. Both applications are fed by the pressurized water generated and once transported to the mainland.
  • the twelfth mechanism (12) comprises the fixing elements, consisting of concrete blocks or anchors at the sea or river bottom, connected to the machine by means of cables or chains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Máquina para generar energía de las olas y corrientes de agua por que comprende doce mecanismos (1-12), conformados por un eje central (31), que es el árbol motor, diferentes dispositivos enfocados en la captación de energía del agua, un cilindro hidráulico (77) que transforma la energía de rotación del eje central (31) en agua presurizada, unas conducciones para transportar el agua presurizada, un dispositivo a seleccionar entre una turbina hidráulica para la producción de energía eléctrica y una planta de osmosis inversa para la producción de agua desalinizada y unos elementos de fijación para anclar la máquina, de forma que la energía cinética debida al movimiento de cualquiera de los mecanismos (4 a 8) es transmitida al eje central (31) de la máquina.

Description

MÁQUINA PARA GENERAR ENERGIA DE LAS OLAS Y CORRIENTES DE AGUA
DESCRIPCIÓN OBJETO DE LA INVENCIÓN
La presente invención se refiere a una máquina para generar energía a partir de las olas y de corrientes de agua.
La presente invención encuentra especial aplicación en el sector de los dispositivos para generar energía aprovechando los movimientos de las olas del mar y el movimiento de las corrientes de agua. También encuentra aplicación en el sector de la desalación, ya que la máquina de la presente invención presuriza el agua del mar que posteriormente será desalada por osmosis inversa. PROBLEMA TÉCNICO A RESOLVER Y ANTECEDENTES DE LA INVENCIÓN
En el sector de la técnica son conocidas las máquinas que persiguen el aprovechamiento de la energía asociada a las masas de agua en movimiento, oleaje, mareas, corrientes marinas y fluviales. Este tipo de máquinas se encuentran en un estado de desarrollo continuo, dado el amplio margen de aplicación que se dispone para ellas y la poca implementación existente que, si bien están muy desarrolladas a nivel de aprovechamiento de saltos de agua en corrientes fluviales, especialmente a nivel marino se encuentra en una fase con bastante margen de aplicación.
Uno de los principales problemas de las instalaciones actuales ha sido su efecto nocivo con la fauna acuática
La mayoría de los dispositivos actuales tienen partes móviles en movimiento a gran velocidad que golpean y producen graves daños a la fauna acuática. Las hélices que poseen tienen bordes afilados y velocidad angular elevada y actúan como enormes cuchillos que mutilan a los peces y otras especies que conviven en el mismo entorno.
Por otro lado, la mayoría de los dispositivos existentes, transportan corrientes eléctricas por el medio acuático que, además de generar sonidos de alta frecuencia, producen campos magnéticos que desorientan a la fauna acuática. Adicionalmente, las máquinas existentes usan lubricantes y aceites hidráulicos. Estas máquinas, en su funcionamiento normal, durante su mantenimiento o cuando ocurren accidentes, producen vertidos de aceites hidráulicos que son muy perjudiciales para el medio ambiente.
Los dispositivos conocidos se pueden resumir en:
dispositivos que usan el movimiento vertical de las olas, tales como boyas, cámaras de aire, etc.
dispositivos que emplean el empuje de traslación de las olas, rampas, osciladores, etc.
dispositivos que aprovechan las corrientes, hélices de palas, turbinas, etc.
La mayoría de estos dispositivos transportan la corriente generada de alto voltaje por medio de conductores eléctricos por el fondo marino o fluvial.
En el estado de la técnica se conoce el documento U201430391. En este documento se describe una máquina para el aprovechamiento de la energía del agua en movimiento, enfocada en el aprovechamiento energético de los desniveles periódicos del oleaje y su fuerza de traslación.
El documento U201430806 complementa y amplía la invención presentada en el documento anterior describiendo un dispositivo para generar energía aprovechando el movimiento de las olas del mar enfocado en el aprovechamiento energético de los desniveles periódicos del oleaje y su fuerza de traslación. En esta nueva invención se sustituyen las hélices helicoidales por un conjunto de flotadores también unidos al eje central y que todos ellos al recibir el empuje de las olas producirán un par de fuerzas que hará rotar el eje central.
El documento U201530054 describe un dispositivo de desplazamiento positivo de pistones multifunción enfocado en bombear distintos fluidos al mismo tiempo con altas presiones y caudales diferentes para el aprovechamiento de la energía mecánica de ellos. Ambas funciones, bombeo y motor pueden ser simultáneas.
La presente invención viene a solucionar los problemas actuales mediante la divulgación de una máquina que aprovecha el movimiento vertical de la ola, el movimiento de traslación de la citada ola y el movimiento de las corrientes de agua globalizados en un único dispositivo que, adicionalmente, tiene las siguientes ventajas con respecto a los dispositivos existentes en el estado de la técnica:
1. Es muy respetuosa con el medio ambiente ya que, por un lado, las partes móviles que posee se mueven a baja velocidad, sin provocar daños a la fauna acuática y, por otro lado, no poseen elementos con bordes afilados, ni rotan a alta velocidad.
2. No generan corrientes eléctricas en el agua y, además, no utilizan lubricantes ni aceites hidráulicos, por lo que se elimina el problema del vertido en el medio ambiente de aceites perjudiciales.
3. Todos los materiales utilizados en la construcción de esta máquina son reciclables y su funcionamiento es muy silencioso, sin alterar el funcionamiento natural de la fauna acuática.
DESCRIPCIÓN DE LA INVENCIÓN
La invención que se divulga en la presente memoria descriptiva es una máquina que aprovecha el agua en movimiento, tanto de las olas como de las corrientes, para generar energía implementando, en una única máquina, diferentes máquinas capaces de aprovechar el movimiento de las aguas. La máquina objeto de la invención está compuesta por doce mecanismos o partes diferenciadas que, trabajando en conjunción o individualmente, están capacitadas para transformar la energía de las olas y de las corrientes de agua en agua presurizada para ser usada como fuente de energía y poder generar electricidad o, incluso, agua desalinizada mediante el empleo de dispositivos de osmosis inversa.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Para completar la invención que se está describiendo y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización de la misma, se acompaña un conjunto de dibujos en donde, con carácter ilustrativo y no limitativo, se han representado las siguientes figuras:
La fig. 1 es una vista lateral de una realización de la máquina de la invención para generar energía de las olas y corrientes de agua incorporando los doce mecanismos que puede llegar a incluir. La fig. 2 es una vista lateral del cuarto mecanismo, con dos tubos cerrados de sección semicircular, arrollados en forma de hélice alrededor de un eje central unidos a él mediante pletinas, con el eje central situado al nivel del mar. La fig. 3 es una vista en sección del cuarto mecanismo con dos tubos cerrados de sección semicircular, arrollados en forma de hélice alrededor del eje central unidos a él mediante pletinas.
La fig. 4 es una vista lateral y en sección del cuarto mecanismo con dos tubos cerrados de sección semicircular, arrollados en forma de hélice alrededor del eje central unidos a él mediante pletinas, con su eje central situado al nivel del mar en el momento en que la cresta de una ola llega a la máquina.
La fig. 5 es una vista lateral y en sección del cuarto mecanismo con dos tubos cerrados de sección semicircular, arrollados en forma de hélice alrededor del eje central unidos a él mediante pletinas, con su eje central situado al nivel del mar en el momento en que la cresta de la ola ha llegado al 25% de la longitud del eje central en la que este mecanismo ha girado 45° con relación al dispositivo de la figura 4.
La fig. 6 es una vista lateral y en sección del cuarto mecanismo con dos tubos cerrados de sección semicircular, arrollados en forma de hélice alrededor del eje central unidos a él mediante pletinas, con su eje central situado al nivel del mar en el momento en que la cresta de la ola llegado al 75% de la longitud del eje central en la que este mecanismo ha girado 135° con relación al dispositivo de la figura 4.
La fig. 7 es una vista lateral del quinto mecanismo con dos series de tubos situados sobre el eje central de la máquina, formando dos álabes curvados de 180° cada uno y de forma helicoidal.
La fig. 8 es una vista frontal del quinto mecanismo con dos series de tubos situados sobre el eje central de la máquina, formando dos álabes curvados 180° cada uno y de forma helicoidal.
La fig. 9 es una vista en sección del sexto mecanismo con un primer flotador y con un segundo flotador situado este mecanismo en el mar en calma.
La fig. 10 es una vista en sección del sexto mecanismo con un primer flotador y con un segundo flotador situado este mecanismo en el mar cuando la cresta de la ola está llegando al primer flotador y el segundo flotador está situado en el valle de la ola.
La fig. 11 es una vista en sección del sexto mecanismo con un primer flotador y con un segundo flotador, situado este mecanismo en el mar cuando la cresta de la ola está llegando al segundo flotador y el primer flotador está situado en el valle de la ola.
La fig. 12 es una vista en sección de un primer flotador, su brazo de unión y una primera mordaza con enclave de rodillo concéntrica al eje central, todo ello del sexto mecanismo.
La fig. 13 es una vista en sección de un primer flotador, su brazo de unión y una primera mordaza con enclave de cuña concéntrica al eje central, todo ello del sexto mecanismo.
La fig. 14 es una vista en sección de un segundo flotador, su brazo de unión y una segunda mordaza con enclave de rodillo concéntrica al eje central, todo ello del sexto mecanismo.
La fig. 15 es una vista en sección de un segundo flotador, su brazo de unión y una segunda mordaza con enclave de cuña concéntrica al eje central, todo ello del sexto mecanismo.
La fig. 16 es una vista lateral del sexto mecanismo con un primer flotador y su brazo de unión, en el que el eje central está en tierra firme.
La fig. 17 es una vista frontal del sexto mecanismo con unos primeros flotadores y unos segundos flotadores y sus brazos de unión, en el que el eje central está en tierra firme. La fig. 18 es una vista en sección del séptimo mecanismo denominado tubo guía de las corrientes de agua con su reja radial que impide el paso de elementos sólidos, un cono de concentración que obliga a pasar el caudal de agua por una sección de menor superficie con lo que incrementa su velocidad, un cuerpo central cilindrico y un cono difusor.
La fig. 19 es una vista frontal del séptimo mecanismo denominado tubo guía de las corrientes de agua con su reja radial que impide el paso de elementos sólidos, un cono de concentración que obliga a pasar el caudal de agua por una sección de menor superficie con lo que incrementa su velocidad, un cuerpo central cilindrico y un cono difusor.
La fig. 20 es una vista en sección del octavo mecanismo, denominado cono con aletas radiales con su vértice solidario con el eje central que lo atraviesa, con su disco base.
La fig. 21 es una vista frontal del octavo mecanismo mostrando, unidas a la base, un conjunto de aletas radiales.
La fig. 22 es una vista lateral de un cilindro hidráulico radial completo con sus elementos de rodadura y guiado del noveno mecanismo, denominado dispositivo de desplazamiento positivo de fluidos con cilindros multifunción.
La fig. 23 es una vista lateral de la leva y los elementos de seguimiento del noveno mecanismo, denominado dispositivo de desplazamiento positivo de fluidos con cilindros hidráulico - multifunción.
La fig. 24 es una vista sección del noveno mecanismo completo, denominado dispositivo de desplazamiento positivo de fluidos con diez pistones multifunción.
La fig. 25 es una vista en sección de una realización preferente de la máquina de la invención incorporando los mecanismos primero, segundo, tercero, quinto, noveno, décimo, undécimo y duodécimo.
La fig. 26 es una vista frontal del sexto mecanismo con unos primeros flotadores y sus brazos de unión fijados a sendos ejes centrales, que están situados sobre una plataforma flotante.
A continuación se facilita un listado de las referencias empleadas en las figuras:
1. Primer mecanismo.
2. Segundo mecanismo.
3. Tercer mecanismo.
4. Cuarto mecanismo.
5. Quinto mecanismo.
6. Sexto mecanismo.
7. Séptimo mecanismo.
8. Octavo mecanismo.
9. Noveno mecanismo.
10. Décimo mecanismo.
1 1. Undécimo mecanismo.
12. Duodécimo mecanismo.
16. Torre de flotación.
31. Eje central.
41. Ola.
42. Tubo arrollado.
43. Pletinas de unión.
44. Nivel del mar.
45. Cresta de la ola.
46. Valle de la ola.
51. Tubo helicoidal.
52. Pletinas de soporte.
53. Alabe.
61. Primer flotador.
62. Segundo flotador.
63. Primer brazo de unión.
64. Segundo brazo de unión.
65. Primera mordaza con enclavamiento de rodillo.
66. Segunda mordaza con enclavamiento de rodillo.
67. Primera mordaza con enclavamiento de cuña.
68. Segunda mordaza con enclavamiento de cuña. 69. Plano inclinado en la mordaza.
71. Rodillo de enclavamiento.
72. Cuña de enclavamiento.
75. Carcasa.
76. Leva.
77. Cilindro hidráulico radial completo.
78. Camisa del cilindro hidráulico.
79. Vástago.
80. Rueda seguidora.
81. Eje de la rueda seguidora.
82. Canaladura para alineamiento del vástago.
83. Válvula de entrada de fluido.
84. Válvula de salida de fluido.
85. Rueda libre.
86. Cabezal del vástago.
87. Eje del noveno mecanismo.
88. Reja cónica.
89. Cono concentrador.
90. Cuerpo central cilindrico.
91. Cono difusor.
92. Cono solidario al eje central.
93. Aletas radiales.
94. Disco de apoyo. DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En una forma de realización preferente, según se representa en la figura 1 , la máquina de la invención comprende doce mecanismos (1 a 12) diferentes que, como se ha indicado, podrán utilizarse en conjunto o individualmente. El primer mecanismo (1) comprende una o varias torres de flotación (16) o flotadores para estabilizar la máquina y gobernar su flotación. Las torres de flotación (16) poseen varios compartimentos estancos que, inundándolos a voluntad, sitúan la máquina en la posición más idónea con respecto al nivel del mar (44). Al evacuar el agua de las torres de flotación (16), la máquina se eleva hasta la superficie, facilitando su transporte hasta aguas más tranquilas tales como bahías, ensenadas o puertos de poco calado donde se pueden realizar reparaciones y mantenimiento.
El segundo mecanismo (2) comprende la estructura de unión, que consta de al menos dos niveles, uno inferior en la base de las torres de flotación (16) y otro superior cerca del eje central (31). Estas estructuras de unión son metálicas y tienen como función rigidizar las torres de flotación (16) del primer mecanismo (1) para que todo el conjunto sea solidario.
El tercer mecanismo (31) comprende un eje central (31) que, preferiblemente, es hueco para ser inundado a voluntad para poder, de esta forma, controlar su posición. Este eje central (31), que está apoyado en al menos una torre de flotación (16), es el árbol motor de la máquina. Los apoyos consisten en uno o varios cojinetes de rodillos o de fricción que no precisan de lubricación al ser los elementos de rodadura o fricción de material plástico o de composites especialmente diseñados para su trabajo tanto sumergido como en seco. El eje central (31) es el eje principal de rotación de la máquina de la invención.
El eje central (31) soporta al menos uno de los mecanismos cuarto a octavo (4, 5, 6, 7, 8) que, al ser afectados por el agua en movimiento, comienzan a moverse y transmiten su energía cinética al eje central (31), haciéndolo rotar.
El eje central (31) también puede soportar el noveno mecanismo (9), que transforma su rotación en agua presurizada. El eje central (31) puede no estar configurado como un único eje y estar dividido en varias partes para ser unidas mediante mecanismos de unión como, por ejemplo, juntas cardan.
La ubicación del eje central (31) con respecto al nivel del mar (44) se controla a voluntad mediante la inundación de las torres de flotación (16).
El cuarto mecanismo (4) comprende al menos dos tubos arrollados (42) en forma de hélice y cerrados, según se representa en la figura 2. Los tubos arrollados (42) se encuentran ubicados alrededor del eje central (31) y unidos a éste mediante unas pletinas (43) que los separan a una cierta distancia. Esta configuración de tubos arrollados (42) es apta para ser usada con olas (41) o corrientes de gran energía ya que su estructura espacial le confiere gran rigidez al conjunto de la máquina. El funcionamiento de los tubos arrollados (42) del cuarto mecanismo (4) es con el eje central (31) ubicado al nivel del mar (41), según se indica en la figura 2. Así, estando las aguas en calma, tienen una parte por debajo y otra por encima del nivel del mar (44). Cuando llega la cresta de una ola (45) a la máquina, incide la zona de los tubos arrollados (42) que están por encima del nivel del mar (44), haciéndolo rotar. Debido a la fuerza de flotación, aparece un empuje que hace ascender la zona de los tubos (42) que se encuentran por debajo del nivel del mar (44), provocando la rotación del eje central (31). La configuración de los tubos arrollados (42) en forma de hélice, provoca que, continuamente, haya una zona por encima del nivel del mar (44) que creará una rotación continuada al paso de cada ola (41).
Además de este empuje vertical ocasionado por la fuerza de flotación, existe un empuje horizontal debido al desplazamiento de translación de la ola (41) o a corrientes. Cuando ésta masa de agua choca contra la cara inferior de la parte del tubo arrollado (42) que está ascendiendo, le produce un empuje que se suma a la fuerza de flotación anterior, haciendo rotar al eje central (31) aún con más fuerza. Esta fuerza es la misma que utilizan las tablas de surf o las hélices sumergidas.
El tubo arrollado (42) tiene una geometría con una sección transversal que, en la cara que fricciona contra el agua al girar, presenta poco rozamiento y, en el otro lado de la sección del tubo arrollado (42), donde choca la ola (41) o corriente, es una superficie lo más plana posible, de forma que se utilice un diseño hidrodinámico que provoque las menores perdidas y el máximo empuje en el movimiento. De esta manera, se evitan las secciones circulares, siendo más adecuadas las secciones semicirculares, semielípticas o triangulares, para poder presentar las mencionadas caras con poco rozamiento y plana, según se representa en las figuras 3 a 6.
El ángulo girado y la velocidad de giro al paso de cada ola (41) o corriente es función inversa del número de tubos arrollados (42) que conforman la hélice del cuarto mecanismo (4). De esta forma, dos tubos (42) hacen que el eje central (31) rote 180° al paso de cada ola (41). Tres tubos provocan que dicha rotación del eje central (31) sea de 120° al paso de una ola (41).
La flotación o empuje vertical ejercida por el paso de una ola (41) o corriente es independiente del peso de los tubos arrollados (42). Por esta razón, los tubos arrollados (42) pueden estar vacíos o llenos de cualquier otro fluido o material.
El quinto mecanismo (5) comprende al menos una serie de tubos helicoidales (51). Cada tubo helicoidal (51) de una serie se sitúa con un extremo apoyado en el eje central (31) y apoyado sobre el tubo (51) anterior. Los tubos (51) de una serie se fijan mediante pletinas de soporte (52) al eje central (31), formando un álabe (53), de forma helicoidal. Cada tubo helicoidal (51) está configurado de forma que comienza sensiblemente paralelo al eje central (31) y se va abriendo hasta un radio máximo configurando una forma semejante a una punta de flecha, según se representa en las figuras 7 y 8. El quinto mecanismo (5) también puede construirse con un ángulo constante con respecto al eje central (31). El quinto mecanismo (5) puede comprender varios álabes (53) para configurar una hélice de al menos 360°. Los tubos helicoidales (51) de cada uno de los álabes (53) rellenan toda su superficie, desde el eje central (31) a la periferia, sin dejar huecos entre ellos. Las ondulaciones entre los tubos helicoidales (51) se pueden rellenar con la masilla adecuada para dejar una superficie más lisa. Los álabes (53) u hojas de las hélices pueden construirse con piezas metálicas o de plástico.
Una vez situado el quinto mecanismo (5) en un campo de olas (41) o una corriente de agua, marina o fluvial, interacciona la fuerza de empuje de la citada corriente u oleaje con los tubos helicoidales (51) provocando que empiecen a girar.
La velocidad angular de este quinto mecanismo (5) es proporcional a la velocidad de la corriente del agua u oleaje que la impulsa y a la longitud que ocupa en el eje central (31). Para una velocidad determinada de la corriente del agua u oleaje, se puede modificar la velocidad de rotación variando la longitud ocupada en el eje central (31). La velocidad de rotación del eje central (31) es inversamente proporcional a la esta longitud. Para que esta máquina no dañe la fauna acuática su velocidad de rotación debe ser lo más lenta posible. Esta misma configuración de álabes helicoidales se puede utilizar en los aerogeneradores sustituyendo a las aspas actuales, ya que su velocidad de rotación es mucho más lenta, con lo que se elimina el ruido y el daño a las aves.
El sexto mecanismo (6) comprende al menos un primer flotador (61) y un segundo flotador (62) situados uno a cada lado del eje central (31) y unidos a él mediante un primer y segundo brazos de unión (63, 64) y su correspondiente mordaza (65, 66, 67, 68), o trinquete, concéntrica al eje central (31) al que transmiten la fuerza ejercida al paso de la ola (41). Una representación del sexto mecanismo (6) puede verse en las figuras 9 a 17, donde el movimiento del sexto mecanismo (6) frente al movimiento de una ola (41) se representa en las figuras 9 a 1 1. El primer flotador (61) con el primer brazo de unión (63) correspondiente y su correspondiente primera mordaza (65, 67) se representa en las figuras 12 y 13. El segundo flotador (62) con el segundo brazo de unión (64) correspondiente y su correspondiente segunda mordaza (66, 68) se representa en las figuras 14 y 15.
El funcionamiento del sexto mecanismo (6) es como se indica a continuación.
Cada ola (41) posee dos componentes principales, una altura y una velocidad lineal. Los flotadores (61 , 62) mencionados están afectados por ambas componentes, siendo la altura de la ola (41) la que va a generar la fuerza de flotación y gravitatoria y su velocidad lineal la que va a generar la fuerza de empuje frontal. La suma de estas dos fuerzas produce un movimiento rotatorio continuo del eje central (31) al paso de las olas (41). Estas tres fuerzas actúan de la forma que se indica a continuación. Cuando la ola (41) cubre todo o parte del primer flotador (61), éste es empujado hacia arriba debido a la fuerza de flotación. La fuerza generada sobre un flotador (61 , 62) es proporcional al volumen del flotador (61 , 62) sumergido en la ola (41). Este empuje vertical hace que el primer flotador (61) y el primer brazo de unión (63) tiendan a girar sobre el eje central (31). Cuando esto ocurre, la primera mordaza (65, 67) hace solidario el primer brazo de unión (63) del primer flotador (61) con el eje central (31), obligándole a girar. El giro se mantiene durante toda la elevación del primer flotador (61) en cada paso de ola (41). Cuando la cresta de la ola (45) ha rebasado el primer flotador (61), la fuerza de flotación desaparece, este detiene su ascensión y empieza a descender. En este momento, la primera mordaza (65, 67) se desenclava, dejando libre al primer flotador (61) y al primer brazo de unión (63) del eje central (31), permitiendo al primer flotador (61) y al primer brazo de unión (63) descender sin transmitir ninguna fuerza ni movimiento al mencionado eje central (31). El primer flotador (61) tiene una cara lo más plana posible en su parte inferior para maximizar la fuerza de impacto asociada a la velocidad de la ola (41). El primer brazo de unión (63) del primer flotador (61) lo mantiene en una posición, para que su cara inferior presente un plano inclinado respecto a la dirección del desplazamiento de la ola. Al chocar la ola (41) con el plano inclinado, le transmite una fuerza de empuje frontal, por el impacto, que se suma a la fuerza de flotación descrita anteriormente. En el otro lado del eje central (31), está situado un segundo flotador (62) y el segundo brazo de unión (64) al eje central (31). En este lado se aprovecha la fuerza de gravedad, que actúa en sentido inverso a la fuerza de flotación. La sección transversal del segundo flotador (62) es circular o elíptica. Cuando la ola (41) cubre todo o parte del segundo flotador (62), es empujado hacia arriba por la fuerza de flotación y, en el movimiento de ascenso, la segunda mordaza (66, 68) no lo hace solidario con el eje central (31). Después del paso de la cresta de la ola (45), la segunda mordaza (66, 68) hace solidario al segundo flotador (63) y el segundo brazo de unión (64) con el eje central (31), actúa la fuerza de la gravedad y el segundo flotador (62) y el segundo brazo (64) descienden obligando al eje central (31) a girar en el mismo sentido que lo hacía el primer flotador (61) situado en lado opuesto del eje central (31).
El funcionamiento de las mordazas (65, 66, 67, 68) es como se indica a continuación.
Las mordazas (65, 66, 67, 68), situadas concéntricamente al eje central (31), están compuestas por uno o varios elementos de enclavamiento (71 , 72) que pueden ser rodillos de enclavamiento (71) o cuñas de enclavamiento (72). En cualquiera de los casos, están confinados entre un plano inclinado ubicado en el cuerpo de las mordazas (65, 66, 67, 68) y la superficie normal al eje central (31). Cuando el primer flotador (61) es empujado hacia arriba por la llegada de la cresta de una ola (45), el elemento de enclavamiento (71 , 72) de la primera mordaza (65, 67) se enclava entre el plano inclinado y la superficie normal del eje central (31), quedando solidarios el primer flotador (61), el primer brazo de unión (63) y la primera mordaza (65, 67) con el eje central (31), dando como resultado el giro del eje central (31) durante el ascenso del primer flotador (61). Cuando la cresta de la ola (45) ha pasado el primer flotador (61), éste desciende por efecto de la gravedad, se desenclava el rodillo (71) o la cuña (72) de enclavamiento de la primera mordaza (65, 67), quedando liberados el primer flotador (61), el primer brazo de unión (63) y la primera mordaza (65, 67) del eje central (31), no transmitiendo ninguna fuerza al citado eje central (31), por lo que no provoca ninguna rotación del eje central (31) durante el descenso del primer flotador (65, 67). Una segunda mordaza (66, 68), situada concéntrica al eje central (31), está compuesta por uno o varios elementos de enclavamiento (71 , 72) que, al igual que en la primera mordaza (65, 67), también pueden ser rodillos de enclavamiento (71) o cuñas de enclavamiento (72). Los elementos de enclavamiento (71 , 72) también están confinados entre el plano inclinado, ubicado en el cuerpo de esta segunda mordaza (66, 68), y la superficie normal al eje central (31). Cuando el segundo flotador (62), que está situado al lado opuesto respecto al eje central (31) de donde está ubicado el primer flotador (61), es empujado hacia arriba por la llegada de la cresta de la ola (45), se desenclava el rodillo (71) o la cuña (72) de enclavamiento de la segunda mordaza (66, 68), quedando liberados el segundo flotador (62), el segundo brazo de unión (64) y la segunda mordaza (66, 68) del eje central (31), no transmitiendo ninguna fuerza al citado eje central (31), por lo que no provoca ninguna rotación del eje central (31) durante el ascenso del segundo flotador (62). Cuando la cresta de la ola (45) ha pasado el segundo flotador (62), éste desciende por efecto de la gravedad, se enclava el rodillo (71) o la cuña (72) de enclavamiento de la segunda mordaza (66, 68) entre el plano inclinado y la superficie normal del eje central (31), quedando solidarios el segundo flotador (62), el segundo brazo de unión (64) y la segunda mordaza (66, 68) con el eje central (31), dando como resultado el giro del eje central (31) durante el descenso del segundo flotador (66, 68).
Como la ola (41) avanza a lo largo del eje central (31), va encontrando nuevos pares de flotadores (61 , 62) que continúan el mismo proceso de ascenso y descenso a lo largo de toda la máquina. La combinación de todos los efectos de los primeros y segundos flotadores (61 , 62) hace que la rotación del eje central (31) sea continua.
Las dimensiones del sexto mecanismo (6), tanto en tamaño, en número de flotadores (61 , 62) y en cuanto a los brazos de unión (63, 64), se diseñan para obtener un aprovechamiento máximo del potencial de las olas (41) en cada ubicación. El sexto mecanismo (6) puede ser montado sobre las torres de flotación (16) en el eje central (31) o en tierra firme, según se representa en las vistas frontal y lateral de las figuras 16 y 17. La ubicación en tierra firme sería en lugares tal como muelles, espigones o costas. En este caso particular, las torres de flotación (16) se sitúan a un solo lado del eje central (31), con las torres de flotación (16) flotando en el mar a una distancia adecuada del eje central (31). Con el uso de esta aplicación sobre muelles, espigones o costas, además de conseguir la obtención de energía de las olas (41) del mar, se disminuye la intensidad del oleaje incidente, ayudando a proteger dichos enclaves de los embates del mar. De la misma forma que el eje central (31) del sexto mecanismo (6) puede ubicarse en tierra firme, también puede ubicarse sobre una plataforma flotante de sección variable (circular, rectangular, elíptica, etc.) situando un eje central (31) a cada lado de la plataforma y colocando, igual que en el caso anterior, las torres de flotación (1) a un solo lado del eje central (31). Esta forma de realización se representa en la figura 26.
El séptimo mecanismo (7), según se representa en las figuras 18 y 19, comprende un tubo guía de corriente para canalizar y aumentar la velocidad del flujo de agua. Puede usarse como protección del quinto mecanismo (5) y del octavo mecanismo (8). Está conformado por una estructura de protección cónica en forma de reja (88), para evitar el choque de los objetos arrastrados por la corriente incidente y también para impedir el paso de la fauna marina, un cono de concentración (89), un cuerpo central cilindrico (90) y un cono difusor (91). El séptimo mecanismo (7) es estático o con muy baja velocidad de rotación y su misión es de protección, encauzamiento y acelerador de la corriente de agua.
El octavo mecanismo (8) está representado en las figuras 20 y 21. Comprende un cono (92) solidario al eje central (31) por su vértice. La base del cono (92) está apoyada en un disco de apoyo (94), donde incorpora unas aletas radiales (93) que dirigen el agua incidente hacia el exterior de forma tangencial. La fuerza de reacción del agua hace rotar al cono (92) y, solidariamente, al eje central (31). Al estar fijo al eje central (31), el cono (92) es rotatorio y se diseña, junto con las aletas (93), para una velocidad de rotación lenta. Al ser su funcionamiento de tipo centrífugo, hace que no afecte a las especies marinas.
El noveno mecanismo (9), denominado dispositivo de desplazamiento positivo de fluidos con cilindros hidráulicos radiales (77), se sitúa en un extremo del eje central (31) y transforma la energía de rotación de este eje (31) en un fluido presurizado. Está representado en la figura 24 en una vista completa. La figura 22 representa una vista de uno de los cilindros hidráulicos radiales (77) y la figura 23 un detalle de la leva (76) que actúa sobre el -vástago del cilindro hidráulico (79). El noveno mecanismo (9) consta de las siguientes partes:
- Eje del noveno mecanismo (87),
- Carcasa (75),
- Leva (76),
- Cilindros (77) radiales completos,
- Camisa (78) del cilindro hidráulico,
- Vástagos (79) del cilindro hidráulico,
- Dispositivo seguidor de la leva (80),
- Válvulas de entrada de fluido (83),
- Válvulas de salida de fluido (84),
La configuración de este noveno mecanismo (9) es como se indica a continuación.
El eje del noveno mecanismo (87) está situado en la carcasa (75) y sujetado mediante cojinetes que le permiten girar. En la parte central del eje del noveno mecanismo (87) tiene una o varias levas (76) solidarias al eje (87) en su movimiento de rotación. Enfrentados a dicha leva (76), en forma radial, van montados los cilindros hidráulicos (77). Cada cilindro (77) está fijado a la carcasa (75) por un extremo y, en su interior, se desliza un vástago (79). En el extremo del vástago (79) se sitúa el dispositivo seguidor de la leva (76) compuesto de:
- Cabezal del vástago (86),
- Eje de la rueda seguidora de la leva (81),
- Rueda seguidora de la leva (80),
- Ruedas libres (85) en los extremos del eje del dispositivo seguidor de la leva (81),
- Canaladuras (82) fijadas en la carcasa (75) del eje del dispositivo seguidor (81),
El dispositivo seguidor de la leva (76) se compone de un eje (81) fijado al cabezal del vástago (86) en unos orificios practicados en una zona acanalada. En esta zona acanalada se ubica una rueda seguidora de la leva (80), fijada al vástago (79) mediante el eje (81), que la atraviesa. En ambos extremos del eje (81) se ubican dos ruedas libres (85) que están confinadas en unas escotaduras o canaladuras (82) radiales insertadas en la carcasa (75), por donde se desplazan girando las ruedas libres (85) perpendicularmente al eje de la leva (76) y, por consiguiente, del eje del noveno mecanismo (87). Esta disposición del dispositivo seguidor permite que la rueda seguidora (80) siga el perfil de la leva (76) en cada momento y las ruedas libres (85) de los extremos del eje (81) guían el extremo del vástago (79) de forma perpendicular al eje del noveno mecanismo (87) y de la leva (76) a lo largo de todo su recorrido. Esta configuración elimina el arrastre tangencial de la leva (76) al rotar y el vástago (79) adquiere un movimiento radial sin desviaciones evitando el campaneo de dicho vástago (79) dentro de la camisa del cilindro hidráulico (78). Los cilindros hidráulicos (77) de este noveno mecanismo (9) son del mismo tipo que los usados en las máquinas excavadoras actuales siendo estos cilindros hidráulicos (77) de gran fuerza y pequeña velocidad. Esta característica hace que el noveno mecanismo (9) sea especialmente apto para ser usado en las máquinas de obtención de energía de las masas de agua en movimiento.
El noveno mecanismo (9) puede ser usado como bomba de fluidos, como motor aprovechando la energía de un fluido o con ambos usos a la vez.
Como bomba de fluidos aprovecha la rotación de un eje (87), que a su vez hace girar las levas(76) y este movimiento impulsa los vástagos (79) hacía en interior de la camisa del cilindro (78) y el fluido contenido dentro de la misma es expelido al exterior con gran presión.
Como motor de fluidos aprovecha la energía contenida en el fluido para impulsar el vástago (79) al exterior del cilindro hidráulico (77) generando una fuerza que puede hacer rotar la leva (76) y esta a su vez el eje del dispositivo. (87)
Como bomba y motor simultáneamente, el fluido a presión introducido en algunos de los cilindros hace girar la leva y esta a su vez es capaz de mover vástagos (79) otros cilindros hidráulicos (77) para expulsar un fluido a mayor o menor presión que el usado como motor.
Esta particularidad es especialmente interesante para aumentar la presión de un fluido utilizando otro a una presión diferente sin que aparezcan los golpes de ariete. También puede utilizarse para disminuir su presión. El décimo mecanismo (10) se encarga de transportar el fluido presurizado a tierra firme. Comprende las conducciones (101) para transportar el agua presurizada generada por el noveno mecanismo hasta tierra firme por el lecho marino o fluvial. La conducción de fluido de baja viscosidad como el agua, hace que la perdida de energía en este transporte sea mínima ya que, usando secciones de tubería apropiadas, este valor de las perdidas puede ser prácticamente despreciable.
El undécimo mecanismo (1 1) comprende una turbina o motor que, acoplada a un generador, produce energía eléctrica o una planta de osmosis inversa que produce agua desalinizada. Ambas aplicaciones son alimentadas por el agua presurizada generada y una vez transportada a tierra firme.
El duodécimo mecanismo (12) comprende los elementos de fijación, consistentes en bloques de hormigón o anclas en el fondo marino o fluvial, unidos a la máquina mediante cables o cadenas.

Claims

REIVINDICACIONES
1. Máquina para generar energía de las olas y corrientes de agua, caracterizada por que comprende doce mecanismos (1-12), donde:
- el primer mecanismo (1) comprende al menos una torre de flotación (16), unida a un eje central (31) de la máquina, que comprende al menos un compartimento estanco que, al inundarse, sitúa el eje central (31) y la máquina completa en una posición predeterminada,
- el segundo mecanismo (2) comprende una estructura rigidizadora unida a las torres de flotación (16) que comprende un nivel inferior en una zona opuesta a la ubicación del eje central (31) y un nivel superior más próximo al eje central (31),
- el tercer mecanismo (3) comprende el eje central (31), que es el árbol motor de la máquina, que comprende al menos un segmento de configuración hueca y cerrado por los extremos y está unido a al menos una torre de flotación (16), de forma que es inundable para controlar su posición,
- el cuarto mecanismo (4) comprende al menos dos tubos arrollados cerrados (42), en forma de hélice, alrededor del eje central (31) y unidos al eje central (31) mediante unas pletinas (43), de forma que parte de los tubos (42) queda situada por debajo y parte por encima del nivel del mar (44),
- el quinto mecanismo (5) comprende al menos un conjunto de al menos dos elementos longitudinales (51) cada uno que, acoplados uno sobre otro, forman un alabe (53), de configuración helicoidal,
- el sexto mecanismo (6) comprende al menos un flotador (61 , 62) unido al eje central (31) mediante un brazo de unión (63, 64) que incorpora sistemas de bloqueo y liberación configurados mediante mordazas (65, 66, 67, 68), concéntricas al eje central (31), al que transmiten la fuerza de rotación ejercida al paso de la ola (41),
- el séptimo mecanismo (7) es un tubo guía de corriente para canalizar y aumentar la velocidad del flujo de agua, compuesto por una estructura de protección cónica, con capacidad de rotar, en forma de reja (88), un cono de concentración (89), un cuerpo central cilindrico (90) y un cono difusor (91),
- el octavo mecanismo (8) comprende un cono (92) con el vértice solidario al eje central (31) y una base conformada por un disco de apoyo (94) que incorpora unas aletas radiales (93) para direccionar el agua incidente hacia el exterior de forma tangencial,
- el noveno mecanismo (9) comprende al menos un cilindro hidráulico (77) radial completo que transforma la energía de rotación del eje central (31) en agua presurizada, - el décimo mecanismo (10) comprende las conducciones para transportar el agua presurizada generada por el noveno mecanismo (9) hasta tierra firme por el lecho marino o fluvial,
- el undécimo mecanismo (1 1) comprende un dispositivo a seleccionar entre una turbina hidráulica acoplada a un generador para la producción de energía eléctrica y una planta de osmosis inversa que genera agua desalinizada.
- el duodécimo mecanismo (12) comprende unos elementos de fijación a seleccionar entre bloques de hormigón y anclas unidos a la máquina por cables o cadenas para mantener fija a la máquina, de forma que la energía cinética debida al movimiento de cualquiera de los mecanismos (4 a 8) es transmitida al eje central (31) de la máquina.
2. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizada por que los tubos arrollados (42) que comprende el cuarto mecanismo
(4) se encuentran cerrados por sus extremos, llenos de un fluido y tienen una configuración hidrodinámica con una sección transversal formada por una mitad, donde fricciona con el agua al rotar, preferentemente circular, elíptica o triangular, que presenta poco rozamiento, y la otra mitad, donde choca el agua para hacerla rotar sensiblemente plana.
3. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizada por que los elementos longitudinales (51) son tubos.
4. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 3, caracterizada por que el conjunto de tubos (51) incorpora una masilla que le confiere al alabe (53) una superficie plana y continua.
5. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizada por que los elementos longitudinales (51) son placas lisas ensamblables.
6. Máquina para generar energía de las olas y corrientes de agua, según cualquiera de las reivindicaciones 3 a 5, caracterizada por que el quinto mecanismo (5) comprende varios alabes (53), que configuran una hélice de, al menos, 360°.
7. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 6, caracterizada por que la hélice que configuran los alabes (53) es de envolvente cónica.
8. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 6, caracterizada por que la hélice que configuran los alabes (53) es de envolvente cilindrica.
9. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación
I , caracterizada por que el sexto mecanismo (6) comprende al menos un juego de dos flotadores (61 , 62), unidos al eje central (31) mediante sendos brazos de unión (63, 64) que incorporan sistemas de bloqueo y liberación configurados mediante mordazas (65, 66, 67, 68), concéntricas al eje central (31), al que transmiten la fuerza de rotación ejercida al paso de la ola (41).
10. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 9, caracterizada por que tanto la primera mordaza (65) como la segunda mordaza (66) del sexto mecanismo (6) comprende un plano inclinado (69) y un rodillo (71) ubicado entre el plano inclinado (69) y el eje central (31).
I I . Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 5, caracterizada por que tanto la primera mordaza (65) como la segunda mordaza (66) del sexto mecanismo (6) comprende una cuña (72) ubicada entre el plano inclinado (69) y el eje central (31).
12. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizado por que el eje central (31) se sitúa en tierra firme y posee al menos un primer flotador (61) situado en el mar,
13. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizada por que comprende dos flotadores (61) fijados mediante sendos brazos de unión (63) a sendos ejes centrales (31) ubicados en una plataforma flotante.
14. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizada por que el séptimo mecanismo (7) comprende en el eje central rotatorio (31) una estructura de protección cónica en forma de reja (88), un cono de concentración (89), un cuerpo central cilindrico (90) y un cono difusor (91), donde el mecanismo es estático o se mueve con muy baja velocidad de rotación.
15. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizada por que el octavo mecanismo (8) comprende un cono (92) con su vértice solidario al eje central rotatorio (31) y una base conformada por un disco de apoyo (94), que incorpora unas aletas radiales (93) para direccionar el agua incidente hacia el exterior de forma tangencial.
16. Máquina para generar energía de las olas y corrientes de agua, según la reivindicación 1 , caracterizado por que el noveno mecanismo (9) comprende al menos un cilindro hidráulico radial completo (77) fijo a una carcasa (75), que incorpora válvulas de entrada (83) y salida (84) de fluidos al interior del cilindro (78), por donde desliza un vástago (79) que incorpora en la cabeza (86) un canal para la ubicación de una rueda seguidora (80) que se fija al vástago (79) mediante un eje (81) que, en cada extremo, incorpora una rueda libre (85) que gira confinada por el interior de una canaladura (82) situada en la carcasa (75) y que obliga al al vástago (79) a seguir una trayectoria rectilínea perpendicular al eje (81), estando la rueda seguidora (80) en contacto con una leva (76) que gira alrededor de un eje del noveno mecanismo (87) que es solidario con el eje central (31) de la máquina.
PCT/ES2017/070156 2016-04-29 2017-03-17 Máquina para generar energía de las olas y corrientes de agua WO2017186984A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESU201630538 2016-04-29
ES201630538U ES1161633Y (es) 2016-04-29 2016-04-29 Maquina para generar energia de las olas y corrientes de agua

Publications (1)

Publication Number Publication Date
WO2017186984A1 true WO2017186984A1 (es) 2017-11-02

Family

ID=56414004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070156 WO2017186984A1 (es) 2016-04-29 2017-03-17 Máquina para generar energía de las olas y corrientes de agua

Country Status (2)

Country Link
ES (1) ES1161633Y (es)
WO (1) WO2017186984A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078687A1 (en) * 2000-12-21 2002-06-27 Donnelly Francis M. ?Quot;Jim?Quot; Apparatus converting ocean wave energy
WO2003025385A2 (en) * 2001-09-17 2003-03-27 Clean Current Power Systems Inc. Underwater ducted turbine
WO2008038055A1 (en) * 2006-09-26 2008-04-03 Spyridon Santas Floating cylinder wave energy conventor
GB2490737A (en) * 2011-05-13 2012-11-14 Sustainable Marine Technologies Ltd A buoyant modular turbine assembly
ES1137031U (es) * 2015-01-22 2015-03-03 Elaborados Castellano S L Dispositivo de desplazamiento positivo de fluidos de pistones multifunción.
WO2015150602A1 (es) * 2014-03-25 2015-10-08 Elaborados Castellano, S.L. Dispositivo para generar energía aprovechando los movimientos de las olas del mar
US20160003212A1 (en) * 2014-07-07 2016-01-07 Stephanie M. Holt Underwater Multi-Turbine Generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020078687A1 (en) * 2000-12-21 2002-06-27 Donnelly Francis M. ?Quot;Jim?Quot; Apparatus converting ocean wave energy
WO2003025385A2 (en) * 2001-09-17 2003-03-27 Clean Current Power Systems Inc. Underwater ducted turbine
WO2008038055A1 (en) * 2006-09-26 2008-04-03 Spyridon Santas Floating cylinder wave energy conventor
GB2490737A (en) * 2011-05-13 2012-11-14 Sustainable Marine Technologies Ltd A buoyant modular turbine assembly
WO2015150602A1 (es) * 2014-03-25 2015-10-08 Elaborados Castellano, S.L. Dispositivo para generar energía aprovechando los movimientos de las olas del mar
US20160003212A1 (en) * 2014-07-07 2016-01-07 Stephanie M. Holt Underwater Multi-Turbine Generator
ES1137031U (es) * 2015-01-22 2015-03-03 Elaborados Castellano S L Dispositivo de desplazamiento positivo de fluidos de pistones multifunción.

Also Published As

Publication number Publication date
ES1161633U (es) 2016-07-26
ES1161633Y (es) 2016-10-21

Similar Documents

Publication Publication Date Title
ES2243756T3 (es) Turbina entubada subacuatica.
ES2393207T3 (es) Convertidor de energía undimotriz completamente sumergido
ES2329359T3 (es) Dispositivo para fijar un dispositivo subacuatico a un lecho marino.
EP2946107B1 (en) Device for generating hydro-electric energy
GB2497459A (en) Water current generator system
CA3002254C (en) Device for converting the kinetic energy of waves, water flows or wind into mechanical energy
WO2010043735A1 (es) Central eléctrica de rotores marinos mecánicos
US20100221106A1 (en) Apparatus for receiving and transferring kinetic energy from water flow
US8405240B2 (en) Augmented velocity hydro-electric turbine generator
ES2611967T3 (es) Turbina de flujo cruzado o transversal con álabes verticales rectos e inclinados helicoidales
EP3207245B1 (en) Power generating device
US20150337794A1 (en) Turbine with helical blades
WO2014194438A1 (es) Dispositivo convertidor de energia cinetica de mareas en electrica que posee una hidroturbina de flujo transversal capaz de direccionar los flujos captados de una manera optima redirigiendo y acelerandolos hacia un rodete interno de la h idroturbina y una planta generadora de electr1cidad que ocupa a dicho dispositivo.
WO2017186984A1 (es) Máquina para generar energía de las olas y corrientes de agua
US20170175703A1 (en) Apparatus For Converting Or Absorbing Energy From A Moving Body Of Water
KR101261780B1 (ko) 조류추동형 발전모듈 및 이를 포함하는 발전장치
ES2341311A1 (es) Generador electrico submarino para al aprovechamiento de las corrientes de flujo bidireccional.
WO2016030910A4 (en) Water kinetic energy driven hydro turbine
WO2014195537A1 (es) Sistema mecánico para generación de energía eléctrica a partir de energía undimotriz
ES2226522B1 (es) Sistema rotativo flotante, especialmente diseñado para uso en instalaciones de generacion electrica en medio hidraulico terrestre y marino.
ES2364391B1 (es) Generador submarino y móvil de energías renovables
ES1286106U9 (es) Sistema captador de energía hidráulica
ES2792178A1 (es) Sistema modular para el aprovechamiento de energia a partir de las mareas
WO2021014042A1 (es) Equipo para la obtención de energía eléctrica en superficie a partir de la captación de la energía cinética de las corrientes en mares y ríos
WO2021090053A1 (es) Un sistema de generación electro hidrokinético autoflotante

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788855

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788855

Country of ref document: EP

Kind code of ref document: A1