WO2017186122A1 - 流量调度 - Google Patents

流量调度 Download PDF

Info

Publication number
WO2017186122A1
WO2017186122A1 PCT/CN2017/082025 CN2017082025W WO2017186122A1 WO 2017186122 A1 WO2017186122 A1 WO 2017186122A1 CN 2017082025 W CN2017082025 W CN 2017082025W WO 2017186122 A1 WO2017186122 A1 WO 2017186122A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
bras network
packet
vxlan
bras
Prior art date
Application number
PCT/CN2017/082025
Other languages
English (en)
French (fr)
Inventor
刘建锋
Original Assignee
新华三技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新华三技术有限公司 filed Critical 新华三技术有限公司
Publication of WO2017186122A1 publication Critical patent/WO2017186122A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling

Definitions

  • Broadband Remote Access Server is an access gateway for broadband network applications. It is located at the edge layer of the backbone network and can provide user bandwidth data access services to achieve broadband for commercial buildings and residential residents. Go online.
  • the BRAS can be deployed in the aggregation room of the metropolitan area network.
  • the broadband users can be accessed by the OLT (Optical Line Terminal) and then through the aggregation switch (Aggregation switch). , AGSW) is connected to the BRAS.
  • OLT Optical Line Terminal
  • AGSW aggregation switch
  • FIG. 1 is a flow diagram of a controller shown in the example of the present disclosure establishing a VXLAN tunnel between an aggregation switch and each BRAS network element within a designated packet;
  • FIG. 2 is a flowchart of an aggregation switch performing forwarding processing on a PPPoE first packet according to an example of the present disclosure
  • FIG. 3 is a flowchart of a process for forwarding a unicast packet sent by a PPPoE client by an aggregation switch according to an example of the present disclosure
  • FIG. 4 is a network architecture diagram of an access network according to an example of the present disclosure.
  • FIG. 5 is a schematic diagram showing the hardware structure of a traffic scheduling apparatus according to an example of the present disclosure
  • FIG. 6 is a functional block diagram of flow scheduling logic shown in an example of the present disclosure.
  • the present disclosure example provides a traffic scheduling method, and a traffic scheduling device to which the method can be applied.
  • the access network of the example of the present disclosure may mainly include a controller, a BRAS network element, and an aggregation switch.
  • An aggregation switch and each BRAS network element in the specified packet may establish a VXLAN (Virtual eXtensible Local Area Network) tunnel, and the packet may include at least two BRAS network elements.
  • the client can access the aggregation switch through the OLT, and a QinQ (Double Virtual Local Area Network) tunnel can be established between the OLT and the aggregation switch.
  • the access network may be a metropolitan area network or an enterprise campus network, and the like.
  • the controller, BRAS network element and aggregation switch are introduced separately below.
  • the functions of the controller mainly include BRAS resource management, user resource management, tunnel resource management, and service scheduling management.
  • the BRAS resource management means that the controller can obtain the network element information of each BRAS network element and perform group management on multiple BRAS network elements.
  • a resource pool may be stored in the controller, and the resource pool may include multiple BRAS network elements, where all BRAS network elements are functionally equivalent and can be backed up each other.
  • the controller may obtain the network element information of each BRAS network element in the resource pool, where the network element information may include the number of clients accessing the BRAS network element, the traffic information flowing through the BRAS network element, and the BRAS network element.
  • CPU Central Processing Unit
  • the controller may group the BRAS network elements in the resource pool, and each packet includes at least two BRAS network elements.
  • User resource management means that the controller can obtain user resource information from the aggregation switch.
  • the user resource information may include the number of clients accessing the aggregation switch, the VLAN (Virtual Local Area Network) information configured on the aggregation switch, and the VLAN to which each client belongs.
  • VLAN Virtual Local Area Network
  • Tunnel resource management means that the controller can manage and allocate VXLAN tunnel resources. For example, the controller may allocate a VXLAN ID (Virtual eXtensible Local Area Network Identification) to the VXLAN tunnel to be established, establish a VXLAN tunnel between the aggregation switch and each BRAS network element in the specified packet, and delete the aggregation switch and the specified packet. Within the VXLAN tunnel between each BRAS network element, and after the VXLAN tunnel between the aggregation switch and each BRAS network element in the specified packet is deleted, the corresponding VXLAN ID is recovered.
  • VXLAN ID Virtual eXtensible Local Area Network Identification
  • the service scheduling management means that the controller can schedule the data flow of a certain client accessed on the aggregation switch to a suitable BRAS network element.
  • the BRAS network element can support VXLAN tunnels.
  • the BRAS network element can receive packets sent by the client through the VXLAN tunnel, for example, Point to Point Protocol over Ethernet (PPPoE) packets and IPoE (Internet Protocol over Ethernet). Agreement), etc.; and, BRAS network
  • the element can send a message to the client through the VXLAN tunnel; the BRAS network element can provide access services for all clients in the access network.
  • the BRAS network elements in the same group may be backups of each other; the BRAS network elements may be physical BRAS devices or BRAS virtualization software (vBRAS) based on the x86 server platform.
  • vBRAS BRAS virtualization software
  • the aggregation switch can also support VXLAN tunnels.
  • the VXLAN tunnel aggregation switch forwards the packets sent by the client to the peer BRAS network element, and forwards the packets sent by the BRAS network element to the client.
  • the traffic scheduling method of the example of the present disclosure may include the following.
  • the controller can establish a VXLAN tunnel between the aggregation switch and each BRAS network element in the specified packet, as shown in FIG. 1.
  • FIG. 1 is an example of the controller of the present disclosure in the aggregation switch and the designated packet.
  • the controller may divide at least two BRAS network elements in the local resource pool into a group, and each packet may include at least two BRAS network elements.
  • the controller may divide the BRAS network element in the resource pool into a plurality of packets.
  • the controller may specify a packet for the aggregation switch (referred to as packet A for convenience of description), and may establish a VXLAN tunnel between the aggregation switch and each BRAS network element in the packet A.
  • packet A a packet for the aggregation switch
  • the controller may configure a first tunnel (tunnel) interface on the aggregation switch, where the source IP address of the first tunnel interface is the IP address and the destination IP address of the aggregation switch.
  • the IP address of the BRAS network element the controller may create a first VSI (Virtual Switch Instance) on the aggregation switch, and create a VXLAN in the first VSI (referred to as VXLAN1 for convenience of description);
  • the controller may bind an AC (Access Circuit) interface, the first VSI, and all configured first tunnel interfaces. Therefore, on the aggregation switch, the AC interface, the first VSI, all the first tunnel interfaces, and the VXLAN1 can form a corresponding relationship.
  • the controller may configure a second tunnel interface on the BRAS network element, where the source IP address of the second tunnel interface is the IP address and the destination IP address of the BRAS network element is the aggregation switch.
  • the controller may create a second VSI on the BRAS network element, and create a VXLAN1 in the second VSI; the controller may bind the second VSI and the second tunnel interface. Therefore, the second VSI, the second tunnel interface, and the VXLAN1 can form a corresponding relationship on each BRAS network element in the packet A.
  • the controller can establish a VXLAN tunnel between an aggregation switch and each BRAS network element in the designated packet to obtain a set of VXLAN tunnels.
  • the AC interface on the aggregation switch can correspond to the set of VXLAN tunnels, and the VXLAN tunnel of this structure can be referred to as an umbrella VXLAN tunnel.
  • the client can access one of the BRAS network elements through the aggregation switch.
  • the access network can apply multiple authentication methods, such as PPPoE and IPoE.
  • PPPoE authentication is applied, the access may be a PPPoE client; when IPoE is applied, the access may be an IPoE client.
  • IPoE client when IPoE authentication is applied, the access may be an IPoE client.
  • the client may be a terminal device used by the user, and one user may correspond to one client.
  • the PPPoE client can first send the first packet.
  • the following can be called the first packet of the PPPoE.
  • the aggregation switch can forward the PPPoE first packet as shown in Figure 2.
  • Figure 2 A flow chart of the aggregation switch for forwarding the PPPoE first packet by the aggregation switch shown in the example includes the following steps S201 and S202.
  • the aggregation switch can receive the PPPoE first packet sent by the PPPoE client from the AC interface, and the PPPoE first packet can be a broadcast packet.
  • Step S202 The aggregation switch can find each VXLAN tunnel corresponding to the VXLAN to which the PPPoE first packet belongs, and can encapsulate the first packet of the PPPoE according to the VXLAN tunnel, and send the encapsulated VXLAN packet to the peer end.
  • BRAS network element the aggregation switch can send the PPPoE first message to all BRAS network elements in the packet A.
  • the aggregation switch can learn the source MAC address of the PPPoE first packet, so that a MAC address can be added to the MAC address table corresponding to the VXLAN to which the PPPoE first packet belongs.
  • the entry may include a mapping between a source MAC address of the PPPoE first packet and an AC interface that receives the PPPoE first packet.
  • the aggregation switch processes the broadcast packet received from the AC interface by using the VXLAN tunnel corresponding to the VXLAN to which the packet belongs, and the aggregation switch can broadcast the packet to the packet. All BRAS NEs in A. In addition, the aggregation switch processes the unknown unicast packets in the same way as the broadcast packets.
  • the BRAS network element After receiving the VXLAN packet encapsulating the PPPoE first packet, the BRAS network element can decapsulate the VXLAN packet to obtain the PPPoE first packet, and then the BRAS network element can learn the source MAC address of the PPPoE first packet. Therefore, the BRAS network element may add a MAC entry in the MAC address table corresponding to the VXLAN to which the VXLAN message belongs, where the MAC entry may include: the source MAC address of the PPPoE first packet and the received MAC address Correspondence between VXLAN tunnels of VXLAN packets.
  • the BRAS network element in the packet A may also perform corresponding processing according to the PPPoE first packet according to any one of the following two manners.
  • the BRAS network element in the packet A can report the PPPoE first packet to the controller.
  • the aggregation switch can broadcast the PPPoE first packet to all the BRAS network elements in the packet A.
  • the BRAS network element reports the PPPoE first packet to the controller. Therefore, the controller can receive multiple copies of the same PPPoE first message. Then, the controller may select one BRAS network element from all BRAS network elements that report the PPPoE first message according to a preset selection rule, and send a response notification to the selected BRAS network element. After receiving the response notification from the controller, the selected BRAS network element may generate a response message for the first packet of the PPPoE.
  • the selected BRAS network element can find the corresponding VXLAN tunnel, and according to the After the VXLAN tunnel encapsulates the response packet, the VXLAN packet is sent to the aggregation switch. Thus, only the BRAS network element selected by the controller will respond.
  • the foregoing preset selection rule may be: selecting a BRAS network element closest to the aggregation switch, or selecting a BRAS network element with a minimum load.
  • the load of the BRAS network element can be learned from the network element information of the BRAS network element obtained by the controller.
  • each BRAS network element in the packet A After waiting for a certain delay time (PADO Delay Time), each BRAS network element in the packet A can generate a response packet for the first packet of the PPPoE. According to the destination MAC address of the response packet, in the MAC address table corresponding to the VXLAN to which the response packet belongs, each BRAS network element in the packet A can find a corresponding VXLAN tunnel, and then respond to the response packet according to the VXLAN tunnel. The encapsulation is performed, and the encapsulated VXLAN packet is sent to the aggregation switch.
  • the delay time of each BRAS network element in the packet A can be configured and managed by the controller, and the controller can configure different delay times on different BRAS network elements in the packet A, so that different BRAS network elements respond. The time is different.
  • the BRAS network elements in packet A will respond, but because of the different delays of these BRAS network elements, the order in which these BRAS network elements respond is different.
  • the controller may select a BRAS network element that responds to the PPPoE first packet according to the preset control mode.
  • the selected BRAS network element may be the BRAS network element selected by the controller from all the BRAS network elements reporting the PPPoE first message.
  • the selected BRAS network element may be the BRAS that responds the earliest. Network element.
  • the aggregation switch can decapsulate the VXLAN packet. Receive a response message.
  • the aggregation switch can determine the MAC address table corresponding to the VXLAN to which the VXLAN packet belongs, and learn the source MAC address of the response packet, that is, the aggregation switch can add a MAC entry in the MAC address table, where the MAC table
  • the item may include: a correspondence between a source MAC address of the response packet and a VXLAN tunnel that receives the VXLAN packet.
  • the aggregation switch can also find the corresponding AC interface in the MAC address table according to the destination MAC address of the response packet, and forward the response packet to the PPPoE client through the AC interface.
  • the PPPoE client can then Establish a PPPoE connection with the selected BRAS network element.
  • the subsequent packets sent by the PPPoE client include the packets other than the PPPoE first packet and the data packets after the PPPoE connection is successfully established.
  • the destination MAC address is the MAC address of the selected BRAS NE.
  • Unicast packets which can be forwarded to the selected BRAS network element. Therefore, the controller can select a BRAS network element from the packet A to respond to the PPPoE first packet sent by the PPPoE client, and implement scheduling of the PPPoE data stream between the BRAS network elements in the same packet.
  • the controller may configure different delay times for different BRAS network elements in the packet A, so that the BRAS network element with the shortest delay time first responds, although the response report sent by each BRAS network element in the packet A
  • the text can be forwarded to the PPPoE client through the aggregation switch.
  • the PPPoE client only the BRAS network element that responds the earliest is selected to establish a PPPoE connection.
  • the subsequent packets sent by the PPPoE client include the packets other than the PPPoE first packet and the data packets after the PPPoE connection is successfully established.
  • the destination MAC address is the BRAS network element that responds the earliest.
  • the controller can configure different delay times for different BRAS network elements in the same packet, so that different BRAS network elements can respond differently, and the PPPoE data stream is scheduled between the BRAS network elements in the same packet.
  • the aggregation switch and the selected BRAS network element have learned the source MAC address, and therefore, the subsequent report between the PPPoE client and the selected BRAS network element.
  • the text for unicast messages can be directly forwarded for table lookup.
  • FIG. 3 is a flowchart of a method for forwarding a unicast packet sent by a PPPoE client by an aggregation switch according to an example of the present disclosure.
  • Step S301 after receiving the unicast packet sent by the PPPoE client, the aggregation switch can determine the MAC address table corresponding to the VXLAN to which the unicast packet belongs.
  • step S302 the aggregation switch can find the corresponding VXLAN tunnel in the MAC address table according to the destination MAC address of the unicast packet, encapsulate the unicast packet according to the found VXLAN tunnel, and encapsulate the obtained VXLAN packet.
  • the text is sent to the peer BRAS network element.
  • the BRAS network element After receiving the VXLAN packet, the BRAS network element can perform decapsulation to obtain a unicast packet, and the unicast packet can be processed correspondingly. For example, the BRAS network element can send the decapsulated protocol packet to the protocol stack. The data packet obtained by decapsulation is forwarded to the public network.
  • the process of forwarding packets from the BRAS network element to the PPPoE client is as follows.
  • the BRAS network element can determine the MAC address table corresponding to the VXLAN to which the unicast message belongs.
  • the BRAS network element searches for a corresponding VXLAN tunnel in the MAC address table according to the destination MAC address corresponding to the unicast message.
  • the BRAS network element encapsulates the unicast packet and sends the encapsulated VXLAN packet to the aggregation switch according to the found VXLAN tunnel.
  • the unicast packet to be sent may be, for example, a unicast packet generated by the BRAS network element or a unicast packet received by the BRAS network element from the public network; the destination MAC address corresponding to the unicast packet may be, The destination MAC address carried in the unicast packet may also be the MAC address corresponding to the destination IP address carried in the unicast packet.
  • the aggregation switch can decapsulate the VXLAN packet, determine the MAC address table corresponding to the VXLAN to which the VXLAN packet belongs, and look up the MAC address table according to the destination MAC address of the unicast packet.
  • the unicast packet is forwarded to the PPPoE client through the AC interface.
  • the present disclosure example also considers the redundancy backup problem between BRAS network elements within packet A.
  • the PPPoE client will only establish a PPPoE connection and communicate with a BRAS network element (referred to as BRAS network element 1 for convenience of description). Therefore, when the state of the BRAS network element 1 becomes "Down", for example, the link between the BRAS network element 1 and the aggregation switch fails, or the BRAS network element 1 fails, the PPPoE client The PPPoE connection is disconnected. Therefore, the PPPoE client re-diales and sends the PPPoE first packet of the new PPPoE connection. After receiving the PPPoE first packet, the aggregation switch can perform the above step S201 on the PPPoE first packet. The process of step S202 is to broadcast the PPPoE first message to the BRAS network element in the packet A.
  • the BRAS network element 1 When the first mode is used, the BRAS network element 1 is unavailable, and the other BRAS network elements in the available state of the packet A are reported to the controller after receiving the PPPoE first message, and the controller re-relies from the BRAS network element in the packet A.
  • Select a BRAS network element (for the convenience of description, denoted as BRAS network element 2) to respond.
  • the aggregation switch receives the package After the VXLAN packet of the response packet, the source MAC address of the response packet can be learned, that is, the MAC address of the BRAS network element 2 is learned, and the response packet is forwarded to the PPPoE client.
  • the PPPoE client can establish a PPPoE connection with the BRAS network element 2 and communicate with each other.
  • the destination MAC address of the unicast packet sent by the PPPoE client is the MAC address of the BRAS network element 2.
  • the aggregation switch After receiving the VXLAN packet encapsulated with the response packet, the aggregation switch will The response packet is forwarded to the PPPoE client; the PPPoE client establishes a PPPoE connection and communicates with the BRAS network element that is the first to respond (for the convenience of description, the BRAS network element 3), and the destination MAC address of the subsequent unicast message.
  • the address is the MAC address of the BRAS network element 3.
  • the PPPoE connection can be established and communicated with the new BRAS network element, so that the PPPoE data stream can be quickly switched to the new BRAS.
  • the network element implements redundancy and backup of BRAS network elements in the same packet.
  • IPoE Internet Protocol over Ethernet
  • VRRP Virtual Router Redundancy Protocol
  • a BRAS network element in the packet A can be used as the primary BRAS network element, and other BRAS network elements in the packet A can be used as the secondary BRAS network. yuan.
  • the primary BRAS network element and the secondary BRAS network element may have the same virtual MAC address when communicating with the IPoE client.
  • the primary BRAS network element and the secondary BRAS network element can detect the working state of the other party through periodic mutual heartbeat messages. Specifically, the primary BRAS network element can send a heartbeat message to the aggregation switch through the corresponding VXLAN tunnel, and the aggregation switch can forward the heartbeat message to each slave BRAS network element through the VXLAN tunnel; and vice versa.
  • the IPoE client can first send the first packet in the IPoE connection establishment process, which is referred to as the IPoE first packet.
  • the processing procedure performed for the IPoE first packet is the same as the processing procedure for the PPPoE first packet in the PPPoE authentication example. Therefore, the aggregation switch can broadcast the VXLAN packet encapsulated with the IPoE first packet to the primary BRAS network element and the secondary BRAS network element, and the aggregation switch can learn the MAC address of the IPoE client.
  • the primary BRAS network element and the BRAS network element can decapsulate the VXLAN packet to obtain the IPoE first packet. Then, the primary BRAS network element and the slave BRAS network element can learn the source MAC address of the IPoE first packet, so that the primary BRAS network element and the secondary BRAS network element can add a MAC address table corresponding to the VXLAN to which the VXLAN message belongs.
  • the MAC entry may include: the IPoE The correspondence between the source MAC address of the first packet and the VXLAN tunnel that receives the VXLAN packet, that is, the correspondence between the MAC address of the IPoE client and the VXLAN tunnel that receives the VXLAN packet.
  • the primary BRAS network element may also generate a response packet for the first packet of the IPoE. According to the destination MAC address of the response packet, the primary BRAS network element may find a corresponding MAC address table corresponding to the VXLAN to which the response packet belongs. In the VXLAN tunnel, the primary BRAS network element can encapsulate the response packet according to the VXLAN tunnel, and can send the encapsulated VXLAN packet to the aggregation switch.
  • both the primary BRAS network element and the secondary BRAS network element can learn the source MAC address of the IPoE first packet, that is, the MAC address of the IPoE client, but only the primary BRAS network element responds to the IPoE first packet. .
  • the aggregation switch can learn the source MAC address of the response packet (that is, the virtual MAC address) and forward the response packet to the IPoE client. Since only the primary BRAS network element will respond, the IPoE client will only establish an IPoE connection with the primary BRAS network element and communicate with each other.
  • the subsequent packets sent by the IPoE client can be unicast packets, and the destination MAC address can be Is the virtual MAC address.
  • the aggregation switch and the primary BRAS network element have learned the source MAC address. Therefore, subsequent packets between the IPoE client and the primary BRAS network element are The unicast packet can be directly forwarded by the table.
  • the subsequent packet includes the packet except the IPoE first packet in the IPoE connection establishment process and the data packet after the IPoE connection is successfully established.
  • the processing procedure of the packet in the direction of the IPoE client ⁇ the primary BRAS network element is the same as the processing procedure of the packet in the direction of the PPPoE client ⁇ the selected BRAS network element in the PPPoE authentication example; the primary BRAS network element ⁇ IPoE client
  • the processing flow of the packet in the end direction is the same as the processing procedure of the packet in the direction of the BRAS network element ⁇ PPPoE client in the PPPoE authentication example.
  • the BRAS network element 2 when it is detected from the BRAS network element (referred to as BRAS network element 2 for convenience of description) that the status of the primary BRAS network element (referred to as BRAS network element 1 for convenience of description) becomes unavailable (Down), for example
  • the link between the BRAS network element 1 and the aggregation switch is faulty, resulting in the VXLAN tunnel being unavailable between the two, or the BRAS network element 1 is faulty, and the BRAS network element 2 can be switched to be the primary BRAS network element.
  • the source MAC address of the gratuitous ARP packet can be a virtual MAC address.
  • the source MAC address of the gratuitous ARP packet can be a virtual MAC address.
  • the aggregation switch After receiving the VXLAN packet encapsulated with gratuitous ARP packets, the aggregation switch can obtain the gratuitous ARP packet after decapsulation. Then, according to the source MAC address of the gratuitous ARP packet, the sink The aggregation switch can search for a matching entry in the MAC address table corresponding to the VXLAN to which the VXLAN packet belongs. The aggregation switch can be different when the VXLAN tunnel included in the matching entry is different from the VXLAN tunnel that receives the VXLAN packet. Update the VXLAN tunnel included in the found match entry to the VXLAN tunnel that received the VXLAN packet.
  • the outbound interface of the matching entry is updated by the VXLAN tunnel of the aggregation switch and the BRAS network element 1 to the VXLAN tunnel of the aggregation switch and the BRAS network element 2, and the subsequent IPoE data stream can be switched to the BRAS network element 2.
  • the BRAS network element 2 can be re-switched to the secondary BRAS network element.
  • the BRAS network element 1 sends a gratuitous ARP packet to the aggregation switch through the VXLAN tunnel.
  • the source MAC address of the gratuitous ARP packet is the virtual MAC address.
  • the aggregation switch can obtain the gratuitous ARP packet after decapsulation.
  • the aggregation switch can search for a matching entry in the MAC address table corresponding to the VXLAN to which the VXLAN packet belongs, and find the VXLAN tunnel included in the matching entry.
  • the VXLAN tunnels of the VXLAN packets are different, the VXLAN tunnels included in the matching entries can be updated to the VXLAN tunnels that receive the VXLAN packets. Therefore, the outbound interface of the matching entry is updated by the VXLAN tunnel of the aggregation switch and the BRAS network element 2 to the VXLAN tunnel of the aggregation switch and the BRAS network element 1, and the subsequent IPoE data stream can be switched back to the BRAS network element 1.
  • the IPoE data stream can be quickly switched to the secondary BRAS network element. After the primary BRAS network element is restored, the IPoE data stream can be quickly switched back to the primary BRAS network element. Redundancy and backup of BRAS network elements in the same packet are implemented.
  • the controller may pre-group at least two BRAS network elements in the resource pool into one group, and then specify a packet for the aggregation switch, and may establish a VXLAN tunnel between the aggregation switch and each BRAS network element in the packet.
  • a set of VXLAN tunnels is obtained, and the AC interface on the aggregation switch can correspond to the set of VXLAN tunnels.
  • the aggregation switch can send the PPPoE first packet to each BRAS network element in the packet through the VXLAN tunnel after receiving the PPPoE first packet of any client from the AC interface. Afterwards, the controller may select a BRAS network element that responds to the PPPoE first packet according to the preset control mode. After receiving the PPPoE subsequent message from the AC interface, the aggregation switch can send the PPPoE subsequent message to the selected BRAS network element through the VXLAN tunnel. Therefore, the PPPoE data stream of any client connected to the AC interface can be scheduled to the selected BRAS network element, and the scheduling of the PPPoE data stream between the BRAS network elements in the same packet is implemented.
  • the client can re-issue the PPPoE first packet and control
  • the device can reselect the BRAS network element that responds to the PPPoE first packet from other BRAS network elements in the available state according to the preset control mode, thereby implementing backup between the BRAS network elements in the same packet. And redundancy for increased reliability.
  • the controller 110 may divide the BRAS network element 121 and the BRAS network element 122 in the resource pool into the same packet, which is called packet 1, and divide the BRAS network element 123 and the BRAS network element 124 in the resource pool into two.
  • the same group called group 2.
  • the controller 110 can establish a VXLAN tunnel between the aggregation switch AGSW 131 and the BRAS network element 121 and the BRAS network element 122 in the packet 1, thereby obtaining two VXLAN tunnels Tunnel1 and Tunnel2, and the two VXLAN tunnels can form a group of VXLAN tunnels. .
  • the AC interfaces AC1, Tunnel1, and Tunnel2, and VXLAN1 on the AGSW 131 may correspond to each other.
  • the tunnel 1 may be a VXLAN tunnel between the AGSW 131 and the BRAS network element 121
  • the tunnel 2 may be a VXLAN tunnel between the AGSW 131 and the BRAS network element 122. .
  • the client 1 (not shown in FIG. 4) can be connected to AC1 of the AGSW 131 through the OLT 141.
  • Client 1's MAC address can be USER1.
  • the MAC address of the BRAS network element 121 may be vBRAS1
  • the MAC address of the BRAS network element 122 may be vBRAS2.
  • the BRAS network element responds in the above manner as an example to illustrate the traffic in the PPPoE application scenario. Scheduling method.
  • the client 1 can send a PPPoE first packet.
  • the source MAC address of the PPPoE first packet can be USER1, and the destination MAC address can be a broadcast MAC address.
  • the ACSW 131 can determine the MAC address table corresponding to the VXLAN1 to which the PPPoE first packet belongs.
  • the AGSW 131 can learn the MAC address of the source MAC address of the first packet of the PPPoE packet, and obtain the MAC entry as shown in the second row of Table 1-1, and pass the Tunnel1 and Tunnel2 corresponding to VXLAN1.
  • the AGSW 131 may encapsulate the PPPoE first packet and send the encapsulated VXLAN packet, so that the AGSW 131 may broadcast the PPPoE first packet to the BRAS network element 121 and the BRAS network element 122.
  • the BRAS network element 121 can perform decapsulation to obtain the PPPoE first packet, determine the MAC address table corresponding to the VXLAN1 of the VXLAN packet, and learn the source MAC address USER1 of the PPPoE first packet.
  • the MAC address table the MAC entry as shown in the second row of Table 2-1 is obtained, and the BRAS network element 121 can report the PPPoE first packet to the controller 110.
  • the BRAS network element 122 can also perform the foregoing operations, so as to learn the MAC entry as shown in the second row of the table 3-1, and the BRAS network element 122 can also report the PPPoE first message to the controller 110.
  • the controller 110 may select the BRAS network element 121 with the smallest load to send a response notification.
  • the BRAS network element 121 may generate a response packet for the PPPoE first packet, where the source MAC address of the response packet is vBRAS1, the destination MAC address is USER1, and then, according to USER1, as shown in Table 2-1.
  • the corresponding MAC address table is searched for the corresponding outbound interface, and the result is that Tunnel 1 is found.
  • the BRAS network element 121 can encapsulate the response packet and send the encapsulated VXLAN message to the AGSW 131.
  • the AGSW 131 can perform decapsulation to obtain a response packet, and determine that the MAC address table corresponding to the VXLAN1 of the VXLAN packet is Table 1-1, and learn the source MAC address vBRAS1 of the response packet. To the MAC address table shown in Table 1-1, the MAC address entries learned are listed in the third row of Table 1-2. At this time, Table 1-1 is updated to Table 1-2; and the AGSW 131 can The destination MAC address of the response packet, USER1, is found in the MAC address table shown in Table 1-2. The corresponding outgoing interface is AC1, and the response packet is forwarded to client 1 through AC1.
  • the PPPoE packet sent by the client 1 can be a unicast packet, and the destination MAC address can be vBRAS1. Based on the destination MAC address vBRAS1 of the PPPoE packet, the AGSW 131 can find the corresponding outgoing interface as Tunnel1 in the MAC address table shown in Table 1-2. Therefore, the AGSW 131 can encapsulate the PPPoE packet into a VXLAN packet and send it to the BRAS network element 121. After receiving the VXLAN packet, the BRAS network element 121 can decapsulate the PPPoE packet and process the PPPoE packet accordingly.
  • the BRAS network element 121 wants to send a PPPoE packet to the client 1, according to the destination MAC address USER1 of the PPPoE packet, the corresponding outbound interface can be found in the MAC address table as shown in Table 2-1.
  • the PPPoE packet is encapsulated into a VXLAN packet and sent to the AGSW 131.
  • the AGSW 131 can decapsulate the PPPoE packet, and according to the destination MAC address USER1 of the PPPoE packet, the corresponding MAC address table can be found in the MAC address table.
  • the interface is AC1, so that the PPPoE packet can be sent to the client 1 through AC1.
  • the client 1 and the BRAS network element 121 can establish a PPPoE connection, and after the connection is successfully established, the client 1 and the BRAS network element 121 can perform communication of service data.
  • the client 1 detects that the PPPoE connection is disconnected, and can resend the PPPoE first message.
  • the AGSW 131 can broadcast the PPPoE first message to the BRAS network element 121 and the BRAS network. Yuan 122. Because the BRAS network element 121 is faulty, only the BRAS network element 122 reports the PPPoE first message to the controller 110. The controller 110 can only receive the PPPoE first packet reported by the BRAS network element 122. Therefore, the controller can select the BRAS network element 122 to send a response notification.
  • the BRAS network element 122 may generate a response packet for the PPPoE first packet, and then encapsulate the response packet into a VXLAN packet by referring to Table 3-1, and then forward the packet to the AGSW131.
  • the AGSW 131 can decapsulate the response packet, and the source MAC address vBRAS2 of the response packet is learned in the MAC address table shown in Table 1-2 to obtain Table 1-3.
  • the MAC entries learned by AGSW 131 can be found in line 4 of Table 1-3.
  • the AGSW 131 can also forward the response message to the client 1 through AC1 by looking up Table 1-3.
  • the destination MAC address of the PPPoE packet sent by the client 1 may be the MAC address vBRAS2 of the BRAS network element 122, and the client 1 establishes a PPPoE connection with the BRAS network element 122, and after the connection is successfully established, the client 1 and the BRAS network are successfully established.
  • Element 122 can perform business data communication.
  • the following describes the traffic scheduling method in the IPoE application scenario.
  • the controller 110 can elect the BRAS network element 121 as the primary BRAS network element and the BRAS network element 122 as the secondary BRAS network element.
  • BRAS network element 121 and BRAS network element 122 may have the same virtual MAC address vMAC.
  • the client 1 sends an IPoE first packet, and the source MAC address of the IPoE first packet may be USER1, and the destination MAC address may be a broadcast MAC address.
  • the ACSW can determine the MAC address table corresponding to the VXLAN1 of the IPoE first packet, and learn the source MAC address USER1 of the IPoE first packet to learn the MAC address table. The MAC entry shown in the second line of Table 1-1.
  • the AGSW 131 may encapsulate the IPoE first packet and send the encapsulated VXLAN packet, so that the AGSW 131 may broadcast the IPoE first packet to the BRAS network element 121. And BRAS network element 122.
  • the BRAS network element 121 After receiving the VXLAN packet, the BRAS network element 121 can perform decapsulation to obtain the IPoE first packet, and learn the source MAC address USER1 of the IPoE first packet, which is obtained as shown in the second row of Table 2-1. MAC entry.
  • the BRAS network element 121 is a primary BRAS network element. Therefore, the BRAS network element 121 can generate a response packet for the first packet of the IPoE.
  • the source MAC address of the response packet can be vMAC, and the destination MAC address can be USER1.
  • the corresponding outgoing interface can be found in the MAC address table as shown in Table 2-1, and the response packet is encapsulated, and the encapsulated VXLAN packet is sent to the AGSW 131.
  • the BRAS network element 122 can also perform decapsulation to obtain the IPoE first packet, and learn the source MAC address USER1 of the IPoE first packet, which can be obtained as shown in the second row of Table 3-1. The MAC entry shown.
  • the AGSW 131 may perform decapsulation to obtain a response packet, and determine that the MAC address table corresponding to the VXLAN1 to which the response packet belongs is Table 1-1, and the response is The source MAC address vMAC of the packet is learned in the MAC address table shown in Table 1-1. Table 1-4 is obtained. The MAC address entries learned by the AGSW131 are shown in the third row of Table 1-4. The AGSW 131 can find the corresponding MAC address table in the MAC address table as shown in Table 1-4 according to the destination MAC address USER1 of the response packet. The outbound interface is AC1, and the response packet is forwarded to client 1 through AC1.
  • the IPoE packet sent by the client 1 can be a unicast packet, and the destination MAC address can be a vMAC.
  • the AGSW 131 can find the corresponding outgoing interface as Tunnel1 in the MAC address table shown in Table 1-4 according to the destination MAC address vMAC of the IPoE packet. Therefore, the AGSW 131 can encapsulate the IPoE packet into a VXLAN packet and send it to the BRAS network element 121. After receiving the VXLAN packet, the BRAS network element 121 can decapsulate the IPoE packet and perform the IPoE packet. Processing accordingly.
  • the BRAS network element 121 When the BRAS network element 121 wants to send an IPoE packet to the client 1, it can find the outgoing interface as Tunnel1 in the MAC address table as shown in Table 2-1 according to the destination MAC address USER1 of the IPoE packet. After the IPoE packet is encapsulated into a VXLAN packet, it is sent to the AGSW 131. After receiving the VXLAN packet, the AGSW 131 can decapsulate the IPoE packet, and according to the destination MAC address USER1 of the IPoE packet, the corresponding MAC address table can be found in the MAC address table. The interface is AC1, and the IPoE packet is sent to the client 1 through AC1.
  • the client 1 and the BRAS network element 121 can establish an IPoE connection, and after the connection is successfully established, the client 1 and the BRAS network element 121 can perform communication of service data.
  • the BRAS network element 122 can detect that the status of the BRAS network element 121 becomes Down, and the BRAS network element 122 can switch to the primary BRAS network element and broadcast a gratuitous ARP packet, thereby passing through Tunnel2.
  • the free ARP packet is sent to the AGSW 131.
  • the source MAC address of the gratuitous ARP packet is vMAC.
  • the AGSW 131 After receiving the VXLAN packet with the free ARP packet, the AGSW 131 can decapsulate the free ARP packet. Then, according to the source MAC address vMAC of the gratuitous ARP packet, the AGSW 131 can search for the matching entry in the table 1-4 corresponding to the VXLAN1 to which the VXLAN packet belongs, and find the MAC entry in the third row of the table 1-4. . In addition, the VXLAN tunnel Tunnel1 included in the MAC entry is different from the VXLAN tunnel Tunnel2 that receives the VXLAN packet, and the AGSW 131 can update the Tunnel1 included in the MAC entry to the tunnel2. In this case, Table 1-4 Updated to Table 1-5. Subsequently, client 1 can communicate with BRAS network element 122.
  • the BRAS network element 122 can be re-switched to the secondary BRAS network element.
  • the BRAS network element 121 broadcasts the gratuitous ARP packet, which is sent to the AGSW 131 through the tunnel 1.
  • the source MAC address of the gratuitous ARP packet is vMAC.
  • the AGSW 131 can decapsulate the free ARP packet, and then according to the source MAC address vMAC of the gratuitous ARP packet, the VXLAN1 corresponding to the VXLAN packet belongs to the table.
  • the matching entry is found in 1-5, the result is that the MAC entry shown in the third row of Table 1-5 is found, and the VXLAN tunnel Tunnel2 included in the MAC entry and the VXLAN tunnel Tunnel1 receiving the VXLAN packet are received. If the difference is not the same, the tunnel 2 included in the MAC entry is updated to Tunnel 1.
  • Table 1-5 can be updated to Table 1-4. Subsequently, client 1 can re-communicate with BRAS network element 121.
  • the present disclosure also provides an example of a traffic scheduling device.
  • An example of the disclosed traffic scheduling logic can be applied to a controller.
  • Examples of the above traffic scheduling logic may be implemented by software, or may be implemented by hardware or a combination of hardware and software.
  • the traffic scheduling logic can be formed by reading the corresponding machine executable instructions in the machine readable storage medium through the processor of the controller in which it is located. From a hardware level, as shown in FIG. 5, a hardware structure diagram of the traffic scheduling apparatus of the present disclosure, in addition to the processor 510, the internal bus 520, the network interface 530, and the machine readable storage medium 540 shown in FIG.
  • the device may also include other hardware according to the actual function of the controller, and details are not described herein again.
  • machine-readable storage medium 540 can be any electronic, magnetic, optical, or other physical storage device that contains or stores information such as executable instructions, data, and the like.
  • the machine readable storage medium 540 may be a RAM (Radom Access Memory), a volatile memory, a nonvolatile memory, a flash memory, a storage drive (such as a hard disk drive), a solid state Hard disk, any type of storage disk (such as a compact disc, DVD, etc.), or similar storage medium, or a combination thereof. Further, any of the machine readable storage media described herein can be non-volatile.
  • machine readable storage medium 540 can store machine readable instructions corresponding to traffic scheduling logic 550 executed by processor 510.
  • 6 is a functional block diagram of flow scheduling logic shown in an example of the present disclosure.
  • the traffic scheduling logic 550 can include the following modules: a grouping module 551, an establishing module 552, and a selection module 553.
  • the grouping module 551 can be configured to group BRAS network elements in the resource pool, and each packet includes at least two BRAS network elements.
  • the establishing module 552 can be configured to specify one of the packets for the aggregation switch, and establish a VXLAN tunnel between the aggregation switch and each of the BRAS network elements in the specified packet, so that the aggregation switch receives the client's first from the AC interface.
  • the packet is sent to each BRAS network element in the specified packet through the VXLAN tunnel;
  • the selecting module 553 is configured to select, according to the preset control mode, the BRAS network element in the specified packet, so that the aggregation switch sends the subsequent packet of the client received from the AC interface to the selected BRAS through the VXLAN tunnel. Network element.
  • the selection module 553 may further include: a receiving unit, a selecting unit, and a sending unit.
  • the receiving unit is configured to receive the first message reported by each BRAS network element in the specified packet.
  • the selecting unit may be configured to select a BRAS network element from all BRAS network elements that report the first message according to a predetermined selection principle after the receiving unit receives the first message reported by each BRAS network element in the specified packet.
  • the sending unit may be configured to send a response notification to the selected BRAS network element, so that the selected BRAS network element responds to the first message.
  • the selecting unit may be specifically configured to: select a BRAS network element from all the reported BRAS network elements according to a predetermined selection rule, where the predetermined selection rule may include: selecting a BRAS network element closest to the aggregation switch, or selecting a minimum load BRAS network element.
  • selection module 553 can include a configuration unit.
  • the configuration unit may be configured to configure a delay time for each BRAS network element in the specified packet, so that the BRAS network element responds to the first packet according to a corresponding delay time; and selects a BRAS that responds to the first packet at the earliest. Network element.
  • VXLAN1 The VXLAN tunnel between the aggregation switch and all BRAS network elements in the specified packet corresponds to the same VXLAN (referred to as VXLAN1 for convenience of description).
  • the establishing module 602 can include: an interface configuration unit, a creating unit, and a binding unit.
  • the interface configuration unit may be configured to configure, for each of the BRAS network elements in the packet, a first tunnel interface, where the source IP address of the first tunnel interface is an IP address and a destination IP address of the aggregation switch.
  • the IP address of the BRAS network element can also be used to configure a second tunnel interface on the BRAS network element for each BRAS network element.
  • the source IP address of the second tunnel interface can be the IP address and destination IP address of the BRAS network element. Can be the IP address of the aggregation switch.
  • the creating unit may be configured to create a first VSI on the aggregation switch, create a VXLAN1 in the first VSI, and may also be used to create a second VSI on the BRAS network element, and create a VXLAN1 in the second VSI;
  • the binding unit may be configured to bind the AC interface, the first VSI, the VXLAN1, and the first tunnel interface on the aggregation switch, and may also be configured to: on the BRAS network element, the second VSI, the VXLAN1, and the second tunnel Interface binding.
  • the relevant part can be referred to the description of the method example.
  • the device examples described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开提供一种流量调度方法及装置,其中,该方法可以包括:控制器可将资源池中的BRAS网元进行分组,每个分组中包括至少两个BRAS网元;所述控制器可为汇聚交换机指定一个分组,并在该汇聚交换机和该指定分组内的每一个BRAS网元之间建立VXLAN隧道,以使该汇聚交换机将从AC接口接收到的客户端首报文通过VXLAN隧道发送给该指定分组内的每一个BRAS网元;所述控制器可以根据预设的控制模式从该指定分组中选择BRAS网元,以使该汇聚交换机将从该AC接口接收到的该客户端的后续报文通过VXLAN隧道发送给选中的BRAS网元。

Description

流量调度
相关申请的交叉引用
本专利申请要求于2016年4月27日提交的、申请号为201610273447.5、发明名称为“流量调度方法及装置”的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
背景技术
网络宽带远程接入服务器(Broadband Remote Access Server,BRAS)是面向宽带网络应用的接入网关,它位于骨干网的边缘层,可以提供用户带宽的数据接入服务,实现商业楼宇及小区住户的宽带上网。
在城域网(Metropolitan Area Network,MAN)组网模型中,BRAS可部署在城域网的汇聚机房,宽带用户可由OLT(Optical Line Terminal,光线路终端)接入,再通过汇聚交换机(Aggregation switch,AGSW)连接至BRAS。
附图说明
图1是本公开一示例示出的控制器在汇聚交换机与指定分组内的每一个BRAS网元之间建立VXLAN隧道的流程图;
图2是本公开一示例示出的汇聚交换机对PPPoE首报文进行转发处理的流程图;
图3是本公开一示例示出的汇聚交换机对PPPoE客户端发出的单播报文进行转发处理的流程图;
图4是本公开一示例示出的接入网的组网架构图;
图5是本公开一示例示出的流量调度装置的硬件结构示意图;
图6是本公开一示例示出的流量调度逻辑的功能模块图。
具体实施方式
下面将结合本公开示例中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的示例仅仅是本公开一部分示例,而不是全部的示例。基于本公开中的示例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他示例,都属于本公开保护的范围。
本公开示例提供了一种流量调度方法,以及一种可以应用该方法的流量调度装置。
本公开示例的接入网可主要包括控制器、BRAS网元和汇聚交换机。一个汇聚交换机与指定分组内的每一个BRAS网元可建立VXLAN(Virtual eXtensible Local Area Network,可扩展虚拟局域网络)隧道,该分组可包括至少两个BRAS网元。客户端可经由OLT接入汇聚交换机,OLT与汇聚交换机之间可建立QinQ(Double Virtual Local Area Network,双层标签)隧道。
其中,接入网具体可以是城域网或者企业园区网等,本公开示例对此不做限定。
下面分别对控制器、BRAS网元和汇聚交换机加以介绍。
控制器的功能主要有BRAS资源管理、用户资源管理、隧道资源管理和业务调度管理。其中,BRAS资源管理是指:控制器可获取各BRAS网元的网元信息并对多个BRAS网元进行分组管理。例如,控制器中可保存有一个资源池,该资源池中可包含有多个BRAS网元,其中,所有的BRAS网元功能对等,可以相互备份。控制器可以获取资源池中的各BRAS网元的网元信息,该网元信息中可包括接入该BRAS网元的客户端数量、流经该BRAS网元的流量信息、该BRAS网元的CPU(Central Processing Unit,中央处理器)负载、以及该BRAS网元的工作状态等。另外,控制器可对资源池中的BRAS网元进行分组,并且每个分组中包括至少两个BRAS网元。
用户资源管理是指:控制器可向汇聚交换机获取用户资源信息。其中,该用户资源信息中可包括接入该汇聚交换机的客户端数量、该汇聚交换机上配置的VLAN(Virtual Local Area Network,虚拟局域网络)信息、以及各个客户端所属的VLAN等。
隧道资源管理是指:控制器可管理和分配VXLAN隧道资源。例如,控制器可为要建立的VXLAN隧道分配VXLAN ID(Virtual eXtensible Local Area Network Identification),在汇聚交换机与指定分组内的每一个BRAS网元之间建立VXLAN隧道;还可删除汇聚交换机与指定分组内的每一个BRAS网元之间的VXLAN隧道,并在汇聚交换机与指定分组内的每一个BRAS网元之间的VXLAN隧道被删除后,回收对应的VXLAN ID。
业务调度管理是指:控制器可将汇聚交换机上接入的某一客户端的数据流调度至一个合适的BRAS网元上。
BRAS网元可支持VXLAN隧道。该BRAS网元可以通过VXLAN隧道接收客户端发来的报文,例如,PPPoE(Point to Point Protocol over Ethernet,基于以太网的点对点协议)报文和IPoE(Internet Protocol over Ethernet,基于以太网的因特网协议)报文等;以及,BRAS网 元可通过VXLAN隧道向客户端发送报文;BRAS网元可以为接入网范围内所有客户端提供接入服务。其中,同一分组内的BRAS网元可互为备份;BRAS网元可以是物理BRAS设备,也可以是基于x86服务器平台的BRAS虚拟化软件(vBRAS)。
汇聚交换机也可支持VXLAN隧道。通过VXLAN隧道汇聚交换机可将客户端发来的报文转发给对端的BRAS网元,也可将BRAS网元发送的报文转发给客户端。
本公开示例的流量调度方法可包括以下内容。
首先,控制器可在汇聚交换机与指定分组内的每一个BRAS网元之间建立VXLAN隧道,如图1所示,图1是本公开一示例示出的控制器在汇聚交换机与指定分组内的每一个BRAS网元之间建立VXLAN隧道的流程图。控制器可执行如下步骤S101和S102。
步骤S101,控制器可将本地的资源池中的至少两个BRAS网元分为一组,每个分组中可包括至少两个BRAS网元。
通过步骤S101,控制器可以将资源池中的BRAS网元分为多个分组。
步骤S102,控制器可为汇聚交换机指定一个分组(为了描述方便,记为分组A),并可在该汇聚交换机和分组A内的每一个BRAS网元之间建立VXLAN隧道。
针对分组A内的每一个BRAS网元,控制器可在该汇聚交换机上配置第一Tunnel(隧道)接口,该第一Tunnel接口的源IP地址为该汇聚交换机的IP地址、目的IP地址为该BRAS网元的IP地址;所述控制器可在该汇聚交换机上创建第一VSI(Virtual Switch Instance,虚拟交换实例),可在该第一VSI内创建VXLAN(为了描述方便,记为VXLAN1);所述控制器可将AC(Access Circuit,接入电路)接口、该第一VSI以及配置的所有第一Tunnel接口绑定。从而,在该汇聚交换机上,AC接口、该第一VSI、所有第一Tunnel接口以及VXLAN1可形成对应关系。
针对分组A内的每一个BRAS网元,控制器可在BRAS网元上配置第二Tunnel接口,该第二Tunnel接口的源IP地址为该BRAS网元的IP地址、目的IP地址为该汇聚交换机的IP地址;控制器可在该BRAS网元上创建第二VSI,在该第二VSI内创建VXLAN1;控制器可将该第二VSI和该第二Tunnel接口绑定。从而,在分组A内的每一个BRAS网元上,该第二VSI、第二Tunnel接口以及VXLAN1可形成对应关系。
通过上述步骤S101和步骤S102,控制器在一个汇聚交换机与指定分组内的每一个BRAS网元之间可建立VXLAN隧道,得到一组VXLAN隧道。该汇聚交换机上的AC接口可对应于这组VXLAN隧道,可以将这种结构的VXLAN隧道称为伞形VXLAN隧道。
在汇聚交换机与分组A内的每一个BRAS网元之间的VXLAN隧道建立完成之后,客户端就可以通过该汇聚交换机接入其中的一个BRAS网元了。在实际实施过程中,接入网可以应用多种认证方式,例如,PPPoE和IPoE。当应用PPPoE认证时,接入的可以是PPPoE客户端;当应用IPoE时,接入的可以是IPoE客户端。以下主要针对PPPoE和IPoE这两种情况分别加以介绍。本领域技术人员可以理解的是,本公开示例的认证过程还可以应用于其它宽带用户的认证方式,本公开对此不做限定。
其中,客户端可以是用户所使用的终端设备,一个用户可对应一个客户端。
1、采用PPPoE认证
当要建立PPPoE连接时,PPPoE客户端可以首先发出首报文,以下可称为PPPoE首报文,此时,如图2所示汇聚交换机可对PPPoE首报文进行转发处理,图2是本公开一示例示出的汇聚交换机对PPPoE首报文进行转发处理的流程图,包括以下步骤S201和S202。
步骤S201,汇聚交换机可从AC接口上接收到PPPoE客户端发出的PPPoE首报文,该PPPoE首报文可以是广播报文;
步骤S202,汇聚交换机可查找到与该PPPoE首报文所属VXLAN对应的每一个VXLAN隧道,可根据该VXLAN隧道对该PPPoE首报文进行封装,并可将封装得到的VXLAN报文发送给对端的BRAS网元。从而,汇聚交换机可将该PPPoE首报文发送给分组A内的所有BRAS网元。
其中,在步骤S201之后,汇聚交换机还可以对该PPPoE首报文进行源MAC(Media Access Control)地址的学习,从而,在与该PPPoE首报文所属VXLAN对应的MAC地址表中可添加一个MAC表项,该MAC表项中可包含有该PPPoE首报文的源MAC地址与收到该PPPoE首报文的AC接口之间的对应关系。
由步骤S201和步骤S202可以看出,汇聚交换机对于从该AC接口上接收到的广播报文的处理流程是:通过该报文所属VXLAN对应的VXLAN隧道,汇聚交换机可将该报文广播给分组A内的所有BRAS网元,另外,汇聚交换机对于未知单播报文的处理与广播报文相同。
BRAS网元在接收到封装有PPPoE首报文的VXLAN报文之后,可对该VXLAN报文进行解封装得到PPPoE首报文,然后,该BRAS网元可学习该PPPoE首报文的源MAC地址,从而,该BRAS网元可在该VXLAN报文所属VXLAN对应的MAC地址表中添加一个MAC表项,其中,该MAC表项中可包括:该PPPoE首报文的源MAC地址与收到该VXLAN报文的VXLAN隧道之间的对应关系。
另外,分组A中的BRAS网元还可以根据该PPPoE首报文,按照以下两种方式中的任一种进行相应处理。
方式一:控制器强控制方式
分组A中的BRAS网元可将该PPPoE首报文上报给控制器。由于汇聚交换机可将该PPPoE首报文广播给分组A内的所有BRAS网元,这些BRAS网元都会将该PPPoE首报文上报给控制器。因此,控制器可接收到多份相同的PPPoE首报文。然后控制器可根据预设的选择规则,从所有上报所述PPPoE首报文的BRAS网元中选择一个BRAS网元,并向选中的BRAS网元发送回应通知。选中的BRAS网元在接收到控制器的回应通知后,可针对该PPPoE首报文生成回应报文。根据该回应报文的目的MAC地址,即,PPPoE客户端的MAC地址,在该回应报文所属VXLAN对应的MAC地址表中,该选中的BRAS网元可查找到对应的VXLAN隧道,并可根据该VXLAN隧道对该回应报文进行封装后,将封装得到的VXLAN报文发送给汇聚交换机。从而,只有被控制器选中的BRAS网元才会做出回应。
其中,上述预设的选择规则可以是选择与该汇聚交换机最近的BRAS网元,或选择负载最小的BRAS网元。BRAS网元的负载可以从控制器获取的BRAS网元的网元信息中获知。
方式二:控制器弱控制方式
分组A内的各个BRAS网元在等待一定的延迟时间(PADO Delay Time)后,可针对PPPoE首报文生成回应报文。根据该回应报文的目的MAC地址,在该回应报文所属VXLAN对应的MAC地址表中,分组A内的各个BRAS网元可查找到对应的VXLAN隧道,然后根据该VXLAN隧道对该回应报文进行封装,并将封装得到的VXLAN报文发送给汇聚交换机。其中,分组A内的各个BRAS网元的延迟时间可由控制器来配置和管理,控制器可以在分组A内的不同BRAS网元上,配置不同的延迟时间,从而使得不同BRAS网元做出回应的时间不同。
在方式二中,分组A内的BRAS网元都会做出回应,但是,由于这些BRAS网元延迟的时间不同,因此,这些BRAS网元做出回应的先后顺序也不同。
由上述方式一和方式二可知,控制器可以根据预设的控制模式,选择对PPPoE首报文进行回应的BRAS网元。在方式一中,选中的BRAS网元可为控制器从所有上报PPPoE首报文的BRAS网元中选择的BRAS网元,在方式二中,选中的BRAS网元可为最早做出回应的BRAS网元。
汇聚交换机接收到封装有回应报文的VXLAN报文之后,可对该VXLAN报文进行解封 装得到回应报文。汇聚交换机可以确定该VXLAN报文所属VXLAN对应的MAC地址表,对该回应报文的源MAC地址进行学习,即,汇聚交换机可在该MAC地址表中添加一个MAC表项,其中,该MAC表项中可以包括:该回应报文的源MAC地址与收到该VXLAN报文的VXLAN隧道之间的对应关系。另外,汇聚交换机还可以根据该回应报文的目的MAC地址,在该MAC地址表中查找到对应的AC接口,通过该AC接口将该回应报文转发给PPPoE客户端。
在上述方式一中,只有被选中的BRAS网元才会对PPPoE客户端发出的PPPoE首报文做出回应,回应报文经由汇聚交换机转发给该PPPoE客户端后,该PPPoE客户端随后就可以与该被选中的BRAS网元建立PPPoE连接。PPPoE客户端发出的后续报文,包括PPPoE连接建立过程中除PPPoE首报文以外的报文、以及PPPoE连接建立成功后的数据报文,目的MAC地址为该被选中的BRAS网元的MAC地址的单播报文,这些后续报文均可以转发至该被选中的BRAS网元。从而,控制器可从分组A内选择一个BRAS网元对PPPoE客户端发出的PPPoE首报文进行回应,实现了PPPoE数据流在同一分组内BRAS网元间的调度。
在上述方式二中,控制器可以为分组A内的不同BRAS网元配置不同的延迟时间,使得延迟时间最短的BRAS网元最早做出回应,虽然分组A内的各个BRAS网元发出的回应报文都可以经由汇聚交换机转发给PPPoE客户端,但是,针对PPPoE客户端,只会选择最早做出回应的BRAS网元建立PPPoE连接。PPPoE客户端发出的后续报文,包括PPPoE连接建立过程中除PPPoE首报文以外的报文、以及PPPoE连接建立成功后的数据报文,目的MAC地址为该最早做出回应的BRAS网元的MAC地址的单播报文,这些后续报文均可以转发至该最早做出回应的BRAS网元。从而,控制器可以通过为同一分组内的不同BRAS网元配置不同的延迟时间,使得不同BRAS网元做出回应的时间不同,实现了PPPoE数据流在同一分组内BRAS网元间的调度。
由于在上述对PPPoE首报文和回应报文的处理过程中,汇聚交换机和选中的BRAS网元已经进行了源MAC地址的学习,因此,PPPoE客户端与选中的BRAS网元之间的后续报文(为单播报文)就可以直接进行查表转发了。
PPPoE客户端→选中的BRAS网元方向的报文的转发处理流程如下:
PPPoE客户端发出单播报文,汇聚交换机接收到该单播报文之后,会执行如图3所示的转发处理流程,包括步骤S301-S302。图3是本公开一示例示出的汇聚交换机对PPPoE客户端发出的单播报文进行转发处理的流程图。
步骤S301,汇聚交换机在接收到PPPoE客户端发来的单播报文之后,可确定该单播报文所属VXLAN对应的MAC地址表;
步骤S302,汇聚交换机根据该单播报文的目的MAC地址,可在该MAC地址表中查找到对应的VXLAN隧道,根据查找到的VXLAN隧道对该单播报文进行封装,并将封装得到的VXLAN报文发送给对端的BRAS网元。
BRAS网元接收到该VXLAN报文之后,可进行解封装得到单播报文,可以对该单播报文进行相应处理,例如,所述BRAS网元可以将解封装得到的协议报文上送协议栈,将解封装得到的数据报文转发至公网等。
BRAS网元→PPPoE客户端方向的报文的转发处理流程如下。
当BRAS网元需要发送单播报文时,BRAS网元可以确定该单播报文所属VXLAN对应的MAC地址表。根据该单播报文对应的目的MAC地址,所述BRAS网元在该MAC地址表中查找到对应的VXLAN隧道。根据查找到的VXLAN隧道,所述BRAS网元对该单播报文进行封装,并将封装得到的VXLAN报文发送给汇聚交换机。其中,要发送的单播报文、例如可以是,BRAS网元自身生成的单播报文或者BRAS网元从公网中收到的单播报文等;该单播报文对应的目的MAC地址可以是,该单播报文中携带的目的MAC地址,也可以是该单播报文中携带的目的IP地址对应的MAC地址。
汇聚交换机接收到该VXLAN报文之后,可以对该VXLAN报文进行解封装,确定该VXLAN报文所属VXLAN对应的MAC地址表,根据该单播报文的目的MAC地址,在该MAC地址表中查找到对应的AC接口,通过该AC接口将该单播报文转发给PPPoE客户端。
另外,本公开示例还考虑了分组A内的BRAS网元之间的冗余备份问题。在上述示例方法中,PPPoE客户端只会与一个BRAS网元(为了描述方便,记为BRAS网元1)建立PPPoE连接并进行通信。因此,当BRAS网元1的状态变为不可用(Down)时,例如,BRAS网元1与汇聚交换机之间的链路发生了故障,或者BRAS网元1发生了故障等,该PPPoE客户端会检测到PPPoE连接断开,因此,PPPoE客户端会重新拨号,发出新建PPPoE连接的PPPoE首报文;汇聚交换机接收到该PPPoE首报文之后,可以对该PPPoE首报文执行上述步骤S201和步骤S202的处理,从而将该PPPoE首报文广播给分组A内的BRAS网元。
当采用上述方式一时,由于BRAS网元1不可用,分组A中处于可用状态的其它BRAS网元得到该PPPoE首报文之后上报给控制器,控制器会从分组A内的BRAS网元中重新选择一个BRAS网元(为了描述方便,记为BRAS网元2)做出回应。汇聚交换机在接收到封装 有回应报文的VXLAN报文之后,可以学习该回应报文的源MAC地址,即,学习BRAS网元2的MAC地址,并且,将该回应报文转发给PPPoE客户端。PPPoE客户端可以与BRAS网元2建立PPPoE连接并进行通信,PPPoE客户端后续发出的单播报文的目的MAC地址即为BRAS网元2的MAC地址。
当采用方式二时,由于BRAS网元1不可用,分组A中处于可用状态的其它BRAS网元均可以做出回应,汇聚交换机在接收到封装有回应报文的VXLAN报文之后,会将该回应报文转发给PPPoE客户端;PPPoE客户端会与最早做出回应的BRAS网元(为了描述方便,记为BRAS网元3)建立PPPoE连接并进行通信,后续发出的单播报文的目的MAC地址即为BRAS网元3的MAC地址。
由上可以看出,在与PPPoE客户端建立了PPPoE连接的BRAS网元变为不可用之后,可以与新的BRAS网元建立PPPoE连接并通信,从而可以将PPPoE数据流快速切换到新的BRAS网元,实现了同一分组内的BRAS网元的冗余和备份。
2、采用IPoE(Internet Protocol over Ethernet)认证
分组A内BRAS网元之间运行VRRP(Virtual Router Redundancy Protocol,虚拟路由冗余协议),其中分组A内一个BRAS网元可以作为主BRAS网元,分组A内其它BRAS网元可以作为从BRAS网元。当与IPoE客户端通信时,主BRAS网元和从BRAS网元之间可以具有相同的虚拟MAC地址。
主BRAS网元与从BRAS网元之间可以通过周期性的互发心跳报文来检测对方的工作状态。具体的,主BRAS网元可以通过对应的VXLAN隧道向汇聚交换机发送心跳报文,汇聚交换机可将该心跳报文通过VXLAN隧道转发给各从BRAS网元;反之亦然。
当要建立IPoE连接时,IPoE客户端可以首先发出IPoE连接建立过程中的首报文,以下称为IPoE首报文。此时,汇聚交换机在接收到该IPoE首报文之后,针对该IPoE首报文执行的处理流程,与上述采用PPPoE认证示例中针对PPPoE首报文的处理流程相同。从而,汇聚交换机可以将封装有IPoE首报文的VXLAN报文广播给主BRAS网元和从BRAS网元,并且,汇聚交换机可以学习到IPoE客户端的MAC地址。
主BRAS网元和从BRAS网元在接收到封装有IPoE首报文的VXLAN报文之后,可以对该VXLAN报文进行解封装得到IPoE首报文。然后,主BRAS网元和从BRAS网元可以学习该IPoE首报文的源MAC地址,从而,主BRAS网元和从BRAS网元可以在该VXLAN报文所属VXLAN对应的MAC地址表中添加一个MAC表项,该MAC表项可以包括:该IPoE 首报文的源MAC地址与收到该VXLAN报文的VXLAN隧道之间的对应关系,即,IPoE客户端的MAC地址与收到该VXLAN报文的VXLAN隧道之间的对应关系。另外,主BRAS网元还可以针对该IPoE首报文生成回应报文,根据该回应报文的目的MAC地址,主BRAS网元可以在该回应报文所属VXLAN对应的MAC地址表中查找到对应的VXLAN隧道,主BRAS网元可以根据该VXLAN隧道对该回应报文进行封装,并可以将封装得到的VXLAN报文发送给汇聚交换机。
由此,主BRAS网元和从BRAS网元都可以学习IPoE首报文的源MAC地址,即,IPoE客户端的MAC地址,但是,只有主BRAS网元才会对该IPoE首报文做出回应。
汇聚交换机接收到封装有回应报文的VXLAN报文之后,可以学习该回应报文的源MAC地址(即虚拟MAC地址),并可以将该回应报文转发给IPoE客户端。由于只有主BRAS网元才会做出回应,因此,IPoE客户端只会与主BRAS网元建立IPoE连接并通信,IPoE客户端发出的后续报文可以为单播报文,并且,目的MAC地址可以为虚拟MAC地址。
在上述对IPoE首报文和回应报文的处理过程中,汇聚交换机和主BRAS网元已经进行了源MAC地址的学习,因此,IPoE客户端与主BRAS网元之间的后续报文(为单播报文)就可以直接进行查表转发了,其中,后续报文包括:IPoE连接建立过程中除IPoE首报文以外的报文、以及IPoE连接建立成功后的数据报文。
具体的,IPoE客户端→主BRAS网元方向的报文的处理流程与上述采用PPPoE认证示例中PPPoE客户端→选中的BRAS网元方向的报文的处理流程相同;主BRAS网元→IPoE客户端方向的报文的处理流程与上述采用PPPoE认证示例中BRAS网元→PPPoE客户端方向的报文的处理流程相同。
另外,由于分组A内的BRAS网元之间运行VRRP,因此,这些BRAS网元之间可以相互冗余和备份。
具体的,当从BRAS网元(为了描述方便,记为BRAS网元2)检测到主BRAS网元(为了描述方便,记为BRAS网元1)的状态变为不可用(Down)时,例如,BRAS网元1与汇聚交换机之间的链路发生了故障,从而导致两者之间的VXLAN隧道不可用,或者BRAS网元1发生了故障等,BRAS网元2可以切换为主BRAS网元,并通过VXLAN隧道向汇聚交换机发送免费ARP(Address Resoloution Protocol,地址解析协议)报文,该免费ARP报文的源MAC地址可为虚拟MAC地址。汇聚交换机接收到封装有免费ARP报文的VXLAN报文之后,解封装可以得到该免费ARP报文。然后,根据该免费ARP报文的源MAC地址,汇 聚交换机可在该VXLAN报文所属VXLAN对应的MAC地址表中查找匹配表项,在查找到的匹配表项中包含的VXLAN隧道与收到该VXLAN报文的VXLAN隧道不相同时,汇聚交换机可以将查找到的匹配表项中包含的VXLAN隧道,更新为收到该VXLAN报文的VXLAN隧道。从而,将匹配表项的出接口由汇聚交换机与BRAS网元1的VXLAN隧道,更新为了汇聚交换机与BRAS网元2的VXLAN隧道,后续的IPoE数据流可以被切换到BRAS网元2。
当BRAS网元1的状态恢复为可用,并且需要回切时,BRAS网元2可以重新切换为从BRAS网元。BRAS网元1通过VXLAN隧道向汇聚交换机发送免费ARP报文,该免费ARP报文的源MAC地址为虚拟MAC地址。汇聚交换机接收到封装有免费ARP报文的VXLAN报文之后,解封装可以得到该免费ARP报文。然后,根据该免费ARP报文的源MAC地址,汇聚交换机可在该VXLAN报文所属VXLAN对应的MAC地址表中查找匹配表项,在查找到的匹配表项中包含的VXLAN隧道与收到该VXLAN报文的VXLAN隧道不相同时,可以将查找到的匹配表项中包含的VXLAN隧道更新为收到该VXLAN报文的VXLAN隧道。从而,将匹配表项的出接口由汇聚交换机与BRAS网元2的VXLAN隧道,更新为了汇聚交换机与BRAS网元1的VXLAN隧道,后续的IPoE数据流可以被切换回了BRAS网元1。
由上可以看出,主BRAS网元变为不可用之后,可以将IPoE数据流快速切换到从BRAS网元,当主BRAS网元恢复可用之后,还可以将IPoE数据流快速切换回主BRAS网元,实现了同一分组内的BRAS网元的冗余和备份。
本公开上述示例的流量调度方法中实现了以下技术效果。
控制器预先可以将资源池中的至少两个BRAS网元分成一个组,之后,为汇聚交换机指定一个分组,并可以在该汇聚交换机和该分组内的每一个BRAS网元之间建立VXLAN隧道,得到一组VXLAN隧道,该汇聚交换机上的AC接口可以与该组VXLAN隧道对应。
当采用PPPoE认证时,该汇聚交换机在从该AC接口接收到任一客户端的PPPoE首报文之后,可以将该PPPoE首报文通过VXLAN隧道发送给该分组内的每一个BRAS网元。之后,控制器根据预设的控制模式,可以选择对该PPPoE首报文进行回应的BRAS网元。这样,该汇聚交换机在从该AC接口接收到该客户端的PPPoE后续报文之后,可以将该PPPoE后续报文通过VXLAN隧道发送给选中的BRAS网元。从而,可以将该AC接口连接的任一客户端的PPPoE数据流调度到该选中的BRAS网元上,实现了PPPoE数据流在同一分组内BRAS网元间的调度。
当该选中的BRAS网元的状态变为不可用时,客户端可以重新发出PPPoE首报文,控制 器可以根据预设的控制模式,从处于可用状态的其它BRAS网元中,重新选择对该PPPoE首报文进行回应的BRAS网元,从而,实现了同一分组内的BRAS网元之间的备份和冗余,提高了可靠性。
另外,当采用IPoE认证时,该分组内的所有BRAS网元运行VRRP,从而,实现了IPoE数据流在同一分组内BRAS网元间的调度,以及同一分组内的BRAS网元之间的备份和冗余,提高了可靠性。
为了便于理解,下面以图4所示的实际组网架构,对上述采用PPPoE认证时的流量调度方法和采用IPoE认证时的流量调度方法加以说明。
如图4所示,控制器110可以将资源池中的BRAS网元121和BRAS网元122分为同一分组,称为分组1,将资源池中的BRAS网元123和BRAS网元124分为同一分组,称为分组2。控制器110可以在汇聚交换机AGSW 131与分组1中的BRAS网元121和BRAS网元122之间建立VXLAN隧道,从而得到两个VXLAN隧道Tunnel1和Tunnel2,这两个VXLAN隧道可以构成一组VXLAN隧道。
AGSW 131上的AC接口AC1、Tunnel1和Tunnel2、以及VXLAN1可以对应,其中,Tunnel1可以是AGSW 131与BRAS网元121之间的VXLAN隧道,Tunnel2可以是AGSW 131与BRAS网元122之间的VXLAN隧道。
客户端1(图4中未示出)可以通过OLT 141连接至AGSW 131的AC1。客户端1的MAC地址可以为USER1。
在PPPoE应用场景中,BRAS网元121的MAC地址可以为vBRAS1,BRAS网元122的MAC地址可以为vBRAS2,下面以BRAS网元采用上述方式一做出回应为例,说明PPPoE应用场景中的流量调度方法。
客户端1可以发出PPPoE首报文,该PPPoE首报文的源MAC地址可以为USER1、目的MAC地址可以是广播MAC地址。AGSW 131通过AC1接收到该PPPoE首报文之后,可以确定该PPPoE首报文所属VXLAN1对应的MAC地址表。AGSW 131可以将该PPPoE首报文的源MAC地址USER1学习到该MAC地址表中,得到了如表1-1第2行所示的MAC表项,并且,通过与VXLAN1对应的Tunnel1和Tunnel2,AGSW 131可对该PPPoE首报文进行封装并将封装得到的VXLAN报文发送出去,从而,AGSW 131可将该PPPoE首报文广播给BRAS网元121和BRAS网元122。
表1-1
MAC地址 VXLAN ID 出接口
USER1 VXLAN1 AC1
BRAS网元121收到该VXLAN报文之后,可以进行解封装得到其中的PPPoE首报文,确定该VXLAN报文所属VXLAN1对应的MAC地址表,将该PPPoE首报文的源MAC地址USER1学习到该MAC地址表中,得到了如表2-1第2行所示的MAC表项,并且,BRAS网元121可以将该PPPoE首报文上报给控制器110。
同样,BRAS网元122也可以执行上述操作,从而学习到如表3-1第2行所示的MAC表项,并且,BRAS网元122也可以将该PPPoE首报文上报给控制器110。
表2-1
MAC地址 VXLAN ID 出接口
USER1 VXLAN1 Tunnel1
表3-1
MAC地址 VXLAN ID 出接口
USER1 VXLAN1 Tunnel2
控制器110在收到BRAS网元121和BRAS网元122上报的PPPoE首报文之后,可以选择负载最小的BRAS网元121发送回应通知。BRAS网元121到该回应通知之后,可以针对该PPPoE首报文生成回应报文,该回应报文的源MAC地址是vBRAS1、目的MAC地址是USER1,然后,根据USER1在如表2-1所示的MAC地址表中查找对应的出接口,结果查找到了Tunnel1,BRAS网元121可以对该回应报文进行封装,并将封装得到的VXLAN报文发送给AGSW 131。
AGSW 131接收到该VXLAN报文之后,可以进行解封装得到其中的回应报文,确定该VXLAN报文所属VXLAN1对应的MAC地址表为表1-1,将该回应报文的源MAC地址vBRAS1学习到如表1-1所示的MAC地址表中,学习到的MAC表项参见表1-2第3行,此时,表1-1更新为表1-2;并且,AGSW 131可以根据该回应报文的目的MAC地址USER1,在如表1-2所示的MAC地址表中查找到对应的出接口为AC1,通过AC1将该回应报文转发给客户端1。
表1-2
MAC地址 VXLAN ID 出接口
USER1 VXLAN1 AC1
vBRAS1 VXLAN1 Tunnel1
客户端1后续发出的PPPoE报文可以为单播报文,且目的MAC地址可以为vBRAS1。AGSW 131根据该PPPoE报文的目的MAC地址vBRAS1,在如表1-2所示的MAC地址表中可以查找到对应的出接口为Tunnel1。从而,AGSW 131可以将该PPPoE报文封装成VXLAN报文后发送给BRAS网元121。BRAS网元121接收到该VXLAN报文后,可以解封装得到该PPPoE报文,对该PPPoE报文进行相应处理。
当BRAS网元121想要向客户端1发送PPPoE报文时,根据该PPPoE报文的目的MAC地址USER1,可以在如表2-1所示的MAC地址表中查找到对应的出接口为Tunnel1,将该PPPoE报文封装成VXLAN报文后,发送给AGSW 131。AGSW 131接收到该VXLAN报文之后,可以解封装得到其中的PPPoE报文,根据该PPPoE报文的目的MAC地址USER1,可以在如表1-2所示的MAC地址表中查找到对应的出接口为AC1,从而可将该PPPoE报文通过AC1发送给客户端1。
从而,通过上述过程,客户端1与BRAS网元121可建立PPPoE连接,并在连接建立成功后,客户端1与BRAS网元121可以进行业务数据的通信。
当BRAS网元121发生故障时,客户端1检测到PPPoE连接断开,可以重新发送PPPoE首报文,AGSW 131收到该PPPoE首报文后,可以将其广播给BRAS网元121和BRAS网元122。由于BRAS网元121故障了,因此,只有BRAS网元122将该PPPoE首报文上报给控制器110。控制器110只能收到BRAS网元122上报的PPPoE首报文。因此,控制器可以选择BRAS网元122发送回应通知。BRAS网元122收到该回应通知之后,可以针对该PPPoE首报文生成回应报文,并通过查表3-1将该回应报文封装成VXLAN报文后,转发给AGSW131。AGSW 131收到该VXLAN报文后,可以解封装得到其中的回应报文,将该回应报文的源MAC地址vBRAS2学习到如表1-2所示的MAC地址表中得到表1-3,AGSW 131学习到的MAC表项可以参见表1-3第4行。另外,AGSW 131还可以通过查表1-3将该回应报文通过AC1转发给客户端1。后续,客户端1发出的PPPoE报文的目的MAC地址可以为BRAS网元122的MAC地址vBRAS2,客户端1与BRAS网元122建立PPPoE连接,并在连接建立成功后,客户端1与BRAS网元122可以进行业务数据通信。
表1-3
MAC地址 VXLAN ID 出接口
USER1 VXLAN1 AC1
vBRAS1 VXLAN1 Tunnel1
vBRAS2 VXLAN1 Tunnel2
下述介绍在IPoE应用场景的流量调度方法。
通过自动选举,控制器110可以选举出BRAS网元121作为主BRAS网元,BRAS网元122作为从BRAS网元。BRAS网元121和BRAS网元122可以具有相同的虚拟MAC地址vMAC。
客户端1发出IPoE首报文,该IPoE首报文的源MAC地址可以为USER1、目的MAC地址可以是广播MAC地址。AGSW 131通过AC1接收到该IPoE首报文之后,可以确定该IPoE首报文所属VXLAN1对应的MAC地址表,将该IPoE首报文的源MAC地址USER1学习到该MAC地址表中,可以得到如表1-1第2行所示的MAC表项。并且,针对与VXLAN1对应的Tunnel1和Tunnel2,AGSW 131可以对该IPoE首报文进行封装并将封装得到的VXLAN报文发送出去,从而,AGSW 131可将该IPoE首报文广播给BRAS网元121和BRAS网元122。
BRAS网元121收到该VXLAN报文之后,可以进行解封装得到其中的IPoE首报文,对该IPoE首报文的源MAC地址USER1进行学习,得到了如表2-1第2行所示的MAC表项。并且,由于BRAS网元121是主BRAS网元,因此,BRAS网元121可以针对该IPoE首报文生成回应报文,该回应报文的源MAC地址可以是vMAC、目的MAC地址可以是USER1,然后,根据USER1可以在如表2-1所示的MAC地址表中查找到对应的出接口为Tunnel1,对该回应报文进行封装,并将封装得到的VXLAN报文发送给AGSW 131。
BRAS网元122收到该VXLAN报文之后,也可以进行解封装得到其中的IPoE首报文,对该IPoE首报文的源MAC地址USER1进行学习,可得到如表3-1第2行所示的MAC表项。
AGSW 131接收到BRAS网元121发来的该VXLAN报文之后,可以进行解封装得到其中的回应报文,确定出该回应报文所属VXLAN1对应的MAC地址表为表1-1,将该回应报文的源MAC地址vMAC学习到如表1-1所示的MAC地址表中,可以得到表1-4。其中,AGSW131学习到的MAC表项参见表1-4第3行;并且,AGSW 131可以根据该回应报文的目的MAC地址USER1,在如表1-4所示的MAC地址表中查找到对应的出接口为AC1,通过AC1将该回应报文转发给客户端1。
表1-4
MAC地址 VXLAN ID 出接口
USER1 VXLAN1 AC1
vMAC VXLAN1 Tunnel1
客户端1后续发出的IPoE报文可以为单播报文,并且目的MAC地址可以为vMAC。AGSW 131可以根据该IPoE报文的目的MAC地址vMAC,在如表1-4所示的MAC地址表中查找到对应的出接口为Tunnel1。从而,AGSW 131可以将该IPoE报文封装成VXLAN报文后发送给BRAS网元121;BRAS网元121接收到该VXLAN报文后,可以解封装得到该IPoE报文,对该IPoE报文进行相应处理。
当BRAS网元121想要向客户端1发送IPoE报文时,可以根据该IPoE报文的目的MAC地址USER1,在如表2-1所示的MAC地址表中查找到出接口为Tunnel1,将该IPoE报文封装成VXLAN报文后,发送给AGSW 131。AGSW 131接收到该VXLAN报文之后,可以解封装得到其中的IPoE报文,根据该IPoE报文的目的MAC地址USER1,可以在如表1-4所示的MAC地址表中查找到对应的出接口为AC1,从而将该IPoE报文通过AC1发送给客户端1。
从而,通过上述过程,客户端1与BRAS网元121可建立IPoE连接,并在连接建立成功后,客户端1与BRAS网元121可进行业务数据的通信。
当BRAS网元121发生故障时,BRAS网元122可以检测到BRAS网元121的状态变为Down,BRAS网元122可以切换为主BRAS网元,广播免费ARP报文,从而,会通过Tunnel2将该免费ARP报文发送给AGSW 131,该免费ARP报文的源MAC地址为vMAC。
AGSW 131接收到封装有免费ARP报文的VXLAN报文之后,可以解封装得到该免费ARP报文。然后,根据该免费ARP报文的源MAC地址vMAC,AGSW 131可以在该VXLAN报文所属VXLAN1对应的表1-4中查找匹配表项,结果查找到表1-4第3行的MAC表项。并且,该MAC表项中包含的VXLAN隧道Tunnel1与收到该VXLAN报文的VXLAN隧道Tunnel2不相同,则AGSW 131可以将该MAC表项中包含的Tunnel1更新为Tunnel2,此时,表1-4更新为了表1-5。后续,客户端1可与BRAS网元122进行通信。
表1-5
MAC地址 VXLAN ID 出接口
USER1 VXLAN1 AC1
vMAC VXLAN1 Tunnel2
当BRAS网元121的状态恢复为可用(Up),并且需要回切时,BRAS网元122可重新切换为从BRAS网元。BRAS网元121广播免费ARP报文,从而会通过Tunnel1发送给AGSW 131,该免费ARP报文的源MAC地址为vMAC。AGSW 131接收到封装有免费ARP报文的VXLAN报文之后,可以解封装得到该免费ARP报文,然后,根据该免费ARP报文的源MAC地址vMAC,在该VXLAN报文所属VXLAN1对应的表1-5中查找匹配表项,结果查找到如表1-5第3行所示的MAC表项,并且,该MAC表项中包含的VXLAN隧道Tunnel2与收到该VXLAN报文的VXLAN隧道Tunnel1不相同,则将该MAC表项中包含的Tunnel2更新为Tunnel1,表1-5可更新为表1-4。后续,客户端1可重新与BRAS网元121进行通信。
与前述流量调度方法的示例相对应,本公开还提供了一种流量调度装置的示例。
本公开流量调度逻辑的示例可以应用在控制器上。上述流量调度逻辑的示例可以通过软件实现,也可以通过硬件或者软硬件结合的方式实现。以软件实现为例,作为一个逻辑意义上的装置,流量调度逻辑可通过其所在控制器的处理器,读取机器可读存储介质中对应的机器可执行指令形成的。从硬件层面而言,如图5所示,为本公开流量调度装置的硬件结构图,除了图5所示的处理器510、内部总线520、网络接口530以及机器可读存储介质540之外,该装置可根据该控制器的实际功能,还可以包括其他硬件,对此不再赘述。
如本文所用,机器可读存储介质540可以是包含或存储如可执行指令、数据等信息的任何电子、磁性、光学或其他物理存储设备。
在不同的实施例中,所述机器可读存储介质540可以是RAM(Radom Access Memory,随机存取存储器)、易失存储器、非易失性存储器、闪存、存储驱动器(如硬盘驱动器)、固态硬盘、任何类型的存储盘(如光盘、DVD等),或者类似的存储介质,或者它们的组合。进一步,本文描述的任何机器可读存储介质可以是非易失性的。
进一步,机器可读存储介质540上可存储有处理器510执行的流量调度逻辑550对应的机器可读指令。图6是本公开一示例示出的流量调度逻辑的功能模块图。从功能上划分,所述流量调度逻辑550可包括以下模块:分组模块551、建立模块552和选择模块553。
分组模块551可用于将资源池中的BRAS网元进行分组,每个分组中包括至少两个BRAS网元。
建立模块552可用于为汇聚交换机指定一个所述分组,并在该汇聚交换机和指定分组内的每一个BRAS网元之间建立VXLAN隧道,以使该汇聚交换机将从AC接口接收到的客户端的首报文通过VXLAN隧道发送给该指定分组内的每一个BRAS网元;
选择模块553可用于根据预设的控制模式,选择所述指定分组内的BRAS网元,以使该汇聚交换机将从该AC接口接收到的该客户端的后续报文通过VXLAN隧道发送给选中的BRAS网元。
其中,选择模块553可进一步包括:接收单元、选择单元和发送单元。
接收单元可用于接收该指定分组内的各个BRAS网元上报的首报文。
选择单元可用于在接收单元接收到该指定分组内的各个BRAS网元上报的首报文之后,根据预定的选择原则从所有上报首报文的BRAS网元中选择一个BRAS网元。
发送单元可用于向选择单元选中的BRAS网元发送回应通知,以使选中的BRAS网元对首报文进行回应。
其中,选择单元可具体用于:根据预定选择规则,从所有上报的BRAS网元中选择一个BRAS网元,其中,预定选择规则可包括:选择与汇聚交换机最近的BRAS网元,或选择负载最小的BRAS网元。
或者,选择模块553可包括配置单元。所述配置单元可用于为该指定分组内的各个BRAS网元配置延迟时间,以便所述BRAS网元按照对应的延迟时间对所述首报文进行回应;选择最早对首报文进行回应的BRAS网元。
其中,该汇聚交换机与该指定分组内的所有BRAS网元之间的VXLAN隧道对应于同一VXLAN(为了描述方便,记为VXLAN1)。
其中,建立模块602可包括:接口配置单元、创建单元和绑定单元。
接口配置单元可用于针对该分组内的每一个BRAS网元,在该汇聚交换机上配置第一Tunnel接口,该第一Tunnel接口的源IP地址可以为该汇聚交换机的IP地址、目的IP地址为该BRAS网元的IP地址;还可用于针对每一个BRAS网元,在BRAS网元上配置第二Tunnel接口,该第二Tunnel接口的源IP地址可以为该BRAS网元的IP地址、目的IP地址可以为该汇聚交换机的IP地址。
创建单元可用于在该汇聚交换机上创建第一VSI,在该第一VSI内创建VXLAN1;还可用于在所述BRAS网元上创建第二VSI,在该第二VSI内创建VXLAN1;
绑定单元可用于在该汇聚交换机上将该AC接口、第一VSI、该VXLAN1以及第一Tunnel接口绑定;还可用于在该BRAS网元上,将第二VSI、该VXLAN1和第二Tunnel接口绑定。
上述逻辑中各个单元的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
对于装置示例而言,由于其基本对应于方法示例,所以相关之处参见方法示例的部分说明即可。以上所描述的装置示例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅为本公开的较佳示例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (14)

  1. 一种流量调度方法,其中,包括:
    控制器将资源池中的宽带远程接入服务器BRAS网元进行分组,每个分组中包括至少两个BRAS网元;
    所述控制器为汇聚交换机指定一个所述分组;
    在所述汇聚交换机和指定分组内的每一个BRAS网元之间建立可扩展虚拟局域网络VXLAN隧道,以使所述汇聚交换机将从接入电路AC接口接收到的客户端的首报文通过所述VXLAN隧道发送给所述指定分组内的每一个BRAS网元;
    所述控制器根据预设的控制模式从所述指定分组中选择BRAS网元,以使所述汇聚交换机将从所述AC接口接收到的所述客户端的后续报文通过VXLAN隧道发送给选中的BRAS网元。
  2. 根据权利要求1所述的方法,其中,所述控制器根据预设的控制模式从所述指定分组中选择BRAS网元,包括:
    所述控制器接收所述指定分组内的各个BRAS网元上报的所述首报文;
    所述控制器根据预定的选择规则从所有上报所述首报文的BRAS网元中选择一个BRAS网元;
    所述控制器向选中的BRAS网元发送回应通知,以使所述选中的BRAS网元对所述首报文进行回应。
  3. 根据权利要求2所述的方法,所述预定的选择规则包括以下任一:
    选择与所述汇聚交换机最近的BRAS网元;
    选择负载最小的BRAS网元。
  4. 根据权利要求1所述的方法,其中,所述控制器根据预设的控制模式从所述指定分组中选择BRAS网元,包括:
    所述控制器为所述指定分组内的各个BRAS网元配置延迟时间,以使所述BRAS网元按照对应的延迟时间对所述首报文进行回应;
    所述控制器选择最早对所述首报文进行回应的BRAS网元。
  5. 根据权利要求1所述的方法,其中,所述控制器在所述汇聚交换机和指定分组内的每一个BRAS网元之间建立VXLAN隧道,包括:
    针对所述指定分组中的每一个BRAS网元,所述控制器在所述汇聚交换机上配置第一隧道Tunnel接口,所述第一Tunnel接口的源IP地址为所述汇聚交换机的IP地址、目的IP地 址为该BRAS网元的IP地址;
    针对所述指定分组中的每一个BRAS网元,所述控制器在该BRAS网元上配置第二Tunnel接口,所述第二Tunnel接口的源IP地址为该BRAS网元的IP地址、目的IP地址为所述汇聚交换机的IP地址。
  6. 根据权利要求5所述的方法,其中,所述汇聚交换机与所述指定分组内的所有BRAS网元之间的VXLAN隧道对应于同一VXLAN。
  7. 根据权利要求6所述的方法,其中,该方法还包括:
    所述控制器在所述汇聚交换机上创建第一虚拟交换实例VSI,在所述第一VSI内创建所述VXLAN,将所述AC接口、所述第一VSI、所述VXLAN、以及所述第一Tunnel接口绑定;
    所述控制器在所述BRAS网元上创建第二VSI,在所述第二VSI内创建所述VXLAN,将所述第二VSI、所述VXLAN和所述第二Tunnel接口绑定。
  8. 一种流量调度装置,包括处理器和非易失性机器可读存储介质,所述处理器通过读取非易失性机器可读存储介质上所存储的机器可读指令执行以下操作:
    将资源池中的宽带远程接入服务器BRAS网元进行分组,每个分组中包括至少两个BRAS网元;
    为汇聚交换机指定一个所述分组;
    在所述汇聚交换机和所述指定分组内的每一个BRAS网元之间建立可扩展虚拟局域网络VXLAN隧道,以使所述汇聚交换机将从接入电路AC接口接收到的客户端的首报文通过所述VXLAN隧道发送给所述分组内的每一个BRAS网元;
    根据预设的控制模式从所述指定分组中选择BRAS网元,以使所述汇聚交换机将从所述AC接口接收到的所述客户端的后续报文通过VXLAN隧道发送给选中的BRAS网元。
  9. 根据权利要求8所述的装置,其中,当根据预设的控制模式从所述指定分组中选择BRAS网元时,所述非易失性机器可读指令促使所述处理器:
    接收所述指定分组内的各个BRAS网元上报的所述首报文;
    根据预定的选择规则从所有上报所述首报文的BRAS网元中选择一个BRAS网元;
    向选中的BRAS网元发送回应通知,以使所述选中的BRAS网元对所述首报文进行回应。
  10. 根据权利要求9所述的装置,其中,所述预定的选择规则包括以下任一:
    选择与所述汇聚交换机最近的BRAS网元;
    选择负载最小的BRAS网元。
  11. 根据权利要求8所述的装置,其中,当根据预设的控制模式从所述指定分组中选择 BRAS网元时,所述非易失性机器可读指令促使所述处理器:
    为所述指定分组内的各个BRAS网元配置延迟时间,以使所述BRAS网元按照对应的所述延迟时间对所述首报文进行回应;
    选择最早对所述首报文进行回应的BRAS网元。
  12. 根据权利要求8所述的装置,其中,当在所述汇聚交换机和指定分组内的每一个BRAS网元之间建立VXLAN隧道时,所述非易失性机器可读指令促使所述处理器:
    针对所述指定分组中的每一个BRAS网元,在所述汇聚交换机上配置第一隧道Tunnel接口,所述第一Tunnel接口的源IP地址为所述汇聚交换机的IP地址、目的IP地址为该BRAS网元的IP地址;
    针对所述指定分组中的每一个BRAS网元,在该BRAS网元上配置第二Tunnel接口,所述第二Tunnel接口的源IP地址为该BRAS网元的IP地址、目的IP地址为所述汇聚交换机的IP地址。
  13. 根据权利要求12所述的装置,其中,所述汇聚交换机与所述指定分组内的所有BRAS网元之间的VXLAN隧道,对应于同一VXLAN。
  14. 根据权利要求13所述的装置,其中,所述非易失性机器可读指令促使所述处理器:
    在所述汇聚交换机上创建第一虚拟交换实例VSI,在所述第一VSI内创建所述VXLAN,将所述AC接口、所述第一VSI、所述VXLAN、以及所述第一Tunnel接口绑定;
    在所述BRAS网元上创建第二VSI,在所述第二VSI内创建所述VXLAN,将所述第二VSI、所述VXLAN和所述第二Tunnel接口绑定。
PCT/CN2017/082025 2016-04-27 2017-04-26 流量调度 WO2017186122A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610273447.5 2016-04-27
CN201610273447.5A CN107317768B (zh) 2016-04-27 2016-04-27 流量调度方法及装置

Publications (1)

Publication Number Publication Date
WO2017186122A1 true WO2017186122A1 (zh) 2017-11-02

Family

ID=60160747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082025 WO2017186122A1 (zh) 2016-04-27 2017-04-26 流量调度

Country Status (2)

Country Link
CN (1) CN107317768B (zh)
WO (1) WO2017186122A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244709A (zh) * 2021-11-11 2022-03-25 新华三大数据技术有限公司 Up设备关联控制方法及装置
CN116938626A (zh) * 2023-09-12 2023-10-24 新华三技术有限公司 一种客户端漫游的方法、装置及电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645431B (zh) 2016-07-20 2020-08-04 新华三技术有限公司 报文转发方法及装置
CN107995125B (zh) * 2017-11-17 2021-07-23 新华三技术有限公司 一种流量调度方法及装置
CN108337147B (zh) * 2018-01-31 2020-12-01 新华三技术有限公司 报文转发方法及装置
CN110475248A (zh) * 2018-05-10 2019-11-19 中国移动通信集团浙江有限公司 一种无线网络架构及无线网络接入方法
CN109412980B (zh) * 2018-09-30 2021-06-29 新华三技术有限公司 一种bras备份方法及装置
CN112511426B (zh) * 2019-09-16 2022-09-27 中国移动通信集团河北有限公司 面向业务的流量疏导方法、装置、计算设备及存储介质
CN113037599A (zh) * 2019-12-24 2021-06-25 中兴通讯股份有限公司 一种报文处理的方法、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140919A1 (zh) * 2010-08-20 2011-11-17 华为技术有限公司 接入业务批发网络的方法、设备、服务器和系统
EP2536068A1 (en) * 2011-06-18 2012-12-19 Deutsche Telekom AG Virtual subscriber management
WO2014208538A1 (ja) * 2013-06-25 2014-12-31 日本電気株式会社 通信システムと装置と方法とプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651682B (zh) * 2009-09-15 2012-08-29 杭州华三通信技术有限公司 一种安全认证的方法、系统和装置
CN101771612B (zh) * 2010-01-13 2012-07-04 华为技术有限公司 隧道建立方法、设备及网络系统
CN104883687B (zh) * 2014-02-28 2019-02-26 华为技术有限公司 无线局域网隧道建立方法、装置及接入网系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140919A1 (zh) * 2010-08-20 2011-11-17 华为技术有限公司 接入业务批发网络的方法、设备、服务器和系统
EP2536068A1 (en) * 2011-06-18 2012-12-19 Deutsche Telekom AG Virtual subscriber management
WO2014208538A1 (ja) * 2013-06-25 2014-12-31 日本電気株式会社 通信システムと装置と方法とプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, LONGJIANG ET AL.: "Eliminating the Hidden Trouble of Aggregation Layer Single Point Barrier by Using the Solution of Metropolitan Area Network 'Dual BAS + Dual Aggregation Switch", SHANDONG COMMUNICATION TECHNOLOGY, vol. 36, no. 1, 31 March 2016 (2016-03-31), pages 3.1 - 3.2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244709A (zh) * 2021-11-11 2022-03-25 新华三大数据技术有限公司 Up设备关联控制方法及装置
CN114244709B (zh) * 2021-11-11 2023-12-26 新华三大数据技术有限公司 Up设备关联控制方法及装置
CN116938626A (zh) * 2023-09-12 2023-10-24 新华三技术有限公司 一种客户端漫游的方法、装置及电子设备
CN116938626B (zh) * 2023-09-12 2023-12-19 新华三技术有限公司 一种客户端漫游的方法、装置及电子设备

Also Published As

Publication number Publication date
CN107317768A (zh) 2017-11-03
CN107317768B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2017186122A1 (zh) 流量调度
US10686749B2 (en) Packet sending method and network device
CN109218178B (zh) 一种报文处理方法及网络设备
US20200067812A1 (en) First Hop Gateway Redundancy In A Network Computing Environment
US8537816B2 (en) Multicast VPN support for IP-VPN lite
US10484303B2 (en) Replication with dedicated metal deployment in a cloud
CN110635935B (zh) 为用户接口的相应服务接口使用多个evpn路由
US9100213B1 (en) Synchronizing VPLS gateway MAC addresses
WO2013185715A1 (zh) 一种实现虚拟网络的方法和虚拟网络
US10523464B2 (en) Multi-homed access
US10924299B2 (en) Packet forwarding
CN106559292A (zh) 一种宽带接入方法和装置
WO2014176740A1 (zh) 流分类器、业务路由触发器、报文处理的方法和系统
CN107995083B (zh) 实现L2VPN与VxLAN互通的方法、系统及设备
EP3069471B1 (en) Optimized multicast routing in a clos-like network
WO2022001669A1 (zh) 建立vxlan隧道的方法及相关设备
US9432260B2 (en) Automated configuration for network devices
WO2018171529A1 (zh) 一种实现双控制平面的方法、装置、计算机存储介质
WO2021042445A1 (zh) 一种二层专线网络系统、配置方法及设备
WO2019042303A1 (zh) 报文转发
US20210351956A1 (en) Customer premises lan expansion
WO2018068588A1 (zh) 提供组播业务的方法和软件定义网络控制器
US20150229523A1 (en) Virtual extensible local area network (vxlan) system of automatically configuring multicasting tunnel for segment of virtual extensible local area network according to life cycle of end system and operating method thereof
WO2021093463A1 (zh) 报文转发的方法、第一网络设备以及第一设备组
US8675669B2 (en) Policy homomorphic network extension

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788774

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788774

Country of ref document: EP

Kind code of ref document: A1